Heterostructure Field Effect Transistors

Outline

HEMT (HFET) principle of operation. HFET material systems HFET modeling Gate leakage in HFETs and MESFETs **HFET design HFET** characterization. **Complementary HFETs** HFET and MESFET scaling.

Heterojunctions

The *conventional p-n diode* uses doping profiles to control current. Using *variation in material composition* gives additional degrees of freedom.

Graded composition: May give a different built-in electric field for electrons and holes

Abrupt Composition

Abrupt composition: Forms energy wells and superlattices

Basic HFET (HEMT) Operation

shurm@rpi.edu #18 HFET Band Diagram at Flat Band

from T. A. Fjeldly, T. Ytterdal, M. S. Shur, Introduction to Device Modeling and Circuit Simulation for VLSI, Wiley, 1998

Delta-doped HFET

Threshold voltage

Uniform doping

$$V_T \approx \phi_b - \frac{qN_d d_i^2}{2\varepsilon_i} - \Delta E_c / q$$

Delta doping

$$V_T \approx \phi_b - q n_\delta d_\delta / \varepsilon_i - \Delta E_c / q$$

Threshold voltage versus design parameters

Basic HFET Operation

Material system: Typically GaAs/AlGaAs

Channel: Defined by electrons populating the quantum well at the GaAs/AlGaAs interface

Operation: Similar to MOSFET

Very fast **device** – f_T > 300 GHz

Basic HFET Model

We can use a MOSFET model because of the similarities between HFET and MOSFET.

Quiz: Which parameters should be adjusted?

18

shurm@rpi.ed Example: HFET Transfer Characteristics

18

Shurm@rpi.edu Universal HFET (HEMT) Model

Two major differences from the MOSFET:

- Charge transfer to the wide band gap semiconductor
- Gate leakage current

Charge Transfer in HFETs

Charge Transfer in HFETs (Cont.)

Charge transfer leads to saturation of channel charge and channel current at high gate bias.

HFET Ids Model

Same as for MOSFET except for:

$$n_{s_hfet} = \frac{n_{s_mosfet}}{\left[1 + \left(n_{s_mosfet} / n_{\max}\right)^{\gamma}\right]^{1/\gamma}}$$

HFET Capacitance Model

Same as for MOSFET model: Unified Meyer Model:

$$C_{GD} = \frac{2}{3} C_{ch} \left[1 - \left(\frac{V_{GTe}}{2V_{GTe} - V_{DSe}} \right)^2 \right] C_{GS} = \frac{2}{3} C_{ch} \left[1 - \left(\frac{V_{GTe} - V_{DSe}}{2V_{GTe} - V_{DSe}} \right)^2 \right]$$

Channel capacitance:
$$C_{ch} = WLq \frac{dn_S}{dV_{GS}}$$

"Parallel channel" capacitance (MOSFET-like):

$$C_{g1} = \frac{C_{i1}}{1 + 2 \exp\left[-\frac{V_{GS} - V_{T1}}{\eta_1 V_{th}}\right]}$$

HFET Capacitance Model (Cont.)

Universal HFET AIM-Spice Model

Implementation similar to that of the universal MOSFET model

Major differences:

Gate leakage current included (diode model for G-S and G-D junctions)

Use MOSFET expressions and include saturation in n_s

Extra capacitance due to transferred charge

Example

Sketch proposed dimensions, material composition, and doping profiles for an HFET with the threshold voltage, $V_T = -1$ V, and the device transconductance at zero gate bias in the saturation region of at least 300 mS/mm.

Justify your choices.

Solution: Estimate for maximum gm

```
gm = dl_{ds}/dV_{gs}
Idsmax = q ns vs W
ns is the sheet electron density
vs is saturation velocity
gmax = dl_{dsmax}/dV_{gs}
gmax = q vs W dns/dVgs
ns = C (Vgs - Vt)/q
C = eps/di
gmax = q vs eps W/di
```

Solution (continued)

Since the required values of the device transconductance are not very high, we can use a standard Al_{0.3}Ga_{0.7}As/GaAs system (as opposed to a pseudomorphic HFET) and a 1 µm gate geometry. The maximum device transconductance is smaller than . $g_{\text{max}} = \frac{\varepsilon_s v_s}{d_i} \left(\frac{mS}{mm} \right)$

$$g_{\max} = \frac{\varepsilon_s v_s}{d_i} \left(\frac{mS}{mm}\right)$$

where $\varepsilon_s = 1.14 \times 10^{-10} \text{ F/m}$, v_s is the electron saturation velocity, d_i is the gate-to-channel separation. Assuming a conservative value of $v_s = 1 \times 10^5$ m/s and estimating $g_m(V_g = 0) = g_{max}/2$, we find

$$d_i = \frac{\varepsilon_s v_s}{2g_m} = \frac{1.14 \times 10^{-10} \times 10^5}{2 \times 300} = 1.9 \times 10^{-8} (m)$$

Hence, we choose $d_i = 200 \text{ Å}$.

