

SELinux and grsecurity: A Case Study Comparing Linux Security
Kernel Enhancements

Michael Fox, John Giordano, Lori Stotler, Arun Thomas
University of Virginia, Department of Computer Science

Olsson Hall
151 Engineer’s Way

Charlottesville, VA 22904
{mrf4u, jcg8f, les7j, at4a}@cs.virginia.edu

Abstract
The security of operating systems is a main concern for
all computer users and programmers. Operating system
developers have addressed this concern in different
ways, resulting in a number of security improvements
for existing operating systems. In our paper, we report
our findings from a case study of SELinux and
grsecurity, two prominent Linux kernel enhancements.
In implementing Mandatory Access Control (MAC),
SELinux is a MAC mechanism that provides domain
type enforcement and role-based access control, while
grsecurity employs Access Control Lists (ACLs). We
describe and quantify the differences between the two,
in terms of ease of use, installation, MAC
implementation, and performance. We determine that
SELinux has a stronger MAC implementation, while
grsecurity is simpler to use and offers other exclusive
features, such as address space protection and resource
limiting. We show that although SELinux and
grsecurity use two different approaches to achieving the
same goal, relative overall performance remains
consistent.

1 Introduction
Herein, we report our findings from a case study
conducted in order to compare the design,
implementation, functionality, flexibility, usability and
performance of SELinux and grsecurity. This paper not
only discusses the theoretical underpinnings of these
two Linux security tools, but strives to quantify their
performance differentials through experimentation and
testing.

In our survey of the literature, we found several
comparisons between SELinux or grsecurity and one of
several other tools, like Linux Intrusion Detection
System (LIDS) or Rule Set Based Access Control
(RSBAC), but none between the two and nothing
approaching the rigor of any of the papers detailing
SELinux design and implementation. We feet it would
be useful to the audience to review the theory, describe

different implementations and evaluate the performance
of two prominent Linux security patches. We provide
the reader with a comprehensive case study of these
two tools in order to better inform the community of
their performance potential.

1.1 Relevant Terminology
In this case study, we compare two security patches
that include MAC mechanisms. MAC can be defined
as:

“When a system mechanism controls access to
an object and an individual user cannot alter that
access, the control is a mandatory access control
(MAC), occasionally called a rule-based access
control. [1]”

SELinux provides flexible support for policy
configuration with the intention of overcoming some of
the limitations of traditional MAC mechanisms.

On the other hand, MAC is implemented in grsecurity
using ACLs. An ACL is a set of pairs associated with
an object. Each pair contains a subject and a set of
rights. Subjects can only access their associated objects
using any of those rights. In grsecurity, the use of
ACLs results in process-based access control.
Grsecurity includes a tool, gradm, for the creation and
fine tuning of ACLs. Grsecurity includes many
security mechanisms besides ACLs, such as protection
against buffer overflow exploits, file system protection,
auditing, and randomization options.

1.2 Outline
In Section 2, we describe the underlying security
architecture in SELinux. Section 3 provides an
overview of grsecurity. In section 4, we compare the
design and implementation of SELinux and grsecurity,
as well as describe our experiences in installing,
configuring and using each system. Section 5 discusses
our results of running benchmark suites on SELinux

and grsecurity in order to quantify performance
differences between them. Section 8 compares
SELinux and grsecurity from a practical standpoint,
explaining differences in setting up and configuring
each one. The conclusions of our comparison study are
outlined in section 9, and in section 10, we discuss
potential future work on the subject.

2 Security Framework in SELinux
This section describes SELinux, including its
implementation of mandatory access control.

2.1 Flask
Traditional MAC mechanisms have been tied to a
multi-level security (MLS) policy which bases its
decisions on the classification of objects and the
clearances of subjects.

“This traditional approach is too limiting to meet
many security requirements. It provides poor
support for data and application integrity,
separation of duty, and least privilege
requirements. It requires special trusted subjects
that act outside of the access control model. It
fails to tightly control the relationship between a
subject and the code it executes. This limits the
ability of the system to offer protection based on
the function and trustworthiness of the code, to
correctly manage permissions required for
execution, and to minimize the likelihood of
malicious code execution. [5]”

Because of the limitations of traditional approaches to
MAC, the Flask Architecture, a general MAC
architecture was created. Flask was designed to
provide flexible support for security policies, giving
administrators the ability to use the MAC policy model
that satisfies their security requirements. It is possible
to support many models of MAC, because Flask
separates the security policy logic from the policy
enforcement mechanism. A security server is
constructed to hold the security policy logic and
interfaces for obtaining security policy decisions.
Object manager components are responsible for
enforcing the security policy [5].

In Flask every process and object has its own security
context, which stipulates all security attributes of the
process or object. SELinux uses security identifiers,
simply integers, to represent each security context.
When a security issue arises, the enforcement code
passes a pair of security identifiers (SIDs), the subject’s
SID and the object’s SID, to a security server, which
makes a decision based on the security contexts that the
SIDs represent. It is important to note that the security
contexts have their own user identity implementations
separate from the traditional Linux user IDs (UIDs).

