Logical Analysis of 'Gestalt' as 'Functional Whole' ${ }^{1}$

§1 Aim of the Present Paper

In a former paper ${ }^{2}$ we pointed out that the term 'Gestalt' is being used in at least two essentially different meanings. We suggested limiting the use of the term 'Gestalt' to its original meaning, i.e. 'shape', 'form' or 'configuration'. Its other meaning is often expressed by 'functional (or organized) whole'; we used ${ }^{3}$ the expression 'determinational system' [Wirkungssystem] instead. In the former paper we gave a rather detailed analysis of 'Gestalt'. It is the aim of the present paper to do the same for the term functional whole.

\$2 Provisional Explanation of 'Interdependence' and 'Independence'

For this purpose let us start with an almost famous example, namely the equilibrated distribution of electricity on the surface of an isolated conductor; this example was chosen by Köhler ${ }^{4}$ in order to illustrate the characteristics of functional wholes. The main feature which is of interest here may be formulated as follows: the density of charge at any point determines the density at all others. Let us provisionally call this characteristic 'interdependence'.

It can easily be proved that whenever modern Gestaltists use expressions such as 'functional whole', 'organized whole', 'dynamic unity", they ascribe this property of 'interdependence' to their respective designata. ${ }^{5}$

Now, in Gestalt literature this conception is often illustrated by opposing it to what might be called an 'aggregative whole' ('Summatives Ganzes', 'Und-Verbindung') of which Köhler's three stones lying in
three different continents are an often quoted instance. In a certain sense there is no interaction between these stones. The characteristic of such an aggregate may be called 'independence'.

Accordingly, one of the main objections made by Gestaltists to their opponents may be formulated thus: it is an error to explain, say, the genesis of a perceptional field by an aggregate of mutually independent causal chains.

§3 Definition of 'Dependence', 'Interdependence' and 'Independence'

In order to give a definition of 'interdependence' and 'independence' it is necessary to introduce the more fundamental notion of dependence. Let it be defined as follows: ${ }^{6}$ a function f will be said to depend on a class φ of functions, when and only when f has the same value for any two arguments for which each element of φ has equal values.

Let e.g. $f(t)$ be that (3-valued) function which assigns to a given quantity of water, for every moment t, its state of aggregation (i.e. solid, liquid or gaseous); and let φ contain just the two functions temperature and pressure of the same quantity of water, defined for every t. Then according to well known physical laws, the states of aggregation (i.e. the values of f) are the same at two different moments if, at these moments, the water has both the same temperature and pressure. Consequently, f depends on φ, in the above defined sense.
This notion enables us to define 'interdependence' as follows: a class of functions, φ, will be called 'interdependent' when and only when every element f of φ depends on the 'complementary class' consisting of all elements of φ except f. Considering the law of Boyle and Mariotte, we find an instance of interdependence in the class of functions: pressure, volume, temperature of an ideal gas.
Let us use the notion of dependence in order to give also a definition of 'independence': a class φ of functions will be called 'independent' when and only when no element of φ depends on the complementary class.

\$4 Different Modifications of 'Dependence' and 'Interdependence'

The concept of interdependence being fundamental for this discussion we
want to deal with it in a more detailed manner? ${ }^{7}$ from a syntactical point of view, it is evident that for Gestalt theory only causal dependence is relevant, since it deals with empirical wholes, whereas e.g. mathematics deals with logical wholes; besides the latter can be treated in exactly the same way on the basis of logical dependence.

But also from a material point of view we must make several distinctions: Whereas according to our above definition of 'interdependence' it is sufficient that each element depend on all others, we must also consider the converse case in which roughly spoken all elements depend on every single one of them. Evidently the latter case entails the former but the converse is not true. Therefore we shall call the latter kind of interdependence a 'strict' one. The following example may illustrate what we mean: according to some business-cycle theorists, a certain correlation exists between the tendencies of speculation, business and money. As far as this correlation holds exactly, there is strict interdependence between these functions.

Another instance for strict interdependence was furnished by the wellknown law of correlation in biology, when Georges Cuvier who first gave its strict formulation claimed to be able to reconstruct an entire animal skeleton if one single bone of it were given to him.

