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A class of kick-excited self-adaptive dynamical systems is formed and proposed. The class is
characterized by nonlinear (inhomogeneous) external periodic excitation (as regards to the
coordinates of excited systems) and is remarkable for its objective regularities: the phe-
nomenon of "discrete" ("quantized") oscillation excitation and strong self-adaptive stability.
The main features of these systems are studied both numerically and analytically on the basis
of a general model: a pendulum under inhomogeneous action of a periodic force which is
referred to as a kicked pendulum. Multiple bifurcation diagram for the attractor set of the
system under consideration is obtained and analyzed. The complex dynamics, evolution and
the fractal boundaries of the multiple attractor basins in state space corresponding to
energy and phase variables are obtained, traced and discussed. A two-dimensional discrete
map is derived for this case. A general treatment of the class of kick-excited self-adaptive
dynamical systems is made by putting it in correspondence to a general class of dissipative
twist maps and showing that the latter is an immanent tool for general description of its
behavior.
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1. INTRODUCTION

The nonlinear theory of oscillations considers
mainly the action of periodic forces which does
not depend on the coordinates or are linear with
respect to the coordinates of the excited systems
(Minorsky, 1962; Migulin et al., 1983; Chua, 1987;
Butenin et al., 1987; Hagedorn, 1988; Kapitaniak,

1991). Nonlinear-parametric phenomena in dy-
namical systems described by equations with poly-
nomial nonlinearity have been studied as well
(Gumowsky, 1989).

In this paper, we study the mechanism and fea-
tures of the phenomenon of low frequency (LF)
continuous oscillation excitation under the action
of an external high frequency (HF) force, which
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is nonlinear as regards the coordinates of the
excited systems (Vaynshtein and Vakman, 1983;
Damgov et al., 1986; Landa and Douboshinsky,
1989; Damgov and Grinberg, 1991; Damgov and
Douboshinsky, 1992). References as LF and HF are
used only on a relative basis. In the common case,
the phenomenon is manifested in all frequency
bands in oscillation systems influenced by external
HF periodic forces that are nonlinear with respect
to excited system coordinates. The notion referred
to as "nonlinear force with respect to the system
coordinate" will be clarified below. Such a system
can be regarded as a self-oscillating one with exter-
nal HF power supply (Landa and Douboshinsky,
9s9.
The investigation is motivated by a survey of

the processes and phenomena based on inhomoge-
neous interaction, inertia particle properties, etc.,
known from mechanics, (SHF) electronics, tech-
niques of particle acceleration, etc. (Bruk, 1990;
Kanavetz et al., 1991; Miroshin and Halidov, 1991;
Sikri and Narchal, 1993). In each particular case
and regime the interaction mechanisms has been
revealed differently (for example, calling like self-
modulation, grouping, phase selection and so on).
However, all these mechanisms are based on a

common principle: the external HF force exerts
nonlinear impact with respect to the system motion
coordinate.
The phenomenon of continuous oscillation ex-

citation with an amplitude selected from a discrete
set of possible stationary amplitudes will be dem-
onstrated on the basis of a general model a pen-
dulum under inhomogeneous action of an external
HF periodic force.
The pendulum is a well-known physical device

intensively studied for over 300 years. At present,
the pendulum is quite rightly considered to be one
of the most general models in nonlinear dynam-
ics (Strijak, 1981; Morozov, 1990; Liao, 1992;
Mawhin, 1993; Heng et al., 1994). In systems of
"pendulum type", phenomena like resonance, fre-
quency pulling, synchronization and stabiliza-
tion, etc., have been discovered. In the early 50s
N.N. Bogolyubov and P.L. Kapitza discovered a

possibility to stabilize the upper unstable equilib-
rium point of pendulum by using weak HF mod-
ulation applied to the point of suspension a

phenomenon that is applied, for example, in
heated plasma stabilization in experiments for
thermonuclear reaction utilization (Strijak, 1981;
Blackburn et al., 1992; Yip and Dimaggio, 1993;
Hastings and McLeod, 1993). It is not a mere
coincidence that the quantum-mechanical radio-
frequency-driven Josephson junction discovered
recently as well as the charge-density wave trans-

port process are completely analogous to the pen-
dulum with its strong sinusoidal nonlinearity. The
inexhaustibility of the pendulum as a general model
is once again corroborated by the herewith pre-
sented phenomenon of continuous oscillation exci-
tation with an amplitude belonging to a discrete set
of possible stable amplitudes.
The phenomenon of J. Bethenod is well-known

(Minorsky, 1962, p. 495). Essentially it consists of
the following: if one provides a physical pendulum
with a piece of soft iron and places the pendulum
above a coil, the pendulum starts oscillating and
reaches a stationary state with a constant ampli-
tude. Several theories explaining this phenomenon
were discarded before Y. Rocard formulated the
differential equation describing a specific kind of
parametric excitation (Minorsky, 1962).
Our main goal here is to discuss the case where an

external periodical source acts on a part of the tra-

jectory of a moving pendulum in the absence of a

parametric influence. In actual fact, we shall discuss
a class of systems with specific excitation self-
adaptive kick-excited systems. The kick-excitation
can be represented by a short, as compared to the
main oscillation period, action of an external peri-
odic force.

Considered as a class of oscillating systems with
special energy feeding, it is constructed on the base
of nonlinear oscillators with one degree of free-
dom under external time-dependent force of special
kind; hence, from mechanical point of view they are

systems with one and a half degrees of freedom and
three-dimensional phase space. Let us write the ex-

ternal force as a product of two terms the first is
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periodic function of the time t, and the second non-
linear function of the oscillator variable x:

2 + 2/2 +f(x) e(x). II(vt) (1)

In this equation, the form of function c(x), which
in fact can be regarded as coordinate-dependent
amplitude of the driving force, is essential. In gen-
eral, it can be constructed in an arbitrarily com-

plicated form. However, in this paper we shall deal
only with a small but interesting class of such func-
tions. Namely, we shall consider that c(x) is nonzero
only in a narrow interval of x, much less than the
typical amplitude of oscillation. Throughout this
paper, the function e(x) will be referred to as feed-
ingfunction, and the interval in which it is different
from zero as an active zone of the system. Now it is
clear where the appellation "kick-excited systems",
or shortly "kick-systems", comes from. Here the
external force acts as short impulses (kicks), much
shorter than the period of oscillation, and during
the rest of time the system moves freely. This sepa-
rating of movement into a free, weak-dissipating
part and short active part during which the external
force imports energy in the system makes possible
(and easy) theoretical treatment of the problem.
A typical example of feeding function which is

suitable both to analytical calculations and numer-
ical experiments is U-shaped function around zero:

0, Ix >d’
<< (2)

For the most of this paper, our considerations of the
kick-systems will be restricted only to this feeding
function. Only at the end of the paper, a broader
generalization of the kick-systems and their main
features will be made, and then the general form of
the systems will be examined.
The case discussed in the paper is rather self-

affined and quantitatively similar to a well-known
problem examined by Fermi. As an explanation for
the origin of cosmic rays, Fermi proposed a mech-
anism of accelerating charged particles as a result
of collisions with moving magnetic field structures.

A great number of papers deal with the simplest
model case the so-called model of Fermi-Ulam
(Holmes, 1982; Lichtenberg and Lieberman, 1982;
Isom/iki, 1990). In the setup of the Fermi-Ulam
scattering problem a ball is made to fly and impact
dissipatively between two walls: one fixed and the
other sinusoidally vibrating. The amplitude of the
wall vibration and the coefficient of restitution be-
tween the ball and walls control the ball dynamics.

In recent years, the possibility to use similar
mechanism for boosting space rockets in the gravi-
tational field ofplanets and stars has been discussed
as a matter of principle in different sources. This is
the model of so-called "gravitational engine" accel-
erating particles or bodies. The part of the vibrating
plate may be played, for instance, by the field of a

rotating binary star.
Similar phenomena occur in other subclasses of

the class of kick-excited systems, e.g. in periodically
kicked hard oscillators, ice-structure interaction
models, kicked rotators, driven impact oscilla-
tors, cyclotron accelerators of charged particles or

phenomena of grouping and phase selection of par-
ticles, some processes of interaction between elec-
tromagnetic waves and particle ensembles in the
ionosphere and magnetosphere of the earth, phe-
nomena of generating powerful LF waves in the
near space given a cosmic electromagnetic back-
ground, "mega-quantum" resonance structure of
the solar system, etc. (Isomfiki et al., 1985; Isomfiki,
1990; Tung, 1992; Soliman and Thompson, 1992;
Troesch et al., 1992; Damgov and Douboshinsky,
1992; Cecchi et al., 1993).
This paper deals with the common features in the

behavior of pendulum with invariable parameters
in new conditions, namely, the pendulum is affected
by continuous periodical external constrained force
which is inhomogeneous with respect to the coor-
dinates of motion. We shall demonstrate the phe-
nomenon of periodic motion with a discrete set of
possible stable amplitudes as well as the conditions
bringing about irregular motion of the pendulum.