Flask provides an Access Vector Cache (AVC) that
stores the security server’s access decisions for later
use. An object manager communicates with the
security server to update permissions and perform
permission checks. The AVC allows the object
manager to communicate like this much faster, since
decisions are cached.

Flask encapsulates security labels, supports flexibility
in labeling and access decisions, and supports policy
changes. It has a process management component and
provides a mechanism for controlling access to whole
file systems, individual files, and directories [9].

2.2 SELinux as an Application of Flask
SELinux is simply an application of the Flask
architecture in Linux. The policy control mechanisms
implemented in SELinux are referred to as “permission
checks that have been inserted at control points
throughout the Linux kernel.” About 140 permissions,
grouped into 28 object classes, are defined and make
almost every system operation controllable. The
permission checks communicate with the security
server to access SIDs and determine access amongst
instances of objects in the system.

In [6] a description of an example security server
implemented for SELinux is given. This example uses
a combination of Identity-based Access Control
(IBAC), Role-based Access Control (RBAC), and Type
Enforcement (TE). A security context in SELinux has
three attributes: an identity, a role, and a type. Every
process in the system has an identity. This identity is
separate from standard Unix user id. The SELinux user
identity determines what roles and domains can be
used. A user of the system has a set of roles that he may
take on at any time. For example, an administrator will
use the user role (user_r) when he is doing normal user
tasks, but he will switch to a more privileged admin
role (sysadm_r) when he must add users and the like. It
is important to note that when the user switches roles,
his identity does not change.

The role determines what domains can be used. The
policy determines which roles each identity can
become. Every object in the system has a type, which
determines who can access the object. Every process
runs in a domain. The domain determines how much
access a process has. In SELinux types are
synonymous to domains. The concept of a domain and
a type are similar except types apply to object (e.g.
files, sockets), whereas, domains apply to processes.
The RBAC policy in SELinux allows a user to enter
some specific domain by way of an individual role in
his set of roles. The TE policy allows for fine-grained
access control.

SELinux provides several security mechanisms
including ones for process control, file control, and
socket control. Sockets are accessed through file
descriptions and therefore inherit permissions defined
for the file object classes. Refer to the section entitled
Security Mechanisms in [5] for a more detailed
description of the security mechanisms implemented in
SELinux.

2.3 Policy Configuration

2.3.1 The Security Policy Language
With SELinux one can implement a security model
within the context of a combination of a TE model and
an RBAC model, as described earlier. With a TE
model one can define the security policy for processes
and objects at a very low-level, and with the RBAC
model one can maintain a higher-level abstraction of
the policy for management ease.

TE statements are attribute declarations, type
declarations, type transition rules, type change rules,
access vector rules, or assertions. All of these describe
attributes and rules of types that one can create. RBAC
statements are role declarations, role dominance
definitions, or role-allow rules. They describe rules for
user roles that one can create. The TE and RBAC
grammar is as follows:

te_rbac -> te_rbac_statement | te_rbac
te_rbac_statement
te_rbac_statement -> te_statement |
rbac_statement
te_statement -> attrib_decl |
 type_decl |
 type_transition_rule |
 type_change_rule |
 te_av_rule |
 te_assertion
rbac_statement -> role_decl |
 role_dominance |
 role_allow_rule

[7]

More specialized grammars are available making the
SELinux policy language robust and complete. These
include grammars for attribute declarations, type
declarations, role declarations, role transition roles, etc.
Below are some applications of the grammar that show
how the TE and RBAC models interact.

user root roles { staff_r sysadm_r }

This example shows how roles map to an identity.
According to this rule, the root user can operate in the
staff_r and sysadm_r roles.

allow system_r sysadm_r;

This rule allows the system_r role to transition to the
sysadm_r role.

type lib_t file_type, sysadmfile;

This rule defines a type lib_t for system library files.
Only the administrator should be able to alter these
files, so this type is designated with sysadmfile
modifier.

/sbin/insmod.*
system_u:object_r:insmod_exec_t;

allow sysadm_t insmod_exec_t:file
x_file_perms;
allow sysadm_t insmod_t:process transition;
allow insmod_t insmod_exec_t:process
{entrypoint execute};
allow insmod_t sysadm_t:fd inherit_fd_perms;
allow insmod_t self:capability sys_module;
allow insmod_t syadm_t:process sigchld;

These examples [5] show a portion of the insmod utility
policy. The insmod utility allows a system administrator
to insert kernel modules. The insmod program is
labeled with the insmod_exec_t type as shown in the
first example, though it runs in the insmod_t domain.
The first example defines the context for the insmod
utility; it has the system_u identity, system_r role, and it
resides in the insmod_exec_t domain. In the second
example, the first rule allows the administrator to
execute the insmod program. The second rule allows
sysadm_t domain to transition to the insmod_t domain.
The third rule allows the insmod program to enter the
insmod_t domain (by declaring the entry point) and
execute in that domain. The fourth rule allows the
insmod utility to use file descriptors from sysadm_t
domain. The fifth rule allows the insmod utility to use
the CAP_SYS_MODULE utility, which allows for
inserting and removing kernel modules. The final rule
allows insmod to send the SIGCHLD signal to the
sysadm_t domain when it exits.

