# Collision avoidance on the UKCS (TCAS II Trial) Mark Prior (Bistow)







# Traffic Collision Avoidance System II

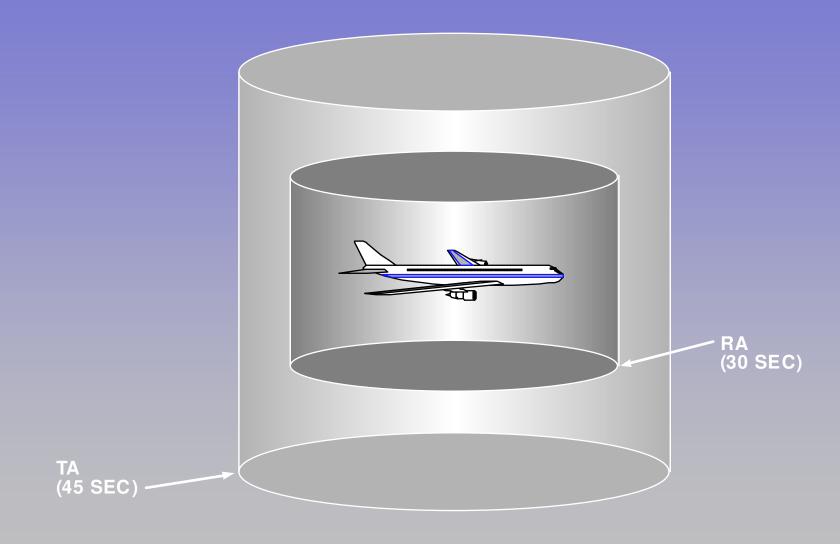


# Safety Systems

- Type 1
  - Rebreathers
  - EXIS lights
  - External liferafts
  - Crashworthy seats
  - Automatic Float Deployment Systems
- Type 2
  - HUMS
  - HOMP
  - TCAS II






# Background - What is TCAS?

- TCAS: Traffic Collision Avoidance
   System
- TCAS development is an American initiative, preliminary studies in 1955
- TCAS II version 7 is the only equipment complying with the ICAO SARPS:





# **BASIC PHILOSOPHY**







#### Situation in the World

#### I C A O Standard:

- Mandatory carriage of an ACAS II (TCAS II version 7):
  - Since 1 Jan 00 for civil turbine-engined aircraft with more than 30 pax or weighing more than 15,000 kg
  - Since 1 Jan 05 with more than 19 pax or weighing more than 5,700 kg
- So by fitting TCAS II, the Helicopter is afforded the same 'safety net' as an airliner (B737, B747, A319 etc)





# Why do we need it?

- Airprox a growing problem
  - EC155 vs B206 Port Harcourt
  - AS332 vs F3 120nm SE ABZ
  - AS332 vs AS332 Scatsta
  - AS332 vs Nimrod Kinloss
  - AS332 vs AS332 Aberdeen
  - AS332L2 vs Tornado GR4
  - Nigeria 30+



