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Abstract

During the last years, the fruitful combination of laser–cooling and evapo-
rative cooling has allowed the experimental achievement of the Bose–Einstein
condensation (BEC) in weakly interacting trapped alkali gases. Among the
results related to BEC, one of the most important experimental achievements
has been the realization of an Atom Laser. As a coherent source of matter
waves, the atom laser should lead to new applications in atom optics. How-
ever, without a continuous refilling of the BEC, the atom laser output lasts
only as long as some atoms in the BEC are kept. Additionally, the controlled
continuous loading of a BEC could be employed to repair the losses induced
by either background collisions or two- and three-body losses.

It is the purpose of this thesis to analyze the continuous loading of a
BEC by means of spontaneous emission. We shall discuss the difficulties to
achieve this aim, in particular the photon reabsorption problem, and propose
the corresponding solutions in different physical scenarios.

In the first scenario we analyse the optical loading of a BEC in the so-
called Boson Accumulation Regime for a three-dimensional case, in which
more than one trap level of the excited-state trap is considered. By solving
the corresponding quantum many-body master equation, we demonstrate
that contrary to intuition, for this general situation the photon reabsorptions
can help, due to quantum interferences, to increase the condensate fraction.

In another case we consider atoms with an accessible three-level Λ scheme,
in which one of the atomic transitions has a very much shorter life-time than
the other one. We found that in such scenario the photon reabsorptions (in
the slowest transition) can be considered negligible. If in addition inelastic
processes can be neglected, we find that optical pumping can be used to
continuously load and refill Bose-Einstein condensates. i.e. it provides a
possible route towards a continuous atom laser.

In the final part we discuss the optical loading of a Bose-Einstein con-
densate in the Thomas-Fermi regime, where the mean-field effects become
dominant. By means of the master equation formalism, Gross-Pitaevskii and
Bogoliubov equations, we discuss the modification of the condensate temper-
ature during the loading. We identify the threshold temperature, Tth, above
(below) which the loading process leads to cooling (heating), respectively.
The consequences of our analysis for the continuous loading of an atom laser
are discussed.
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Zusammenfassung

Während der letzten Jahre haben die Kombination von Laserkühlung und
Verdampfungskühlung zur experimentellen Demonstration der Bose–Einstein
Kondensation (BEC) geführt. Unter all den wichtigen Resultaten um BEC
ist die Entwicklung des Atomlasers eine der Beeindruckensten, denn als eine
Quelle von kohärenten Materiewellen kann er zu völlig neuen Experimenten
und Anwendungen in der Atom-Optik führen. Jedoch ohne das kontinuier-
liche Nachladen des BECs mit Atomen arbeitet der Atomlaser maximal so
lange, bis das BEC von Atomen entvölkert ist. Zusätzlich ist das kontrollierte
kontinuierliche Laden des BECs interessant, um die Verluste aufgrund von
Hintergrundgas- und/oder nicht-elastischen Dreikörperstößen auszugleichen.

Das Ziel der hier vorliegenden Doktorarbeit ist es, das kontinuierliche La-
den des BECs mittels spontaner Emission zu untersuchen. Dazu werden die
beim optischen Laden auftretenden Schwierigkeiten, insbesondere die Photo-
nenreabsorptionen, diskutiert und entsprechende Lösungen für verschiedene
Szenarien aufgezeigt.

In einem der Szenarien wird das optische Laden eines BECs im sogenann-
ten Bosonischen Akkumulation Regime (BAR) für den dreidimensionalen
Fall untersucht, bei dem die angeregten Atome mehr als nur einen externen
Fallenzustand besetzen. Durch das Lösen der entsprechenden Mehrteilchen-
Quanten-Mastergleichung wird hier gezeigt, dass im allgemeinen Fall entge-
gen der Intuition die Photonenreabsorption aufgrund von Quanteninterferen-
zen helfen kann, die Fraktion des BECs zu erhöhen.

In einem weiteren Fall werden Atome betrachtet, die durch ein Dreinive-
ausystem in Λ-Konfiguration beschrieben werden können, bei dem auf einem
der Zerfallskanäle die Atome viel schneller zerfallen als auf dem anderen.
Es wird gezeigt, dass in solch einem Szenario die Photonenreabsorption auf
dem langsameren Zerfallskanal keine Rolle spielen. Unter der Voraussetzung,
dass nicht-elastische Prozesse vernachlässigbar sind, wird demonstriert, dass
optisches Laden in diesem Regime eine Methode darstellt, um ein BEC kon-
tinuierlich nachlzuladen.

Zum Schluß wird das optische Laden des BECs im Thomas-Fermi Re-
gime untersucht, bei dem die Effekte der molekularen Felder dominant wer-
den. Mit Hilfe der entwickelten Mastergleichung und unter Verwendung der
Gross-Pitaevskii-Gleichung und den Bogoliubov-Gleichungen, wird die Va-
riation der Temperatur des BECs während des Ladens betrachtet. Es stellt
sich heraus, dass bei einer Temperatur des BECs unterhalb (überhalb) einer
Schwellentemperatur Tth das BEC während des Ladens aufgeheizt (gekühlt)
wird. Die daraus resultierenden Konsequenzen für das kontinuierliche Laden
eines Atomlasers werden diskutiert.
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Chapter 1

Introduction

During the last years, the fruitful combination of laser–cooling [1] and evapo-

rative cooling [2, 3, 4] has allowed the experimental achievement of the Bose–

Einstein condensation (BEC) in weakly interacting trapped alkali gases. Such

remarkable achievement has stimulated an enormous interest from various

communities as disparate as Quantum Optics, Condensed Matter Physics,

Nonlinear Physics, and more [5]. The importance of this research field was

recently recognized with the Nobel Prize Award 2001 to E. Cornell, C. Wie-

man and W. Ketterle, which add up to the Nobel Prize Award 1997 to W.

Phillips, C. Cohen-Tannoudji and S. Chu, who have received the award for

their developments in laser cooling and trapping of neutral atoms.

Among the results related to BEC, one of the most important experimen-

tal achievements has been the realization of an Atom Laser. As a coherent

source of matter waves, the atom laser should lead to new applications in

atom optics and its impact in the field could be comparable to the one of

optical lasers in light optics. Since its first realization [6, 7], several groups

have build atom lasers using (quasi-) continuous outcoupling from the BEC,

either by using rf fields [8, 9], or by employing Raman pulses [10]. However,

the continuous outcoupling represents just a half way towards a cw atom

laser. The continuous loading of the condensate still remains to be incorpo-

rated in experiments, even though first experiments [11, 12] have been done

towards a continuously loading of a BEC. Without a continuous refilling of

1



2 Chapter 1. Introduction

the BEC, the atom laser output lasts only as long as some atoms in the BEC

are kept. Like in the development of light lasers the availability of cw atom

lasers would open the way to “high power” and precision applications.

Additionally, the controlled continuous loading of a BEC could be em-

ployed to repair the losses induced by either background collisions or two-

and three-body losses. If this losses could be repaired, the lifetime of the

BEC experiments could be enlarged, in principle indefinitely, opening a way

towards a new generation of BEC experiments.

It is the purpose of this thesis to analyze the continuous loading of a

BEC by means of spontaneous emission. We shall discuss the difficulties to

achieve this aim, in particular the photon reabsorption problem, and propose

the corresponding solutions in different physical scenarios.

The structure of this Thesis is as follows:

• Chapter 2: Physics of cold atoms

In this chapter we comment on several important concepts related with

the physics of cold atoms and BEC. Additionally, we discuss the current

international context.

• Chapter 3: Optical loading in the Boson–accumulation regime

In this chapter, we generalize the previous simplified analysis of Ref. [13],

to a three-dimensional case in which more than one trap level of the

excited-state trap is considered. By solving the corresponding quan-

tum many-body master equation, we demonstrate that also for this

general situation the photon reabsorption can help due to quantum

interferences to increase the condensate fraction.

• Chapter 4: Optical loading in the Branching-ratio expansion

In this chapter we consider the case of atoms with an accessible three-

level Λ scheme, in which one of the atomic transitions has a very much

shorter life-time than the other one. We found that in such scenario

the photon reabsorption (in the slowest transition) can be considered

negligible. If in addition inelastic processes can be neglected, we find

that optical pumping can be used to continuously load and refill Bose-
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Einstein condensates. i.e. provides a possible route towards a continu-

ous atom laser.

• Chapter 5: Optical loading in the Thomas-Fermi regime

In the last part we discuss the optical loading of a Bose-Einstein conden-

sate in the Thomas-Fermi regime, where contrary to the case of Chapter

4, the mean-field effects become dominant. By means of a master equa-

tion formalism, Gross-Pitaevskii and Bogoliubov equations, we discuss

the modification of the condensate temperature during the loading. We

identify the regime of parameters for which the temperature is effec-

tively lowered during the loading process. The consequences of our

analysis for the continuous loading of an atom laser are discussed.





Chapter 2

Physics of cold atoms

In this chapter we comment on several important concepts related with the

physics of cold atoms and BEC. Additionally, we discuss the current inter-

national context.

2.1 Cold and slow Atoms

2.1.1 Concept of matter-waves

In 1923 de Broglie [14], guided by the analogy of Fermat principle in op-

tics and the least-action principle in mechanics, was led to suggest that the

dual wave-particle nature of radiation should have its counterpart in a dual

particle-wave nature of matter. Thus particles should have wave properties

under certain circumstances, and de Broglie suggested an expression associ-

ated with the particle. This is given by

λdB =
h

p
, (2.1)

where h is Planck’s constant, and p is the momentum of the particle. This

expression is known as the de Broglie wavelength of the particle. Such a

wave resemble the familiar concept of plane waves in optics. However a

single-momentum wave is not localized in space, and in order to retrieve the

intuitive particle idea it is introduced the very important concept of wave-

5



6 Chapter 2. Physics of cold atoms

packet, which can be achieved by superposing waves of different frequencies,

so that they interfere destructively with each other almost completely outside

of a given spatial region. Of course the narrower the momentum bandwidth

of the wave-packet (dp) the closer to the wave concept, and the larger the

spatial dimensions of the wave-packet dx. This crucial observation is formally

expressed by one of the most basic principles of Quantum Physics, i.e. the

Heisenberg uncertainty relation which states that dpdx ≥ h̄ (where h̄ =

h/2π).

2.1.2 Cold atoms

At this point we introduce the concept of Cold Atoms, which turns to be

crucial in the rest of the thesis. It is well known from Statistical Mechanics

[15] that a dilute gas in thermal equilibrium presents in absence of external

force a Maxwell-Boltzmann momentum distribution function of the form:

f0(~p) ∼ e−(~p−~p0)/2mKBT , (2.2)

where ~p0 is some central momentum, m is the mass of the particles, KB is

the Boltzmann constant and T is the temperature of the sample. Therefore,

the temperature can be defined in terms of the width of the energetic distri-

bution. In this sense the narrower the energetic distribution the colder the

atomic sample. Therefore a cooling technique is defined as a method which

converts an initially broader distribution into a narrower one. Of course, a

thermal distribution is not possible for a single atom or ion, but it is common

in the literature the use of the term cold atom when dealing with an atom

with a narrow energetic distribution of probability. The significance of a

cold atom can be easily understood from Sec. 2.1.1. A cold free atom means

an atom with a well defined momentum, i.e the momentum distribution of

Eq. 2.2 is very peaked around the central value ~p0. Therefore the colder the

atom the narrower its momentum bandwidth, and the more apparent the

wave nature of the atom. To obtain an intuitive idea of what a cold atom

means, let us present some estimates. An atom at normal temperature has

a momentum bandwidth so large that can be considered as a particle, with
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dimensions typically of the order of the Bohr radius, i.e.

Angstrom (10−10m). An atom cooled with the most powerful cooling tech-

niques (see. Sec.2.2.2) has a spatial distribution of the order of microns

(10−6m), i.e. 10000 times the Bohr radius. If one tries to compare this case

with a person spread on a ten kilometer region one can develop a good idea

of the huge dimensions (for atomic scale) of the cold atomic wave function.

Let us remark that matter-wave behavior has also been observed in electrons

[16], and neutrons [17]. What makes more interesting the case of atoms is

the rich internal structure accessible by laser light. This allows the coherent

manipulation of cold atomic samples, which is in the basis of laser cooling

techniques and the majority of atom optics phenomena (Atom Optics).

2.1.3 Slow atoms

To finalize this section, let us remark the difference between a cold atom and

a slow one. As defined previously a cold atomic sample has a peaked velocity

distribution around some central value v0. A slow atom can be classically

defined as having a small velocity, and quantum-mechanically as having a

low velocity average. Note that the velocity average can be large or small

independently of the fact whether the velocity distribution is broad or nar-

row. Therefore cold and slow atom concepts are clearly different. However,

the cooling and trapping techniques which have been developed (see next

sections) allow not only to cool but also to slow down atomic samples. Both

features are important for the experimental manipulation of the atoms, as

discussed in the next sections.

2.2 Laser Cooling and Trapping

In this section we will briefly review different laser cooling techniques. In

subsections 2.2.1 and 2.2.2 we discuss the case of free atoms. Subsection 2.2.3

is devoted to the issue of trapping of neutral atoms. Finally, in subsection

2.2.4 we analyze the laser cooling and evaporative cooling for trapped atoms.
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2.2.1 Doppler cooling

Let us assume an atom with an accessible (electronic) two-level system,

formed by the ground state |g〉 and an excited state |e〉, which are sepa-

rated by a transition frequency ωeg. Let us consider that this atom is af-

fected by two counter-propagating lasers of frequency ωl and wave vectors

±~kl respectively. If the atom moves with some velocity ~v, due to the Doppler

effect the atom observes the photon with wave vector ~kl as having a fre-

quency ω′l = ωl − ~kl~v. As a consequence of that, if the laser is red-detuned

with respect to the transition frequency (∆ = ωl − ωeg < 0), the photons

counter-propagating against the motion of the atom are absorbed with larger

probability than those propagating in the direction of motion, and the ra-

diation pressure damps the atom velocity. Of course after absorption the

atom decays into the ground state by a spontaneous emission of a photon,

experiencing a recoil in a random direction due to momentum conservation.

However, in average, the effect of these random recoils is canceled. As a

result, the momentum distribution of the atoms is compressed around v = 0,

i.e. following the discussion of the previous sections, the atomic sample is

both cooled and slowed. This cooling method is known as Doppler cooling,

and was proposed by Hänsch and Schawlow [18], and first demonstrated by

Chu et al. [19]. As a result of this effect, the atoms experience a viscous

force, ~FD ' −~v, which has motivated the proper name of optical molasses

for this effect. The competition between cooling and heating introduced by

the randomness of the spontaneous emission results in a minimal tempera-

ture achievable with this method (see [20]), KBT = h̄Γ/2, where KB is the

Boltzmann constant, and Γ the line width of the optical transition |e〉 → |g〉.

Doppler cooling works only if the laser is not too strong. If the corre-

sponding Rabi frequency becomes larger than the line-width of the transition,

the atom experiences a periodic laser field. In that case, cooling has been

observed for blue detuned lasers, and receives the name of Sysiphus cooling.

This method allows for lower temperatures than Doppler cooling, down to

few recoil temperatures (Trec = h̄2k2
l /2mKB). For a more detailed discussion

on Sysiphus and polarization gradient cooling, see e.g. Ref. [20].
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2.2.2 Subrecoil laser cooling

In order to reduce further the temperature of an atomic sample, it is neces-

sary to overcome the heating introduced by the recoil of the spontaneously

emitted photons. The subrecoil methods consist therefore in the suppres-

sion of the spontaneous emission under certain conditions, and are based

in the concept of a dark state. A state is called dark, if it cannot absorb

the cooling laser. Therefore, if an atom decays into a dark state, it will

not leave this state anymore. This effect is known as population trapping.

There are different subrecoil methods based in this effect, as e.g. Velocity

Selective Coherent Population Trapping (VSCPT), cooling using the effect

of Electromagnetically Induced Transparency [21], and Raman cooling [22].

2.2.2.1 VSCPT

As a first example of such techniques let us analyze the so-called Velocity Se-

lective Coherent Population Trapping, known in the literature by its acronym

VSCPT[23, 24]. Let us consider a three level λ configuration in which two

degenerate ground sub levels |g±〉 are coupled to an excited level |e〉0 by

two counter-propagating σ+ and σ− polarized laser beams with the same fre-

quency ωl. Let us firstly consider the atom at rest. For this case it was shown

in the context of non-absorption resonances [25, 26] that there is a coherent

superposition of |g+〉 and |g−〉 which is not coupled to |e〉 by the laser, and

is therefore a dark state. Such situation occurs due to the destructive inter-

ference between the amplitudes of the counter-propagating lasers. Therefore

an atom put in such a superposition of states, remains trapped there. Let us

now introduce the atomic motion considering only the one-dimensional case.

Now the internal atomic states are dressed by the external (center of mass)

motion. It can be easily shown that the families of states of the form:

ζ(p) = {|e, p〉, |g−, p− h̄kl〉, |g−, p+ h̄kl〉} (2.3)

remain closed respect to absorption and stimulated emission. Although this

closed family resembles the case of an atom at rest, there is actually a key
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difference. The crucial point is that now, and due to the kinetic energy, the

ground levels do not have the same energy, and therefore any mixture of

them is not an stationary state. This fact prevents the formation of a true

trapping state. Only for the case of the family ζ(0) the same case of the

atom in rest is recovered, i.e. a trapping state is formed. The spontaneous

emission provides the way to jump (randomly) from one family of states to

another. Therefore the atoms describe a random path in the momentum

space until reaching the family ζ(0) where they have a probability to remain

trapped. The larger the interaction time between the atoms and the lasers

the larger the amount of atoms in the trapped state, and hence there is no

fundamental limit for this cooling mechanism. In particular the atoms can

be cooled into a momentum distribution with a width smaller than the recoil

momentum.

2.2.2.2 Raman Cooling

Let us now consider a three-level system composed by two ground states

|a〉,|b〉 separated by a frequency ωab and an excited state |e〉, irradiated by

two counter-propagating lasers of frequencies ω1 and ω2, in such a way that

ω12 = ω1 − ω2 is quasi-resonant with ωab. The lasers are sufficiently far of

resonance respect to |e〉 to consider {|a〉 ,|b〉} as a two-level system coupled

by a two-photon Raman process with an effective Rabi frequency Ωeff [27].

When ω12 is red-detuned an atom with velocity +v is kicked towards v =

0 as in usual Doppler cooling (but now with momentum 2h̄kl in each step).

Reversing the laser directions the atoms moving with −v are pushed now

to v = 0. Using sequences of Raman pulses of different frequency width,

detuning and propagation direction, the process can be designed to excite

all atoms except those with velocities closed to v = 0, then forming a dark

state in the velocity (momentum) space. The cooling cycle is closed by using

a third laser which excites the transition |b〉 → |e〉, where the atom can be

optically pump into |a〉 via spontaneous emission. This last process produces

a random component of the velocity, so that some atoms acquire velocities

sufficiently close to v = 0. This method is called Raman Cooling [22]. It
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allows temperatures well below the recoil limit (of the order of tenths of this

value).

2.2.3 Trapping of neutral atoms

Contrary to charged particles which can be relatively easily confined, the

trapping of neutral atoms demands the employ of certainly more sophisti-

cated techniques. In the following we briefly summarize the main standard

trapping techniques for neutral atoms:

• Magnetic trap [28]: Magnetic trapping is based on the Zeeman effect

experienced by an atom in a spatially inhomogeneous magnetic field.

The atom energy acquires then a spatial dependence of the form:

E(~r) = µBgFmFB(~r) (2.4)

where F is the total angular momentum of the particular atomic level

considered, mF is the magnetic quantum number, µB is the Bohr mag-

neton, and gF is the gyromagnetic moment. The atomic level is called

weak-field (strong-field) seeking if gFmF > 0 (gFmF > 0), since in that

case the atoms are driven towards low (high) magnetic fields. There-

fore, since it is not possible to create a local maximum with a static

magnetic field, only weak-field seeking states can be trapped by an

inhomogeneous magnetic field ~B(~r) with a local minimum. An exam-

ple for an weak-field seeker is provided by the |F = 2,mF = 2〉 in

Rubidium.