We shall mention only briefly a third type of interdependence founded on another modification of dependence: this relation holds between f and φ, when and only when f has different values for each pair of arguments for which exactly one element of φ has different values.

Finally we note a generalization of 'dependence' which results from the following considerations: as illustrated by our business-cycle example, empirical dependencies generally show different degrees. This can be taken account of provided we modify the definition of 'dependence' by introducing the notion of probability. More generally, 'dependent' can be replaced by 'more or less dependent' and thus 'interdependence' and 'independence' appear as the two poles of a serial order. ${ }^{\text {8 }}$

§5 System and Dependence System

We repeatedly dealt with the following property of a class φ with respect to a relation R : this relation holds between each element of φ and the complementary class. In this case we call φ a system with respect to R. A system which is not a part of a larger one with respect to the same relation
may be called 'closed'. The classes considered above are systems with respect to dependence.
Now it looks plausible to translate the complete expressions 'functional whole' and the like in terms of 'system of functions with respect to dependence', or, shortly, 'dependence system'.

According to the different modifications of dependence, we distinguish several kinds of systems which can be considered as the corresponding modifications of the notion, 'dependence system'. It is a matter of special investigation in each case which type of system is being represented by the 'functional whole' in question.

§6 Determinational System

As mentioned in our introduction, we previously used the expression 'determinational system' ['Wirkungssystem'] for 'functional whole'. The notion of system as employed then, though somewhat different from the one defined just now, can be reduced to it. Anyhow the whole expression belongs to another language which is in closer relation to the so-called thing-language used in everyday life. Yet things will be represented here by their so-called world-lines, a notion which the theory of relativity has made rather popular. Let us now give in this 'world-line language' the definition of 'determination system'. For thispurpose let usstart from the relation of determination defined by Carnap. ${ }^{9}$ Then we define 'determination system' as follows: a class W of world-lines will be called a determination system with respect to a class λ of state functions, when and only when every class ${ }^{10}$ determining a point on one of the world lines belonging to W is a selective class ${ }^{11}$ of W with respect to λ. If a class W is such a determination system, then it must be also a system in the sense defined above, though the relation R involved is a more complicated one which will be explained elsewhere.

\$7 Functional Language and World-Line Language

As will be remembered, this definition of 'functional whole' expressed in world-line language ("w-l") was preceded by another expressed in
functional language ("f-l"). Let us compare the two solutions of our problem.

The w-l being more closely related to everyday language will often be more practical than the $f-l$. On the other hand, the use of the $w-l$ is sometimes impractical or even impossible: we can hardly imagine how one could actually describe in w-l, e.g. a phenomenal field or the above mentioned business-cycle correlations. Especially the following arguments plead in favour of the $\mathrm{f}-\mathrm{l}$: the $\mathrm{w}-l$ presupposes the concept of genidentity which in some sciences e.g. psychology and sociology can only be applied with difficulties. At any rate we feel entitled to state without further arguments that the $f-l$ is much more general and modern. ${ }^{12}$

In spite of differences, the two concepts of determination system and of dependence system can, in a less formal language, both be designated by 'functional whole', because both 'determination' and 'dependence' can in a certain sense be considered as functional relations. As far as the much discussed term 'whole' is concerned, we must limit ourselves here to the remark that already Fries ${ }^{13}$ speaks of a 'Ganzes der Wechselwirkung' and Kant ${ }^{14}$ uses similar expressions in this connection.

§8 Applications of our Definitions

Now, the state of a functional whole can be either stable (balanced, equilibrated) or unstable. The former case (including states of rest and so-called stationary states) is characterized by the state function's being constant in time. Such states of equilibrium play an important part in the writing of Gestaltists because, according to them, functional wholes when left to themselves tend to become balanced and to remain so.

