
Copyright © 2009 Fortify Software. All rights reserved.

Fortify Software

NIST SHA-3 Competition Security Audit Results

Joy Forsythe, Security Researcher
Douglas Held, Software Security Consultant

Abstract
The National Institutes of Standards and Technology (“NIST”) is holding a
competition to choose a design for the Secure Hash Algorithm version 3
(“SHA-3”). The reference implementations of some of the contestants have
bugs in them that could cause crashes, performance problems or security
problems if they are used in their current state. Based on our bug reports,
some of those bugs have already been fixed.

Copyright © 2009 Fortify Software. All rights reserved.

1 Introduction
The inspiration for the project was the result of testing of a pre-release
version of Fortify SCA against the Skein and MD6 reference implementations.
This was prompted by an article introducing the NIST round 1 entries on the
technology discussion website Slashdot.org1. The original idea was to test
complex C code that was unlikely to contain defects.

We were surprised to discover buffer overflows in the MD6 implementation.
We carefully reviewed the automated results and contacted the author,
Professor Ron Rivest. The MD6 team to confirmed the findings and they
resubmitted a corrected version of the implementation to NIST. Based on this
positive outcome, we decided to do a similar review of the remaining SHA-3
submittals.

Ultimately two projects, MD6 and Blender, contained buffer overflows. The
remainder of the issues included out-of-bounds reads, memory leaks and null
dereferences, mostly artifacts of incomplete error handling. The null
dereferences resulted from failures to check the result of memory allocation;
the memory leaks were failures to free resources when handling certain error
conditions.

The quality of the code was good overall, but it's important for the reference
implementations to be correct. Reference implementations do form the basis
for real implementations, and we should reasonably expect them to be used
“as is”3.

Bugs such as these have the potential to affect performance, a key
determinant of the NIST competition. For example, under-allocating a buffer
can skew the cost estimate for an embedded system. Additional guards
against error conditions cost processor cycles. In that sense, bugs do have
the potential to affect the outcome of the competition.

Overall, the intent is not to judge any algorithm based on some
implementation errors, but for the errors to be corrected so that 1) the best
algorithm can be selected and 2) to prevent propagation of mistakes into
production code.

Copyright © 2009 Fortify Software. All rights reserved.

2 Methodology

2.1 Analysis

Each entry to the competition posted a submission on the NIST Round 1
webpage4. We downloaded the most up-to-date submission packages (as of
February 12, 2009) and attempted to build the code found in the “Reference
Implementation” directory of each of the 43 projects5. Fortify SCA requires
“compileable” code in order to invoke the C / C++ preprocessor and translate
the code into an intermediate model. In one case, we did need to download
and include NIST’s genKAT.c file6 to compile the project.

Whenever possible, the analysis was performed on a Mac OS X 64 bit
machine with GCC 4.0.1 (i686-apple-darwin9-gcc-4.0.1). The equivalent
build command used was either ‘make’ in the case of a Makefile, or

 gcc -c *.c

whenever no Makefile or other build instructions were included.

A number of projects required Microsoft Visual Studio and were generally
compiled on a Microsoft Windows XP 32 bit machine with Microsoft Visual
Studio 2005. In one case, Visual Studio x64 was required and the Microsoft
Visual Studio 2008 x64 cross compilation environment was used on the 32
bit operating system.

Upon translation into the Fortify intermediate model, the projects were
analyzed against the Fortify 2008-Q4 rules, with a pre-release version of
Fortify SCA.

2.2 Initial Findings
Projects that reported no results or analysis errors were not investigated
further. The following projects generated no findings:

• ECHO
• EnRUPT
• Grøstl
• MCSSHA3
• SHAvite-3
• Sarmal
• Shabal
• TIB3

The projects that did have results averaged around 37 findings.

Copyright © 2009 Fortify Software. All rights reserved.

2.3 Further investigation
When we analyzed the results a preponderance of the findings were
associated with genKAT.c, an uninteresting test harness provided by NIST
for purposes of the contest. Some other findings were also either
uninteresting or invalid within the context.

