
THE ANDRÉ-OORT CONJECTURE.

B. KLINGLER, A. YAFAEV

Abstract. In this paper we prove, assuming the Generalized Riemann Hypothesis, the

André-Oort conjecture on the Zariski closure of sets of special points in a Shimura variety.

In the case of sets of special points satisfying an additional assumption, we prove the

conjecture without assuming the GRH.
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1. Introduction

1.1. The André-Oort conjecture. The purpose of this paper is to prove, under certain
assumptions, the André-Oort conjecture on special subvarieties of Shimura varieties.

Before stating the André-Oort conjecture we provide some motivation from algebraic
geometry. Let Z be a smooth complex algebraic variety and let F −→ Z be a variation
of polarizable Q-Hodge structures on Z (for example F = Rif∗Q for a smooth proper
morphism f : Y −→ Z). To every z ∈ Z one associates a reductive algebraic Q-group
MT(z), called the Mumford-Tate group of the Hodge structure Fz. This group is the
stabilizer of the Hodge classes in the rational Hodge structures tensorially generated by
Fz and its dual. A point z ∈ Z is said to be Hodge generic if MT(z) is maximal. If Z

is irreducible, two Hodge generic points of Z have the same Mumford-Tate group, called
the generic Mumford-Tate group MTZ . The complement of the Hodge generic locus is a
countable union of closed irreducible algebraic subvarieties of Z, each not contained in the
union of the others. This is proved in [7]. Furthermore, it is shown in [38] that when Z is
defined over Q (and under certain simple assumptions) these components are also defined
over Q. The irreducible components of the intersections of these subvarieties are called
special subvarieties (or subvarieties of Hodge type) of Z relative to F . Special subvarieties
of dimension zero are called special points.
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Example : Let Z be the modular curve Y (N) (with N ≥ 4) and let F be the variation
of polarizable Q-Hodge structures R1f∗Q of weight one on Z associated to the universal
elliptic curve f : E −→ Z. Special points on Z parametrize elliptic curves with complex
multiplication. The generic Mumford-Tate group on Z is GL2,Q. The Mumford-Tate
group of a special point corresponding to an elliptic curve with complex multiplication by
a quadratic imaginary field K is the torus ResK/QGm,K obtained by restriction of scalars
from K to Q of the multiplicative group Gm,K over K.

The general Noether-Lefschetz problem consists in describing the geometry of these spe-
cial subvarieties, in particular the distribution of special points. Griffiths transversality
condition prevents, in general, the existence of moduli spaces for variations of polarizable
Q-Hodge structures. Shimura varieties naturally appear as solutions to such moduli prob-
lems with additional data (c.f. [11], [12], [21]). Recall that a Q-Hodge structure on a
Q-vector space V is a structure of S-module on VR := V ⊗Q R, where S = ResC/RGm,C.
In other words it is a morphism of real algebraic groups

h : S −→ GL(VR) .

The Mumford-Tate group MT(h) is the smallest algebraic Q-subgroup H of GL(V ) such
that h factors through HR. A Shimura datum is a pair (G, X), with G a linear connected
reductive group over Q and X a G(R)-conjugacy class in the set of morphisms of real
algebraic groups Hom(S,GR), satisfying the “Deligne’s conditions” [12, 1.1.13]. These
conditions imply, in particular, that the connected components of X are Hermitian sym-
metric domains and that Q-representations of G induce polarizable variations of Q-Hodge
structures on X. A morphism of Shimura data from (G1, X1) to (G2, X2) is a Q-morphism
f : G1 −→ G2 that maps X1 to X2.

Given a compact open subgroup K of G(Af) (where Af denotes the ring of finite
adèles of Q) the set G(Q)\(X × G(Af)/K) is naturally the set of C-points of a quasi-
projective variety (a Shimura variety) over C, denoted ShK(G, X)C. The projective limit
Sh(G, X)C = lim←−K

ShK(G, X)C is a C-scheme on which G(Af) acts continuously by mul-
tiplication on the right (c.f. section 4.1.1). The multiplication by g ∈ G(Af) on Sh(G, X)C

induces an algebraic correspondence Tg on ShK(G, X)C, called a Hecke correspondence.
One easily shows that a subvariety V ⊂ ShK(G, X)C is special (with respect to some
variation of Hodge structure associated to a faithful Q-representation of G) if and only if
there is a Shimura datum (H, XH), a morphism of Shimura data f : (H, XH) −→ (G, X)
and an element g ∈ G(Af) such that V is an irreducible component of the image of the
morphism :
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Sh(H, XH)C
Sh(f)−→ Sh(G, X)C

.g−→ Sh(G, X)C −→ ShK(G, X)C .

It can also be shown that the Shimura datum (H, XH) can be chosen in such a way
that H is the generic Mumford-Tate group on XH (see Lemma 2.1 of [37]). A special point
is a special subvariety of dimension zero. One sees that a point (x, g) ∈ ShK(G, X)C(C)
(where x ∈ X and g ∈ G(Af)) is special if and only the group MT(x) is commutative (in
which case MT(x) is a torus).

Given a special subvariety V of ShK(G, X)C, the set of special points of ShK(G, X)C(C)
contained in V is dense in V for the strong (and in particular for the Zariski) topology.
Indeed, one shows that V contains a special point, say s. Let H be a reductive group
defining V and let H(R)+ denotes the connected component of the identity in the real Lie
group H(R). The fact that H(Q) ∩H(R)+ is dense in H(R)+ implies that the “H(Q) ∩
H(R)+-orbit” of s, which is contained in V , is dense in V . This “orbit” (sometimes referred
to as the Hecke orbit of s) consists of special points. The André-Oort conjecture is the
converse statement.

Definition 1.1.1. Given a set Σ of subvarieties of ShK(G, X)C we denote by Σ the subset
∪V ∈ΣV of ShK(G, X)C.

Conjecture 1.1.2 (André-Oort). Let (G, X) be a Shimura datum, K a compact open
subgroup of G(Af) and let Σ a set of special points in ShK(G, X)C(C). Then every
irreducible component of the Zariski closure of Σ in ShK(G, X)C is a special subvariety.

One may notice an analogy between this conjecture and the so-called Manin-Mumford
conjecture (first proved by Raynaud) which asserts that irreducible components of the
Zariski closure of a set of torsion points in an Abelian variety are translates of Abelian
subvarieties by torsion points. There is a large (and constantly growing) number of proofs
of the Manin-Mumford conjecture. A proof of the Manin-Mumford conjecture using exactly
the same strategy as the one used in this paper was recently given by Ullmo and Ratazzi
(see [36]).

1.2. The results. Our main result is the following :

Theorem 1.2.1. Let (G, X) be a Shimura datum, K a compact open subgroup of G(Af)
and let Σ be a set of special points in ShK(G, X)C(C). We make one of the following
assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.



THE ANDRÉ-OORT CONJECTURE. 5

(2) Assume that there exists a faithful representation G ↪→ GLn such that with re-
spect to this representation, the Mumford-Tate groups MTs lie in one GLn(Q)-
conjugacy class as s ranges through Σ.

Then every irreducible component of the Zariski closure of Σ in ShK(G, X)C is a special
subvariety.

In fact we prove the following

Theorem 1.2.2. Let (G, X) be a Shimura datum, K a compact open subgroup of G(Af)
and let Σ be a set of special subvarieties in ShK(G, X)C. We make one of the following
assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there exists a faithful representation G ↪→ GLn such that with respect

to this representation, the generic Mumford-Tate groups MTV of V lie in one
GLn(Q)-conjugacy class as V ranges through Σ.

Then every irreducible component of the Zariski closure of Σ in ShK(G, X)C is a special
subvariety.

The case of theorem 1.2.2 where Σ is a set of special points is theorem 1.2.1.

1.3. The history of the André-Oort conjecture. For history and results obtained
before 2002, we refer to the introduction of [16]. We just mention that conjecture 1.1.2
was stated by André in 1989 in the case of an irreducible curve in ShK(G, X)C containing
a Zariski dense set of special points, and in 1995 by Oort for irreducible subvarieties of
moduli spaces of polarised Abelian varieties containing a Zariski-dense set of special points.

Let us mention some results we will use in the course of our proof.
In [9] (further generalized in [34] and [37]), the conclusion of the theorem 1.2.2 is proved

for sets Σ of strongly special subvarieties in ShK(G, X)C without assuming (1) or (2) (c.f.
section 2). The statement is proved using ergodic theoretic techniques.

Using Galois-theoretic techniques and geometric properties of Hecke correspondences,
Edixhoven and the second author (see [17]) proved the conjecture for curves in Shimura
varieties containing infinite sets of special points satisfying our assumption (2). Sub-
sequently, the second author (in [41]) proved the André-Oort conjecture for curves in
Shimura varieties assuming the GRH. The main new ingredient in [41] is a theorem on
lower bounds for Galois orbits of special points. In the work [15], Edixhoven proves, as-
suming the GRH, the André-Oort conjecture for products of modular curves. In [40], the
second author proves the André-Oort conjecture for sets of special points satisfying an
additional condition.
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The authors started working together on this conjecture in 2003 trying to generalize
the Edixhoven-Yafaev strategy to the general case of the André-Oort conjecture. In the
process two main difficulties occur. One is the question of irreducibility of transforms of
subvarieties under Hecke correspondences. This problem is dealt with in sections 6 and
7. The other difficulty consists in dealing with higher dimensional special subvarieties.
Our strategy is to proceed by induction on the generic dimension of elements of Σ. The
main ingredient for controlling the induction was the discovery by Ullmo and the second
author in [37] of a possible combination of Galois theoretic and ergodic techniques. It took
form while the second author was visiting the University of Paris-Sud in January-February
2005.

1.4. Conventions. Let F be a number field or C. An F -algebraic variety is a reduced
separated scheme over F , not necessarily irreducible. It is of finite type over F unless
mentioned. A subvariety is always assumed to be a closed subvariety. In sections 2 and 3
we freely use notations recalled in section 4.

2. Equidistribution and Galois orbits.

In this section we recall a crucial ingredient in the proof of the theorem 1.2.2 : the
Galois/ ergodic alternative from [37].

2.1. Some definitions.

2.1.1. Shimura subdata defining special subvarieties. Let (G, X) be a Shimura datum and
K be a neat compact open subgroup of G(Af). We fix X+ a connected component of X

and denote by SK(G, X)C the connected component of ShK(G, X)C image of X+ × {1}
in ShK(G, X)C. Thus SK(G, X)C = Γ\X+, where Γ = G(Q)+ ∩K is a neat arithmetic
subgroup of G(Q)+.

Definition 2.1.1. Let V be a special subvariety of SK(G, X)C. A Shimura subdatum
(HV , XV ) of (G, X) is said to define V if :

• the algebraic group HV is the generic Mumford-Tate group on XV .
• V is the image in SK(G, X)C of a connected component of ShK∩HV (Af)(HV , XV )C

under the natural morphism

f : ShK∩HV (Af)(HV , XV )C −→ ShK(G, X)C

(we emphasize here that no Hecke correspondence is involved).

Remark 2.1.2. Let V be a special subvariety of SK(G, X)C. If there exists a Shimura
subdatum (i : HV ↪→ G, XV ⊂ X) of (G, X) defining V then any other Shimura subdatum
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defining V is of the form (Intγ ◦ i : HV ↪→ G, γXV ⊂ X) for some element γ ∈ ΓK :=
G(Q)+ ∩ K. In other words : the algebraic group HV is uniquely defined by V but its
embedding into G is uniquely defined only up to conjugation by ΓK .

Lemma 2.1.3. Let (G, X) be a Shimura datum with G semisimple of adjoint type. Let
K be a neat compact open subgroup of G(Af).

Let (H, XH) be a Shimura subdatum of (G, X) with H the generic Mumford-Tate group
on XH and denote by KH the compact open subgroup K ∩H(Af) of H(Af). Let V be a
special subvariety of SKH

(H, XH)C. Then there exists a Shimura subdatum (HV , XV ) of
(H, XH) defining V .

Proof. The case (H, XH) = (G, X) is proven in [37, lemma 2.1]. In general let p(V ) be
the special subvariety of SK(G, X)C image of V under the natural morphism

ShKH
(H, XH)C

p−→ ShK(G, X)C .

As G is semi-simple of adjoint type there exists a Shimura subdatum (HV , XV ) of (G, X)
defining p(V ). One checks immediately that (HV , XV ) is a Shimura subdatum of (H, XH)
defining V . �

2.1.2. The measure µV . Let (G, X) be a Shimura datum with G semisimple of adjoint
type. Let (HV , XV ) be a Shimura subdatum of (G, X) defining a special subvariety V of
§K(G, X)C. Thus there exists a connected component X+

V of XV , a neat arithmetic group
ΓV of the stabiliser HV (Q)+ of X+

V in HV (Q)+ and a morphism

f : ΓV \X+
V −→ SK(G, X)C

whose image is V .

Remark 2.1.4. The morphism f is generically injective by lemma 2.2 of [37].

Definition 2.1.5. We define µV to be the probability measure on ShK(G, X)C(C) sup-
ported on V , push-forward by f of the standard probability measure on the Hermitian
locally symmetric space ΓV \X+

V induced by the Haar measure on HV (R)+.

Remark 2.1.6. One immediately checks that the measure µV depends only on V and not
on the choice of the embedding HV ↪→ G.

2.1.3. T-special subvarieties.

Definition 2.1.7. Let (G, X) be a Shimura datum and let λ : G −→ Gad be the canonical
morphism. Fix a (possibly trivial) subtorus T of Gad such that T(R) is compact. A T-
special subdatum (H, XH) of (G, X) is a Shimura subdatum such that H is the generic
Mumford-Tate group of XH and T is the connected centre of λ(H).
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A special subvariety V of SK(G, X)C is T-special if there exists a T-special subdatum
(HV , XV ) of (G, X) defining V .

In the case where T is trivial, we call V strongly special.

Remark 2.1.8. The definition of strongly special given in [9] requires that HV is not con-
tained in a proper parabolic subgroup of G but as explained in [34, rem. 3.9] this last
condition is automatically satisfied.

2.2. The rough alternative. With these definitions, the alternative from [37] can roughly
be stated as follows.

Let (G, X) be a Shimura datum with G semisimple of adjoint type, X+ a connected
component of X, K be a neat compact open subgroup of G(Af) and F a number field
over which ShK(G, X)C admits a canonical model (c.f. section 4.1.2). Let (Vn)n∈N be a
sequence of special subvarieties of SK(G, X)C.

• If there exists a finite collection {T1, · · · ,Tr} of R-anisotropic Q-subtori of G such
that each Vn, n ∈ N, is Ti-special for some i ∈ {1, · · · , r}, then the sequence (Vn) is
equidistributed in the following sense : after possibly passing to a subsequence the
sequence of probability measures µVn weakly converges to the probability measure
µV of some special subvariety V and for n large, Vn is contained in V .

This implies that all irreducible components of the Zariski closure of
⋃

n∈N Vn in
ShK(G, X)C are special. Indeed, let nk be a subsequence such that µVnk

−→ µV

and Vnk
⊂ V for all k large enough. Let Y be the closure of the union of Vnk

for k

such that Vnk
⊂ V . Then Y ⊂ V and by convergence of measures, the support of

µV whose closure is V is contained in Y hence Y = V and is special. Because the
sequence formed by the remaining elements of the original sequence Vn is again
equidistributed, we reiterate the process. Thus we show that the components of⋃

n∈N Vn are special.
• otherwise the function degLK

(Gal(Q/F ) · Vn) is an unbounded function of n and
we can use Galois-theoretic methods to study the Zariski closure of

⋃
n∈N Vn in

ShK(G, X)C (c.f. definition 4.2.4 for the definition of the degree degLK
) .

We now explain this alternative in more details.

2.3. Equidistribution results. Ratner’s classification of probability measures on ho-
mogeneous spaces of the form Γ\G(R)+ (where Γ denotes a lattice in G(R)+), ergodic
under some unipotent flows [29], and Dani-Margulis recurrence lemma [10] enable Clozel
and Ullmo [9] to prove the following equidistribution result in the strongly special case,
generalized by Ullmo and Yafaev [37, theorem 3.8] to the T-special case :
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Theorem 2.3.1 (Clozel-Ullmo, Ullmo-Yafaev). Let (G, X) be a Shimura datum with
G semisimple of adjoint type, K a compact open subgroup of G(Af). Let T be an
R-anisotropic Q-subtorus of G. Let (Vn)n∈N be a sequence of T-special subvarieties of
SK(G, X)C. Let µVn be the canonical probability measure on ShK(G, X)C supported by
Vn. There exists a T-special subvariety V of SK(G, X)C and a subsequence (µnk

)k∈N

weakly converging to µV . Furthermore V contains Vnk
for all k sufficiently large. In par-

ticular, the irreducible components of the Zariski closure of a set of T-special subvarieties
of SK(G, X)C are special.