Our analysis enables us to correct a mistake due, we believe, to the confusion between 'Gestalt' and 'functional whole': some functional wholes can also be described as "complexes". ${ }^{15}$ This holds e.g. for the distribution of electricity over an isolated conductor. When considering this distribution as a complex, one can define a certain class of transpositions such that any distribution having with respect to these transpositions the same Gestalt as a balanced distribution, is itself a balanced one. Such transpositions are described by Köhler. ${ }^{16}$ However, these transpositions can also be applied to unbalanced distributions, so
that one is equally justified in ascribing to them a Gestalt with respect to these transpositions. Consequently it would be false to assume that only balanced functional wholes have a Gestalt.

In terms of the preceding analysis the opposition between aggregative and functional whole turns out not to be contradictory. For a class of functions can happen to be neither independent nor interdependent: indeed some of its elements may depend on their respective complementary classes and others may not. Consequently, to say that something is not an aggregate, is not sufficient to characterize it as a functional whole: this main concept of Gestalt theory has rather to be based, as we have done, on the notion of interdependence.

Notes

${ }^{1}$ Paper sent in for the fifth International Congress for the Unity of Science (Cambridge, Mass. 1939). [Here reprinted for the first time, with the kind permission of Professor Felix Oppenheim. The punctuation has been adjusted slightly. All references not given in full are to items in the "Bibliography" on pp. 231-478 below.]
${ }^{2}$ K. Grelling and P. Oppenheim, "Der Gestaltbegriff im Lichte der neuen Logik", 1937/38; Eng. trans. this volume pp. 191-205.
${ }^{3}$ Loc. cit.
${ }^{4}$ Wolfgang Köhler, Die physischen Gestalten in Ruhe und im stationären Zu stand, 1920, p. 54ff.
${ }^{5}$ E.g. W. Köhler, op. cit., pp. XVI, XVIII, 57, 58, 61; Kurt Lewin, Principles of Topological Psychology, 1936, p.172; Kurt Koffka, Principles of Gestalt Psychology, 1935, p. 677.
${ }^{6}$ We are indebted to Mr. C. G. Hempel for important suggestions regarding this definition.
${ }^{7}$ For still more details cf. K. Grelling, "A Logical Theory of Dependence", this vol., pp. 217-226.
${ }^{8}$ Cf. C. G. Hempel and P. Oppenheim Der Typusbegriff im Lichte der neuen Logik, Leiden: Sijthoff, 1936, pp. 78ff.
${ }^{7}$ R. Carnap, Abriß der Logistik, Vienna: Springer, 1929, p. 86.
${ }^{10}$ The definition of 'determining class' must be supplemented by a certain minimum condition.
${ }^{11}$ What is meant by 'selective class' (cf. Carnap, op. cit., p. 59) may be illustrated by the following example: a select committee to which each class of a school delegates just one representative is a selective class of the class of the school
classes. It is worthwhile noticing that a determination system as defined here is always closed.
${ }^{12}$ This statement need not be changed when the so-called coordinate-language is taken into consideration as well.
${ }^{13}$ Cf. J. F. Fries Die mathematische Naturphilosophie, Heidelberg. 1822, p. 597.
${ }^{14}$ Cf. Kant, Kritik der reinen Vernunft, Ausgabe der Preussischen Akademie der Wissenschaften, Vol. III, p. 97.
${ }^{15}$ Cf. Grelling and Oppenheim, op.cit.,pp. 212 ff ., also for the following remarks.
${ }^{16}$ Köhler, op. cit., pp. 62ff., also Gestalt Psychology, 1929, p. 168.

A Logical Theory of Dependence ${ }^{1}$

§1 [Introduction]

In the course of the logical analysis of Gestalt carried out by Mr. Oppenheim and myself ${ }^{2}$ we often dealt with the notion of dependence ${ }^{3}$ and therefore we felt the need to attach a precise sense to that notion.

As far as I know the general notion of dependence has not been analysed by modern logicists before. Therefore I hope that the attempt to carry out this analysis will be of some interest for scientists independently of its connection with the Gestalt problem.