2.3.2 Policy Customization
There are degrees of difficulty in customizing the
policy. For example it is fairly easy to add a user to the
system; the administrator must edit the policy/users file
by specifying a name for the user and the user’s
associated allowable roles. Adding permissions,
however, is more difficult because first new rules must
be defined and it may be necessary to make
modifications to the RBAC model for the object or
subject in question or even relax or tighten constraints
with the involved object or subject.

2.4 Summary
SELinux is an application of the Flask architecture. It
provides a MAC mechanism that incorporates IBAC,

RBAC and TE. The policy syntax is non-trivial, but
allows for flexible policy configuration.

3 Grsecurity Overview
Grsecurity is a suite of patches (300K total) that is an
attempt to improve Linux security. According to Brad
Spengler, the creator of grsecurity, the suite meets four
goals. First, grsecurity offers configuration-free
operation. Second, it gives protection against all kinds
of address space modification bugs. Next, grsecurity
includes a rich access control list system and many
auditing systems. Finally, it operates on multiple
processor architectures and operating systems.

As stated by Spengler, there are many problems with
the current “avoid/identify/fix” method of dealing with
software bugs. He likens the task of keeping systems
secure to a “never ending rat race,” an endless cycle of
discovering and fixing bugs. Grsecurity is offered as a
solution, and is reported to detect, prevent, and contain
software bugs that are security vulnerabilities.
Detection is obtained through auditing and logging of
attacks. Prevention is implemented by PaX (address
space protection) and other techniques. Finally,
containment is offered by grsecurity’s access control
list system. The following sections discuss this ACL
system and the various other security options offered by
grsecurity.

3.1 Grsecurity Access Control Lists
Mandatory access control is implemented in grsecurity
using access control lists (ACLs) [10]. Within these
structures, administrators define restrictions on
subjects, including access to files, capabilities,
resources, and IP. For every event, the kernel will
check the ACL for the executing process and the
standard Linux ACL with the requested object. Access
is granted only when both systems agree.

Grsecurity ACLs are made up of subjects (processes)
and objects (files, capabilities, resources, and IP ACLs).
ACL structures define what the restrictions that
processes should adhere to. Inheritance is provided to
reduce the necessary configuration needed for similar
binaries.

ACLs have the following general structure:

<path of subject process> <optional subject
modes> {
 <file object> <optional object modes>
 [+|-]<capability>

<resource name> <soft limit> <hard
limit>
connect {

<ip>/<netmask>:<low port>-<high
port> <type> <proto>
 }

bind {

<ip>/<netmask>:<low port>-<high
port> <type> <proto>
}

}

This implementation of ACLs creates a form of
process-based mandatory access control. It is possible
to restrict what a process can and cannot do.
Additionally, access can be restricted to an object for
any user, even root. Further, these restrictions cannot
be changed by normal users. The system will soon
offer role-based access control as well [10].

3.1.1 IP Access Control Lists
Grsecurity IP access control lists allow administrators
to control many things, such as what IPs and ports a
process can bind to on a server, what IPs and ports
users can connect to remotely, what kind of sockets a
process can use, what protocols sockets are allowed to
use.

As shown above, the format of an IP ACL is:

connect{
 <ip>/<netmask>:<low port>-

<high port> <type> <proto>
}

bind {
 <ip>/<netmask>:<low port>-

<high port> <type> <proto>
}

For example, a valid IP ACL is [10]:

connect{

192.168.1.2/24 stream dgram tcp udp
134.55.22.12/24:80 stream tcp
}

bind {
192.168.1.2/24:1024–
65535 any_type any_proto
}

3.1.2 Gradm tool
With grsecurity comes a powerful tool called gradm.
This tool is used for configuring ACLs. Specifically, it
parses ACLs, enforces a secure base policy, optimizes
ACLs, and offers a learning mode for fine-tuning
ACLs.

Learning mode in grsecurity is process-based. It can be
used on a single process while the rest of the system
remains protected. It can be used to create an access
control list that is optimized for a new process on a
particular environment. Learning mode supports files,
capabilities, resources, and socket usage.

3.2 Additional Security Mechanisms
Grsecurity includes many security mechanisms besides
access control lists, such as protection against buffer

overflow exploits and protection against fork bombs. It
includes PaX, logging options, executable protections,
network protections, and more. This section will
explore those mechanisms. In the following
subsections, the italicized text represents grsecurity
configuration options.

3.2.1 Filesystem Protection
In Linux, the /proc filesystem is a pseudo-filesystem
used as an interface to kernel data structures. Although
most of it is read-only, some files allow kernel variables
to be changed [2]. Sometimes, it is subject to exploits,
so grsecurity provides Proc restrictions.

While using these filesystem protections, multiple
restrictions are available. First, restrict to user only
ensures that users can only view information about their
own processes. Additional restrictions are available to
hide CPU and device information. For users of chroot
jails, chroot jail restrictions offers several options for
chroot restrictions. Additionally, Linking restrictions
control a user’s ability to follow symbolic links and
make it impossible to hardlink to files she does now
own. Finally, FIFO restrictions curb users from
writing to FIFOs in world-writeable directories if they
are not the FIFO or directory owner [4].