• Dipole trap [29]: The principle of the dipole trap is based on the inter-

action of an electric field ~E(~r, t) with a two level (|g〉 ,|e〉) atom

Hint = −~d ~E(~r, t), (2.5)

where ~d is the dipole moment associated to the corresponding transi-

tion. If the field is spatially inhomogeneous the interaction and the

associated energy level AC-Stark shifts of the atom vary in space. The
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oscillating electric field is provided by a laser either red (∆ < 0) or

blue detuned (∆ > 0) with respect to the atomic transition, where

∆ = ωlaser − ωeg, and ωeg is the transition frequency. The laser de-

tuning must be sufficiently large to avoid the losses related to photon

scattering. In a semi-classical approximation the confining potential is

given by

Vtr(~r) =
h̄ΩR(~r)2

4∆
, (2.6)

where ΩR(~r) is the Rabi frequency (Ω2
R is proportional to the laser

intensity). When the laser is red (blue) detuned, the atoms are at-

tracted to the intensity maximum (minimum) of the laser field. This

allows for the creation of optical traps, as well as for the achievement

of e.g. optical mirrors, optical wave guides, and optical lattices. An

optical trap has certain clear advantages when compared to a magnetic

trap. In particular, an optical trap is not limited to weak-field seekers.

Additionally, the atomic density in a optical trap can be much larger

than in a magnetic one because the trap frequency can be made much

larger. Another interesting point is that by displacing the focus of the

laser one can move the trap center, allowing for the so-called optical

tweezers [11].

• Magneto Optical Trap (MOT) [30]: The MOT is a hybrid model, us-

ing both optical and magnetic fields. Let us consider an atom with

a zero-spin ground level and a spin-one excited level (and then with

three Zeeman sublevels mF = 1,−1, 0). If a weak inhomogeneous mag-

netic field B(z) = bz is applied, the Zeeman sublevels are split by

an amount ∆E(z) = µBgFmF bz (see also 2.4). The atom is affected

by two counter-propagating laser beams with opposite circular polar-

ization, σ− in direction −z and σ+ in direction +z. If the laser is

red-detuned with respect to the optical transition at B = 0, the atom

at z > 0 absorbs more σ− than σ+ photons, and consequently feels

an average force toward z = 0. For z < 0 the Zeeman effect is the

opposite, being the atom directed again to the origin. Therefore, the

atom is trapped around z = 0. The scheme is easily extended to three
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dimension by using 6 laser beams, two counter-propagating in each

direction, and a spherical quadrupole magnetic field which provides a

linear magnetic field around the origin.

2.2.4 Cooling in a trap

By employing the previously discussed laser cooling and trapping techniques,

it is possible to obtain an ensemble of trapped atoms at temperatures ranging

between few µK to several mK. The latter depends on the particular laser

pre-cooling employed, and on the atomic species used. In this subsection, we

review those cooling techniques specifically designed to cool in a trap. The

ultimate goal of these techniques is the accomplishment of a macroscopic

population of the ground-state of the trapped system, i.e. to produce a

Bose-Einstein condensate (see next section). We shall first present several

laser cooling mechanisms for trapped atoms, and finalize with a discussion

of collisional cooling methods.

2.2.4.1 Laser cooling

Let us consider a three-level λ-system composed by a ground-state level |a〉, a

metastable state |b〉, and a third fast-decaying auxiliary state |e〉. Two lasers

are assumed to excite coherently the Raman transition |a〉 → |b〉 (with some

associated effective Rabi frequency Ω), while a repumping laser off-resonance

with the transition |b〉 → |e〉 pumps optically the atom (via spontaneous

emission) into |a〉. For a sufficiently large detuning of the repumping laser,

the three-level scheme can be reduced to an effective two-level system with an

effective spontaneous emission rate γ, which can be controlled by varying the

intensity or the detuning of the repumping laser [31]. The atom is assumed to

be confined in a harmonic (isotropic) potential of frequency ω. We denote the

states of the harmonic oscillator as |n〉). We assume γ < ω, i.e. the so-called

Strong-Confinement Limit, also called Festina-Lente limit [32]. The latter

turns out to be a crucial point in the many-atom case in order to avoid the

reabsorption problem (see the last part of this chapter). In the Lamb-Dicke

limit (LDL), i.e. when the dimensions of the trap are very small compared
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with the laser wavelength λ, it is possible to use standard Sideband Cooling

techniques (first employed for cooling of single trapped ions) to pump an

atom into the ground state of the harmonic trap. In this cooling method

the laser is assumed red-detuned, with detuning δ = −ω.The absorption

of a laser photon induces the transition |g, n〉 → |e, n − 1〉. In the LDL,

η2 = ER/h̄ωtr � 1, where ER is the recoil energy, and hence, the recoil of the

spontaneously emitted photon is not large enough to induce a jump between

different states of the harmonic trap. As a consequence, only the transition

|e, n − 1〉 → |g, n − 1〉 is possible. Hence, the global effect of a complete

absorption-spontaneous emission cycle is a transition |g, n〉 → |g, n − 1〉.
This process is repeated until the particle reaches the ground state of the

trap, where it can no longer be excited by the laser, i.e. |g, 0〉 is a dark state.

As we discuss at the end of this chapter, in the many-body case the latter

statement is only true if we operate in the regime γ < ω.

Beyond the LDL, ER ≥ h̄ω, and hence in the spontaneous process, the

atom undergoes transitions |e, |g, n − 1〉 → |g, n − 1 ± n′〉 where n′ ranges

from 0 to O(η2). This process introduces a heating of the atomic distribution

which prevents the confinement of the atom into the ground state of the trap.

Morigi et al.[33] designed a method to laser cool single trap atoms beyond

the LDL towards the ground state of the trap. In a first step the atoms are

confined in the levels n ≤ η2. This is achieved by using pulses with detunings

δ = −η̂2ω, where η̂2 is the closest integer to η2. The absorption of a laser

photon produces a transition |g, n〉 → |g, n − O(η2)〉, and the spontaneous

emission |g, n−O(η2)〉 → |g, n−O(η2)±n′〉, where n′ ranges from 0 to O(η2).

As a result, in average some energy is lost in each cycle. Obviously, the states

with n < η2 remain dark, and therefore the atoms are finally confined in these

states. Due to this, these pulses are called confinement pulses. Using pulses

of selected frequencies one can empty the trap levels (|g, 1〉,|g, 2〉,· · ·) without

affecting the population of |g, 0〉. Then, in each cooling cycle there is some

probability to pump into |g, 0〉. There is also some probability of heating,

and therefore one must repeat the confinement step, and so on. As a result of

the cooling process, the atom can be confined in the ground state of the trap,

as in the usual Sideband Cooling. Since the present cooling mechanism is
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based on sequences of different pulses, the method has been called Dynamical

Cooling [33]. This method was later on extended to three-dimensional traps

by Santos and Lewenstein [34].

An alternative cooling mechanism has been recently proposed by Morigi et

al. [21]. This method is based in the so-called Electromagnetically Induced

Transparency (EIT), which as coherent population trapping relies on the

quantum interference between the absorption probabilities in a three-level Λ

system. The latter is formed by two ground states (|a〉 ,|b〉 ) and an excited

state |e〉 with a line width γ. The ground states, which do not need to be

degenerated, are coupled with the excited state through two different laser

beams. EIT occurs if the detunings ∆a = ωea − ωa
l and ∆b = ωeb − ωb

l

of the two lasers (Ωa,ω
a
l , Ωb,ω

b
l ) from the excited state |e〉 are equal. In

the later case the system evolves into a coherent superposition of |a〉 and

|b〉, like in VSCPT. In order to use this effect for cooling, the transition

|b〉 → |e〉 is excited by an intense laser (Ωb ∼ γ) with a detuning ∆b above

resonance, whereas the other transition |a〉 → |e〉 (“cooling transition”) is

affected by a weak laser with detuning ∆a, also above the resonance. Due

to that setup, the Fano-like absorption spectrum of the cooling transition

|a〉 → |e〉 has the advantage to be asymmetric around the dark resonance,

with a broad resonance at ∆a = 0, the dark resonance at ∆a = ∆b, and

a narrow resonance at ∆a = ∆b + δ, where δ is the AC-Stark shift, which

is adjusted by controlling the intensity of the strong laser. For EIT cooling

the lasers are set to the dark resonance condition ∆a = ∆b which leads to

a decoupling of the motional modes |a, n〉 and |e, n〉. When the intensity of

the strong laser is chosen in such a way that the AC-Stark shift is δ = ω, the

transition |a, n〉 → |e, n − 1〉 match exactly to the maximum of the narrow

resonance, whereas the transition |a, n〉 → |e, n + 1〉 falls into the region of

the spectrum of small excitation probability. That means that the transition

|a, n〉 → |e, n − 1〉 is enhanced, whereas the “bad” transitions are either

forbidden |a, n〉 → |e, n〉 or less favorable |a, n〉 → |e, n + 1〉. After several

cooling cycles the atoms enter into the motional ground state.

The application of the Dynamical cooling technique to a many-body sys-

tem was considered for the case of bosons by Santos and Lewenstein [35]. By
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means of many-body quantum Master equation techniques, as those discussed

in the next chapters of this Thesis, it was shown that the bosonic statistics

can help significantly during the process of cooling. In particular, it was

predicted that as long as the photon reabsorption can be neglected, purely

optical cooling (without using the evaporative cooling techniques described

in the next subsection) can lead to the accomplishment of Bose-Einstein con-

densation (see next section). The effects of interactions were also studied in

the weak-interaction regime (when the mean-field energy is smaller than the

energy separation between trap levels) by means of quantum Boltzmann Mas-

ter equations (see next chapter). The atom-atom interactions were shown to

provide an additional help towards the achievement of a purely optical con-

densation.

Recently, Idziaszek et al. [36] have analyzed the statistical effects in the

laser cooling of trapped fermions. In particular, it has been shown that the

coherent nature of the atom-laser interaction can allow for overcoming the

inhibition of the spontaneous emission introduced by the Pauli exclusion prin-

ciple [37]. In this way, it was reported that temperatures well below the Fermi

temperature can be achieved. The collisional effects for the case of multi-

component Fermi gases where also recently considered by means of quantum

Boltzmann Master equations [38, 39]. The laser cooling of fermions opens

a fascinating alternative route towards the accomplishment of the Bardeen-

Cooper-Schriffer (BCS) transition, i.e. the formation of Cooper pairs and

the on-set of superfluidity (see e.g. [40]).

2.2.4.2 Evaporative cooling

Evaporative cooling of trapped atoms was developed in the decade of 1980’s

at MIT as a method for cooling atomic hydrogen [41] in order to achieve BEC

after pre-cooling by cryogenic methods [42, 43]. This method constitutes

nowadays the only method that (in combination with laser pre-cooling) has

experimentally lead to Bose-Einstein condensation (see next section). Evap-

orative cooling is performed by continuously removing the high-energy tail

of the thermal distribution from the trap. The evaporated atom carries away
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more than the average energy per particle. This results in a reduction of the

average energy per particle of the remaining atoms, and after rethermaliza-

tion mediated by the atom-atom collisions, to a decrease of the temperature

of the trapped gas. It is crucial that the thermalization time, provided by the

inverse of the collisional rate γcol, should be shorter than the rate of losses,

either background losses or those induced by inelastic processes. If the latter

is not the case, the thermalization is not successfully performed, and the

evaporative cooling is frustrated. Therefore special care must be taken when

designing the particular path for evaporative cooling [44], and a combina-

tion of laser and evaporative cooling must be employed. In principle, the

potential barrier forming the trapping potential can be relaxed, leading to

the evaporation of the hottest atoms. However, this leads to a deformation

of the trapping potential, and in particular to a reduction of the gas density,

inducing a decrease of the collisional rate, and therefore of the thermaliza-

tion efficiency. In order to avoid this problem, the evaporation is actually

performed in magnetic traps by means of radio frequency (rf) pulses, which

flip the atomic magnetic moment (mF ), and therefore couples trapped with

untrapped states [45]. Those atoms are therefore released from the trap. The

rf-induced evaporation is energy selective because the resonance frequency is

proportional to the magnetic fields. This technique, also known rf-knife, is

also employed in the context of outcoupling of an atom laser, as discuss in

Sec. 2.4. The theory of evaporative cooling has been throughly examined in

Refs. [46, 47, 48, 49], see also Cohen-Tannoudji College de France Lectures

1997-1998.

2.3 Bose-Einstein Condensation

In this section we briefly review some important concepts related with the

physics of BEC in harmonically trapped gases. We shall first discuss the

non-interacting case. Later we shall introduce the effects of the interparticle

interactions. For a more detailed discussion on BEC theory, see e.g. [50].
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2.3.1 Bose Einstein Condensation for a ideal gas

Let us consider a system of non interacting bosons in thermal equilibrium,

characterized by the chemical potential, µ, the total number of atoms in the

trap, N , and the temperature, T . The occupation of the different energy

levels is provided by the Bose-Einstein distribution

N~n = {exp[β(E~n − µ)]− 1}−1, (2.7)

where β = KBT , and ~n ≡ {nx, ny, nz} are the quantum numbers describing

the harmonic oscillator levels. Without loosing of generality we assume in

the following a spherical harmonic trap of frequency ω, such that the energy

spectrum is given by E~n = h̄ω(nx + ny + nz + 3/2). The total number of

atoms is

N(T, µ) =
∑
~n

N~n (2.8)

and the total energy

E(T, µ) =
∑
~n

E~nN~n. (2.9)

As in the case of a Bose gas in absence of trapping potential [15], we

separate the contribution of the lowest eigenvalue from that of the rest of

eigenstates.

N(T, µ)−N0 =
∑
~n

1

exp[βE~n]− 1
. (2.10)

In order to obtain a close expression for the sum, we assume that the level

spacing becomes progressively smaller when N → ∞, in such a way that

the energy spectrum can be considered as continuous, and the sum can be

replaced by an integral. Knowing the density of states ρ(ε) = (1/2)(h̄ω)−3ε2

we can rewrite Eq. (2.10) as an integral over the energy:

N −N0 =
∫ ∞

0
dε

ρ(ε)

exp[βε]− 1
= ζ(3)

(
KBT

h̄ω

)2

, (2.11)

where ζ is the Riemann Zeta function. The limit N0 → 0 defines the critical
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temperature Tc for onset of the BEC

KBTc = h̄ω

(
N

ζ(3)

)1/3

. (2.12)

Inserting the definition of Tc in Eq. (2.10) we obtain the expression for the

fraction number of condensed atoms:

N0

N
= 1−

(
T

Tc

)3

. (2.13)

In the same way one gets the equation for the energy per particle of the

system:
E

NKBTc

=
3ζ(4)

ζ(3)

(
T

Tc

)4

. (2.14)

2.3.2 Weakly interacting Bose gas

Once the concept of BEC has been discussed for the case of an ideal gas,

we shall consider in this section the effects of the interparticle interactions.

The Hamiltonian in second quantization formalism that describes a system

of bosons interacting by binary interactions is of the form:

Ĥ =
∫
d3rψ̂†(~r)

(
− h̄

24
2m

+ V (~r)

)
ψ̂(~r) +

+
1

2

∫
d3r

∫
d3r′Vint(~r − ~r′)ψ̂†(~r)ψ̂†(~r′)ψ̂(~r)ψ̂(~r′), (2.15)

where ψ̂(~r) is the annihilation operator of a boson at a position ~r, which

satisfies the usual bosonic commutation rules, V (~r) is the trap potential, and

Vint(~r) is the interaction potential. We shall consider in the following that the

interaction potential is of a van der Waals form (other interaction potentials,

as dipole-dipole interaction has been recently discussed [51]).

At the very low temperatures at which the BEC is obtained, the inter-

particle scattering is characterized by the s-wave scattering length asc. The

actual interaction potential can be then substituted by a pseudo potential
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which describes the asymptotic behavior of the two-body scattering problem:

Vint(~r − ~r′) =
4πh̄2asc

m
δ(~r − ~r′), (2.16)

where m is the mass of the particle. If asc > 0 the interaction potential is

repulsive, whereas if asc < 0 it is attractive.

Our previous assumption concerning the binary character of the interac-

tions rely on the diluteness of the gas. A gas is considered as dilute if

〈n〉|asc|3 � 1, (2.17)

where 〈n〉 is the average density of the gas. In this regime two-body collisions

are dominant in comparison with three-body ones. For typical densities

(1013− 1015cm−3) and typical values of asc (1− 100nm), 〈n〉|asc|3 < 10−3. In

the following we shall always considered this regime.

Substituting the pseudo-potential (2.16) into the Hamiltonian (2.15), we

can write the Heisenberg equation for the ψ̂ operator:

ih̄
∂

∂t
ψ̂ =

(
− h̄

24
2m

+ V (~r) + Uggψ̂
†ψ̂

)
ψ̂, (2.18)

where Ugg = 4πh̄2asc/m.

Equation (2.18) is the exact equation for the corresponding many-body

system. The field operator can be written in the form ψ̂(~r) =
∑

n ψn(~r)ĝn,

where ĝn is the annihilation operator of an atom in the eigenstate ψn(~r).

The mean occupation of each state is Nn = 〈ψ|ĝ†nĝn|ψ〉, where |ψ〉 is the

state of the many body system. As previously discussed, the BEC consists

in the macroscopic occupation of the ground state of the system, N0 � 1.

This fact allows for the approximate substitution of the operators ψ0ĝ0 and

ψ0ĝ
†
0 by a c-number ψ0(~r, t), which acts as the condensate wave function.

This approximation is usually called Bogoliubov approximation. Then in

the complete field operator the classical field of the condensate can be split

from the rest: ψ̂ = ψ0(~r, t) + δψ̂(~r, t). At zero temperature one can neglect
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δψ̂, and Eq. (2.18) transforms into the Gross-Pitaevskii Equation (GPE):

ih̄
∂

∂t
ψ0 =

(
− h̄

24
2m

+ V (~r) + Ugg|ψ0|2
)
ψ0. (2.19)

also called nonlinear Schrödinger equation. In addition to the external trap

V (~r), the particles feel the mean-field potential Ugg|ψ0|2 provided by the

other condensate particles.

The ground-state solution is obtained from the time-independent GPE,

which is obtained after substituting ψ0(~r) → ψ0(~r) exp[−iµt] in Eq. (2.19) :

HGPψ0(~r) =

(
− h̄

24
2m

+ V (~r) + Ugg|ψ0(~r)|2 − µ

)
ψ0(~r). (2.20)

The normalization of the condensate wave function N =
∫
d3r|ψ0|2 provides

the relation between chemical potential µ and number of atoms N in the

condensate.

There are two main energy scales involved in the case of trapped BEC.

On one side the interaction energy Eint, and on the other side the char-

acteristic energy EHO = h̄ω of the harmonic oscillator. Depending on the

relation between these scales, we can distinguish two interaction regimes:

weak-condensation and Thomas-Fermi regime. The former is characterized

by EH0 � Eint. In this regime the basis of harmonic oscillator states can be

employed, and the effects of interactions can be included employing Boltz-

mann equations describing the collisional transitions between different energy

levels [52]. On the contrary, the Thomas-Fermi regime is characterized by

EH0 � Eint. In this regime the kinetic energy term in Eq. (2.20) can be

neglected, and an analytical expression can be found for the density profile

of the ground state:

nTF (~r) = ψTF
0 (~r)2 =

µ− V (~r)

Ugg

, (2.21)

where the expression for the chemical potential µ is given by the normaliza-
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tion of the density to the number of atoms:

µ =
h̄ω

2

(
15Nasc

x0

)2/5

. (2.22)

where x0 =
√
h̄/mω is the oscillator length. The density profile has the form

of an inverted parabola which vanishes at ~R (so-called Thomas-Fermi radius)

defined by the condition V (~R) = µ. In a spherical trap,

R = x0

(
15Nasc

x0

)1/5

. (2.23)

2.3.3 Bogoliubov-de Gennes equations

For sufficiently low temperatures, one can consider the density of thermal

particles much smaller than that of condensed ones. In that case we can

linearize Eq. (2.18) in δψ̂ to obtain

ih̄
˙
δψ̂ =

(
− h̄

24
2m

+ V (~r)− µ+ 2Ugg|ψ0|2
)
δψ̂ + Ugg(ψ

∗
0)

2δψ̂† (2.24)

−ih̄ ˙
δψ̂† =

(
− h̄

24
2m

+ V (~r)− µ+ 2Ugg|ψ0|2
)
δψ̂† + Ugg(ψ

∗
0)

2δψ̂,(2.25)

where the time dependence of the ground state has been explicitly separated

δψ̂(~r, t) → exp[−iµt]δψ̂. After applying the so-called Bogoliubov transfor-

mation

δψ̂ =
∑
n

u∗n(~r)ĝn exp[−iεnt]− vn(~r)ĝ†n exp[iεnt] (2.26)

to Eq. (2.25), we obtain a system of linear equations

εn

 un

vn

 =

 HGP + Ugg|ψ0|2 Uggψ
2
0

Ugg(ψ
∗
0)

2 −(HGP + Ugg|ψ0|2)∗

 un

vn

 , (2.27)

where un,vn are the eigenfunctions, and εn are the corresponding eigenvalues.