A popular example of the use of 'dependence' is furnished by the statement that a commercial price at a given time depends upon demand and supply at that time. The analysis of such an instance and similar ones leads to the following statements concerning the logical form of the propositions involved:
(1) Anything said to depend upon something else is-or at least can be described as-a function.
(2) What something is said to depend upon is a class generally consisting of several functions. In special cases this class may have only one element.
(3) All the functions involved in the same statement of dependence must have the same argument, ${ }^{4}$ i.e. it must be possible to use the same letter, say ' z ', as the argument for all the functions occurring in one formula.

Consequently a statement of dependence may be symbolized as follows:

$$
R(f, \varphi)_{x}
$$

where ' f ' means the function said to depend, ' φ ' the class of functions upon which f depends and ' x ' is the variable for the common argument.

§2 [Dependence]

2.1 I am not quite sure whether there is a unique consistent meaning common to all cases in which the word 'dependence' and its derivatives are used in daily life and science. Therefore I suggest we distinguish between several kinds of dependence. One of them and perhaps the most important one may be described by the following statement:
(E) If, for some argument x_{1}, every function belonging to φ, i.e. every function upon which f depends, takes the same values as for the argument x_{2}, then f itself must take equal values for x_{1} and x_{2} as well.

Thus, if, in our example, at the time t_{1} the demand for the article a is equal to the demand at the time t_{2} and if the same holds for the supply, then the price of a at the time t_{2} will be equal to it at the time t_{1}. This condition is necessary and sufficient for the price to depend upon demand and supply. ${ }^{5}$

It is, to be sure, easy to find other examples which fulfil the condition (E) and which nevertheless would not be considered as cases of dependence in everyday life. We need indeed only choose either a class φ such that at least one of its elements takes different values for every two different arguments or one can put down a constant instead of f, i.e. a function taking the same value for all arguments. However, in my opinion, from such trivial cases, well known to logicians, no serious objection can be derived against my suggestion of describing one sort of dependence by the statement (E).
2.2 A formal definition on the basis of statement (E) runs as follows: Let φ be a class of functions all of them with x as argument and let f be a single function of the same argument. Then I define:

D1 Equidep $(f, \varphi)_{x}={ }_{a f}\left(x_{1}\right)\left(x_{2}\right)\left[(g)\left(g \varepsilon \varphi \supset g\left(x_{1}\right)=\right.\right.$ $\left.\left.g\left(x_{2}\right)\right) \supset f\left(x_{1}\right)=f\left(x_{2}\right)\right]$.

For certain purposes it will be convenient to introduce a special symbol for the expression ' f takes equal values in x_{1} and x_{2} '. Therefore we write:

$$
\text { D2 } E q\left(f, x_{1}, x_{2}\right)={ }_{d f} f\left(x_{1}\right)=f\left(x_{2}\right) \text {. }
$$

and consequently
${ }^{\prime} \vec{E}^{C} q\left(x_{1}, x_{2}\right)$ ' will be short for ' $\hat{f}\left\{E q\left(f, x_{1}, x_{2}\right)\right\}$ '.
Thereby the definition D1 may be transformed and our first theorem reads:

T1 Equidep $(f, \varphi)_{x} \equiv\left(x_{1}\right)\left(x_{2}\right)\left(\varphi \subset \vec{E} \subset\left(x_{1}, x_{2}\right) \supset E q\left(f, x_{1}, x_{2}\right)\right)$.
A further convenient abbreviation is expressed by the definition
D3 $E(\varphi)={ }_{d f} \hat{f}\{$ Equidep $(f, \varphi)\}$.
The following theorems are obvious consequences of our definitions: ${ }^{6}$
T2 $f \varepsilon E([f])$,
T3 $\quad \varphi \subset \psi \supset E(\varphi) \subset E(\psi)$
T4 $\varphi \subset E(\varphi)$.
The class of constants which we already mentioned can be defined as follows:

D4 const $={ }_{d f} \hat{f}\left\{\left(x_{1}\right)\left(x_{2}\right) f\left(x_{1}\right)=f\left(x_{2}\right)\right\}$
Then we have

T5 const $=E(\Lambda)$
where ' Λ ' designates the null-class of functions.
From T3 and T5 can be inferred:
T6 const $\subset E(\varphi)$.