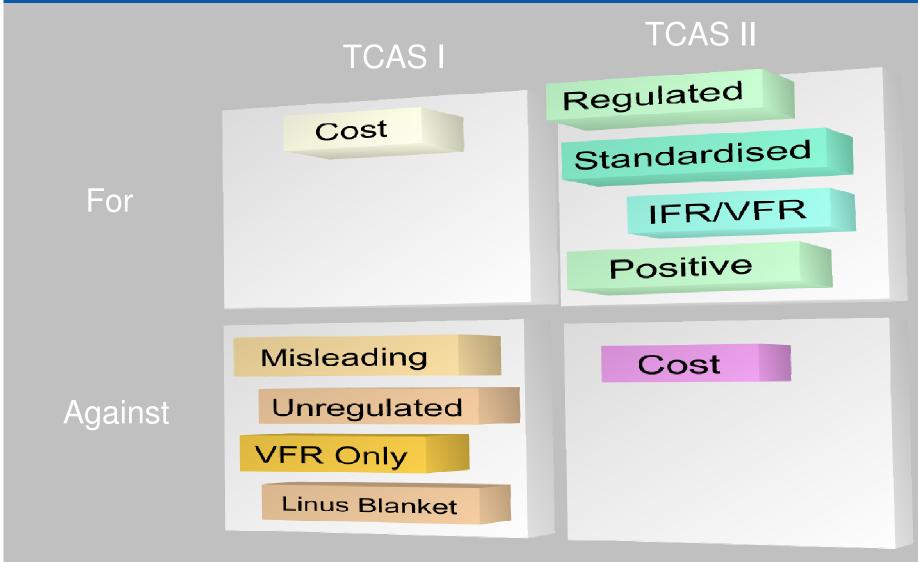


## To Summarise








#### FLIGHT TEST RESULTS

- Flt 1 S Puma V S Puma
  - Head-to-Head
  - Slow Overtake
- Flt 2 S Puma V BAE 146
  - Head-to-head
  - Overtake
- Flt 3 with CAA
  - Performance Issues



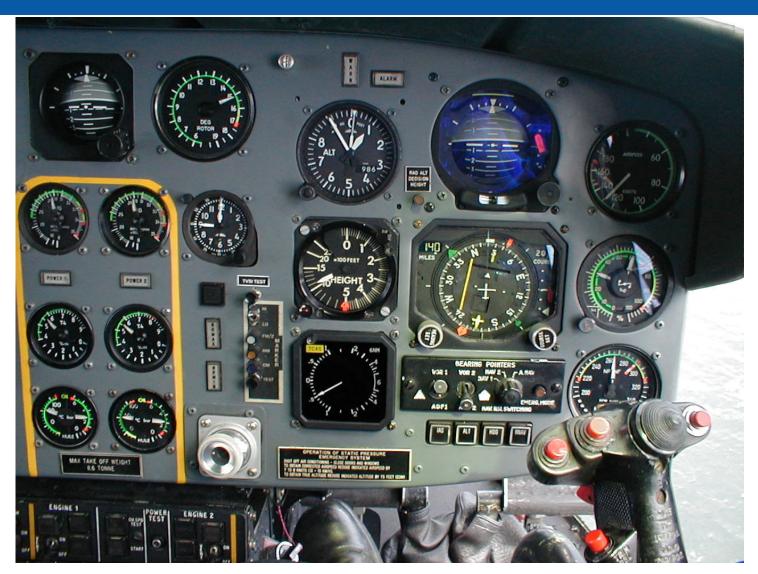


#### TCAS I or TCAS II?








# What was done?







# What was done?







# What was done?







## How Does It Work — The Theory

- An airborne equipment that interrogates adjacent SSR transponders
- Collision avoidance criterion based on <u>time</u>
- Can detect some targets at more than 40 nm
- Can process at least 30 aircraft
- Designed for collision avoidance only



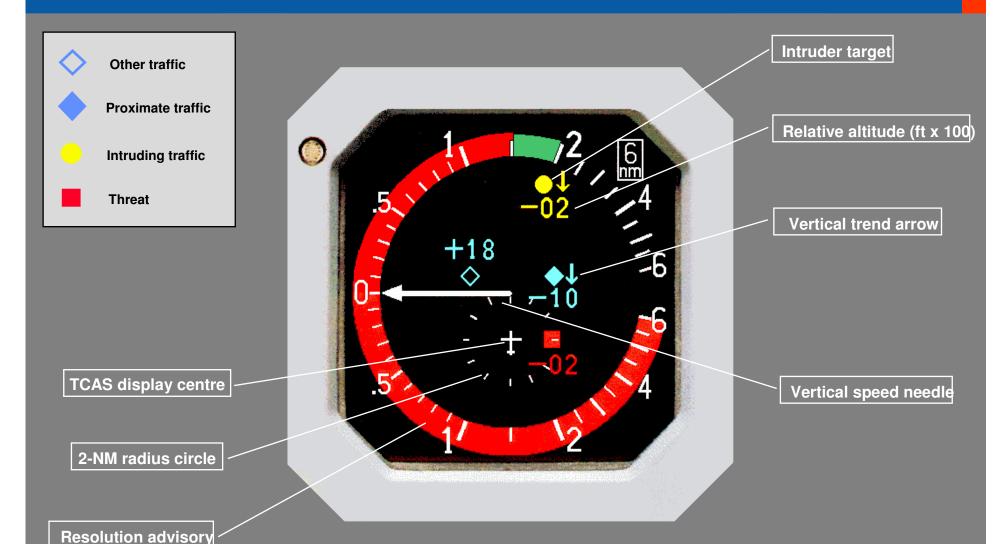


### How Does It Work — The Theory

- Processing cycle = 1 second!
- Determination of the alerts:
  - Traffic Advisory
  - Resolution Advisory
  - Co-ordination between two TCAS II units
     Information to the pilot:
  - Aural annunciations
  - Traffic display
  - Resolution advisory display