The eigenfunctions un,vn fulfill the orthonormalization relation

∫
d3r(un(~r)u∗k(~r)− vn(~r)v∗k(~r)) = δnk. (2.28)
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In order to make sense of the diagonalization of the previous equations, the

perturbation δψ̂ must be orthogonal to the condensate wave function. To

this aim, we employ the projection operators [53]

Q = 1− |ψ0〉〈ψ0|

Q∗ = 1− |ψ∗0〉〈ψ∗0|,

to transform Eq. (2.27) into:

εn

 un

vn

 = L

 un

vn

 , (2.29)

where

L =

 HGP + UggQ|ψ0|2Q UggQψ
2
0Q

∗

UggQ
∗(ψ∗0)

2Q −(HGP + UggQ|ψ0|2Q)∗

 . (2.30)

With this set of equations we ensure 〈ψ0|δψ〉 = 0. After applying Eq. (2.26)

to Eq. (2.18) we obtain

Ĥ = Ĥ0 +
∑
n6=0

εnĝ
†
nĝn, (2.31)

where Ĥ0 = E(N0)ĝ
†
0ĝ0 is the ground state energy, and ĝn (ĝ†n) is the annihi-

lation (creation) operator of a quasiparticle with energy εn.

The mean thermal density can be easily obtained

nth(~r) = 〈δψ̂†δψ̂〉 =
∑
n

〈ĝ†nĝn〉(|un(~r)|2 + |vn(~r)|2) + |vn(~r)|2, (2.32)

where 〈ĝ†nĝn〉 = [exp[εn/KBT ]− 1]−1. Note that even at zero temperature a

finite number of thermal atoms remain, constituting the so-called quantum

depletion of the condensate. The mean energy is obtained from the stationary

form of Eq. (2.18)

〈E − µN〉 =
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∑
n

{
〈ĝ†nĝn〉εn −

∫
d3rεn|vn|2 +

Ugg

2
(2〈ĝ†nĝn〉+ 1)

∫
d3r(u∗nvn − v∗nun)

}

+〈ψ0|HGP −
Ugg

2
|ψ0|2|ψ0〉. (2.33)

If the condensate wave function is real everything else (as Q,ψ2
0,εn,un,and vn)

is also real.That simplifies the upper equation to:

〈E〉 = E0(N0) (2.34)

−
∫
d3r|vn|2(εn − µ) +

∑
n

〈ĝ†nĝn〉(εn + µ
∫
d3r(|un(~r)|2 + |vn(~r)|2)),

where E0(N0) = 〈ψ0|HGP − Ugg

2
|ψ0|2|ψ0〉.

2.3.4 What makes the Bose-Einstein Condensate in-

teresting?

During the last years, and especially after its first experimental observation

in 1995, the BEC has aroused a huge interest. It would be certainly diffi-

cult to summarize even briefly the large number of very important recent

contributions, both theoretical and experimental, in this active field. We

would like however to discuss as concise as possible why BEC has attracted

such an attention. On one side, BEC offers an extraordinary opportunity

to test condensed matter and low–temperature phenomena. In this respect,

several striking results have been reported concerning superfluidity phenom-

ena [54, 55], and generation and dynamics of vortices [56, 57]. On the other

hand, the macroscopically occupied matter wave can be manipulated by atom

optical elements, that can be combined to provide new tools for precision ex-

periments [58]. Besides passive optical elements recently also active elements,

that provide phase coherent gain have been demonstrated [59, 60]. Also a

new field, called Non–Linear Atom Optics (NLAO), has rapidly developed

during the last years. Several remarkable experiments have been recently re-

ported in this area, as reflection of BEC from an optical mirror[61], four–wave

mixing [62] of matter waves, dark–solitons [63, 64], bright–solitons [65, 66],

and even condensate collapse [67]. The physics of BEC is therefore character-
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ized by an intrinsic interdisciplinarity, being a common and fruitful research

field for physicist belonging to disparate communities as Quantum Optics,

Condensed Matter Physics, Nonlinear Physics, etc. This interdisciplinarity,

and the large degree of control available for the experiments involved in this

field, explain at least partially the interest on BEC. We should finally remark

that the importance of this research field was recently recognized with the

Nobel Price Award 2001 to E. Cornell, C. Wieman and W. Ketterle, which

add up to the Nobel Price Award 1997 to W. Phillips, C. Cohen-Tannoudji

and S. Chu, who receive the award for their developments in laser cooling

and trapping of neutral atoms.

2.4 Atom Laser

During the last twenty years the improvement in cooling and trapping tech-

niques has lead to the rapid growth of the so-called Atom Optics. Atom

Optics explores the matter-wave phenomenology which appears in ultra cold

atoms. Several remarkable effects have been reported in this area, as atom

reflection, atom focusing, atom diffraction, etc. For a review, see e.g. [68].

The discovery of the laser constitutes without any doubts one of the most

fundamental achievements in standard light optics, opening the way to a co-

herent control of atom-light interaction. Following with the analogy between

atom and light optics, it was therefore natural to explore the possibilities to

achieve an atom laser. In the following we shall define in more detail what

can be understood under the concept of atom laser, and how it has been

obtained experimentally. Finally, we shall address the issue of continuous

loading of an atom laser, which constitutes an essential part of this Thesis.

2.4.1 What is an atom laser?

The term “Atom Laser” has been coined to describe a highly “monochro-

matic” coherent matter-wave source. When referred to matter waves, the

concept of monochromaticity indicates a narrow momentum distribution, i.e.

following our discussion in Sec. 1.2 an ultracold atomic sample. The concept
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of coherence refers to the existence of a common phase between the atoms

produced by an Atom Laser. Such a source of coherent monochromatic mat-

ter waves can be achieved by outcoupling atoms from a BEC. As previously

discussed, the ultra cold atoms of a BEC share a common quantum state, and

they are therefore natural candidates to accomplish a coherent matter-wave

source.

Before continuing with the description of an atom laser, and how the

atom lasers have been actually obtained experimentally, it is of interest to

recall some important concepts related with the physics of optical lasers.

The essential components of a laser are basically three: an active medium,

a resonator, and an outcoupler. The active medium is composed by excited

atoms, whose population has been inverted (more population in an excited

electronic state than in the ground state) by means of an external pumping.

The population inversion is a key concept to achieve the light amplification

by stimulated emission [69], related with the concept of bosonic enhancement

for the emission of photons in the laser mode. The resonator is composed by

an optical cavity, which in its simpler version is formed by two oppositely-

placed highly-reflecting mirrors. The resonator is employed to multiply the

light amplification by passing multiple times through the active medium,

and additionally acts as a Fabry-Pérot interferometer, selecting a specific

wavelength. Finally, the laser light must be outcoupled, to this aim one of the

mirrors possesses an imperfect reflectivity, and the laser light is outcoupled

through it.

Let us return to the atom laser concept, comparing it with its light coun-

terpart. As previously commented an atom laser can be achieved by outcou-

pling atoms from a trapped BEC. In a natural way, the trapping potential

can be related with the resonator of a standard laser. The different energy

levels within the trap play the role of the lasing modes, being the condensate

the main mode of the atom laser. In the case of a light laser the pumped en-

ergy leads to an inverted population of the active medium, which finally leads

to the production of the laser via stimulated emission. In the case of matter

waves, the situation is certainly more complicated, since the atoms cannot be

created by simply pumping energy to the system. It is necessary to possess
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a reservoir of atoms, which must be pumped into the condensate mode. Of

course this process is helped by the bosonic enhancement, and in this sense

certainly resembles the physics of the active medium. The continuous pump-

ing into a BEC constitutes nowadays an open question, and will be discussed

extensively in the rest of this section, and in the following chapters of this

Thesis. Finally, the condensate atoms must be outcoupled. The latter can be

achieved in two different ways. If the atoms are confined in a magnetic trap,

a properly designed radio frequency pulse can transfer part of the atoms into

a state with different magnetic moment which is not trapped. These atoms

are therefore extracted. This is the basis of the so-called rf-outcoupling [6].

This technique is exactly the same as that previously discussed in evaporative

cooling, although in the present case the coldest atoms are outcoupled, and

not the hottest ones as in evaporative cooling. The second technique consists

in employing Raman pulses to transfer the corresponding recoil momentum

to part of the condensate atoms [10]. The transferred energy is enough to

outcouple the atoms. This technique presents the advantage of controlling

the direction of the outcoupled atoms, whereas the rf-outcoupling usually

relies in the gravitation field.

2.4.2 Continuous Loading of a BEC

Both rf- and Raman-outcoupling have been employed experimentally to achieve

quasi-continuous outcoupling. However, the continuous outcoupling repre-

sents just a half way towards a cw atom laser. Without a continuous refilling

of the BEC, the atom laser output lasts only as long as sufficient atoms in

the BEC are kept. In addition, the continuous refilling of the condensate

could be employed to repair a condensate against inelastic losses, and in this

way it could allow to analyze the BEC physics at larger densities, at much

longer time scales, and eventually without the necessity of a very high vac-

uum. Recently, an experiment using an optical tweezer has been performed

in this sense at MIT [11]. Two different physical mechanisms could provide

a continuous pumping into a condensate: collisional and optical loading. We

shall discuss in this subsection both methods.
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2.4.2.1 Collisional loading

The collisional loading of a BEC is based in the collision of two non-condensed

atoms from a reservoir, which results in one of them being pumping into the

condensate, whereas the other carries most of the energy and it is evaporated.

as previously commented, the pumping of an atom into the condensate if

favored by the bosonic enhancement, resembling the stimulated emission in

the active medium of a laser. There are different possible routes to achieve the

continuous or quasi-continuous collisional loading of a BEC. A first proposal
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Figure 2.1: Collisional loading of a BEC: (a) two thermal atoms collide; (b)
one atom is pumped into the condensate whereas the other is evaporated.

[70] considers the pumping of atoms into a long magnetic waveguide, where

evaporative cooling is undergone in the radial direction. At the end of the

waveguide the atoms are assumed to enter into the (3D) degenerated regime.

This proposal, however, faces difficult technical problems. Due to the key

role of evaporative cooling in the proposal, it is necessary a very large flux

of cold and slow atoms into the guide. On one side the large flux should

maintain a sufficient collisional rate, and on the other side the atoms must

be slow enough since the guide is necessarily limited in space. A more recent

proposal [71] discusses a similar approach. Although also relying on the effect

of collisions and evaporative cooling, in this proposal a slow dense atomic

beam is assumed, being the interest more focused in the role of collisions

to achieve a continuous trapping of atoms. Under appropriate conditions

the subsequent evaporative cooling in an non isotropic trap could lead to an

increase of the phase-space density by a factor of 500−900. Finally, a recent

experimental work [11] has explored the refilling of a condensate by means

of transporting a secondary BEC into the region where the main BEC is
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placed. To this aim a BEC is kept in a a vacuum chamber, whereas another

BEC is created in a secondary one. The newly produced BEC is transported

by means of an optical tweezer into the region of the original BEC. The two

BECs are merged, and the excess energy produced by the merging is rapidly

evaporated.

2.4.2.2 Optical loading

The optical loading mechanism relies in the pumping of reservoir atoms in

an (electronic) excited state into the BEC via spontaneous emission [72]. If

the reservoir could be filled in a (quasi-) continuous way by laser cooling

techniques, one would benefit from the large cooling efficiency of laser cool-

ing compared to evaporative cooling, allowing for a considerable increase in

atomic flux produced by an atom laser. For the latter, it is crucial that the

spontaneously emitted photons cannot be reabsorbed, because otherwise a

heating could be introduced in the system, and BEC can be neither achieved

nor maintained [73] (see discussion below). This thesis is mainly devoted to

the discussion of different issues related with the physics of the continuous

optical loading of a condensate. Several aspects must be carefully considered

in this sense, including the evolution of the condensate temperature during

the loading, the condensate formation, the role of collisions in different inter-

action regimes, and the important problem of photon reabsorption. We shall

consider the latter problem in detail in the next subsection. The other issues

and other important points related with optical loading will be discussed in

the next chapters of this Thesis.

2.4.3 Reabsorption problem

The subrecoil laser cooling techniques discussed in Sec. 1.3 were based in

the key concept of dark state, i.e. a state which was dark with respect to the

cooling laser. The dark character of a particular state is crucially determined

by the coherent nature of the laser light. Therefore those photons sponta-

neously scattered by neighbor atoms can be absorbed by an atom in a dark

state, and as a consequence the cooling mechanism becomes inefficient. This
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Figure 2.2: Optical loading of a BEC: a trapped atom in the electronic excited
state |e〉 decays spontaneously into the (also trapped) ground-state |e〉. As
a result a photon is emitted.

fact receives the name of reabsorption problem, and constitutes a serious lim-

itation towards the all optical achievement of a BEC [73]. Similarly, photon

reabsorption is an important problem which should be carefully addressed

when considering models of optical loading.

The reabsorption can lead to “bad” processes, as illustrated in Fig. 2.3.

An excited atom decays into the condensate, the emitted photon is reab-

sorbed by an already condensed atom, which after a second spontaneous

emission ends in an excited external state of the |g〉-trap. All together this

process leads clearly to heating. On the other hand reabsorption can lead
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Figure 2.3: “Bad” reabsorptions. From left to right: an excited atom decays
via spontaneous emission into the condensate; the photon is reabsorbed by an
already condensed atom; after a final spontaneous emission this atom decays
into an excited state of the ground-state trap.
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also to “good” (cooling) processes, as shown in Fig. 2.4. An excited atom

undergoes a transition into the condensate, and the emitted photon is not

reabsorbed by a condensate atom but by an atom in an excited state of the

ground-state trap. After a second spontaneous emission the second atom can

finish in the condensate. That means that this process leads to two atoms

more in the condensate by just one pumping process. Unfortunately, the
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Figure 2.4: “Good” reabsorption. From left to right: an excited atom decays
into the condensate; the photon is reabsorbed by an atom in an excited state
of the ground-state trap; this atom decays into the condensate.

heating effects of the reabsorption are in general dominant, and the reab-

sorption problem becomes, as previously commented, a crucial problem in

optical thick samples. The latter is easy to understand from purely geo-

metrical considerations. Assuming an atomic cross section with the emitted

photon acr ∼ λ2, with λ the photon wavelength, and a mean distance D

between the atoms, the classically probability for the absorption of the pho-

ton is p ∼ λ2/D2, i.e. the ratio of the cross section to the surface of a

sphere of radius D around the emitting atom. D. Since D in a condensate

is of the order of the thermal de-Broglie wave length, which is very small,

the reabsorption probability becomes certainly large, leading (if not properly

handled) to heating, and eventually to the destruction of the condensate.

2.4.3.1 Avoiding the reabsorption

Several possible dynamical and geometrical solutions for the reabsorption

problem have been proposed during the last few years. The geometrical

proposals are based on the reduction of the dimensionality of the traps [74,
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73]. It is easy to understand that assuming that the reabsorption cross section

for trapped atoms is the same as in free space, i.e. ' λ2, the significance

of reabsorptions increases with the dimensionality, in such a way that the

reabsorptions should not cause any problem in one dimension, have to be

carefully considered in two dimensions, and forbid condensation in three

dimensions. Therefore, cigar- and disc-shape traps have been suggested.

However even severe deformations of the trap do not allow more than modest

reductions of the reabsorption heating [75]. Other suggestion consists in using

a strongly confining trap with a frequency ω ' ωR. In this case, it has been

proved [76] that in two atom systems the relative role of reabsorption in such

a trap can be significantly reduced. It is, however, not clear whether this

result would hold for many atom systems.

Another promising remedy against reabsorption heating employs the de-

pendence of the reabsorption probability for trapped atoms on the fluores-

cence rate γ, which can be adjusted at will in dark state cooling [75]. In

particular, in the interesting regime, in which γ is much smaller than the

trap frequency ω, i.e. in the so called Festina Lente limit [32], the reabsorp-

tion processes, in which the atoms change energy and undergo heating, are

practically completely suppressed. This is easy to understand since in the

Festina Lente regime, the atomic levels in the trap are well resolved, since

their width is smaller than the level spacing. As a consequence subsequent

reabsorptions cannot increase the energy of the trapped atoms. On the con-

trary if the width of the levels becomes larger than the spacing of the atomic

levels, those processes increasing the energy of the atoms in the trap will

be allowed, and heating could not be avoided. The conditions for the Fes-

tina Lente regime are more easily fulfilled in dipolar traps where the trap

frequency can be made considerably larger than in a magnetic trap. How-

ever, the Festina Lente regime implies slow cooling (or loading) rates, and

could therefore be of limited use in the case of e.g. loading of a BEC. In this

Thesis we shall discuss two different alternative regimes where the negative

effects of photon reabsorption can be avoided. In chapter 3 we show that due

to quantum interferences the reabsorption could lead to cooling of the con-

densate in the so-called Bosonic–Accumulation regime [13]. In chapter 4, we
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demonstrate that when an atom possesses an accessible three level Λ scheme,

where one of the atomic transitions decays much faster than the other, the

reabsorptions in the slow transition can be largely suppressed, without the

time limitations of Festina Lente [77].





Chapter 3

Optical loading in the

Boson–Accumulation Regime

3.1 Introduction

In this chapter we begin our analysis of the study of the loading of a BEC,

which is formed in a trapped electronic ground–state |g〉, via spontaneous

decay of atoms from an also trapped internal excited state |e〉. In particular,

we shall consider in the present chapter the regime N0 � a,N − N0, where

a is the effective number of levels other than the condensed one to which the

excited atoms may decay, N is the total number of atoms in the |g〉 trap, and

N0 is the number of condensed ones. If this is the case the excited atom will

decay into the condensate with high probability, due to bosonic enhancement.

Such regime has been called the Boson–Accumulation Regime (BAR) [13].

Note, however, that even in the BAR, in the absence of reabsorption, simple

arguments imply that the mean proportion of atoms in the condensate after

the decay decreases [13]. If the reabsorptions are present, each subsequent

decay would lead to an even larger decrease of the condensate proportion;

thus for an optically thick sample (where many reabsorptions take place) the

number of condensed atoms would be reduced dramatically. However, these

arguments are not rigorously valid in general. In Ref. [13] it was reported

that a fully quantum treatment shows that the reabsorption processes can,

35
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under certain conditions, help to increase the proportion of atoms in the

BEC. This counterintuitive result was explained by means of an interference

effect between different paths (which include reabsorptions) that lead to the

same final states. This effect offers an interesting mechanism of continuous

refilling and loading of a condensate.

The treatment of Ref. [13] was based on an extremely simplified 1D model

in which all the ground states were taken into account, but in which there

was a single excited level. In addition, the calculations of Ref. [13] did not

consider the different Frank-Condon factors for the different possible decays.

In this chapter, we analyze the BAR regime in a much more general model.

We consider a 3D trap, and the possibility of more than one excited trap level.

In addition, the Frank-Condon factors for the different decays are explicitly

included in the calculations. We demonstrate that even for this much more

complicated situation, under some conditions the reabsorption still helps to

load atoms into the condensate.

This chapter is organized as follows. In Sec. 3.2 we introduce the model

under consideration. Sec. 3.3 is devoted to the discussion of the BAR expan-

sion. In Sec. 3.4 we discuss our numerical results.