Figure presents a schematic diagram of the
pendulum system under consideration. The devia-
tion of the pendulum from the lower equilibrium
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FIGURE A schematic diagram of the kick-excited
pendulum.

point is denoted by x. The external harmonic HF
force F= F0 sin ,t, where F0 const., acts in a lim-
ited active zone [-d’, d’] of the trajectory of the
moving pendulum which is symmetrically posi-
tioned around the lower equilibrium point. This is
the meaning of the notion "inhomogeneous action"
related to the trajectory ofpendulum motion, or the
same can be expressed by the notion "nonlinear
harmonic force" which should be understood as a

nonlinear dependence of its amplitude on the coor-
dinate of motion of the driven system the pen-
dulum. The direction of the external force action
is parallel to the direction of the pendulum motion
and it is periodically reversed. When, initially, the
pendulum is driven out of equilibrium outside the
zone [-d’, d’] and released to oscillate, it periodi-
cally passes through the active zone and is subject to
the action of the external force F F0 sin t. Under
these conditions, a stationary mode of pendulum
oscillation can be established with a quasiconstant
amplitude, within one of the hatched areas of at-

traction in Fig. 1.
The particular stationary amplitude ofpendulum

motion is determined by the initial deviation and
speed (i.e. by the initial conditions). Different
modes of the pendulum motion are possible, and
they depend on the initial conditions: the pendulum
either catches up with one of the possible stationary

orbits, or its motion is quickly damped. This is the
heuristic value ofthe phenomenon the presence of
a possible discrete series of stationary amplitudes,
i.e. a specific "quantization" of pendulum motion
by intensity as a parameter. At the same time, there
exist "forbidden" zones of initial conditions for
which the motion is only a damped one. Obviously,
there is a phenomenon of "quantized" oscillation
excitation, a discretization of the dynamic states
in a macro system. The excitation of one or the
other amplitude depends on the initial conditions,
provided that the other parameters and condi-
tions are constant. We consider that the pendulum
in this case is a self-oscillating system with a HF
source or power supply (in contrast to the com-
mon perception that the self-oscillating systems
should have a d.c. source of energy (Minorsky,
1962; Migulin el al., 1983). In quantum mechanics,
quantization (the notion of quanta) is postulated,
and in the theory of relativity, quantization is not

derived from geometric considerations. The dis-
covered phenomenon shows that the "quantiza-
tion" of energy transition into portions follows
directly from mechanisms of the process and that
it is defined from a formal mathematical point of
view. The quasiharmonic oscillator obeys the clas-
sical laws to a greater extent than any other system.
A number of problems related to quasiharmonic
oscillators have the same solution in classical and
quantum mechanics.
The layout of the current paper is as follows.
The results of the numerical investigations of the

kick-systems are given in Section 2. In advance, we
have to make a remark concerning our approach to
the numerical experiment. It follows from the defi-
nitive Eqs. (1) and (2) that the evolution of studied
systems is represented as a trajectory in three-
dimensional phase space. The Poincar map intro-
duced in Section 2 for the kicked pendulum reduces
the system variables down to two, corresponding
to the oscillation energy and phase of the external
force. The next step in our numerical analysis is
to determine the stable stationary modes in the
Poincar map. It turns out that, at suitably chosen
parameters, the system under study possesses a
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family of stationary states. Besides them, periodic
solutions with various low periods (3, 4, 5,...) exist
around fixed points (FPs) of the map at various
parameter values. Such a variety of coexisting
attractors makes us to determine their basins in
the phase plane spanned by the energy-phase map
variables. These basins are shown graphically like
color images, where every pixel corresponds to an

initial condition taken on a rectangular grid in the
phase plane; the pixel color denotes the attractor
the trajectory has been reached. These images allow
us to make some qualitative conclusions about the
system behavior. As an example, they clearly reveal
the similarity of phase plane structure of the stud-
ied system (dissipative in its nature) with the hierar-
chy of resonances and Birkhoff islands, typical of
vicinity of elliptic FPs in conservative two-dimen-
sional maps. It also becomes clear that some areas
in the phase plane exist in which close initial points
evolve to completely different attractors; that way,
the basin boundaries turn out to have fractal
character.
The next step in numerical analysis is to study the

evolution of the FPs and the most typical periodic
points when one of the parameters, chosen by us

as a control parameter, varies. In the class of sys-
tems studied in this paper, we have generally four
parameters damping /3, amplitude F and fre-
quency u of the external force, and active zone

width dt. We choose the forcing amplitude F as a
control parameter; varying it, we obtain bifurcation
curves ofthe stationary solutions, as well as those of
the some typical periodic attractors. A special fea-
ture of the FPs is very interesting from practical
point of view: when changing F within very large
interval, the fixed value of the energy variable does
not change noticeably and varies only in very nar-

row band (less than 1%).
The next Section 3 is devoted to theoretical ex-

amination of the kick-systems. It turns out that
using some simplifying assumptions (neglecting
the active zone width with respect to amplitude of
the oscillations), we can obtain elementarily, in
analytical form, the difference equation for the
energy-phase variables of the Poincar map. A

very important result is that, in small amplitude
approximation, the Poincar6 map has the same
form as well-known and widely studied dissipative
standard map (DSM). Once given the form of dif-
ference equation, it is easy to reach some theoretical
conclusions about the dynamics of kick-systems.
For example, the linear stability analysis shows that
the FPs are born for some value of parameter F via
saddle-node bifurcation, and then, when increasing
F, these solutions become unstable after period-
doubling bifurcation. The theoretical parameter
values for the bifurcation points obtained from our

analysis turn out to be very close to the experi-
mental ones given in Section 1. Moreover, following
a work of Pakarinen and Nieminen (1983), an ana-
lytical study of periodic attractors surrounding FPs
is carried out.

In Section 4, we briefly outline two other models
that exhibit some typical features of the kick-system
behavior. They are the Fermi-Ulam model about
cosmic rays acceleration and the Zaslavskii map,
describing evolution of a dynamical system (pen-
dulum) under external forcing in the form of
periodic in time 5-impulses. Even though these
two models have been obtained for physical sys-
tems essentially different from the kick-systems
described by Eq. (1), it turns out that there is a

significant qualitative similarity in their dynamics
and in the form of the model maps. The descrip-
tion of Ulam and Zaslavskii models in this paper
is organized as a brief review: both systems have
been subject to number of investigations by various

authors, their behavior has been studied in detail
and almost all features of their dynamics have
been stressed. The review of these results, com-

pared with our numerical results about the behav-
ior of the kick-systems, provides us with additional
arguments about the relation between the studied
models. And finally, the class of dissipative twist

maps appears as a general model, describing all
the systems mentioned above. This class gives the
link of the considered two-dimensional maps
and Hamiltonian dynamics, especially those of
the near-integrable systems (Lichtenberg and
Lieberman, 1982).
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The analytical form of the Poincar6 map, derived
in Section 3 for a particular case of kick-system, is
generalized in the final Section 5 by varying the
form of the system, i.e. if the nonlinear oscillator

forcef(x) or feeding function c(x) in Eqs. (1) and (2)
changes. The goal of this step is not only to gen-
eralize the way of reducing the kick-problems down
to discrete maps but to make an attempt to refor-
mulate the idea of kick-excited systems from the
viewpoint of dissipative twist maps.

2. NUMERICAL EXPERIMENTS WITH
KICKED PENDULUM

In this section our attention will be concentrated
on a particular case of kick-system, chosen from
the class described by Eqs. (1) and (2). Assuming
the nonlinear force in (1)f(x)--sinx, we come
to a system which will be referred to as a kicked
pendulum:

2 + 2fl2 + sin x c(x)F sin(z/t);
Ixl_<d’

0, x[ > d’

This particular model equation will serve as an
example of a kick-system, which will be further
examined both numerically (in this section) and
analytically (in the next section).

