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ABSTRACT 

 

Salivary secretions are a key component of aphid-plant interactions. Aphids’ salivary 

proteins interact with plant tissues, gaining access to phloem sap and eliciting responses 

which may benefit the insect. In an effort to isolate and identify key components in 

salivary secretions, we created a salivary gland cDNA library. Several thousand 

randomly selected cDNA clones were sequenced. We grouped these sequences into 1769 

sets of essentially identical sequences, or clusters. About 22% of the clusters matched 

clearly to (non-aphid) proteins of known function. Among our cDNAs, we have 

identified putative oxido-reductases and hydrolases that may be involved in the insect's 

attack on plant tissue. C002 represents an abundant transcript among the genes expressed 

in the salivary glands. This cDNA encodes a novel protein that fails to match to proteins 

outside of aphids and is of unknown function. In situ hybridization and 

immunohistochemistry localized C002 in the same sub-set of cells within the principal 

salivary gland. C002 protein was detected in fava beans that were exposed to aphids, 

verifying that C002 protein is a secreted protein. Injection of siC002-RNA caused 

depletion of C002 transcript levels dramatically over a 3 day period after injection. With 

a lag of 1 – 2 days, the siC002-RNA injected insects died, on average 8 days before the 

death of control insects injected with siRNA for green fluorescent protein. It appears, 

therefore, that siRNA injections of adults will be a useful tool in studying the roles of 

individual transcripts in aphid salivary glands. 
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Chapter 1: Review of Literature 

 

Aphid Taxonomy 

Approximately, 4000 species of aphids have been described (Dixon, 1998). Of these, 250 

species are considered pest species (Blackman and Eastop, 2000). Species belonging to 

tribe Macrosiphini include important agricultural pests, such as the green peach aphid 

(Myzus persicae), the Russian wheat aphid (Diuraphis noxia) and the pea aphid (A. 

pisum) (von Dohlen and Moran, 2000; Martinez-Torres et al., 2001; Ortiz-Rivas et al., 

2004). Detailed classification of important aphid species is described in Table 1. The pea 

aphid, Acyrthosiphon pisum (Harris), is a member of superfamily Aphidoidae and family 

Aphididae, within the order Hemiptera (Sorensen, 1995; von Dohlen and Moran, 1995). 

 

Diagnostic morphological features of aphids are shown in Fig. 1. (A) The base of the 

proboscis lies between and behind the fore coxae; (B) the antennae have two short thick 

basal segments and a thinner flagellum; (C) there is an ocular tubercle made up of three 

lenses (a triommatidium) situated behind each compound eye; (D) there are two tarsal 

segments; (E) the wings have only one prominent longitudinal vein; and (F) there is a 

pair of siphunculi on the dorsum of the fifth abdominal segment (Heie, 1980; Dixon, 

1998). 

 

It is estimated from fossil evidence that Aphidoidae appeared 280 million year ago, in the 

Carboniferous era (Dixon, 1998). Reproduction by means of unfertilized eggs 
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(parthogenesis) may have appeared in the late carboniferous or early Permian, over 200 

million years ago (Heie, 1967). Viviparity, and other characteristics like shape and 

venation of their wings and the structure of their proboscis and legs, appeared by the 

Jurassic (146 million years ago), whereas the cauda and siphunculi appeared later, in the 

Cretaceous (65 million years ago) (Shaposhnikov, 1977). 

 

Aphids have a soft cuticle; wings, if present, are membranous. Winged aphids are known 

as alatae and wingless aphids as apterae. They have both sexual (which produce fertilized 

eggs that overwinter) and parthenogenetic reproduction. Short developmental time and 

ability of adult females to reproduce several nymphs per day enable aphids to achieve 

very high rates of increase. Aphids produce the phenotype they require to suit the 

environmental circumstances they encounter. These kinds of environmentally induced 

discrete variants are called polyphenisms. If aphids develop on a plant that is crowded 

with many other aphids, they may develop with wings and fly to a new host plant 

(Blackman, 1987; Braendle et al., 2005). The mechanisms that allow aphids to switch 

between alternative morphs have remained obscure. It is believed that well-known insect 

hormones (like juvenile hormone and ecdysone hormone) regulate these switches 

(Hardie, 1980; Nijhout, 1999). 

 

Aphid Feeding  

Many aphids have a narrow host range. For example, the mustard aphid, Lipaphis erysimi 

feeds only on cruciferous plants. The pea aphid, A. pisum, feeds on leguminous host 

plants, including peas and alfalfa (Blackman and Eastop, 2000). Some aphids have a 
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broader host range and are classified as polyphagous (Dixon, 1975; Blackman and 

Eastop, 2000). For example, the host range of the greenbug, Schizaphis graminum, 

includes 70 graminaceous species (monocots) including sorghum and wheat (Michels 

1986). The green peach aphid, Myzus persicae, has a wider host range covering more 

than 100 families of plants (Baker, 1982; Cabreray Poch et al., 1998) and is considered as 

the most polyphagous of all aphids, and can cause significant crop losses (Blackman and 

Eastop, 1984). 

 

Aphids feed on phloem sap, which they obtain from sieve elements using their stylets. 

Stylets are needle-like and are formed by the mandibles and maxillae. Mandibular stylets 

tightly enclose the maxillary pair. The maxillary stylets are always firmly interlocked and 

appear as a single structure enclosing two minute canals. The food canal is larger (0.7 

µm) than salivary canal (0.3 µm) (Ponsen, 1987). The average diameter for an aphid 

stylet bundle (consisting of 2 maxillary and 2 mandibular stylets) is 4-5 µm. The stylet 

size varies in relation to species, instar and morph. In general, tree-dwelling aphids, 

Adelges spp. (family Adelgidae, order Hemiptera) and Eriosoma spp. (family Aphididae, 

order Hemiptera) have longer stylet bundles and penetrate inter- or intracellularly to 

phloem. Herbaceous-dwelling species penetrate intercellulary to the phloem (Pollard, 

1973).  The stylets penetrate either through the middle lamella, or between the 

plasmalemma and cell wall (Tjallingii, 1988; Tjallingii and Hogen Esch, 1993). 

Intercellular penetration is thought to be less deleterious to the plant than intracellular 

penetration. In the latter process, cells are damaged that may trigger host-plant defenses 

responses (Walling, 2000). 
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Phloem sap seems to be an unbalanced diet, with high ratios of sugars:amino acids, non-

essential: essential amino acids and K+:Na+ ions and low lipid levels (Marschner et al., 

1996; Girousse et al., 1996; Douglas, 2003). Carbohydrates, especially sugars, are 

dominant compounds in the phloem sap. Sucrose accounts for more than 95% of the 

phloem sugars in many plants, with concentrations ranging between 0.5 M – 1.5 M 

(Winter et al., 1992). Nitrogen is mainly present in phloem sap as free amino acids 

(Sandstrom and Pettersson, 1994; Telang et al., 1999). The phloem sap of Vicia faba is 

dominated by two amino acids, asparagine (72%) and glycine (10%). In addition, all the 

essential amino acids were also detected in the phloem but are present at low 

concentration (8.2%) (Douglas, 2006). 

 

Aphid antennae bear many sensilla which are used in chemoreception and the perception 

of the leaf surface (Bromley and Anderson, 1982). Aphids probe the surface of plant with 

tip of their proboscis. The tactile receptors on the tip of the proboscis respond to contact 

and surface texture and enable aphids to detect the contours of veins, their preferred 

feeding site (Tjallingii, 1978). They then probe into the plant with their stylets. Periods of 

stylet movement and salivation (initially resulting in formation of stylet sheaths) alternate 

with each other and with periods of suction until the destination, usually phloem, is 

reached (Prado and Tjallingii, 1994).  

 



 6

Salivary Glands 

The salivary glands of species within the suborder Sternorrhyncha (aphids, whiteflies, 

coccids and psyllids) are labial glands and lie mainly in the anterior region of the thorax. 

Aphids’ salivary glands are paired and consist of two principal glands and two accessory 

glands. The principal salivary gland is a symmetrical and bi-lobed organ. The duct of the 

accessory gland unites with the duct of the principal gland to form principal ducts, which 

further unite to form a common salivary duct that discharges into the salivary canal (Fig. 

2) (Ponsen, 1972). The principal salivary gland in M. persicae contains 8 different cell-

types (Ponsen, 1972). On the other hand, Weidemann (1968) described 9 cell-types in the 

principal salivary gland in M. persicae. According to Ponsen (1972), there are 6 cells of 

type 5. Weidemann (1968) classified these 6 cells into two different cell types called A 

and F. Correspondence of cell-types between Ponsen’s and Weidemann’s nomenclature 

is shown in Table 2. The accessory salivary gland is composed of few cells (4 cells in A. 

pisum). 

 

Weidemann (1968) has described cell types in the salivary glands of M. persicae, and his 

classification is discussed in detail here. Each lobe is composed of 6 cover cells (or 

Deckzellen) and 15 main cells (or Hauptzellen) (Fig. 3). The so called “cover cells” are 

differentiated in two cell types called H and I based on nuclei staining. Cover cells with 

irregularly shaped nuclei are called H cells and there are five H cells in each lobe. In 

addition a cell with a round and translucent nucleus called the I cell is also present in 

each lobe. 
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The main cell (or Hauptzellen) region is comprised of seven cell types (Fig. 3). Along the 

caudal external border of each lobe, there are four cells in two planes designated the A 

cells. Their nuclei are round and contain a dense (thick) chromatin structure similar to 

that found in the B cells. There are two B cells. The adjacent C cells of irregular shape 

and with nuclei twice the size of B cell and are found only once in each lobe. 

 

On the innermost edge of the glands, there are two D cells; their nuclei are slightly 

smaller in size than those of A cells. Above D cells are two E cells; their nuclei are small 

and typically weakly stained. The F cells are found adjacent to the E cells. They are 

easily mistaken for A cells because they are similar in appearance and have nuclei of 

approximately same size. G cells have the most prominent nuclei of the salivary gland 

bordering the cover cells and can be distinguished from the nuclei of the C cell, by their 

loose structure as well as their almost perfectly round shape. There are 2 G cells in each 

lobe. 

 

The fact that these cells are morphologically different suggests that they may have 

differentiated to serve different functions. A bit of evidence for this is provided by 

immunodetection of prominent salivary proteins (identified by Baumann and Baumann, 

1995, namely 66, 69 and 154 kDa) in the posterior part of the principal salivary gland in 

greenbug (Cherqui and Tjallingii, 2000). Presumably, aphids’ salivary secretion is a mix 

of the products from one or more cell types.  
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The ultra-structure of the cells of the principal salivary gland show the presence of a well 

developed rough endoplasmic reticulum and also the presence of secretory granules, 

suggesting that they are involved in the synthesis of salivary proteins (Moericke and 

Wohlfarth-Bottermann, 1960 and 1963; Wohlfarth-Bottermann and Moericke, 1960). On 

the other hand, function of the accessory gland is largely unknown; but it is involved in 

virus transmission, based on presence of potato leaf roll virus particles as seen by 

electron microscopy studies (Glidow et al., 2000).  

 

Like those in aphids, Drosophila embryos salivary glands consist of two major cell types: 

secretory cells and duct cells. Secretory cells are columnar epithelial cells that synthesize 

and secrete high levels of proteins. At the onset of metamorphosis they also secrete the 

glue to paste the pupae to the substrate. The high production level of glue proteins is 

achieved by genome amplification. The chromosomes of the salivary gland nuclei 

undergo endoreplication (DNA replication without division) and become giant polytene 

chromosomes (Andrew, 1998). The duct cells are cuboidal epithelial cells that form the 

simple tubes connecting the secretory cells and form a common duct that discharges into 

salivary canal. 

 

The initial specification of salivary cells in Drosophila occurs within a two-dimensional 

sheet of cells, the ectoderm, with no known induction from underlying layers. The 

salivary gland primordium is bilaterally symmetric and consists of approximately 100 

cells on either side of the ventral midline (Andrew, 1998; Campos-Ortega and 

Hartenstein, 1997; Andrew et al., 2000). Salivary glands arise from two ventral 
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ectodermal plates, in the region of the presumptive posterior head (Panzer et al., 1992; 

Andrew et al., 2000). Salivary glands of Drosophila differentiate without further cell 

division and increase in size simply by increasing the volume of individual cells (Andrew 

et al., 2000). Salivary gland development begins at 4.5 h of development and finishing by 

10 h of development. This initial specification, which is complete by embryonic stage 10 

(about 5.5 h of development), occurs only within a specific region of the anterioposterior 

axis: parasegment two. In contrast little is known about the embryonic development of 

the salivary glands of aphids besides the anatomical studies by Ponsen (1972) and 

Weidemann (1968) on the salivary gland. 

 

Aphid Saliva and Salivary Proteins 

Electric penetration graph (EPG) studies have shown four phases of salivary secretion 

during penetration of host plants by aphids: (1) intercellular sheath secretion, (2) 

intracellular salivation into cells along the stylet path, (3) initial phloem salivation (into 

sieve elements); and (4) phloem feeding salivation (Tjallingii, 1988; Tjallingii, 1990; 

Prado and Tjallingii, 1994; Cherqui and Tjallingii, 2000). Thus, there is ample 

opportunity for salivary secretions to elicit plant responses, block wound responses or 

detoxify phytochemicals. Aphid saliva holds the potential to better understand the co-

evolution of insect-host interactions (Miles, 1998; Miles, 1999). 

 

Aphids inject a variety of physiologically and biochemically active substances into host 

plants to facilitate feeding (Miles, 1968; Miles, 1999). Aphid saliva is a mix of ions, 

amino acids, hemolymph (pumped from myoepithelioid cell) (Ponsen, 1972) and salivary 
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proteins / enzymes secreted from principal and accessory salivary gland (Miles, 1998; 

Miles, 1999). The proteins of aphid saliva are of two types, structural and enzymatic. The 

structural proteins provide a tube-like sheath (Miles 1999; Cherqui and Tjallingi 2000) 

and are probably few in number, corresponding to major bands on gels with estimated 

molecular masses of 154 kDa and 66/69 kDa (Baumann and Baumann, 1995). Polyclonal 

antibodies against these proteins stained sheaths (Cherqui and Tjallingi 2000). Enzymatic 

assays have been carried out on diluted saliva of aphids (Adams and McAllan, 1956 and 

1958; Madhusudhan et al., 1994; Miles, 1999; Cherqui and Tjallingii, 2000). The 

secreted salivary enzymes fall into two broad categories: hydrolases (pectinases, 

cellulases, oligosaccharases) and oxidation / reduction enzymes (phenol oxidase (E.C. 

1.14.18.1) and peroxidases) (Campbell and Dreyer, 1985; Miles amd Peng, 1989; Miles 

1999). The roles of these enzymes during aphid attack on plants are not well understood.  

 

Aphid saliva is believed to perform multiple functions; including creation of the stylet 

sheath, assisting the penetrations of substrate for food (by the action of pectinases, 

cellulases, β-glucosidases etc), digesting nutrients (polysaccharases), detoxification of 

phenolic glycosides ingested during feeding by the action of polyphenol oxidases or 

peroxidases (oxidation-reduction enzymes) and suppression of host defenses or elicitation 

of host responses (Miles, 1972; Miles, 1987; Urbanska et al., 1998; Miles, 1999). The 

salivary sheath is formed as stylets penetrate plant tissue and are left behind as a solid 

structure of salivary origin after aphid feeding in host plants and on parafilm when 

feeding on artificial diet (Miles, 1959; Miles 1964a). The sheath material that encases the 
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stylets is at least partly proteinaceous and begins to gel immediately after it leaves the 

tips of the stylets (Miles, 1965; Miles, 1990; Miles and Harrewijn, 1991). 

 

Aphid saliva may play a role in the ability of aphids to counter resistance factors in 

plants, since some species or biotypes of aphids can feed on plants that are resistant to 

other species or biotypes (Miles, 1999). Additionally, aphid saliva may enhance the bulk 

flow of solutes across the sieve plates of phloem, and components of saliva may diffuse 

from one sieve tube and affect the physiology of phloem transport (Miles, 1965; Prado 

and Tjallingii, 1997; Miles, 1999) and/or block wound response in sieve elements.  

 

Plants cope with a wide variety of physical and chemical, abiotic and biotic stresses. 

Sieve elements are sensitive to injury; they immediately react to damage in which P-

proteins gel in response to the change in the redox condition of the cell (Alosi et al., 

1988; Wil and van Bel, 2006). P-proteins, PP1 (96 kDa) and PP2 (48 kDa) have 16 and 6 

cysteine residues respectively. Droplets of phloem exudates may form gel due to 

oxidation of sulfhydryls of the cysteine residues of the P-proteins leading to the 

formation of intermolecular disulfide bonds (Read and Northcote, 1983, Alosi et al., 

1988; Knoblauch et al., 2001). Puncturing of the sieve element  of fava beans by a glass 

microelectrode (with diameter of ~0.1 µm) evokes plugging of its sieve plate within 

minutes (Knoblauch and van Bel, 1998); whereas an aphid is not only able to puncture 

but also suck sap from a sieve element for hours and even days (Tjallingii, 1995).  
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The “redox hypothesis” proposed by Miles and Oertli (1993) states that the oxidative 

processes in healthy plants are subject to control by reducing systems of the plant such as 

antioxidants like glutathione and ascorbic acid, and the aphid salivary enzymes serve to 

change the natural redox equilibrium in the plant to the aphid’s advantage. Plants respond 

to damage by sucking insects by mobilizing and oxidizing phenolic compounds 

especially monomeric o-quinones or phenolic compounds, which are deterrent to insects. 