Remarks 2.3.2. (1) Note that a special point of SK(G, X)C, whose Mumford-Tate
group is a non-central torus, is not strongly special. Moreover, given an R-
anisotropic Q-subtorus T of G, the connected Shimura variety SK(G, X)C contains
only a finite number of T-special points (c.f. [37, lemma 3.7]). Thus theorem 2.3.1
says nothing directly on the André-Oort conjecture.

(2) In fact the conclusion of the theorem 2.3.1 is simply not true for special points :
they are dense for the Archimedian topology in SK(G, X)C(C), so just consider a
sequence of special points converging to a non-special point in SK(G, X)C(C) (or
diverging to a cusp if SK(G, X)C(C) is non-compact). In this case the correspond-
ing sequence of Dirac delta measures will converge to the Dirac delta measure of
the non-special point (respectively escape to infinity).

(3) There is a so-called equidistribution conjecture which implies André-Oort and
much more. A sequence (xn) of points of SK(G, X)C(C) is called strict if any for
any proper special subvariety V of ShK(G, X)C(C), the set

{n : xn ∈ V }

is finite. Let E be a field of definition of canonical model of ShK(G, X)C(C). To
any special point x, one associates a probability measure ∆x on ShK(G, X)C(C)
as follows :

∆x =
1

|Gal(E/E) · x|

∑
y∈Gal(E/E)·x

δy

where δy is the Dirac measure at the point y and |Gal(E/E) · x| denotes the
cardinality of the Galois orbit Gal(E/E) · x. The equidistribution conjecture
predicts that if (xn) is a strict sequence of special points, then the sequence of
measures ∆xn weakly converges to the canonical probability measure attached to
ShK(G, X)C(C). This statement implies the André-Oort conjecture. The equidis-
tribution conjecture is known for modular curves and is open in general. There
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are some recent conditional results for Hilbert modular varieties due to Zhang (see
[42]). For more on this, we refer to the survey [35].

2.4. Galois orbits of non-strongly special subvarieties. In this paragraph, we recall
the lower bound obtained in [37] for the degree of the Galois orbit of a non-strongly special
subvariety in a Shimura variety ShK(G, X)C, G semisimple of adjoint type.

Definition 2.4.1. Let (G, X) be a Shimura datum. Let K =
∏

p prime Kp be a neat
compact open subgroup of G(Af). Let (HV , XV ) be a Shimura subdatum of (G, X) defining
a special subvariety V of SK(G, X)C.

We denote by :

• EHV
the reflex field of (HV , XHV

)
• TV the connected centre of HV . It is a (possibly trivial) torus.
• Km

TV
the maximal compact open subgroup of TV (Af).

• KTV
the compact open subgroup TV (Af) ∩K ⊂ Km

TV
.

• i(TV ) the number of primes p such that Km
TV,p
6= KTV,p

.
• CV the torus HV /Hder

V isogenous to TV .
• dTV

the absolute value of the discriminant of the splitting field LV of CV , and nV

the absolute degree of LV .
• βV := log(dTV

).

Remark 2.4.2. Notice that the group KTV
depends on the particular embedding HV ↪→ G

(which is determined by V up to conjugation by Γ) while the other quantities defined above
(and also the index |Km

TV
/KTV

|) only depend on V .

One of the main ingredients of our proof is the following lower bounds for the degree of
Galois orbits of non-strongly special subvarieties obtained in [37, theorem 2.13] :

Theorem 2.4.3 (Ullmo-Yafaev). Let (G, X) be a Shimura datum with G semisimple of
adjoint type. Let K =

∏
p prime Kp be a neat compact open subgroup of G(Af). Let E be a

number field over which ShK(G, X)C admits a canonical model.
Assume the GRH for CM fields. There exists a real number B > 0 and, for each positive

integer N , a real number C(N) > 0 such that the following holds.
Let (H, XH) be a Shimura subdatum of (G, X) with H the generic Mumford-Tate group

of XH and let KH = K ∩H(Af). Let V be a special subvariety of SKH
(H, XH)C. Then

the following inequality holds :

(2.1) degLKH
(Gal(Q/E) · V ) > C(N) ·max(1, Bi(TV ) · |Km

TV
/KTV

| · βN
V ) .

Furthermore, if one considers only the subvarieties V such that the associated tori TV lie
in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.
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2.5. The precise alternative. Throughout the paper we will be using the following
notations.

Definition 2.5.1. Let (G, X) be a Shimura datum with G semisimple of adjoint type.
Let K =

∏
p prime Kp be a neat compact open subgroup of G(Af).

Let (H, XH) be a Shimura subdatum of (G, X) with H being the generic Mumford-Tate
group of XH and let KH = K ∩H(Af). Let V be a special subvariety of SKH

(H, XH)C.
With the notations of definition 2.4.1 and theorem 2.4.3 we define αV = 0 if TV is

trivial, otherwise :

αV := Bi(TV ) · |Km
TV

/KTV
| .

The alternative roughly explained in the introduction to section 2 can now be formulated
in the following theorem (easy adaptation of [37, theor. 3.9]) :

Theorem 2.5.2. Let (G, X) be a Shimura datum with G semisimple of adjoint type and
let X+ be a connected component of X. Let K =

∏
p prime Kp be a compact open subgroup

of G(Af).
Assume the GRH for CM fields.
Let Σ be a set of special subvarieties V of SK(G, X)C such that αV βV is bounded as V

ranges through Σ. There exists a finite set {T1, · · · ,Tr} of Q-subtori of G such that any
V in Σ is Ti-special for some i ∈ {1, · · · , r}.

Furthermore, if one considers only the subvarieties V such that the associated tori TV

lie in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

Proof. Choose a number field F such that SK(G, X) admits a canonical model over F .
Then the assumption that αV βV is bounded as V ranges through Σ implies that the
degrees of Gal(F/F ) orbits of varieties in Σ are unbounded. The conclusion now follows
from [37, theorem 3.9]. �

3. Reduction and strategy.

From now on we will use the following convenient terminology :

Definition 3.0.3. Let (G, X) be a Shimura datum and K a compact open subgroup of
G(Af). Let Σ be a set of special subvarieties of ShK(G, X)C. A subset Λ of Σ is called
a modification of Σ if Λ and Σ have the same Zariski closure in ShK(G, X)C. Given a
subtorus T of Gad we say that Σ is T-special if any element in Σ is a T-special subvariety.

3.1. First reduction. We first have the following reduction of the proof of theorem 1.2.2 :
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Theorem 3.1.1. Let (G, X) be a Shimura datum and K a compact open subgroup of
G(Af). Let Z be an irreducible subvariety of ShK(G, X)C. Suppose that Z contains a
Zariski dense set Σ, which is a union of special subvarieties V , V ∈ Σ, all of the same
dimension n(Σ) < dim Z.

We make one of the following assumptions :

(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there is a faithful representation G ↪→ GLn such that with respect to

this representation, the connected centres TV of the generic Mumford-Tate groups
HV of V lie in one GLn(Q)-conjugacy class as V ranges through Σ.

Then

(a) The variety Z contains a Zariski dense set Σ′ of special subvarieties of constant
dimension n(Σ′) > n(Σ).

(b) Furthermore, if Σ satisfies the condition (2), one can choose Σ′ also satisfying (2).

Proposition 3.1.2. Theorem 3.1.1 implies the main theorem 1.2.2.

Proof. Let Σ as in the main theorem 1.2.2. Without loss of generality one can assume
that the Zariski closure Z of Σ is irreducible. Moreover by Noetherianity one can assume
that all the V ∈ Σ have the same dimension n(Σ).

Notice that the assumption (2) of the theorem 1.2.2 implies the assumption (2) of the
theorem 3.1.1. We then apply theorem 3.1.1,(a) to Σ : the subvariety Z contains a Zariski-
dense set Σ′ of special subvarieties V ′, V ′ ∈ Σ′, of constant dimension n(Σ′) > n(Σ).

By theorem 3.1.1,(b) one can replace Σ by Σ′. Applying this process recursively and as
n(Σ′) ≤ dim(Z), we conclude that Z is special. �

3.2. Second reduction. Part (b) of theorem 3.1.1 is easy, we deal with it in section 5.
Part (a) of theorem 3.1.1 can itself be reduced to the following main theorem (we refer
to section 4 for relevant facts about reflex fields and to definition 6.0.4 for the (usual)
definition of an F -irreducible F -variety) :

Theorem 3.2.1. Let (G, X) be a Shimura datum with G semisimple of adjoint type and
let X+ be a connected component of X. Let K be a compact open subgroup of G(Af). Let
F be a number field containing the reflex field E(G, X).

Let Z be a Hodge generic F -irreducible F -subvariety of the connected component SK(G, X)C

of ShK(G, X)C. Suppose that Z contains a Zariski dense set Σ, which is a union of special
subvarieties V , V ∈ Σ, all of the same dimension n(Σ) and such that for any modification
Σ′ of Σ the set {αV βV , V ∈ Σ′} is unbounded.

We make one of the following assumptions :
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(1) Assume the Generalized Riemann Hypothesis (GRH) for CM fields.
(2) Assume that there is a faithful representation G ↪→ GLn such that with respect to

this representation, the connected centres TV of the generic Mumford-Tate groups
HV of V lie in one GLn(Q)-conjugacy class as V ranges through Σ.

After possibly replacing Σ by a modification, for every V in Σ there exists a special
subvariety V ′ such that V ( V ′ ⊂ Z.

Proposition 3.2.2. Theorem 3.2.1 implies theorem 3.1.1 (a).

Proof. Let (G, X), K, Z and Σ be as in theorem 3.1.1.
Notice that the image of a special subvariety by a morphism of Shimura varieties deduced

from a morphism of Shimura data is a special subvariety. Conversely any irreducible
component of the preimage of a special subvariety by such a morphism is special.

This first implies that if K ⊂ G(Af) is a compact open subgroup and if K ′ ⊂ K is a
finite index subgroup then theorem 3.1.1(a) is true at level K if and only if it is true at
level K ′.

Let (Gad, Xad) be the Shimura datum adjoint to (G, X) and λ : (G, X) −→ (Gad, Xad)
the natural morphism of Shimura datas. For K ⊂ G(Af) sufficiently small let Kad be a
neat compact open subgroup of Gad(Af) containing λ(K). Consider the (finite) morphism
of Shimura varieties

f : ShK(G, X)C −→ ShKad(Gad, Xad)C .

By construction 2.3 in [17] if Z ⊂ ShK(G, X)C satisfies assumption (2) then its image
f(Z) in ShK(G, X)C also satisfies (2). Applying our first remark to the morphism f we
obtain that theorem 3.1.1 (a) for (Gad, Xad) implies theorem 3.1.1 (a) for (G, X). Thus
we reduced the proof of theorem 3.1.1 (a) to the case where G is semisimple of adjoint
type.

We can assume that the variety Z in theorem 3.1.1 is Hodge generic. To fulfill this con-
dition, replace ShK(G, X)C by the smallest special subvariety of ShK(G, X)C containing
Z (c.f. [17, prop.2.1]). This comes down to replacing G with the generic Mumford-Tate
group on Z.

We can also assume that Z is contained in SK(G, X)C as proving theorem 3.1.1 for Z

is equivalent to proving theorem 3.1.1 for any irreducible component of its image under
some Hecke correspondence.

As Z contains a Zariski-dense set of special points, and any special point is Q-valued,
the variety Z is defined over some number field F ⊂ C containing the reflex field E(G, X) :
Z = ZF ×Spec F Spec C. As Z is irreducible ZF is geometrically irreducible.
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If for some modification Σ′ of Σ the set {αV βV , V ∈ Σ′} is bounded, by theorem 2.5.2
and by Noetherianity there exists a Q-subtorus T of G and a T-special modification of
Σ. Applying theorem 2.3.1 one obtains that Z is special.

Thus we can assume that Z satisfies the hypothesis of theorem 3.2.1 : we have reduced
the proof of theorem 3.1.1 to the case where Z satisfies moreover the assumptions of
theorem 3.2.1.

Let Σ′ be the set of the special subvarieties V ′ obtained from theorem 3.2.1 applied
to Z. Thus Z contains the Zariski-dense set Σ′ = ∪V ′∈Σ′V ′. After possibly replacing Σ′

by a modification, we can assume by Noetherianity of Z that the subvarieties in Σ′ have
the same dimension n(Σ′). Of course n(Σ′) > n(Σ). This proves the theorem 3.1.1 (a)
assuming theorem 3.2.1. �

3.3. Sketch of the proof of the André-Oort conjecture in the case where Z is a
curve. The strategy for proving theorem 3.2.1 is fairly complicated. We first recall the
strategy developed in [17] in the case where Z is a curve. In the next section we explain
why this strategy cannot be directly generalized to higher dimensional cases.

As already noticed in the proof of theorem 1.2.1 one can assume without loss of gener-
ality that the group G is semisimple of adjoint type, Z is Hodge generic (i.e. its generic
Mumford-Tate group is equal to G), and Z is contained in the connected component
SK(G, X)C of ShK(G, X)C. The proof of the theorem 1.2.1 in the case where Z is a curve
then relies on three ingredients.

3.3.1. The first one is a geometric criterion for a Hodge generic subvariety Z to be special
in terms of Hecke correspondences. Given a Hecke correspondence Tm, m ∈ G(Af) (c.f.
section 4.1.1) we denote by T 0

m the correspondence it induces on SK(G, X)C. This cor-
respondence decomposes as T 0

m =
∑

i Tqi , where the qi’s are elements of G(Q)+ ∩KmK

defined by
G(Q)+ ∩KmK =

∐
ΓKq−1

i ΓK .

Theorem 3.3.1. [17, theorem 7.1] Let ShK(G, X)C be a Shimura variety, with G semisim-
ple of adjoint type. Let Z ⊂ SK(G, X)C be a Hodge generic subvariety of the connected
component SK(G, X)C of ShK(G, X)C. Suppose there exist a prime l and an element
m ∈ G(Ql) such that the neutral component T 0

m =
∑n

i=1 Tqi of the Hecke correspondence
Tm associated with m has the following properties :

(1) Z ⊂ T 0
mZ.

(2) For any i ∈ {1, · · ·n}, the variety TqiZ is irreducible.
(3) For any i ∈ {1, · · ·n} the Tqi + Tq−1

i
-orbit is dense in SK(G, X).
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Then Z = SK(G, X), in particular Z is special.

From (1) and (2) one deduces the existence of one index i such that Z = TqiZ. It follows
that Z contains an Tqi + Tq−1

i
-orbit. The equality Z = SK follows from (3).