In order to examine this system it is convenient
to introduce the two-dimensional Poincar6 surface
in the following way. Because of the form of the
external force in (3), phase trajectories enter the
active zone through the two half-planes p+/-(x)=
+d (see Fig. 2). The two variables of the map are

velocity v 2 and phase of the external force -ut (rood 2re) in the moment of nth intersection of
p+/-(x). One can see that velocity variable is related to
the oscillation energy because E--T+ U= v2/2 +
(1-cosd’); hence, the Poincar6 map (v,)n+-
P(v, ) is proved to be chosen in energy-angle
variables.

It is easily seen that the trajectory passes twice for
a period through this surface of section: once for

FIGURE 2 A typical trajectory of the kicked pendulum in
the phase plane (x, 2).

positive and once for negative velocity. In general,
we have to consider only one of these two inter-
sections as an iteration of the Poincar6 map, and
the map points will be separated by one period of
oscillation. But system (3) is invariant under trans-
formation (x, 2, ) -+ (-x,-2, 7) + re). Hence, a

map with iterations separated by a half-period of
oscillation can be used; it will include intersection
points with both positive and negative velocities. In
order to obtain such a map we have to change the
phase variable with rc when the velocity variable is
negative, and replace the velocity with its absolute
value. The map variables become

ut (mod 2rr), 2 > 0
vn -121; pn

ut + rc (mod 2rc), 2<0 (4)

Equation (3) is numerically integrated using
Runge-Kutta routine of fourth order. Taking into
account that the right-hand side of (3) is discontin-
uous in Ixl d’ and the leaps in these points may
reflect on the computational accuracy, a specific
algorithm with variable time step is used. The
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routine reduces automatically the time step in vi-
cinity of leap points until sufficiently high accuracy
is reached, and increases it at the regular parts of
trajectory out of the active zone. Three of the sys-
tem parameters are considered to be fixed: active
zone half-width d’ =0.025, damping/3 =0.01 and
external force frequency u 51.0. The external force
amplitude plays the role of control parameter and
only it is varied. When choosing values for the rest
of parameters, as it will be shown in the next sec-

tion, it is important to set small damping and high
external frequency (much higher than the frequency
of pendulum oscillations). The active zone is set
to be sufficiently narrow; this requirement will be
clarified below.
The stationary oscillations of the original sys-

tem correspond, in the Poincard map, to FPs. We

have found that for some values of parameter F,
< F< 5, the Poincar6 map has multiple FPs,

i.e. multiple periodic attractors for various param-
eters exist. For example, there are five stable FPs
for F= 1.5, with velocities v;={0.2260;0.7506;
1.0135; 1.1924; 1.3256}. In order to describe the sys-
tem behavior when parameter F is varied, we pre-
sent two different types of diagrams: color images
of the basins of various attractors FPs and most
typical periodic points, and multiple bifurcation
curves.

In order to obtain the attractor basins we set a
640 x 480 rectangular grid of initial conditions on

the Poincar6 surface and run each of them until the
phase point converges to one of the attractors.
A color image of the basins for F 1.5 is presented
in Fig. 3. The horizontal axis presents the velocity

FIGURE 3 FPs and their basins of attraction of the kicked pendulum at F= 1.5. (See Color Plate I.)
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in the interval [0,2]; this interval assures that
the pendulum motion remains finite, i.e. rotations
around the hanging point are not considered. The
phase variable is presented in the vertical axis. All
the five FPs mentioned above and their basins are

clearly seen in Fig. 3; the fixed points are marked
by crosses, and each basin is denoted by different
color. The basins have very complicated shape: they
all have wide oval areas surrounding the FPs but
there are also long and narrow "tails" getting out of
them and completely disjoint set of points spread
over the rest of state space. In this way, the complex,
interwoven structure of the basins shows that they
seem to have fractal boundaries (see, for example,
McDonald et al., 1985). Moreover, the extremely
scattered areas far from the FPs lead to a very
strong dependence of the final state of the system
on the initial conditions: extremely small changes
in the initial conditions make the system to jump
from one basin to another.

Besides the five basins of the FPs, there is also an
area colored in dark-blue in Fig. 3. It corresponds
to initial conditions that converge to another stable
orbit a small limit cycle that falls entirely in the
active zone, between the planes p+/-(x). Therefore,
this small limit cycle cannot be presented on the
Poincar6 surface. However, we are not interested in
such orbits, because if the trajectory does not leave
the active zone, the dynamics of (3) simply de-
generates to 5 / 2/3 / sin x Fsin(ut), i.e. to the
common case of pendulum with external fast-
oscillating sine forcing. Because of this fact, we
have not studied the latter mode in the current

paper. We will only mention that this limit cycle can
be observed by choosing some other Poincar6 sur-
face (for example, the plane x 0); it corresponds
to fast oscillations with small amplitude and fre-
quency equal to the driving one.

Let us now study the evolution of the attrac-
tor basins when the parameter F varies. Two color
maps for F 2.5 and F 3.4 are presented in Figs. 4
and 5, respectively. First, it is seen from Fig. 4 that
the basins of the first FP and the small limit cycle in
the active zone are completely interwoven. Second,
a periodic solution with period 5 appeared around

the second FP, and a similar 3-periodic solution
around the fourth FP. Third, new FPs are born in
the higher-velocity area of the image with F= 2.5
that have not existed at F= 1.5; however, their
basins are relatively small. Another 2-periodic solu-
tion appeared between the first and second FP.
When F is further increased up to 3.4 (Fig. 5), FPs
corresponding to higher energies are destroyed, a

3-periodic solution appears around the third FP,
and the basins of these orbits become smaller. A
new stable orbit with period 2 x 4 appears around
the "lonely" 2-periodic solution.

All the color maps clearly indicate that various

low-period (3,4,5,...) periodic solutions exist
around the "mother" FPs for various values of
parameter F; they are very typical for the studied
system. Moreover, it can be expected that more

complex periodic orbits (with period M N) exist
around these solutions, and so on. Such orbits
actually exist, but both their basins and parameter
ranges of their existence are too small so it is not

possible to find more of them on the color images.
This complex set of periodic points in the Poincar6
map is similar to the hierarchy of resonance KAM-
curves and Birkhoff N-chains surrounding elliptic
points in conservative maps. (Note that although
system (3) is dissipative, the chosen damping is

quite small and since the Jacobian of (4) depends
on/3 like J= 0(/3), the map is very near to con-

servative.) However, the phase space structure of
the conservative maps is not stable under small
dissipative perturbations (Lieberman and Tsang,
1985; Tsang and Lieberman, 1986). Under dissipa-
tive perturbations, KAM-curves are destroyed, and
the elliptic points of the Birkhoff N-islands become
N-periodic sinks. Hence, the period-N attractors
around the FPs correspond to Birkhoff N-chains;
M N and higher subharmonics correspond to
M N chains around the elliptic points of the N-
chains, and so on. In order to show the relation
between conservative and weakly-dissipative
dynamics, the structure of the Poincar map of
conservative kick-pendulum (/3=0 in (3)) is pre-
sented for two different parameter values: F= 1.5
(Fig. 6) and F= 2.5 (Fig. 7). A rough comparsion
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FIGURE 4 FPs, periodical points and their basins of attraction of the kicked pendulum at F= 2.5. (See Color Plate II.)

with Figs. 3 and 4 immediately reveals the straight
relationship between the periodic attractors and
girkhoff islands.
The bifurcation diagram shown in Fig. 8 shows

the behavior ofthe whole family of FPs (black lines)
and 3-periodic points (grey lines) when varying the
parameter F; the vertical axis shows velocity vari-
able. For clarity, the bifurcation curves of second
and third FP are shown separately in Fig. 9 on a

larger scale. It is evidently seen that the bifurca-
tion behavior of the first FP (that with the lowest
energy) is quite untypical with respect to the rest of
them, corresponding to higher energies: it consists
of several separated curves. A possible explanation
is that the first orbit has too small amplitude and
the phase point of the pendulum spends fairly long

time in the active zone several periods of the
external force. For comparsion, the other FPs cor-

respond to orbits which spend less than a period of
external force in the active zone. Therefore, we can

conclude that the requirement for narrow active
zone is somewhat violated for the first orbit; it
will be actually shown in the next section that the
dynamics of kicked pendulum depends not exactly
on the absolute half-width d but mostly on so-called
phase half-width ud’/f.