3.2 Model

Let us consider a set of bosonic atoms with two internal levels |g〉 and |e〉 con-

fined in a dipole harmonic trap, which for simplicity is considered isotropic,

with frequency ω. We denote as Nm the population of the m-th level of the

|g〉 trap, where m ≡ (mx,my,mz), and assume that the ground state trap

verifies the BAR conditions. We analyze the situation in which a single atom

in some state |e, l〉 (l ≡ (lx, ly, lz)) decays via spontaneous emission into the

|g〉 trap, producing a photon which can eventually be reabsorbed by another

|g〉 atom (in particular by a condensed one), which in turn can later decay

again, and so on. At some finite time, the scattered photon is no more re-

absorbed and leaves the system. It is our aim to investigate how the atom

distribution in the |g〉 trap changes during this process.

For simplicity we do not consider in this chapter the collisional mean–
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field effects (for a discussion of these effects see chapter 5). For typical

s–wave scattering lengths this implies that in principle our results could be

obtained for few atoms only (since we consider relatively small traps); one

should point out , however, that although our calculations are limited to

small traps, the BAR effect should be present also for larger ones, and in

the presence of collisions. Although the main purpose of this chapter is to

discuss a fundamental quantum effect and to present the methodology needed

to study it, we must also point out that recent experiments [78, 79] have

shown that the s-wave scattering length can be modified by using Feshbach

resonances. In particular, the regime of quasi–ideal gas can be experimentally

achieved, in which the mean–field energy can be considered smaller than the

trap energy. In such regime, the collisions introduce just a thermalization

mechanism [80], and two and three–body collisional losses are almost absent

[81]. For such modified scattering length our results are valid for much larger

N .

Starting from the Hamiltonian which describes the bosons interacting

with the quantized electromagnetic field, and using standard techniques, one

can derive the master equation (ME) for the reduced density operator for

the atomic degrees of freedom (see App. A), which assuming h̄ = 1 becomes

ρ̇ = −iHeffρ+ iρH†
eff + Jρ, (3.1)

where

Heff =
∞∑
l=0

(ωe
l +ω0−i

Γ

2
)e†l el+

∞∑
k=0

ωg
kg

†
kgk−i

Γ

2

∞∑
l,l′

∞∑
m,m′

αlmm′l′g
†
m′gme

†
l el′ , (3.2)

is a non-Hermitian effective Hamiltonian, and

Jρ = Γ
∞∑
l,l′

∞∑
m,m′

αr
lmm′l′g

†
m′el′ρe

†
l gm. (3.3)

is the jump operator. Here, el (gm) is the annihilation operator for atoms in

the l–th (m–th) excited (ground) level, ωe
l (ωg

m) is the energy corresponding

to such state, and Γ is the spontaneous emission rate from the excited level.
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The complex coefficients αlmm′l′ (whose explicit form can be found in [13]) are

related to the Frank-Condon factors for the different excited–ground transi-

tions. We denote in the following ηlm = 〈l| exp[i~k~r]|m〉 the Frank-Condon

factor for the transition between the l–th excited level and the m-th ground

level. The real part of the αlmm′l′ coefficient is

αr
lmm′l′(k0) =

∫
dΩW(Ω)ηlm(k0,Ω)ηl′m′(k0,Ω)∗ (3.4)

and the imaginary part is

αi
lmm′l′(k0) = −P

π

∫ ∞

−∞
du

u3

u− 1
αr

lmm′l′(uk0), (3.5)

where P denotes the Cauchy Principal part of the integral, k0 is the absolute

value of the photon wavenumber associated with the |g〉 ↔ |e〉 transition,

and W(Ω) is the dipole pattern of the spontaneous emission.

3.3 BAR expansion

We consider an initial situation in which Nm atoms occupy the m-th state

of the ground–state trap, and a single excited atom is placed (with some

probability given by a thermal distribution) in a state j of its corresponding

trap. We denote the initial state as |ψ0〉, and therefore the initial density

matrix is defined as

ρN = |ψ0〉〈ψ0| = |N0, N1, · · ·〉g ⊗ |j〉e〈j| ⊗g 〈N0, N1, · · · |. (3.6)

After a photon is released without further reabsorptions, we obtain the formal

solution ρN+1 of the ME (3.1):

ρN+1 =
∫ ∞

0
dtJ [e−iĤeff tρNe

iĤeff t], (3.7)

and calculate the probability to obtain a particular final state |ψf〉 = |N ′
0,

N ′
1, · · ·〉g ⊗ |Ω〉e (|Ω〉 : vacuum) with N ′

m atoms in the m-th |g〉 trap level
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(and no atom in the excited state trap):

〈ψf |ρN+1|ψf〉 = Γ
∫ ∞

0
dt
∫ dΩ

4π

∣∣∣∣∣∣
∑

l,m=0

η∗lm〈ψf |g†mele
−iHeff t|ψ0〉

∣∣∣∣∣∣
2

. (3.8)

After expanding exp[−iHeff t] into powers of the small parameter N
−1/2
0

e−iHeff t = e−iH
(0)
eff

t

−i
∫ t

0
dτe−iH

(0)
eff

(t−τ)H
(1)
effe

−i(H
(0)
eff

)†τ

−i
∫ t

0
dτe−iH

(0)
eff

(t−τ)H
(2)
effe

−i(H
(0)
eff

)†τ

−i
∫ t

0
dτdτ ′e−iH

(0)
eff

(t−τ)H
(1)
effe

−iH
(0)
eff

(τ−τ ′)H
(1)
effe

−i(H
(0)
eff

)†τ ′

+O(N
−3/2
0 ) (3.9)

and neglecting terms of order O(N
−3/2
0 ), such probability takes the form

〈ψf |ρN+1|ψf〉 = (3.10)

2

N0

∫ ∞

0
dt
∫ dΩ

4π

∣∣∣∣∣∣
∑

l

η∗l0|〈ψf |g†0elA1|ψ0〉+
∑

l,m6=0

η∗lm〈ψf |g†melA0|ψ0〉

∣∣∣∣∣∣
2

with A0(t) = exp[−iH(0)
eff t] and

A1 = −i
∫ t

0
dτ exp[−iH(0)

eff (t− τ)]H
(1)
eff exp[−iH(0)

effτ ] (3.11)

being the terms of exp[−iHeff t] of order 0 and 1 in 1/N
1/2
0 , where

H
(0)
eff = ωg

0g
†
0g0 − i

Γ

2

∞∑
l,l′
αl00′l′g

†
0g0e

†
l el′ , (3.12)

and

H
(1)
eff = −iΓ

2

∞∑
l,l′

∞∑
m6=0

{αlm0l′g
†
0gm + αl0ml′g

†
mg0}e†l el′ , (3.13)
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are respectively the terms of Heff of zeroth and first order in 1/N
1/2
0 . There-

fore, beginning from an initial relative number of condensate particles n =

N0/N , up to order O(1/N2
0 ), the new relative number of condensed atoms

after the last decay becomes

n′ =
N0 + 1 + (PN0+2 − PN0)

N + 1
, (3.14)

where PN0+2 (PN0) is the probability to have after the process N ′
0 = N0 + 2

(N0). Let |ψ(2,s)
f 〉 be the final state with N ′

0 = N0 + 2, N ′
s = Ns − 1, and

N ′
j 6=0,2 = Nj. The probability to decay into such a state is given by:

P s
N0+2 = 〈ψ(2,s)

f |ρN+1|ψ(2,s)
f 〉 = (3.15)

2

N0

∫ ∞

0
dt
∫ Ω

4π

∣∣∣∣∣∣
∑

l,m6=0

η∗lm〈ψ
(2,s)
f |g†melA0(t)|ψ0〉

∣∣∣∣∣∣
2

.

The corresponding process is schematically represented in Fig. 3.1(a). Let

us also define |ψ(0,s)
f 〉 as the final state with N ′

0 = N0, N
′
s = Ns + 1 and

N ′
j 6=0,2 = Nj.

The probability to decay into this state takes the form:

P s
N0

= 〈ψ(0,s)
f |ρN+1|ψ(0,s)

f 〉 = (3.16)

2

N0

∫ ∞

0
dt
∫ Ω

4π

∣∣∣∣∣∑
l

η∗l0〈ψ
(0,s)
f |g†0elA1(t)|ψ0〉

∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑

l,m6=0

η∗lm〈ψ
(0,s)
f |g†melA0(t)|ψ0〉

∣∣∣∣∣∣
2

+2<

∑
l

η∗l0|〈ψ
(0,s)
f |g†0elA1(t)|ψ0〉

 ∑
l,m6=0

η∗lm〈ψ
(0,s)
f |g†melA0(t)|ψ0〉

∗
where < denotes the real part. The first and second terms in Eq. (3.16)

are respectively depicted in Fig. 3.1(b) and (c), whereas the last term corre-

sponds to the interference between the energetically equivalent paths which

are shown in that figures.

From Eqs. (3.15), (3.16) one obtains PN0+2 =
∑

s < P s
N0+2 >, and
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Figure 3.1: Schematic representation of the different processes appearing in
Eqs. (3.15) and (3.16). Straight lines denote atomic transitions, whereas
waved lines represent the photons produced in the decays. Note the possi-
bility of reabsorption in Figs. (a) and (b).

PN0 =
∑

s < P s
N0

>, where <> denotes the average of the possible initial

ground–state populations following the corresponding Bose–Einstein distri-

bution at a given temperature Tg. We have numerically calculated the prob-

abilities PN0 and PN0+2. From Eqs. (3.15),(3.16) it becomes clear that such

calculation requires to take into account all the possible paths connecting a

particular initial and final state which eventually involves an arbitrary num-

ber of emission-reabsorption cycles. This fact by itself makes the calculation

extremely demanding. In addition, several important technical difficulties

appear. First, we must note that in order to calculate the coefficients A0 and

A1, one has to evaluate the exponential exp(−iM̂t), where

M̂ =
∑
l,l′
αl00l′e

†
l el′ (3.17)

is not an Hermitian matrix. The real part of the complex αl00l′ coefficient

acquires the form

αr
l00l′(k0) =

1

4π

∫
dΩηl0(k0,Ω)ηl′0(k0,Ω)∗ = e−η2

η
~l+~l′ (3.18)

× 1

16π

(−1)(~l−~l′)/2√
~l!~l′!

(1 + (−1)lx+l′x)(1 + (−1)ly+l′y)(1 + (−1)lz+l′z)

×B[
lx + ly + l′x + l′y + 2

2
,
lz + l′z + 1

2
]B[

ly + l′y + 1

2
,
lx + l′x + 1

2
]
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where η2 = ER/h̄ωg = k2
0x

2
0 is the Lamb-Dicke parameter, where x2

0 =

h̄/2mωg is the oscillator length. In Eq. (3.19) B[l, l′] denote the Beta func-

tions. The imaginary part of α is:

αi
l00l′ = −P

π

∫ ∞

−∞
du

u3

u− 1

∫ dΩ

4π
ηl0(uk0,Ω)η∗l′0(uk0,Ω)

= −P
π

∫ ∞

−∞
du

u3

u− 1
αr

l00l′(uk0). (3.19)

Applying the solution of the Cauchy principal part (see App. B) , we obtain

αl00l′ =
1

16π

(−1)(~l−~l′)/2√
~l!~l′!

(3.20)

×(1 + (−1)lx+l′x)(1 + (−1)ly+l′y)(1 + (−1)lz+l′z)

×B[
lx + ly + l′x + l′y + 2

2
,
lz + l′z + 1

2
]×B[

ly + l′y + 1

2
,
lx + l′x + 1

2
]

×η~l+~l′(e−η2 − i
1

2π

~l+~l′+2∑
i=0

(1 + (−1)i)η−(1+i)Γ(
i+ 1

2
) + ierf(η)e−η2

),

where ~l −~l′ = lx + ly + lz − (l′x + l′y + l′z), and ~l! = lx!ly!lz!.

As previously mentioned, M̂ is non-Hermitian. Therefore, it becomes

necessary to introduce a biorthogonal set of operators in order to diagonalize

M̂ :

f †R(k) =
∑

l

vR
l (k)e†l , (3.21)

and

fL(k) =
∑

l

v̄L
l (k)el, (3.22)

where vR
l (k) and v̄L

l (k) are the right and the left (complex conjugate) eigen-

vectors of M̂ , i.e.

∑
j

Mijv
R
j (k) = λkv

R
i (k) (3.23)

∑
j

v̄L
j (k)Mji = λkv̄

L
i (k), (3.24)

where λk are the corresponding eigenvalues. Using this set of biorthogonal



3.3. BAR expansion 43

operators the matrix M̂ becomes

M̂ =
∑
k

λkf
†
RfL. (3.25)

The biorthogonal operators fulfill the commutation rules:

[fL(k), fR(k′)] =
[
f †L(k), f †R(k′)

]
= 0, (3.26)[

fR(k), f †L(k′)
]

=
[
f †R(k), fL(k)

]
= δk,k′ , (3.27)

[fL(k),M ] = λkfL(k). (3.28)

Writing the transition probabilities, A0, and A1 in terms of the biorthogo-

nal operators, using e†l =
∑

k v̄
†
l (k)f

†
R(k) and el =

∑
k v

R
l (k)fL(k), and apply-

ing eM̂τfL(k)e−M̂τ = eλkτfL(k) and eM̂τf †R(k)e−M̂τ = eλkτf †R(k), we obtain:

〈ψ(0,s)
f |g†0elA1(t)|ψj

0〉 =

−
√
Ns + 1

∑
a,a′

αa0sa′
∑
k.k′

vR
l (k)v̄L

a′(k′)v̄L
j (k′)

e−λk′ t − e−λkt

λk − λk′
(3.29)

and

〈ψ(0,s)
f |g†melA0(t)|ψj

0〉 = δs,m
√
Ns + 1

∑
k

vR
l (k)v̄L

j (k)e−λkt. (3.30)

Applying this two Eqs. (3.29 and 3.30) we finally obtain for the transition

probability for the final state in which the number of condensed atoms does

not change:

〈PN0〉 = P
(C1)
N0

+ P
(C2)
N0

+ P
(C3)
N0

, (3.31)

where

P
(C1)
N0

=
1

2πN0

∑
s

ds(Ns + 1)
∑
j

Dj4π
∑
ll̃

αr
l̃00l

∑
kk′

∑
k̃k̃′

Dsj
lkk′(D

sj

l̃k̃k̃′)
∗

×
λk′ + λk + λ∗

k̃′ + λ∗
k̃

(λk′ + λ∗
k̃′)(λk′ + λ∗

k̃
)(λk + λ∗

k̃′)(λk + λ∗
k̃
)
, (3.32)
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P
(C2)
N0

=
1

2πN0

∑
s

ds(Ns+1)
∑
j

Dj4π
∑
ll̃

αr
l̃ssl

∑
k,k̃

vR
l (k)v̄L

j (k)v̄R
l̃
vL

j (k̃)

λk + λ∗
k̃

, (3.33)

and

P
(C3)
N0

=
1

2πN0

∑
s

ds(Ns + 1)
∑
j

Dj−2<

4π
∑
l,l̃

∑
k,k′

∑
k̃

αl̃s0l

Dsj
lkk′ v̄R

l̃
(k̃)vL

j (k̃)

(λk′ + λ∗
k̃
)(λk + λ∗

k̃
)


 , (3.34)

where ds = [exp[ωg
s/KBTg] − 1] is the Bose-Einstein distribution in the

ground-state trap, Dj is the Maxwell-Boltzmann distribution in the excited-

state trap at a given temperature Te, and

Dsj
lkk′ =

∑
aa′
αa0sa′vR

l (k)v̄L
a (k)vR

a′(k′)v̄L
j (k′). (3.35)

In the same way we obtain the transition probability into a final state in

which the number of condensed atoms increases to N0 + 2:

PN0+2 =
1

2πN0

∑
s

dsNs

∑
j

Dj4π
∑
ll̃

αr
l̃00l

∑
kk′

∑
k̃k̃′

D̃sj
lkk′(D̃

sj

l̃k̃k̃′)
∗

×
λk′ + λk + λ∗

k̃′ + λ∗
k̃

(λk′ + λ∗
k̃′)(λk′ + λ∗

k̃
)(λk + λ∗

k̃′)(λk + λ∗
k̃
)
, (3.36)

where

D̃sj
lkk′ =

∑
aa′
αas0a′vR

l (k)v̄L
a (k)vR

a′(k′)v̄L
j (k′). (3.37)

3.4 Numerical Results

In order to evaluate Eqs. (3.31) and (3.36), one needs to calculate the eigen-

vectors and eigenvalues. Additionally, we note that the α coefficients con-

stitute a 12 dimensional tensor, and that in order to evaluate every compo-

nent, it is necessary to calculate the Frank–Condon factors for each possible

excited-ground transition, and to perform the non–trivial task of calculating

the Cauchy principal part integral appearing in the imaginary part of the α
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coefficients [13]. Such strong technical difficulties make eventually impossible

to solve in a reasonable computational time, 3D systems with more than 4

excited–state shells (20 levels), and therefore we have been constrained by

such limit.

We have analyzed the case of different number of energy shells of the

|e〉 and |g〉 trap, for different temperatures and different number of atoms.

For each case, we have calculated the probabilities (3.31),(3.36), in order to

evaluate the new relative number of condensed atoms n′. For the particular

case of a single level in the excited state trap, results similar to those obtained

in Ref. [13] were obtained. Figure 3.2 shows for different temperatures of the

excited and ground trap, the case of 4 shells (20 levels) in the |e〉 trap, 10

shells (220 levels) in the |g〉 trap, N = 7 × 104 atoms, and a Lamb–Dicke

parameter η2 = ωr/ω = 2, where ωr is the recoil energy of the scattered

photon. One can observe that for certain temperatures Te and Tg of the

|e〉 and |g〉 traps, the change in the relative number of condensed particles,

n′ − n is maximally positive, i.e. at these maxima the reabsorption effects

help in the most efficient way to load the condensate. Away from such

maxima, n′ − n is positive for low temperature Te of the excited state trap

and not very low temperatures Tg of the |g〉. For very low Tg, however, the

positive processes described by PN0+2 tend to vanish, since the number of

non–condensed atoms which eventually could be repumped to the condensate

becomes very small. On the top of Fig. 3.2, such regions are those enclosed

by the contours. Out of these regions, n′ − n becomes negative, i.e. the

reabsorption tends to decrease the condensation relative number. In all our

calculations the BAR expansion has been proved to be valid, by checking the

condition PN0 , PN0+2 � 1. We have in general observed that the BAR can

fail not only for large Tg, as expected from Ref. [13], but eventually also, for

a given total number of atoms N , for large Te at the n′ − n maxima. The

latter is due to the large values of the imaginary part of the α coefficients at

those peaks under such conditions, which invalid the expansion performed to

obtain Eqs. (3.15) and (3.16). In the presented example, the condition above

is fulfilled except for the maxima in the region kBTe > ω and kBTg > 50ω.

As discussed in Ref. [13], the phenomenon behind the positive effects of
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the reabsorption (n′ − n > 0) cannot be explained by using (classical) rate

equations, since it is given by the interference between the different paths

which lead to the same final state. In particular, it becomes decisive that

the interference term in Eq. (3.16) is always destructive, since the process of

Fig. 3.1(b) includes an additional absorption–emission cycle (which gives a

minus sign in the amplitude, like for a 2π–laser pulse). The consequence of

this interference is that PN0 decreases, which favors that the excited atom

goes to the state |N0 + 1〉, and therefore it contributes to an increase of the

proportion of condensed atoms.

0.5
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Figure 3.2: Change of the condensate fraction after a decay process as a
function of the temperature Te of the |e〉–trap and Tg of the |g〉–trap, the
latter in exponential scale. The case of a total number of atoms N = 7×104,
10 energy shells in the |g〉–trap, 4 energy shells in the |e〉–trap and η2 = 2
is considered. On the top of the figure, the regions enclosed by the contours
denote those temperatures for which the condensate fraction increases during
the decay process

We have numerically simulated the pumping of atoms into a BEC in the

|g〉 trap, under the BAR conditions. In our calculations, we have assumed

that the collisions act on a shorter time scale than the spontaneous optical

pumping. In that case, collisions will provide a fast thermalization mech-

anism of the |g〉 trap, between the two pump acts. After each pumping

process we calculate the new condensate fraction, and accordingly the new

Tg, which we employ to evaluate the next pumping, and so on. In Fig. 3.3
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we analyze the same trap as in Fig. 3.2, for kBTe = ω, and an initial number

of trapped atoms N = 5 × 104, for initial N0/N = 0.9, 0.98 and 0.99. One

can observe that the positive effects of the reabsorption in the BAR regime

allow to increase the condensate fraction during the pumping process, up to

almost complete condensation. However, as pointed out previously, for very

low Tg the positive effects of BAR vanish. This explains the fact that the

N0/N is slightly lower than 1, as well as the fact that for initial N0/N = 0.99

the condensate fraction initially decreases.