In the case where Z is a curve one proves the existence of a prime l and of an element m ∈
G(Ql) satisfying these properties as follows. The property (3) is satisfied for essentially
any m. The property (2), which is crucial for this strategy, is obtained by showing that
for any prime l outside a finite set of primes PZ and any q ∈ G(Q)+∩ (G(Ql)×

∏
p6=l Kp),

the variety TqZ is irreducible. This is an easy corollary of a result due independently
to Weisfeiler and Nori (c.f. theorem 4.3.3) applied to the Zariski closure of the image
of the monodromy representation. This result implies that for all l except those in a
finite set PZ , the closure in G(Ql) of the image of the monodromy representation for
the Z-variation of Hodge structure on the smooth locus Zsm of Z coincides with the
closure of K ∩ G(Q)+ in G(Ql) of the open compact subgroup K ⊂ G(Af). To prove
the property (1) one uses Galois orbits of special points contained in Z and the fact that
Hecke correspondences commute with the Galois action. First one notices that Z is defined
over a number field F , finite extension of the reflex field E(G, X) (c.f. section 4.1.2). If
s ∈ Z is a special point, rs the associated reciprocity morphism and m ∈ G(Ql) belongs
to rs((Ql ⊗ F )∗) ⊂ MT(s)(Ql) then the Galois orbit Gal(Q/F ) · s is contained in the
intersection Z ∩ TmZ. If this intersection is proper its cardinality Z ∩ TmZ is bounded
above by a uniform constant times the degree [Kl : Kl ∩mKlm

−1] of the correspondence
Tm. To find l and m such that Z ⊂ TmZ it is then enough to exhibit m ∈ rs((Ql ⊗ F )∗)
such that the cardinality |Gal(Q/F ).s| is larger than [Kl : Kl ∩mKlm

−1]. This is dealt
with by the next two ingredients :

3.3.2. The second ingredient claims the existence of “unbounded” Hecke correspondences
of controlled degree defined by elements in rs((Ql ⊗ F )∗) :

Theorem 3.3.2. [17, corollary 7.4.4] There exists an integer k such that for all s ∈ Σ
and for any prime l such that MT(s)Fl

is a split torus, there exists m ∈ rs((Ql ⊗ F )∗) ⊂
MT(s)(Ql) such that

(1) for any factor Gi of G the image of m in Gi(Ql) is not in a compact subgroup.
(2) [Kl : Kl ∩mKlm

−1]� lk

3.3.3. The third ingredient is a lower bound for |Gal(Q/F ) · s| due to Edixhoven, and
improved in theorem 2.4.3.
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3.3.4. Finally using this lower bound for |Gal(Q/F )·s| and the effective Cebotarev theorem
consequence of GRH one proves the existence for any special point s ∈ Σ with a sufficiently
big Galois orbit of a prime l outside PZ , splitting MT(s), such that MT(s)Fl

is a torus
and such that |Gal(Q/F ).s| � lk. Effective Cebotarev is not needed under the assumption
that the MT(s), s ∈ Σ, are isomorphic. The reason being that in this case, the splitting
field of the MT(s) is constant and the classical Chebotarev theorem provides us with a
suitable l.

We then choose an m satisfying the conditions of the theorem 3.3.2. As |Gal(Q/F ).s| �
[Kl : Kl ∩mKlm

−1] one obtains Z ⊂ TmZ and by the criterion 3.3.1 the subvariety Z is
special.

3.4. Strategy for proving the theorem 1.2.2 : the general case. Our strategy for
dealing with the general case of the theorem 3.2.1 is as follows :

Let (G, X) be a Shimura datum with G semisimple of adjoint type and let X+ be a
connected component of X. Let K be a compact open subgroup of G(Af). Let Z be a
subvariety of SK(G, X)C. Suppose that Z contains a Zariski dense set Σ, which is a union
of special subvarieties V , V ∈ Σ, all of the same dimension n(Σ) and such that the set
{αV βV , V ∈ Σ} is unbounded.

Notice that the idea of the proof of [17] generalizes to the case where dim Z = n(Σ) + 1
(c.f. section 8.5.1). In the general case, for a V in Σ with αV βV sufficiently large we want
to exhibit V ′ special subvariety in Z containing V properly.

Our first step (section 6) is geometric : we give a criterion (theorem 6.1) similar to
criterion 3.3.1 saying that an inclusion Z ⊂ TmZ, for a prime l and an element m ∈ HV (Ql)
satisfying certain conditions, implies that V is properly contained in a special subvariety
V ′ of Z.

The criterion we need has to be much more subtle than the one in [17]. In the charac-
terization of [17], in order to obtain the irreducibility of TmZ the prime l must be outside
some finite set PZ of primes. It seems impossible to make the set of bad primes PZ explicit
in terms of numerical invariants of Z, except in a few cases where the Chow ring of the
Baily-Borel compactification of ShK(G, X)C is easy to describe (like the case considered
by Edixhoven, where ShK(G, X)C is a product

∏n
i=1 Xi of modular curves, and where he

shows that for a k-dimensional subvariety Z dominant on all factors Xi, 1 ≤ i ≤ n, the
bad primes p ∈ PZ are smaller than the supremum of the degree of the projections of Z

on the k-factors Xi1×· · ·×Xik of ShK(G, X)C). In particular that characterization is not
suitable for our induction.
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Our criterion 6.1 for an irreducible subvariety Z containing a non-strongly special sub-
variety V and satisfying Z ⊂ TmZ for some m ∈ TV (Ql) to contain a special subvariety
V ′ containing V properly does no longer require the irreducibility of TmZ. In particular it
is valid for any prime l, outside PZ or not. Instead we notice that the inclusion Z ⊂ TmZ

implies that Z contains the image Z ′ in ShK(G, X)C of the 〈K ′
l , (k1mk2)n〉-orbit of (one

irreducible component of) the preimage of V in the pro-l-covering of ShK(G, X)C. Here
k1 and k2 are some elements of Kl, n some positive integer and K ′

l the l-adic closure of
the image of the monodromy of Z. If the group 〈K ′

l , (k1mk2)n〉 is not compact, then the
irreducible component of Z ′ containing V contains a special subvariety V ′ of Z containing
V properly.

The main problem with this criterion is that the group 〈K ′
l , k1mk2〉 can be compact,

containing K ′
l with very small index. This is the case in Edixhoven’s counter-example [14,

Remark 7.2]. In this case G = PGL2 × PGL2, K ′
l := Γ0(l)× Γ0(l) and k1mk2 is wl × wl,

the product of two Atkin-Lehner involutions. The index [〈K ′
l , k1mk2〉 : K ′

l ] is four.

Our second step (section 7) consists in getting rid of this problem and is purely group-
theoretic. We notice that if Kl is not a maximal compact open subgroup but is contained
in an Iwahori subgroup of G(Ql), then for “many” m in TV (Ql) the element k1mk2 is not
contained in a compact subgroup for any k1 and k2 in Kl. This is our theorem 7.1 about
the existence of adequate Hecke correspondences. The proof relies on simple properties of
the Bruhat-Tits decomposition of G(Ql).

Our third step (section 8) is Galois-theoretic and geometric. We use theorem 2.4.3,
theorem 6.1, theorem 7.1 to show (under one of the assumptions of theorem 3.1.1) that
the existence of a prime number l satisfying certain conditions forces a subvariety Z of
ShK(G, X)C containing a non-strongly special subvariety V to contain a special subvariety
V ′ containing V properly. The proof is a nice geometric induction on r = dim Z − dim V .

Our last step (section 9) is number-theoretic : we complete the proof of the theorem 3.2.1
and hence of theorem 1.2.2 by exhibiting, using effective Chebotarev under GRH (or
usual Chebotarev under the second assumption of theorem 1.2.2), a prime l satisfying
our desiderata. For this step it is crucial that both the index of an Iwahori subgroup
in a maximal compact subgroup of G(Ql) and the degree of the correspondence Tm are
bounded by a uniform power of l.
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4. Preliminaries.

4.1. Notations. In this section we define some notations and recall some standard facts
about Shimura varieties that we will use in this paper. We refer to [11], [12], [21] for
details.

As far as groups are concerned, reductive algebraic groups are assumed to be connected.
The exponent 0 denotes the algebraic neutral component and the exponent + the topolog-
ical neutral component. Thus if G is a Q-algebraic group G(R)+ denotes the topological
neutral component of the real Lie group of R-points G(R). We also denote by G(Q)+ the
intersection G(R)+ ∩G(Q).

When G is reductive we denote by Gad the adjoint group of G (the quotient of G by its
center) and by G(R)+ the preimage in G(R) of Gad(R)+. The notation G(Q)+ denotes
the intersection G(R)+ ∩G(Q). In particular when G is adjoint then G(Q)+ = G(Q)+.

For any topological space Z, we denote by π0(Z) the set of connected components of Z.

4.1.1. Shimura varieties. Let (G, X) be a Shimura datum. We fix X+ a connected com-
ponent of X. Given K a compact open subgroup of G(Af) one obtains the homeomorphic
decomposition

(4.1) ShK(G, X)C = G(Q)\X ×G(Af)/K '
∐
g∈C

Γg\X+ ,

where C denotes a set of representatives for the (finite) double coset space G(Q)+\G(Af)/K,
and Γg denotes the arithmetic subgroup gKg−1 ∩G(Q)+ of G(Q)+. We denote by ΓK

the group Γe corresponding to the identity element e ∈ C and by SK(G, X)C = ΓK\X+

the corresponding connected component of ShK(G, X)C.
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The Shimura variety Sh(G, X)C is the C-scheme projective limit of the ShK(G, X)C, K

ranging through compact open subgroups of G(Af). The group G(Af) acts continuously
on the right on Sh(G, X)C. The set of C-points of Sh(G, X)C is

Sh(G, X)C(C) =
G(Q)
Z(Q)

\(X ×G(Af)/Z(Q)) ,

where Z denotes the centre of G and Z(Q) denotes the closure of Z(Q) in G(Af) [12,
prop.2.1.10]. The action of G(Af) on the right is given by : (x, h)

.g−→ (x, h · g). For
m ∈ G(Af), we denote by Tm the Hecke correspondence

ShK(G, X)C ←− Sh(G, X)C
.m−→ Sh(G, X)C −→ ShK(G, X)C .

4.1.2. Reciprocity morphisms and canonical models. Given (G, X) a Shimura datum, where
X is the G(R)-conjugacy class of some h : S −→ GR, we denote by µh : Gm,C −→ GC

the C-morphism of Q-groups obtained by composing the embedding of tori

Gm,C −→ SC

z −→ (z, 1)

with hC. Let E(G, X) be the field of definition of the G(C)-conjugacy class of µh, it is
called the reflex field of (G, X). In the case where G is a torus T and X = {h} we denote
by

r(T,{h}) : Gal(Q/E)ab −→ T(Af)/T(Q)

the reciprocity morphism defined in [12, 2.2.3] for any field E ⊂ C containing E(T, {h}).
Let x = (h, g) be a special point in Sh(G, X)C image of the pair (h : S −→ T ⊂ G, g) ∈
X × G(Af). The field E(h) = E(T, {h}) depends only on h and is an extension of
E(G, X) [12, 2.2.1]. The Shimura variety Sh(G, X)C admits a unique model Sh(G, X)
over E(G, X) such that the G(Af)-action on the right is defined over E(G, X), the special
points are algebraic and if x = (h, g) is a special point of Sh(G, X)(C) then an element
σ ∈ Gal(Q/E(h)) ⊂ Gal(Q/E(G, X)) acts on x by σ(x) = (h, r̃(σ)g), where r̃(σ) ∈ T(Af)
is any lift of r(T,{h})(x) ∈ T(Af)/T(Q), c.f. [12, 2.2.5]. This is called the canonical model
of Sh(G, X). For any compact open subgroup K of G(Af), one obtains the canonical
model for ShK(G, X) over E(G, X). For details on this definition, sketches of proofs of
the existence and uniqueness and all the relevant references we refer the reader to Chapters
12-14 of [21].

For m ∈ G(Af) the Hecke correspondence Tm is defined over E(G, X). We will denote
by πK : Sh(G, X) −→ ShK(G, X) the natural projection.
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4.1.3. Galois action on the set of connected components of a special subvariety. In this
subsection we recall the explicit description of the Galois action on the set of connected
components of special subvarieties of Shimura varieties. All of this is taken from [12],
sections 2.4-2.6.

Let (G, X) be a Shimura datum and let (H, XH) be a Shimura sub datum of (G, X).
Let T be the connected centre of H. Note that we do not rule out the case when T is
trivial. The group H is an almost direct product THder.

Let KH be the compact open subgroup H(Af) ∩K of H(Af). We describe the Galois
action on the set of components of ShKH

(H, XH). Let π0(H,KH) be the set of geometric
components of ShKH

(H, XH). Recall ([12] 2.1.3.1) that

π0(H,KH) = H(Q)+\H(Af)/KH = H(Af)/H(Q)+KH

where H(Q)+ is the stabiliser of a connected component of XH in H(Q). Let E = EH be
the reflex field of (H, XH) and TE := ResEH/QGmEH

.
Following Deligne ([12] 2.0.15.1) we define for any reductive Q-group N

π(N) := N(A)/N(Q)ρ(Ñ(A)).

Here ρ : Ñ −→ Nder denotes the universal covering of Nder. We set

π0(π(N)) := π0(π(N))/π0(N(R)+),

then by ([12] 2.1.3.2) we have

π0(H,KH) = π0(π(H))/KH.

The action of Gal(Q/EH) on π0(H,KH) is given by the reciprocity morphism ([12]
2.6.1.1)

r(H,XH) : Gal(Q/EH) −→ π0(π(H)) .

The morphism r(H,XH) factors through Gal(Q/EH)ab which is identified with π0(π(TE))
by the global class field theory.

Let C be H/Hder. To (H, XH) one associates two Shimura data (C, {x}) and (Had, XHad).
The field EH is the composite of E(C, {x}) and E(Had, XHad). There are morphisms of
Shimura data

θab : (H, XH) −→ (C, {x}) and θad : (H, XH) −→ (Had, XHad).

Note that (C, {x}) is a special Shimura datum. Let r(C,{x}) be the reciprocity morphism
associated with (C, {x}). The morphism θab induces a morphism π0(π(H)) → π0(π(C)).
This morphism preceded by r(H,XH) is r(C,{x}). We let L be the Galois closure of EH .
Note that the degree of L over Q is bounded uniformly on (H, XH). We will keep the
notations and assumptions introduced above throughout this section.
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4.1.4. The tower of Shimura varieties at a prime l. Let l be a prime. Suppose K l ⊂ G(Al
f)

is a compact open subgroup, where Al
f denotes the ring of finite adèles outside l.

Definition 4.1.1. We denote by ShKl(G, X) the E(G, X)-scheme lim←−ShKl·Ul
(G, X) for

Ul compact open subgroup of G(Ql).

The scheme ShKl(G, X) is the quotient Sh(G, X)/K l. It admits a continuous G(Ql)-
action on the right. Given a compact open subgroup Ul ⊂ G(Ql) we denote by πUl

:
ShKl(G, X) −→ ShKlUl

(G, X) the canonical projection.

4.1.5. Neatness. Let G be a linear algebraic group over Q. We recall the definition of
neatness for subgroups of G(Q) and its generalization to subgroups of G(Af). We refer
to [3] and [26, 0.6] for more details.

Given an element g ∈ G(Q) let Eig(g) be the subgroup of Q∗ generated by the eigenval-
ues of g. We say that g ∈ G(Q) is neat if the subgroup Eig(g) is torsion-free. A subgroup
Γ ⊂ G(Q) is neat if any element of Γ is neat. In particular such a group is torsion-free.

Given an element gp ∈ G(Qp) let Eigp(gp) be the subgroup of Qp
∗ generated by all

eigenvalues of gp. Let Q −→ Qp be some embedding and consider the torsion part (Q∗ ∩
Eigp(gp))tors. Since every subgroup of Q∗ consisting of roots of unity is normalized by
Gal(Q/Q), this group does not depend on the choice of the embedding Q −→ Qp

∗. We
say that gp is neat if

(Q∗ ∩ Eigp(g))tors = {1} .

We say that g = (gp)p ∈ G(Af) is neat if⋂
p

(Q∗ ∩ Eigp(gp))tors = {1} .

A subgroup K ⊂ G(Af) is neat if any element of K is neat. Of course if the projection Kp

of K in G(Qp) is neat then K is neat. Notice that if K is a neat compact open subgroup
of G(Af) then all of the Γg in the decomposition (4.1) are.

Neatness is preserved by conjugacy and intersection with an arbitrary subgroup. More-
over if ρ : G −→ H is a Q-morphism of linear algebraic Q-groups and g ∈ G(Q) (resp.
G(Af)) is neat then its image ρ(g) is also neat.

We recall the following well-known lemma :

Lemma 4.1.2. Let K =
∏

p Kp be a compact open subgroup of G(Af) and let l ≥ 3
be a prime number. There exists an open subgroup K ′

l of Kl such that the subgroup
K ′ := K ′

l ×
∏

p6=l Kp of K is neat.

Proof. As noticed above if K ′
l is neat then K ′ := K ′

l ×
∏

p6=l Kp is neat. As a subgroup of
a neat group is neat, it is enough to show that a special maximal compact open subgroup
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Kl ⊂ G(Ql) contains a neat subgroup K ′
l with finite index. By [26, p.5] one can take,

K ′
l = K

(1)
l the first congruence kernel. �

4.2. Baily-Borel compactification and degrees of subvarieties. In this section we
recall the results we will need on projective geometry of Shimura varieties. We will also
prove a proposition (proposition 4.2.11) which compares the degrees of a subvariety of
ShK(G, X) with respect to two different line bundles.