The FPs appear in the bifurcation diagram as
a result of saddle-node bifurcations, and with in-
crease of the parameter F they undergo period-
doubling cascade. However, we must have in mind
that the studied map (4) corresponds to a half-
period but not a full period ofmotion. In that sense,
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FIGURE 5 FPs, periodical points and their basins of attraction of the kicked pendulum at F:-3.4. (Sec Color Plate III.)

the first period doubling of a map FP corresponds
to a symmetry-breaking bifurcation of an orbit in
continuous phase space of initial system (3), and
only the second period doubling of the FP becomes
first period doubling of the orbit of (3). In other
words, when constructing our Poincard map, we

have taken down the symmetry of the system be-
cause the half-period map does not already have
the additional symmetry of initial system. This may
be seen either from the bifurcation curve (there is
not any symmetry-breaking before the first period
doubling in Fig. 8), or from the stability analysis
presented in the next section.

It is easily seen that the velocity variable of the
FPs (hence the energy of oscillation) remains almost
constant between the birth and period-doubling
point, with variations less than 0.1%. Such a strong

adaptivity of the system is due to the fact that the
energy of the stable orbits, as it will be proven in the
next section, is fully determined by the amplitude-
dependence of the pendulum period but not by the
external force F.
The mechanism of appearance of periodic points

surrounding a given FP is similar to the appear-
ance of Birkhoff N-islands around an elliptic point
in conservative mappings. This mechanism is de-
scribed in a paper of Pakarinen and Nieminen

(1983). The main idea is that (in conservative case) a
Birkhoff N-chain appears very near around an FP
for some parameter value, and expands away when
changing the parameter in the appropriate direc-
tion. Figure 9 shows that in the studied (dissipative)
system, 3- and N-periodic attractors appear near
the ’mother" FP and run away from it with the
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FIGURE 6 Structure of the Poincarb map of conservative kicked pendulum at F= 1.5.
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FIGURE 7 Structure of the Poincarb map of conservative kicked pendulum at F--2.5.

increase of F. An interesting effect is that the
3-periodic attractor captures almost all attractor
basins of the mother FP at the moment of birth,
except for a very small area in the center and

three tiny strips getting out of it (see Fig. 4). How-
ever, the mother FP remains stable: the 3-furcation

(Pakarinen and Nieminen, 1983) which produces
3-periodic point does not involve it but most of
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Uelocit

FIGURE 10 A strange attractor of the kicked pendulum for
parameters/ 0.2 and F= 11.9.

FIGURE 8 Bifurcation diagram for the whole family of FPs
(black) and period-3 points surrounding each of them (grey).

FIGURE 9 Bifurcation diagram for the second and third
FP and the corresponding period-3 solutions

its basin is found to be transferred to the new-born
periodic solution. Actually, the periodic points
rapidly expand away from the mother FP when
increasing F, their basins contract in size and finally
the periodic points undergo a cascade of period-
doubling bifurcations in the same manner as FPs.

All the period-doubling cascades in Fig. 8 lead in
universal way to strange attractors (Schuster, 1984).

However, these strange attractors are very small in
size and exist for very narrow parameter range
( 10-4); they are destroyed just after they are born.
This phenomenon is due to the relatively small
dissipation in the studied system. After reaching the
Feigenbaum point F, inverse period-doubling
bifurcation sequence has to take place, nth inverse
bifurcation produces strange attractor composed of
2 isolated segments from one composed of 2n+l

segments; ideally, the cascade leads up to a single-
segmented, chaotic strange attractor. However, in
two-dimensional dissipative maps the inverse bifur-
cation sequence is truncated by boundary crisis
which destroys the attractor (Schmidt and Wang,
1985; Chen et al., 1986). Moreover, the point of
boundary crisis comes very close to the Feigenbaum
point when Jacobian of the map approaches unity
(Chen et al., 1986). In the studied low-damping
case, these points are separated by an interval of
order 10-4 at various attractors, and by reason of
that it is practically impossible to find such thin
strange attractor strips in Figs. 8 and 9. But if we
choose relatively high damping, we can observe
single-segmented strange attractors: one of them
(found at parameters 0.2 and F 11.9 is shown
in Fig. 10.

After a particular attractor has been destroyed
via boundary crisis, the trajectory corresponding
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to it runs away from it and converges to one of the
rest stable attractors. On the bifurcation diagram, it
looks as if the system has suddenly jumped from
one attractor to another. Here we must mention
that there are two different types of boundary crises
which truncate the inverse bifurcation sequence. If
the destroyed attractor is the only one in the system,
then its basin occupies the whole accessible phase
plane; in some sense it has no boundaries and the
crisis is not of boundary type but of interior type
(Grebogi et al., 1983).

Such a crisis is "chaos-chaos" compared with
"chaos-order" that occurs in the studied map. In
the latter case the dynamics after crisis is regular but
in the former case the chaotic attractor suddenly
changes its size and the character of motion
(Grebogi et al., 1983). However, all the crises in
the kicked pendulum map are ofboundary type due
to the presence of multiple attractors. The only
exception occurs when the last survived attractor
undergoes crisis; in our map, such is the small limit
cycle entirely closed in the active zone. For larger F
( 10-30) very long transient motion is observed
( 10-4 map iterations and even more) before the
trajectory settles down on the small limit cycle.
When increasing F, the transient time grows and
the limit cycle expands in size; at about F 67 it
gets out of the active zone, becomes unstable and
the system dynamics becomes totally stochastic.

3. THEORETICAL ANALYSIS OF THE
KICKED PENDULUM

In this section, we present an approximate but sim-
ple derivation of two-dimensional map correspond-
ing to the Poincar map of kicked pendulum (3).
The fact that Poincar6 map (4) is defined in energy-
phase variables prompts that we have to examine
the energy balance of the system. The external force
acts in such a way that the system receives energy
only once in a half-period as a very short impulse;
therefore, an expression for the incoming energy
can be easily obtained. In order to simplify our

calculations, we have to make two main assump-
tions concerning the system parameters. We assume
weak positive dissipation (0</3<< 1) and thin
active zone, i.e. phase trajectory crosses it for a

time /’zone<< T, where T is the half-period of
oscillation. The two map variables will correspond
to the total energy and the phase of the external
force in the active zone center (x 0).
The energy received for the one passing through

active zone is

AEin Fsin(ut(x)) dx
d

Introducing phase variable b ut and assuming
is the average velocity in the active zone, one can
obtain

F Fv [7/3out
/kEin -sin @27 db sin bd

J ’@in // J in

sin (2Fvu sin o sin 2Fd’ -- sin o (6)

Here we have introduced median phase b0 (@in q-

out)/2 and phase half-width of the active zone

{ (out- in)/2 z,’d’/f. Expression (6)can be
further simplified by assuming small phase half-
width sin- {; in this case, it becomes

/Ein 2Fd’ sin o (7)

Now we have to determine the energy loss of (3)
for the time interval between two passings through
the active zone, i.e. for a half of period. Under the
assumption of thin active zone, it will be approxi-
mately equal to the energy loss in case of free
damped pendulum, which is given by

ZEou 16fl[E(m) (1 m)K(m)l (8)

Here m E0/2 and E0 22/2 q- (1 -cos x) is the
full energy of the system, K(m) and E(rn) are com-

plete elliptic integrals of first and second kind,
respectively. In case of small amplitudes (8) can be
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simplified using the expansions

m 9
K rn - + - + -( m3
E(m)

4 64

(9)

and keeping only terms of order up to m. one
reaches

AEout- 4/K(rn)Eo --/3T(m)Eo (10)

Here T(m) is the period of pendulum oscillations,
expressed as a function of its energy.

Let us now precisely define the map variables.
The energy variable is re=E0/2, and the phase
one is the median phase defined in (6): 0= b0. In
addition, we assume that rnn does not stand for the
moment of nth passing the center of the active
zone, but for the moment of (n- 1)th leaving the
zone; these moments are shown in Fig. 11. We used
such a complicated notation because it simplifies

FIGURE 11 The phase points standing for consecutive iter-
ations of the map variables along the trajectory.

the equation for evolution of phase variable. It
becomes simply

uT
0+ O + -- + rc

On + 2uK(mn+l) + rc (mod 2re) (11)

The additional term +re is introduced because of
the symmetry of (3): it is invariant under trans-
formation (x, 2, b) --+ (-x, -2, b + re), and the
subsequent passes through active zone occur for
velocities with opposite signs (see Fig. 11). The bal-
ance of m is written as

Eout
mn+l rnn + A-- 2

m,. + Fd’ sin 0n A Eu-----Et
2

(12)

Here we can use either the exact expression for
the energy dissipation (8) or the small amplitudes
approximation (10). In the first case, joining the
equations for energy and phase variables, we obtain
the two-dimensional map

rnn+. rnn 8[E(rn.) (1 rnn)K(mn)]

+ Fd’ sin 0n

0,.+1 On + 2uK(mn+l) + rc (mod 2rc)

(3)

In the case of small amplitudes approximation, ex-

pressing K(m) only with terms of order up to m and
assuming m and are both small, the following
approximate map is obtained:

rnn+l rnn(1 2rc8) + Fd’ sin 0.