N
/ N

0

0.5 1.0 1.5 2.0

0.90

0.95

1.00

0.85
0

injected atoms (x 10 )5

Figure 3.3: Mean condensate fraction as a function of the number of loaded
atoms, for the case of 10 energy shells in the |g〉–trap, 4 energy shells in the
|e〉–trap and η2 = 2, and an initial total number of atoms N = 5 × 104.
From top to bottom, the curves represent, respectively, the case of an initial
number of condensed particles N0 = 49632, 48828 and 45211.

3.5 Conclusion

In this chapter we have extended the results presented in Ref. [13] for a much

more general 3D situation, in which the excited state atoms can occupy more

than one trapped state. We have shown that under the appropriate condi-

tions, the BAR expansion is still valid for this more general case, and that

the reabsorptions can play a positive role in the loading of the condensate.
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Such effect is a consequence of the always destructive interference between

the processes which tend to lower the condensate fraction. The generalized

treatment shows that the BAR condition presented in [13] is not enough to

guarantee the BAR expansion, since for more than one excited–trap level,

the temperature of such trap is also important, and must be kept sufficiently

low. Although for complexity reasons we have not analyzed the situation in

which the trap levels are distorted by the mean field provided by the atom–

atom collisions, we must stress that similar analysis could be applied also if

the atom–atom collisions modify the levels, if instead of the bare trap levels,

self–consistent levels were considered, as in Ref.[82]. Therefore, under the

BAR conditions, i.e. large condensation, the reabsorption processes favor

the optical pumping of atoms via spontaneous emission into a BEC. Such

a quantum effect is of fundamental interest, and as discussed in the intro-

duction of this thesis, can be important when considering the repairing of

condensate losses, and the achievement of a continuously–loaded atom laser.



Chapter 4

Optical loading in the

Branching-Ratio Expansion

4.1 Introduction

In this chapter, we concentrate on the continuous optical pumping into a

BEC in three-level atoms. In the first part of the chapter we present a new

scenario in which the reabsorption is suppressed, in much less restrictive con-

ditions as those discussed in the introduction to this thesis for the Festina

Lente regime. In this scenario, an atom possesses an accessible three level Λ

scheme, in which one of the atomic transitions decays much faster than the

other. By employing Master Equation (ME) techniques, we show that pho-

ton reabsorptions in the slow transition are largely suppressed because the

respective coherences are destroyed due to the decay via the fast transition.

Since the ”bad” reabsorptions are not present, this scheme can be employed

to continuously pump atoms into the lower level of the slower transition.

In the second part of the paper we analyze the dynamics of such pump-

ing in the presence of atom–atom collisions, and show that the combination

of elastic collisions (evaporative cooling), and bosonic enhancement of the

spontaneous emission, can create a condensate, and refill it in the presence

of outcoupling or losses. Therefore, this scheme could be considered as a

possible way towards a continuously loaded atom laser. As a possible exper-

49
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imental realization we consider laser-cooled Chromium, but the ideas can be

generalized to any atom that provides an asymmetric three–level system.

The structure of the chapter is as follows. In Sec. 4.2 we introduce the

physical model, as well as the quantum ME that determines the loading dy-

namics. In Sec. 4.3 we introduce the so–called Branching Ratio Expansion

(BRE), which allows us to analyze the hierarchy of processes which occur

in the system. In Sec. 4.4 we analyze in detail the suppression of the re-

absorption effects. Sec. 4.5 is devoted to the treatment of the atom–atom

collisions. In Sec. 4.6 we present the numerical Monte Carlo results of the

loading dynamics. Finally, we summarize some conclusions in Sec. 4.7.

4.2 Model

We consider a set of atoms with an accessible three level Λ system (see

Fig. 4.1), formed by the levels |r〉, |e〉 and |g〉. The atoms are trapped in an

isotropic harmonic trap which, depending of the internal state of the atoms,

has frequencies ωr, ωe and ωg, respectively. This could be, for instance, the

Ω γer

γeg

|e>

|g>

|r>

Figure 4.1: Atomic scheme considered throughout the paper.

case of Chromium 52Cr, in which the electronic levels would be 7S3,
7P4, and

5D4, respectively. The transition |r〉 ↔ |e〉 is assumed to be driven by a

laser, which has a Rabi frequency Ω. The spontaneous emission frequencies

associated with the transitions |r〉 ↔ |e〉 and |g〉 ↔ |e〉 are, respectively,

γer and γeg, such that γer � γeg. In the case of 52Cr, γer = 2π × 5MHz

� γeg = 2π × 30Hz. The branching ratio ε ≡ γeg/γer is therefore very small
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(∼ 10−5 in 52Cr). The fact that ε � 1, will lead to the suppression of the

reabsorption of scattered photons. In this section, we shall not consider the

collisions between the atoms in the |g〉 state. Such collisions are introduced in

our formalism in the weak-condensation regime in Sec. 4.5. For a discussion

of the collisional effects in the Thomas-Fermi regime we refer to chapter 5.

In the following we consider h̄ = c = 1 for simplicity. Let us introduce

the annihilation and creation operators of atoms in the |r〉, |e〉 and |g〉 states

and in the trap levels s, l, and m which we shall call rs, r
†
s, el, e

†
l , and gm, g

†
m.

These operators fulfill the standard bosonic commutation relations.

The Hamiltonian which describes the coupling of the system of bosons

to the laser field, as well as to the vacuum electromagnetic modes is of the

form:

Ĥ = Ĥ0 + Ĥer + Ĥer
af + Ĥeg

af + Ĥf . (4.1)

This Hamiltonian presents the following terms:

• Free atomic Hamiltonian (describing internal and center–of–mass de-

grees of freedom):

Ĥ0 =
∑
s

ωr
sr

†
srs +

∑
l

(ωe
l + ω0)e

†
l el +

∑
s

ωg
mg

†
mgm, (4.2)

with ωr
s , ω

e
l and ωg

m, denoting the energies of the level s of the |r〉 trap,

the level l of the |e〉 trap, and the level m of the |g〉 trap, respectively.

ω0 is the transition frequency between |r〉 and |e〉.

• Interactions of the laser quasi resonant with the transition |r〉 ↔ |e〉:

Her =
Ω

2

∑
l,s

ηl,se
−iωLte†l rs + h.c., (4.3)

where ηl,s is the Frank–Condon factor which describes the transition

between a level s of the |r〉 trap, and a level l of the |e〉 trap, and ωL is

the frequency of the applied laser.
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• Spontaneous emission processes |e〉 → |r〉:

Ĥer
af = −i

∑
l,s

∑
µ

∫
d3~k

√
k

2ε0(2π)3
(~der ·~ε~kµ)×ηls(~k)e

†
l rsa~kµ +h.c., (4.4)

where where a~kµ, a†~kµ
are the annihilation and the creation operators of

a vacuum photon characterized by a wavevector ~k and a polarization

µ, with polarization vector ~ε~kµ; ~der is the dipole vector of the transition

|r〉 ↔ |e〉.

• Spontaneous emission |e〉 → |g〉:

Ĥeg
af = −i

∑
l,m

∑
µ

∫
d3~k

√
k

2ε0(2π)3
(~deg ·~ε~kµ)×ηlm(~k)e†l gma~kµ+h.c., (4.5)

where deg is the dipole vector of the transition |g〉 ↔ |e〉.

• Free Hamiltonian of the electromagnetic (EM) field

Ĥf =
∑
µ

∫
d3~kka~kµ. (4.6)

Starting from the Hamiltonian (4.1), one can trace the full density matrix of

the system over the vacuum modes of the EM field. Using standard methods

of quantum stochastic processes [83, 84, 85], one can derive then the Quan-

tum ME in Born–Markov approximation [86] (see App. A). In principle such

ME fully describes all the processes which happen in the system, including

eventual reabsorptions in the fast transition |e〉 → |r〉. However, for sim-

plicity of the analysis we shall consider the case in which we can neglect the

reabsorption phenomena for the reservoir atoms (|e〉 and |r〉). Although what

follows is true also in presence of those reabsorptions, the approximation will

allow us to concentrate on the much simpler problem of the pumping of a

single atom from the reservoir {|e〉, |r〉} into the |g〉 trap, where of course,

collective phenomena are important, and therefore taken into account. In
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this case, the ME takes the form

ρ̇ = −iHeffρ+ iρHeff + J ρ, (4.7)

where ρ is the density matrix, Heff = H
(0)
eff + H

(1)
eff and J = J (0) + J (1),

with

H
(0)
eff =

∑
s

ωr
sr

†
srs +

∑
l

(ωe
l − δ − iγer)e

†
l el +

∑
s

ωg
mg

†
mgm +Her, (4.8)

H
(1)
eff = −iγeg

∑
l,m

∑
l′,m′

αlmm′l′e
†
l gmg

†
m′el′ , (4.9)

J (0)ρ = 2γer

∑
l,s

∑
l′,s′

βR
lss′l′r

†
s′el′ρe

†
l rs, (4.10)

J (1)ρ = 2γeg

∑
l,m

∑
l′,m′

αR
lmm′l′g

†
m′el′ρe

†
l gm. (4.11)

Here δ = ωL − ω0 is the detuning,

Her =
Ω

2

∑
l,s

ηl,se
†
l rs +H.c., (4.12)

whereas αlss′l′ = αR
lss′l′ + iαI

lss′l′ , and βlmm′l′ = βR
lmm′l′ + iβI

lmm′l′ , with

αR
lmm′l′(k

eg
0 ) =

∫
dk̂W(k̂)ηls(k

eg
0 k̂)η

∗
l′m′(k

eg
0 k̂), (4.13)

αI
lmm′l′(k

eg
0 ) = − 1

π
P
∫ ∞

−∞
dξ

ξ3

ξ − 1
αR

lmm′l′(ξk
eg
0 ). (4.14)

In the previous equations k̂ indicates the solid angle coordinates, W(k̂)

represents the dipole pattern of the spontaneous emission, keg
0 is the wave

number associated with the transition |g〉 ↔ |e〉, and P denotes the Cauchy

Principal part. Finally, βR
lss′l′ has an identical form as αR

lmm′l′ , but for the

transition |r〉 ↔ |e〉.
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4.3 Branching Ratio Expansion

In this section we shall show that if ε � 1, the reabsorption effects on the

slow transition can be safely neglected, because they occur with a probability

1/ε times smaller than the spontaneous emission processes |e〉 → |g〉 without

any reabsorption. In order to demonstrate that, we shall perform the analysis

of the different processes that could happen in the system.

We shall consider the situation in which some atoms are already accumu-

lated in the level |g〉 at the time t0 at which a single atom is being pumped

from the level |r〉 to the level |e〉. This atom undergoes then spontaneous

emission, having two different possibilities. First, it may undergo a transition

|e〉 → |r〉, and the emitted photon will then leave the system (we assume no

reabsorptions at |e〉 ↔ |r〉 line due to the low density of |r〉 atoms). Sec-

ond, the excited atom may undergo a transition |e〉 → |g〉. We allow for

the possibility that the emitted photon in this process may be reabsorbed

several times, until it leaves the system or until the emission |e〉 → |r〉 will

take place. We shall analyze the hierarchy of possible processes which can

be produced on the time scale of the above described processes. We shall

assume that no other atom is pumped from the level |r〉 to |e〉 within this

time scale. Technically, this approximation means that we exclude the pos-

sibility of multiple quantum jumps from |e〉 to |r〉, i.e. we assume that the

whole process consists of the sequence of processes, each involving an atom

being pumped from |r〉 to |e〉, which then undergoes spontaneous emission

processes (including reabsorptions) until it either lands on the level |r〉 or

|g〉, after which another atom is being pumped from |r〉 to |e〉, and so on.

This approximation is performed here just for reasons of technical sim-

plicity, but we want to stress that:

• The approximation describes well the experimental situation with 52Cr

atoms in which the Rabi frequency Ω < γer. The pumping process

has thus indeed an incoherent character, consisting in a sequence of

jumps |e〉 → |r〉 followed by spontaneous emission events. Of course,

it may happen that several atoms are being excited simultaneously to

|e〉. Each of them, however, behaves independently of the others, so



4.3. Branching Ratio Expansion 55

that the analysis pertaining to just one excited atom is valid.

• The result obtained below is indeed more general, because at any time

scale the hierarchy of probabilities is maintained. The latter statement

means that our results hold also for Ω > γer. This can be at best

understood using a dressed–state picture with respect to the |e〉 ↔ |r〉
transition. In the limit Ω � γer the dynamics reduces to a situation

in which a single atom is being pumped to one of the dressed states

|+〉 (|−〉), and undergoes spontaneous emission consisting in arbitrary

number of incoherent |+〉 → |+〉 (|−〉 → |−〉) transitions, ending either

in |g〉, or in |−〉 (|+〉). This process is followed by an arrival of another

atom in the state |+〉 (|−〉), followed by successful spontaneous emis-

sion, etc. Each one of these steps can be understood with the model

presented below.

The formal solution of the ME (4.7) after a photon escapes from the system

is given by:

ρ∞ =
∫ ∞

0
dtJ {e−iLeff tρ}. (4.15)

We have used in the expression (4.15) the shortened notation

Leffρ = −iHeffρ+ iρH†
eff . (4.16)

In the following we shall denote L(0)
effρ = −iH(0)

effρ+iρH
(0)
eff , L

(1)
effρ = −iH(1)

effρ+

iρH
(1)
eff . Since γeg � γer,Ω, we are going to perform an expansion in the

branching ratio ε. We consider an initial state of the system given by

|ψ0〉 = |ψg
0〉 ⊗ |ψ

e,r
0 〉, with |ψg

0〉 = |N0, N1, . . . , Nm, . . .〉, with Nm denoting

the initial population of the m-th state of the |g〉 trap. |ψe,r
0 〉 denotes the

initial state of the |r〉 and |e〉 traps. We are interested in the probability to

obtain a final state |ψf〉 = |ψg
f〉 ⊗ |ψ

e,r
f 〉.

The branching ratio expansion must take into account the bosonic en-

hancement effects. Due to the bosonic enhancement, and the fact that we

consider that the ground state of the |g〉 can be macroscopically populated,

the expansion must be done in the parameter εN0, and not only in ε. Never-

theless, we expect that the expansion and the conclusions that we draw from
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it will remain valid until εN0 ' 1/2. To use this expansion in the considered

experimental situation we have to limit ourselves to the case of N0 ≤ 105/2.

That means, however, that the expansion can nevertheless be safely used

during the onset of the condensation, and the dangerous reabsorptions can

be neglected in that regime. The situation in which εN0 � 1 requires the

treatment of higher order terms in the expansion, but does not mean that

in such a case the reabsorptions will cause troubles. In the case when very

many atoms are already condensed, the dynamics is dominated by bosonic

statistical effects. The use of similar ideas and techniques as those employed

in the previous chapter for the BAR [13] should be then possible.

Employing standard methods of time–dependent perturbation theory in

the small parameter εN0 we obtain:

〈ψf |ρ∞|ψf〉 = A0 + A1 + A2 +O((εN0)
3), (4.17)

where Aj is the term of order O((εN0)
j). Let us now analyze step by step

each of the terms of the branching ratio expansion (BRE):

4.3.1 Zeroth Order

The zeroth order term is of the form:

A0 = 〈ψf |
∫ ∞

0
dtJ (0){eL

(0)
eff

tρ0}|ψf〉, (4.18)

This process is by far the most probable one, and implies an spontaneous

emission into the |r〉 state These processes (and the subsequent repumping

by the laser) induce a thermal distribution of the |e〉 and |r〉 traps, and do

not affect directly the populations of the |g〉 trap.

4.3.2 First Order

The first order term of the BRE is of the form A1 = A1a + A1b, where

A1a = 〈ψf |
∫ ∞

0
dtJ (1){eL

(0)
eff

tρ0}|ψf〉, (4.19)
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|g,0>

|e>

Figure 4.2: Scheme of the process of first BRE order A1a, whereas the dashed
line represents the photon which is spontaneously emitted and further reab-
sorbed.

A1b = 〈ψf |
∫ ∞

0
dtJ (0)

{∫ t

0
dt′eL

(0)
eff

(t−t′)
{
L(1)

eff

{
eL

(0)
eff

t′ρ0

}}}
|ψf〉. (4.20)

A1a corresponds to the case in which an atom in the state |e〉 decays (without

any further reabsorption) into a state of the |g〉 trap (see Fig. 4.2). A1b

is given by the interference of two different process: a process like the one

considered in the zeroth order, and a process in which (i) a decay is produced

into some state of the |g〉 trap, (ii) a subsequent reabsorption is produced

from the same state of the |g〉 trap, and finally a process as that of the zeroth

order is produced. The processes described by A1b, although containing

reabsorptions, do not change the population distribution of the |g〉 trap, and

can be considered as small quantitative corrections to the zeroth order term.

4.3.3 Second Order

The second order term of the BRE is of the form A2 = A2a + A2b, with

A2a = 〈ψf |
∫ ∞

0
dtJ (0)

∫ t

0
dt′eL

(0)
eff

(t−t′){
L(1)

eff

{∫ t′

0
dt′′eL

(0)
eff

(t′−t′′)
{
L(1)

eff

{
eL

(0)
eff

t′ρ0

}}}}
|ψf〉 (4.21)

A2b = 〈ψf |
∫ ∞

0
dtJ (1)

{∫ t

0
dt′eL

(0)
eff

(t−t′)
{
L(1)

eff

{
eL

(0)
eff

t′ρ0

}}}
|ψf〉. (4.22)
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|g,n>

(a)

|e>

|g,0>

|g,n>

(b)

|e>

|g,0>

Figure 4.3: (a) and (b) represent respectively the negative and positive reab-
sorption effects which appear in the second BRE order processes A2a, whereas
the dashed line represents the photon which is spontaneously emitted and
further reabsorbed.

Let us consider the term A2a. This term involves processes in which an atom

originally in some state of the |e〉 trap, decays into some state m of the |g〉
trap, producing an spontaneously emitted photon, which is reabsorbed by

other atom in some other state n 6= m of the |g〉 trap. These processes are

of order ε2, except the case in which n = 0 or m = 0 (Figs.4.3(a) and (b));

in such a case, if the system is already condensed, the probability associ-

ated with these processes is of order ε2N0. We must note that the process

of Fig. 4.3(a) introduces a negative effect of the photon reabsorption in our

system, because produces a non–condensed atom, while destroys an already

condensed one (of course the opposite process of Fig. 4.3(b) corresponds to

positive effects, and is of the same order). The term A2b is due to the in-

terference effects between the process considered in A1a and the processes of

Figs.4.4(a) and (b). These process do not cause any negative or positive ef-

fects of the reabsorption, and simply introduce small quantitative corrections

to A1a.

As observed, the “bad” reabsorption processes which change the |g〉 trap

population distribution (i.e. may lead to undesired heating) are of order

ε2N0, and therefore are 1/ε times less probable than the single spontaneous

emission into the |g〉 trap without any reabsorption. Hence, the reabsorption

effects can be safely neglected, i.e. the atoms in the |g〉 trap can be consid-

ered as transparent for the spontaneously emitted photons on the |e〉 → |g〉
transition. We shall show in Sec. 4.6 that this effect can be used to optically
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(a)

|e>

|g,0>

|g,n>

(b)

|e>

|g,n>

|g,0>

Figure 4.4: The interference between the processes of Fig. 4.2, and (a,b)
constitutes the term A2b of the second order of the BRE.

pump atoms from the reservoir {|r〉, |e〉} into the |g〉 trap, and eventually

into a condensate created in it.