Miles and Oertli (1993) proposed that the effective defense by the plant requires 

oxidation of phenolics at a controlled rate that maintains a deterrent titer of the monomers 

and at the same time allows controlled oxidation of monomeric quinones and phenols to 

form polymers and phenol-protein conjugates, which are non-toxic, but serve to seal off 

damaged cells. Aphid salivary oxidases on the other hand may act by enhancing 

oxidation in the affected tissue, thereby decreasing concentrations of monomeric phenols 

and quinones, which may be toxic to the aphid (as electrophilic o-quinones can be 

alkylated by cellular nucleophiles leading to the formation of reactive oxygen species or 

isomerization of quinones can lead to quinone methides, which could cause cellular 

damage) (Miles, 1964b; Miles and Oertli, 1993). 

 

Injected saliva may play a crucial role in the prevention of the plant’s wound responses 

but it may also act as an elicitor of a plant’s reaction, resulting in damage during a later 

stage of the infestation. Greenbugs cause necrotic spots and red spots on wheat and 

sorghum, respectively (Ma et al., 1990; Girma et al., 1992). Wheat infested by Russian 

wheat aphid exhibits white streaks (Deol et al., 2001). Some species of aphids can cause 

chlorosis and necrosis on the growing tip of their host plants whereas other species can 
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form galls and stunt the growth of fruits (Miles, 1999). These symptoms are attributed to 

aphid saliva but it is also possible that symptoms are due to the hypersensitive reaction by 

the host plant. 

 

Recently, researchers have employed a functional genomics approach in order to identify 

proteins by sequencing of randomly selected clones from various cDNA libraries (whole 

body, head, gut or salivary glands). A list of the expressed sequence tag (EST) projects 

undertaken within the order Hemiptera is shown in Table 3.  A large scale sequencing of 

40,904 ESTs from the pea aphid was carried out (Sabater-Muñoz et al., 2006) leading to 

12,082 unique transcript. About 59% (7,146 sequences) showed no match to any protein 

of known function. Among the 4,936 annotated sequences, 4,080 and 3,977 has a 

significant match in D. melanogaster and Anopheles gambiae respectively (Sabater-

Muñoz et al., 2006). A similar approach using ESTs to study of the regulation of 

reproductive modes in aphids was carried out in the cereal aphid, Rhopalosiphum padi. 

The majority of the ESTs sequenced were without matches or encoded hypothetical 

proteins (56%) followed by housekeeping polypeptides (38%) (Tagu et al., 2004). 

The likely reason of for such a high proportion of unknown sequences can be either the 

sequences are too short or may correspond to 5’ or 3’ untranslated regions. It is also 

possible that these partial sequences may correspond to a non-conserved domain of a 

polypepetide, and a longer sequence will allow better identification. 

 

Most of our knowledge of salivary proteins in insects comes from blood feeding insects. 

Large scale sequencing of ESTs from salivary gland cDNA libraries have led to the 
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identification of proteins expressed in salivary glands that may play a vital role in blood 

feeding (Francischetti et al., 2002; Valenzuela et al., 2003; Calvo et al., 2004). The 

secreted proteins identified from sequencing of salivary glands of mosquitoes contains α-

glucosidases and α-amylases that initiate the digestion of carbohydrates present in dietary 

sugar sources and also other enzymes and peptides involved in blood feeding and 

ingestion, such as anticoagulants, vasodilators, and platelet aggregation inhibitors (Stark 

and James, 1996). Some mosquito salivary proteins are immunogens that elicit allergic 

reactions in the vertebrate hosts (Peng et al., 1995; Peng and Simons, 1997). 

 

Plant Resistance and Defense Response to Aphids 

Plant-herbivore relationships are the product of long evolutionary struggles between host 

and predator (Schoonhoven et al., 1998). Plant conditions can affect probing behavior of 

aphids, due to change in plant properties, chemical contents of the sap, and/or 

physiological changes induced by aphid saliva (Hays et al., 1999; Harborne, 1988; 

Karban and Baldwin, 1997; Prado and Tjallingii, 1997; Ponder et al., 2001; Pegadaraju et 

al., 2005). Aphid feeding induces changes in plant metabolism and gene expression 

(Moran and Thompson, 2001; Walling, 2000; Moran et al., 2002).  

 

Plant defenses against insect herbivores can be divided into “static” or constitutive 

defenses and “active” or induced defenses (Kessler and Baldwin, 2002). A constitutive 

defense can be a physical barrier, as in lignification or resin production, or an 

allelochemical that reduces growth and development, or can be a biochemical signal 

perceived by the herbivore, as in deterrents of feeding or egg deposition, or can act as a 
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toxin (Harborne, 1988; Bennett and Wallsgrove, 1994). On the other hand, an active or 

induced mechanism results in the synthesis of proteins, which could act as toxins, or have 

potential to disrupt pest metabolism (Ryan, 1978). Active defenses normally involve 

systemic induction. The systemic response may result in the production of defensive 

proteins (Lamb and Dixon, 1997; Durner et al., 1998; Walling, 2000; Kessler and 

Baldwin, 2002). 

 

Coordination of these pathways is complex, since the wound and defense response 

pathways communicate at several levels (Kessler and Baldwin, 2002). First, wound-

induced and salicylic acid-activated, mitogen-activated protein kinases appear to 

coordinate activity of these pathways (Seo et al., 1995; Romeis et al., 1999; Kumar and 

Klessig, 2000; Petersen et al., 2000). Second, salicylic acid interferes with jasmonic acid 

biosynthesis, blocking expression of wound-response genes (Pena-Cortes et al., 1993; 

Dempsey et al., 1999). Third, in Arabidopsis the jasmonic acid/ethylene- and salicylic 

acid-dependent defense pathways appear to converge at regulatory junctions that involve 

the NPR1, SSI1, and CPR6 gene products (Clarke et al., 1998; Shah et al., 1999; 

Staswick et al., 1998; Pegadaraju et al., 2005). Thus, plants appear to perceive phloem-

feeding herbivores (such as aphids) similar to pathogens and can activate the salicylic 

acid and jasmonic acid/ethylene signaling pathways (Moran and Thompson, 2001). On 

the other hand, chewing insects and cell content feeders activate a wound-signaling 

pathway mediated by jasmonic acid and ethylene (Walling, 2000; Kaloshian and Walling, 

2005). 
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Aphid feeding induces defense response leading to the expression of specific genes. 

Transcript profiling using cDNA microarrays containing 240 genes from tobacco, 

Nicotiana attenuata revealed that aphid attack (Myzus nicotianae) upregulated the 

expression of defense related and proteinase inhibitor genes but down regulated the 

expression of photosynthesis regulated genes (Voelckel et al., 2004).  Zhu-Salzman and 

co-workers (2004) used cDNA microarrays with 672 cDNA fragments from sorghum, 

observed that S. graminum elicited a strong induction of salicyclic acid regulated 

pathogenesis related genes and a weak induction of jasmonic acid pathway regulated 

genes. Heidel and Baldwin (2004) used oligo-microarrays with 789 genes from tobacco 

observed that M. nicotianae elicited few responses, with up-regulation of genes involved 

in nitrogen assimilation and transport but it did not alter the expression of threonine 

deaminase, jasmonic acid methyl transferase and proteinase inhibitor genes (jasmonic 

acid pathway genes). Moran and co-workers (2002) used cDNA microarrays with 105 

ESTs from Arabidopsis revealed that aphid attack (M. persicae and Brevicoryne 

brassicae) upregulated genes involved in oxidative stress pathway, pathogenesis related 

proteins and tryptophan biosynthesis. A detailed list of microarray studies done on aphid-

plant interactions is provided in Table 4. In addition to the upregulation of various genes 

upon aphid feeding, there was also down regulation of genes involved in oxidative stress 

pathway like superoxide dismutase and peroxidase and signaling pathway genes like 

alpha-dioxygenase and endo-transglycosylase (Moran et al., 2002). Voelckel and co-

workers (2004) also observed down regulation of germin and light-harvesting protein. 

Many photosynthetic pathway genes like RUBISCO, a protein in photosystem II and 

plastidic aldolase were down regulated upon aphid attack (Heidel and Baldwin, 2004). 
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Similarly, Bede and co-workers (2006) found that Spodoptera exigua salivary factors 

(possibly glucose oxidase) can act to suppress genes involved in plant defense pathway. 

 

Plant resistance to insect herbivores in some instances can be mediated via constitutive 

gene effects. For example the tomato gene, Mi 1.2 encodes a 1,257 amino acid residues 

cytoplasmic protein that is a member of leucine zipper, nucleotide-binding, leucine-rich 

repeat family of R genes. The gene confers multiple resistance to a biotype of potato 

aphid, Macrosiphon esculentum and three species of root-knot nematodes (Melodogyne 

arenaria, M. incognita, M. jaranica and two biotypes of whitefly, Bemisia tabaci 

(Milligan et al., 1998; Rossi et al., 1998; Nombela et al., 2003). In melon, another gene, 

Vat (virus aphid transmission), encodes a protein with 1,473 amino acid residues and is 

member of the coiled-coils, nucleotide binding, leucine-rich repeat family of R gene 

(Dogimont et al., 2003). This gene confers resistance in melon to the cotton melon aphid, 

Aphis gossypii and also to the transmission of certain non-persistent viruses by this aphid 

(Chen et al., 1997; Martin et al., 1997). 

 

 

Economic Importance of Aphids 

Aphids are among the most important insect pests of temperate agriculture and cause 

significant losses to U.S. argriculture and also worldwide (Blackman and Eastop, 2000). 

They damage crops by transmitting pathogenic viruses, depleting photoassimilates, 

covering plants with honeydew, and altering normal plant physiology (Blackman and 

Eastop, 2000). Total world insecticide market is worth about $6 billion dollars, of which 
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$2 billion dollars are spent for the control of sucking pests (Robert Lind, Syngenta; 

personal communication). 

 

Aphids as Carriers of Viruses 

Accessory salivary glands of aphids are important in virus transmission (Glidow et al., 

2000). Virus particles are observed in the lumen of the salivary duct. Aphids transmit 

viruses by one of two general processes (Kennedy et al., 1962). Non-persistent viruses 

are concentrated in the epidermis of the plant, and aphids acquire the virus when they 

probe the surface of infected plants. Aphids can acquire these viruses with a single probe, 

within seconds, and also can subsequently transmit it to a healthy plant within seconds. 

However, non-persistent viruses are retained by the aphid for only a short period – 

usually only an hour or two. After that point the aphid no longer can transmit the virus 

unless it feeds on another infected plant (Gray and Gildow, 2003; Reavy and Mayo, 

2002). Because of the rapid acquisition and transmission of the non-persistent viruses, 

insecticides have little or no effect on reducing spread by aphids. Examples of non-

persistent viruses spread by aphids include potato virus Y and alfalfa mosaic virus. Potato 

aphid and green peach aphid are highly efficient vectors of non-persistent viruses, other 

aphid species can also transmit these viruses.  

 

Persistent viruses are concentrated in the phloem, and aphids acquire the virus only after 

feeding on the phloem for a while. This process takes a minimum of 30 minutes after 

probing a plant and often considerably longer. Once an aphid has acquired a persistent 

virus, the virus moves internally in the insect and eventually migrates to the accessory 
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salivary gland (Ponsen, 1972). Completion of this circulation within the insect can take 

days after feeding on an infected plant. However, once the virus begins to appear in the 

salivary glands the aphid will transmit it for the remainder of its life. Insecticides can be 

somewhat more effective in reducing spread of persistent viruses than non-persistent 

viruses, particularly if the insecticide rapidly incapacitates the aphid vector. Examples of 

persistent viruses spread by aphids include potato leafroll virus and beet western yellows 

virus (Gray and Gildow, 2003). Aphids do not transmit the mechanically transmitted 

viruses like potato virus X. 

 

The pea aphid is an important vector of viral diseases of legumes (Zitter and Provvidenti, 

1984). Peas are susceptible to a large number of aphid- transmitted viruses. Pea enation 

mosaic virus infects legumes in the temperate regions of the world. In addition to pea, 

pea enation mosaic virus also infects broadbean, sweet pea, and alfalfa. The virus is 

spread in nature most efficiently by the pea aphid and to a lesser extent by the green 

peach aphid. The virus is transmitted in a persistent (circulative) manner. Pea leafroll 

mosaic virus, red clover vein mosaic virus, clover yellow vein virus and bean yellow 

mosaic virus are also transmitted by pea aphid but in non-persistent manner (Zitter and 

Provvidenti, 1984). 

 

Symbionts of Aphids 

As mentioned earlier, phloem sap provides aphids an unbalanced diet. Aphids overcome 

this imbalance partly through the nutritional contribution from their symbiotic micro-

organisms. Neither an aphid nor its symbionts can fix atmospheric nitrogen (Douglas, 
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1998; Dixon, 1998). Therefore, the aphid has to ingest the necessary amount of nitrogen 

for protein synthesis from the phloem sap. Thus, the symbiont can improve aphid 

nutrition only by “correcting” the composition of ingested amino acids in the phloem sap, 

using its broader biosynthetic capabilities (Wilkinson and Ishikawa, 1999). Aphids 

feeding on different plants appear to vary depending on their symbionts for their overall 

essential amino acid synthesis, due to the large variation in proportion of essential amino 

acids in phloem sap from different plant species (Sandstrom and Moran, 1999). Generally 

methionine and leucine are always present in low concentration in the phloem sap, 

suggesting a higher dependence on the symbiont for the synthesis of these amino acids. 

 

The term symbiosis was first introduced by Anton de Bary in 1879 as “the permanent 

association between two or more specifically distinct organisms, at least during a part of 

the life cycle.” Symbiosis is only when both partners benefit from the association. It is 

estimated that at least 15-20% of all insects live in symbiotic relationships with bacteria 

(Buchner, 1965). Symbiotic relationship between insects and bacteria could be the key 

factor in the evolutionary success of insects (Moran and Baumann, 2000). Insect 

endosymbionts live inside specialized host cells called bacteriocytes, in the body cavity 

of insects (Douglas, 1989). Endosymbionts cannot be cultured outside of host and host 

needs the bacteria for normal growth and reproduction (Gil et al., 2002). Bacteriocyte-

associated endosymbionts are vertically transmitted from mother to the offspring through 

developing egg or embryo (Buchner 1965; Houk and Griffiths, 1980).  
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The mutualism between aphids and their primary (obligate) bacterial endosymbiont 

Buchnera aphidicola is well characterized (Munson et al., 1991; Wilkinson et al., 2001; 

Douglas, 2006). Buchnera lives only within specialized aphid cells called bacteriocytes 

and can synthesize essential amino acids and can supplement nutrients present at low 

concentration in the phloem sap (Douglas, 1998). Removal of Buchnera with antibiotics 

severely debilitates aphid performance and fecundity (Prosser and Douglas, 1991). The 

sequencing of three B. aphidicola genomes revealed the presence of genes coding for the 

biosynthesis of essential nutrients (especially amino acids) that are lacking in the aphids’ 

diet (Shigenobu et al., 2000; Tamas et al., 2002; van Ham et al., 2003).  

 

B. aphidicola is believed to complement an aphid’s diet by synthesizing vitamins, sterols 

and certain amino acids (Douglas, 2003; Douglas, 2006). In particular, in M. persicae, the 

symbionts incorporate inorganic sulphate into the methionine and cysteine (Douglas, 

1988). Symbionts synthesize tryptophan in A. pisum and S. graminum (Douglas and 

Prosser, 1992; Munson and Baumann, 1993). The gene (trpEG) responsible for 

tryptophan biosynthesis in S. graminum is present in multiple copies in Buchnera (Moran 

et al., 2003).  

 

In addition to the primary symbiont, some aphids harbor other intercellular symbionts. 

They are called secondary (facultative) symbionts. It is likely that they have been 

acquired independently many times in various aphid species beacuse they are not 

confined to a particular group of aphids.  The pea aphid can lack secondary symbionts or 

contain various combinations of at least five kinds of secondary symbionts: three γ-3 
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proteobacteria designated as the R, T and U types, a Rickettsia and a Spiroplasma 

(Sandstrom et al., 2001, Chen et al., 1996; Fukatsu et al., 2001). Endosymbionts are 

vertically transmitted (from mother to daughter), and the infection status of a particular 

parthenogenetic aphid lineage is stable in the laboratory (Sandstorm et al., 2001). Within 

hosts, secondary symbionts are found in and near bacteriocytes, sporadically in other cell 

types, and free in the hemolymph (Oliver et al., 2003). A vertically transmitted symbiont, 

or one with low levels of horizontal transmission, will be lost from a population if 

carrying it imposes a cost on the host, so it must have some beneficial effects of carrying 

secondary symbionts. Secondary symbiont infection with γ-proteobacterium called pea 

aphid U-type symbiont plays a vital role in the host plant specialization of pea aphid, 

thereby improving growth and reproduction of the pea aphid on non host white clover 

(Tsuchida et al., 2004). Pea aphid U-type symbiont also plays role in providing resistance 

to pea aphid against major fungal pathogen Pandora neoaphidis (Scarborough et al., 

2005). 

 

RNA Interference in Insects 

The term RNA interference or “RNAi” was coined by Fire and coworkers to describe the 

observation that gene expression can be blocked by double-stranded RNA (dsRNA) in 

Caenorhabditis elegans (Fire et al., 1998). RNAi occurs posttranscriptionally and 

involves mRNA degradation by complementary siRNAs, small (21-23 nucleotide) 

double-stranded RNAs thus can act as specific determinants for down-regulation of gene 

expression. Therefore, siRNA provides a valuable reagent for inactivation of gene 

expression. The most important feature of the mechanism of RNAi is the processing of 
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long dsRNA into duplexes of 21-23 nucleotide RNAs (Zamore et al., 2000). RNAi has 

become an important tool for down-regulating specific gene expression in many species.  