0,+ 0 + (u + 1)re + rn+ (mod 2re)
(14)

Now one can easily see that this map is a particular
case of so-called dissipative standard map (DSM)
extensively studied in the literature (Bohr et al.,
1984; Schmidt and Wang, 1985; Casdagli, 1988):

k
rn+l brn sin(2rc0n)

0n+l--0n+co+rn+l (modl)
(15)
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Actually, one can reach up to DSM from (14)
substituting (m, 0) -- (r um/8, 0 0/2re) and in-
troducing new parameters b= J= 1-2rc3, co=

(u + 1)/2 and k 16rrFd’/u.
This is a very important result. It links the studied

kicked pendulum to another class of problems and,
more precisely, to the problem of nonlinear rotator
under external force acting as periodical in time
&impulses. This problem is described by so-called
Zaslavskii map which is closely related to DSM. On
the other hand, DSM is very extensively studied in
all aspects by many authors; a brief report about its
more important features will be presented in the
next section.

Let us now find the FPs (m, 0) of the map (13).
The equation for m yields

sin 0 8flIE(m) (1 m)K(m)] (16)

and from equation for 0 it follows that

2uK(m) (2/- 1)rr (7)

The last result shows that for a fixed value of the
frequency u the system possesses discrete set of
stationary states rn for various values of l; the
condition K(m) _> rr/2 requires (2/- 1) _> u. More-
over, Eq. (17) completely determines the station-
ary values of the energy, hence the amplitude of
oscillation. Taking into account only the first two
terms in the expansion of K(m) according to (9),
one can find approximately

rnz 4 [21-,
That is the reas.on for which we call (17) a dis-
cretization condition for the system. Actually, the
presence of a discrete set of FPs immediately fol-
lows from the fact that one of the map variables is
phase one and is taken by modulo of 2re. This auto-
matically yields the possibility of discrete set of
solutions, each of them corresponding to increase
of the phase variable with integer number ofperiods
per iteration.

A very important consequence from the partic-
ular form of (17) is that the stationary energy does
not depend on external force amplitude F, but only
on its frequency; the same is valid for the amplitude
of oscillations. That is the reason for the supersta-
bility of the kicked pendulum amplitude that has
been observed in numerical experiments.
The same discretization condition can also be

obtained using the assumption that in a stationary
state the half-period of oscillation must be equal to
odd number times the half-period of the external
force. In case of thin active zone this yields

T2_ 2K(m) (2/- 1)
rr

(19)
2 u

which is exactly the same as (17). It is remarkable
that the latter expression resembles a bit the con-
dition for synchronization of a system: the period of
oscillation becomes multiple of the external force
period. But in contrast to the "normal" synchroni-
zation, in this case, the amplitude of the motion
can get a discrete set ofvalues for a particular choice
of external frequency u. Moreover, in the case of
"normal" synchronization the amplitude varies con-
tinuously when the external force F is changed, but
in the system studied here the discretization con-

dition keeps it almost constant; only a very weak
variation, due to the finite size of the active zone
has been observed in numerical experiments (see
the previous section). The energy balance of (13),
respectively (3), holds due to the variation of the
phase variable 0 but not of the amplitude. Indeed,
the expression for received energy (7) is propor-
tional to sine of the middle phase b0, so this variable
can effectively control the energy balance.
The stationary value of the phase variable fol-

lows directly from (14):

sin O 8fl[E(m) (1 m)K(m)] (20)
Fd

and the restriction sin 0 < leads to

Fd’ >_ Fsnd’- 8flIE(mz) (1 rnT)K(rn) (21)
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The latter result is a simple illustration of the fact
that if either the amplitude F or the size of the ac-

tive zone d’ is too small, the system cannot receive
enough energy in the active zone in order to com-

pensate the dissipation for half-period. The value

Fsn for which (21) turns into equality corresponds to
saddle-node bifurcation point. In this point a pair
of FPs is born, corresponding to two values of 0
satisfying (20) with respect to sin0z. It will be
shown below that one of these two FPs is stable and
the other is always unstable.

In order to examine the stability of the FPs
(m, 0), we have to linearize (13) in its vicinity. This
yields (in matrix form) the following system:

o+ ( w)c
BI+BC)( &n’

50n ) (22)

where following notations are introduced:

w- +/;(m,O)

dK
B- Fd’ cos 0; C- 2u

drn

(23)

The linear stability condition is 1/1,21 < 19 where "1,2
are the eigenvalues of the matrix 37/ determined
by det(37/- A/7) 0. After some computations we
obtain the stability interval

-(4- 2W) < BC < 0 (24)

or, after substitution from (23),

-4+16/3 dImm- (1-m) dK + K_m__(o)

dK
< 2,Fd’ cos 0 < 0 (25)

It can be easily proved that the eigenvalues are

strictly real at the ends of the interval. When BC
0, A1 + and this corresponds to the saddle-node
bifurcation; the condition for its occurrence ex-

pressed from (25) is cos 0 -0, which is identical

to the condition Isin 0l yielding expression (21)
for saddle-node bifurcation value of parameter F.
When BC -(4 2 W), 2 and this corre-

sponds to period-doubling bifurcation. Writing the
left inequality from (25) with respect to F, we can

obtain the period-doubling value of the forcing.
Assuming for simplicity the small amplitude case

and expressing K(m), dK(rn)/drn and dE(m)/dm
from expansions (9) up to terms of order m, we

reach

Fd’ < Fpdd’

/[2-rn(1 q-m/8)]2 +

(26)

In order to test our theoretical expression for _Fpd
against the bifurcation values of F numerically
obtained in the previous section, we evaluate it for
parameters u 51.0, 0.01 and d’ 0.025 for
the fourth stable orbit, which corresponds to 29
and rn- 0.378. We find the theoretical value

fpthe- 2.96, compared to the experimental valued
eXp
d 3.04 obtained in numerical simulations. So

we can conclude that our analytical results are in
relatively good agreement (taking into account all
the approximations that have been made) with the
numerical experiments. The main source of differ-
ence between theory and experiment is, most prob-
ably, the relatively big value ofphase half-width: for
the fourth orbit it is { 1.04, i.e. the approximation
of small phase width sin { { used in our theoretical
considerations is not good enough.

In this way, we have shown how the derived two-
dimensional map (13) can help us to determine
analytically the set of stable amplitudes of the
kick-excited pendulum (3) and the stability condi-
tions with respect to the physical parameters of the
system forcing, damping and active zone width.

It was mentioned in Section 2 that the numerical
experiments with the system (3) show various stable
periodic points with various (low) periods (3, 4, 5,
etc.) existing around the FPs for some values of F.
We have pointed out that these stable periodic
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solutions in (weakly) dissipative maps correspond
to elliptic points in the centers of Birkhoff islands in
conservative maps. A good theoretical framework
for the rnultfurcations (appearances of N-periodic
Birkhoff islands near around the mother FP)
in conservative maps is given by Pakarinen and
Nieminen (1983). Now we want to apply the method
described by them to the kick-pendulum map (13)
in order to determine analytically the values of the
parameter F3,.for which the most typical 3-periodic
orbits are born. Although (13) is dissipative, its
Jacobian is very close to so we can expect that
the results yielded by the conservative method will
be relatively close to those from the numerical
experiments.

Let us briefly consider the approach ofPakarinen
and Nieminen. The stability of a p-cycle
X2,..., Xp} of a two-dimensional conservative map
is specified by the eigenvalues of matrix

p

a) 1-I [’() (27)

where [,(X0) is the linearized matrix of the original
map at the mother FP. In order to determine Tr
the following property of square 2 2 matrices

Tr(Lo)p A{ + 3, (30)

is used, where ),1 and A2 are eigenvalues of the
matrix/0. If we write its characteristic equation in
the form k2 TA + D- 0 (T and D denote the trace
and determinant of/0, respectively) and assuming
conservative map (D-+1), we can use property
(30) in order to bring the marginal stability con-
dition down to

ITr aT/I {2(D/2)p Tp(1/2 TD-1/2)I 2 (3)

where Tp is the pth order Chebyshev polynomial of
first kind (for details see Pakarinen and Nieminen,
1983). Taking advantage of the properties of
Chebyshev polynomials, the last condition for
D + can be written as

where/(.) is linearized matrix of the map around
jth point Xy of the p-cycle. In the conservative case,
it can be shown that the p-cycle is stable when

(28)

(for proof see, for example, Lichtenberg and
Lieberman, 1982, 3.3).