4.2.1. Degrees. We will need only basics on numerical intersection theory as recalled in
[20, chap.1, p.15-17]. Let X be a complete irreducible complex variety and L a line bundle
on X with topological first Chern class c1(L) ∈ H2(X, Z). Given V ⊂ X an irreducible
subvariety we define the degree of V with respect to L by

degL V = c1(L)dim V ∩ [V ] ∈ H0(X, Z) = Z ,

where [V ] ∈ H2 dim V (X, Z) denotes the fundamental class of V and ∩ denotes the cap
product between H2 dim V (X, Z) and H2 dim V (X, Z). We also write degL V =

∫
V c1(L)dim V .

It satisfies the projection formula : given f : Y −→ X a generically finite surjective proper
map one has

degf∗L Y = (deg f) degL X .

All this naturally extends to the case where X or V are possibly non-reduced complete
complex schemes provided V is of pure dimension.

4.2.2. Nefness. Recall (c.f. [20, def. 1.4.1]) that a line bundle L on a complete scheme
X is said to be nef if degL C ≥ 0 for every irreducible curve C ⊂ X. We will need the
following basic result (c.f. [20, theor.1.4.9]) :

Theorem 4.2.1 (Kleiman). Let L be a line bundle on a complete complex scheme X.
Then L is nef if and only if for every irreducible subvariety V ⊂ X one has degL V ≥ 0.

4.2.3. Baily-Borel compactification. Let (G, X) be a Shimura datum. Given K ⊂ G(Af) a
neat compact open subgroup, let ShK(G, X)C the corresponding complex Shimura variety.

Definition 4.2.2. We denote by ShK(G, X)C the Baily-Borel compactification of ShK(G, X)C,
c.f. [2].

The Baily-Borel compactification ShK(G, X)C is a normal projective variety. Its bound-
ary ShK(G, X)C \ShK(G, X)C has complex codimension > 1 if and only if G has no split
Q-simple factors of dimension 3. The following proposition summarizes basic properties
of ShK(G, X)C that we will use.
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Proposition 4.2.3. (1) The line bundle of holomorphic forms of maximal degree on
X descends to ShK(G, X)C and extends uniquely to an ample line bundle LK

on ShK(G, X)C such that, at the generic points of the boundary components of
codimension one, it is given by forms with logarithmic poles. Let K1 and K2 be
neat compact open subgroups of G(Af) and g in G(Af) such that K2 ⊂ gK1g

−1.
Then the morphism from ShK2(G, X)C to ShK1(G, X)C induced by g extends to
a morphism f : ShK2(G, X)C −→ ShK1(G, X)C, and the line bundle f∗LK1 is
canonically isomorphic to LK2 .

(2) The canonical model ShK(G, X) of ShK(G, X)C over the reflex field E(G, X) ad-
mits a unique extension to a model ShK(G, X) of ShK(G, X)C over E(G, X). The
line bundle LK is naturally defined over E(G, X).

(3) Let ϕ : (H, Y ) −→ (G, X) be a morphism of Shimura data and KH ⊂ H(Af),
KG ⊂ G(Af) neat compact open subgroups with ϕ(KH) ⊂ KG. Then the canonical
map φ : ShKH

(H, Y ) −→ ShKG
(G, X) induced by ϕ extends to a morphism still

denoted by φ : ShKH
(H, Y ) −→ ShKG

(G, X).

Proof. The first statement is [2, lemma 10.8] and [26, prop.8.1, sections 8.2, 8.3]. The
second one is [26, theor.12.3.a]. The third statement is [30, theorem p.231] (over C) and
[26, theor. 12.3.b] (over E(G, X)). �

Definition 4.2.4. Given a complex subvariety Z ⊂ ShK(G, X)C we will denote by degLK
Z

the degree of the compactification Z ⊂ ShK(G, X)C with respect to the line bundle LK .
We will write deg Z when it is clear to which line bundle we are referring to.

Remark 4.2.5. More generally given a connected semisimple algebraic Q-group G of
Hermitian type (and of non-compact type) with associated Hermitian domain X and
Γ ⊂ G(Q) a neat arithmetic lattice, the Baily-Borel compactification Γ\X of the quasi-
projective complex variety Γ\X and the bundle LΓ on Γ\X are well-defined.

4.2.4. Comparison of degrees for sub-Shimura data.

Proposition 4.2.6. Let φ : ShK(G, X)C −→ ShK′(G′, X ′)C be a morphism of Shimura
varieties associated to a Shimura sub-datum ϕ : (G, X) −→ (G′, X ′), a neat compact open
subgroup K of G(Af) and a neat compact open subgroup K ′ of G′(Af) containing ϕ(K).
Then the line bundle

ΛK,K′ := φ∗LK′ ⊗ L−1
K

on ShK(G, X)C is nef.

This proposition is a corollary of the following
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Proposition 4.2.7. Let ϕ : G −→ G′ be a Q-morphism of connected semisimple algebraic
Q-groups of Hermitian type (and of non-compact type) inducing a holomorphic totally
geodesic embedding of the associated Hermitian domains φ : X+ −→ X ′+. Let Γ ⊂ G(Q)
be a neat arithmetic lattice and Γ′ ⊂ G′(Q) a neat arithmetic lattice containing ϕ(Γ).
Then the line bundle

ΛΓ,Γ′ := φ∗LΓ′ ⊗ L−1
Γ

on Γ\X is nef.

Proposition 4.2.7 implies the proposition 4.2.6. Let C ⊂ ShK(G, X)C be an irreducible
curve. To prove that degΛK,K′ C ≥ 0 one can assume without loss of generality that C

is contained in the connected component SK = ΓK\X+ and that φ : ShK(G, X)C −→
ShK′(G′, X ′)C maps SK to SK′ = ΓK′\X ′+. The morphism of reductive Q-groups ϕ :
G −→ G′ induces a Q-morphism ϕ : Gder −→ G′ad of semisimple Q-groups. Let Γ denote
the neat lattice Gder(Q) ∩K ⊂ Gder(Q) and Γ′ the neat lattice of Gad(Q) image of ΓK′ .
Notice that Γ′\X ′+ = ΓK′\X ′+. Consider the diagram

(4.2) Γ\X+

φ◦π

$$JJJJJJJJJ

π

��

ΓK\X+
φ

// Γ′\X ′+

with π the natural finite étale map. The proposition 4.2.3 (1) easily extends to this setting :

π∗(LΓK
) = LΓ .

Thus

π∗ΛK,K′ = ΛΓ,Γ′ .

Let d denote the degree of π. By the projection formula one obtains :

degΛK,K′ C =
1
d

degΛK,K′ π−1(C) .

Now degΛK,K′ π−1(C) ≥ 0 by proposition 4.2.7.
�

Proof of the proposition 4.2.7. Let C ⊂ Γ\X be an irreducible curve. We want to show
that degΛΓ,Γ′

C ≥ 0. First notice that by the projection formula and by proposition 4.2.3
(1), we can assume that the group G is simply connected and the group G′ is adjoint.

Let G = G1 × · · · × Gr be the decomposition of G into Q-simple factors. Let ϕi :
Gi −→ G′, 1 ≤ i ≤ r denote the components of ϕ : G −→ G′. If Γ1 ⊂ Γ is a finite
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index subgroup and p : Γ1\X+ −→ Γ\X+ is the corresponding finite étale morphism,
by proposition 4.2 the line bundle ΛΓ1,Γ′ corresponding to φ ◦ p is isomorphic to p∗ΛΓ,Γ′ .
The fact that degΛΓ,Γ′

C ≥ 0 is once more implied by degΛΓ1,Γ′
p−1(C) ≥ 0. Thus we can

assume that Γ = Γ1× · · · ×Γr, with Γi a neat arithmetic subgroup of Gi(Q). The variety
Γ\X+ decomposes into a product

Γ\X+ = Γ1\X+
1 × · · · × Γr\X+

r

and the line bundle ΛΓ,Γ′ on Γ\X+ decomposes as

ΛΓ,Γ′ = ΛΓ1,Γ′ � · · ·� ΛΓr,Γ′ ,

with ΛΓi,Γ′ = φ∗i LΓ′ ⊗ L−1
Γi

the corresponding line bundle on Γi\X+
i . Let pi : Γ\X+ −→

Γi\X+
i be the natural projection. As

degΛΓ,Γ′
C =

r∑
i=1

degp∗i ΛΓi,Γ′
C ,

we have reduced the proof of the proposition to the case where G is Q-simple. It then
follows from the more precise following proposition 4.2.8. �

Proposition 4.2.8. Assume that G is Q-simple.

(1) If G is Q-anisotropic then the line bundle ΛΓ,Γ′ on the smooth complex projective
variety Γ\X+ admits a metric of non negative curvature.

(2) If G is Q-isotropic then either the line bundle ΛΓ,Γ′ on ShK(G, X) is trivial or it
is ample.

Proof. Let G′ = G′
1 × · · · × G′

r′ be the decomposition of G′ into Q-simple factor and
ϕj : G −→ G′

j , 1 ≤ j ≤ r′, the components of ϕ : G −→ G′. By naturality of LΓ and LΓ′

(c.f. proposition 4.2) one can assume that Γ′ = Γ′
1 × · · ·Γ′

r′ . Accordingly one has

Γ′\X ′+ = Γ′
1\X ′

1
+ × · · · × Γ′

r′\X ′
r′

+
.

As ϕ : G −→ G′ is injective and G is Q-simple we can without loss of generality assume
that ϕ1 : G −→ G′

1 is injective. As

Λ = (φ∗1LΓ′
1
⊗ L−1

Γ )⊗ φ∗2LΓ′
2
⊗ · · ·φ∗r′LΓ′

r
,

and the LΓ′
j
, j ≥ 2, are ample on Γ′

j\X ′
j
+ it is enough to prove the statement replacing

ΛΓ,Γ′ by φ∗1LΓ′
1
⊗ L−1

Γ . Thus we can assume G′ is Q-simple.
By the adjunction formula the line bundle ΛΓ,Γ′ |Γ\X+ restriction of ΛΓ,Γ′ coincides with

ΛmaxN∗, where N denotes the automorphic bundle on Γ\X+ associated to the normal
bundle of X in X ′ and N∗ denotes its dual. As X is totally geodesic in X ′ the curvature
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form on N is the restriction to N of the curvature form on TX ′. As X ′ is non-positively
curved, the automorphic bundle N∗ and thus also the automorphic line bundle ΛΓ,Γ′ |Γ\X+

admits a Hermitian metric of non-negative curvature. This concludes the proof of the
proposition in the case G is Q-anisotropic.

Suppose now G is Q-isotropic. For simplicity we denote ΛΓ,Γ′ by Λ from now on.
We have to prove that the boundary components of Γ\X+ do not essentially modify the
positivity of Λ|Γ\X+ . We use the notation and the results of Dynkin [13], Ihara [19] and
Satake [31]. Let X = X1 × · · · × Xr (resp. X ′ = X ′

1 × · · · × X ′
r′) be the decomposition

of X (resp. X ′) into irreducible factors. Each Xi (resp. X ′
j) is the Hermitian symmetric

domain associated to an R-isotropic R-simple factor Gi (resp. G′
j) of GR (resp. G′

R). The
group GR (resp. G′

R) decomposes as G0×G1×· · ·×Gr (resp. G′
0×G′

1×· · ·×G′
r′) with

G0 (resp. G′
0) an R-anisotropic group. Let m (resp. m′) be the r-tuple (resp. r′-tuple)

of non-negative integers defining the automorphic line bundle LK (resp. LK′) (c.f. [31,
lemma 2]) and Mφ be the r′×r-matrix with integral coefficients associated to ϕ : G ↪→ G′

(c.f. [31, section 2.1]). The automorphic line bundle Λ|Γ\X+ on Γ\X+ is associated to the
r-tuple of integers λ = m′Mϕ −m (where m and m′ are seen as row vectors). It admits
a locally homogeneous Hermitian metric of non-negative curvature if and only if λi ≥ 0,
1 ≤ i ≤ r (in which case we say that λ is non-negative).

Lemma 4.2.9. The row vector λ is non-negative.

Proof. As G and G′ are defined over Q, both m and m′ are of rational type by [31, p.301].
So mi = m for all i, m′

j = m′ for all j. The equality λ = m′Mϕ −m can be written in
coordinates

(4.3) ∀i ∈ {1, · · · , r}, λi =
∑

1≤j≤r′

mj,i m
′ −m ,

with Mϕ = (mj,i). Fix i in {1, · · · r} and let prove that λi ≥ 0. As the mi,j ’s and m′ are
non-negative, it is enough to exhibit one j, 1 ≤ j ≤ r′, with mj,i m

′ −m ≥ 0. Choose j

such that the component ϕi,j : Xi −→ X ′
j of the map ϕ : X1× · · ·×Xr −→ X ′

1× · · ·×X ′
r′

induced by ϕ : G −→ G′ is an embedding. Recall that with the notation of [31, p.290]
one has

mi =< H1,i,H1,i >i ,

where hi denotes the chosen Cartan subalgebra of gi(R) and <,>i denotes the canonical
scalar product on

√
−1hi. This gives the equality :

(4.4) mj,i m
′
j −mi =< φj(H1,i), φj(H1,i) >j − < H1,i,H1,i >i .
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As Gi is R-simple, any two invariant non-degenerate forms on
√
−1hi are proportional :

there exists a positive real constant ci,j (called by Dynkin [13, p.130] the index of ϕi,j :
Gi −→ Gj) such that

∀X, Y ∈
√
−1hi, < φj(X), φj(Y ) >j= ci,j < X,Y >i .

Equation (4.4) thus gives :

(4.5) mj,i m
′
j −mi = (ci,j − 1) < H1,i,H1,i >i .

By [13, theorem 2.2. p.131] the constant ci,j is a positive integer. Thus mj,i m
′
j −mi is

non-negative and this finishes the proof that λ is non-negative. �

By [31, cor.2 p.298] the sum M =
∑

1≤j≤r′ mj,i is independent of i (1 ≤ i ≤ r). This
implies that λ is of rational type : one of the λi is non-zero if and only if all are. In this
case λ is positive of rational type and Λ is ample on Γ\X+ by [31, theor.1].

If λ = 0, the line bundle Λ|Γ\X+ is trivial. As G is Q-simple, if G is not locally
isomorphic to SL2 the line bundle Λ on Γ\X+ is trivial.

The last case is treated in the following lemma :

Lemma 4.2.10. If λ = 0 and G is locally isomorphic to SL2, then φ : G −→ G′ is a
local isomorphism and the line bundle Λ on Γ\X+ is trivial.

Proof. It follows from the equation (4.3) that there exists a unique integer j such that
the morphism ϕj : GR −→ Gj is non trivial. In particular G′ is R-simple. Moreover the
equation (4.5) implies that index c of φ : G −→ G′ is equal to 1. Thus by [13, theorem 6.2
p.152] the Lie algebra g is a regular subalgebra of g′. If G′

R is classical, the equality [13,
(2.36) p.136] shows that necessarily φ : G −→ G′ is a local isomorphism. In particular
the line bundle Λ on Γ\X+ is trivial. If the group G′

R is an exceptional simple Lie group
of Hermitian type (thus E6 or E7), Dynkin shows in [13, Tables 16, 17 p.178-179] that
there is a unique realization of g as a regular subalgebra of g′ of index 1. However this
realization is not of Hermitian type : the coefficient α′

1(ϕ(H1)) is zero. Thus this case is
impossible. �

This finishes the proof of proposition 4.2.8.
�

From the nefness of ΛK,K′ we now deduces the following crucial corollary :

Corollary 4.2.11. Let φ : ShK(G, X) −→ ShK′(G′, X ′) be a morphism of Shimura vari-
eties associated to a Shimura sub-datum ϕ : (G, X) −→ (G′, X ′), K ′ a compact open sub-
group of G(Af) and K = K ′∩G(Af). Then for any irreducible subvariety Z of ShK(G, X)
whose irreducible components are Hodge generic one has degLK

Z ≤ degLK′ φ(Z).
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Proof. As the irreducible components of Z are Hodge generic in ShK(G, X) we know by
lemma 2.2 in [37] (and its proof) that φ|Z : Z −→ Z ′ is generically injective. In particular
by the projection formula one has

degLK′ Z ′ = degφ∗LK′ Z .