 

RNAi appears to be related to the posttranscriptional gene silencing mechanism of 

cosuppression in plants (Cogoni and Macino, 1999; Fagard et al., 2000). Cosuppression is 

the ability of some transgenes to silence both themselves and homologous chromosomal 

loci simultaneously. The initiator molecule for cosuppression is believed to be aberrant 

RNA, possibly dsRNA, and some components of the RNAi machinery are required for 

posttranscriptional silencing by cosuppression (Catalantto et al., 2000; Ketting and 

Plasterk, 2000; Dernburg et al., 2000). 

 

Dicer, a cytosolic ribonuclease III, digests long double-stranded RNA into 

oligonucleotides of length 21-23-nucleotide units (Elbashir et al., 2001; Hamilton and 

Baulcombe, 1999). The two strands of the siRNA are generated but the antisense strand, 

relative to the mRNA target, exhibits greater silencing efficiency if it has a relatively 

thermodynamically unstable 5' end (Martinez et al., 2002). Recent evidence suggests that 

binding of RNA-induced silencing complex to siRNA is coordinated with Dicer cleavage. 

Moreover, the loss of Dicer 2 in Drosophila melanogaster also results in loss of RNAi 

activity mediated by siRNA (Kim et al., 2005). The RNA-induced silencing complex 

contains the Argonaute 2 catalytic subunit that binds siRNA and mediates mRNA target 

recognition and inactivation (Yan et al., 2003). The success of RNAi, hinges on the 

affinity of siRNA molecule for its target mRNA (Miyagishi and Taira, 2005).  The 
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regulatory targets of siRNAs are usually very similar in sequence to the target gene 

(Hammond et al., 2000; Allen et al., 2005). 

 

RNAi has been successfully used in arthropods. Injections of dsRNA or siRNA in post-

embryonic stages have been used successfully in: the honeybee, Apis mellifera (Beye et 

al., 2002; Amdam et al., 2003); the giant silkmoth, Hyalophora cecropia (Bettencourt et 

al., 2002); the fall armyworm, Spodoptera litura (Rajagopal et al., 2002); the silkmoth, 

Bombyx mori (Uhlirova et al., 2003); the malarial mosquito, Anopheles gambiae (Osta et 

al., 2004); the yellow fever mosquito, Aedes aegypti (Attardo et al., 2003); the tobacco 

hornworm, Manduca sexta (Levin et al., 2005); and the red flour beetle (Tribolium 

castaneum (Tomoyasu et al., 2005). Apparently injected dsRNA and /or siRNA can move 

from the hemolymph into various tissues or organs, and can lead to target mRNA 

degradation. 
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Specific Objectives 

In my research I have undertaken a functional genomics approach to identify components 

of aphid saliva. Identification of secreted proteins from the salivary glands is essential in 

understanding the interaction between aphid and its host plant. We have chosen to do this 

work with pea aphid, A. pisum, because of its large size (compared with other aphid 

species), thus making dissections of salivary glands relatively easy and also it is a model 

aphid species and is chosen for genome sequencing 

(http://www.hgsc.bcm.tmc.edu/projects/aphid/). 

 

a) To build a salivary gland cDNA library and sequence several thousand randomly 

selected clones and analyze ESTs. 

b) To clone and characterize C002 an abundant cDNA in our library. 

c) To examine the effect of C002 transcript levels on survival and fecundity. 
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Figure 1. Diagnostic morphological features of an aphid.   

(A) The base of the proboscis lies between and behind the fore coxae; (B) the antennae 

have two short thick basal segments and a thinner flagellum; (C) there is an ocular 

tubercle made up of three lenses (a triommatidium) situated behind each compound eye; 

(D) there are two tarsal segments; (E) the wings have only one prominent longitudinal 

vein; and (F) there is a pair of siphunculi on the dorsum of the fifth abdominal segment. 

(Used with permission) (Heie, 1980). 
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Figure 2. Anatomy of the salivary gland of the green peach aphid, M. persicae. 

(A) Graphical representation of the salivary gland from transverse section of a five day 

old M. persicae showing the principal salivary gland (psg), the accessory salivary gland 

(asg), the salivary canal (sc) and the common salivary duct (csd). Each lobe of the 

principal gland is composed of 8 cell types. Cell types 1 and 2 represents Deckzellen (dz) 

and cell types 3-8 represents Hauptzellen (h). (B) Transverse section of the common 

salivary duct (csd). (C) Transverse section of the middle region of the principal gland. 

(D) Transverse section of the posterior region of the principal gland. 

sdc: salivary duct cell; n: nucleus; mc: myoepitheloid cell; isc: intercellular secretory 

canaliculum; ic: intracellular canaliculi; N2: branch of medial dorsal nerve (Used with 

permission) (Ponsen, 1987). 
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Figure 3. Feulgen stained principal salivary gland of M. persicae. 

 Cell types H and I represent Deckzellen and cell types A, B, C, D, E, F, and G represent 

Hauptzellen (Used with permission) (Weidemann, 1968). 
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Table 1. Classification of selected aphid species. 

 

Common name Scientific name Tribe Reference 

Pea aphid Acyrthopisum pisum Macrosiphini von Dohlen and Moran, 

2000 ; Martinez-torres et 

al., 2001; Ortiz-Rivas et 

al., 2004 

Russian wheat 

aphid 

Diuraphis noxia Macrosiphini Heimpel et al., 2004 

Green peach 

aphid 

Myzus persicae Macrosiphini Martinez-torres et al., 

2001 ; Ortiz-Rivas et al., 

2004 

Greenbug Schizaphis 

graminum 

Aphidini von Dohlen and Moran, 

2000; Martinez-torres et 

al., 2001; Ortiz-Rivas et 

al., 2004 

Soybean aphid Aphis glycines Aphidini Heimpel et al., 2004 

 

Note: I have classified aphids under order Hemiptera instead of Homoptera, which is the 

deeper clade than Homoptera. Since the members of the Homoptera and Hemiptera are 

mixed on the same phylogenetic tree, it is convenient to place them all under Hemiptera 

(Sorensen, 1995; von Dohlen and Moran, 1995). 
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Table 2. Classification of cell types of salivary glands of M. persicae. 

 

Ponsen, 1972 Weidemann, 1968  

Cell types No. of Cells Cell types No. of Cells 

1 1 I 1 Hauptzellen 

2 5 H 5 

3 1 C 1 

4 2 B 2 

A 4  

5 
 

6 F 2 

6 2 D 2 

7 2 E 2 

Deckzellen 

8 2 G 2 
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Table 3. EST projects within Hemiptera. 

 

Insect Tissue No. of EST Reference 

Head 20,988 

Whole body 6,668 

Whole insect 11,092 

Digestive tract 9,307 

Parthenogenetic 

embryo 

5,442 

Antennae 10,096 

Sabater-Muñoz et 

al., 2006 

A. pisum 

Salivary gland 4,517 Unpublished 

Toxoptera citricida Whole insect 4,304 Hunter et al., 

2003 

M. persicae Whole body 6,996 Unpublished 

R. padi Whole body 459 Tagu et al., 2004 

Homalodisca coagulata Whole body 4,529 Unpublished 

Rhodnius prolixis Salivary gland 44(252)* Ribeiro et al., 

2004 

 

* 252 ESTs were sequenced by Ribeiro et al. (2004) but only 44 ESTs were deposited at 

NCBI. 
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Table 4. Plant genes up-regulated in response to aphid feeding based on microarray analysis. 

 

 Insect Plant Gene up-regulated Reference 
S. graminum Sorghum Salicyclic acid pathway 

β-1,3-glucanase; Chitinase; Thaumatin-like protein; Wound-induced 
PI; PR10. 
Jasmonic acid pathway 
Lipoxygenase; Bowman-Birk protease inhibitor; Dhurrinase. 
Signal transduction 
Defense related protein. LRR-containing glycoprotein. 
Active oxygen related 
Glutathione-S-transferase, Lactoyglutathione lyase. 
Secondary metabolites 
Methyltransferase; Flavanone 3-hydroxylase. 
Abiotic stress 
Aldehyde oxidase; Drought, salt, low temperature responsive 
protein.   
Cell maintenance 
Nitrite reductase. 

Zhu-Salzman et al., 2004 

M. nicotianae Tobacco Nitrogen-uptake and metabolism genes 
Nitrate transpoter; Feroxin-dependent glutamate synthase; 
Glutamine synthetase. 

Heidel and Baldwin, 2004 

M. persicae Arabidopsis Pathogenesis related protein, Anthranilate synthase beta subunit, 
Glutathione-S-transferase; ACC oxidase. 

Moran et al., 2002 

B. brassicae Arabidopsis β-1,3-glucanase; defensin; PR-1; Sugar transpoter gene. Moran et al., 2002 
M. nicotianae Tobacco Trypsin protease inhibitor; Lipoxygenase; Xyloglucan-

endotransglycosylase; Glutamate synthase. 
Voelckel et al., 2004 

 
* Only prominent differences are listed in the table. 
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Abstract 

Several thousand ESTs in a salivary gland cDNA library of the pea aphid, Acyrthosiphon 

pisum have been sequenced. A cluster analysis based on sequence similarity grouped 

5,098 sequences into 1,769 clusters. A majority of the clusters (about 78% or 1,392 

clusters) did not match to any sequence, only about 22% (or 377 clusters) were assigned 

putative functions based on BLASTX against the UniProt database. These 377 clusters 

encode proteins with putative secretion signals, housekeeping genes or hypothetical 

proteins. Among secreted proteins, we found 14 clusters predicted to code for proteases, 

11 clusters predicted to code for oxidoreductases, and 8 clusters predicted to code for 

other hydrolases. Among the housekeeping cDNAs, we found clusters coding for heat 

shock proteins, cytochrome oxidases, transcription factors, polymerases, calcium or metal 

binding proteins, ATPases and enzymes of electron transport and DNA binding proteins.  
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Introduction 

Aphid saliva holds the potential to better understand the co-evolution of insect-host 

interactions (Miles, 1999). Aphid saliva is believed to perform multiple functions, 

including the creation of the stylet sheath, assisting the penetration of substrate for food 

(by the action of pectinases, cellulases, β-glucosidases, etc.), digesting nutrients 

(polysaccharases and proteases), detoxification of phenolic glycosides ingested during 

feeding by the action of polyphenol oxidases or peroxidases (oxidation-reduction 

enzymes), and the suppression of host defenses or the elicitation of host responses (Miles, 

1972; Miles, 1987; Urbanska et al., 1998; Miles, 1999). The fact that aphid saliva is only 

available in very small quantities makes the direct study of salivary components difficult 

(Miles, 1965; Madhusudhan et al., 1994; Miles and Harrewijn, 1991). 

 

In an attempt to reveal the complexity of the pea aphid, Acyrthosiphon pisum (Harris) 

salivary glands, a high-throughput approach designed to identify a large number of 

cDNAs in the salivary glands has been employed in the present work. ESTs have become 

an effective means of gene discovery. In the past, similar approaches have been very 

successful in salivary glands of blood-sucking bug, Rhodnius prolixus or mosquito, 

Anopheles stephens (Valenzuela et al., 2003; Ribeiro et al., 2004), particularly when the 

cDNA libraries have been prepared from tissues with high activity for the respective 

enzymes.  

 

We have chosen to work with the pea aphid, A. pisum, because of its large size 

(compared with other aphid species), thus making dissections of salivary glands less 
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difficult. Generation of a set of pea aphid salivary cDNAs, along with the availability of 

the pea aphid genome later this year (http://www.hgsc.bcm.tmc.edu/projects/aphid/), will 

provide an indispensable tool for the systematic analysis of proteins/enzymes that may 

play roles in the aphid-plant interactions. Here we describe the annotation of 1,726 

clusters representing 5,098 mRNA sequences. Remarkably, only about 22% of our cDNA 

sequences match to sequences of known functions. 

 

Material and Methods 

 

Plants and Aphids 

Aphids were originally collected from alfalfa plants in the summer of 1999 by Dr. Marina 

Caillaud at Cornell University. Thereafter, the aphids were reared at KSU on fava beans 

(Vicia fabae) grown in pots (10 cm diameter) at room temperature under high intensity 

sodium lights with a L:D of 16:8. Salivary glands from adult aphids were dissected and 

separated from the brain tissue overlaying the glands. Dissected glands were transferred 

to 50µl of PBS (137 mM NaCl, 2,7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4; pH 

7.4) for 50 paired glands and washed 3 times in PBS to remove hemocytes. Salivary 

glands were kept at –75oC until needed. 

 

Phagmid cDNA Library Construction 

Total RNA was isolated from 250 salivary glands using the Micro RNA isolation kit from 

Stratagene, La Jolla, CA. The PCR-based cDNA library was made following instructions 

with the SMART cDNA library construction kit (Clontech, Palo Alto, CA). Total RNA 
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was reverse transcribed using PowerScript reverse transcriptase and CDS III primer 

provided in the kit (Clontech, Palo Alto, CA). Second strand synthesis was performed 

through the PCR-based protocol using SMART III and CDS III primers from Clontech. 

Double strand synthesis was followed by proteinase K digestion. Double strand cDNA 

was ligated into a Lambda TriplEx2 vector (Clontech, Palo Alto, CA), and the resulting 

ligation reaction was packaged using Gigapack Gold III from Stratagene following the 

manufacturer’s specifications. 

 

Sequencing, Sequence Processing, and Annotation 

Sequencing of the cDNA clones was done either at the Kansas State University 

sequencing facility or at Genoscope, Evry cedex, France (http://www.cns.fr/). Raw EST 

data were analyzed using the Lucy program (Chou and Holmes, 2001) for sequence 

quality and vector sequence removal. Then ESTs were clustered into groups of nearly 

identical sequences using the CAP3 software tool using default settings (Huang and 

Madan, 1999).  The non-redundant set of clusters (contigs and singletons) was searched 

against the UniProt reference database (Bairoch et al., 2005) using the BLASTX program 

downloaded from NCBI. A query sequence was annotated using the best hit in UniProt 

with E value threshold set to 1e-5. The functional annotation included text description as 

well as gene ontology terms of the matched reference sequence (Camon et al., 2003). 

cDNAs were translated and analyzed for signal peptide and cleavage information using 

SignalP 3.0 Server (Nelson et al., 1997) using default parameters 

(http://www.cbs.dtu.dk/services/SignalP/).  
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Results 

 

Salivary Transcript Catalog for A. pisum 

We have sequenced 5,098 ESTs from the salivary gland cDNA library. A cluster analysis 

based on sequence similarity grouped 5,098 EST sequences into 1,769 clusters. Cluster 

refers to both contigs (containing 2 or more ESTs) and singletons. Putative functions 

corresponding to these salivary gland ESTs collection was assigned by comparing these 

ESTs with UniProt database using BLASTX with E value threshold set to 1e-5. Among 

the 1,769 clusters, 1392 (78%) showed no sequence similarity with any other protein 

sequences and only 377 clusters (22%) were assigned putative functions.  

 

Classification of Salivary Transcripts of A. pisum 

Classification of 377 clusters with significant matches to sequences in UniProt database 

is provided in Table 5. 72 clusters correspond either to hypothetical proteins or to 

proteins that were not annotated. There are several clusters corresponding to ribosomal 

proteins (42), ATPase/ATP binding proteins (27), polymerases (20), cytochromes (16), 

DNA binding proteins (15), proteases (14), metal binding proteins (14), mitochondrial 

proteins (14), oxidoreductases (11), transcription factors (10), protein kinases (9), heat 

shock proteins (9) and other hydrolases (8). We also found several clusters encoding 

putative secreted proteins including several oxidoreductases, several proteases and 

several carbohydrases. Among other secreted proteins identified included glutathione-S-

transferase, apolipophorin precursor protein, carbonic anhydrase, 11 kDa salivary protein, 
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odorant binding protein, armet like protein. There is a group of 13 clusters which were 

previously assigned under structural component of cell wall, cell membrane and nucleus, 

now listed listed as a part of Table 6 under group X for miscellaneous proteins. 

 

We also found two clusters corresponding to viral sequences, and one cluster 

corresponding to a plant sequence. The two viral clusters are non-overlapping fragments 

of a 89.2 kDa capsid protein from an aphid-infecting virus, aphid lethal paralysis virus 

(van Munster et al., 2002). This virus belongs to the recently recognized family 

Dicistroviridae (Mayo, 2002).  The plant cluster corresponds to a phospholipase C from 

Arabidopsis thaliana and is probably the result of contamination from the host plant. It 

was not found in the latest sequencing of 4,517 ESTs.  

 

Further analysis using TBLASTX against NR database at NCBI of 72 clusters 

corresponding to hypothetical or unannotated proteins is shown in Table 6. Signal P 

analysis performed on homologs from other species identified 8 clusters encoding 

secreted proteins. We also found three clusters encoding proteins from a pea aphid 

secondary endosymbiont (Candidatus hamiltonella). In total putative functions were 

assigned to 57 clusters (not just looking at the top match but also looking other matches 

with significant e value). Only 15 clusters (out of 72) were not assigned any putative 

function and encoded either a hypothetical protein or protein of unknown function. 

 

The clusters with putative functions were classified based on the number of ESTs in a 

contig (Table 7). Contig 90 contains 109 ESTs and is an aphid-infecting virus, aphid 
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lethal paralysis virus. Contig 33 represents a cluster with 57 EST sequences and is 

cytochrome oxidase subunit I. Other clusters in Table 7 include ribosomal protein 

(ribosomal protein S15A, contig 94 with18 EST sequences) and hypothetical protein 

(contig 97 with 40 EST sequences). We also found clusters representing glucose 

dehydrogenase (14 ESTs), angiotensin-converting enzyme (15 ESTs), glutathione 

peroxidase (10 ESTs), apolipophorin (8 ESTs) and superoxide dismutase (6 ESTs).  