3.2.2 Kernel Auditing
Grsecurity allows administrators to configure the
amount of logging provided by the kernel [4]. This
auditing capability is meant to detect attacks.
Examples of audited events include exec, chdir(2),
mounting/unmounting devices, signals, failed
forks.

3.2.3 Executable Protections
Executable protection is provided in grsecurity, since
most exploits work through or with running processes.
If Enforce RLIMIT_NPROC is enabled, resource limits
on processes are checked during execve() calls.
Emesg(8) restrictions prevent non-users from using
dmesg to view the log buffer. Further options include
Randomized PIDs and Trusted path execution.

3.2.4 Network Protections
To prevent the potential prediction-based attacks in the
default Linux TCP/IP stack implementation, grsecurity
includes many options. Larger entropy pools doubles
the poolsize. Randomized IP IDs are available to
prevent operating system fingerprinting and spoofed
scans. To prevent RPC connection hijacking,
Randomized RPC XIDs can be enabled to randomize
RPC transaction IDs (XIDs). With Truly random TCP
ISN selection, TCP Initial Sequence Numbers are
randomized. Randomized TCP source ports
randomizes the dynamically generated connect() source

port. With Altered Ping IDs, ICMP echo replies are
altered to make their IDs equal to the ID of the echo
requests they respond to. Socket restrictions are offered
to Deny any sockets to group, Deny client sockets to
group, and Deny server sockets to group [4].

3.2.5 PaX Address Space Protection
Many Linux exploits, such as buffer overflow bugs,
take advantage of how Linux handles memory. The
PaX project attempts to prevent and contain the
problem by creating defense mechanisms against
exploits that give an attacker access to the attacked
task’s address space [3]. This section will contain a
brief overview of PaX.

New executable code can be introduced into a task’s
address space in two ways. First, an executable
mapping can be created. Second, an existing
writable/executable mapping can be modified. PaX
attempts to deal with the second method, while leaving
the first to access control mechanisms.

To combat the problem of writable/executable mapping
modifications, PaX provides the NOEXEC category of
features. The philosophy of NOEXEC is that if some
data in a task’s address space does not need to be
executable, then it should not be. These pages must be
marked as non-executable. Furthermore, if an
application does not need to generate code at runtime,
then it should not have the ability to. PaX should,
therefore, be able to prevent memory page state
transitions between executability and writability. So,
NOEXEC enforces a type of least privilege. Some of
the features of NOEXEC are that it implements
executable semantics on memory pages, makes the
stack and heap non-executable, creates ELF
(Executable and Linking Format) object file mappings
with only the requested access rights (only those with
code will be executable), and locking down of
permissions on memory pages.

The Linux implementation of PaX is split into two main
feature sets, NOEXEC (PAGEEXEC and
SEGMEXEC), and the MPROTECT page protection
restrictions. PAGEEXEC implements the non-
executable page feature using the paging logic of IA-32
based CPUs. SEGMEXEC, on the other hand,
implements the non-executable page feature using the
segmentation logic of IA-32 based CPUs. MPROTECT
attempts to prevent the introduction of new executable
code into the task’s address space.

In practice, most attacks require advance knowledge of
assorted addresses in the attacked task. Consequently,
PaX contains a second set of features, the address
layout randomization (ASLR) features. ASLR is
intended to introduce randomness into these addresses,

thus forcing attackers to guess each address or obtain it
by brute force. With this option activated, exploits will
probably crash the attacked application, making it easy
to catch and react to the attack [4]. Options are
available for randomizing the kernel stack base,
randomizing the user stack base, and randomizing the
nmap() base.

It should be noted that some applications need to do
things that PaX disallows. The provided tool chpax
gives the user fine grained control over PaX features on
a per executable basis to combat this problem.

PaX is part of grsecurity. By default, PAGEEXEC,
SEGMEXEC, MPROTECT, and RANDMAP are all
enabled on ELF binaries in the grsecurity system [10].
Additionally, PaX has been decoupled from grsecurity
and can be integrated into SELinux and other MAC
projects.

3.3 Summary
Grsecurity is a suite of patches that attempt to improve
Linux security in many ways. First, it offers an ACL
system. Second, it employs auditing and logging for
detection of attacks. PaX is used to prevent attacks by
protecting the address space. The combination of these
security mechanisms detect, prevent, and contain
attacks.

4 Security and Application Comparison
In this section, we compare the SELinux and grsecurity
implementations of mandatory access control
mechanisms. We also describe and compare our
experiences with installing and using the two.

4.1 Protection Models
Grsecurity has a simple MAC implementation. It does
not implement the domain-type enforcement
component of SELinux, though the grsecurity MAC
functionality is somewhat similar. Both essentially
provide an access matrix defining permissions between
processes and files. Domain-type enforcement is more
flexible in terms of policy definition. It provides for
better isolation between processes and allows for a
more fine-grained description of the sharing between
processes.

Grsecurity has no concept of role-based access control,
but we can expect to see RBAC in a subsequent release.
Consequently, grsecurity does not allow the
administrator to give different levels of access to
different non-root users outside the limited
discretionary access control (DAC) mechanisms (in
which an individual user can allow or deny access to an
object [1]). Both grsecurity and SELinux will respect
DAC if DAC permits less access than the respective
MAC implementation.