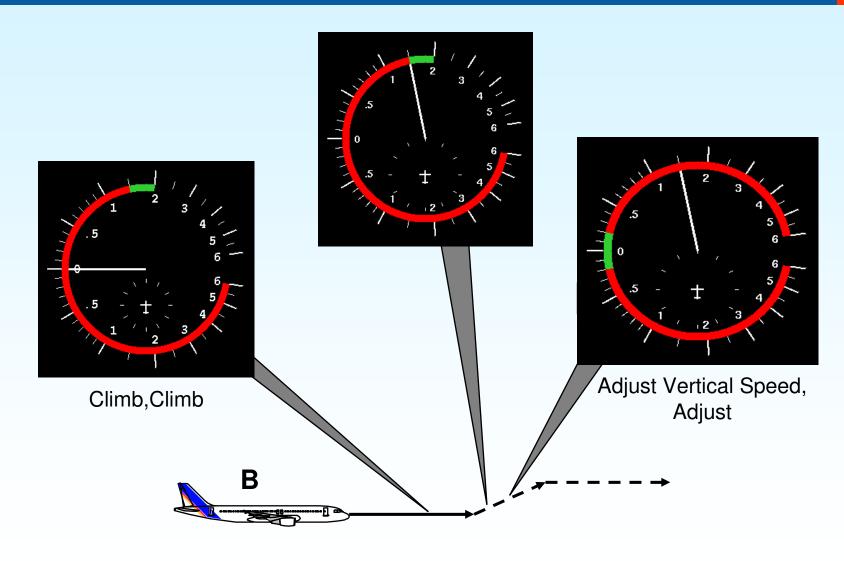



#### How does it work? - Initiation of Alerts - RA

- An RA indicates the vertical speed required to avoid a possible collision
  - If an RA is generated, the RA sense is selected:
    - to achieve a safe vertical distance (ALIM) at CPA
    - in coordination with the other TCAS equipment
- An RA takes <u>all</u> existing threats into account
- If the intruder does not report altitude: No RA
  - UK military have agreed to squawk (with 'C') in the N Sea area unless;
    - Involved in covert operations
    - Major exercises (NOTAM)
    - Equipment u/s



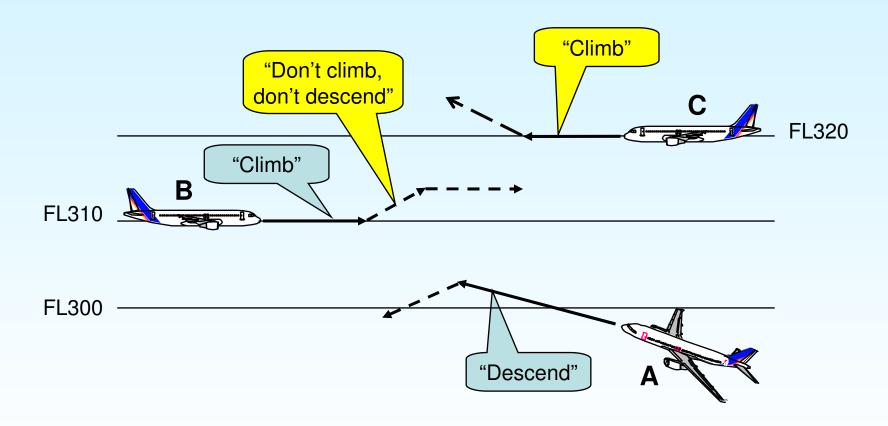



# How Does It Work – practically IVSI-type TCAS display (standard instrumentation)








# How Does It Work — practically Multiple Threat Encounter (1)







# How Does It Work — practically Multiple Threat Encounter (2)



The TCAS manoeuvre for B induces a conflict with C. The RA for B changes from "Climb" to "Don't climb, don't descend » (multiple threat RA).