 

Many clusters (1,392) showed no sequence similarity with any other sequences. Most of 

the clusters either have short ORF’s or entirely lack ORF (Table 8). There are 21 clusters 

which, despite having an ORF of 200 or more amino acids residues, showed no similarity 

to any other sequence. The presence of ORF drops with number of ESTs represented in a 

cluster. Most of the clusters with three ESTs have no ORF or very short ORF. Clusters 

with two or one EST sequence are not listed in Table 8. This high number of unmatched 

clusters might reflect the limited sequence quality delivered by single-pass sequencing 

(for example, too short sequences, wrong base identified leading to frame shift errors). 

Among these clusters of unknown function, an abundant cluster (contig 32) representing 

46 EST sequences referred to as C002 was further characterized (Chapter 3) and also 

used to develop RNAi as a tool to study gene expression in pea aphid (Chapter 4). 

 

Proteases and Other Hydrolases in the Salivary Glands of A. pisum  

Annotation of clusters revealed the presence of 14 clusters representing putative 

proteases and 5 clusters representing other putative hydrolases (Table 9). Among 

proteases we have identified subtilisin related protease, a member angiotensin-converting 
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enzyme family, peptidase M1, cathepsin L, cathepsin B, signal peptidase, endoprotease 

FURIN and ubiquitin specific protease. SignalP analysis done on homologs from other 

species (as our pea aphid salivary sequences are not full length) identified in BLAST 

analysis at NCBI shows that some encode proteins with a putative signal peptide. 

Therefore based on SignalP analysis, 8 clusters out of 14 clsuter encoding putative 

proteases represent putative secreted proteases. Among other hydrolases we have 

identified putative S-adenosyl homocysteine hydrolase, prolyl 4-hydroxylase alpha 

subunit, alpha-glucosidase, trehalase, carbon-nitrogen hydrolase and phosphoesterase. 

Based on SignalP analysis described above, 3 clusters represent putative secreted other 

hydrolases. 

 

Oxidoreducatases in the Salivary Glands of A. pisum 

Annotation of clusters also revealed the presence of 11 clusters representing putative 

oxidoreductases (Table 10). These clusters represent putative glucose dehydrogenase, 

glutathione peroxidase, aldehyde dehyrogenase, thioredoxin peroxidase, 

phosphoglycerate dehydrogenase, peroxiredoxin-like protein, dimethylaniline 

monooxygenase, superoxide dismutase and peroxidase. SignalP analysis done on the 

homologs (as our pea aphid salivary sequences are not full length) identified in BLAST 

analysis at NCBI, shows that some encode a putative secreted protein and has a putative 

signal peptide. Therefore, based on SignalP analysis, 5 clusters represent putative 

secreted oxidoreductases. 
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Discussion 

To our knowledge, this is the first attempt to create a catalog of the cDNAs from the 

salivary glands of the pea aphid, A. pisum or any other aphid species. The majority of the 

clusters (78%) could not have their putative function annotated. The most likely reason 

for this lack of similarity is that some of the sequences are too short or may represent 5’- 

or 3’-untranslated regions. Second it is possible that these partial sequences correspond to 

a non-conserved domain of polypeptide: a longer sequence should allow a better 

identification of these clusters. Finally, this might reflect limitations of single pass 

sequencing (too short sequences, wrong base calling leading to frame shift errors). For 

the clusters represented under hypothetical proteins or unannotated proteins (75 clusters), 

it is possible that some of these proteins without matches correspond to aphid specific 

proteins of cellular functions not yet elucidated. Genes involved in environmental 

adaptation evolve quickly and might correspond to unannotated sequences (Domazet-

Loso and Tautz, 2003). As aphids are highly sensitive to environmental changes, it is 

possible that these clusters may correspond to rapidly evolving sequences. 

 

The largest proportion of functionally annotated sequences falls into following 

categories: ribosomal proteins represented in 42 clusters, there are several clusters 

corresponding to ATPase/ATP binding protein (27), polymerases (20), cytochromes (17), 

DNA binding proteins (15), proteases (14), metal binding proteins (14), mitochondrial 

proteins (14), oxidoreductases (11), transcription factors (10), protein kinases (9) heat 

shock proteins (9) and other hydrolases (8). We also found several clusters encoding 

putative secreted proteins including several oxidoreductases, several proteases and 
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several carbohydrases. Among other secreted proteins identified included glutathione-S-

transferase, apolipophorin precursor protein, carbonic anhydrase, 11 kDa salivary protein, 

odorant binding protein, armet like protein. 

 

A large scale sequencing of 40,904 ESTs from the pea aphid was carried out (Sabater-

Muñoz et al., 2006) leading to 12,082 unique transcripts. About 59% (7,146 sequences) 

showed no match to any protein of known function. Among the 4,936 annotated 

sequences, 4,080 and 3,977 has a significant match in D. melanogaster and Anopheles 

gambiae respectively (Sabater-Munoz et al., 2006). A similar approach using ESTs to 

study of the regulation of reproductive modes in aphids was carried out in the cereal 

aphid, Rhopalosiphum padi. The majority of the ESTs sequenced were without matches 

or encoded hypothetical proteins (56%) followed by housekeeping polypeptides (38%) 

(Tagu et al., 2004). 

 

The “redox hypothesis” proposed by Miles and Oertli (1993) states that the oxidative 

processes in healthy plants are subject to control by reducing systems of the plant such as 

antioxidants like glutathione and ascorbic acid, and that the aphid salivary enzymes serve 

to change the natural redox equilibrium in the plant to the aphid’s advantage. Plants 

respond to damage by sucking insects by mobilizing and oxidizing phenolic compounds 

especially monomeric o-quinones or phenolic compounds, which are deterrent to insects 

(Miles and Oertli 1993; Harmatha and Nawrot 2002). Several putative oxidoreductases 

were identified in our study (Table 9). Five of them encode enzymes with putative 
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secretion signals; these salivary oxidases can act by enhancing oxidation, thereby 

decreasing the concentration of monomeric phenols and quinones. 

 

In Helicoverpa zea, glucose oxidase present in saliva suppresses jasmonic acid related 

plant defense, presumably by the production of hydrogen peroxide (Musser et al., 2002). 

Glucose oxidase and glucose dehyrogenase are also present in our salivary gland library. 

They may play a similar role in suppressing jasmonic acid mediated plant defense, as 

jasmonic acid regulated pathway genes are up-regulated in sorghum upon greenbug 

feeding (Zhu-Salzman et al., 2004). 

 

In addition, glycosyl hydrolases present in the salivary gland hydrolyse glycosidic bonds 

in carbohydrates. Alpha-amylase hydrolyses α-1,4 linkages in starch to maltose, which is 

then hydrolysed to glucose by an α-glucosidase. Amylase activity has been detected in 

the salivary glands of other phytophagous heteropterans (Zeng and Cohen, 2000; Boyd, 

2003). Thus, it is possible that aphids are capable of partially digesting starches before 

ingestion. In addition to serving as energy and carbon sources, sugars function as 

messengers in signal transduction (Rolland et al., 2002). Sucrose and trehalose are two 

sugars that are involved in signal transduction in plants. Trehalose is also the 

predominant hemolymph sugar in insects (Becker et al., 1996). Trehalose can be 

hydrolysed into two glucose molecules by trehalase. Putative secreted trehalase is present 

in the salivary glands of the pea aphid and may play a crucial role in breakdown of plant 

trehalose, thereby disrupting signal transduction in plant and thus can aphid feed 

continuously. 
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Recently in the social aphid, Tuberaphis styraci, cathepsin B protein was preferentially 

expressed in soldiers and was localized in the midgut of soldiers. It is injected (probably 

from gut) into the body of prey during attack (Kutsukake et al., 2004), although it is 

possible that enzyme is also synthesized in salivary glands. We have also identified a 

putative secreted protein encoding cathepsin B. In bird cherry-oat aphid, Rhopalosiphum 

padi, there were changes in the activity of glutathione-S-transferase and glutathione 

reductase, enzymes involved in detoxification of plant allelochemicals (Laskowska et al., 

1999). In most cases, the activities of these enzymes depend upon the composition of 

aphid’s diet, when fed on cereals, glutathione-S-transferase activity further increased and 

glutathione reductase activity decreased (Laskowska et al., 1999). We have identified 

putative secreted glutathione peroxidase and glutathione-S-transferase in the salivary 

glands of pea aphid. It is possible that these enzymes are involved in the detoxification of 

plant allelochemicals and thus may play a vital role in aphid feeding. 

 

In addition, one of our cluster is apparently a homolog of an 11 kDa salivary protein 

identified in our studies is also present in the salivary glands of sand fly, Lutzomyia 

longipalpis (Oliveira et al., 2006; Valenzuela et al., 2004). In the sand fly, 11 kDa protein 

encodes a novel protein. Its function has not been elucidated (Oliveira et al., 2006). We 

have also identified a putative carbonic anhydrase; carbonic anhydarse has been 

previously reported in the salivary glands of the cockroach, Periplaneta americana (Just 

and Walz, 1994). It functions by maintaining pH homeostasis in various tissues by 

catalyzing the hydration of CO2 and dehydration of bicarbonate (Kivela et al., 1999). It is 
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possible that the putative secreted carbonic anhydarse in aphid saliva may regulate pH of 

the sieve element. 

 

We have also identified 12 full-length putative secreted cDNAs encoding proteins with 

unknown functions. An abundant cluster, C002 was further characterized and RNAi 

studies show that C002 is important for survival and reproduction of the pea aphid (see 

Chapter 3 and 4). It is possible that these putative secreted proteins of unknown function 

may play similar important function in pea aphid performance on the host plant.    

 

Proteins including enzymes, identified in our study with putative secretion signals may 

constitute aphid saliva. Together these enzymes may play roles in aphid-plant interaction. 

This information derived from the large sequencing of ESTs from the salivary glands of 

pea aphid, A. pisum along with the avaliability of the pea aphid genome later this year 

will provide an indispensable tool to study the molecular basis of aphid-plant 

interactions. 
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Table 5. Classifications of 377 clusters based on BLASTX against UniProt database. 

Identification No. of Clusters 
Hypothetical / Unannotated proteins 72 
Ribosomal proteins 42 
ATPase complex/ATP binding proteins 27 
Polymerases (DNA / RNA) 20 
Cytochromes 16 
DNA binding proteins 15 
Proteases 14 
Metal ion binding proteins 14 
Mitochondrial proteins / enzymes of electron transport 14 
Group X 13 
Oxidoreductases 11 
Whole genome shotgun sequence (Tetraodon nigroviridis) 11 
Transcription factors 10 
Protein kinases 9 
Heat shock proteins 9 
Enzymes of carbohydrate metabolism 9 
Calcium binding proteins 9 
Other hydrolases 8 
Allatotropin 6 
Amino acid transporters / enzymes nitrogen of metabolism 7 
Enzymes of lipid metabolism 4 
Signal tranducers 3 
Pherophorin-C2 proteins (extension-like proteins) 3 
Actin binding proteins 3 
Enzymes of chitin metabolism 3 
Aquaporin 2 
Cuticle proteins (aphids and Bombyx mori) 2 
Ubiquitin protein ligase 2 
Apoptosis related proteins 2 
Viral proteins 2 
Plant enzyme 1 
Armet like protein 1 
Integrin 1 
Apolipophorin precursor protein 1 
Carbonic anhydrase 1 
Super cysteine rich protein  1 
Luciferin regenerating enzyme 1 
11 kDa salivary protein (sand fly) 1 
Anthranilate synthase 1 
Senescence associated protein 1 
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Ornithine decarboxylase inhibitor 1 
Odorant binding protein 1 
Glutathione-S-transferase 1 
S-adenosyl-L-methionine decarboxylases 1 
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Table 6. Classification of 72 clusters encoding “hypothetical proteins.” 

Cluster  Secreted Putative function Species Other insect 
species 

Contig 5 Yes Putative secreted 
salivary protein 

Ixodes 
scapularis 

Yes 

Contig 10 No mitochondrial 
phosphate carrier 
protein 

Drosophila 
melanogaster 

Yes 

Contig 11 No Der1-like domain 
family member 1 

Bombyx mori 
 

Yes 

Contig 18  No matches - No 
Contig 31 Possible 

cleavage 
b/w 22 & 

23 

Hypothetical protein Ixodes 
scapularis 
 

Yes 

Contig 37 Yes Hypothetical protein Apis mellifera Yes 
Contig 39 No integral membrane 

protein 2A 
Gallus gallus Yes 

Contig 55 No Hypothetical protein Tribolium 
castaneum 

Yes 

Contig 65 No Hypothetical protein Anopheles 
gambiae 

Yes 

Contig 97 No 18S ribosomal RNA A. pisum Yes 
Contig 108 No Ubiquitin Associated 

domain (Peptidase 
C19) 

Apis mellifera Yes 

Contig 130 No translation factor and 
RNA binding protein 

Drosophila 
melanogaster 

No 

Contig 145 No Hypothetical protein Tribolium 
castaneum 

No 

Contig 337 No Tetratricopeptide 
repeat domain 

Anopheles 
gambiae 

Yes 

Contig 363 No No matches - No 

Contig 431 No No matches - No 
Contig 461 No DNA-directed RNA-

polymerase II subunit 
Anopheles 
gambiae 

Yes 

Contig 483 No DNA repair protein Anopheles 
gambiae 

Yes 

A3_A09_t7_065 Possible 
cleavage 
b/w 33 & 

34 

FAR-17a/AIG1-like 
protein 

Drosophila 
melanogaster 
 

Yes 

A3_C02_t7_006 No Drosophila yakuba Drosophila 
melanogaster 

Yes 

 
A3_C09_t7_066 

No Low density 
lipoprotein receptor 

Drosophila 
melanogaster 

Yes 

A3_G03_t7_020 No Ribosomal protein S29 Apis mellifera Yes 
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AphidB1_A12_t7_085 No Adaptin N terminal 
region 

Anopheles 
gambiae 

Yes 

AphidB1_C07_t7_050 Yes Unknown function Tribolium 
castaneum 

Yes 

AphidB1_D08_t7_062 No Cytochrome c oxidase Bos Taurus No 
AphidB1_F01_t7_011 Yes Aldehyde 

dehydrogenase 
Homo sapiens Yes 

AphidB1_H02_t7_016 No Protein kinase C Anopheles 
gambiae 

Yes 

PlateI_D10 No Cytochrome b Anopheles 
gambiae 

Yes 

PlateI_F09 No E3 ubiquitin ligase Apis mellifera Yes 
PlateI_G01 No ADP-ribosylation 

factor 
Homo sapiens Only in 

Anopheles 
PlateKEP_C05 No hydroxypyruvate 

isomerase 
Homo sapiens Yes 

PlateKEP_G09 No TatD DNase domain Apis mellifera Yes 
PlateKEP_A07 No Bladder cancer-related 

protein BC10 
Anopheles 
gambiae 

Yes 

PlateKEP_C06 Yes Odorant binding 
protein 

Drosophila 
melanogaster 

Yes 

PlateKEP_A05 Possible 
cleavage 
b/w 17 & 

18 

Eukaryotic protein of 
unknown function 

Apis mellifera Yes 

PlateKEP_B04 No Protein of unknown 
function 

Drosophila 
melanogaster 

Yes 

PlateKEP_E09 No Ezrin/radixin/moesin 
family 

Anopheles 
gambiae 

Yes 

ID0AAH1DD03ZM1 No Sybindin-like family Tribolium 
castaneum 

Yes 

ID0AAH10CA01ZM1 No ribosome-associated 
membrane protein 

Bombyx mori 
 

Yes 

ID0AAH11DD09ZM1 No aphid secondary 
symbionts (Candidatus 
hamiltonella) 

A. pisum No 

ID0AAH11DG05ZM1 No DnaA from secondary 
symbiont 

Glossina 
morsitans 

No 

ID0AAH12AE10ZM1  Leucine-rich repeat 
(LRR) protein 

Anopheles 
gambiae 

Yes 

ID0AAH13CD06ZM2 No No matches - No 
ID0AAH14AA08ZM1 No Unknown function Mus musculus No 
ID0AAH14BA05ZM1 No No matches - No 
ID0AAH14BC12ZM1 No peroxisomal biogenesis 

factor 
Homo sapiens Yes 

ID0AAH14DE12ZM1 No Enhancer-of-zeste,    
(Trithorax) domain 

Apis mellifera Yes 

ID0AAH14DH11ZM1 No aphid secondary A. pisum No 
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symbionts (Candidatus 
hamiltonella) 

ID0AAH15CC04ZM1 No Cupin metalloenzyme 
superfamily 

Drosophila 
melanogaster 

Yes 

ID0AAH15DA03ZM1 No prefoldin beta subunit Bombyx mori Yes 
ID0AAH15DB03ZM1 No Bacteriophage 

lysis protein 
aphid 
secondary 
symbionts 
(Candidatus 
hamiltonella) 

No 

ID0AAH15DE02ZM1 No 18S Ribosomal protein A.pisum Yes 
ID0AAH15DG12ZM1 No Unknown function Drosophila 

melanogaster 
Yes 

ID0AAH2BH08ZM1 No Acid phosphatase Drosophila 
melanogaster 

Yes 

ID0AAH2CB01ZM1 No Predicted GTPase Anopheles 
gambiae 

Yes 

ID0AAH2CD04ZM1 No Uncharacterized 
conserved protein 
(Function unknown) 