SELinux also provides more fine-grained access than
grsecurity in general, especially with respect to sockets
and other inter-process communication (IPC)
mechanisms. On the other hand, grsecurity supports
certain features that SELinux lacks. For example,
grsecurity supports fork() rate limiting, various resource
limiting and randomizing options.

Grsecurity also includes PaX for protection against
stack smashing attacks and the like. PaX has recently
been updated so it may be used on SELinux systems, so
this is no longer an advantage.

The path-based protection mechanism that grsecurity
provides is considered weak, since paths are not
necessarily unique. SELinux uses an inode-based
approach, so it does not have this weakness.

4.2 Installation
Grsecurity is much simpler to install than SELinux. To
install grsecurity, the site administrator need only patch
the kernel with the grsecurity kernel patches and install
gradm. If she wants to employ the PaX address space
protection mechanism, she must also install the chpax
utility. No other changes need be made.

To install SE Linux, the site administrator must patch
the kernel. She must also install libselinux,
checkpolicy, and policycoreutils. These packages are
roughly equivalent to gradm in that they provide the
userspace component of SELinux. Additionally,
various system related utilities such as login and ps
must be patched in order to support security labels.

If the administrator uses a Linux distribution that
supports SELinux such as Gentoo or Debian however,
the SELinux installation process is comparable to
grsecurity in difficulty. The distributions take care of
installing the SELinux utilities and patching the
necessary applications.

4.3 Ease of Use
Overall, grsecurity is simpler to administer than
SELinux. First, grsecurity policies are simpler to
create, since there are no roles or complicated
domain/file transitions. Second, the administrator need
not write policies manually. Gradm in learning mode
can be used to generate policies automatically. The
administrator will likely want to adjust these policies
somewhat.

There is no such tool for SELinux. SELinux ships with
a very simple perl script audit2allow that will convert
denials in system logs to SELinux rules. This tool
requires that a basic policy exists. It can only be used to
adjust an existing policy. Since the script performs such

a simple translation, the user does not gain much from
using it aside from a few saved keystrokes. The
generated rules must be audited carefully, as the script
does not analyze the security impacts of the generated
rules. Tresys has released some tools to help with
policy analysis and construction yet, these tools do not
generate policies automatically either.

SELinux requires that all files be labeled with a security
context. Whenever an administrator installs a new
program, she must manually re-label all the files
associated with the context. Gentoo and Debian both
provide package managers that support for automatic
file re-labeling. SELinux requires that the administrator
use SELinux wrappers for standard UNIX user
management utilities, such as useradd and vipw.
Grsecurity relies on the standard utilities. Unlike
grsecurity, SELinux also requires that the administrator
creates an initial ramdisk to hold the policies. This is
not an overly onerous requirement, however.

4.4 Documentation
Probably because it was developed by the NSA, an
abundance of documentation is available for SELinux.
This documentation includes many published papers,
technical reports, presentations, and mailing lists.

Grsecurity, unfortunately, is not as well documented.
Only one formal document is available, and it focuses
on only the ACLs [10]. Additional information can be
found in forums and in informal web sites.

4.5 Linux Security Modules
The Linux Security Modules (LSM) project is an
attempt to include a security framework within the
mainstream Linux kernel. The project came about after
many projects, such as SELinux, grsecurity, LIDS,
DTE, and SubDomain, developed security kernel
patches for Linux [8].

Basically, the LSM kernel patch provides a framework
to support access control modules. Alone, the
framework does not provide extra security. The patch
adds security fields to kernel data structures. Then,
calls to hook functions are inserted at critical points in
the kernel code to manage these security fields and
enforce access control. Functions are added for
registering and un-registering security modules. This
infrastructure can then be used by loadable kernel
modules to implement any desired model of security.
At the present, LSM only focuses on access control, but
it may be extended in the future [8].

SELinux and grsecurity have taken widely different
stances on the LSM project. Although SELinux was
originally developed as a kernel patch, it was totally
reimplemented as a security module using LSM.

Grsecurity, on the other hand, does not use LSM. This
is for multiple reasons. First, Spengler believes that
LSM could be detrimental to Linux security. He says,
“Because LSM is compiled and enabled in the kernel,
its symbols are exported. Thus, every rootkit and
backdoor writer will have every hook he ever wanted in
the kernel. This will allow for a new generation of
sophisticated backdoors and rootkits that will be nearly
impossible to detect [11].” Additionally, Spengler says
that LSM is not appropriate for grsecurity because it
only involves access control; the additional features of
grsecurity would not operate under LSM.

The use of LSM remains a fundamental difference in
the design of the two patches.

5 System Performance Expectations and
Benchmarking

As we have discussed, SELinux and grsecurity differ in
their respective security models. Since security
mechanisms generally have some performance impact,
we wish to quantify how these two implementations
differ in terms of performance. As in [12], the best way
to evaluate performance is through objective
benchmarks. We chose to replicate the benchmarking
tests conducted in [5] and included grsecurity data.

We note that we have replicated the tests and not the
experimental conditions under which Loscocco and
Smalley conducted their tests of SELinux. Our intent is
to neither validate nor refute their findings, but rather to
provide the reader with a comparative basis by which
one can asses these two implementations critically as a
component of our case study. While performance
differentials exceed the bounds expressed in [5], in
some cases by orders of magnitude, our results reflect
performance based on our particular experiment’s
environment.