Joy spent about 16 hours separating the findings between interesting results
associated with the submitted code and the uninteresting or test harness
related results, and carefully reviewed each issue.

This is in accordance with Fortify SCA’s design; namely, static analysis
provides automated assistance to a manual code review7. The reviewer
spends their time auditing the critical sections of code, rather than digging
around to find them (a necessary part of manual code review).

Copyright © 2009 Fortify Software. All rights reserved.

3 Results

Implementation Buffer
overflow

Out-of-
bounds read

Memory
leak

Null
dereference

Blender 1
CRUNCH 4
FSB 3 11
MD6 2 3
Vortex 1 15

3.1 Blender

Category Findings
Buffer overflow 1

Buffer overflow at Blender.c:1808

In Blender.c:1808, an apparent typographical error handles out-of-bounds
memory. The length of the array, defined on line 70, is three; the highest
allowable array index is 2:

70: DataLength sourceDataLength2[3]; // high order parts of data length
71: // note: the array size determines the maximum length supported

...

1802: // deal with the length update first
1803: bcount = ss.sourceDataLength; // previous length
1804: ss.sourceDataLength = bcount + databitlen; // new length
1805: if (ss.sourceDataLength < (bcount | databitlen)) // overflow
1806: if (++ss.sourceDataLength2[0] == 0) // increment higher
 order count
1807: if (++ss.sourceDataLength2[1] == 0) // and the next
 higher order
1808: ++ss.sourceDataLength2[3]; // and the next
 one, etc.

Blender.c

Copyright © 2009 Fortify Software. All rights reserved.

3.2 MD6

Category Findings
Buffer overflow 2
Out of bounds read 3

The findings comprise two instances of overwriting beyond the allocated buffer.
Doubling the size of the buffer should correct multiple problems.

In addition to the buffer overflows and two related out-of-bound reads, another
unrelated off-by-one problem was also found.

Buffer size issues in md6_mode.c
The MD6 implementation defined a buffer to store the final hash value in the
hash state structure:

214: int d; /* desired hash bit length. 1 <= d <= 512. */
215: int hashbitlen; /* hashbitlen is the same as d; for NIST API */
216:
217: unsigned char hashval[(md6_c/2)*(md6_w/8)];
218: /* e.g. unsigned char hashval[64]; (Assumes d<=c/2.) */

Defined values for md6_w (the wordsize for the algorithm, which is independent of
the wordsize for the platform) and md6_c (the size of a compressed chunk) are 64
and 16, respecitively. This gives the hashval buffer a size of 64 bytes.

(md6_c/2)*(md6_w/8)
= (16 / 2) * (64 / 8)
= 64 bytes.

This buffer size introduced four vulnerabilities:

 Buffer overflow at md6_mode.c:611

610: if (z==1) /* save final chaining value in st->hashval */
611: { memcpy(st->hashval, C, md6_c*(w/8));
612: return MD6_SUCCESS;

In md6_mode.c, the memcpy() on line 611 copies the following length:

md6_c * (w / 8)
= 16 * (64 / 8)
= 128 bytes

into the buffer st->hashval, resulting in an overflow.

 Buffer overflow at md6_mode.c:746

Copyright © 2009 Fortify Software. All rights reserved.

744: /* zero out following bytes */
745: for (i=full_or_partial_bytes; i<c*(w/8); i++)
746: st->hashval[i] = 0;

On line 746 of md6_mode.c, the program zeroes a 128 bytes over a 64 byte
destination. The length of hashval has been shown to be 64 bytes, while i can
increase to 127:

 i<c*(w/8);...
 i < 16*64/8
 i < 128

(c and w are defined to be equivalent to md6_c and md6_w)

 Out of bounds read at md6_mode.c:742

740: /* move relevant bytes to the front */
741: for (i=0; i<full_or_partial_bytes; i++)
742: st->hashval[i] = st->hashval[c*(w/8)-
full_or_partial_bytes+i];
743:

On line 742 of md6_mode.c, the program reads from the hashval buffer, which
has a size of 64 bytes, with an index that as large as 127. Given that i can be as
large as full_or_partial_bytes – 1:

c*(w/8) – full_or_partial_bytes + i <=

c*(w/8) – full_or_partial_bytes +
full_or_partial_bytes - 1

c*(w/8) – full_or_partial_bytes + i <= c*(w/8) - 1
c*(w/8) – full_or_partial_bytes + i <= 16*64/8 - 1
c*(w/8) – full_or_partial_bytes + i <= 127

 Out of bounds read at md6_mode.c:753

736: int full_or_partial_bytes = (st->d+7)/8;

748: /* shift result left by (8-bits) bit positions, per byte, if needed
*/
749: if (bits>0)
750: { for (i=0; i<full_or_partial_bytes; i++)
751: { st->hashval[i] = (st->hashval[i] << (8-bits));
752: if ((i+1) < c*(w/8))
753: st->hashval[i] |= (st->hashval[i+1] >> bits);

Given that the maximum value of st->d is 512, i must be less than 64 and
“i+1” has a maximum value of 64.:

Copyright © 2009 Fortify Software. All rights reserved.

i < full_or_partial_bytes
i < (st->d+7)/8
i < (512 + 7)/8
i < 64

The if statement will not prohibit this value, which will cause a read one byte
beyond the end off the buffer.

All four of these issues were corrected by doubling the size of the
hashval buffer in the updated MD6 implementation, made available
on January 15, 2009.

Out of bounds read at md6_compress.c:280

421: md6_word A[5000]; /* MS VS can't handle variable size here */

279:
280: memcpy(C, A+(r-1)*c+n, c*sizeof(md6_word)); /* output into C */
281:

Developer's comment: "The read mentioned could overflow, depending on r and
the size of A. If A is null, the function allocates a large enough array. At other times,
the A array is declared to contain 5000 md6_words, which is large enough for all
default choices of r. Ideally A's size would depend on r, but we want to statically
allocate the array for performance reasons."

Fortify’s reply: Consider returning an error code if the sizes would cause a read out
of bounds. The desire to statically allocate is understandable; a bounds check is a
cheap alternative way to address the issue.

3.3 CRUNCH

Category Findings
Null dereference 4

In crunch_224.c:57, memory is allocated for the final block and subsequently used
on line 64. This will lead to a null dereference in the event of a failure to allocate the
memory. Other null dereferences stem from the unchecked allocation in the
associated files crunch_256.c:68, crunch_384.c:57, and crunch_512.c:57.

Missing check against NULL in crunch_224.c

If the calloc() on line 57 fails, mes and then mes_char will be NULL. mes_char
is subsequently used on line 64, exhibiting a null dereference:

Copyright © 2009 Fortify Software. All rights reserved.

57: mes=(BlockType *)calloc((*nb_final_block),sizeof(BlockType));
58: mes_char=(char*)mes;
59: DL_char=(char*)LeftData;
60: /*copy left data in beginning of the block*/
61: for(i=0;i<(int)SizeLeft;i++)
62: {
63: temp =idx(i);
64: mes_char[temp]=DL_char[temp];

3.4 FSB

Category Findings
Memory leak 2
Null dereference 11

Memory leak in fsb.c:209

Fortify found three memory leaks in fsb.c, in Hash and HashFile. In fsb.c:204 the
function allocates memory for the state variable. If Init or Update do not return
SUCCESS, the function returns without freeing hashState. Similar memory leaks
exist for state (fsb.c:222) and buffer (fsb.c:223) in the HashFile function:

204: HashReturn Hash(int hashbitlen, const BitSequence *data, DataLength
 databitlen, BitSequence *hashval) {
205: hashState* state = (hashState*) malloc(sizeof(hashState));
206: int return_value;
207: return_value = Init(state, hashbitlen);
208: if (return_value != SUCCESS) {
209: return return_value;
210: }

Missing check against NULL in fsb.c:53

Another issue throughout fsb.c is a failure to check for the success of memory
allocations. If malloc (or similar functions) are unable to successfully allocate
memory, the return value is NULL. At 11 points in the file, memory allocations are
used without checking the return value, risking a null dereference. The unchecked
allocations occur on lines 51, 53, 54, 65, 155, 164, 175, 176, 205, 222, and 223.