Now I will define a notion which I have mentioned before also, namely that of a function the values of which are different for different arguments. For this notion we use the symbol 'mon' because monotone functions in mathematics are special cases of it.

$$
\text { D5 mon }={ }_{d f} \hat{f}\left\{\left(x_{1}\right)\left(x_{2}\right)\left(E q\left(f, x_{1}, x_{2}\right) \supset x_{1}=x_{2}\right\}\right.
$$

It will be easily seen that if the class φ has among its elements at least one 'mon', every function must stay in Equidep to φ. Hence:

T7 $\exists!m o n \cap \varphi \supset E(\varphi)=\mathrm{V}$
where ' V ' symbolizes the universal class of functions.
The two following theorems may also be easily verified:
T8 $\quad \psi \subset E(\varphi) \supset E(\varphi \psi) \subset E(\varphi)$,
T9 $\quad E(E(\varphi))=E(\varphi)$.
The last theorem shows that the class $E(\varphi)$ is closed with respect to the operation $E(\varphi)$.
2.3 Our next step will be the definition of some one-place predicates for classes of functions in term of 'Equidep'. I begin with a notion which can be considered as one - out of several possible - formalizations of independence.

D6 inequidep $(\varphi)={ }_{d f}(f)(f \varepsilon \varphi \supset \sim \operatorname{Equidep}(f, \varphi-[f]))$
i.e. φ is inequidep, when and only when none of its elements stands in Equidep to its complementary class, the term 'complementary class' being an expression for the symbol ' $\varphi-[f]^{\prime}$ ' Therefrom the following theorem can be derived.

T10 inequidep $(\varphi) \equiv(\psi)((\psi \subset \varphi \cdot E(\psi)=E(\varphi)) \supset \psi=\varphi)$.
Secondly I suggest a formalization for the well known notion of interdependence:

D7 interequidep $(\varphi)={ }_{d f}(f)(f \varepsilon \varphi \supset$ Equidep $(f, \varphi-[f]))$,
i.e. φ is interequidep if every one of its elements stands in Equidep to its complementary class. The following notion is stronger than the preceding one:

D8 interequidepend $(\varphi)={ }_{d f}(\psi)((\psi \neq \Lambda \cdot \psi \subset \varphi) \supset \varphi \subset E(\psi))$,
i.e. φ is interequidepend, when and only when every element of φ stands in Equidep to any existent sub-class of φ. Substituting ' $[f]^{\prime}$ ' for ' ψ ' in D8 we get after an easy transformation:

T11 interequidepend $(\varphi) \equiv(f)(f \varepsilon \varphi \supset \varphi \subset E([f]))$ and
T12 interequidepend $(\varphi) \equiv(f)(g)(f, g \varepsilon \varphi \supset \operatorname{Equidep}(f,[g]))$,
i.e. φ is interequidepend when and only when each of its elements stands in Equidep to every class the only element of which belongs to φ. Another obvious consequence of D7 is:

T13 interequidepend (φ) Ј interequidep $(\varphi) .^{7}$

§3 [Vardep and Equidep]

3.1 The notion 'Equidep' is being based on the statement (E), i.e. on the assumption that equality of the values of f is implied by the equality of the corresponding values of the other functions involved (that was the very reason for the choice of the symbol). Now it seems to be equally evident that a function which is said to depend upon other functions must vary with them. In order to explain this new notion let us consider a method often employed by scientists in testing the dependence of one phenomenon on other phenomena. Suppose we have a certain phenomenon a and want to test its dependence upon a group of phenomena: b, c, d. Then we often proceed in the following way: first we keep b and c constant and let d alone vary; then, if a varies also, we infer that d is one of the phenomena upon which a is depending. Suppose we do the same thing with c and find that a does not vary when c alone among the group b, c, d has been made to vary. In that case we would say that a does not depend upon c, etc.

Evidently the meaning of the term "dependence" that we have just described is not identical with the one defined previously although many logical relations hold between the two. Let the symbol of the new concept be
$' \operatorname{Vardep}(f, \varphi)_{x}$.