Microbenchmarking suites such as lmbench and
Unixbench perform a sequence of low-level operations
in a controlled, timed environment and report
performance metrics. As in [5], we converted the units
in which Unixbench reports its results to units that
compare more readily to lmbench results. The two
benchmarking suites both employ a number of sub-
programs, or microbenchmarks, that perform low-level
operations. The low level of these tests provides
precision required to make informed conclusions
regarding performance.

We established a testbed consisting of two identical
PCs, each configured with Gentoo Linux 1.4.1, running
AMD K6 II microprocessors with a clock speed of
450MHz, and having 8Gb Fujitsu hard drives and
128Mb of memory. One PC’s Linux installation was

patched with SELinux, and the other grsecurity. We
conducted three iterations of each test suite on both
SELinux and grsecurity with security policies being
enforced in both.

Before conducting benchmark experiments, we
surveyed the literature and posed a hypothesis
regarding performance, based upon the theoretical and
practical concerns presented by both models and
implementations. Since system performance is derived
from a relatively high-level view, our hypothesis
contended that there would be no significant overall
difference in observed system performance between
SELinux and grsecurity, but that there would be
differences in their performance of specific tasks, like
disk operations, I/O, floating point calculations etc.,
largely as a result of how each patch implements its
security model at low levels. Since benchmark results
are most often used as a basis for decision-making, we
leave it up to the reader to apply the results and
interpretations that we have included here.

5.1 Unixbench
Our results for Unixbench are shown in Table 1. The
tests we chose to include correlate to most of the tests
in [5], but we note they are only a subset of all results
available for analysis. We feel the variety of
microbenchmark tests in terms of granularity of
operations provides for an acceptable basis of
comparison and should underscore the performance
differentials between the two patches.

Microbenchmark Base SELinux Over-
head

grsec Over-
head

File Copy 4096 30.5 29.4 3.4% 20.4 32.9%
File Copy 1024 28.7 28.7 -0.1% 30.5 -6.4%
File Copy 256 14.3 13.6 5.1% 16.0 11.7%
Pipe 3.3 5.0 52.9% 3.2 -3.6%
Context Switching 10.4 16.3 56.7% 10.2 -1.7%
Process Creation 451.4 477.3 5.7% 477.5 5.8%
Execl 1379.9 1371.6 -0.6% 1390.0 0.7%
Shell Scripts 365.5 383.2 4.9% 348.4 -4.7%

Table 1 – Unixbench Results

The file copy operations capture the number of
characters copied to a file based on the various buffer
sizes indicated. Pipe measures inter-process
communication. Context switching captures the
communications between a parent and child process.
Process creation measures the number of child process
that can be forked in 10 seconds. Execl replaces a
currently running process with a new one. The shell
script test measures the execution of a shell script by 8
concurrently running processes.

We observe conflicting results for file copy operations.
In SELinux, as buffer size increases, latency becomes

negligible, whereas in grsecurity, an increasing buffer
size induces a penalty of increasing magnitude. We
observe significant performance penalties in SELinux
for pipe throughput and pipe-based context-switching
as a result of the revalidation of permissions

Since subject-object associations must still be verified,
this results in additional overhead relative to grsecurity
where the ACL is loaded and checked once. In the
remaining microbenchmarks, we see negligible
overhead or even improved performance relative to the
baseline consistently with both patches.

5.2 lmbench
Our results for Lmbench are shown in Table 2. The
tests included here, as in Unixbench, are a subset of all
microbenchmark tests available for analysis from the
suite.

Microbenchmark Base SELinux
Over-
head grsec

Over-
Head

null I/O 1.78 3.72 108% 1.52 14%
stat 7.74 15.88 105% 293 3.6K%
open/close 9.90 19.60 98% 1098 11K%
fork 486 464 -4.69% 484 0.58%
evecve 1533 1543 0.64% 1611 5.1%
sh 6321 6482 2.55% 6379 0.92%
pipe 9.83 15.88 61.53% 9.24 6.1%
AF_UNIX 19.07 24.67 29.38% 21.42 12.3%
UDP 48.1 45.5 -5.38% 42.2 12.1%
TCP 62.1 83.2 34.% 71.0 14%
TCP/IP 248 292 17.5% 267 7.4%

Table 2 - lmbench results

As in [5], null I/O is the average combined time for a
one byte read and write operation. The stat test measure
the time required to obtain the status of an unopened
temporary file created by the benchmark suite.
Open/close simply times the opening and closing of a
temporary file for reading. Fork, execve and sh time
process creation from fork() and exit, to fork() and
execve, to fork() and instantiating the shell. Pipe
latency, AF_UNIX, UDP and TCP latency and TCP/IP
tests all time inter-process communication between two
processes on the tested system.

We observe pronounced overhead in SELinux in the for
the I/O timing, largely as a result of having to revalidate
permissions for each operation in SELinux. In
grsecurity, however, we see a performance degradation
orders of magnitude more than in SELinux in file
operations, but not in IPC, and certainly not with the
same magnitude. This latency is likely a result of
repeated checks of the ACL in grsecurity for each file
operation.