Anopheles 
gambiae 

Yes 

ID0AAH2CG02ZM1 No Putative transcriptional 
repressor 

Anopheles 
gambiae 

Yes 

ID0AAH3DG05ZM1 No Unknown function Anopheles 
gambiae 

No 

ID0AAH4BE12ZM1 No Eukaryotic initiation 
factor 

Apis mellifera Yes 

ID0AAH5BB03ZM1 No Spectrin repeats, found 
in several proteins 
involved in 
cytoskeletal structure 

Apis mellifera Yes 

ID0AAH5CD01ZM1 No Unknown function Anopheles 
gambiae 

Yes 

ID0AAH6BF03ZM1 No ubiquitin processing 
protease 

Bos taurus 
 

No 

ID0AAH6BH08ZM1 No Protein of unknown 
function 

Anopheles 
gambiae 

Yes 

ID0AAH6CF02ZM1 No Cloning vector - No 
ID0AAH6CF09ZM1 No kettin-like protein Helicoverpa 

armigera 
Yes 

ID0AAH6CF10ZM1 No Protein of unknown 
function 

Anopheles 
gambiae 

Yes 

ID0AAH6DC03ZM1 No TBC1 domain family Anopheles 
gambiae 

Yes 

ID0AAH7BG10ZM1 No Protein of unknown 
function 

Anopheles 
gambiae 

Yes 

ID0AAH8AF04ZM1 No putative replication-
associated protein 

Glossina 
morsitans 

No 

ID0AAH8AG07ZM1 No RING3 protein Apis mellifera Yes 
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ID0AAH9AA10ZM1 No unknown function Anopheles 
gambiae 

Yes 

ID0AAH9CG08ZM1 No nuclear prelamin A 
recognition factor 

Homo sapiens No 

Group X: Miscellaneous clusters 
Contig332 Yes unknown function Aedes aegypti Yes 

AphidB1_D04_t7_030 Yes Rnp24-prov protein Apis mellifera Yes 

PlateKEP_D10 No Actin A. pisum Yes 

PlateKEP_D11 

Possible 

cleavageb/

w pos. 37 

and 38 Amino acid permease 

Anopheles 

gambiae Yes 

PlateKEP_H01 No Sugar  transporter 

Anopheles 

gambiae Yes 

ID0AAH1CD04ZM1 No No matches - - 

ID0AAH1CG07ZM1 No No matches - - 

ID0AAH10AB05ZM1 No No matches - - 

ID0AAH11AH05ZM1 Yes hypothetical protein 

Buchnera 

aphidicola - 

ID0AAH13AH01ZM2 Yes 

seven transmembrane 

receptor 

Drosophila 

melanogaster Yes 

ID0AAH2CE10ZM1 No No matches - - 

ID0AAH3DB05ZM1 Yes 

emp24/gp25L/p24 

family 

Anopheles 

gambiae Yes 

ID0AAH7BG10ZM1 No 

TMEM9 domain 

family 

Anopheles 

gambiae Yes 
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Table 7. Clusters with three or more sequences of known function. 

Cluster Length     Functional annotation using UniProt (BLASTX) # ESTs 

Contig 90 2014 

similar to Q8B107_9VIRU (Q8B107) Capsid protein 
(Fragment) (Eval: 0.0, Coding: 67%); GO:0005198 
structural molecule activity [MF]; GO:0019028 viral 
capsid [CC] 109 

Contig 33 1638 

similar to Q699N8_SCHGA (Q699N8) Cytochrome 
oxidase subunit I (Eval: e-171, Coding: 91%); 
GO:0004129 cytochrome-c oxidase activity [MF]; 
GO:0005739 mitochondrion [CC]; GO:0006118 
electron transport [BP]; GO:0016020 membrane 
[CC] 57 

Contig 405 1638 

similar to Q8B594_9VIRU (Q8B594) Nonstructural 
polyprotein (Eval: 0.0, Coding: 26%); GO:0003723 
RNA binding [MF]; GO:0003724 RNA helicase 
activity [MF]; GO:0003968 RNA-directed RNA 
polymerase activity [MF]; GO:0006350 transcription 
[BP]; GO:0019079 viral genome replication [BP] 43 

Contig 97 486 
similar to Q7RN92_PLAYO (Q7RN92) 
Hypothetical protein (Eval: 1e-05, Coding: 39%) 40 

Contig 18 1174 

similar to Q5TVN3_ANOGA (Q5TVN3) 
ENSANGP00000027660 (Fragment) (Eval: 5e-11, 
Coding: 23%) 35 

Contig 377 853 

similar to Q699N4_SCHGA (Q699N4) Cytochrome 
oxidase subunit III (Eval: 3e-58, Coding: 91%); 
GO:0004129 cytochrome-c oxidase activity [MF]; 
GO:0005739 mitochondrion [CC]; GO:0006118 
electron transport [BP]; GO:0016020 membrane 
[CC] 33 

Contig 329 920 

similar to Q9B7Q6_ACYPI (Q9B7Q6) ATP 
synthase A chain subunit 6 (Eval: 8e-36, Coding: 
100%); GO:0005739 mitochondrion [CC]; 
GO:0015992 proton transport [BP]; GO:0016020 
membrane [CC]; GO:0016469 proton-transporting 
two-sector ATPase complex [CC]; GO:0016820 
hydrolase activity, acting on acid anhydrides, 
catalyzing transmembrane movement of substances 
[MF] 20 

Contig 94 593 

similar to Q56FF3_9HYME (Q56FF3) Ribosomal 
protein S15A (Eval: 3e-63, Coding: 100%); 
GO:0003735 structural constituent of ribosome 
[MF]; GO:0005622 intracellular [CC]; GO:0005840 
ribosome [CC]; GO:0006412 protein biosynthesis 
[BP]; GO:0030529 ribonucleoprotein complex [CC] 18 

Contig 194 717 

similar to Q2QKX4_9HEMI (Q2QKX4) 
Cytochrome c oxidase subunit II (Eval: 1e-74, 
Coding: 97%); GO:0005739 mitochondrion [CC] 16 

Contig 138 215 

similar to Q5WPT4_LUTLO (Q5WPT4) 71 kDa 
salivary protein (Eval: 3e-16, Coding: 11%); 
GO:0004246 peptidyl-dipeptidase A activity [MF]; 
GO:0006508 proteolysis [BP]; GO:0016020 
membrane [CC] 15 
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Contig 5 1029 

similar to Q9VQA7_DROME (Q9VQA7) CG16995-
PA (Eval: 4e-26, Coding: 100%); GO:0005576 
extracellular region [CC] 14 

Contig 54 1647 

similar to Q6WMV9_DROEU (Q6WMV9) Glucose 
dehydrogenase (Fragment) (Eval: 2e-53, Coding: 
89%); GO:0006118 electron transport [BP]; 
GO:0016491 oxidoreductase activity [MF]; 
GO:0016614 oxidoreductase activity, acting on CH-
OH group of donors [MF]; GO:0050660 FAD 
binding [MF] 14 

Contig 4 1511 

similar to Q7QFX9_ANOGA (Q7QFX9) 
ENSANGP00000015052 (Fragment) (Eval: 3e-49, 
Coding: 64%); GO:0006066 alcohol metabolism 
[BP]; GO:0006118 electron transport [BP]; 
GO:0016491 oxidoreductase activity [MF]; 
GO:0016614 oxidoreductase activity, acting on CH-
OH group of donors [MF]; GO:0050660 FAD 
binding [MF] 13 

Contig 223 1431 

similar to Q3HTK5_CHLRE (Q3HTK5) 
Pherophorin-C2 protein precursor (Eval: 1e-08, 
Coding: 4%); GO:0005199 structural constituent of 
cell wall [MF] 13 

Contig 40 775 

similar to Q9LML5_ARATH (Q9LML5) F10K1.6 
protein (Eval: 3e-84, Coding: 30%); GO:0016788 
hydrolase activity, acting on ester bonds [MF] 11 

Contig 331 1123 

similar to Q9FEV2_ORYSA (Q9FEV2) Putative 
phospholipid hydroperoxide glutathione peroxidase 
(EC 1.11.1.9) (Eval: 7e-27, Coding: 100%); 
GO:0004601 peroxidase activity [MF]; GO:0004602 
glutathione peroxidase activity [MF]; GO:0004602 
glutathione peroxidase activity [MF]; GO:0006979 
response to oxidative stress [BP]; GO:0016491 
oxidoreductase activity [MF] 10 

Contig 257 583 

similar to Q699N4_SCHGA (Q699N4) Cytochrome 
oxidase subunit III (Eval: 1e-16, Coding: 44%); 
GO:0004129 cytochrome-c oxidase activity [MF]; 
GO:0005739 mitochondrion [CC]; GO:0006118 
electron transport [BP]; GO:0016020 membrane 
[CC] 10 

Contig 50 1724 

similar to APLP_LOCMI (Q9U943) Apolipophorins 
precursor [Contains: Apolipophorin-2 
(Apolipophorin II) (apoLp-2); Apolipophorin-1 
(Apolipophorin I) (apoLp-1)] (Eval: 8e-61, Coding: 
16%); GO:0005319 lipid transporter activity [MF]; 
GO:0006810 transport [BP]; GO:0006869 lipid 
transport [BP]; GO:0006869 lipid transport [BP]; 
GO:0008289 lipid binding [MF]; GO:0016055 Wnt 
receptor signaling pathway [BP] 8 

Contig 131 698 

similar to Q699M8_SCHGA (Q699M8) Cytochrome 
b (Eval: 3e-61, Coding: 61%); GO:0005506 iron ion 
binding [MF]; GO:0005739 mitochondrion [CC]; 
GO:0005746 mitochondrial electron transport chain 
[CC]; GO:0006118 electron transport [BP]; 
GO:0006118 electron transport [BP]; GO:0006810 8 
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transport [BP]; GO:0016020 membrane [CC]; 
GO:0016020 membrane [CC]; GO:0016021 integral 
to membrane [CC]; GO:0016491 oxidoreductase 
activity [MF]; GO:0046872 metal ion binding [MF] 

Contig 67 1314 

similar to Q7QGY7_ANOGA (Q7QGY7) 
ENSANGP00000012700 (Fragment) (Eval: 3e-79, 
Coding: 98%); GO:0005509 calcium ion binding 
[MF]; GO:0005509 calcium ion binding [MF] 7 

Contig 106 381 

similar to Q7Q0B4_ANOGA (Q7Q0B4) 
ENSANGP00000011194 (Fragment) (Eval: 7e-22, 
Coding: 7%); GO:0000166 nucleotide binding [MF]; 
GO:0004672 protein kinase activity [MF]; 
GO:0004674 protein serine/threonine kinase activity 
[MF]; GO:0004674 protein serine/threonine kinase 
activity [MF]; GO:0005524 ATP binding [MF]; 
GO:0005524 ATP binding [MF]; GO:0006468 
protein amino acid phosphorylation [BP]; 
GO:0016301 kinase activity [MF]; GO:0016740 
transferase activity [MF] 7 

Contig 68 897 

similar to Q7Z8K5_9APHY (Q7Z8K5) Manganese 
superoxide dismutase (Fragment) (Eval: 1e-05, 
Coding: 14%); GO:0004784 superoxide dismutase 
activity [MF]; GO:0006801 superoxide metabolism 
[BP]; GO:0016491 oxidoreductase activity [MF]; 
GO:0046872 metal ion binding [MF] 6 

Contig 167 462 

similar to Q8ITC5_AEQIR (Q8ITC5) Ribosomal 
protein L30 (Eval: 3e-43, Coding: 100%); 
GO:0003735 structural constituent of ribosome 
[MF]; GO:0005622 intracellular [CC]; GO:0005840 
ribosome [CC]; GO:0006412 protein biosynthesis 
[BP] 7 

Contig 108 640 
similar to Q9VSC5_DROME (Q9VSC5) CG8209-
PA (GM09977p) (Eval: 5e-18, Coding: 22%) 5 

Contig 130 434 
similar to Q803P1_BRARE (Q803P1) Zgc:55443 
(Eval: 4e-08, Coding: 28%) 5 

Contig 173 555 

similar to Q4RV41_TETNG (Q4RV41) 
Chromosome 15 SCAF14992, whole genome 
shotgun sequence. (Fragment) (Eval: 2e-08, Coding: 
100%) 4 

Contig 260 627 

similar to Q4LB03_BIPLU (Q4LB03) Ribosomal 
protein S24e (Eval: 1e-49, Coding: 100%); 
GO:0003735 structural constituent of ribosome 
[MF]; GO:0005622 intracellular [CC]; GO:0005840 
ribosome [CC]; GO:0006412 protein biosynthesis 
[BP] 4 

Contig 394 591 

similar to Q7Q7P4_ANOGA (Q7Q7P4) 
ENSANGP00000021586 (Eval: 6e-14, Coding: 
97%); GO:0015986 ATP synthesis coupled proton 
transport [BP]; GO:0016469 proton-transporting 
two-sector ATPase complex [CC]; GO:0046933 
hydrogen-transporting ATP synthase activity, 
rotational mechanism [MF]; GO:0046961 hydrogen-
transporting ATPase activity, rotational mechanism 
[MF] 4 
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Contig 409 281 

similar to PSF1_HUMAN (Q14691) DNA 
replication complex GINS protein PSF1 (Eval: 6e-
09, Coding: 27%); GO:0005634 nucleus [CC]; 
GO:0005634 nucleus [CC]; GO:0005737 cytoplasm 
[CC]; GO:0006260 DNA replication [BP] 4 

Contig 478 178 

similar to Q8B594_9VIRU (Q8B594) Nonstructural 
polyprotein (Eval: 6e-16, Coding: 2%); GO:0003723 
RNA binding [MF]; GO:0003724 RNA helicase 
activity [MF]; GO:0003968 RNA-directed RNA 
polymerase activity [MF]; GO:0006350 transcription 
[BP]; GO:0019079 viral genome replication [BP] 4 
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Table 8. Clusters with more than 2 sequences with unknown function. 

Cluster Length Secreted # ESTs ORF  
Contig 14 1385  236 - 
Contig 7 2236  134 690 
Contig 78 610 Full-length (secreted) cleavable site (19-20) 74 141 
Contig 181 719  72 - 