Solution (continued)

We choose a δ -doped design, and place the doping plane at the distance of $d_{\delta} = 150$ Å from the gate. The device threshold voltage can be estimated as

 $V_T = \Phi_b - \Delta E_c - \frac{qN_{\delta}d_{\delta}}{\varepsilon_s}$

where the barrier height $\Phi_b = 1$ eV, the conduction band discontinuity, $\Delta E_c = 0.3$ eV, $q = 1.602 \times 10^{-19}$ C is the electronic charge, N_{δ} is the surface density of ionized donors in the δ -doped plane. Hence, $\sum_{N = \epsilon_s \left(\Phi_b - \Delta E_c - V_T\right)} \frac{1.14 \times 10^{10} (1 - 0.3 + 1)}{1.14 \times 10^{10} (1 - 0.3 + 1)} \approx 0.0 \times 10^{16} \left(\frac{1.14 \times 10^{10} (1 - 0.3 + 1)}{1.14 \times 10^{10} (1 - 0.3 + 1)} \right)$

 $N_{\delta} = \frac{\varepsilon_s \left(\Phi_b - \Delta E_c - V_T\right)}{q d_{\delta}} = \frac{1.14 \times 10^{10} (1 - 0.3 + 1)}{1.602 \times 10^{-19} \times 1.5 \times 10^{-8}} = 8.06 \times 10^{16} \left(m^{-2}\right)$

We can now check if this design meets the specs.

Solution, continued 1

The intrinsic HFET drain saturation current in the above threshold regime is given by $\int_{0}^{\infty} \left[\sqrt{v_{GT}} \right]^{2}$

 $I_{sat} = \beta V_L^2 \left[\sqrt{1 + \left(\frac{V_{GT}}{V_L} \right)^2 - 1} \right]$

where $V_{GT} = V_{GS} - V_T$, $V_L = v_s L/\mu$, $\beta = \frac{\varepsilon_s \mu}{(d_i + \Delta d)} \frac{W}{L}$ μ is the mobility (we assume $\mu = 0.5 \text{ m}^2/\text{Vs}$), Δd is the effective thickness of the 2d electron gas ($\Delta d \sim 50 \text{ Å}$), L is the gate length (1 μ m), W is the gate width. (For simplicity, we assume equal dielectric permittivities for AlGaAs and GaAs.). Differentiating this equation with respect to V_{GS} , we find the intrinsic transconductance $g_{mi} = \frac{\beta V_{GT}}{\sqrt{1-(d_s)^2}}$

 $g_{mi} = \frac{\beta V_{GT}}{\sqrt{1 + \left(\frac{V_{GT}}{V_{I}}\right)^{2}}}$

Solution, continued 2

For the chosen device parameters

$$\beta = \frac{1.14 \times 10^{-10} \times 0.5}{(200 + 50) \times 10^{-10}} \frac{10^{-3}}{10^{-6}} = 2.28 \left(\frac{S}{Vmm}\right)$$

$$V_L = 0.2 \text{ V}$$

$$g_{mi} = \frac{2.28 \times 1}{\sqrt{1 + \left(\frac{1}{0.2}\right)^2}} = 0.447 \left(\frac{S}{mm}\right) = 447 \left(\frac{mS}{mm}\right)$$

Assuming a source series resistance $R_s = 0.5$ ohm mm, we find

$$g_m = \frac{g_{mi}}{1 + g_{mi}R_S} = \frac{0.447}{1 + 0.447 \times 0.5} = 0.365 \left(\frac{S}{mm}\right) = 365 \left(\frac{mS}{mm}\right)$$

Composition and doping profiles

Solution (numerics)

For the chosen device parameters

$$V_L = 0.2 \text{ V}$$

Assuming a source series resistance $R_s = 0.5$ ohm-mm, we find

Hence, our design is satisfactory.