5.3 Conclusions
In general, we have not seen a significant gap in overall
system performance between the two patches, but our
benchmark suites do reveal some critical performance
advantages along with some inconclusive results.
Unixbech’s microbenchmarks that target inter-process
communication reveal noticeable overhead in SELinux
relative to grsecurity, yet lmbench’s tests targeting the
same do not reveal that, at least not conclusively. This
disparity makes it difficult to asses each patch’s relative
performance in this domain. Perhaps underscoring
more of the subjectivity of interpreting
microbenchmark results at a high level, our experiments
cannot provide the basis for making an implementation
decision with regards to either SELinux or grsecurity,
nor can we predict performance based on our results.
Our hypothesis before experimentation is largely
validated, and we have revealed the metrics that support
our claim that different processes, and hence user tasks,
will incur overhead based on the security model being
implemented. Our metrics and conclusions presented in
this section say nothing about the inherent security
afforded by either patch.

6 Policy Analysis and Experimentation
In order to more effectively compare grsecurity and
SELinux, we decided to write a security policy for a
representative application. We chose irssi, a popular
command-line IRC client, since it is not overly complex
but somewhat representative of networked applications
that run on server machines.

6.1 Grsecurity policy
We generated the grsecurity ACL by running gradm in
learning mode. Gradm would then analyze the system
logs to see what resources the application required and
output a policy.

In order to use gradm, we first created a default least
privilege ACL in learning mode. Below is the policy
which was generated after running irssi several times.

irssi.acl:

/usr/bin/irssi o {
 /usr/share/zoneinfo/US/Eastern r
 /usr/share/terminfo/l/linux r
 /usr/share/irssi/themes/default.theme r

 /usr/lib/perl5/vendor_perl/5.8.
1/i586-linux/Irssi/Irc.pm

 /usr/lib/perl5/site_perl/5.8.0
 /usr/lib/perl5/5.8.1/Symbol.pm r
 /usr/lib/perl5/5.8.1/Exporter.pm r
 /usr/lib rx
 /proc/sys/kernel/version r
 /proc/1941/exe
 /proc/1941
 /proc/1885/exe
 /proc/1885
 /proc/1880/exe

 /proc/1880
 /lib rx
 /lib/ld-2.3.2.so x
 /home/lori/.irssi/config r
 /home/lori/.irssi
 /etc r
 /dev/urandom r
 /dev/null r
 /usr/bin/irssi x
 / h
 -CAP_ALL
 RES_FSIZE 0 0
 RES_DATA 587536 587536
 RES_STACK 17384 17384
 RES_RSS 0 0
 RES_NPROC 8 8
 RES_NOFILE 8 8
 RES_MEMLOCK 54096 54096
 RES_AS 7082272 7082272
 RES_LOCKS 0 0

 connect {
 130.239.18.172:6667 stream tcp
 209.218.71.2:6667 stream tcp
 128.143.136.15:53 dgram udp
 }

 bind {
 0.0.0.0:0 dgram ip
 }

}

The policy defines which files the program can access
and what sort of access is allowed. It also determines
what sort of resources the process is allowed. Finally, it
determines the application's allowed network
operations.

We modified the above policy by hand in order to allow
any user to use irssi. In the gradm-generated policy,
only the user lori would be able to run irssi. The irssi
binary was allowed access only to the user lori's
configuration files. Additionally, the gradm-generated
policy was modified to allow the irssi executable to
connect to any IRC server. Finally, the ACL was
modified to allow access to any /proc filesystem entry
that might be used. These manual changes were
necessary, since we did not run the program in all
possible scenarios during the learning phase.

6.2 Selinux policy
We developed this policy mostly by hand through
careful examination of the system logs for AVC denials
while irssi was running. We consulted other example
policies for guidance. We also used the audit2allow
script for minor tweaking. We carefully audited the
rules audit2allow generated, however.

irssi.fc:

irssi
/usr/bin/irssi
 system_u:object_r:irssi_exec_t

This file sets up the security context of the irssi binary.
The file contexts for irssi's configuration files are
defined by the default policy. The file /etc/irssi.conf has
the context system_u:object_r:etc_t; whereas, the file
<userid>/.irssi/config has the context
<userid>:object_r:user_home_t.

irssi.te:

#DESC irssi - IRC client

user_application_domain(irssi)
can_network(irssi_t)

lib access
allow irssi_t lib_t:file { getattr read ioctl
};

allowed signals
allow irssi_t irssi_t:process { signal fork
sigchld };

use of proc filesystem
allow irssi_t proc_t:dir { search };
allow irssi_t proc_t:lnk_file { read };

access config files
type user_home_irssi_t, file_type, sysadmfile;
allow irssi_t home_root_t:dir { search getattr
};
file_type_auto_trans(irssi_t, user_home_dir_t,
user_home_irssi_t, dir)
file_type_auto_trans(irssi_t, user_home_t,
user_home_irssi_t, file)
allow irssi_t user_home_t:file { getattr read
write };
allow irssi_t etc_t:file { getattr read };

locale support
read_locale(irssi_t)

name resolution
allow irssi_t resolv_conf_t:file { read
getattr };

access urandom
allow irssi_t random_device_t:chr_file { read
};

pts support
allow irssi_t user_devpts_t:chr_file
rw_file_perms;

ssh
allow irssi_t sshd_t:fd { use };

access theme
allow irssi_t usr_t:file { getattr read };

needed for pipe
allow irssi_t irssi_t:dir { search };
allow irssi_t irssi_t:fifo_file { read write
};

other denials
#allow irssi_t bin_t:dir { search };
#allow irssi_t opt_t:dir { search };