# TA and RA Thresholds

|                                |    | TA         |              |              | RA         |              |              |              |
|--------------------------------|----|------------|--------------|--------------|------------|--------------|--------------|--------------|
| FL or « Z »<br>Radar altimeter | SL | TAU<br>(s) | DMOD<br>(NM) | ZTHR<br>(ft) | TAU<br>(s) | DMOD<br>(NM) | ZTHR<br>(ft) | ALIM<br>(ft) |
| FL50 ~ 100                     | 5  | 40         | 0.75         | 850          | 25~20      | 0.55         | 600          | 350          |
| 2350ft ~ FL50                  | 4  | 30         | 0.48         | 850          | 20~18      | 0.35         | 600          | 300          |
| 1000 ~ 2350ft                  | 3  | 25         | 0.33         | 850          | 15~15      | 0.2          | 600          | 300          |
| 0 ~ 1000 ft                    | 2  | 20         | 0.3          | 850          | No RA      | No RA        | No RA        | No RA        |

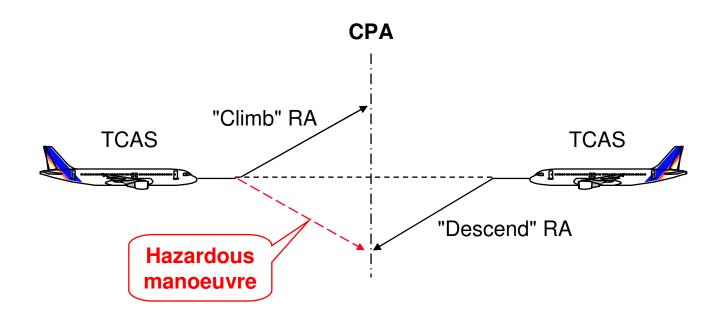




#### **Inhibits**

#### Resolution Advisory:

- All: < 1,000 ft AGL (+/- 100 ft) \*
- Descend:< 1,100 ft AGL (+/- 100 ft) \*</li>
- Increase descent: < 1,550 ft AGL (+/- 100 ft) \*</li>
- Increase climb: hard wired (Increase climb Inhibit)


#### Annunciation:

- Own altitude: < 500 ft AGL (+/- 100 ft) \*</li>
- Aircraft on-the ground:
  - Mode **S** intruder:
    - aircraft-on-the-ground indicated in Mode S





#### RAs are coordinated!



When the TCAS is activated on-board both aircraft, RAs are **coordinated**. The pilot should not, <u>in any situation</u>, manoeuvre contrary to the RA.





# RA - Regulatory Context:- Pilots

- cf. docs ICAO PANS-OPS 8168
- The pilot <u>may depart</u> from the ATC clearance (or refuse it) to follow an RA
- The pilot must comply with his airline operational instructions. The pilot always retains the ultimate responsibility for his flight
- Following an RA is similar to an ordinary evasive manoeuvre: the use of TCAS does not alter respective responsibilities of pilots and controllers





# RA - Regulatory Context: Controllers

- cf. docs ICAO PANS-ATM 4444
- Following an RA is similar to an ordinary evasive manoeuvre: the use of TCAS does not alter the respective responsibilities of pilots and controllers:
  - The controller is no longer responsible for separations during a deviation due to a response to an RA
- "When a pilot reports a manoeuvre induced by an ACAS resolution advisory, the controller shall not attempt to modify the aircraft flight path [...] but shall provide traffic information as appropriate"
- The controller **must not consider** the use of TCAS equipment on-board aircraft to establish and/or maintain separation





## Summary

- Independent system, that acts as a last resort
- Highly accurate altitude data (processing in 25 ft increments)
- One per second update rate
- TCAS-TCAS co-ordination
- All threats taken into account
- Detection of all transponding aircraft, including those which are not displayed on the controller's screen
- Bristow is developing and fitting TCAS II upgrades to several types.





# Safety Systems

- Type 1
  - Rebreathers
  - EXIS lights
  - External liferafts
  - Crashworthy seats
  - AFDS
- Type 2
  - HUMS
  - HOMP
  - TCAS II?