4.4 Suppression of the reabsorption effects

In this section we analyze in detail the physical effect behind the decreasing of

the reabsorption probability in the considered system. The physical picture

can be understood by taking a closer look to the expression (4.21) which,

after eliminating the terms which do not change the populations of the |g〉
trap, takes the form

∫ ∞

0
dt
∫ t

0
dt′
∫ t′

0
dt′′〈ψf |J (0) =

{|ψ(t; t′)〉〈ψ(t; t′′)|+ |ψ(t; t′′)〉〈ψ(t; t′)|)} |ψf〉, (4.23)

where

|ψ(t; t′)〉 = e−iH
(0)
eff

(t−t′)H
(1)
effe

−iH
(0)
eff

t′|ψ0〉. (4.24)

Therefore, the process can be divided into three parts: (i) From time 0 to

some t′, the system evolves following the effective Hamiltonian H
(0)
eff ; (ii) At

t′ a spontaneous emission occurs from |e〉 to |g〉, followed by a reabsorption;

(iii) The system undergoes after t′ the same dynamics as in the part (i), until

time t where a jump J (0) is produced into the |r〉 state.

As observed in the expression (4.23), the term A2a depends on the cor-

relation of the amplitudes of probability of two processes (i–iii) in which (ii)
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is produced at two different times, t′ and t′′ < t′. In the interval t′′ to t′ a

jump into |r〉 is produced with large probability, and therefore the probability

amplitude is reduced, roughly speaking, by a factor exp(−γer(t
′−t′′)). There-

fore, the correlation decays very rapidly (in comparison with γ−1
eg ) with the

time difference t′− t′′. This leads to the strong reduction of the reabsorption

probability.

A very intuitive picture of the underlying physics in 3-level atoms can be

obtained in the following way: The reabsorption on the |g〉 to |e〉 transition

has an oscillator strength γeg. However the excited state coherence is rapidly

destroyed due to the decay of state |e〉 to |r〉, with a rate γer. Therefore the

absorption line width on the |g〉 to |e〉 transition is dominated by γer. Similar

to other broadening mechanisms the effective reabsorption cross section is

reduced by a factor ε = γer/γeg. The atomic sample can be ε-fold more

dense than in the normal two level case before it becomes optically thick and

reabsorption becomes a relevant process.

It is perhaps interesting to mention here the differences and similarities

with the Festina Lente regime [32], which, as discussed in the introduction

to this Thesis, constitutes a known way to avoid the reabsorption problem.

As pointed out previously, the reabsorption probability is determined (as

already shown in [32]) by the correlation at different times of the amplitude of

reabsorption probability. In the case considered in [32], the correlation decays

with the same frequency Γ as the spontaneous emission frequency of the

system, and therefore the probability of decay plus reabsorption is that of the

decay without further reabsorption (multiplied by some geometrical factor,

specially important in the so–called free–space limit [32]). In the case of the

Festina Lente regime (Γ � ω) [32] the reabsorptions which do not preserve

the energy are suppressed due to a different reason than that considered in

the present paper. In the Festina Lente conditions the interference terms in

the amplitude of probability of “bad” reabsorptions at different times have a

phase which rapidly oscillates in time; therefore, the time integration leads

to a strong reduction of the reabsorption probability (by the small factor

Γ/ω). In this sense, therefore, the Festina Lente Regime can be understood

in terms of an expansion similar to the BRE. The case considered in this
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paper is, however, different. The spontaneous emission rate γeg is now a

factor ε smaller than the rate of decay of the correlation, given by γer. This

explains why the reabsorption is a factor ε less probable than a decay without

reabsorption.

As a final remark, let us point out that the BRE does not necessarily

imply small spontaneous emission rates (γeg < ω), as it was the case of

Festina Lente, but just the relative condition γeg � γer. In particular, γeg

could be larger (or even much larger) than the trap frequency. Therefore,

in principle, the atoms could be pumped into the |g〉 trap much faster than

in the Festina Lente limit. This is of special interest when considering a

sufficiently fast continuous loading of a condensate.

4.5 Collisions

In this section we introduce the collisions between atoms in the |g〉 trap.

In particular, no collision is considered between the atoms in the |g〉 trap,

and those in the |e〉 and |r〉 trap. Such approximation is valid assuming

the situation in which the reservoir atoms are at much larger temperature

and lower densities than those atoms in the |g〉 trap. Since we shall con-

sider a |g〉 trap of a finite depth, the eventual collisions with the relatively

much hotter reservoir atoms would lead to losses in the |g〉 trap, and even-

tually to a depopulation of the condensate created in it. Since we consider a

loss mechanism from the condensate anyway (Sec. 4.6) such collisional losses

could be easily taken into account phenomenologically in our simulations as

an effective outcoupling rate.

The effects of the elastic collisions within the |g〉 trap are accounted by a

new term in the Hamiltonian (4.1):

Ĥcoll =
∑

m1,m2,m3,m4

1

2
Um1,m2,m3,m4g

†
m4
g†m3

gm2gm1 . (4.25)

In the regime we want to study, only the s–wave scattering is important, and
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then:

Um1,m2,m3,m4 =
4πh̄2a

m

∫
R3
d3x ψ∗m4

ψ∗m3
ψm2ψm1 , (4.26)

where ψmj
denotes the harmonic oscillator wavefunctions and a denotes the

scattering length.

In the following we are going to work in the so-called weak-condensation

regime, where no mean–field effects are considered. This means that we

consider that the mean–field energy provided by the collisions is smaller than

the oscillator energy. Therefore the model is only valid to describe either the

onset of the condensation, or the full condensation but with the constraint

that the condensate cannot contain more than, say 500-1000 particles. A

realistic calculation of the dynamics beyond the weak-condensation regime

requires the self-consistent calculation of the atomic states, which due to

mean-field effects change during the dynamics, and it will be the subject of

chapter 5. In this chapter we concentrate in the weak-condensation regime,

where one can apply the formalism of Quantum–Boltzmann Master Equation

(QBME) [87, 52] to treat the collisional effects. By using similar arguments

as those employed in the context of collective laser cooling in the presence of

atomic collisions in the weak–condensation regime [80], one can show that the

ME which describes in this regime the loading dynamics from the reservoir

{|e〉, |r〉} to the |g〉 can be divided into two independent parts:

ρ̇(t) = Lcollρ(t) + Lloadρ(t) (4.27)

where Lloadρ(t) is the rhs of Eq. (4.7), and Lcoll describes the collisions, and

has the form of a QBME as that described in Refs. [87, 52].

Summarizing, the dynamics of the system splits into two parts, (i) col-

lisional part, described by a QBME, and (ii) loading part, described by

the same ME (4.7) as without collisions. The independence of both dy-

namics, constitutes the main technical advantage of considering the weak–

condensation regime, and allows for an easy simulation of the loading process

in the presence of |g〉-|g〉 collisions. In particular, we simulate both dynamics

using Monte Carlo methods, combining the numerical method of Ref.[52],

with simulations similar as those already presented in Refs. [86].
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The numerical simulation of the collisional dynamics for a three–dimensional

harmonic trap is demanding, due to both the degeneracy of the levels, and

the difficulties to obtain reliable values for the integrals U(n1, n2, n3, n4).

Therefore, we shall limit ourselves to the use of the ergodic approximation

[88, 52], i.e. we shall assume that states with the same energy are equally

populated. The populations of the degenerate energy levels equalize on a

time scale much faster than the collisions between levels of different energies,

and than the loading typical time. Following Ref. [88] the probability of a

collision of two atoms in energy shells m1 and m2, to give two atoms in shells

m3 and m4 (where this collision is assumed to change the energy distribution

function), is of the form:

P (m1,m2 → m3,m4) = ∆(mj + 1)(mj + 2)× (4.28)

Nm1(Nm2 − δm2,m1)(Nm3 + gm3)(Nm4 + gm4 + δm3,m4)

gm1gm2gm3gm4

,

where gmk
= (mk + 1)(mk + 2)/2 is the degeneracy of the energy shell mk,

mj = min{m1,m2,m3,m4}, and ∆ = (4a2ω2
gm)/(πh̄). In the following we

shall use for the calculations the mass of 52Cr. We shall adopt a scattering

length a = 6 nm (similar to that of Rubidium). We shall consider a trap

frequency ωg = 2π × 1kHz.

4.6 Numerical Results

In this section we consider two different physical problems. First, we shall

show that under appropriate conditions it is possible to load an initially

empty trap for atoms in the state |g〉 via spontaneous emission from a thermal

reservoir of particles |e〉. This allows to achieve the condensation in the trap

|g〉 in a finite time, which depends on the physical parameters. Secondly, we

shall show that in presence of an outcoupling (or, as discussed in Sec. 4.5, in

presence of trap losses) it is possible to maintain the condensate population

by refilling the condensate via the spontaneous emission from the thermal

cloud.
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The zero order term of the BRE corresponds to the fastest transition,

but does not affect directly the loading process. Here we shall concentrate

on the process provided by A1a, i.e. the spontaneous emission |e〉 → |g〉. The

loading rate of a state |g, n〉 from a state |e, l〉 is therefore given by

Γ(l, n) = 2γeg

∫
dk̂W(k̂)|〈n|ei~k~r|l〉|2(Nn + 1). (4.29)

Let us assume that Nex atoms are in the level |e〉 with a thermal distribution

of temperature T . The total loading rate into the state |g, n〉 is provided by:

Γ(n) =
∑

l

p(l)Γ(l, n), (4.30)

where p(l) = Nex exp{−h̄ωel̃/kBT}/Z is the thermal distribution, with l̃ =

lx + ly + lz and Z = (1 − exp{−h̄ωe/kBT})−3 is the canonical partition

function. Thus, the loading rate can be rewritten as:

Γ(n) = 2γeg

∫
dk̂W(k̂)

〈n|ei~k~r

∑
l

Nex
e−h̄ωe l̃/kBT

Z
|l〉〈l|

 e−i~k~r|n〉(Nn + 1) (4.31)

Let us consider now the following conditions which greatly simplify the nu-

merical calculation of the loading process. We are going to assume that

ωe < ωg +2ωrec/3, so that there is always at least a state of the excited–state

trap in an interval ±ωrec (with ωrec being the recoil frequency) around any

considered state of the ground–state trap. The ground state trap has a finite

depth, i.e. it possesses a maximal energy shell at h̄ωgmmax
1. Therefore, only

those |e〉 atoms with energies E < h̄ωgmmax + h̄ωrec ≡ Emax can effectively

load the trap. Let us consider that the reservoir has a temperature T such

that kBT � Emax. Under the previous conditions, the expression between

1The large–temperature approximation is assumed since it simplifies the numerical
simulation. Although this approximation has certain physical consequences, we want to
stress that similar effects as the ones discussed in this paper are not only possible for the
case of lower temperatures, but should in principle allow for faster loading. In such a
case, the Frank–Condon factors of the different transitions should be properly calculated
[72, 86]
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the brackets in (4.31) can be safely substituted by 1/Z. Since the previous

conditions also imply h̄ωe � kBT , the loading rate can be rewritten as:

Γ(n) = γeff (Nn + 1) (4.32)

with γeff = 2γegNex(h̄ωe/kBT )3. In other words, if the previous conditions

are satisfied, all the levels of the ground state trap are equally loaded.

In our numerical simulations we consider a |g〉 trap which is cut at an

energy shell mmax = 10–60 (which for ωg = 2π × 1kHz, implies a trap depth

of 0.5–3.0µK). In the simulations we have used a “virtual” trap of mmax +10

energy shells in order to take into account the atoms which do not decay into

the trap, and also to calculate the evaporative cooling dynamics. We have

checked that such chosen “virtual” trap does not affect the physics of the

problem. The levels m > mmax are continuously emptied in the simulations,

and those atoms are considered as lost. We have numerically simulated the

loading dynamics of an initially empty |g〉 trap for different values of the

parameter γeff , mmax and the scattering length. It is worthy to note that

γeff is related to the phase space density of the thermal cloud by the relation

γeff = 2γeg × 5.2nexλ(T )3, being λ(T ) = (2πh̄2/MkBT )1/2 the thermal de

Broglie wavelength, and nex the density in the |e〉 trap. Since the |e〉 atoms

are considered at a temperature far above the critical temperature of the

onset of the condensation, then nexλ(T )3 is necessarily much smaller than

1, restricting the possible range of values that γeff can take. We study

below the dependence of the loading dynamics on γeff . It is also interesting

to point out the limits of the large–temperature approximation, in which all

the levels are equally loaded. If such approximation is valid, for a fixed phase

space density φ, a constraint to the density of the reservoir is introduced by

nex � φ(Mωm̃max/2πh̄)
3/2, with m̃max = mmax + ωrec/ωg. For the case of

52Cr and ωg = 2π×1kHz, this constraint implies n� 7.45φm3/2
max×1011cm−3.

As an example of loading dynamics we show in Fig. 4.5 the case of γeff =

0.01ωg, mmax = 50, and ωg = 2π × 1kHz. For the case of 52Cr, 2γeg =

200s−1, this would imply a phase space density φ = 10−5, and a constraint

nex � 108cm−3 in order to satisfy the large–temperature approximation.
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Figure 4.5: (a) Condensate fraction (N0/N) as a function of time, in units
of the ω−1

g , for the case of γeff = 0.01ωg, a = 6nm and mmax = 50; (b)
Dynamics of N0 for the same situation.

Due to the random character of the process, we have averaged over several

Monte Carlo realizations, in order to obtain smoother curves. Typically the

loading process is characterized by a time scale of the onset of condensation,

after which, as observed in Fig. 4.5, the condensation in the ground–state

of the trap appears. In the case of Fig. 4.5 the onset of the condensation

appears at approximately 3×104ω−1
g , which for ωg = 2π×1kHz would require

t = 4.8s. After a time 105ωg (16s) more than 1000 atoms are condensed with

a condensate fraction of 70%.

Let us discuss the physics behind the presented numerical results. Since

the trap is initially empty, and all the loading rates are equal, the higher

shells of the trap are initially loaded with larger probability, due to their

larger degeneracy. Once a sufficient number of particles is loaded inside the

trap, the collisions produce the evaporation of part of the particles, whereas

part of them are transported via collisions to lower levels of the trap. During

this process the energy per particle is continuously decreased in the trap (see

Fig. 4.6). Finally, the condensation is produced in the ground state. Once

this happens, a new mechanism which reduces the energy per particle in the

trap appears, namely the bosonic enhancement of the spontaneous emission

into the condensate. In effect, the condensate loading becomes faster. When

the number of condensed particles becomes large the QBME equation is



4.6. Numerical Results 67

0 20000 40000 60000 80000 1e+05
0

10

20

30

40

)
E

ne
rg

y 
/ N

 ( 
hω

g

t (1 /  ) ω
  g

Figure 4.6: Evolution of the energy per particle for the same conditions, for
the case of γeff = 0.01ωg, a = 6nm and mmax = 50.

no more valid, as discussed in Sec. 4.5. The mean field effects appearing

beyond the weak condensation should not, however, distort the qualitative

effect of speeding up of the loading rate[82]. It is also worthy to note that

for condensate densities larger than 1015 atoms/cm3 inelastic processes (as

three–body recombination) are expected. Such processes would lead to losses

of condensed atoms, which can be repaired by the continuous loading in a

similar way as described below for the case of atom laser outcoupling. Let us

also note that, eventually, if the number of condensed particles were much

larger than the number of levels in the trap, the system would enter into the

Bosonic Accumulation Regime discussed in the previous chapter, where the

vast majority of the decays were produced into the condensed state.

With this physical picture in mind, it is possible to understand the de-

pendences on the different physical parameters. From the previous discus-

sion it becomes clear the crucial role played by the collisions in the process.

Therefore the larger the collisional probability, the faster the condensation

is achieved. This can be obtained in a two–fold way, (i) by increasing the

scattering length a and/or (ii) by increasing the number of trapped atoms.

Point (i) have been studied in Fig. 4.7 , where we have analyzed the case of

mmax = 50, γeff = 0.01ωg for values of the scattering length ranging from

a = 1.25nm to a = 24nm. As pointed out previously, larger values of the

scattering length produce faster condensation onset. Note, however, that the
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Figure 4.7: Time of onset of the condensation for γeff = 0.01ωg, mmax = 50,
as a function of the scattering length.

time of onset of the condensation reaches a constant value for large scattering

length; this is simply because there is, as pointed above, a time in which the

initially empty trap is being loaded, and in this initial time the collisions play

no significant role. Such initial time depends basically on mmax and γeff , as

pointed out below.

A faster increase of the number of particles in the trap can be achieved

in two different ways:

• Increasing γeff . In Fig. 4.8 we show the example of mmax = 50, and

γ
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Figure 4.8: Time of onset of the condensation for a = 6nm, mmax = 50, as a
function of γeff .

a scattering length a = 6nm, for γeff/ωg ranging between 1 and 0.01.
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As one could expect the onset of the condensation appears faster for

faster loading. In order to achieve a larger γeff , it is necessary either

to increase the phase space density of the thermal cloud, or perhaps

more interestingly to consider experimental situations with bigger γeg.

Note that an increase of γeg by a factor 100 in the case consider above,

still very well satisfies the requirements of the BRE. We should stress

once more at this point that one of the main advantages of the BRE

is the fact that contrary to Festina Lente it is possible to pump with a

frequency larger than that of the loaded trap, without having problems

with the photon reabsorption. Therefore, it could be in principle possi-

ble to consider faster natural transitions, or even controllable quenched

ones. In such cases, a fast onset of the condensation could be possible

for low phase space densities of the reservoir.

• Increasing mmax. In this way the total number of atoms in the trap

becomes larger at any given time. As an example, we have considered

in Fig. 4.9 the case of γeff = 0.01ωg, for mmax = 30 and 60. The
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Figure 4.9: (a) Condensate fraction (N0/N) as a function of time, in units
of ω−1

g , for the case of γeff = 0.01ωg, and a = 6nm, and mmax = 60 (solid)
and 30 (dashed); (b) Dynamics of N0 for the same situation.

increase of the condensate fraction becomes faster for larger mmax, al-

though the onset time remains approximately the same (Fig. 4.9(a)).

The absolute number of condensed atoms is larger for larger values of

mmax (Fig. 4.9(b)), because the total number of atoms is also larger.
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Figure 4.10: (c) Evolution of the energy per particle , for the case of γeff =
0.01ωg, and a = 6nm, and mmax = 60 (solid) and 30 (dashed).

Therefore for practical purposes (e.g. detection) it would be recom-

mendable to use larger mmax. However, we must stress at this point

that a larger mmax needs a larger reservoir density nex if one wants to

remain within the limits of the large–temperature approximation.

We have also analyzed the case in which an already formed condensate is

emptied via outcoupling, and continuously pumped via spontaneous emission

from the thermal reservoir. In our simulations we just consider outcoupling

from the condensate, although similar methods could be employed to simulate

losses affecting the whole trap. We simulate without outcoupling the creation

of a condensate as described above, for the case of γeff = 6.28ωg , and

mmax = 10. For the case of 52Cr, and 2γeg = 200s−1. This represents a quite

large phase space density 6 × 10−3; however, we must again stress that the

BRE allows to work with much larger γeg, and therefore with much lower

phase space densities of the reservoir. At t = 350ms (when N0 ' 950), we

begin the outcoupling. We have analyzed different outcoupling rates γout

(Fig. 4.11) , and monitored the population N0 after 16s. This allows us to

find a critical threshold ξ0 (for this case 1.14) for the ratio ξ = γout/γeff . For

ξ > ξ0 the loading (“gain”) is faster than the outcoupling (“loss”), and the

number of condensate atoms increases with time. For ξ < ξ0, the number of

particles decreases and stabilizes for a lower N0. For ξ � ξ0 no condensate

can be kept.
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Figure 4.11: Number of condensed particles after 16s (after initially loading
an empty |g〉 trap during 350ms) for the case of ω = 2π× 1kHz, mmax = 10,
γeff = 6.28ωg, and different outcoupling rates γout.

It turns out to be important to maintain the population as constant as

possible, for the reasons that we clarify below, and therefore to work in the

regime of ξ = ξ0. It is however not an easy task, due to the stochastic nature

of both, the collisions and the pumping mechanism. In order to stabilize the

noise optimally, i.e. to preserve the population of the condensate as constant

as possible it is useful to introduce a random temporal variation of the out-

coupling rate. Fig. 4.12shows the averaged distribution of population of the

condensate during 40 s of continuous outcoupling, for the case of an outcou-

pling rate γout = (1.17 − f(t))γeff , with 0 < f(t) < 0.05 chosen randomly

from an uniform distribution, and the same conditions as in Fig. 4.11. The

population of the condensate is maintained quasi constant with an average

value of 〈N0〉 = 940, and a variance (〈N2
0 〉 − 〈N0〉2)1/2 = 80. During these

40s, 3 × 105 atoms are extracted from the condensate, with a rate of 7500

atoms/s.