In the following example, state->first_line may be set to NULL on line 51. It is
then used on line 53:

Copyright © 2009 Fortify Software. All rights reserved.

50: /* compute the first QC matrix line */
51: state->first_line = (unsigned char***) malloc(state->b*sizeof(unsigned
 char**));
52: for (k=0; k<state->b; k++) {
53: state->first_line[k] = (unsigned char**) malloc(8*sizeof(unsigned
 char*));

3.5 Vortex

Category Findings
Memory leak 1
Null dereference 15

Fortify found two security sensitive issues, one with multiple instances.

An issue that occurs throughout SHA3api_ref.c and vortex_core.c is a failure to
check memory allocations. If malloc, or similar functions, are unable to allocate
memory, they will return null. At 15 points in the file, memory allocations are used
without checking against null, which could cause a null dereference. The allocations
in question occur in SHA3api_ref.c (111, 112, 113, 120, 121, 122, 157, 173, 282)
and vortex_core.c (739, 740, 741, 742, 793, 794).

Missing check against NULL in SHA3api_ref.c

In the following example, state->hash could be set to NULL on line 111 and then
dereferenced on line 114:

107: switch(hashbitlen)
108: {
109: case 224:
110: case 256:
111: state->hash = (uint8_t *)malloc(32);
112: state->a0_b0 = (uint8_t *)malloc(32);
113: state->ta_tb = (uint8_t *)malloc(32);
114: varcpy(state->hash, a0_b0_32_g, 32);

Memory leak in SHA3api_ref.c:299

Fortify also found a memory leak in the Hash function. SHA3api_ref.c:282 allocates
memory for variable buf. If an invalid hash length has been provided, the function
will return at line 299 without freeing the memory:

Copyright © 2009 Fortify Software. All rights reserved.

282: buf = (BitSequence *)malloc((databitlen+7)/8);
283: varcpy(buf, (uint8_t *)data, (uint32_t)((databitlen+7)/8));
284: set_format((BitSequence *)buf, databitlen);
285: switch(hashbitlen)
286: {
287: case 224:
288: case 256:
289: error_code = tunable_vortex(buf, l, (uint8_t
 *)hashval, (uint32_t)hashbitlen,
290: number_of_rounds_g, mul_type_g, a0_b0_32_g,
 ta_tb_32_g, degree_of_diffusion_g);
291: break;
292: case 384:
293:
294:
295: number_of_rounds_g, mul_type_g, a0_b0_64_g,
 ta_tb_64_g, degree_of_diffusion_g);
296: break;
297: default:
298: perror("Hash(): bad hash type\n");
299: return BAD_HASHBITLEN;
300: }

Copyright © 2009 Fortify Software. All rights reserved.

4 Appendix

4.1 Concessions
The following projects were not downloaded from the NIST site because they
were marked “Submitter has conceded that the algorithm is broken” at the
time the projects were downloaded:

• Abacus
• BOOLE
• DCH
• Khichidi-1
• MeshHash
• StreamHash
• Tangle
• WaMM
• Waterfall

The authors of the following conceded after the projects were downloaded
and while the analysis was already underway:

• SHAMATA

4.2 Endnotes

1 http://tech.slashdot.org/article.pl?sid=08/12/21/1334238&tid=93

3 In 1999, a bug in the RSA reference implementation was responsible
for vulnerabilities in OpenSSL and two separate SSH implementations
(see http://www.cert.org/advisories/CA-1999-15.html).

4 http://csrc.nist.gov/groups/ST/hash/sha-
3/Round1/submissions_rnd1.html

5 On February 12, there were 43 projects that were not yet conceded
(see “Concessions” in the appendices).

6 http://
csrc.nist.gov/groups/ST/hash/sha-3/documents/KAT1.zip

7 Chapter 3, “Static Analysis as Part of the Code Review Process,”
p. 47, Secure Programming with Static Analysis, Chess and West,
2007.