#allow irssi_t sysctl_kernel_t:dir { search };
#allow irssi_t sysctl_kernel_t:file { read };
#allow irssi_t sysctl_t:dir { search };
#allow irssi_t irssi_t:lnk_file { read };

The first two lines are macros. The first sets up various
operations associated with the a user domain
application. For example, it creates the irssi_t and
irssi_exec_t domains and defines the transitions to and
from these domains. The second macro defines
common networking operations. There are a few other
macros that ease the policy creation policies. The
file_type_auto_trans macro is of special interest. If the
creating domain of the file is irssi_t and the parent
directory of the file is user_home_t (or
user_home_dir_t), the file will be given the user_irssi
context. The rest of the lines determines what
operations (e.g. Read) are valid on each type. The lines
at the end of the file are commented, since they are not
actually necessary to run irssi. The program does
attempt these operations, however, so they will be
logged as AVC denials in the system logs when these
lines are commented.

7 Conclusions
After doing a thorough theoretical and practical
comparison between SELinux and grsecurity, we were
able to make several broad conclusions about the
potential advantages and disadvantages of each system
with respect to the other. We compared the two in
terms of their theory and practicality so as to provide a
deeper understanding of their differences.

SELinux is a more powerful access control mechanism,
since it incorporates role-based access control and more
fine-grained access control in general. Nevertheless,
we believe the two theories underscore sound security
models. They both allow for easy control of access
between processes and objects, processes and other
processes, and objects and other objects.

While both systems implement MAC, they have many
distinguishing characterisitics. The Flask architecture
in SELinux provides for a flexible security policy. The
policy language is complex but allows for powerful
security configurations. Grsecurity, on the other hand,
comes with the gradm tool, which is capable of
programmatically optimizing and fine-tuning ACLs in
the operating system. When making a decision about
implementing one of these systems, one should
consider that SELinux provides a more powerful access
control mechanism, whereas grsecurity is easier to use
and includes many other security options. In terms of
relative performance, while we observed differences in
microbenchmark measurements, both systems’ overall
performance was similar.

8 Further Work
In our experiments, we ran a number of
microbenchmarks to compare the performance of
grsecurity and SELinux. We would like to run more of
these microbenchmark suites to gather further
performance data. Additionally, we would like to run
various real-world applications such as Apache or Bind.

Moreover, we would like to further explore the many
security options of grsecurity. For this work, we
largely focused on access control and PaX because
many of grsecurity’s security mechanisms are not
available in SELinux.

Furthermore, we would like to compare the next
generation of grsecurity against SELinux. It may prove
to be a more interesting comparison, since it is slated to
support RBAC. It would also be interesting to compare
RSBAC, a less popular MAC system that incorporates
both RBAC and DTE. We would also like to
investigate the SELinux policy tools from Tresys.
Additionally, we would like to do a vulnerability
assessment of systems running both SELinux and
grsecurity. Finally, we would like to measure the
performance of real-world program, such as apache.

References
[1] M. Bishop. Computer Security Art and Science.

Addison-Wesley, 2002.
[2] D. Bovet and M. Cesati. Understanding the Linux

Kernel. O’Reilly & Associates, 2002.
[3] Documentation for the PaX Project.

http://pax.grsecurity.net/docs/
 index.html.
[4] Gentoo Linux grsecurity Guide.

http://www.gentoo.org/proj/en/
hardened/grsecurity.xml.

[5] P. Loscocco and S. Smalley. Integrating Flexible
Support for Security Policies into the Linux
Operating System. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical
Conference, pages 29-42, Boston Massachusetts,
June 2001.

[6] P. Loscocco and S. Smalley, “Meeting Critical
Security Objectives with Security-Enhanced
Linux”, In Proceedings of the 2001 Ottawa Linux
Symposium, July 2001.

[7] S. Smalley. Configuring the SELinux Policy.
Technical Report 02-007, NSA and NAI Labs,
February 2002.

[8] S. Smalley, T. Fraser, and C. Vance. Linux
Security Modules: General Security Hooks for
Linux. http://lsm.immunix.org/docs
docs/overview/linuxsecuritymodule.
html.

[9] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, D.
Andersen, and J. Lepreau. The Flask Security

Architecture: System Support for Diverse Security
Policies. In Proceedings of the Eighth USENIX
Security Symposium, pages 123-139, Aug. 1999.

[10] Brad Spengler. Grsecurity ACL Documentation
V1.5, April 1, 2003.

[11] Brad Spengler. LSM.
http://www.grsecurity.net/lsm.php.

[12] Rodney C. Wilson. Unix Test Tools and
Benchmarks. Prentice-Hall. Upper Saddle River,
NJ 1995. 152-155.