Suppose now that the studied map depends on
some parameter #. Suppose also that the FP is
surrounded by p Birkhoff islands at a certain value
of #, hence the stability condition (28) is fulfilled.
Let us now slowly vary the value of #, so that the
Birkhoff chain converges towards the "mother"
FP. In the limit where the p-cycle is born, we have
simply X1 X2 Xp- Xo (Xo denotes the
position of mother FP). The p-cycle becomes
marginally stable, namely

p

Tr H()
j=l

-ITr(L(X0))Pl- 2 (29)

Tr /I 12T,(1/2 T)I G(T)I 2 (32)

Here Cp denotes pth order Chebyshev polynomials
of second kind. The roots of this expression, solved
in order to trace of the linearized matrix T, can be
immediately written as

T-Tr [,(X0)- 2 cos (2pk-) (33)

where k can be regarded as secondary winding
number. So the last result says that there can be
several marginal values of T depending on the pe-
riod p of the Birkhoff chain.

Let us now apply the method described above to
the studied map (13). It is not strictly conservative,
but its Jacobian is very close to 1, up to the order
of small dissipation. However, more crucial for
the application of the method described above is
the fact whether the Birkhoff attractor is born in
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the very neighborhood ofmother FP or the point of
appearance is not so close to it. The observations
from Section 2 show that, at least in case of 3-peri-
odic orbits, they are born quite close to the mother
FPs. This is not so true for the periodic points with
higher periods; generally, we can speculate that the
lower the period, the closer to mother FP the peri-
odic attractor is born. So we want to apply expres-
sion (33) for 3-periodic Birkhoff chains, and we

setp= 3.
The linearization of (13) have been already found

and it is given by (22); its trace has been written in
the form Tr 2(/I- 2 W+ BC, where the notations
of W, B and C are given by (23). Since we apply
conservative analysis to a (weakly) dissipative map
we can ignore the dissipation W and substituting B
and C in (33), we can write

dK
T- 2 + 2rcuFd’ mCOS 0 2 cos (34)

When k=0, the last equation yields exactly the
saddle-node bifurcation condition for the mother
point (21). When k or 2, the cosine in the right-
hand side is equal to -1/2, and that is the case we
are interested in. Further, we can proceed in a way
analogous to that used to obtain the bifurcation
value Fpd; so after some calculations we obtain an

expression for the 3-furcation parameter value
that is very similar to those for the period doubling:

Fvd’- [2rc/3rnp(1 + rn/8)l 2 12
+ rcu(1 + 9rn/8)

Actually, the only difference between the expres-
sions for Ffand fpd (the latter is given by (26)) is in
the numerator of the second term under the radical:
for period doubling we have 16 while now it is 12.

Here we can make again a test how far the theo-
retical prediction of the last expression is in agree-
ment with the numerical experiments. For the
fourth stable orbit which corresponds to /=29

and rn 0.378, the last expression gives theoreti-
cal value/;,the 2.31 compared to the experimental"V

j-, expvalue *V -2.38, obtained in numerical simula-
tions (see the bifurcation curve in Fig. 8). This is a

very good confirmation, despite the fact that we
have considered conservative version of the original
dissipative map (13) in our theoretical analysis.

4. CLASS OF DISSIPATIVE TWIST MAPS

It was already shown above that the problem of
kick-excited pendulum can be reduced analytically
to two-dimensional map (13) under some simplify-
ing assumptions. However, many other physical
problems lead to similar maps. The most famous
examples are Fermi-Ulam map modeling cosmic
rays acceleration and Zaslavskii map describing the
dynamics of a rotator perturbed by &impulses peri-
odical in time. This section aims to view and com-

pare the physical principles underlying these closely
related problems, as well as their common features.
Finally, an attempt to generalize the problems men-
tioned above on the basis of well-studied dissipative
twist maps (Casdagli, 1988) will be made; moreover,
this class of maps clearly shows the link between
our models and the near-integrable Hamiltonian

systems.
Fermi-Ulam map originates from a mechanism

proposed by Fermi with the aim to explain the cos-
mic rays acceleration due to collisions with moving
magnetic fields. There are various models of this
phenomenon in the literature but the most famous
is Ulam model: the accelerating particle is repre-
sented by an elastic ball bouncing between two
walls, one of them fixed and the other oscillating.
A simplified version of the model assumes the wall
oscillations are small compared to the distance be-
tween the walls (Lichtenberg and Lieberman, 1982).
This simple model preserves the most typical
features of the initial problem and can be easily
written for various laws of wall oscillation. In the
case of sine oscillations and small linear dissipa-
tion the map has the following form (Lieberman
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and Tsang, 1985):

b/n+l I(1 )b/n r- sin nl
+ + 2rM/u+ (mod 2r)

(36)

Here u is the (dimensionless) ball velocity and g) is
the phase of oscillating wall, both taken at the mo-
ment of impact.

It is easy to discover several significant parallels
between the Ulam model and the kick-systems map
studied in previous sections. First, both maps are
written in variables corresponding to oscillation
energy (as E u2) and phase of external periodic
force at the moment of injecting energy from out-
side. Second, the external force acts once per iter-
ation during a time interval much less than a period
of oscillation, and the system moves freely during
the rest of time. Third, the period of both two sys-
tems depends on the amplitude of oscillation, hence
they can be regarded as nonlinear oscillators. These
important parallels prompt that we have dealt with
the phenomena of the same quality.

Let us write the FPs of this map, as they are given,
for example, in Lichtenberg and Lieberman (1982).
The phase equation says that we have a family of
stable energies: Um= M/m, m 1, 2,... As it has
been pointed out earlier, the presence of a discrete
set of FPs is a result of regarding the phase map
variable by modulo. (This fact makes the maps
studied here different from some others like Henon
map which have not phase variables and, respec-
tively, such families of FPs.) The values of m
are given by sinm=(SM/m; the requirement
sin ml <--1 prompts the presence of saddle-node
bifurcation which produces two solutions for m. It
follows from the stability analysis that one of them
(those with cos .m > 0) is always unstable; the other
(cos g)m < 0) is stable while u > (7rM/2) /2. Ifwe write
the latter condition with respect to the parameter
M, we obtain M > rcm2/2; when it turns to equality,
period-doubling bifurcation takes place, followed
by cascade to chaos (Lichtenberg and Lieberman,
1982). In this way, the bifurcation behavior of the
FPs of (36) is qualitatively the same as those of the
kick-pendulum.

Zaslavskii map originates from the problem of a
mechanical oscillator under the action of periodical
&shaped impulses written in the form- -(I- Io) + eq(Io, O)f(t);

ctco0 (I- I0)O +5;-0

(37)

Here I and 0 are action-angle variables of the
autonomous oscillator, and f(t) expresses the
external force which has the same periodic 5-
impulse shape as above. The function q(Io, O) is

periodical in regard to the angle variable. Assuming
q(Io, O)=IocosO and introducing new notations
y=(I-Io)/Io, O=2rcx, f=cooT and I=yT, we
can reach the Zaslavskii map (Zaslavskii and
Rachko, 1978):

y,,+, e-r[y + e cos(2rvx,)]
2 cf e-r

Xn+l Xn -- -- 2r r (38)

+ cos(2 x.)] (mod 1)

The latter system can be written in even more

simple form when introducing new parameters co

f/2rc, b=e-r, k=-(cfc/(2rc))((1-e-r)/P) and
substituting (y, x) --, (r -ky/cb, 0 x + 1/2). That
way, Zaslavskii map takes the form of DSM

k
sin(2r0n)r+ br

(39)
On+l On q-- co nt- rn+l (mod 1).

A very significant fact is that the approximate
kick-pendulum map (14) has exactly the form of
DSM. It was shown above that DSM can be ob-
tained as a model of nonlinear oscillator under the
action of periodical &kicks. However, we have to
recall that the physical formulation of kick-systems
is different: the external force acts again as short
kicks but they are not strictly periodic in time due to
the amplitude-dependence of the period. Actually,
the impulse shape of the force is introduced in these



118 V. DAMGOV AND I. POPOV

two systems in just opposite ways. Comparing the
initial Eqs. (3) and (37), we see that in both systems
the external force is represented as a product of
two terms, one of them carrying the time-depen-
dence and other the position one. In (37) the time-
dependent term has impulse shape and the other is
a smooth function of the position x; the situation
in (3) is just opposite the time-dependent term is
a sine function while the position-dependent term

is very short H-shaped impulse. However, both the
situations lead to the same discrete models, namely
to DSMs.