So the inequality degLK
Z ≤ degLK′ Z ′ is equivalent to the inequality degLK′ Z ≥ degLK

Z.
As φ∗LK′ = LK ⊗ ΛK,K′ one has

degφ∗LK′ Z =
dim Z∑
i=0

(
i

dim Z

)∫
Z

c1(LK)i ∧ c1(ΛK,K′)dim Z−i .

The inequality degφ∗L′
K

Z ≥ degLK
Z thus follows if we show :

∀i , 1 ≤ i ≤ dim Z,

∫
Z

c1(LK)i ∧ c1(ΛK,K′)dim Z−i ≥ 0 .

As LK is ample it follows from the nefness of ΛK,K′ and Kleiman’s theorem 4.2.1. �

4.3. p-adic closure of Zariski-dense groups. We recall the following well-known re-
sult :

Proposition 4.3.1. Let H be a subgroup of GLn(Z) and let H be the Zariski closure of
H in GLn,Z. Suppose that H0

Q is semisimple. Then for any prime number p the closure
of H in H(Zp) is open.

Proof. The case when H is finite is obvious. Suppose that H is infinite. Since H(Zp)
is compact and H is infinite, the closure Hp of H in H(Zp) is not discrete. Then it is
a p-adic analytic group and it has a Lie algebra L which is a Lie subalgebra of the Lie
algebra Lie H of H and projects non-trivially on any factor of Lie H. By construction L is
invariant under the adjoint action of H, thus also under the adjoint action of the Zariski
closure H of H. As H0

Q is semisimple one deduces LQ = Lie HQ, which implies that Hp

is open in H(Zp). �

Remark 4.3.2. The easy proposition 4.3.1 can be strengthened to the following remarkable
theorem, due independently to Weisfeiler and Nori, which was used in [17] but which we
will not need :

Theorem 4.3.3 ([39], [25]). Let H be a finitely generated subgroup of GLn(Z) and let H
be the Zariski closure of H in GLn,Z. Suppose that H(C) has finite fundamental group.
Then the closure of H in GLn(Af) is open in the closure of H(Z) in GLn(Af).
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5. Inclusion of Shimura subdatum.

In this section we prove the following proposition which implies part (b) of the theo-
rem 3.1.1.

Proposition 5.1. Suppose that the set Σ in the theorem 3.2.1 is such that with respect
to a faithful representation ρ : G −→ GLn the centres TV of the generic Mumford-Tate
groups HV lie in one GLn(Q)-orbit as V ranges through Σ. Then the set Σ′ obtained in
the proposition 3.2.2 admits a modification Σ′′ such that the centres TV ′ of the generic
Mumford-Tate groups HV ′ lie in one GLn(Q)-orbit as V ′ ranges through Σ′′.

We first prove the following general fact about Shimura data which will also be used at
another point in this paper.

Lemma 5.2. Let (G, X) be a Shimura datum such that G is the generic Mumford-Tate
group on X and (H, XH) be a Shimura subdatum of (G, X). Let T (resp. Z) be the
connected centre of G (resp. H). Then

T ⊂ Z .

Proof. The proof uses in a crucial way the fact that G is the generic Mumford-Tate group
on X. We write

G = TGder .

As T ∩H is contained in the centre Z of H, we can write

H = (T ∩H)H′

for some subgroup H′ of Gder.
Fix α an element of X that factors through HR = (T ∩H)RH′

R. As X is the G(R)
conjugacy class of α any element x ∈ X is of the form gαg−1 = αg for some g of G(R).
Thus x factors through

((T ∩H)R)g (Gder
R )g = (T ∩H)R Gder

R .

It follows that the Mumford-Tate group of x is contained in (T ∩H)Gder. For x Hodge
generic, we obtain

(T ∩H)Gder = G ,

hence T ∩H = T, therefore T ⊂ Z. �

To prove the proposition, first note that an inclusion of special subvarieties V ⊂ V ′

corresponds to an inclusion of Shimura data (H, XH) ⊂ (H′, XH′). The lemma above
implies that the centres T′ of the groups H′ are contained in a GLn(Q)-conjugacy class of
a fixed torus T. It follows that the tori T′ are split by the same field L. As there are only
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finitely many subfields of L, a modification of Σ′ satisfies the condition that the splitting
field of the tori T′ is constant, say L. As in the discussion before the lemma 2.4 of [37],
we identify X∗(T′) with a submodule of X∗(ResL/QGmL) which has a canonical basis.
By the lemma 2.4 of [37], the coordinates of the characters (with respect to this basis)
occurring in the representation T′ ⊂ GLn are uniformly bounded. It follows that the tori
T′ lie in finitely many GLn(Q)-conjugacy classes. The result follows.

6. The geometric criterion.

In this section we show that for certain elements m ∈ G(Ql) and under certain as-
sumptions on a subvariety Z, the inclusion Z ⊂ TmZ implies that Z contains a special
subvariety V ′ containing V properly.

Definition 6.0.4. Let (G, X) be a Shimura datum and K ⊂ G(Af) a compact open
subgroup. Let F ⊂ C be a number field containing the reflex field E(G, X). We use
the following common abuse of notation : a subvariety Z ⊂ ShK(G, X)C is called an
F -irreducible F -subvariety if Z = ZF ×Spec F Spec C, where ZF ⊂ ShK(G, X)F is an
irreducible closed subscheme.

Our main theorem in this section is the following :

Theorem 6.1. Let (G, X) be a Shimura datum, X+ a connected component of X and
K =

∏
p prime Kp ⊂ G(Af) an open compact subgroup of G(Af). We assume that there

exists a prime p0 such that the compact open subgroup Kp0 ⊂ G(Qp0) is neat. Let F be a
number field containing the field of definition of SK(G, X)C.

Let V be a non-strongly special subvariety of SK(G, X)C contained in a Hodge generic
F -irreducible F -subvariety Z of SK(G, X)C.

Let l 6= p0 be a prime number splitting TV and m an element of TV (Ql).
Suppose that Z satisfies the conditions

(1) Z ⊂ TmZ.
(2) for every k1 and k2 in Kl the image of k1mk2 in Gad(Ql) generates an unbounded

(for the l-adic topology) subgroup of Gad(Ql).

Then Z contains a special subvariety V ′ containing V properly.

Proof.

Lemma 6.2. If the conclusion of the theorem 6.1 holds for all Shimura data (G, X) with
G semisimple of adjoint type then the conclusion of the theorem 6.1 holds for all Shimura
data.
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Proof. Let G, X, K, V , Z, F , l and m be as in the statement of theorem 6.1. Let
λ : G −→ Gad be the natural morphism. Let (Gad, Xad) be the adjoint Shimura datum
attached to (G, X) and let Kad =

∏
p prime Kad

p be the compact open subgroup of Gad(Af)
defined as follows :

(1) Kad
p0
⊂ Gad(Qp0) is the compact open subgroup image of Kp0 by λ.

(2) Kad
l ⊂ Gad(Ql) is the compact open subgroup image of Kl by λ.

(3) If p 6= p0, l, Kad
p is a maximal compact open subgroup of Gad(Qp) containing the

image of Kp by λ.

The group Kad is neat because Kp0 , and therefore Kad
p0

, is. As the reflex field E(G, X)
contains the reflex field E(Gad, Xad), there is a finite morphism of Shimura varieties

f : ShK(G, X)F −→ ShKad(Gad, Xad)F

Let V ad be the image fC(V ). As V is non-strongly special, V ad is a non-strongly special
subvariety of SKad(Gad, Xad)C. Thus TV ad = λ(TV ) is a non-trivial torus.

We define the F -irreducible subvariety Zad
F of ShKad(Gad, Xad)F to be the image of

ZF in ShKad(Gad, Xad)F by this morphism. Of course Zad := ZF ×F C is contained in
SKad(Gad, Xad)C. Let mad be the image of m in Tad

V (Ql). The inclusion Z ⊂ TmZ implies
that Zad ⊂ TmadZad.

As Gad is of adjoint type, we can apply the theorem 6.1 to Gad, Xad, Kad, V ad,
Zad, F , l and mad. So Zad contains a special subvariety V

′ad containing V ad properly.
As irreducible components of the preimage by a finite Shimura morphism of a special
subvariety are special, Z contains a special subvariety V ′ containing V properly. �

For the rest of this section, we are assuming the group G to be semisimple of adjoint
type. Moreover for simplicity of notations we replace in this proof the field E(G, X) by
the field F . Thus Sh(G, X) denotes the canonical model of Sh(G, X)C over F , SKl(G, X)
is the connected component, of ShKl(G, X) = ShKl(G, X)F (image of X+ × {1}), etc.
Moreover we will drop the label (G, X) when it is obvious which Shimura datum we are
referring to.

Lemma 6.3. Let Z = Z1∪· · ·∪Zn be the decomposition of Z into geometrically irreducible
components. Each irreducible component Zi, 1 ≤ i ≤ n, is Hodge generic.

Proof. As Z is Hodge generic, at least one irreducible component, say Z1, is Hodge generic.
As ZF is irreducible, any irreducible component Zj , 1 ≤ j ≤ n, is of the form Zσ

1 for some
element σ ∈ Gal(Q/F ). As the conjugate under any element of Gal(Q/F ) of a special
subvariety of ShK(G, X)C is still special, one gets the result. This is a consequence of
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a theorem of Kazhdan’s. See [22] for a comprehensive exposition of the proof in full
generality and all the relevant references. �

We fix a Z-structure on G and its subgroups by choosing a finitely generated free Z-
module W , a faithful representation ξ : G ↪→ GL(WQ) and taking the Zariski closures
in the Z-group-scheme GL(W ). We choose the representation ξ in such a way that K

is contained in GL(Ẑ ⊗Z W ) (i.e. K stabilizes Ẑ ⊗Z W ). This induces canonically a
Z-variation of Hodge structure on ShK(G, X)C : c.f. [17, section 3.2].

Let z be a Hodge generic point of the smooth locus Zsm
1 of Z1. Let π1(Zsm

1 , z) be
the topological fundamental group of Zsm

1 at the point z. The representation ξ : G −→
GL(WQ) induces a polarizable variation of Z-Hodge structure F on ShK(G, X)C, in par-
ticular on its irreducible component SK(G, X)C. We choose a point z̃ of X lying above
z. This choice canonically identifies the fibre at z of the locally constant sheaf underly-
ing F with the Z-module W . The action of π1(Zsm

1 , z) on this fibre is described by the
monodromy representation

ρ : π1(Zsm
1 , z) −→ Γ = π1(SK(G, X)C, z) = G(Q) ∩K

ξ−→ GL(W ) .

As Γ is Zariski-dense in G the algebraic monodromy group is G. As Z is Hodge generic
the group ρ(π1(Zsm

1 , z)) is Zariski-dense in G by [1, theor. 1.4].
Let l be a prime as in the statement. The proposition 4.3.1 implies that the l-adic

closure of ρ(π1(Zsm
1 , z)) in G(Ql) is a compact open subgroup K ′

l ⊂ Kl.
Write K = K lKl with K l =

∏
p6=l Kp. Let πKl

: ShKl −→ ShK be the Galois pro-étale

cover with group Kl as defined in section 4.1.1. Let Z̃1 be an irreducible component of the
preimage of Zsm

1 in ShKl and let Ṽ be an irreducible component of the preimage of V in
Z̃1. As πKl

: ShKl −→ ShK is pro-étale, the smooth locus Z̃1
sm

of Z̃1 naturally identifies
with an irreducible component Z̃sm

1 of π−1
Kl

(Zsm
1 ).

The idea of the proof is to show that the inclusion Z ⊂ TmZ implies that Z̃1 is stabilized
by a “big” group and then consider the orbit of Ṽ under the action of this group.

Lemma 6.4. The variety Z̃1 is stabilized by the group K ′
l . The set of irreducible compo-

nents of π−1
Kl

(Z1) naturally identifies with the finite set Kl/K ′
l .

Proof. Let z̃ be a geometric point of Z̃sm
1 lying over z. Let $(Zsm

1 , z) denote the al-
gebraic fundamental group of Zsm

1 at z. The set of irreducible components of π−1
Kl

(Z1)
naturally identifies with the quotient Kl/ρalg($(Zsm

1 , z)), where ρalg : $(Zsm
1 , z) −→ Kl ⊂

G(Ql) denotes the (continuous) monodromy representation of the Kl-pro-étale cover πKl
:

π−1
Kl

(Zsm
1 ) −→ Zsm

1 . The group $(Z1, z) naturally identifies with the profinite completion
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of π1(Zsm
1 , z). One has the commutative diagram

(6.1) π1(Zsm
1 , z)

i
��

ρ
// G(Q)

j

��
$1(Zsm

1 , z)
ρalg

// G(Ql)

where i : π1(Zsm
1 , z) −→ $1(Zsm

1 , z) and j : G(Q) −→ G(Ql) denote the natural homo-
morphisms. As i(π1(Zsm

1 , z)) is dense in $1(Zsm
1 , z) and ρalg is continuous one deduces

that ρalg($1(Zsm
1 , z)) = K ′

l . Thus the set of irreducible components of π−1
Kl

(Zsm
1 ) identifies

with Kl/K ′
l and Z̃sm

1 is K ′
l-stable. �

Lemma 6.5. There exist elements k1, k2 of Kl and an integer n ≥ 1 such that

Z̃1 = Z̃1 · (k1mk2)n

Proof. The inclusion Z ⊂ TmZ implies that for every geometrically irreducible component
Zi, 1 ≤ i ≤ n, of Z, there is a geometric irreducible component Z̃i of π−1

Kl
(Zi) which is also

a geometric irreducible component of the preimage of TmZ by πKl
: ShKl −→ ShK . As the

geometric irreducible components of π−1
Kl

(TmZ) are of the form Z̃i · (k1mk2), k1, k2 ∈ Kl,
there exists an index i, 1 ≤ i ≤ n, and two elements k1, k2 in Kl such that

Z̃1 = Z̃i · k1mk2 .

As Z is F -irreducible there exists σ of Gal(Q/F ) such that Zi = σ(Z1). As the morphism
πKl

: ShKl −→ ShK is defined over F , the subvariety σ(Z̃1) of ShKl satisfies πKl
(σ(Z̃1)) =

Zi. Thus the subvarieties σ(Z̃1) and Z̃i of ShKl are both irreducible components of π−1
Kl

(Zi).
Thus there exists an element k of Kl such that

Z̃i = σ(Z̃1) · k .

By replacing k1 with kk1, we obtain k1, k2 in Kl such that

(6.2) Z̃1 = σ(Z̃1) · (k1mk2) .

As the G(Af)-action is defined over F , the previous equation implies :

(6.3) ∀ i ∈ N, Z̃1 = σi(Z̃1) · (k1mk2)i .

As the set of irreducible components of Z is finite, there exists a positive integer m

such that σm(Z1) = Z1. Thus the Abelian group (σm)Z acts on the set of irreducible
components of π−1

Kl
(Z1). By the previous lemma this set is finite. So there exists a

positive integer n (multiple of m) such that σn(Z̃1) = Z̃1. The equality (6.3) applied to
i = n concludes the proof of the lemma. �



34 B. KLINGLER, A. YAFAEV

From the lemmas 6.4 and 6.5 one obtains the

Corollary 6.6. Let Ul be the group 〈K ′
l , (k1mk2)n〉. The variety Z̃1 is stabilized by Ul.

We now conclude the proof of theorem 6.1. Let G =
∏s

i=1 Gi be the decomposition of
G into Q-simple factors. Without loss of generality we can assume that K = K1×· · ·×Ks,
where Ki, 1 ≤ i ≤ s, is a compact open subgroup of Gi(Af). Let (G>1, X>1) be the prod-
uct of Shimura data (

∏s
i=2 Gi,

∏s
i=2 Xi), and K>1 be the compact open subgroup

∏s
i=2 Ki

of G>1(Af). The connected component SK(G, X)C of the Shimura variety ShK(G, X)C

decomposes as a product

SK(G, X)C = SK1(G1, X1)C × SK>1(G>1, X>1)C

with SK>1(G>1, X>1)C =
∏s

i=2 SKi(Gi, Xi)C.
Let pi : G −→ Gi denote the natural projections. By the assumption made on m, the

group Ul is unbounded in G(Ql). After possibly renumbering the factors, we can assume
that p1(Ul) is unbounded in G1(Ql). In particular the torus p1(T) is non-trivial. Indeed
if it was trivial, then the group p1(Ul) would be contained in p1(Kl) which is compact and
therefore bounded.