Contig 164 921 
May be secreted, possible cleavable site (27-
28) 49 

154 

Contig 32 1054 
C002,  Full-length (secreted) cleavable site 
(23-24) 46 

213 

Contig 140 1041  46 232 
Contig 9 1535 Full-length (secreted) cleavable site (27-28) 35 227 
Contig 34 1413 Full-length (secreted) cleavable site (28-29) 35 132 
Contig 6 1452  34 294 
Contig 86 2948  34 441 
Contig 356 762  26 - 
Contig 62 1627  21 402 
Contig 498 876 Full-length (secreted) cleavable site (23-24) 20 208 
Contig 122 1151 Full-length (secreted) cleavable site (19-20) 19 141 
Contig 283 635  19 128 
Contig 20 1178  17 267 
Contig 42 1481  16 492 
Contig 475 950  16 247 
Contig 462 821  16 64 
Contig 81 716  15 - 
Contig 235 1038  14 - 
Contig 422 360  14 - 
Contig 38 1319  13 271 
Contig 358 1302 Full-length (secreted) cleavable site (25-26) 13 263 
Contig 15 813  13 155 
Contig 258 577  13 78 
Contig 216 488  13 - 
Contig 159 952  12 178 
Contig 339 865  12 179 
Contig 300 445  11 148 
Contig 160 251  11 69 
Contig 73 138  11 - 
Contig 154 1865  10 - 
Contig 3 1336  10 344 
Contig 12 936  10 - 
Contig 470 731  10 - 
Contig 36 673  10 109 
Contig 171 623  10 67 
Contig 85 422  10 139 
Contig 349 417  10 - 
Contig 510 660  9 219 
Contig 275 645 Full-length (no signal peptide) 9  107 
Contig 308 565  9 - 
Contig 334 543  9 - 
Contig 186 189  9 - 
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Contig 240 155  9 51 
Contig 52 1044 Full-length (secreted) cleavable site (24-25) 8 228 
Contig 371 993  8 - 
Contig 211 601  8 - 
Contig 193 320  8 - 
Contig 444 172  8 57 
Contig 399 757  7 122 
Contig 176 682  7 - 
Contig 184 633  7 - 
Contig 357 622  7 - 
Contig 278 441  7 - 
Contig 445 247  7 82 
Contig 133 209  7 - 
Contig 69 954 Full-length (secreted) cleavable site (22-23) 6 249 
Contig 265 831  6 202 
Contig 212 749  6 152 
Contig 178 741  6 - 
Contig 429 638  6 109 
Contig 16 619  6 - 
Contig 515 613  6 - 
Contig 336 549  6 182 
Contig 203 492  6 163 
Contig 183 387  6 - 
Contig 198 339  6 - 
Contig 205 260  6 - 
Contig 424 242  6 - 
Contig 163 1217  5 - 
Contig 446 836  5 180 
Contig 61 700  5 - 
Contig 200 665 Full-length (secreted) cleavable site (26-27) 5 156 
Contig 125 642  5 180 
Contig 436 551  5 - 
Contig 366 516  5 - 
Contig 353 492 Secreted, cleavable site (26-27) 5 141 
Contig 241 490  5 - 
Contig 303 418  5 - 
Contig 208 404  5 - 
Contig 438 343  5 114 
Contig 248 250  5 - 
Contig 229 246  5 82 
Contig 413 241  5 - 
Contig 157 236  5 - 
Contig 128 168  5 - 
Contig 418 154  5 - 
Contig 43 1074  4 253 
Contig 149  934  4 200 
Contig 479 864  4 92 
Contig 22 811  4 82 
Contig 2 813  4 212 
Contig 96 745  4 - 
Contig 82 740  4 - 
Contig 53 714  4 155 
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Contig 296 671  4 - 
Contig 17 666  4 143 
Contig 344 661  4 - 
Contig 213  654  4 - 
Contig 262 619  4 - 
Contig 319 608  4 199 
Contig 44 605  4 201 
Contig 217 467  4 123 
Contig 417 424  4 - 
Contig 323 422  4 - 
Contig 134 408  4 - 
Contig 111 379  4 - 
Contig 136 377  4 78 
Contig 247 358  4 - 
Contig 218 356  4 - 
Contig 129  354  4 - 
Contig 448 353  4 - 
Contig 351 342  4 - 
Contig 118 320  4 - 
Contig 375 274  4 - 
Contig 249 261  4 - 
Contig 391 231  4 - 
Contig 443 218  4 - 
Contig 365 207  4 - 
Contig 282 206  4 - 
Contig 161 196  4 - 
Contig 511 195  4 - 
Contig 324 192  4 - 
Contig 414  179  4 - 
Contig 397 176  4 - 
Contig 280  169  4 - 
Contig 166 160  4 - 
Contig 110 151  4 - 
Contig 529 1099  3 - 
Contig 306 901  3 - 
Contig 251 823  3 - 
Contig 19 756  3 - 
Contig 520 719  3 - 
Contig 255 707  3 - 
Contig 335 693  3 - 
Contig 307 684  3 - 
Contig 408 676  3 - 
Contig 148 672  3 - 
Contig 121 668  3 - 
Contig 13 665  3 137 
Contig 383 656  3 - 
Contig 153 653  3 - 
Contig 124 640 Secreted, cleavable site (23-24) 3 124 
Contig 180 638  3 - 
Contig 256 617  3 154 
Contig 254 610  3 - 
Contig 269 584  3 - 
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Contig 284 578  3 119 
Contig 204 561  3 - 
Contig 263 552  3 - 
Contig 372  544  3 - 
Contig 458 509  3 108 
Contig 192 505  3 - 
Contig 139 501  3 - 
Contig 210 488  3 - 
Contig 76 482  3 - 
Contig 132 472  3 - 
Contig 385 468  3 - 
Contig 355 463  3 - 
Contig 126 454  3 - 
Contig 233 440  3 - 
Contig 309 426  3 - 
Contig 158 416  3 - 
Contig 177  414  3 109 
Contig 84 409  3 69 
Contig 273 407  3 - 
Contig 103 399  3 - 
Contig 271 395  3 - 
Contig 150 386  3 - 
Contig 250 372  3 - 
Contig 313 334  3 - 
Contig 419 333  3 - 
Contig 295 320  3 - 
Contig 361 313  3 - 
Contig 352  311  3 - 
Contig 435 311  3 - 
Contig 185 304  3 - 
Contig 314 298  3 - 
Contig 514 294  3 - 
Contig 496 290  3 - 
Contig 406 281  3 - 
Contig 318 278  3 - 
Contig 484  270  3 - 
Contig 195 245  3 - 
Contig 197 232  3 - 
Contig 364  229  3 - 
Contig 322 224  3 - 
Contig 362 223  3 - 
Contig 302 215  3 - 
Contig 343 210   3 - 
Contig 467 209  3 - 
Contig 503 199  3 - 
Contig 398  192  3 - 
Contig 387 190  3 - 
Contig 77 168  3 - 
Contig 79 168  3 - 
Contig 127 155  3 - 
Contig 370 145  3 - 
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Table 9. Functional annotation of proteases and other hydrolases. 

Clustera Functional 

annotationb 

Organismc Secretedd ORFe

Proteases 
Contig 46 Subtilisin- related 

protease 
Apis mellifera - 140 

Contig 57 Angiotensin-converting 
enzyme 

Bombyx mori Yes 150 

Contig 209 Peptidase M1 Drosophila 
melanogaster 

Yes 63 

Contig 360 Angiotensin-converting 
enzyme 

Apis mellifera Yes 147 

PlateA3_G10 Cathepsin L Apis gossypii Yes 130 
PlateKEP_G10 Cathepsin B Myzus persicae Yes 150 
PlateKEP_A11 NTPase Drosophila 

melanogaster 
- 149 

PlateKEP_B07 Proteasome subunit Drosophila 
melanogaster 

- 180 

ID0AAH12DB08ZM1 Ubiquitin specific 
protease 

Candida 
albicans 

- - 

ID0AAH15AH08ZM1 Signal peptidase Gallus gallus - - 
ID0AAH15CF12ZM1 Angiotensin-converting 

enzyme 
Locusta 
migratoria 

Yes 56 

ID0AAH3DD05ZM1 Endoprotease FURIN Drosophila 
melanogaster 

Yes 118 

ID0AAH4BD04ZM1 Ubiquitin specific 
protease 

Danio rerio - - 

ID0AAH7AD10ZM1 Signalosome complex Danio rerio - 177 
Other hydrolases 
Contig 40 Phosphoesterase 

(hydrolase) 
Arabidopsis 
thialiana 

Yes 165 

Contig 266 Carbon-nitrogen 
hydrolase 

Anopheles 
gambiae 

- 120 

Contig 398 Prolyl-4-hydroxylase Drosophila 

melanogaster 

- 113 

PlateKEP_A06 Fructose 1-6, 
bisphosphatase 

Drosophila 
melanogaster 

- 147 

PlateKEP_H08 Alpha-glucosidase Apis mellifera Yes 100 
AphidB1_G05 Trehalase Apis mellifera Yes 167 
ID0AAH11DE05ZM1 Prolyl 4-hydroxylase 

alpha subunit 
Apis mellifera - 159 

ID0AAH9BB06ZM1 S-adenosyl 
homocysteine 
hydrolase 

Apis mellifera - 129 
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a Cluster (comprising contig and singlets) in pea aphid salivary database. 
b Functional annotation based to top hit at NR database at NCBI. 
c Top match at NR database using TBLASTX. 
d SignalP analysis using full-length homolog of pea aphid cluster. 
e ORF represent number of amino acid residues in pea aphid cluster. 
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Table 10. Functional annotation of oxidoreductases. 

Clustera Functional 

annotationb 

Organismc Secretedd ORFe

Contig 40 Glucose 

dehydrogenase 

Apis mellifera Yes 503 

Contig 54 Glucose 

dehydrogenase 

Anopheles gambiae Yes 375 

Contig 331 Glutathione peroxidase Aedes aegypti Yes 259 

AphidB1_F01 Aldehyde 

dehyrogenase 

Apis mellifera - 167 

PlateI_D06 Thioredoxin 

peroxidase 

Toxoptera citricida - 254 

PlateKEP_C04 Phosphoglycerate 

dehydrogenase 

Mus musculus - - 

PlateKEP_D04 Peroxiredoxin-like 

protein 

Aedes aegypti - 202 

PlateKEP_G03 Dimethylaniline 

monooxygenase 

Aedes aegypti - 171 

PlateKEP_B09 Superoxide dismutase Gryllotalpa orientalis - 94 

ID0AAH2DE03ZM1 Peroxidase Aedes aegypti Yes 219 

ID0AAH6CC11ZM1 Peroxidase Aedes aegypti Yes 140 

 
a Cluster (comprising contig and singlets) in pea aphid salivary database. 
b Functional annotation based to top hit at NR database at NCBI. 
c Top match at NR database using TBLASTX. 
d SignalP analysis using full-length homolog of pea aphid cluster. 
e ORF represent number of amino acid residues in pea aphid cluster. 
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Abstract 

Salivary secretions are a key component of aphid-plant interactions. Aphid salivary 

proteins interact with plant tissues, enabling aphids to gain access to phloem sap and 

possibly eliciting responses which may benefit the insect. In an effort to isolate and 

identify key components in salivary secretions, we created a salivary gland cDNA library. 

Several thousand randomly selected cDNA clones were sequenced as described in 

Chapter 2. The transcript corresponding to an abundant cDNA (called C002), was 

characterized. Based on in situ hybridization and immunohistochemistry, transcript as 

well as protein was localized to the same sub-set of cells within principal salivary glands. 

The encoded protein fails to match any protein of known function and any sequence 

outside of the family Aphididae. The protein encodes a secreted protein and is injected 

into the host plant during aphid feeding. RNAi directed toward the C002 transcript had 

no affect on growth and development on liquid diet, though, as shown in the next chapter 

it causes lethality when aphids are placed on fava bean leaves.  

  

 



 98

Introduction 

Aphid saliva plays a major role in the interaction of aphids and host plants (Miles, 1999). 

Although, aphid-plant interactions have been studied extensively, not much is known at 

the molecular level. The availability of aphid saliva in small quantities makes the direct 

study of salivary components difficult (Miles, 1965; Madhusudhan et al., 1994; Miles and 

Harrewijn, 1991). The proteins of aphid saliva are of two types, structural and enzymatic. 

The structural proteins provide a tube-like sheath (Miles 1999; Cherqui and Tjallingi 

2000) and are probably few in number corresponding to major bands on gels, with 

estimated molecular masses of 154 kDa and 66/69 kDa (Cherqui and Tjallingi 2000). 

Limited N-terminal sequence information is available on these bands (Baumann and 

Baumann 1995). The secreted salivary enzymes fall into two broad categories: hydrolases 

(pectinases, cellulases, oligosaccharases) and oxidation/reduction enzymes (phenol 

oxidase (E.C. 1.14.18.1) and peroxidases) (Miles 1999). The role of these enzymes 

during aphid attack on plants is not well-understood.  

 

Aphid saliva is believed to perform multiple functions; including creation of the stylet 

sheath, assisting the penetration of substrate for food (by the action of pectinases, 

cellulases, β-glucosidases etc), digesting nutrients (polysaccharases), detoxification of 

phenolic glycosides ingested during feeding by the action of polyphenol oxidases or 

peroxidases (oxidation-reduction enzymes), and suppression of host defenses or 

elicitation of host responses (Miles, 1972; Miles, 1987; Urbanska et al., 1998; Miles, 

1999). Aphid saliva may also play a role in the ability of aphids to counter resistance 
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factors in plants, since some species or biotypes of aphids can feed on plants that are 

resistant to other species or biotypes (Miles, 1999). 

 

We have undertaken a functional genomics approach to identify components of aphid 

saliva. We have chosen to do this work with pea aphid, A. pisum, because of its large size 

(compared with other aphid species), thus making dissections of salivary glands less 

difficult. In this paper, we report cloning of an abundant cDNA (C002) from a cDNA 

library of pea aphid salivary glands. The cDNA encodes a protein that fails to match to 

proteins outside of aphids, is of an unknown function, but appears to be vital to pea aphid 

feeding on plant tissue. 

  

Material and Methods 

 

Plants and Aphids 

Aphids were originally collected from alfalfa plants in the summer of 1999 by Dr. Marina 

Caillaud at Cornell University. Thereafter, the aphids were reared at KSU on fava beans 

(Vicia fabae) grown in pots (10 cm diameter) at room temperature under high intensity 

sodium lights with a L:D of 16:8. Salivary glands from adult aphids were dissected and 

separated from the brain tissue overlaying the glands. Dissected glands were transferred 

to 50µl of PBS (137mM NaCl, 2,7mM KCl, 10mM Na2HPO4, 1.8mM KH2PO4; pH 7.4) 

for 50 paired glands and washed 3 times in PBS to get rid of hemocytes. Salivary glands 

were kept at –75oC until needed. 
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Phagmid cDNA Library Construction and Sequencing 

Total RNA was isolated from 250 salivary glands using the Micro RNA isolation kit from 

Stratagene, La Jolla, CA. The PCR-based cDNA library was made following instructions 

with the SMART cDNA library construction kit (Clontech, Palo Alto, CA). Total RNA 

was reverse transcribed using PowerScript reverse transcriptase and CDS III primer 

provided in the kit. Second strand synthesis was performed through the PCR-based 

protocol using SMART III and CDS III primers from Clontech. Double strand synthesis 

was followed by proteinase K digestion. Double strand cDNA was ligated into a Lambda 

TriplEx2 vector (Clontech, Palo Alto, CA), and the resulting ligation reaction was 

packaged using Gigapack Gold III from Stratagene following the manufacturer’s 

specifications. 

 

Sequencing of the cDNA clones was done either at the Kansas State University 

sequencing facility or at Genoscope, France. Vector stripped sequences were blasted 

against the Gen Bank non redundant protein database from the National Center for 

Biotechnology Information using TBLASTX. cDNAs were analyzed for signal peptide 

and cleavage information using SignalP 3.0 Server (Nelson et al., 1997) using default 

parameters (http://www.cbs.dtu.dk/services/SignalP/). 

 

RNA Isolation and RT-PCR 

Total RNA was isolated from salivary glands, guts or adult aphids using TRI reagent 

(Molecular Research Center, Inc. Cincinnati, OH) following the procedure provided by 

the manufacturer. For RT-PCR, total RNA was treated with DNaseI (Ambion, Austin, 
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TX)) following standard instructions. AMV reverse transcriptase was used along with 

oligoDT primers to synthesize single-stranded cDNA following procedure from Promega 

technical Bulletin no. 099. PCR was done using 5’ -- CCA GTG CGA TAG CGA TAA 

TTT ACA AC -- 3’ and  5’ -- CAC CTC TCT TAT GAT GAA CGC CAA C -- 3’ for 

C002 forward and reverse primers, respectively, giving a final product of 397 base pairs, 

and using 5’ -- CCG AAA AGC TGT CAT AAT GAA GAC C -- 3’ and 5’ -- GGT GAA 

ACC TTG TCT ACT GTT ACA TCT TG -- 3’ for ribosomal protein L27 forward and 

reverse, primers, respectively, giving a final product of 231 base pairs. 

 

RNA Isolation and Northern Blotting 

Total RNA was extracted from adult aphids using TRI reagent (Molecular Research 

Center, Inc. Cincinnati, OH). Total RNA (10 µg) was separated on a 1.2% agarose gel 

containing formaldehyde and blotted on to GeneScreen membrane (Perkin Elmer, 

Beltsville, MD). The RNA was fixed onto the membrane using UV-light. [32P]-labeled 

RNA probes generated using a random labeling kit from Stratagene (La Jolla, CA). 

Hybridization was carried out overnight at 420C in a hybridization bottle containing a 

15 ml hybridization solution (10% dextran sulphate/1% SDS/1 m NaCl, pH 8.0). After 

hybridization, the membranes were washed twice with 2X SSC at room temperature for 

30 min, followed by 2 washes with 2X SSC plus 1% SDS at 650C for 30 min, and finally 

2 washes with 0.1X SSC plus 1% SDS at room temperature for 30 min. The membranes 

were then exposed to Kodak SR-5 X-ray film. 
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Genomic DNA Isolation and Southern Blotting 

DNA was extracted from adult aphids following the procedure of Bender et al. (1983). 

Southern blotting was carried out according to the protocol of Shen et al (2003) with 

minor modifications. The genomic DNA (10 µg) was digested with various restriction 

enzymes, separated by agarose gel electrophoresis, and then transferred and cross-linked 

to a GeneScreen membrane (Perkin Elmer, Beltsville, MD). The membrane was treated 

with hybridization solution (25 mM phosphate buffer (pH 7.0), 5X SSC, 5X Denhardt's 

solution, 50 µg/ml salmon sperm DNA, 50 % formamide) at 42° C for 2 h. The cDNA 

was [32P]-labeled using random labeling kit from Stratagene (La Jolla, CA) and, after 

boiling for 5 min, was added immediately to the hybridization solution. The membrane 

was hybridized for 15 h at 42° C. Following hybridization the membrane was washed 

twice for 10 min in 2X SSC and 0.1 % SDS at room temperature and once for 30 min in 

0.1X SSC and 0.5 % SDS at 37° C. Finally, the membrane was washed in 0.1X SSC and 

0.5 % SDS at 68° C for 30 min and then was exposed to Kodak SR-5 X-ray film. 

 

In situ Hybridization 

Whole mount in situ hybridization of salivary glands of the pea aphid was done with 

RNA digoxigenin-labeled probe. Salivary gland were dissected in PBS and fixed in 4% 

paraformaldehyde in PBS for 1 hr at room temperature. All experimental procedures 

were performed in a humidified chamber. After fixing, salivary glands were washed 3 

times at 10 min interval in PBST (1X PBS and 0.6% Triton-X) at room temperature. 