Let us briefly comment about the importance of keeping the population of

the condensate as constant as possible. The mean–field interaction translates

the variations of the condensate population into variations of the energy of the

outcoupled atoms, being the variance of the energy related to the variance of

the condensate density: σ(E) = 4πh̄2aσ(n0)/m. Therefore, the narrower the

population distribution of the condensate, the more ”monochromatic” will

be the atom–laser source, and consequently the larger the coherence time
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Figure 4.12: Condensate population, averaged during 40s for the case of
mmax = 10, γeff = 6.28ωg, ωg = 2π × 1kHz, γout = (1.17 − f(t))γeff , with
0 < f(t) < 0.05 chosen randomly from an uniform distribution.

will be [89]. Let us point out finally, that an additional way to control the

fluctuations of the condensate population could be provided by monitoring

the energy of the outcoupled atoms, which would inform about the variations

of the condensate density. Such information could be used in a feedback loop

to dynamically adapt the outcoupling rate to reduce the energy variance of

the outcoupled atoms, and therefore increase their temporal coherence.

4.7 Conclusions

In this paper we have analyzed a possible mechanism which could allow the

creation and continuous loading of a condensate from a thermal reservoir, by

optical pumping. In order to achieve such loading mechanism, it is necessary

to guarantee that the reabsorptions of the spontaneously emitted photons do

not lead to undesired heating of the atoms in the trap. We have analyzed

a particular scheme which allows to satisfy such condition. In this scheme

an atom forms a three level Λ system, in which one of the transitions de-

cays much faster than the other one. By using quantum Master Equation

techniques we have shown that the very small branching ratio between both

transitions induces very large reduction of probability of the reabsorption

processes which change the population in the lowest state of the slower tran-
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sition. We have explained such effect by identifying the photon reabsorption

as a process whose probability depends on the correlation between the reab-

sorption amplitudes at different times. Such correlation is rapidly destroyed

by the fast decay into the other possible channel. The destruction of this cor-

relation causes the desired effect, i.e. the reduction of the “bad” reabsorption

processes, responsible for possible heating.

Once we have shown that the reabsorption has no significant effect on

the system, we have analyzed the loading dynamics from a thermal reser-

voir, using Monte Carlo simulations, including the atom–atom collisions in

the QBME formalism. We have analyzed the loading of an initially empty

trap, demonstrating that the onset of the condensation appears after a fi-

nite time, which depends on the physical parameters of the system. The

condensation appears due to the joint combination of thermalization via col-

lisions, evaporative cooling due to the finite depth of the considered trap,

and bosonic enhancement of the pumping process. We have also analyzed

the continuous refilling of the condensate, once it has been formed, taking

at the same time into account continuously outcoupling. We have shown

that the refilling mechanism allows the compensation of the losses intro-

duced by the outcoupling, and we have analyzed the best strategies to keep

the condensate population quasi constant, which is important in order to

achieve a “monochromatic” atom laser output. In the paper we have only

analyzed the outcoupling mechanism, but the same reasonings applies to pos-

sible condensate losses, produced by inelastic processes, such as three–body

recombination, or collisions with the thermal atoms in the reservoir.

All our simulations and estimates have been done for Chromium atoms,

and for the parameters of the experiment currently performed at the Uni-

versity of Stuttgart. It is however interesting to stress that the same scheme

is general, and in particular can be applied for other atomic systems, such

as Magnesium. The latter possibility is considered by the W. Ertmer/E.

Rasel group at the University of Hannover. As a final remark, we would like

to stress that the mechanism of avoiding the “bad” reabsorption processes,

considered in this paper (i.e. regime of BRE) allows for faster pumping than

other reabsorption remedies (such as Festina Lente, for instance), and there-
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fore allows for more effective compensation of the condensate losses. It offers

a novel and interesting perspective towards a continuously loaded atom laser.



Chapter 5

Loading of a BEC in the

Thomas-Fermi regime

5.1 Introduction

In this chapter, we extend the analysis of the previous chapter to the Thomas-

Fermi regime, in which the mean interaction energy is much larger than the

separation between the trap levels. In that case, the condensate wavefunc-

tion and the excitations depend on the number of particles in the trap, and

as consequence the wavefunction vary dynamically during the pumping pro-

cess, complicating the analysis of the problem. In this chapter we develop the

necessary theory, and present the procedure which allows us to analyze the

problem. In particular, we analyze the modification of the condensate tem-

perature during the pumping process, identifying the regimes of parameters

for which the system is cooled or heated. We show that there is a threshold

temperature achievable for a given number of trapped particles, and show

that this effect could be employed to control the condensate temperature.

The structure of the chapter is as follows. In Sec. 5.2 we discuss the

physical model under consideration, and the basic equations. Sec. 5.3 is

devoted to the re-thermalization process after every optical pumping. In

Sec. 5.4 we discuss our numerical results.

75
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5.2 Model

In the following we consider a sample of ultracold atoms of mass m with an

accessible electronic two-level system, formed by the ground state |g〉 and an

excited state |e〉. Both |g〉 and |e〉 atoms are confined in a harmonic trap,

which for simplicity is considered as isotropic, with frequencies ωg and ωe,

respectively. The |g〉 atoms are assumed as being Bose condensed, i.e. with

a temperature T � Tc, where Tc is the critical temperature for onset of the

condensation. The formation of the condensate using spontaneous emission

has been already discussed in the previous chapter. The |e〉 atoms, which

eventually decay spontaneously into the |g〉 state, are considered as thermally

distributed.

The atoms in the |g〉 trap are described by the corresponding field opera-

tor Ψ̂g(~r). For sufficiently low T , when the number of condensed atoms in the

|g〉 trap, N0, is comparable to the total number of atoms, N , one can employ

the Bogoliubov approximation and substitute Ψ̂g by a c-number, ψ0, the BEC

wave function, whose stationary value is provided by the time-independent

Gross-Pitaevskii equation (GPE)

HGPψ0(~r) =

(
− h̄2

2m
∇2 +

m

2
ω2

gr
2 + UggN |ψ0|2 − µ

)
ψ0(~r) = 0, (5.1)

where µ is the chemical potential, and Ugg = 4πh̄2agg/m is the coupling

constant for the collisions between |g〉 atoms, with agg the scattering length.

In Eq. (5.1) we have neglected the e−g collisions, since the number of atoms

in the |e〉 state is assumed very small

The excitation spectrum is obtained after linearizing Ψ̂g around the ground-

state solution, Ψ̂g(~r) = ψ0(~r)+δψ̂(~r). The perturbation δψ̂ is then expanded

in the standard form [90]

δψ̂(~r) = u∗~n(~r)g̃~n − v~n(~r)g̃†~n, (5.2)

where g̃~n and g̃†~n are the annihilation and creation operators for the quasipar-

ticles with spherical quantum numbers ~n = n, l,m. The wave functions u~n(~r)
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and v~n(~r) obey the standard orthogonalization rules [90]. Linearizing in the

u~n(~r) and v~n(~r) wavefunctions, one obtains the corresponding Bogoliubov

equations

(HGP + UggN0Qψ
2
0Q)u~n + UggN0Qψ

2
0Q

∗v~n = h̄ω̃g
~nu~n (5.3)

−UggN0Q
∗ψ0(~r)

2Qu~n − (HGP + UggN0Qψ
2
0Q)∗v~n = h̄ω̃g

~nv~n (5.4)

where we have used the projection operators Q = 1 − |ψ0〉〈ψ0| (Q∗) or-

thogonally to ψ0 and (ψ∗0) [87], and ω̃g
~n denotes the quasiparticle excitation

spectrum.

The physics of the atoms in the |e〉 state is described by the Schrödinger

equation:

Heψ
e
~m(~r) =

(
− h̄2

2m
∇2 +

m

2
ω2

er
2 + 2UgeN0|ψ0|2

)
ψe

~m(~r) = h̄ω̃e
~mψ

e
~m(~r), (5.5)

where we have taken into account that the |e〉 atoms are affected by the

mean-field potential induced by the collisions with the |g〉 atoms, which are

characterized by a coupling constant Uge = 4πh̄2age/m, with age the cor-

responding scattering length. Due to the low density in the |e〉 trap, we

have neglected in Eq. (5.5) the e− e collisions. In the following, ẽ†~m and ẽ~m

denote the creation and annihilation operators in the eigenstate ψe
~m, with

eigenfrequency ω̃e
~m.

The interaction of the atoms with the vacuum electromagnetic field is

given by

Haf = i
∑
~m

∑
v

∫
d3kρ(~k)(~d~εkv)(

ηc
0~mg̃

†
0e~m +

∑
~n

ηu
~n~mg̃

†
~ne~m −

∑
~n

ηv
~n~mg̃~ne~m

)
a†~kv

+ h.c., (5.6)

where a†~kν
and a~kν are annihilation and creation operators of photons of

wavenumber ~k, polarization ν, and frequency ων(~k). In Eq. (5.6), ~d is the

atomic dipole, ~εkv is the polarization vector, and ρ(~k) the density of states.

The Frank-Condon (FC) factors ηc
0~m =

∫
d~rψe

~m(~r) exp(i~k~r)ψ0(~r) characterize
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the transitions into the condensate, whereas ηu
~n~m =

∫
d~rψe

~m(~r) exp(i~k~r)u~n(~r)

determine the transition into the u quasiparticle wavefunctions. In the same

way, the coefficients ηv
~n characterize the transition into the v wavefunctions.

Finally, the vacuum energy is provided by the Hamiltonian:

Hf =
∑
ν

∫
~dk ων(~k) a

†
~kν
a~kν . (5.7)

The physics of the system is therefore described by the Hamiltonian

H = Ha +Haf +Hf , (5.8)

where the atomic Hamiltonian can be written in the form (extracting the

condensate energy)

Ha =
∑
~n

ω̃~ng̃
†
~ng̃~n +

∑
~m

(ω0 + ω̃e
~m)ẽ†~mẽ~m, (5.9)

where ω0 is the transition frequency between |g〉 and |e〉.

From the previous Hamiltonian, and employing standard techniques of

quantum stochastic processes [83], we can obtain in Born-Markov approx-

imation the corresponding quantum Master equation (ME) for the density

matrix ρ (see App. A):

ρ̇(t) = −iHeffρ+ iρH†
eff + J ρ, (5.10)

where

Heff = −iΓ
{∑

~m

αc
~m00~mg̃0ẽ

†
~mg̃

†
0ẽ~m

+
∑
~m,~n

αu
~m~n~n~mg̃~nẽ

†
~mg̃

†
~nẽ~m +

∑
~m,~n

αv
~m~n~n~mg̃

†
~nẽ

†
~mg̃~nẽ~m

 , (5.11)

is the effective (non Hermitian) Hamiltonian, and

J ρ = 2Γ

{∑
~m

<c
~m00~mg̃

†
0ẽ~mρg̃0ẽ

†
~m
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+
∑
~m,~n

<u
~m~n~n~mg̃

†
~nẽ~mρg̃~nẽ

†
~m +

∑
~m,~n

<v
~m~n~n~mg̃~nẽ~mρg̃

†
~nẽ

†
~m

 , (5.12)

is the jump super operator. The spontaneous emission rate is γ = 2Γ, and

αa
~m~n~n′ ~m′ = <a

~m~n~n′ ~m′ + i=a
~m~n~n′ ~m′ (a=c, u, v), where

<a
~m~n~n′ ~m′(ω0) =

∫
dΩW(Ωk)η

a
~m~n(ω0,Ωk)η

a
~m′~n′(ω0,Ωk)

∗, (5.13)

with W(Ωk) the emission pattern, and

=a
~m~n~n′ ~m′ = −P

π

∫
du

u3

u− 1
<a

~m~n~n′ ~m′(uω0),

where P denotes the Cauchy principal part.

As discussed in the previous chapters, the effective Hamiltonian Heff is

related with photon reabsorption processes, whereas the jump superoperator

describes an spontaneous emission without any further reabsorption. In this

chapter, we consider the reabsorption processes as negligible (either because

we work in the Festina Lente regime [70] or because we consider the situation

discussed in the previous chapter), and constrain ourselves to the analysis

of the jump processes from |e〉 to |g〉. From Eq. (5.12) the amplitude for a

jump from a state ~ne of the |e〉 trap to a state ~n(a)
g (a = u, v, c) of the |g〉 one

is given by

Γ
~n

(a)
g ,~ne

=
∫
dΩkW(Ωk)|〈~n(a)

g |ei~k~r|~ne〉|2, (5.14)

with 〈~r|~ne〉 = Rlene(r)Yleme(Ωr), and 〈~r|~n(a)
g 〉 = R

(a)
lgng

(r)Ylgmg(Ωr). The FC

factors are of the form

〈~n(a)
g |ei~k~r|~ne〉 = 4π

∞∑
l′′=0

l′′∑
m=−l′′

(i)l′′Y ∗
l′′m(Ωk)A

l′′(a)
nglgnele

Bl′′

lgmgleme
, (5.15)

where A
l′′(a)
nglgnele

=
∫
drr2 R

(a)
lgng

(r) jl′′(kr)Rlene(r) is the radial integral, and

the coefficients Bl′′
lgmg ,leme

are related with the angular part of the integral,

and are solvable in terms of the corresponding 3-j Wigner symbols:

Bl′′

lgmg ,leme
=
∫
dΩrY

∗
lgmg

(Ωr)Yl′′m(Ωr)Yleme(Ωr) = (5.16)
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(−1)mg

 lg le l′′

−mg me m

 lg le l′′

0 0 0

√(2lg + 1)(2le + 1)(2l′′ + 1)

4π
.

Due to the properties of these symbols, Bl′′
lgmgleme

is independent of m since

−mg +me +m = 0, lg + le + l′′ = 2p (where p is an integer), and |lg − l′e| ≤
l′′ ≤ lg + le. Substituting (5.15) into (5.14) we find the transition amplitudes.

Γ
~n

(a)
g ,~ne

= 16π2
lg+le∑

l′′,L′′=|lg−le|
(i)l′′(−i)L′′

∫
dΩkW (Ωk)Y

∗
l′′,mg−me

(Ωk)YL′′,mg−me(Ωk)

×Al′′(a)
nglgnele

× A
L′′(a)
nglgnele

×Bl′′

lgmgleme
×BL′′

lgmgleme
. (5.17)

From the transition amplitudes (5.17) and the populations of the correspond-

ing levels, we obtain the transition probabilities describing the creation of a

quasiparticle n = (nglg)

P u
n = (〈Nn(T )〉+ 1)

∑
ne,le

〈N~ne(Te)〉
∑

mg ,me

Γ
~n

(u)
g ,~ne

. (5.18)

Similarly, we obtain the transition probabilities

P v
n = 〈Nn(T )〉

∑
ne,le

〈N~ne(Te)〉
∑

mg ,me

Γ
~n

(v)
g ,~ne

(5.19)

describing the destruction of a quasiparticle n = (nglg) associated with a

transfer of an atom into the condensate after the subsequent thermalization.

Finally, the direct decay process into the condensate is described by

P c = (〈N0(T )〉+ 1)
∑
ne,le

〈N~ne(Te)〉
∑
me

Γ
~n

(c)
g ~ne

. (5.20)

In the previous expressions, 〈Nn(T )〉 = (exp[En/KBT ] − 1)−1 is the Bose-

Einstein distribution in the |g〉 trap, and 〈N~ne(Te)〉 = N̂ exp[−E~ne/KBTe] is

the Boltzmann distribution (normalized to 1) in the |e〉 trap. The sums in
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Eqs. (5.18), (5.19) and (5.20) can be easily evaluated, e.g.

∑
mg ,me

Γ
~n

(u)
g ,~ne

= 16π2
lg+le(∗)∑

l′′,L′′=|lg−le|
(−1)

3L′′+l′′
2 A

l′′(u)
nglgnele

×AL′′(u)
nglgnele

×C l′′,L′′

lg ,le
, (5.21)

where
∑(∗) denotes that the sum is just over numbers with the same parity,

and

C l′′,L′′

lg ,le
=

lg∑
mg=−lg

le∑
me=−le

Bl′′

lgmgleme
×BL′′

lgmgleme

×
∫
dΩW(Ωk)Y

∗
l′′,mg−me

(Ωk)YL′′,mg−me(Ωk), (5.22)

where the final integral over Ωk can be easily solved by considering W(Ωk)

as a dipole pattern in the z direction,

W(Ωk) =
3

4π
cos(θ)2 =

1√
4π
Y00(Ωk) +

1√
5π
Y20(Ωk), (5.23)

and employing once more the 3-j Wigner symbols.

5.3 Re-thermalization

From Eqs. (5.18), (5.19), and (5.20), we can simulate the effects of a spon-

taneous emission process. We assume that the time scale of thermalization

in the |g〉 trap is much faster than the time interval between different pump

events, i.e. the collisional rate in the ground-state trap is much larger than γ.

In this way, after every pump, the system re-thermalizes, redistributing the

energy gained or lost during the pump process. We analyze in the following

the variation of the condensate temperature after the pumping.

After an spontaneous emission occurs, the number of |g〉 atoms increases

to N ′ = N + 1, and the new energy becomes:

〈E ′〉 = E + µP c +
∑
n

(εn + µCn)(P u
n − P v

n ). (5.24)

where E is the energy before the pumping, and Cn = |un|2 + |vn|2. Therefore
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the increase of the total energy is:

δE = 〈E ′〉 − E = µP c +
∑
n

(εn + µCn)(P u
n − P v

n ). (5.25)

After the re-thermalization, the system acquires a new temperature T ′ which

can be evaluated numerically from the expressions:

E ′ = E0(N0(T
′)) +

∑
n

Nn(T ′)(εn + µCn)−
∑
n

(εn − µ)|vn|2,(5.26)

N0(T
′) = N + 1−

∑
n

Nn(T ′)Cn + |vn|2, (5.27)

where Nn(T ) = (exp[εn/KBT ]− 1)−1 denotes the Bose-Einstein distribution

of the populations in the excited states of the |g〉 trap, and

E0(N0) = 〈ψ0|HGP −
Ugg

2
|ψ0|2|ψ0〉. (5.28)

In Eqs. (5.26) and (5.27), we assume the excitation spectrum as that calcu-

lated for N particles, i.e. before the pumping. This approximation is valid

as long as the number of excited particles N −N0 � 1.

Assuming T ′ = T + δT with δT � T , we can perform a Taylor expansion

up to first order in δT/T . For the Bose-Einstein distribution we obtain:

Nn(T + δT ) = Nn(T ) + δT
εn

KBT 2

exp[εn/KBT ]

(exp[εn/KBT ]− 1)2
. (5.29)

Substituting Eqs. (5.29) and N0(T
′) = N0 + δN0 into Eqs. (5.26) and (5.27)

we obtain for:

δE = E(T + δT )− E(T ) = µ(N0)δN0+

δT

T

∑
n

εn
KBT

(εn + µ(|un|2 + |vn|2)
exp[εn/KBT ]

(exp[εn/KBT ]− 1)2
(5.30)

and

δN0 = 1− δT

T

∑
n

εn
KBT

(|un|2 + |vn|2)
exp[εn/KBT ]

(exp[εn/KBT ]− 1)2
. (5.31)
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Substituting Eqs. (5.31) into Eqs. 5.30 we obtain:

δE = µ(N0) +
δT

T

∑
n

ε2n
KBT

exp[εn/KBT ]

(exp[εn/KBT ]− 1)2
. (5.32)

With Eqs. 5.32 we have found an expression for δE ≡ δE(T,N0, δT ) Equating

Eqs. (5.32) and (5.25) we obtain:

δT

T
= − µ̃(N0)(1− P c)−∑n(ε̃n + µ̃Cn)(P u

n − P v
n )∑

n ε̃2n
exp[ε̃n]

(exp[ε̃n]−1)2

, (5.33)

where µ̃ = µ/KBT , ε̃ = εn/KBT . Additionally,

δN0 = 1 +

 µ̃(N0)(1− P c)−∑n(ε̃n + µ̃Cn)(P u
n − P v

n )∑
n ε̃2n

exp[ε̃n]
(exp[ε̃n]−1)2


×

∑
n

ε̃nCn
exp[ε̃n]

(exp[ε̃n]− 1)2
. (5.34)

From Eq. (5.34) we can obtain the expression for ξ = (N0/N
′−N0/N)/(N0/N).