Similarly let G1,Ql
=
∏r

j=1 Hi be the decomposition of G1,Ql
into simple Ql-factors.

Again, up to renumbering we can assume that the image of Ul under the projection
h1 : GQl

−→ H1 is unbounded in H1(Ql). Let H>1 =
∏r

j=2 Hj . Let τ : G̃Ql
−→ GQl

(resp. τ1 : H̃1 −→ H1) be the universal cover of GQl
(resp. H1).

Sublemma 6.7. The group Ul ∩H1(Ql) contains the group τ1(H̃1(Ql)) with finite index.

Proof. Let h̃1 : G̃Ql
−→ H̃1 be the canonical projection. Let Ũl = τ−1(Ul) ⊂ G̃Ql

(Ql).
As Ul is an open non-compact subgroup of GQl

(Ql), the group Ũl is open non-compact in
G̃Ql

(Ql). As h1(Ul) is non-compact in H1(Ql) the projection h̃1(Ũl) is open non-compact
in the group H̃1(Ql). As the group H̃1 is simple and simply connected, we obtain by the
theorem (T) of [28] the equality h̃1(Ũl) = H̃1(Ql). This implies that the group Ũl∩H̃1(Ql)
is normal in H̃1(Ql) : given h ∈ H̃1(Ql), let g ∈ Ũl satisfying h̃1(g) = h. Then

(Ũl ∩ H̃1(Ql))h = (Ũl ∩ H̃1(Ql))g = (Ũl ∩ H̃1(Ql)) .

As the group Ũl ∩ H̃1(Ql) is an open normal subgroup of H̃1(Ql) and the group H̃1 is
simply-connected, we obtain the equality Ũl ∩ H̃1(Ql) = H̃1(Ql). As τ1 is an isogeny of
algebraic groups, we get that Ul ∩H1(Ql) contains τ1(H̃1(Ql)) with finite index. �

As a corollary, there exists compact open subgroups Ul,1 in K1 ∩H>1(Ql) and Ul,>1 in
K>1 such that Ul contains the unbounded open subgroup τ1(H̃1(Ql)) · Ul,1 · Ul,>1.
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Definition 6.8. We replace Ul by its subgroup τ1(H̃1(Ql)) · Ul,1 · Ul,>1. We denote by V ′

the Zariski closure πKl
(Ṽ · Ul)

Zar
.

As Z̃1 is stabilized by Ul the variety V ′ is a subvariety of Z.

Lemma 6.9. The subvariety V ′ of Z is special.

Proof. Let V>1 denote the special subvariety of SK>1(G>1, X>1)C projection of V . By
definition of Ul the inclusion

V ′ ⊂ SK1(G1, X1)C × V>1

holds. On the other hand as Ul ∩G1(Ql) is open unbounded in G1(Ql) one can choose q

in Ul∩G1(Q)+ and not contained in any bounded subgroup of Ul. Let Γq be the subgroup
of G1(Q)+ generated by Γ := K1 ∩G1(Q)+ and q. As q is not contained in a compact
subroup of Ul the group Γq contains Γ with infinite index. Let x = (x1, x>1) be any
point of V (the coordinates correspond to the above decomposition of SK(G, X)C as a
direct product). By definition of Γq the closure of (Γqx1, x>1) is contained in V ′. By
the proof of [17, th.6.1 p.637] this closure is SK1(G1, X1)C × {x>1}. Thus V ′ contains
SK1(G1, X1)C × V>1. Finally

V ′ = SK1(G1, X1)C × V>1 .

In particular V ′ is special. �

Lemma 6.10. The subvariety V ′ of Z contains V properly.

Proof. As the Mumford-Tate group H of V centralizes the torus T, the projection H1 of
H on G1 centralizes the non-trivial torus T1 projection of T on G1. In particular H1 is
a proper algebraic subgroup of G1. But as

V ′ = SK1(G1, X1)C × V>1 ,

the group G1 is a direct factor of the Mumford-Tate group of V ′. �

�

7. Existence of suitable Hecke correspondences.

In this section we prove, under some assumptions on the compact open subgroup Kl,
the existence of Hecke correspondences of small degree candidates for applying theorem 6.1
assuming the Galois orbit of V is sufficiently big.
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Definition 7.0.5. Let G be a reductive Q-group and T ⊂ G a split torus. Let l be a
prime number. A compact open subgroup Ul of G(Ql) is said to be in good position with
respect to T if Ul ∩T(Ql) is the maximal compact open subgroup of T(Ql).

Our main result in this section is the following :

Theorem 7.1. Let (G, X) be a Shimura datum, X+ a connected component of X, K ⊂
G(Af) a neat open compact subgroup of G(Af) and F a number field containing a field of
definition of SK(G, X)C. There is a positive integer k such that the following holds.

Let V be a special, not strongly special subvariety contained in a Hodge generic F -
irreducible F -subvariety Z of SK(G, X)C.

Let l be a prime number splitting TV and m an element of TV (Ql). We assume that
the compact open subgroup K is of the form K = K l · Kl, where K l is a compact open
subgroup of G(Al

f) and Kl is a compact open subgroup of G(Ql) contained in an Iwahori
subgroup Il of G(Ql) (c.f. next paragraph) in good position with respect to TV .

Then there exists an element m ∈ TV (Ql) satisfying the following conditions :

(1) Gal(F/F ) · V ⊂ Z ∩ TmZ.
(2) For every k1, k2 ∈ Kl the image of k1mk2 in Gad(Ql) generates an unbounded

subgroup of Gad(Ql).
(3) [Kl : Kl ∩mKlm

−1] < lk.

Remark 7.0.6. As noticed in the introduction, the restriction Kl ⊂ Il is a necessary
condition. One easily constructs a counter-example to the conclusion of theorem 7.1 if
Kl ⊂ G(Ql) is a special maximal open compact subgroup. For explicit counterexamples
see remark 7.2 of [14].

7.1. Some properties of Iwahori subgroups. We refer to [5], [6] and [18] for basic
facts about buildings, Iwahori subgroups and Iwahori-Hecke algebras.

We first recall the definition of an Iwahori subgroup. Let l be a prime number. Let G
be a reductive algebraic isotropic Ql-group and A ⊂ G a maximal split torus of G. We
denote by M ⊂ G the centraliser of A in G. We choose P = M ·N a minimal parabolic
subgroup of G, where N denotes the unipotent radical of P. Let X be the (extended)
Bruhat-Tits building of G, A ⊂ X the apartment of X associated to A. Let Km

l ⊂ G(Ql)
be a special maximal subgroup (c.f [5, (I), def. 1.3.7 p.22, def. 4.4.1 p.79]) of G(Ql) such
that Km

l,A = Km
l ∩A(Ql) is the maximal compact open subgroup of A(Ql). We denote

by x0 ∈ A the unique Km
l -fixed vertex in X , by C ⊂ A the unique Weyl chamber with

apex at x0 whose stabilizer at infinity is P(Ql), by C the unique chamber (or alcove) of C
having x0 for one of its vertices and by Il ⊂ Km

l the Iwahori subgroup fixing C pointwise.
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Remark 7.1.1. Strictly speaking (i.e. with the notations of Bruhat-Tits [5]) the group Il

as defined above is an Iwahori subgroup only in the case where the group G is simply-
connected. Our terminology is a well-established abuse of notations.

Definition 7.1.2. We denote by ordM : M(Ql) −→ X∗(M) the homomorphism charac-
terized by

< ordM(m), α >= ordQl
(α(m)) ,

where ordQl
denotes the normalized (additive) valuation on Q∗

l and X∗(M) denotes the
group of cocharacters of M. We denote by Λ ⊂ X∗(M) the free Z-module ordM(M(Ql)).

The group M(Ql) (in particular the group A(Ql)) acts on A via Λ-translations.

Definition 7.1.3. Let Λ+ ⊂ Λ be the positive cone associated to the Weyl chamber C.

Elements of Λ+ acting on A map C to C.

Proposition 7.1.4. Let m be an element of A(Ql) with non-trivial image ordM (m) ∈ Λ+.
Then for any elements i1, i2 ∈ Il, the element i1mi2 ∈ G(Ql) is not contained in a compact
subgroup of G(Ql).

Proof. Let W0 be the finite Weyl group of G, let W be the modified affine Weyl group
associated to A and Ω the finite subgroup of W taking the chamber C to itself. Let
∆ = {α1, · · · , αm} be the set of affine roots on A which are positive on C and whose null
set Hα is a wall of C. For α ∈ ∆ we denote by Sα the reflexion of A along the wall Hα.
The group W is generated by Ω and the Sα’s, α ∈ ∆. It identifies with the semi-direct
product W0 n Λ (c.f. [6, p.140]).

Recall the Bruhat-Tits decomposition :

(7.1) G(Ql) = Il ·W · Il ,

where by abuse of notations we still write W for a set of representatives of W in G(Ql)
Let r : G(Ql) −→ W be the map sending g ∈ G(Ql) to the unique r(g) ∈ W such that
r(g) ∈ IlgIl. Geometrically speaking the map r essentially coincides with the retraction
ρA,C of the Bruhat-Tits building X with centre the chamber C onto the apartment A ([5,
I, theor.2.3.4]).

Let H(G, Il) be the Hecke algebra (for the convolution product) of bi-Il-invariant com-
pactly supported continuous complex functions on G(Ql). By the equation (7.1) this is an
associative algebra with a vector space basis Tw = 1IlwIl

, w ∈W , where 1IlwIl
denotes the

characteristic function of the double coset IlwIl. A presentation of the algebra H(G, Il)
with generators Tω, ω ∈ Ω, and Tα, α ∈ ∆, is given in [6, theorem 3.6 p.142] (or [4,
p.242-243]). Given w ∈ W let l(w) ∈ N be the number of hyperplanes Hα separating the
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two chambers C and wC. One obtains in particular (c.f. [6, theorem 3.6 (b)] or [3, section
3.2, 1) and 6)]) :

(7.2) ∀w,w′ ∈W, Tw · Tw′ = Tww′ if l(ww′) = l(w) + l(w′) .

Let δ ∈ X∗(M) be the determinant of the adjoint action of M on the Lie algebra of N.
For λ ∈ Λ+ ⊂W one easily shows the equality (c.f. [18, (1.11)]) :

(7.3) l(λ) = 〈δ, λ〉 .

In particular any two elements λ, µ in Λ+ ⊂ W satisfy l(λ · µ) = l(λ) + l(µ). Thus the
equation (7.2) implies the relation :

(7.4) TλTµ = Tλ+µ .

Remark 7.1.5. Equality (7.4) is stated in [18, (1.15)]) for the Iwahori-Hecke algebra of a
split adjoint group, but generalizes easily.

Let m, i1, i2 as in the statement of the proposition and denote by g the element
i1mi2 ∈ G(Ql). By equation (7.4) one has the equality :

r(gn) = n · r(g) = n · ordM(m) .

This implies that the chamber ρA,C(gnC) = n · ordM(m) + C leaves any compact of A
as n tends to infinity. As a corollary the chamber gnC of X also leaves any compact of
X when n tends to infinity. This proves that the group gZ is not contained in a compact
subgroup of G(Ql). �

7.2. Some uniformity results. In this section we prove some uniformity results con-
cerning Shimura data and reciprocity morphisms. The first is this simple observation.

Lemma 7.2.1. Let (G, X) be a Shimura datum. There is constant R such that for any
Shimura sub-datum (H, XH), the degree of the reflex field E(H, XH) over E(G, X) is
bounded by R.

Proof. This is a direct consequence of the definition of the reflex field. �

Proposition 7.2.2. Let (G, X) be a Shimura datum, K ⊂ G(Af) a neat open compact
subgroup of G(Af). There is a positive integer h such that the following holds. Let V be
a special subvariety of SK(G, X)C which is not strongly special and l be a prime splitting
TV . For any m in TV (Ql), mh satisfies the condition that for some σ ∈ Gal(Q/F )

σ(V ) ⊂ Tmh(V ).
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Proof. Let V be as above. For simplicity of notations we write T for TV , H for HV and
C for CV . By definition a constant is called uniform if it is independent of V .

To show the existence of an element h as in the statement, we will prove several lemmas.
The first one is the following.

Lemma 7.2.3. Replace F by a compositum of it with the reflex field E(C, {x}). There
is a uniform integer n1 such that for any m ∈ T(Ql), the power mn1 is in the preimage
of r(C,{x})((Ql ⊗ F )∗) in T(Ql) by the natural map T(Ql) −→ C(Ql).

Proof. Let L be the torus ResF/QGmF . The element x gives a cocharacter µC : GmC −→
CC defined by µC(z) = xC(z, 1). The morphism r(C,{x}) : L −→ C corresponds to the
morphism on cocharacter groups X∗(L) −→ X∗(C) which sends the cocharacter µσ ∈
X∗(L) (induced by σ ∈ Gal(F/Q)) to σ(µC). The lemma 2.4 of [37] says that there is
a basis (χi) of characters of C such that the < χi, σ(µC) > are uniformly bounded. It
follows that the index of r(C,{x})((Ql ⊗ F )∗) in C(Ql) is finite (this is the consequence of
the fact that r(C,{x}) is surjective as a morphism of tori) and uniformly bounded. Let n1

be a uniform bound on this index. It follows that for any m ∈ T(Ql), the power mn1 is in
the preimage of r(C,{x})((Ql ⊗ F )∗) in T(Ql). �

Recall that we have assumed that F contains the reflex field of (C, {x}) and that we
have the following sequence of morphisms

Gal(Q/F )
r(H,XH)−→ π0(π(H))

p−→ π0(π(C)) .

For an element t of H(A) (resp. C(A)), we write m for its image in π(H) (resp. π(C)).
We know that p(mn1) is in p ◦ r(H,XH)(Gal(Q/F )) = r(C,{x})(Gal(Q/F )). Hence, there

is an element σ of Gal(Q/F ) such that

p(mn1) = (p ◦ r(H,XH))(σ) .

It follows that there exists an element y in the kernel of p such that

mn1 = yr(H,XH)(σ) ,

Our next aim is to show that a uniform power of m is actually in r(H,XH)(Gal(Q/F )).
This follows directly from the following lemma.

Lemma 7.2.4. There exists a uniform integer n such that any element of the kernel of p

is killed by n.

Proof. We start by noticing that to prove the lemma, it suffices to prove that the natural
morphism

π(H) −→ π(C)
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has a kernel killed by a uniform integer. Indeed, suppose this to be the case. Then, passing
to the group of connected components, we see that the kernel of

π0(π(H)) −→ π0(π(C))

satisfies the same property. The lemma now follows from the fact that the groups π0(H(R)+)
and π0(C(R)+) are finite of uniformly bounded order.

Let us now turn to showing that the kernel of π(H) −→ π(C) is killed by a uniformly
bounded integer. To simplify notations, let us still denote this morphism by p. Recall
that π(H) = H(A)/H(Q)ρ(H̃(Q)). Let y be an element of H(A) such that its image y in
π(H) belongs to the kernel of p.

Using that H = THder and that T ∩Hder is finite of uniformly bounded order we see
that there is a uniform integer n2, an element t in T(A) and α in Hder(A) such that

yn2 = t · α

As Hder(A)/ρH̃der(A) is killed by a uniform integer n3, the images of yn2n3 and tn3 in
π(H) coincide.

Consider the exact sequence

W −→ T ν−→ C

where W = T ∩Hder and hence is of order n2. As y (and hence yn2n3) is in the kernel of
p, the image of tn3 in C(A) is in C(Q) (note that π(C) = C(A)/C(Q)).

A n2-th power of any element of C(Q) is in the image of T(Q) hence there exists a q

in T(Q) such that

ν(tn3n2) = ν(q)

It follows that

tn3n2 = qw

where w is in W (A). As W (A) is killed by n2, we see that tn3n2
2 = qn2 ∈ T(Q). The

image of tn3n2
2 in π(H) equals the image of yn3n3

2 and therefore a uniform power of y is in
the kernel. �

We have proved the following:

Lemma 7.2.5. There is a uniform integer h such that the image of mh in π0π(H) is in
r(H,XH)(Gal(Q/F )).