HEMT equivalent circuit

P-channel HFET

T. Ytterdal, Tor A. Fjeldly, Michael S. Shur, S. Baier, R. Lucero, Complementary Heterostructure Field Effect Transistor Models for Mixed Mode Applications, Proceedings of ISDRS-97, pp. 619-622, Charlottesville, VA, Dec. (1997)

shurm@rpi.edu # 18

P-channel HFET (Ids versus Vds)

T. Ytterdal, Tor A. Fjeldly, Michael S. Shur, S. Baier, R. Lucero, Complementary Heterostructure Field Effect Transistor Models for Mixed Mode Applications, Proceedings of ISDRS-97, pp. 619-622, Charlottesville, VA, Dec. (1997)

The AIM-Spice HFET Model

Equivalent Circuit

Gate leakage

T. Ytterdal, Tor A. Fjeldly, Michael S. Shur, S. Baier, R. Lucero, Complementary Heterostructure Field Effect Transistor Models for Mixed Mode Applications, Proceedings of ISDRS-97, pp. 619-622, Charlottesville, VA, Dec. (1997)

2D Simulation Using Silvaco Flash

Courtesy Silvaco, International

π -HFET

Two possible implementations of π -HFET fabricated using a modified SAINT process (a) and modified T-gate process (b).

π -HFET Band Diagram

p-layer (buffer)

i-layer

p⁺tayer (substrate)

Layer structure replacing the p-type buffer layer. Here, the heavily doped p^{++} layer provides the low impedance ground plane, thus reducing the electrical noise, sidegating, and unintentional backgating. The i-layer between the p-type buffer layer and the p^{++} layer reduces the parasitic capacitance. (from Lee and Shur (1990)).

Conventional and Dipole HFET

Band diagrams of conventional δ -doped HFET (dashed line) and Dipole HFET (solid line) for the same density of 2D electron gas

SHET and VTFET drain gate drain ce /AlGaAs $V_{t1} > V_{t2}$ GaAs GaAs ion-implanted doped plane region electric field electric field velocity velocity

Qualitative velocity and electric field profiles versus distance for uniform and variable-threshold FETs (from Shur (1989)).

Threshold Voltage in VTFET

Complementary n-channel and p-channel HIGFETs

InP based HFETs

Advantages of InP based HFETs

Lower noise
Higher cutoff frequency
Higher gain
Operating voltage below 3 V

T. Shuemitsu et al. (NTT) reported on InP-based HEMT with the gatelength of 30 nm with cutoff frequency of 350 GHz (1998IEDM conference)

Metamorphic HEMT on GaAs Substrate (MM-HEMT)

In_vAl_{1-v}As/ In_xGa_{1-x}As/GaAs system

- y and x chosen to match the latiice constants of In_yAl_{1-y}As/ In_xGa_{1-x}As layers
- A metamorphic buffer $(\ln_z A \ln_{z-z} A s)$ or $\ln_z G a_{1-z} A s$ with 0 < z < x is grown at low temperature to accommodate the mismatch between the GaAs substrate and the $\ln_x G a_{1-x} A s$ active layer

Metamorphic HEMT (example)

InP HEMT performance on GaAs substrate

InAlGaAs

 $In_{0.36}Ga_{0.64}As$

InAlGaAs

Graded buffer

GaAs substrate

Room temperature mobility 7,500 cm²/V-s (for GaAs 6,600 cm²/V-s)

Liquid N temperature mobility 22,000 cm²/V-s (for GaAs 16,000 cm²/V-s)

MM-HEMT simulation

H. Happy, S. Bollaert, H. Foure, and A. Cappy, Numerical Analysis of Device Performance of Metamorphic In_yAl_{1-y}As/ In_xGa_{1-x}As (0.3 < x <0.6) HEMT's on GaAs Substrate, IEEE Trans. Electron Dev., ED-45, No 10, p. 2089, October (1998)

Prediction: x = 0.4 is optimum

GaInP/InGaAs Doped Channel HFET

(After S.S. Lu, Y.W. Hsu, C.-C. Meng, and L. P. Chen, IEEE EDL, vol. 20, No 1, pp. 21-23) **SDM-2**, ©Michael Shur 1999-2009

shurm@rpi.edu

18

Problems with HEMTs

Gate lag
Gate breakdown

Gate Lag Problem

Double Recesses Gate

shurm@rpi.edu

18

MESFET, HFET, HBT Comparison

	MESFET	HFET	HBT
1/f noise	High	High	Lower
RF	OK	Very good	Good
performance			
Breakdown	OK	Low	High
Power	Up to 1	Up to 1	Up to 3
level	W/mm	W/mm	W/mm
Price		Least	
		expensive	