If ξ > 0, the pumping increases the relative population in the condensate,

and therefore the temperature of the sample is reduced. On the contrary, if

ξ < 0 the system is heated by the pumping. Expanding n′ = N ′
0/(N + 1) in

the small parameter 1/N one obtains

N0 + δN0

N + 1
=

N0

N

1 + δN0

N0

1 + 1
N

 (5.35)

=
N0

N

(
1 +

δN0

N0

)(
1− 1

N
+

2

N2
+O(N−3)

)
. (5.36)

Additionally,

ξ =
N0(T+δT )

N+1
− N0(T )

N

N0/N

=
1

N0

{δN0 − 1}+
1

N2
0

{δN + 1− δN0}+O(δN0/N
3
0 ). (5.37)

It is therefore easy to see that up to terms of order δN/N2
0 , where δN =
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N −N0, the system is cooled (ξ > 0) when the condition

δN < (N0 − 1)
µ̃(N0)(1− P c)−∑n(ε̃n + µ̃Cn)(P u

n − P v
n )∑

n ε̃2n
exp[ε̃n]

(exp[ε̃n]−1)2

×
∑
n

ε̃nCn
exp[ε̃n]

(exp[ε̃n]− 1)2
(5.38)

is fulfilled. For large temperatures, δN can increase enough to violate (5.38).

On the other hand for very low temperatures the transition probability into

the condensate P c → 1, and also in this case the condensate is heated.

Hence, there is a transition from heating to cooling at some finite threshold

temperature, Tth, which depends on four different system parameters: the

total number of atoms N , the temperature, Te, of the excited state trap,

the coupling constant Ueg for the collisions between |e〉 and |g〉 atoms, and

the ratio ωe/ωg between the frequencies of the |g〉 and |e〉 traps. When N

increases, so does µ̃ and it s easy to see that Tth decreases. If Te increases the

transition to higher lying excited states are more favorable, and as one could

expect Tth increases. The parameters Ueg and ωe/ωg influence the spectrum

of the excited state trap. For Ueg = 0 the harmonic oscillator spectrum is

recovered. However, when Ueg grows, the mean-field repulsion leads to an

expulsion of the |e〉 atoms from the trap center, increasing the probability

for a transition into excited states of the |g〉 trap. On the other hand, if

ωe � ωg, and Te is sufficiently small, the mean-field shift just provides an

overall homogeneous shift of the levels of the |e〉 trap, and the threshold

temperature becomes comparable to that for Ueg = 0.

5.4 Numerical results

We have analyzed δT after a spontaneous emission pumping using the fol-

lowing procedure. For a given total number of atoms, N , and a given initial

temperature, T , we first calculate the number of atoms in the condensate

N0, and then evaluate ψ0 by evolving the GPE (5.1) in imaginary time.

Once obtained ψ0, we diagonalize equations (5.3) and (5.4) employing a
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Figure 5.1: a) variation of T/Tc after a spontaneous emission as a function
of the initial T/Tc for ω = 20× 2π Hz, ωe = 10ωg, Te = 21h̄ωg, and N = 104,
5 × 104 and 105; b) dependence of Tth on N for ωe = ωg and Ueg/Ugg =
1(dotted–dashed curve), 0.5 (dotted curve), and 0 (dashed curve); the solid
curve shows the case ωe = 10ωg and Ueg/Ugg = 1

harmonic oscillator basis, to find the {u, v} eigenfunctions, and the corre-

sponding eigenenergies. As a next step, we calculate Γ
~n

(a)
g ,~ne

(a = c, u, v)

using Eq. (5.14). For a given temperature Te of the |e〉 trap, we evaluate

from Eqs. (5.18), (5.19) and (5.20) the decay probabilities into the different

states of the |g〉 trap. From Eq. (5.24) we obtain the new average energy

after the pumping. Finally, from Eqs. (5.26) and (5.27) we obtain the new

temperature after the rethermalization.

Fig. 5.1a shows the variation of T/Tc after a spontaneous emission as a

function of the initial T/Tc for ω = 20 × 2π Hz, ωe = 10ωg, Te = 21h̄ωg,

and N = 104, 5 × 104 and 105. In the calculation of the FC factors (5.15),

we have considered a Lamb-Dicke parameter η2 ≡ Erec/h̄ωg = 1, where Erec

is the energy associated with the recoil of a single photon. The choice of η

and Te is motivated by our numerical limitations, but we expect qualitatively

similar results for other values of these parameters. As previously discussed,

the system is cooled for temperatures T larger than a threshold one, which

is progressively lower for larger number of atoms. In the figure, due to the

low value of Te chosen, it is not possible to observe the heating region for

large temperatures, which for this case is located at T close to Tc. For other

ranges of parameters the qualitative picture does not change significantly,

i.e. always a threshold temperature separating heating and cooling regions

exists. We have analyzed the dependence of Tth on different physical param-
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Figure 5.2: Solid line indicates Monte Carlo and dashed line Tth for ωe =
10ωg, Te = 21h̄ωg

eters. Fig. 5.1b shows the dependence of Tth on N for ωe = ωg and different

values of Ueg. For Ueg → 0 the temperature Tth decays monotonically with

N . However, when Ueg increases, and due to the repulsive mean-field induced

by the eg collisions, the eigenfunctions of the |e〉 trap possess a local mini-

mum at the trap center, and the pumping into the condensate becomes less

effective. Consequently, Tth increases for large N , as clearly observed for the

case of Ueg = g. This effect is less pronounced, for larger values of ωe keeping

fixed Te, since then the lower levels of the |e〉 trap have an extension smaller

than the condensate wavefunction, and hence the mean-field just produces a

global energy shift of the lowest |e〉 levels, without any consequence for the

pumping process (see Fig. 5.1b). Finally, we have simulated under differ-

ent conditions the continuous optical pumping of atoms into the condensate.

To this aim, we have employed Monte Carlo methods to evaluate the cor-

responding rate equations, with the probabilities provided by Eqs. (5.18),

(5.19) and (5.20). In principle, after every pumping all the previously de-

scribed steps of our algorithm should be repeated. In practice, it is enough

to do so after a number of steps Nsteps � δN , which is dynamically adjusted

in our calculations. Fig. 5.2 shows our Monte Carlo results for ωe = 10ωg,

Te = 21h̄ωg. The dashed curve in Fig. 5.2 indicates Tth. The simulation is

started with N = 4.8 × 104, and T/Tc = 0.18. For this initial value, the

pair (N, T/Tc) is below the Tth curve, and consequently within the heating

region. As expected, the temperature of the system increases with the pump-

ing. However, once (N, T/Tc) crosses the Tth curve, the temperature begins

to decrease when pumping. Therefore, interestingly, the temperature of the
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system should asymptotically approach the curve Tth.

5.5 Conclusions

In this chapter, we have analyzed the continuous optical loading of a BEC in

the Thomas-Fermi regime. Contrary to the weak condensation case, the con-

densate and excited-state wavefunctions vary dynamically during the loading.

This fact has been taken into account in our procedure. By means of GPE

and Bogoliubov equations, we determine before every pumping the proper

wavefunctions, and transition probabilities. Assuming a rapid thermaliza-

tion, we have monitored the variation of the temperature during the loading.

We have observed that for a given number of trapped atoms, there is always

a threshold temperature, Tth, below which the condensate is heated. We

have analyzed the dependence of Tth on different experimental parameters,

in particular the total number of atoms, N , the trap geometries, and the

interparticle interactions. A lower Tth is obtained for smaller interactions

between excited-state and ground-state atoms, since repulsive interactions

tend to displace the excited-state atoms away from the trap center, prevent-

ing the effective pumping into the condensate. Our analysis shows that, not

only the number of atoms in the trap, but also the temperature of the system,

can be maintained by means of optical loading. To this aim, the condensate

should be created with a temperature and a number of atoms, lying close to

the curve Tth(N). In that case, in the presence of outcoupling or other loss

sources, if the loss mechanism leads to heating, the temperature will be over

Tth(N), and the system will be cooled by the pumping, whereas the opposite

will be true if the loss mechanism cools. Interestingly, this could allow for

the sustained analysis of condensates at a quasi-fixed constant temperature.

Several physical scenarios could be devised to employ our analysis for

the continuous loading of a BEC. For example, an optical lattice could be

employed to move atoms in an internal state |r〉 from a relatively hot reservoir

into the condensate region. In the center of the condensate region a Raman

pulse could be employed to transfer the |r〉 atoms into an state |e〉, which
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Figure 5.3: The right figure depicts a possible physical scenario for the con-
tinuous optical loading of a BEC from excited state atoms in a lattice. In the
region of the condensate the atoms may undergo a laser-induced spontaneous
Raman transition into the |g〉, as shown in the left figure.
.

decays into the ground-state |g〉. In this way, it could be achieved that only

those lattice sites near the condensate center actually decay into the |g〉 trap

(see Fig. 5.3). For a sufficiently strong optical lattice each one of the lattice

wells will behave as a single trap with few occupied levels, as that discussed

in our chapter. Interestingly, in this scenario, due to the small size of the

|e〉 trap, Tth should monotonically decay with N , since the mean-field effects

should just shift globally the states of the |e〉 trap. Therefore, in this system

the pumping could be employed to post-cool an already formed condensate

down to T = 0, and maintain the condensate temperature very low against

possible loss sources.



Chapter 6

Conclusions

In this thesis we have analyzed different physical scenarios in which a BEC

could be continuously pumped using optical means. In all the explored meth-

ods an atom in an excited electronic state decays via spontaneous emission

into the condensate, which is formed in the ground electronic state. We have

identified the reabsorption of the spontaneously emitted photons as the main

source of heating, which should be avoided in order to realize optical loading.

Chapters 3 and 4 were devoted to the detailed analysis of two different ways

to avoid the heating effects induced by reabsorption:

In chapter 3, we considered the BAR regime, extending the previous anal-

ysis of Ref. [13] to a general 3D situation, in which the excited-state atoms

can occupy more than one trapped state. We have shown that under ap-

propriate conditions, the BAR expansion is still valid for this more general

case, and that the reabsorptions can play a positive role in the loading of

the condensate. Such effect has a quantum character, and results from the

destructive interference between the processes which tend to lower the con-

densate fraction. We have analyzed in detail the conditions for the validity of

the BAR expansion, showing that in general the BAR condition presented in

Ref. [13] is not enough to guarantee the BAR expansion, since for more than

one excited–trap level, the temperature of such trap is also important, and

must be kept sufficiently low. We have simulated the loading in the BAR

regime and shown that under proper conditions the positive effects of the

89
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reabsorption lead to cooling during the loading process.

In chapter 4, we analyzed the case of an atom with an accessible three

level Λ system, in which one of the transitions decays much faster than the

other one. By using quantum Master Equation techniques we have shown

that the very small branching ratio between both transitions induces a very

large reduction of the probability of the reabsorption processes which lead

to heating. We have explained such effect by identifying the photon reab-

sorption as a process whose probability depends on the correlation between

the reabsorption amplitudes at different times. Such correlation is rapidly

destroyed by the fast decay into the other possible decay channel, explaining

the suppression of the reabsorption.

Once we have shown that, under proper conditions, the reabsorption has

no significant effects on the system, we have analyzed the process of cre-

ation and loading of a BEC via spontaneous emission for different interaction

strengths: weak-condensation (chapter 4) and Thomas-Fermi regime (chap-

ter 5):

In chapter 4, we considered the weak-condensation case in which the

mean-field energy induced by collisions can be considered smaller than the

energy separation between trap levels. In that case, we have analyzed the

loading dynamics from a thermal reservoir, using Monte Carlo simulations,

including the atom–atom collisions, which in the weak-condensation regime

can be treated in the QBME formalism. We have analyzed the loading

of an initially empty trap, demonstrating that the onset of the condensa-

tion appears after a finite time, which depends on the physical parameters

of the system. The condensation appears due to the joint combination of

thermalization via collisions, evaporative cooling due to the finite depth of

the considered trap, and bosonic enhancement of the pumping process. We

have also analyzed the continuous refilling of the condensate, once it has

been formed, taking at the same time into account continuously outcoupling.

We have shown that the refilling mechanism allows for the compensation of

the losses introduced by the outcoupling, or eventually by any other source

of losses, such as three–body recombination, or collisions with the thermal

atoms in the reservoir.
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Finally, in chapter 5 we have analyzed the continuous optical loading of

a BEC in the Thomas-Fermi regime. Contrary to the weak condensation

case analyzed in chapter 4, the condensate and excited-state wavefunctions

vary dynamically during the loading. By means of GPE and Bogoliubov

equations, we determine before every pumping the proper wavefunctions, and

transition probabilities. Assuming a rapid thermalization, we have monitored

the variation of the temperature during the loading. We have observed that

for a given number of trapped atoms, there is always a threshold temperature,

Tth, below which the condensate is heated. We have analyzed the dependence

of Tth on different experimental parameters, in particular the total number

of atoms, N , the trap geometries, and the interparticle interactions. Our

analysis shows that, not only the number of atoms in the trap, but also the

temperature of the system, can be maintained by means of optical loading.

The results of this Thesis show that under appropriate (but realistic)

conditions, optical pumping can be employed to continuously populate a

BEC in the presence of losses, either due to outcoupling in an atom laser, or

due to inelastic processes. The continuous loading of a BEC offers exciting

possibilities:

• The continuous repairing of a BEC against losses could be employed

to enlarge (in principle indefinitely) the life time of the current exper-

iments, which are largely limited by the loss rate induced either by

background collisions, or two- and three-body losses. In this sense a

completely new generation of experiments could be possible.

• The loading of a BEC in a continuous way, opens the fascinating per-

spective to accomplish a cw atom laser, which could be eventually

employed in future applications, as e.g. atom lithography and atom

clocks.

In this sense, we expect that the results of this Thesis could stimulate future

works in these directions.





Appendix A

Quantum Master Equation

This Appendix is devoted to the presentation of the formalism of quantum

master equation (QME), which is extensively employed all throughout this

thesis. For more details, see e.g. [83, 84, 85]. In the following we shall derive

in detail the QME from the corresponding Hamiltonian, which in our case,

as discussed in different chapters of this thesis, is of the form:

H = Ha +Hf +Haf . (A.1)

where Ha is the atomic Hamiltonian describing the physics of the atoms

without any atom-light interaction, Hf is the Hamiltonian of the reservoir

in which the considered system is immersed (in our case the vacuum of the

electromagnetic field), and Haf describes the atom-light interaction. The

von Neumann equation for the density matrix describing both the system

and the reservoir is

ρ̇ = − i

h̄
[H, ρtot] = − i

h̄
[Ha +Hf +Haf ., ρtot]. (A.2)

We are interested in the physics of the atomic system considered, and not in

the details of the dynamics of the reservoir. Therefore, we shall study the

dynamics of the reduced density matrix:

ρs(t) = TrB{ρ(t)}, (A.3)
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where TrB indicates the trace over the degrees of freedom of the reservoir.

Transforming into interaction picture

ρint(t) = e
i
h̄
(Ha+Hf )tρ(t)e−

i
h̄
(Ha+Hf )t, (A.4)

we can re-write Eq. (A.2) in the form

ρ̇int(t) = − i

h̄
[Haf (t), ρint(t)]. (A.5)

Note that ρs and ρint are related by

ρs(t) = e−
i
h̄

HsystTrB{ρint(t)}e
i
h̄

Hsyst. (A.6)

Integrating Eq. (A.5) from 0 to t we obtain

ρint(t) = ρint(0)−
i

h̄

∫ t

0
dt′[Haf (t

′), ρint(t
′)]. (A.7)

Inserting into Eq. (A.5):

ρ̇int(t) = − i

h̄
[Haf (t), ρint(0)]−

1

h̄2

∫ t

0
dt′[Haf (t),Haf (t

′), ρint(t
′)]]. (A.8)

Up to this point, no assumption was used and the equation of motion is

basically exact. Tracing over the reservoir we obtain

TrB{ρ̇int(t)} = − 1

h̄2

∫ t

0
dt′TrB{[Haf (t),Haf (t

′), ρint(t
′)]]}, (A.9)

where we have employed that TrB{Hafρint(0)} = 0, since, assuming that the

bath and the system are initially independent, i.e. ρint(0) = ρ(0) = ρs(0) ⊗
ρB, Haf has no diagonal elements in the reservoir variables. Assuming that

at any time the reservoir remains practically unaffected by the interaction

with the system, we can extend the initial factorization to any later time t,

i.e. ρint(t) ≈ ρs(t) ⊗ ρB. This is the so-called Born approximation. After
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employing this approximation we obtain

ρ̇s(t) = − 1

h̄2

∫ t

0
dt′TrB{[Haf (t),Haf (t

′), ρs(t
′)⊗ ρB]]}. (A.10)

Finally we perform the so-called Markov approximation, i.e. we assume that

the reservoir correlation function decays much faster than any typical time

scale of the system dynamics. Therefore, we can substitute in Eq. (A.10)

ρs(t
′) → ρs(t). Additionally, for t much larger then any reservoir correlation

time, one can substitute
∫ t
0 →

∫ t
−∞. These approximations lead to the final

form of the QME

ρ̇(t) = − 1

h̄2

∫ ∞

0
dτTrB{[Haf (t),Haf (t− τ), ρ(t)⊗ ρB]]}. (A.11)

Performing the commutators, and tracing over the degrees of freedom of the

vacuum of the electromagnetic field, we obtain a first order differential equa-

tion in time for the density operator, which acquires the so-called Lindblad

Form

d

dt
ρ(t) = Lρ = −iHeff (t)ρ(t) + iρ(t)Heff (t) + J (t)ρ(t), (A.12)

where Heff and J are, respectively, the so-called effective Hamiltonian and

the jump superoperator.





Appendix B

Solution of the integral (2.11)

In this Appendix we shall discuss the solution of Eq. (3.19). This equation

presents an integral of the form:

P
∫
dλ

λn

λ− 1
e−Cλ2

(B.1)

where P is the Cauchy principle part of the integral and C is a constant.

Re-expressing
λn

λ− 1
=

n−1∑
i=0

λi +
1

λ− 1
, (B.2)

we can rewrite:

P
∫
dλ

λn

λ− 1
e−C∗λ2

=
n−1∑
i=0

∫
dλλie−Cλ2

+ P
∫
dλ

1

λ− 1
e−C∗λ2

=
n−1∑
i=0

(1 + (−1)i)

2
C− 1+i

2 Γ(
1 + i

2
) + P

∫
dλ

1

λ− 1
e−Cλ2

. (B.3)

Employing the relation

e−Cλ2

=

√
C

π

∫
dye−C(y+iλ)2−Cλ2

=

√
C

π

∫ ∞

−∞
dye−Cy2−2iCyλ, (B.4)
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we can re-express the integral in the form:

P
∫
dλ

1

λ− 1
e−Cλ2

=

√
C

π

∫
dye−Cy2

P
∫
dλ

1

λ− 1
e−2iCyλ

=

√
C

π
(
∫ 0

−∞
dye−Cy2

+
∫ ∞

0
dye−Cy2

)P
∫
dλ

1

λ− 1
e−2iCyλ

=

√
C

π

∫ ∞

0
dye−Cy2

P
∫
dλ

1

λ− 1
(e−2iCyλ + e+2iCyλ)

= 2

√
C

π

∫ ∞

0
dye−Cy2

P
∫
dλ

1

λ− 1
cos[2Cyλ]

= 2

√
C

π
<
{∫ ∞

0
dye−Cy2

P
∫
dλ

1

λ− 1
e2iCyλ

}
. (B.5)

The last Cauchy integral can be calculated using the residues theorem [91],

P
∫
dλ/(λ − 1)e2iCyλ = πi exp[2iCy]. Finally, after integrating over y one

obtains

P
∫
dλ

1

λ− 1
e−Cλ2

= −2

√
C

π

∫ ∞

0
dye−Cy2

sin[2Cy]

= −πerfi[
√
C]e−C , (B.6)

and consequently

P
∫
dλ

λn

λ− 1
e−Cλ2

=
n−1∑
i=0

(1 + (−1)i)

2
C− 1+i

2 Γ(
1 + i

2
)− πerfi[

√
C]e−C (B.7)
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