Proof. Take h = n1n with n the integer from 7.2.4. �

It remains to see that some Galois conjugate (and therefore the whole of the Galois
orbit) of V is in TmhV . The variety V is the image of (X+

H, 1) in ShK(G, X). Let σ be the
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element of Gal(Q/F ) as above. By definition of the Galois action on the set of connected
components of a Shimura variety, we get

σ(V ) = (X+
H,mh) ⊂ TmhV

where (X+
H,mh) stands for the image of (X+

H,mh) in ShK(G, X). �

7.3. Proof of theorem 7.1. As V is non-strongly special, the torus Tad
V := λ(TV ) is a

non-trivial torus in Gad, where λ : G −→ Gad denotes the natural morphism. Let Aad

be a maximal split torus of Gad
Ql

containing Tad
V,Ql

. Let C be the unique chamber of the
Bruhat-Tits building X of Gad

Ql
fixed by Il and x0 a special vertex in the closure of C

such that the intersection of its stabilizer with Tad
V (Ql) is maximal compact in Tad

V (Ql).
Choose a minimal parabolic subgroup Pad of Gad

Ql
whose Levi subgroup is the centraliser

Mad of Aad.
We use the notations of section 7.1 applied to Gad

Ql
. By lemma 2.4 of [37] and the

proposition 7.4.3 of [17] there exists a uniform constant k1 and an element m ∈ TV (Ql)
such that λ(m) has a non-trivial image in Λ+ ⊂ X∗(Mad) and [Kl : Kl ∩mKlm

−1] < lk1 .
By proposition 7.2.2, there is a uniform constant h such that for some σ ∈ Gal(F/F ), one
has σ(V ) ⊂ TmhV .

The uniform constant k = k1h and the element mh satisfies the conditions of the
theorem :

From σ(V ) ⊂ TmhV ⊂ TmhZ and as TmhZ is defined over F , we deduce V ⊂ TmhZ. As
V ⊂ Z we obtain condition (1).

As λ(m) has a non-trivial image in Λ+ ⊂ X∗(Mad), λ(mh) too. By proposition 7.1.4,
for any k1, k2 in Kl, the image of k1 ·m · k2 in Gad(Ql) generates an unbounded subgroup
of Gad(Ql) : this is condition (2).

As deg Tm = [Kl : Kl ∩mKlm
−1] < lk1 and Tmh ⊂ (Tm)h as algebraic correspondences,

[Kl : Kl ∩mKlm
−1] = deg Tmh ≤ (deg Tm)h ≤ lk : this is condition (3).

This finishes the proof of theorem 7.1.

8. Condition on the prime l

In this section, we use theorem 2.4.3, theorem 6.1, theorem 7.1 to show (under one
of the assumptions of theorem 3.1.1) that the existence of a prime number l satisfying
certain conditions forces a subvariety Z of ShK(G, X)C containing a non-strongly special
subvariety V to contain a special subvariety V ′ containing V properly.

8.1. Passing to an Iwahori subgroup. In the process of constructing V ′ we will en-
counter one minor technical difficulty : we will have to lift the situation to an Iwahori



42 B. KLINGLER, A. YAFAEV

level in order to apply theorem 7.1. The following lemma introduces an absolute constant
f which controls this phenomenon.

Lemma 8.1.1. Let G be a reductive Q-group.
a) For any prime l, any Ql-split torus T ⊂ G and any special maximal compact subgroup

Kl ⊂ G(Ql) in good position with respect to T, there exists an Iwahori subgroup Il of Kl

in good position with respect to T.
b) There exists an integer f such that for any reductive Q-subgroup H ⊂ G, any prime

l such that HQl
is not Ql-anisotropic, and any special maximal compact subgroup Kl of

H(Ql), any Iwahori subgroup Il ⊂ Kl is of index |Kl/Il| smaller than lf .

Proof. To prove a) let l, T and Kl be as in the statement. Choose a maximal split torus A
of GQl

containing TQl
, denote by M the centraliser of A in GQl

and choose any minimal
parabolic P with Levi M. By construction the Iwahori subgroup Il defined by P and Kl

(c.f. section 7.1) satisfies that Il∩A(Ql) is the maximal compact open subgroup of A(Ql).
In particular Il ∩T(Ql) is the maximal compact open subgroup of T(Ql).

To prove b) : notice that the index [Kl : Il] cöıncide with
∑

w∈W0
qw where W0 denotes

the finite Weyl group of HQl
and qw denotes [IlwIl : Il] for w ∈ W0. With the notations

of [33, section 3.3.1] for a reduced word w = r1 · · · rj ∈ W one has qw = ld with d =∑j
i=1 d(νi), where νi denotes the vertex of the local Dynkin diagram of HQl

corresponding
to the reflection ri. As the cardinality of W0 and its length function are bounded when H
ranges through reductive Q-subgroups of G and l through prime numbers we are reduced
to prove that for any positive integer r there exist a positive integer s such that d(νi) ≤ s

for any local Dynkin diagram of rank at most r. This follows immediately from inspecting
the tables in [33, section 4]. �

8.2. Notation. In the following we will consider the following set of assumptions and
data :

Definition 8.2.1. Assume the GRH.
Let (G′, X ′) be a Shimura datum with G′ semi-simple of adjoint type, K ′ =

∏
p prime K ′

p

a neat compact open subgroup of G′(Af). We suppose that the group K3 is the principal
congruence subgroup of level three.

Let F a number field containing the reflex field E(G′, X ′). Let N be a positive integer,
let B and C(N) be as in the theorem 2.4.3, k the constant defined in theorem 7.1, and f

the constant defined in lemma 8.1.1.
Let (G, X) be a Shimura subdatum of (G′, X ′) with G the generic Mumford-Tate group

on X and let K = K ′ ∩G(Af). Let V ⊂ SK(G, X)C be a special subvariety which is not
strongly special.
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Let l be a prime splitting TV such that Kl is contained in a special maximal compact
subgroup Kmax

l of G(Ql) in good position with respect to TV .

The following remark will be especially important :

Lemma 8.2.2. In the situation of definition 8.2.1 the real torus TV (R) is compact.

Proof. As TV is the connected center of the generic Mumford-Tate group HV ⊂ G ⊂ G′

of V it fixes some point x′ of X ′. As G′ is semisimple of adjoint type the stabilizer of x′

in G′(R) is compact. �

8.3. The criterion. We can now state the main result of this section :

Theorem 8.3.1. In the situation of definition 8.2.1 let Z be a Hodge generic F -irreducible
F -subvariety of SK(G, X)C containing V and satisfying

(8.1) l(k+2f)·2a(r+1) · (degLK
Z)2

a(r)
< C(N)αV βN

V ,

where r = dim Z − dim V and a : N −→ N is the function defined by a(n) = n(n+1)
2 .

Then Z contains a special subvariety V ′ that contains V properly.
Moreover if one considers only the subvarieties V such that the associated tori TV lie

in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

8.4. An auxiliary proposition. In addition to theorem 2.4.3, theorem 6.1, and theo-
rem 7.1, the main ingredient in the proof of theorem 8.3.1 is the following :

Proposition 8.4.1. In the situation of definition 8.2.1 let Z be a Hodge generic F -
irreducible F -subvariety of SK(G, X)C containing V and satisfying

(8.2) lk·2
r−1

(degLK
Z)2

r
< C(N)αV βN

V

for r = dim Z − dim V .
Let m be an element of TV (Ql) satisfying the conclusion of theorem 7.1 with respect to

Z.
Then one of the following holds :

(a) Z ⊂ TmZ.
(b) there exists an F -irreducible subvariety Y of SK(G, X)C with the following prop-

erties :
– Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
– degLK

Y ≤ lk·2
r−1 · (degLK

Z)2
r
.

– Let Y1 be an irreducible component of Y containing V . We denote by GY ⊂
G the generic Mumford-Tate group on Y1, by (GY , XGY

) the corresponding
Shimura subdatum of (G, X) and by KY the intersection K ∩GY (Af). Let Ṽ
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be the special subvariety of ShKY
(GY , XGY

) preimage of V . Then Ṽ is not
strongly special.

Moreover if one considers only the subvarieties V such that the associated tori TV lie in
one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

8.4.1. We start with the following auxiliary lemma :

Lemma 8.4.2. In the situation of definition 8.2.1 let Y be a subvariety of SK(G, X)C

defined over Q such that an irreducible component Y1 of Y contains V . We denote by
GY ⊂ G the generic Mumford-Tate group on Y1, by (GY , XGY

) the corresponding Shimura
subdatum of (G, X) and by KY the intersection K ∩ GY (Af). Let Ṽ and Ỹ1 be the
preimages of V and Y1 respectively in ShKY

(GY , XGY
)C.

Suppose that Ṽ is strongly special in ShKY
(GY , XGY

)C and that

degLKY
(Gal(F/F ) · Ỹ1) ≤ C(N)αV βN

V .

Then

(a) TV = Z(GY )0, where Z(GY )0 denotes the connected centre of GY . In particular
TV (Af) acts on ShKY

(GY , XY )C.
(b) There exists σ ∈ Gal(F/F ) such that

rTV
(σ) · Y1 * Gal(F/F ) · Y1 .

Moreover if one considers only the subvarieties V such that the associated tori TV lie
in one GLn(Q)-conjugacy class, then the assumption of the GRH can be dropped.

Proof. As Ṽ is strongly special in ShKY
(GY , XY )C, the connected centre TV of HV is

contained in the connected centre Z(GY )0 of GY . By lemma 5.2, one obtains the equality :

TV = Z(GY )0 .

This proves (a).
The idea to prove (b), is to obtain a lower bound for the degree of rTV

(Gal(F/F )Ỹ1)
orbit of Ỹ1 by proceeding exactly as in [37], section 2.2. This lower bound will contradict
the assumption made on the degree of Gal(F/F ) · Ỹ1. For simplicity of notations, write Y

(resp. Ỹ ) instead of Y1 (resp. Ỹ1).
Assume for contradiction that

rTV
(Gal(F/F )) · Y ⊂ Gal(F/F ) · Y ,

thus also

rTV
(Gal(F/F )) · Ỹ ⊂ Gal(F/F ) · Ỹ .
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Write KY =
∏

p KY,p, product of compact open subgroups of GY (Qp). Define the compact
open subgroup Km

Y ⊂ GY (Af) as the product Km
TV
·KY and, as in the section 2.2 of [37], we

make Km
Y neat by replacing it, by the neat open compact subgroup (Km

Y,3∩K3)
∏

p6=3 Km
Y,p.

This is a neat subgroup of uniformly bounded index. Consider the diagram deduced from
the inclusion KY ⊂ Km

Y :

Ṽ
� � //

��

Ỹ

��

� � // ShKY
(GY , XY )C

π
��

Ṽ m � � // Ỹ m � � // ShKm
Y

(GY , XY )C

where Ṽ m is π(Ṽ ) and Ỹ m is π(Ỹ ).
The group Km

TV
/KTV

acts freely on ShKY
(GY , XY )C and the morphism π is finite of

degree |Km
TV

/KTV
|. As TV (R) is compact one can follow the proof of the lemma 2.8 of

[37] with Y instead of V (there the assumption that the subvariety V is special is not used
in the proof, and the assumption that the group G is semisimple of adjoint type is only
used to imply that TV (R) is compact). We obtain that degLK

(Gal(F/F )) · Ỹ is at least
the degree of Gal(F/F ) · Ṽ ∩ π−1(Ỹ m) times the number of Gal(F/F ) conjugates of Ỹ m.

We now use that
rTV

(Gal(F/F )) · Ỹ ⊂ Gal(F/F ) · Ỹ
Following [37], prop 2.11 and 2.12 again with Y instead of V , we obtain that the degree
of Gal(F/F ) · Ṽ ∩ π−1(Ỹ m) is at least αV and by following prop 2.10 of [37] we obtain
that the number of Gal(F/F ) conjugates of Ỹ m is at least C(N)βN

V . This contradicts the
assumption that degLKY

Ỹ ≤ degLK
Y ≤ C(N)αV βN

V . �

8.4.2. Proof of proposition 8.4.1.

Proof. Suppose we are not in the case (a). We need to construct a subvariety Y satisfying
the conditions of (b).

Step 1 : As V ⊂ Z∩TmZ, there exists a geometric irreducible component Y1 of Z∩TmZ

containing V . Notice that Z and TmZ do not have any geometric irreducible component in
common as Z and TmZ are defined over F , Z is F -irreducible and Z 6⊂ TmZ. In particular
dim Y1 < dim Z.

Lemma 8.4.3. V ( Y1

Proof. Otherwise V = Y1 and Gal(F/F ) · V is a union of geometrically irreducible com-
ponents of Z ∩ TmZ. Thus

degLK
(Gal(F/F ) · V ) ≤ degLK

(Z ∩ TmZ) ≤ (degLK
Z)2[Kl : Kl ∩mKlm

−1] .
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The last inequality is the consequence of the theorem 7.2 of [16] and its proof. As m

satisfies the conclusion of theorem 7.1, [Kl : Kl ∩mKlm
−1] < lk.

As degLK
(Gal(F/F ) ·V ) ≥ C(N)αV βN

V by theorem 2.4.3, we finally obtain the inequal-
ity :

C(N)αV βN
V ≤ (degLK

Z)2lk .

This contradicts the inequality 8.2 on page 43. �

Let Y be the Gal(F/F )-orbit of Y1. We obtain Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
Moreover degLK

Y ≤ (degLK
Z)2lk < C(N)αV βN

V .

Step 2 : Let G1 be the generic Mumford-Tate group on Y1, (G1, X1) ⊂ (G, X) the
Shimura sub-datum it induces, KY1 the compact open subgroup K ∩GY1(Af) of G1(Af).
Let Ṽ be special subvariety of ShK1(G1, X1)C preimage of V .

If Ṽ is non-strongly special in ShK1(G1, X1)C then Y satisfies the condition (b) of
proposition 8.4.1 and we are done.

Thus we can assume that Ṽ is strongly special in ShK1(G1, X1)C. As V ( Y1 and
degLK

Y ≤ C(N)αV βN
V , by lemma 8.4.2 applied to Y1 there exists σ ∈ Gal(F/F ) such

that rTV
(σ) · Y1 6⊂ Gal(F/F ) · Y1.

As σ(V ) = rTV
(σ)V , we have σ(V ) ⊂ σ(Y1) ∩ rTV

(σ) · Y1. Thus

Gal(F/F ) · V ⊂ Y ∩ rTV
(σ)(Y ) .

Let Y2 be a geometric irreducible component of Y ∩ rTV
(σ)(Y ) containing V . We obtain

Gal(F/F ) · V ⊂ Gal(F/F ) · Y2 ( Y .

Moreover degLK
(Gal(F/F ) ·Y2) ≤ degLK

(Y ∩ rTV
(σ)(Y )) ≤ ((degLK

Z)2lk)2. Once again
the inequality 8.2 on page 43 implies that V is a proper subvariety of Y2.

We now iterate step 2, replacing Y1 by Y2. As dim V < dim Y2 < dim Y1 < dim Z, in at
most r = dim Z − dim V iterations we obtain the variety Y as in (b).

�

8.5. Proof of theorem 8.3.1. We prove theorem 8.3.1 by induction on r = dim Z −
dim V .

8.5.1. Case r = 1 i.e. V is of codimension one in Z. In the situation of definition 8.2.1
let Z be a Hodge-generic F -irreducible subvariety of SK(G, X)C containing V as a hyper-
surface.

We denote dZ := degLK
Z. Suppose that the inequality 8.1 on page 43 holds for r = 1 :
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(8.3) l8(k+2f) · d2
Z < C(N)αV βN

V .

In order to apply the theorem 7.1 to produce V ′, we first lift to an Iwahori-level at the
prime l.

Let I ⊂ K be the compact open subgroup K lIl of G(Af) where Il denotes the inter-
section of Kl and an Iwahori subgroup of Kmax

l as in the lemma 8.1.1. As K is neat its
subgroup I is also neat. We get a finite morphism of Shimura varieties

πF : ShI(G, X)F −→ ShK(G, X)F ,

of degree bounded above by lf by lemma 8.1.1,b).
Let Z̃F be an irreducible component of π−1

F ZF . Its base change Z̃ := Z̃F ×F C is the
union of the Gal(F/F )-conjugates of an irreducible component of π−1(Z). The image of
Z̃ in ShK(G, X)C is Z and

degLI
Z̃ ≤ lf · degLK

Z .

Let Ṽ be an irreducible component of the preimage of V in Z̃, this is a non-strongly special
subvariety of ShI(G, X)C contained in Z̃. We have the inequality

degLI
(Gal(F/F ) · Ṽ ) ≥ degLK

(Gal(F/F ) · V ) .