Thereafter tissues were sequentially dehydrated for 2 min with 50%, 75%, and 100% 

ethanol, respectively. Again, salivary glands were sequentially rehydrated for 2 min with 
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100%, 75%, and 50% ethanol. Prehybridization was performed without probe in  

hybridization solution (5XSSC, 2% blocking reagent, 0.1% N-lauroylsarcosine, 0.02% 

SDS, and 50% formamide) at 600C for 1 h. Salivary glands were hybridized with 

digoxigenin-labeled single-strand sense or antisense RNA probes (100ng/ml) in 

hybridization solution at 600C for 16-18 h. Sense probe was used as negative control. The 

DIG-labeled RNA probes were prepared with the DIG RNA Labeling Kit (Roche 

Molecular Biochemicals). A 397-bp fragment of clone C002 was amplified by PCR and 

subcloned into a pGEM-T Easy vector and was used as a template to generate RNA 

probes. Right insertion was confirmed by EcoR1 digestion and insertion direction was 

determined by PCR. This plasmid was linearized with SpeI and ApaI and transcribed with 

SP6 RNA polymerase and T7 RNA polymerase to generate antisense and sense probes, 

respectively. After hybridization, glands were washed with hybridization solution at 550C 

for 2-4 h followed by 3 washes at 10 min interval with PBST. Salivary glands were then 

incubated with alkaline phosphatase conjugated anti-DIG antibody (1:300 dilution in 

PBST) for over night at 40C.  The salivary glands were then washed in PBST, followed 

by 3 washes in detection buffer (Roche Molecular Biochemicals). Finally the salivary 

glands were stained by adding nitroblue tetrazolium salt/5-bromo-4-chloro-3-indoyl 

phosphate (NBT/BCIP, 1:50 dilution in detection buffer). Staining was monitored in a 

dissection microscope. Color reaction was stopped by repeated washes with PBS and 

mounted in 100% glycerol. Photographs were taken using digital camera attached to the 

compound microscope (Nikon Eclipse E800).   
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Expression of Recombinant Protein in E. coli for Antibody Preparation 

A cDNA encoding a full-length C002 was amplified by PCR. We used a forward primer 

5'--TAG CTG TAG CCA TGG AAG TTA GAT GCG--3' containing an NcoI site and a 

reverse primer 5'--GTA TGG ACA AGC TTA TTA AAA ACG TCG--3' containing a 

HindIII site. The resulting DNA encoded residues 1-196 of the mature protein. The PCR 

product (632 bp) was ligated into a pGEM-T easy vector and used to transform E. coli 

strain JM109. LB/ampicillin/IPTG/X-Gal (100 µg/mL ampicillin, 0.5mM IPTG, 80 

µg/mL X-Gal) plates were used to grow transformed bacteria. Resulting white colonies 

were selected for DNA sequencing. The PCR product was excised from the vector by 

digestion with NcoI and HindIII and purified by low melting point agarose gel 

electrophoresis, ligated into vector H6pQE60 (Lee et al., 1994), and then used to transform 

E.coli strain JM109. JM109 cells were spread on an LB agar plate containing ampicillin. 

Correct insertion for C002 was confirmed sequencing. A single colony from the plate was 

used to inoculate 3 mL 2xYT medium containing 100 µg/mL ampicillin. Culture was 

shaken at 300 rpm, 37oC overnight. The 3 mL overnight culture was then used to 

inoculate 200 mL 2 x YT medium with ampicillin and still incubated at 300 rpm, 37oC 

until A600 was ~ 0.7. Recombinant protein expression was then induced by adding IPTG 

to 1 mM final concentration, and culture was incubated for another five hours. Bacteria 

were harvested by centrifuging at 5,000 rpm, 20 min at 4oC and then resuspended in 4 

mL lysis buffer (8 M urea; 0.1 M NaH2PO4; 0.01 M Tris.Cl, pH 8.0). A 5 µL sample was 

reserved for western blot analysis. The bacteria were incubated on ice for 30 min with 

Triton X-100 at a final concentration of 2% and lysozyme to a final concentration of 

1mg/mL and then sonicated on ice (6x10 sec bursts at 200 Watts, with 1 min interval 
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between bursts). The lysates were centrifuged at 12,000 rpm for 20 min at 4oC. 

Supernatants and pellets were saved and 5 µl of each sample was used for western blot 

analysis.  

 

Recombinant protein expressed from a total of 2 l. medium was purified under  

denaturing conditions by affinity chromatography with nickel-nitrilotriacetic acid (Ni-

NTA) resin (Qiagen, Valencia, CA). The protein was concentrated with an YM-10 

centricon (Millipore, Bedford, MA) to 400 µL, mixed with 2 x SDS loading buffer, 

separated by electrophoresis in a 12.5% acrylamide gel (ISC Bioexpress, Kaysville, UT) 

and stained with 0.025% Commassie blue R-250 in water. Then the protein band 

(approximately 600 µg) was cut out and sliced into pieces for injection into rabbit to 

generate antisera (Cocalico Biologicals, Reamstown, PA). 

 

Western Blotting 

Polyclonal rabbit antibodies were purified by immobilizing recombinant protein (C002) 

to matrix composed of cross-linked 4% beaded agarose activated to form aldehyde 

functional groups using AminoLink Plus Immobilization Kit (Pierce, Rockford, IL) 

following manufacturer’s instructions. For western blot, approximately 500 hundred pea 

aphids were placed on fresh fava bean plants and all the aphids were removed after 24 h. 

1.5 g of plants tissue was homogenized in PBS on liquid nitrogen. Frequent freeze-thaw 

cycles were used for complete extraction, and the extract was centrifuged at 12,000 xg for 

5 min. About 2 ml of supernatant was concentrated to 200 µl using YM3 microcon 

centrifugal filter devices (Millipore, Bedford, MA) and were also filtered through YM50 



 106

microcon centrifugal filter devices (Millipore, Bedford, MA) to get rid of contaminating 

large protein. 6X SDS-PAGE sample buffer was added to concentrate and subjected to 

SDS-PAGE on 4-20% gradient gels (ISC Bioexpress, Kaysville, UT) and then transferred 

onto PVDF membrane.  Non-specific protein binding sites were blocked with 5% instant 

non-fat dry milk (BestChoice®) and membranes were incubated with purified polyclonal 

antibody (1:200) overnight followed by extensive washing for 3 h with frequent changes 

of 1xPBST.  The antigen-antibody complexes were visualized with horse radish 

peroxidase-conjugated goat anti-rabbit IgG (Pierce, Rockford, IL) at a dilution of 

1:15,000 and detected with SuperSignal West Femto maximum sensitivity substrate kit 

(Pierce, Rockford, IL) on X-ray film. 

 

 

Immunohistochemistry 

Pea aphid salivary glands were dissected in 1X PBS and washed three times in  PBST 

(137mM NaCl, 2.7mM KCl, 10mM Na2HPo4, 1.8mM KH2Po4, 0.1% Triton-X100; pH 

7.4).  Thereafter, salivary glands were fixed in Bouin (71% saturated picric acid, 24% 

formaldehyde (37-40%) and 5% glacial acetic acid) for 10 min at room temperature in a 

humified chamber. Salivary glands were washed extensively with PBST and incubated 

with primary antibody (raised in rabbit against recombinant C002 expressed in E. coli) at 

1:100 dilution overnight at 4oC. Following morning salivary glands were washed 3 times 

at 15 min interval with PBST and were blocked with 5% normal goat serum in PBST for 

one hour and then washed 3 times at 15 min interval with PBST and followed by 

incubation with secondary antibody Cy-3 conjugated goat anti-rabbit (Jackson Immuno 
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Research Laboratories, West Grove, PA) at 1:500 dilution overnight at 4oC.  Salivary 

glands were washed extensively with PBST at 15 min interval. Nuclei staining was done 

using TO-PRO-3 (Molecular probes, Invitrogen, CA) at 5µm conc. for 30 min in dark at 

room temperature. Glands were washed extensively with PBST and mounted on 

mounting media (Gel/MountTM; Biomeda corp., Foster city, CA) on a glass slide.  

Photographs were taken using Nikon Zeiss LSM 5 Pascal (Laser Scanning Confocal 

Microscope). 

 

Preparation of dsRNA, siRNA and siRNA Injections 

The detailed procedure is described Chapter 4. Injected aphids were placed on artificial 

aphid diet (Mittler and Dadd, 1965). 

 

Results 

 

The C002 Transcript and Protein 

C002 is an abundant cDNA in our salivary gland cDNA library from the pea aphid. The 

C002 cDNA and its predicted amino acid sequence are shown in Fig. 4a. The predicted 

protein contains 219 amino acid residues. The N-terminal sequence of the protein was 

predicted by SignalP to be a signal peptide for an  extracellular protein, 

(http://www.cbs.dtu.dk/services/SignalP/), with cleavage predicted between residues 23 

and 24. The predicted mass of the mature protein is 21.8 kDa. There are no potential O-

glycosylation sites (http://www.cbs.dtu.dk/services/NetOGlyc/) or N-glycosylation sites 

(http://www.cbs.dtu.dk/services/NetNGlyc/).  
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Alignment of all 46 cDNA sequences reveals two forms of the transcript differing at 4 

positions resulting in 4 amino-acid substitutions as shown in Fig. 4b. There are 22 cDNA 

clones representing the C002a isoform and 24 cDNA clones representing the C002b 

isoform. These can be either variants or alleles of the same gene, or can be two separate 

genes. The encoded protein fails to match anything of known function and to any other 

sequence outside of the family Aphididae. BLAST search against EST-database aligns 

the pea aphid, C002 with its homologs from other aphid species. ClustalW alignment of 

the pea aphid C002, with the sequences from brown citrus aphid, Toxoptera citricida, 

cotton aphid, Aphis gossypii, green peach aphid, Myzus persicae and Russian wheat 

aphid, Diuraphis noxia is shown in Fig. 5a. The signal cleavage site in all three proteins 

is conserved. Brown citrus aphid, cotton aphid and green peach aphid sequences are not 

full-length. The pea aphid, C002 and brown citrus aphid sequences are 63.8% identical 

and the pea aphid C002 and cotton aphid sequences are 58.8 % identical. The pea aphid, 

C002 and green peach aphid sequence are 71.5% identical. The pea aphid, C002 and 

Russian wheat aphid sequences are 53.8% identical. The highest level of sequence 

similarity pea aphid C002 is to green peach aphid sequences, as reflected in the 

phylogram in Figure 5b. 

 

In addition BLAST searches using three different short conserved regions taken from the 

alignments of all aphid C002 sequences had a top match to a hypothetical protein. This 

approach also failed to match a conserved region of C002 protein to a putative conserved 

domain in other known proteins. 
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Expression of C002 in the Salivary Gland and Gut 

To determine the transcript levels in salivary gland and gut of the pea aphid, RT-PCR 

was conducted. As shown in Fig. 6a, the levels of C002 after 35 cycles, is significantly 

higher in the salivary gland than gut of the pea aphid. Equal amounts of RNA were 

loaded as shown as L27, which serves as internal RNA control. Transcript from salivary 

glands can be seen on an agarose gel only after 20 cycles of PCR whereas it takes 28 

cycles of PCR for band to appear in gut RT-PCR. The C002 transcript is 256 times more 

abundant in salivary glands than in guts of the pea aphid. 

 

RT-PCR on RNA isolated from various aphid species; greenbug (Schizaphis graminum), 

green peach aphid (M. persicae), Russian wheat aphid (D. noxia), and soybean aphid 

(Aphis glycine) using the primers from the pea aphid C002, amplified the fragment of 

397bp in all the species as was expected for the pea aphid C002 transcript (Fig. 6b).  

 

Northern and Southern Blot Analyses 

Northern blot analysis of total pea aphid RNA using full-length C002 probe revealed a 

single band of 1126 bases (Fig. 7a). In Southern analysis using multiple enzymes that 

don’t cut within entire length of C002 clone, we observed a single band, consistent with 

one gene (or locus) for pea aphid C002 (Fig. 7b Lanes 1, 2, 3 and 4). The size of the band 

seen in EcoRV digest is about 1.2 kb (Lane 3, Fig. 7b) is almost same as the transcript 

size of C002 based on northern blot (Fig. 7a). The possibility that there may be two genes 

is eliminated. Thus, two isoforms C002a and C002b are alleles of the same gene. 
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In situ Hybridization 

The pea aphid salivary glands were probed with digoxygenin-labeled C002 RNA (anti-

sense) revealed that the C002 transcript occurred in the principal salivary glands (Fig 8a 

and b). There was no hybridization to the accessory salivary glands. Within principal 

salivary glands only a sub-set of cells were positively stained for C002 transcript. The 

negative control (with a sense probe) showed no hybridization to RNA within salivary 

glands (Fig. 8c and d). 

 

Immunohistochemistry 

Recombinant C002 was expressed in E. coli and was purified using Ni-NTA resin under 

denaturing conditions. This purified protein (as a gel band) was used to raise antibodies 

in rabbit. Rabbit polyclonal antibodies were used to localize C002 protein in the salivary 

glands of pea aphid (Fig. 9a). No staining of the accessory salivary gland was observed. 

This is consistent with the in situ hybridization results shown in Fig. 8. Nuclei staining 

with TO-PRO-3 followed by analysis of different z-sections taken by confocal 

microscope show 10 cells in each principal lobe (5 on each side, as the principal salivary 

gland is symmetrical) stained positive for C002 protein. Under higher magnification, 

C002 protein appeared to be located in secretory vesicles (Fig. 9b). Pre-immune serum 

was used as a negative control and showed no significant labeling in the salivary glands 

(Fig. 9c). 
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Western Blotting 

In odder to verify that C002 is indeed a secreted protein, western blot analysis using 

purified C002 antibodies was done. Approximately five hundred pea aphids were placed 

on fresh fava bean plants and after 24 h of feeding, aphids were removed from plants. 

Leaf tissue was extracted and western blot was done to probe for C002 protein using 

purified polyclonal rabbit antibodies. C002 protein was detected in the plants that were 

exposed to aphids and was not detected in plants not exposed to aphids (Fig. 10a, lane 2 

versus lane 3). Recombinant protein is shown in Lane 1 (Fig. 10a). This verifies the fact 

that C002 protein is a secreted protein. It is part of pea aphid saliva and is injected into 

the host-plant during feeding. Further as positive control, C002 protein was also detected 

from protein extracts from 5 pea aphid heads and 5 salivary glands (Fig. 10a, lanes 4 and 

5 respectively). In addition there was an additional band of about 75 kDa detected in all 

lanes (expect the salivary gland extract), this band was also detected in negative control 

with pre-immune rabbit serum in plant extracts with and without aphid feeding (Fig. 

10b). Nothing was detected on X-ray film in a western blot with 20 antibody only. 

 

Effects of RNAi on Feeding on Artificial Diet 

We injected siC002-RNA and the injected pea aphids were placed onto artificial diet 

(Mittler and Dadd, 1965) and allowed to feed across stretched parafilm membrane. 

siC002-RNA injected aphids had comparable survival when compared to siGFP-RNA 

injected aphids (Fig. 11). Over 70% of siC002-RNA injected aphids survived to day 7. 

After day 7, aphids still alive were removed from diet and placed onto fava bean leaves in 
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agar. Over 70% of siC002-RNA injected aphids died within 2 days on leaves compared 

to less that 25% for siGFP-RNA injected aphids (Fig. 11).  

 

Discussion 

Physiological and biochemical studies have established the importance of salivary 

secretions in the attack of aphids on plant tissue (Miles, 1999). Although aphid-plant 

interactions have been studied extensively, not much is known at the molecular level. The 

availability of aphid saliva in small quantities makes the direct study of salivary 

components difficult (Miles, 1965; Madhusudhan et al., 1994; Miles and Harrewijn, 

1991). 

 

In this work, a functional genomics approach was undertaken to identify components of 

aphid saliva. Several thousand randomly selected cDNA clones from a pea aphid salivary 

gland cDNA library were sequenced. cDNA were arranged into clusters of identical 

sequences. A cluster representing 46 clones (C002) was characterized. The encoded 

protein does not match any protein of known function. The encoded protein has a mass of 

21.8 kDa and has a predicted secretion signal peptide, suggesting that it is a secreted 

protein.  

 

The gene encoding C002 is apparently a single copy in the pea aphid genome based on 

southern blot analysis (Fig. 7b). Thus the two forms of C002 are two different alleles of 

the same gene. This heterozygosity could reflect the heterogeneity of the aphid colony 

used for library construction. Alternatively, this could also reflect a permanent 
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heterozygosity in individuals of this colony. Considering the fact that the ratio for the two 

alleles is 1 to 1 (22:24 respectively) and there has been no sexual reproduction in the 

colony, it is more likely that the two forms coexist in individual aphids rather than an 

equal distribution of alleles within the population. Also if one allele had a fitness 

advantage over a second allele, then the second allele would have been lost in the 

population. Thus it is highly likely that both alleles are present in individual aphids and 

thus the alleles appear to coexist with stable equilibrium. This would be due to balancing 

selection, where the heterozygote has the highest fitness. This is very different than from 

the ultimate result of random genetic drift, which would be fixation of one allele and the 

loss of all others, which would happen unless there is constant input of alleles into the 

population by processes such as mutation or migration. These can be ruled out, as our 

colony has been maintained for 7 years from initial population collected, there has been 

no migration into the colony, and 7 years is too short a time to accumulate mutations. 

Thus it appears that the polymorphism is actively maintained by a balancing selection 

(Graur and Li, 2000). 

 

C002 was first identified in a positive screen for pectin methylesterase. In order to test for 

the activity, a pectin methylesterase assay using purified soluble recombinant protein was 

performed using procedure from Shen et al., 1999. However, no activity was observed 

and we conclude that C002 is not a pectin methylesterease. 

 

C002 transcript and protein were localized in the same sub-set of 10 cells within one lobe 

of the principal salivary gland by both in situ hybridization and immunohistochemistry. 



 114

C002 protein can be detected in Cherqui and Tjallingii (2000) localized three salivary 

proteins identified by Baumann and Baumann (1995), (namely 66, 69 and 154 kDa 

proteins) within principal salivary glands and the pattern of staining observed is clearly 

different from the pattern of staining observed with C002 protein in the principal salivary 

gland. Thus, it seems reasonable to speculate that morphologically different cell types 

identified by Weidemann (1968) and Ponsen (1972), may perform different functions and 

at any given time (or stage of feeding). In other words aphids’ saliva can be mix of the 

products from one or more cell types of principal salivary gland. 

 

C002 protein was detected in fava bean plants that were exposed to aphids (Fig. 10a). 

This verifies directly that C002 is a secreted protein.  It is part of pea aphid saliva and is 

injected into the host-plant during feeding. Being in aphid saliva, it is postulated that it 

may play a role in aphid-plant interactions. RNAi experiment verifies importance of the 

protein, as it is not needed to feed on articial diet but it is necessary for survival on host 

plants.  