Written as in (39) or slightly modified, DSM has
been extensively studied in the last 15 years and
its features are well-known. The interest is focussed
on various aspects of its behavior: strange attrac-
tors and their invariant distributions (Tsang and
Lieberman, 1984), transition from quasiperiodic-
ity to chaos, destruction of invariant curves (Bohr
et al., 1984) and properties of the rotation interval
in chaotic mode (Casdagli, 1988). The main reason
for such a great interest is the simple form of map
equations and clear physical meaning of the vari-
ables and parameters. The Jacobian of DSM is
equal to b; therefore, the influence of dissipation on
the system behavior can be studied when it changes
from (Hamiltonian case) to 0 (one-dimensional
case). Much attention has been paid to the weakly-
dissipative case where b is close to but less than
(Tsang and Lieberman, 1986). The two map vari-
ables can be regarded as an action-angle pair, and
parameter k denotes amplitude of external non-
linear perturbation.

Let us write, following Schmidt and Wang
(1985), the FPs of (39) for a2=0; one can easily
see that this restriction does not change the stability
conditions and qualitative behavior of the FPs but
only shifts them along the angle variable 0. As it was

already mentioned, the presence of angle variable
leads to a family of FPs with rm m. The stability
area for a given FP begins from ksn--27r(1- b)rn
where a pair of stable and unstable point is

born, and ends at kpd- 2[(-m(1 b))2 + (1 + b)2] 1/2

where period-doubling bifurcation takes place.
It is interesting that the doubled FP undergoes a

symmetry-breaking bifurcation before the next

period doubling. This is because of the symmetry
of the doubled solution; it has to be broken before
the next period doubling. After the period-doubling
cascade, the same universal boundary crisis of the
strange attractor as those described in Section
takes place in DSM.

In addition, very large number of coexisting at-

tractors occur for sufficiently small damping. The
FP condition rm m is fulfilled for all values of m
that obey ]rn _< rn k/27r(5 (here (5 -b denotes
the damping); so as (5 approaches zero, the interval
of existence of FPs becomes very large. If we also
take into account the stability analysis, we can

define stability area for given value of k and (5 as

Am msn mpd

k/2rc(5, k <_ 4- 2(5

k/2rc(5[1- [1 -(4- 2(5)2/k2]1/2],
(40)

k>4-2(5

Here mpd and msn denote the limits where period-
doubling and saddle-node bifurcation take place.
(Clearly, we have to keep in mind that m can take
only integer values.) When k is small, none of the
FPs has been doubled, and m grows linearly with
the force. At some value of k, the period doubl-
ings begin to destroy the FPs for small m while the
saddle-node bifurcations produce them for large m;
this is shown in Fig. 12. With further increase of k,
the FPs are destroyed faster than they are born,
and at large k the stability area decreases rapidly.
Therefore, the number of simultaneously stable FPs
have a maximum for some value of k.

If the solution for a fixed m is considered and
the force k is varied, a life interval can be defined
for it as

1/2

(41)

where kpd and ksn are the parameter values for
period doubling and saddle-node bifurcation,
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respectively. It is clear from this expression that the
life interval decreases when increasing the damping;
actually, we can speculate that the same is right for
periodic points with arbitrary period but not only
for the FPs.

It can be easily seen that all the maps examined
throughout this paper namely, Fermi-Ulam map
(36), DSM (39) and the kicked pendulum map
(13) can be written in a general form:

On+l On -- 2rcc(Jn+l) (mod 2re)
(42)

This notation clearly reveals the physical basis of
the systems. The periodic function of the phase
variable f(0) expresses the injection of energy due
to external periodic force; the parameter c is in-
troduced as an amplitude of the perturbing force.
Here the small damping is considered as linear:
5 =const., but this parameter can depend weakly
on the energy variable, as it happens in the kick-
pendulum map. The function c(J) expresses the
amplitude-dependence of the period of oscillations

16--

12--

J=0.5

J=0.9

.. (sn)

12 16 20

FIGURE 12 Graphical representation of the saddle-node
and period-doubling bifurcation parameters for all family of
FPs in DSM for two different values of the Jacobian.

and it is responsible for the appearance of a discrete
set of FPs with different values of the energy.
Moreover, (42) is not accidentally written in this
form: similar discrete maps naturally arise from the
analysis of near-integrable Hamiltonian systems
with two degrees offreedom. Since the kick-systems
studied here can be also regarded as Hamiltonian
systems with small dissipative perturbation, let us

briefly outline the correspondence between canno-
nical systems and two-dimensional maps of this

special kind.
If an autonomous Hamiltonian system is integr-

able, cannonical variables action-angle (J;, 0;) can
be introduced so that the full energy would not
depend on the angle variables; the action variables
J; are integrals of motion. In case of two degrees
of freedom the trajectory is confined to a two-
dimensional torus. Ifwe introduce Poincar6 surface
that intersects the torus at fixed value ofthe variable
0;=const., the map for the rest of the pairs of
action-angle variables takes the form of so-called
twist map: (Jn+ Jn; 0n+ 0n + 27rc(Jn+ ))
(Lichtenberg and Lieberman, 1982). If a small
perturbation is added to the integrable system, the
twist map changes to its perturbed version

J.+ J. + <f(J+, 0)

On+ On -- 27rc(Jn+l) + cg(Jn+, On)
(43)

wherefand g are periodic functions of 0.
It appears that in many interesting cases f does

not depend on J and g 0; such a map is known as
a radial twist map. Adding a linear dissipation term,
we obtain exactly the map (42) which will be re-
ferred further as a dissipative twist map.
The idea of twist maps can be expressed in other

way, without considering perturbed Hamiltonian
systems and even without assuming any particular
form similar to (42). For example, Casdagli (1988),
following some works of Birkhoff, defines the twist
maps as diffeomorphisms acting on the unit cylin-
der and having some special properties. The most

interesting among them is so-called twist hypothe-
sis; it says that the image of any vertical straight
line under the map is a curve sloping strictly to the
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right. If the Jacobian is everywhere less than some
A < 1, and if in addition the motion is limited along
the cylinder axis variable (in order to guarantee
existence of attracting sets), we have dissipative
twist maps.

It is interesting that in the light of the latter defi-
nition the kick-pendulum map (13) is not exactly a

twist map. Indeed, it can be shown that it violates
the twist hypothesis. First, we must remark that for
a map in the form (42) this hypothesis requires the
function c(J) expressing the amplitude-dependence
of the period to be monotonous. However, we

have dealt with a pendulum, and its period of free
motion is equal to 4K(m) only for m < (here K(m)
is the complete elliptic integral of first kind), i.e.
when no rotation around the hanging point takes
place. When m > (rotation mode), the period is

(1/m)K(1/m), while for m it goes to infinity. If
we consider motions in pure oscillation (m < 1) or

pure rotation (m > 1) mode, the twist hypothesis is
fulfilled. However, the presence of peculiar point
m changes the qualitative character ofmotion in
its vicinity. This case corresponds to a motion near
the separatrices of hyperbolic FP corresponding
to the top (unstable) equilibrium point of the
pendulum. In this case, homoclinic intersections
between the separatrices become possible at some

parameter values, and chaotic oscillations can take
place. (Strictly speaking, the intersection of sepa-
ratrices is neither necessary nor sufficient condition
for appearance of strange attractor, but in many
cases it precedes the chaotization of the system.)
However, we do not consider the separatrix chaos
in this paper, and for that reason we have restricted
our study of the kick-pendulum only to the inter-
val m < 1.

If we recall the latter hypothesis we see that it
plays some kind of role in determining the FPs of
(42). The phase equation yields C(Jm) m, where m
is an integer. The set of fixed values of the action Jm
can be obtained from this condition but only if
a unique inverse function J= oz-l(m) exists in the
whole action interval considered. This requires c(J)
being monotonous or, in other words, the twist
hypothesis being fulfilled.

5. THE GENERAL KICK-MODEL
AS A TWIST MAP

It has been shown already that the problem of
kicked pendulum a particular case of kick-
system can be reduced to a discrete twist map.
The analysis was based on the energy balance and
amplitude-dependence of the period, and the as-

sumption ofnarrow active zone has been essentially
used. In this section we want to apply this tech-
nology to the problem of kick-excitation in the
general form proposed as (1) and (2). Recall that the
general kick-system has been written as

2 + +f(x) e(x). Fi(ut);
0, Ixl > d’ (d’ Xmax)

(44)

So the goal is to derive discrete map describing in

general the wide class ofkick-excited systems, if the
nonlinear returning forcef(x), feeding function c(x)
and shape of the periodic force II(ut) are not fixed
but vary.