As the morphism π : ShI(G, X)C −→ ShK(G, X)C is finite and preserves the property of
a subvariety of being special, exhibiting a special subvariety V ′ such that V ( V ′ ⊂ Z is
equivalent to exhibiting a special subvariety Ṽ ′ such that Ṽ ( Ṽ ′ ⊂ Z̃.

Thus by replacing K by I, Z by Z̃, V by Ṽ , we can (and we will from now on) assume
that Kl is contained in an Iwahori-subgroup of G(Ql) in good position with respect to TV

up to the modification degLK
Z ≤ dZ · lf .

As Kl is contained in an Iwahori-subgroup of G(Ql) in good position with respect to TV ,
we can apply theorem 7.1. Let m satisfying the conclusion of theorem 7.1. By condition (1)
of theorem 7.1, Gal(F/F ) · V ⊂ Z ∩ TmZ. If Z and TmZ have no common (geometric)
irreducible component, then any σ(V ), σ ∈ Gal(F/F ) is an irreducible component of
Z ∩ TmZ for dimension reasons. By Bezout’s theorem, we get

C(N)αV βN
V ≤ degLK

(Gal(F/F ) · V ) ≤ degLK
(Z ∩ TmZ)

≤ (degLK
Z)2[Kl : Kl ∩mKlm

−1] < lk+2f · d2
Z .

Contradiction to the inequality (8.3). Thus we are in case (a) of proposition 8.4.1 :
Z ⊂ TmZ. As m also satisfies condition (2) of theorem 7.1, we can apply theorem 6.1 to
this m : there exists V ′ special subvariety of Z containing V properly.
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8.5.2. The induction. Fix r > 1 an integer and suppose by induction that theorem 8.3.1
holds for dim Z − dim V < r. In the situation of definition 8.2.1 let Z be a Hodge generic
F -irreducible F -subvariety of SK(G, X), containing V with dim Z − dim V = r. Let
dZ := degLK

Z and suppose the inequality 8.1 on page 43 is satisfied :

l(k+2f)·2a(r+1) · d2a(r)

Z < C(N)αV βN
V .

As in the case r = 1, we can assume that Kl is contained in an Iwahori-subgroup of
G(Ql) in good position with respect to TV up to the modification : degLK

Z ≤ dZ · lf .
Choose m ∈ G(Ql) satisfying the conclusion of theorem 7.1. As condition 8.1 on page 43
implies condition 8.2 on page 43, one can apply proposition 8.4.1.

If we are in case (a) of proposition 8.4.1, once more as in the case r = 1 we are done by
the theorem 6.1.

Thus we can assume we are in case (b) : there exists an F -irreducible subvariety Y of
ShK(G, X) satisfying the following properties :

• Gal(F/F ) · V ( Y ⊂ Z ∩ TmZ ( Z.
• degLK

Y ≤ l(k+2f)·2r−1
d2r

Z .
• V is not strongly special in ShKY

(GY , , XGY
)C, where GY ⊂ G denotes the generic

Mumford-Tate group of a component Y1 of Y containing V , (GY , XGY
) ⊂ (G, X)

is the corresponding Shimura sub-datum and KY denotes the intersection K ∩
GY (Af).

We obtain a finite morphism of Shimura varieties π : ShKY
(GY , XY )C −→ ShK(G, X)C,

which is generically of degree one ([37]). Let E(GY , XY ) be the reflex field of the Shimura
datum (GY , XY ) and let F ′ be the composite field

F ′ = F · E(GY , XY ) .

The variety Y1 contains the non-strongly special subvariety V . Let Y ′ be the Gal(F/F ′)-
orbit of Y1 in ShKY

(GY , XY )C, Y ′ is an F ′-irreducible F ′-subvariety of ShKY
(GY , XY )C.

Let us check that GY , XY , KY , F ′, V , l and Y ′ satisfy the assumptions of theorem 8.3.1.
The compact open subgroup KY = K ∩GY (Af) is a product

∏
p prime KY,p, with KY,p =

Kp ∩ GY (Qp). As Kl is contained in a special maximal compact open subgroup Kmax
l

of G(Ql) in good position with respect to TV , KY,l is contained in the compact open
subgroup Kmax

l ∩GY (Ql), which is still in good position with respect to TV as TV ⊂ GY .
It remains to check that

l(k+2f)·2a(rY +1) · (degLKY
Y ′)2

a(rY )
< C(N)αV βN

V ,
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where rY = dim Y ′ − dim V .
As

degLKY
Y ′ ≤ degLK

Y ′ ≤ degLK
Y ≤ l(k+2f)·2r−1 · d2r

Z ,

we are reduced to checking the inequality

l(k+2f)·(2a(rY +1)+2r−1+a(rY )) · d2r+a(rY )

Z < C(N)αV βN
V .

As Z satisfies the condition 8.1 on page 43, it is enough to check that{
2a(rY +1) + 2r−1+a(rY ) ≤ 2a(r+1)

2r+a(rY ) ≤ 2a(r)
.

The second inequality is obviously satisfied because the function a is increasing, rY ≤
r − 1 and r + a(r − 1) = a(r).

For the first one, notice that r − 1 + a(rY ) ≤ r + a(r − 1) = a(r), thus :

2a(rY +1) + 2r−1+a(rY ) ≤ 2× 2a(r) = 2a(r)+1 ≤ 2a(r+1)

and we are done.
As dim Y ′ − dim V < dim Z − dim V = r, we can by induction apply the theorem 8.3.1

to GY , XY , KY , F ′, V , l and Y ′ : there exists a special subvariety V ′
Y of ShKY

(GY , XY )
such that V ( V ′

Y ⊂ Y ′. Let V ′ denote the special subvariety π(V ′
Y ) of ShK(G, X). As

π(Y ′) ⊂ Y ⊂ Z and π is finite, we obtain V ( V ′ ⊂ Z and we are done. This finishes the
induction and the proof of theorem 8.3.1.

9. The choice of a prime l

9.1. Effective Chebotarev. The choice of a prime l satisfying all of the conditions of
the theorem 8.3.1 will be made possible by the effective Cebotarev theorem, which we now
recall.

Definition 9.1.1. Let L be a number field of degree nL and absolute discriminant dL. Let
x be a positive real number. We denote by πL(x) the number of primes p such that p is
split in L and p ≤ x.

Proposition 9.1.2. Assume the Generalized Riemann Hypothesis (GRH). There exists a
constant A such that the following holds. For any number field L Galois over Q and for
any x > max(A, 2 log(dL)2(log(log(dL)))2) we have

πL(x) ≥ x

3nL log(x)
.

Furthermore, if we consider number fields such that dL is constant, then the assumption
of the GRH can be dropped.
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Proof. The first statement (assuming the GRH) is proved in the Appendix N of [16] and
the second is a direct consequence of the classical Cebotarev theorem. �

9.2. Proof of the theorem 3.2.1.

Proof. Let (G, X) be a Shimura datum with G semisimple of adjoint type. Recall that this
assumption implies that for all Shimura subdata (H, XH) with H generic Mumford-Tate
group on XH of (G, X), the centre T of H is such that T(R) is compact.

Let K be a compact open subgroup of G(Af). Let F be a number field containing the
reflex field E(G, X). Let Z be a Hodge generic F -irreducible F -subvariety of ShK(G, X)C.
Suppose that Z contains a Zariski dense set Σ, which is a union of special subvarieties
V , V ∈ Σ, all of the same dimension n(Σ) such that for any modification Σ′ of Σ the set
{αV βV , V ∈ Σ′} is unbounded. We want to show, under each of the two assumptions of
theorem 3.2.1 separately, that for every V in Σ there exists a special subvariety V ′ such
that V ( V ′ ⊂ Z (possibly after replacing Σ by a modification).

Lemma 9.2.1. Without any loss of generality we can assume that :

(1) The group K is a product of compact open subgroups Kp of G(Qp), p prime.
(2) There is a prime number p0 such that Kp0 is sufficiently small so that the group

K is neat.
(3) After possibly replacing Σ by a modification, Σ consists of non-strongly special

subvarieties.

Proof. To fulfill the first condition, let K̃ ⊂ K be a compact open subgroup which is a
product. Let Z̃ be an F -irreducible component of the preimage of f−1(Z), where f :
Sh eK(G, X)C −→ ShK(G, X)C is the canonical finite morphism. The Hodge generic F -
irreducible F -subvariety Z̃ of Sh eK(G, X)C contains a Zariski-dense set Σ̃, which is a union
of special subvarieties V , V ∈ Σ̃, all of the same dimension n(Σ) : Σ̃ is the set of all
irreducible components Ṽ of f−1(V ) contained in Z̃ as V ranges through Σ. Notice that
for any modification Σ̃′ of Σ̃ the set {αV ′βV ′ , V ′ ∈ Σ̃′} is unbounded : βV ′ = βf(V ′) and
αV ′ is equal to αf(V ′) up to a factor independent of V ′. Thus Z̃ satisfies the assumptions of
theorem 3.2.1. As a subvariety of ShK(G, X)C is special if and only if some (equivalently
any) irreducible component of its preimage by f is special, theorem 3.2.1 for Z̃ implies
theorem 3.2.1 for Z.

To fulfill the second condition, replace Kp0 by a smaller subgroup satisfying lemma 4.1.2.
The same argument as above shows that it is safe to do this.

Concerning the last condition : otherwise there is a modification Σ′ of Σ consisting
only of strongly special subvarieties. Contradiction with the assumption that the set
{αV βV , V ∈ Σ′} is unbounded. �
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From now on, we fix a faithful rational representation ρ : G ↪→ GLn such that K is
contained in GLn(Ẑ). In the case of the assumption (2) in theorem 3.2.1, we take for ρ the
representation which has the property that the centres TV lie in one GLn(Q)-conjugacy
class (possibly replacing K by K ∩GLn(Ẑ)) as V ranges through Σ.

For almost all primes l, Kl is a special maximal compact open subgroup of G(Ql) and
furthermore Kl = G(Zl), where the Z-structure on G is given by taking the Zariski closure
in in GLn,Z via ρ. Moreover, if the group TV,Fl

is a split torus then Kl is in good position
with respect to TV .

By theorem 8.3.1, it is then enough (for the purposes of proving theorem 3.2.1) to show
that for any V in Σ (up to a modification), there exists a prime l satisfying the following
conditions :

(1) the prime l splits TV .
(2) TV,Fl

is a split torus.
(3) l(k+2f)·2a(r+1) · (degLK

Z)2
a(r)

< C(N)αV βN
V .

(4) Kl = G(Zl).

Proposition 9.1. For every D > 0, ε > 0 and every integer m ≥ max(ε, 6), there exists
an integer M such that (up to a modification of Σ) : for every V in Σ with αV βV larger
than M there exists a prime l satisfying the following conditions

(1) l < Dαε
V βm

V .
(2) (TV )Fl

is a split torus.

Moreover the number of such primes goes to infinity as αV βV goes to infinity.

Proof. For V in Σ recall that nV is the degree of the splitting field LV of CV = HV /Hder
V

over Q. By [41, Lemma 4.2], nV is bounded when V ranges through Σ.
Fix D > 0, ε > 0 and m ≥ 6. For V in Σ, let

xV := Dαε
V βm

V

As we are assuming either the GRH, or that the connected centres TV of the generic
Mumford-Tate groups HV of V lie in one GLn(Q)-conjugacy class under ρ as V ranges
through Σ, in which case dLV

is independent of V , we can apply proposition 9.1.2 :

πLV
(xV ) ≥ xV

3n log(xV )

provided that xV is larger than some absolute constant and β3
V .

If xV ≥ 4 (which is true if αV βV is large enough), then
√

xV ≥ log(xV )
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and it follows that

πLV
(xV ) ≥

√
xV

3n
=

(Dαε
V βm

V )
1
2

3n
Thus to prove the proposition we have to show that πLV

(xV ) > iV := i(TV ) if αV βV

is large enough. Indeed, this will yield a prime l which is split in LV and such that
KTV ,l = Km

TV ,l. These conditions imply that TV,Fl
is a split torus. We refer to the proof

of lemma 3.12 of [37] for the proof of this fact.
Write iV = i′V + i′′V where i′V denotes the number of primes unramified in LV and

such that Km
TV ,p 6= KTV ,p and i′′V denotes the number of primes ramified in LV such that

Km
TV ,p 6= KTV ,p.

Lemma 9.2.2. αV ≥ Bmax{i′V ,1}i′V ! and βV ≥ max(i′′V , 1).

Proof. The first inequality follows from the following facts :

(1) by the proof of lemma 3.12 of [37], for p unramified in LV and such that Km
T,p 6=

KT,p we have
|Km

TV ,p/KTV ,p| ≥ p .

(2) in general, for a prime p such that Km
T,p 6= KT,p we have

B|Km
TV ,p/KTV ,p| ≥ 1 .

(3) The pth prime in N is at least p.

The second inequality follows from the definition of βV = log(dLV
). �

Definition 9.2.3. Given a positive real number t we denote by Σt (resp. Σ′
t) the set of V

in Σ with iV > t (resp. with i′V > t).

We proceed by dichotomy :

• Suppose that for any t the set Σ′
t is a modification of Σ. In particular the function

i′V (thus also iV ) is unbounded as V ranges through Σ. Recall the well-known
inequality: for every integer n > 1,

enne−n < n! < enn+1e−n .

That gives :

αV > e(
Bi′V

e
)i′V > (

Bi′V
e

)i′V .

Hence :

α
ε
2
V > (

Bi′V
e

)
εi′V
2 .

For i′V > 4
ε we obtain :

α
ε
2
V > (

Bi′V
e

)2 .
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Using the lower bound for πLV
(xV ) we obtained above and as m ≥ 6, we see

that

πLV
(xV ) >

D
1
2 B2

3ne2
· i′V

2 · (max{i′′V , 1})2 ≥ D
1
2 B2

12ne2
· i2V ,

where we used that

i′V
2 · (max(i′′V , 1))2 ≥

i2V
4

because iV = i′V + i′′V and i′V ≥ 1. Hence, whenever

i′V > t = max(
4
ε
,
12e2n

D
1
2 B2

)

we obtain

iV ≥ i′V >
12e2n

D
1
2 B2

and thus πLV
(xV ) > iV . As the set Σ′

t is a modification of Σ we get the proposi-
tion 9.1.
• Otherwise there exists a positive number c such that Σ \ Σ′

c is a modification of
Σ. Replacing Σ by Σ \Σ′

c the function i′V is bounded by c as V ranges through Σ.
In particular i′′V ≥ iV − c as V ranges through Σ. Let r be a real positive number
such that r ≤ αV for all V ∈ Σ.

– Suppose that for any t the set Σt is a modification of Σ. In particular the
function iV is unbounded as V ranges through Σ. This time the lower bound
obtained on πLV

(xV ) gives :

πLV
(xV ) >

D
1
2 α

ε
2
V

3n
· β2

V > C(iV − c)2 ,

where C = D
1
2 r

ε
2

3n . Thus one obtains

πLV
(xV ) > iV

as soon as iV is larger than the largest root t of the quadratic polynomial
C(iV −c)2−iV . As the set Σt is a modification of Σ we get the proposition 9.1.

– Otherwise there exists a positive number t such that Σ\Σt is a modification of
Σ. Replacing Σ by Σ\Σt the function iV is bounded by t as V ranges through
Σ and πL(xV ) will be larger than iV when πL(xV ) ≥ t. The inequality we
want to prove then is

α
ε
2
V β

m
2

V > 3ntD2 .

The inequality α
ε/2
V β

m/2
V ≥ (αV βV )ε/2 shows that in this case M can be taken

to be (3nHD2)2/ε.
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�

Let r := dim Z − n(Σ). Let N be a positive integer, at least 6(k + 2f)2a(r+1). Let

ε < 1
(k+2f)·2a(r+1) , D = ( C(N)

(degLK
Z)2

a(r) )
1

(k+2f)·2a(r+1) and m = N
(k+2f)·2a(r+1) . Let M be the

integer provided by the proposition 9.1.
We apply the proposition 9.1 with ε, m and D : up to a modification of Σ, for every

V ∈ Σ we can choose a prime l 6= p0 such that l splits TV , TV,Fl
is a split torus and

l < Dαε
V βm

V . This last inequality is exactly condition 8.1 on page 43 of theorem 8.3.1.
Finally for every V in Σ we can apply theorem 8.3.1 to Z, V and l and we are done. �
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