3.2 The definition is as follows:

D9 $\quad \operatorname{Vardep}(f, \varphi)={ }_{d f}\left(x_{1}\right)\left(x_{2}\right)\left[\mathrm{E}!(a g)\left(g \varepsilon \varphi \cdot-\mathrm{Eq}\left(g, x_{1}, x_{2}\right)\right) \supset-\right.$ $\left.E q\left(f, x_{1}, x_{2}\right)\right]$
i.e. the relation Vardep holds between the function f and the class of functions φ with respect to the argument variable x, when and only when for every pair of arguments x_{1} and x_{2} for which one and only one element of φ takes different values, f takes different values as well. In analogy to D3 we put down:

$$
\mathrm{D} 10 \mathrm{~V}(\varphi)={ }_{, f f} \hat{f}\{\operatorname{Vardep}(f, \varphi)\}
$$

The following theorems need no explanation:

```
T14 \(f \varepsilon \mathrm{~V}(|f|)\)
T15 \(\mathrm{V}(\mathrm{\Lambda})=\mathrm{V}\)
T16 \(\varphi \subset\) const \(\supset V(\varphi)=V\)
T17 mon \(\subset \mathrm{V}(\mathrm{q})\).
```

If only two functions are being considered, Vardep is in a certain sense the converse of Equidep. Which is expressed by:

Tis $\operatorname{Vardep}(f,[g]) \equiv \operatorname{Equidep}(g,|f|)$.
3.3 Now we proceed to the definition of a one-place predicate which corresponds to 'inequidep':

D11 invardep $(\varphi)={ }_{d f}(f)(f \varepsilon \varphi \supset \sim \operatorname{Vardep}(f, \varphi-|f|))$,
and of another one corresponding to 'interequidep':
D12 intervardep $(\varphi)={ }_{\| f}(f)(f \varepsilon \varphi \supset \operatorname{Vardep}(f, \varphi-|f|))$.
The following theorems state some relations holding between the various notions:

T19 invardep $(\varphi) \supset \sim$ interequidep (φ)
T20) interequidep ($\varphi) \supset(f)$ Vardep (f, φ)
T21 invardep $(\varphi) \supset N c^{\prime} \varphi>1$
T22 $N c^{\prime} \varphi>1 \supset$ (interequidep $(\varphi) \equiv$ intervardep (φ)):
This shows that there is no difference between interequidep and intervardep except for the trivial case when q has only one element.

Under the same restrictive condition, invardep is implied by inequidep:
T23 $N c^{\prime} \varphi>1 \supset$ (inequidep $(\varphi) \supset$ invardep (φ)).
If φ consists of exactly two elements inequidep is equivalent to invardep:
T24

$$
N c^{\prime} \varphi=2 \supset(\text { inequidep }(\varphi) \equiv \operatorname{invardep}(\varphi)) .
$$

Considering the theorems about Equidep, Vardep and their derivatives, one gets the impression that some kind of duality may hold for these notions. It appears the more likely from the following theorem which obviously corresponds to T19:

T25 $N c^{*} \varphi>1 \supset$ (inequidep $(\varphi) \supset \sim$ intervardep (φ)).

\$4 [Equivardep]

We saw that in some cases Equidep is a good approximation for the meaning of 'dependence' in current language and that in other cases Vardep can be used for the same purpose. Hence it seems natural to suppose that the conjunction of the two will be a still better approximation. Although I cannot decide yet whether it is the case or not I will state the definition of such a concept and mention some of its properties:

D13 Equivardep \equiv dff Equidep \cap Vardep
T26 Equivardep $(f,[g]) \equiv$ Equivardep $(g,[f])$
T27 Equivardep $(f,[g]) \equiv$ interequidep ($[g, f])$
T28 (Equivardep $(f, \varphi), \varphi-[g] \subset$ const $) \supset E q\left(g, x_{1}, x_{2}\right) \equiv$ $E q\left(f, x_{1}, x_{2}\right)$.

The last theorem is of practical import in the field of science. Indeed it implies that if f stands in Equivardep to φ and one succeeds in keeping constant all the elements of φ but g, then a strict correlation holds between f and g.