Recall the way of deriving the map (13) for the
kicked pendulum. The map variables express the
oscillation energy and the external phase, respec-
tively. Now we have to make some assumptions
concerning the nonlinear returning force f(x) and
periodic function II(ut) which will be used further.
We shall assume f(x) OU/Ox in (1) corresponds
to a potential U(x) that has a unique minimum at
zero: U(0) -0 and is symmetric with regard to it. In
addition, we shall assume symmetric feeding func-
tion c(x) and II(ut) changing its sign for a half-
period: II(ut + r)= -II(ut). These conditions are
introduced in order to assure invariance of (44)
under transformation (x, 2, ) -+ (-x, -2, + r).
We will use such a symmetry of the kick-system
in order to make the map iterations standing for a

half-period instead of a full period of oscillation, as
it has been done in previous sections. Under these
assumptions the evolution of the phase variable is
given by

T(E) + 7r (45)0n+l-0n-u 2
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where T(E) is the period of oscillations expressed as
a function of energy, and additional shift with rc is
introduced due to the symmetry of (44) assumed
above. As the active zone is accepted to be suf-
ficiently narrow, T(E) is simply the period of free
oscillation, and it can be expressed as a function of
energy:

T(E) 2x/ [x (E- U(x)) -1/2 dx
Jo

(46)

where Xma denotes the turning point of oscillations.
We can also choose the energy variable iterations
in such a way that the phase evolution given by (45)
depends on the (n+ 1)th value of E but not on

the nth one. This way, the phase equation can be
written as

On+l On q- 27ro(En+l); o(E) v’
4re

(47)

Let us now consider the energy balance. The energy
received in the active zone can be found by inte-
grating right-hand side of (44) over the zone width
and assuming small phase half-width:

f_dAEin I-[(b’t(x))c(X) dx II(0) c(x) dx
d d

(48)

We can speculate that the integral in the right-hand
side is proportional to the forcing amplitude F-
max(e(x)), as well as to the zone width d’. Hence,
the energy received can be written as AEin=
"Fd’II(O), where the factor "7 depends only on the
profile of e(x). If, for example, e(x) is H-shaped,
then simply -- 2.
Now, we must estimate the energy dissipation.

Generally, it is specific for every particular oscillat-
ing force, i.e. for every potential well. However, we
consider the small damping case 0 < /<< 1, and we
can assume small linear dissipation /kEout-E
with /3T. (Here the period T generally depends
on E but we regard it as nearly constant in order to

write out the dissipation in linear form.) Now we
can write the energy balance equation, and joining
it to the phase equation (47) we arrive at a map
identical with the dissipative twist map (42):

.+ ( e)u. +
on+l on -5 2rco(En+l) (mod 27r)

(49)

with following notations introduced:

g "yFd’; oz(E) u
T(E)
4re + (50)

So it becomes clear that dissipative twist map (49)
models the general kick-system (44) with symmetric
potential well, small dissipation and thin active zone.

This is a very important result. It puts the class of
kick-excited systems in correspondence to the well-
studied class of dissipative twist maps. It also clears
the fact that kick-systems inherit their common
features from the twist maps. So we can assert that it
is convenient to consider the system (49) as a general
kick-model which stands for a variety of physical
systems and especially of those forced in impulse
way, i.e. the external force acts only for short time
impulses.

6. CONCLUSION

As a conclusion, we will present a brief list of the
common features of the kick-excited systems fol-
lowing the twist map model:

a set of stable FPs exist, with energies deter-
mined by c(Em)= m. Their existence is a conse-

quence of regarding the phase variable only by
modulo;
the stationary values of energy do not depend on
the external force F because they are determined
only by the function c(E) depending only on the
external frequency and the shape of the potential
well;
if a small damping 6 is fixed, the FPs are born
after saddle-node bifurcation when varying F
(or e, which is the same). That follows from
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the condition of stationary phase 8Em--gII(Om);
the periodic function II(0) is bounded so that the
requirement for existence of FPs imposes a lower
boundary for F as e >_ 8Em/max(II(O));
when F is further increased the FPs become un-
stable via period-doubling bifurcation. This can
be seen from the linearized matrix of (49) which is

1-8k)
2rock’(E)(1 8) )+ 2rcc ’(E)eII’(0)

Note that Tr 2(/- 2 8 + 2rcc’(E)eH’(0) and
det/- -8. The study of linear stability im-
plies the inequality ]Tr 37/ < + det 37/- 2 8
which yields

0 > rccv’(E)eII’(0) > -(2 8) (52)

Here the left inequality gives the saddle-node
bifurcation point and the right one the period-
doubling point;
period-doubling cascade leading to strange at-
tractors occur after losing stability; later the
attractor is destroyed via universal boundary
crisis. The smaller the damping, the shorter is the
chaotic interval of parameter values.

It is also useful to outline the influence ofphysical
parameters of the initial kick-system (44) upon the
resulting kick-model (49):

the damping 8 reflects on the number of coexist-
ing attractors for given F: smaller the damping,
greater the number of attractors. This effect has
been fully described above for the DSM; in the
general kick-model it is qualitatively similar but
the number of coexisting points and its life in-
terval vary. It has to be mentioned that small
damping leads to slow convergence to the stable
modes and to long chaotic transients;
the zone width d’ has to be chosen sufficiently
small in order to obey the small phase width con-
dition { ud’/f. Clearly, { also depends on the
frequency u and on the velocity in the zone, hence

on the energy. It can happen that the small phase
width condition is violated for lower energies but
holds for higher ones;
the external force amplitude F, together with
zone width d’ and geometric factor "7, constitutes
the small parameter . This parameter introduces
nonlinear perturbation in the system and there-
fore F has the meaning of an external nonlinear-
ity which destroys the stable attractors;
the external frequency u, together with the
amplitude-dependence of the period, determines,
in accordance with (50), the twisting rate func-
tion c(E); the latter, in its turn, specifies the
set of stationary energy values as (Em)=m.
Since c(E)u (see (50)), higher frequencies
lead to denser sets of fixed energies. However,
another effect exists that is caused by the fact
that u, together with c’(E), stays in expression
(52) specifying the stability of the FPs. These
speculations come to tell us that some optimal
value of u with highest number of simultane-
ously stable attractors must exist. However,
we have to know the exact form of period
dependence T(E) in order to estimate this effect
more precisely.

Finally, let us briefly discuss the influence of the
functions varied in general kick-system (44) over
the system dynamics:

the nonlinear returning force f(x) is related to
the potential as f(x)= OU/Ox. The shape of the
potential well governs, in accordance to (46),
the amplitude-dependence of the period, hence
the twisting rate c(E) and the set of stationary
energies. It is interesting to examine numerically
the behavior of a system with different potential
well from those of the pendulum. The bifurca-
tion diagram for the kicked Duffing oscillator
with single potential well is presented in Fig. 13.
In this case U(x)-x2/2 + x4/4; contrary to the
pendulum, in this case the period decreases
when increasing energy. Besides that, the func-
tion T(E) has no peculiarities like approaching
infinity at some finite value of E due to motion
near a separatrix because the potential has only
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<-:2

FIGURE 13 A multiple bifurcation diagram for kicked
Duffing oscillator with single potential well.

a single minimum and any other hyperbolic
points. It is seen in Fig. 13 how, contrary to the
pendulum case examined in Section 1, the FPs
are more densely distributed for lower energies
and more sparsely for higher ones; in addition,
the FPs with lower energies lose stability earlier.
It can be easily shown that all these differences
are due to the negative first derivative and posi-
tive second derivative of T(E) which reflect on

the stationarity condition c(Em)= rn and stabil-
ity condition (52), respectively;
the feeding function c(x) reflects only on the
value of factor T which depends on its shape. This
factor takes the maximum value T= 2 for 1-I-
shaped feeding function;
the time-periodic law H(0) determines, by virtue
of (49), the fixed values of the phase variable. If
we assume that II(0) is continuous in [0, 2re] and
has only one minimum and one maximum in this

interval, according to (49) we shall have either
two or no fixed values of 0. (The former case

corresponds to pair of stable and unstable FPs.)
However, if gl(0) has more complex shape, the
stationarity condition can produce neither two
nor zero solutions but some other number of
them. This effect may cause the appearance of
several stable points for a definite stationary
energy Era; recall that Em is determined by

c(E,0-m and does not depend in any way on
the phase variable value.
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