§5 [Related Notions]

The two fundamental notions we defined, namely Equidep and Vardep are in many cases either too weak or too strong. But as I will show next, one can define certain other notions which are either stronger or weaker than Equidep and Vardep, and some of them will prove to be their limit cases. Yet I cannot develop these concepts in detail here and shall have to confine myself to a summary enumeration.
5.1 Let us start with two stronger notions: In the first place it is often convenient to submit the class φ to a minimum condition in the following way:

> D14 Equidepmin $(f, \varphi)={ }_{d f}$ Equidep $(f, \varphi) \cdot(\psi)(\psi \subset \varphi$. Equidep $(f, \psi): \supset \psi=\varphi)$,
and similarly for Vardepmin.
Secondly, if the arguments and the values of the functions involved can be represented as points of two topological spaces, Equidep and Vardep can be reinforced by establishing that $E q$ holds not only for single points but for whole environments. I omit the formal definition of this concept.
5.2 As an example of a weaker notion I will mention one which I believe to be very useful but which has not yet been worked out in detail. It results from the introduction of the notion of probability in this context. So we are led to consider different degrees of dependence. The following description gives an idea of what is meant:

This sort of dependence holds between a function f and a class φ with respect to a certain probability function $p(d)$, when and only when the probability for the value of $f\left(x_{2}\right)$ to be found within the interval d in the environment of $f\left(x_{1}\right)$ is $p(d)$, provided that every element of φ has equal values for x_{1} and x_{2}.

In a corresponding manner probability may also be combined with Vardep.

§6 [Logical and Causal Dependence]

A last and very important problem is concerned with the distinction between logical and causal dependence. This distinction is a semantical one. It might be formalized by means of Carnap's notions of L - and F truth. ${ }^{9}$ I want to suggest the following formulation: we may speak of logical dependence if the definiens of D 1 or D 9 is an L-true sentence, and of causal dependence if it is an F-true sentence. However, the topic needs further investigation.

§7 [Concluding Remark]

The definitions which I have proposed here are nothing but attempts to solve the problem of dependence. Most of these concepts might not be applicable yet to the practical course of science. However I firmly believe and hope that further developments of these investigations will finally prove to be fairly useful for all sorts of scientists.

Notes

${ }^{1}$ Paper sent in for the fifth International Congress for the Unity of Science (Cambridge, Mass. 1939), [and here reprinted for the first time. Section headings have been added.]
${ }^{2}$ Cf. K. Grelling and P. Oppenheim, "Logical Analysis of Gestalt as Functional Whole", this volume. The theory developed here has been worked out thanks to the cooperation of Mr. Oppenheim and the writer. No idea expressed here should be attributed to one of us in particular. Besides I am indebted to Mr. C. G . Hempel for some very useful suggestions.
${ }^{3}$ Instead of 'dependence' one may, mutatis mutandis, just as well use 'determination' which seems to be in a certain sense the converse of dependence.

+ In order to avoid unnecessary complications, I am dealing with functions of one argument only. The generalization of the theory for functions of more arguments would make no fundamental difficulty.
${ }^{5}$ For readers acquainted with theoretical economics I want to point out that, of
course, values of the functions, demand and supply, cannot be represented by single numbers. These values are themselves functions. But that does not invaliditate the aforesaid statement.
${ }^{6}$ I omit the symbol for the argument when all the functions involved have the same unique argument.
${ }^{7}$ It is interesting to find that our theory of the Equidep relation shows a certain correspondence with the theory of consequence, i.e. of the well known relation holding between a proposition and a class of propositions. I can only point out this correspondence here. I will devote a special paper to it later on.
${ }^{8}$ The notions 'interequidep' and 'intervardep' both designated as 'interdependence' as well as 'interequidepend' and 'intervardepend' designated as 'strict interdependence' are of special importance in the above mentioned communication by Grelling and Oppenheim.
${ }^{9}$ Cf. Carnap, Foundations of Logic and Mathematics, International Encyclopedia of Unified Science, Vol. 1, No. 3, section 7.