 

C002 transcript is also present in other aphid species. But the absence of a homolog of 

C002 outside of aphids, in spite of the presence of huge amount of sequence information 

in various database (Non-redundant-NCBI, EST-database and UniProt Knowledgebase 

database at ExPASy) and also with the availability of genome sequences of many insects 

(Drosophila melanogaster, Anopheles gambiae, Tribolium castaneum, Bombyx mori and 

Apis mellifera), suggests that C002 might be specific to Aphididae or phloem feeding 

Hemiptera.  



 115

 

C002 could have any of many functions in aphid-plant interactions. It is apparently not a 

digestive enzyme for any component of artificial diet, as it is not required to feed on such 

a diet. It is possible that C002 protein is a putative hydrolase and assists an aphid’s 

penetration of the leaf tissue or helps divert plant responses. It could be an inhibitor that 

functions to inhibit potential toxic plant products (may be by conjugation with C002) or 

C002 protein could function to avoid a potential response from phloem (callose 

formation) as the siC002-RNA injected aphids are unable to feed continuously and tend 

to move around a good deal, whereas uninjected aphids or aphids injected with siGFP-

RNA stay quite still on the underside of the fava bean leaves, or it could be part of the 

mechanism of preventing “plugging” of the sieve element once stylets has entered 

phloem. Further experiments are needed to elucidate the role of C002 in aphid-plant 

interactions. Using electrical penetration graph methods on the siC002-RNA injected 

aphids, we hope to understand the effect of C002 transcript knockdown on detailed 

aspects of the insects’ feeding behavior. 
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Figure 4. Pea aphid, A. pisum C002 sequence. 

a) Nucleotide and deduced amino acid sequence of pea aphid, C002 cDNA clone. N-

terminal signal peptide by SignalP is shown in bold. Arrow indicates a signal-peptide 

cleavage site. b) Alignment of two alleles/variants of C002. The two alleles differ at four 

positions, which are shown in bold. 
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a) 

GGCCGGGGGTTCAAACAAATATCTCGTCGTGTATCCAGTGCGATAGCGATAATTTACAAC 60 

ATGGGAAGTTACAAATTATACGTAGCCGTCATGGCAATAGCCATAGCTGTAGTACAGGAA 120 

 M  G  S  Y  K  L  Y  V  A  V  M  A  I  A  I  A  V  V  Q  E 

GTTAGATGCGATTGGTCTGCCGCTGAACCGTACGATGAGCAGGAAGAAGCGTCTGTCGAA 180 

 V  R  C  D  W  S  A  A  E  P  Y  D  E  Q  E  E  A  S  V  E 

TTACCGATGGAGCACCGTCAGTGCGATGAATACAAATCGAAGATCTGGGACAAAGCATTT 240 

 L  P  M  E  H  R  Q  C  D  E  Y  K  S  K  I  W  D  K  A  F 

AGCAACCAGGAGGCTATGCAGCTGATGGAACTAACGTTTAATACAGGTAAGGAATTAGGC 300 

 S  N  Q  E  A  M  Q  L  M  E  L  T  F  N  T  G  K  E  L  G 

TCCCACGAAGTGTGCTCGGACACGACGCGGGCCATTTTTAACTTCGTCGATGTGATGGCC 360 

 S  H  E  V  C  S  D  T  T  R  A  I  F  N  F  V  D  V  M  A 

ACCAACCAGAACGCCCATTACTCGCTGGGTATGATGAACAAGATGTTGGCGTTCATCATA 420 

 T  N  Q  N  A  H  Y  S  L  G  M  M  N  K  M  L  A  F  I  I 

AGAGAGGTGGACACGACGTCCAACAAATTCAAAGAGACGAAGGAGGTTTTCGAACGCATC 480 

 R  E  V  D  T  T  S  N  K  F  K  E  T  K  E  V  F  E  R  I 

GCGAAAACTCCAGAGATCCGAGACTATATCAAGCACACGACCGCCCGGACCGTCGACTTG 540 

 A  K  T  P  E  I  R  D  Y  I  K  H  T  T  A  R  T  V  D  L 

CTCAAAGAGCCCGTGATTAGAGGCCGACTGTTCAAAGTGGTGAAAGCCTTCGAGGGTCTG 600  

 L  K  E  P  V  I  R  G  R  L  F  K  V  V  K  A  F  E  G  L 

ATAAAACCGTCCGAAAACGAGGAATTGGTCAAGCAGAGGCTTAAGAGGATAACCAATGCT 660  

 I  K  P  S  E  N  E  E  L  V  K  Q  R  L  K  R  I  T  N  A 

CCCGCCAAGATGGCTATGGGAGCCATAAATAAGTTTGGAAGTTTCCTTCGACGTTTTTA 720 

 P  A  K  M  A  M  G  A  I  N  K  F  G  S  F  L  R  R  F * 

ATAAGCGCGTCCATACAGACTAGTGATATATTATATATATATACTTATAA           770  
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b) 
 
C002a     MGSYKLYVAVMAIAIAVVQEVRCDWSAAEPYDEQEEASVELPMEHRQCDEYKSKIWDKAF 60 

C002b     MGSYKLYVAVMAIAIAVVQEVRCDWSAAEPYDEQEEASFELPMEHRQCDEYKSKIWDKAF 60 
          **************************************.********************* 
 
C002a     SNQEAMQLMELTFNTGKELGSHEVCSDTTRAIFNFVDVMATNQNAHYSLGMMNKMLAFII 120 
C002b     SNQEAMQLMEITFNTGKELGSNEVCSDTTRAIFNFVDVMATNQNAHYSLGMMNKMLAFII 120 
          **********:**********:************************************** 
 
C002a     REVDTTSNKFKETKEVFERIAKTPEIRDYIKHTTARTVDLLKEPVIRGRLFKVVKAFEGL 180 
C002b     REVDTTSNKFKETKEVFERITKTPEIRDYIKHTTARTVDLLKEPVIRGRLFKVVKAFEGL 180 
          ********************:*************************************** 
 
C002a     IKPSENEELVKQRLKRITNAPAKMAMGAINKFGSFLRRF 219 
C002b     IKPSENEELVKQRLKRITNAPAKMAMGAINKFGSFLRRF 219 
          *************************************** 
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Figure 5. Multiple sequence alignments.  

a) Alignment of C002 amino acid sequences from pea aphid, A. pisum, with sequences of 

cotton aphid, A. gossypii, brown citrus aphid, T. citricida, green peach aphid, M. persicae 

and Russian wheat aphid, D. noxia. The sequences were aligned using ClustalW version 

1.82 and followed by BOXSHADE server design. 

http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html  

b) Phylogram of C002 sequences corresponding to the conserved regions in the 

alignment. The phylogram was created starting with a multiple alignment created with 

ClustalW version 1.82.  
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a) 
A.gossypii     1 MGRYQLYVAVMAISSLAVIQKASCAGGPNAYNTTEQYI----------------ESKDGL 

T.citricida    1 MGRYQLYVAVVAISSLAVIQKASCAGGSNAYPSTEQYD----------------ESKDKL 

D.noxia        1 MGSYKLYLAVIAIACIAAVQEASCSDEQVQYDDGEEVIGLEKEQEEVSEPDMEEKEEPES 

A.pisum        1 MGSYKLYVAVMAIAIAVVQEVRCDWSAAEPYDEQEEAS-------------------FEL 

M.persicae     1 ------------------------------------------------------------ 

 

 

A.gossypii    45 EMEHHQCDEYKSKIWNKAFSNPAAMQLVDVVLKTAKEMGTDNVCSDTIRVLSNFIDVMAT 

T.citricida   45 EMEHHQCDEYKSKIWNKAFSYPAAMQLMDVIFETAKEMGTNDVCSDTIRVLSNFIDVMAT 

D.noxia       61 EMEYHQCEEYKSKIWDNAFSNKDAMDMMKLTFITAEKMGSDAVCTDTARAFINFIEVMAT 

A.pisum       42 PMEHRQCDEYKSKIWDKAFSNQEAMQLMEITFNTGKELGSNEVCSDTTRAIFNFVDVMAT 

M.persicae     1 ----------------------------------AKELGSNEVCSDTTRALFNFVDVMAT 

 

 

A.gossypii   105 NQNSHYSVGMLAKMLAFIAREADMTSDKFRDTKEVFDRIVQNADIRDYIRNTASRVVDLL 

T.citricida  105 NQNSHYVVGMLGKMLAFIAREVDTTSDKFRETTEVFERIAKNADIRDYIRH--------- 

D.noxia      121 NSNSQYTRSMFKKLVAFIVRELNTTSDNFRETSEVFERIWTTPEIRDFIRDSVTRTNNVL 

A.pisum      102 NQNAHYSLGMMNKMLAFIIREVDTTSNKFKETKEVFERITKTPEIRDYIKHTTARTVDLL 

M.persicae    27 SPYAHFSLGMFNKMVAFILREVDTTSDKFKETKQVVDRISKTPEIRDYIRNSAAKTVDLL 

 

 

A.gossypii   165 KLPVMRN--------------------------------------------------- 

T.citricida      ---------------------------------------------------------- 

D.noxia      181 KEPRMRSRLFKVIEAAMDLMSKSKDGESMKQKFKGMYRAPTKMARXAMDKVGNFFRKL 

A.pisum      162 KEPVIRGRLFKVVKAFEGLIKPSENEELVKQRLKRITNAPAKMAMGAINKFGSFLRRF 

M.persicae    87 KEPKIRARLFRVMKAFESLIKPNENEALVKQKIKGLTNAPVKLAKGAMKTVGRLFRHF 
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 Figure 6. Expression of C002 in salivary glands and gut of pea aphid. 

a) RT-PCR of the C002 transcript from pea aphid, salivary glands (Lane 1) and guts 

(Lane 2). PCR products after 35 cycles. b) RT-PCR of the C002 transcript from various 

aphid species using primer pair from the pea aphid clone. Pea aphid, A. pisum (Lane 1), 

greenbug, S. graminum (Lane 2), green peach aphid, M.  persicae (Lane 3), Russian 

wheat aphid, D. noxia (Lane 4), soybean aphid, A. glycine (Lane 5). 
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Figure 7. Northern and Southern blot analysis of C002 transcript and gene. 

a) Northern blot analysis of the pea aphid C002 transcript. b) Southern blot analysis of 

the pea aphid C002. Genomic DNA was extracted from adult aphids. The cDNA shown 

in Figure 1 was radiolabelled and used as the probe. Lane 1, XbaI; Lane 2, NcoI; Lane 3 

EcoRV and Lane 4 EcoRI. 
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Figure 8. Detection of C002 mRNA in the salivary glands by in situ hybridization.  

Paraformaldehyde fixed salivary glands were treated with a digoxigenin (DIG)-labeled 

RNA, antisense (A and B) and control, using sense probe (C and D) followed by 

incubation with an anti-DIG antibody.  
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Figure 9. Immunohistochemical localization of C002 protein. 

Localization of C002 protein within principal salivary gland of the pea aphid. a) TO-

PRO-3 staining of nuclei and Cy-3 antibody staining of C002 protein of principal and 

accessory salivary glands (at 20X magnification). b) Cy-3 antibody staining of C002 

protein of principal salivary glands under higher magnification (40X) showing C002 

protein in secretory vesicles in four positively stained cells. (c) Negative control using 

pre-immune rabbit serum instead of polyclonal C002 antibody. 
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Figure 10. Detection of C002 protein using purified C002 antibodies. 

a) Western blot indicating that C002 is injected into the fava bean plants during feeding. 

Lane 1. Recombinant C002 protein. Lane 2. Fava bean plant without aphid feeding, 

which serves as negative control. Lane 3. Fava bean plant extract after pea aphid feeding. 

Lane 4. Protein extract from 5 aphid heads. Lane 5. Protein extract from 5 salivary 

glands. b) Negative control using pre-immune rabbit serum instead of polyclonal C002 

antibody. Lanes 1 and 2. Fava bean plant extract without aphid feeding. Lane 3. Fava 

bean plant extract after aphid feeding. 
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Figure 11. Survival of siRNA injected aphids on artificial diet. 

siRNA injected aphids kept on aphid diet for 7 days after injection, thereafter, they were 

moved to fava bean leaves in Petri plates on agar. Green line: injections with siC002-

RNA; Red line: injections with siGFP-RNA (control). Data from 3 independent 

experiments are shown; there were 12 aphids in each experiment. The bars depict 

standard errors. 
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Abstract 

Injection of siRNA (small interfering RNA) into parthenogenetic adult pea aphids 

(Acyrthosiphon pisum) is shown here to lead to depletion of a target salivary-gland 

transcript. The siRNA was generated from double stranded RNA that covered most of the 

open reading frame of the transcript, which we have called C002. The C002 transcript 

level decreases dramatically over a 3-day period after injection of siRNA. With a lag of 1 

to 2 days, the siC002-RNA injected insects died, on average 8 days before the death of 

control insects injected with siRNA for green fluorescent protein. It appears, therefore, 

that siRNA injections into adults will be a useful tool in studying the roles of individual 

transcripts in aphid salivary glands, and our results suggests that siC002-RNA injections 

can be a useful positive control in such studies. 
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Introduction 

Double-stranded RNA (dsRNA), when injected into or ingested by an organism or 

introduced into cells in culture, can specifically lower the level of the transcript of a 

target gene. This method, initially documented in C. elegans and named RNA 

interference, or RNAi, has become a very powerful tool to examine the role of individual 

genes (Fire et al. 1998; Zamore et al. 2000). Among insects, injections of interfering 

RNAi in post-embryonic stages have been used successfully in the honeybee, Apis 

mellifera (Amdam et al. 2003), the moths Hyalophora cecropia (Bettencourt et al. 2002), 

Spodoptera litura (Rajagopal et al. 2002), Bombyx mori (Uhlirova et al. 2003) and 

Manduca sexta (Levin et al. 2005), the mosquitoes, Anopheles gambiae (Osta et al. 2004) 

and Aedes aegypti (Attardo et al. 2003), the fruit fly, Drosophila melanogaster (Goto et 

al. 2003), a grasshopper, Schistocerca americana (Dong and Friedrich 2005), the red 

flour beetle Tribolium castaneum (Arkane et al. 2005a and 2005b, Tomoyasu et al. 2005, 

) and a termite, Reticulitermes flavipes (Zhou et al. 2006). ). Evidently, in some insect 

species, injected interfering RNA can move from the hemolymph into tissues or organs, 

where it then exerts its transcript-lowering effect, presumably by promoting degradation 

of the target mRNA. Extending this method to an aphid, and in particular, to the aphid 

salivary gland, is the objective of the work reported here.  

 

Relatively long dsRNA is often used as an interfering RNA, but in two cases listed above 

(Levin et al. 2005 and Zhou et al. 2006) small interfering RNA (siRNA) was injected 

instead.  siRNAs of 21-base pairs are highly effective in eliciting RNAi (Elbashir et al. 
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2001) and can be produced in vitro using the enzyme Dicer, a form of RNase III and the 

enzyme believed to produce siRNA in vivo (Bernstein et al. 2001). 

 

Saliva is very important in the interaction between aphids and host plants. Proteins, 

including enzymes, of aphid saliva have been postulated to play several roles, including 

the formation of a sheath around the stylets, the creation of an extracellular path by the 

stylet, overcoming plant defense and possibly stimulating plant defense in non-host plants 

(Miles 1999; Cherqui and Tjallingii 2000). As transcripts of potential interest are found in 

cDNA libraries of aphid salivary glands (for instance, among the roughly 4500 pea aphid 

salivary expressed sequence tags (ESTs) recently deposited at NCBI as accession 

numbers DV747494 through DV752010), a method will be needed to examine the 

importance of transcripts of individual genes, and RNAi is a potentially powerful 

approach for doing so.  

 

The most abundant cDNA from a salivary gland cDNA library prepared from the 

peaaphid, Acrythosiphon pisum (Reeck et al., unpublished observations), was selected as 

the target transcript for this study. This cDNA was arbitrarily designated C002 (i.e., 

Cluster 2). This transcript was also found, infrequently, among whole-body and whole-

insect pea aphid ESTs, where there are 7 occurrences in approximately 17,800 such ESTs 

deposited at the National Center for Biotechnology Information (Sabeter-Munoz et al. 

2006).  As a point of comparison, ESTs for cytochrome oxidase subunit-1, a widely 

distributed protein, occur over 160 times among the whole-body and whole-insect pea 

aphid ESTs. The translated nucleotide sequence of C002 does not match other sequences 
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except in aphids, where there are matches to translated ESTs from Aphis gossypii and 

Toxoptera citricida. The entire open reading frame of the C002 transcript can be found at 

accession number CN763138. The encoded pea aphid protein includes a predicted signal 

peptide, and the protein is of entirely unknown function. 

 

To test the efficacy of RNAi in aphids, siRNA coding for C002 was injected into adult 

aphids. It was found that injection of siRNA leads to knockdown of the C002 transcript 

level in salivary glands and results in a greatly reduced lifespan of the injected insects. 

These results provide the basis for the use of this technique in studies of other salivary 

transcripts and, possibly, transcripts in other organs.  

 

Materials and Methods 

 

Plants and Aphids 

Aphids were originally collected from alfalfa plants in the summer of 1999 by Dr. Marina 

Caillaud at Cornell University. Thereafter, the aphids were reared at KSU on fava beans 

(Vicia fabae) grown in pots (10 cm diameter) at room temperature under high intensity 

sodium lights with a L:D of 16:8. For the RNAi experiments, even-aged cohorts were 

established by collecting nymphs from young parthenogenetic females over a 24-h 

period. Cohorts formed in this way were maintained on plants for 7 days and then used 

for siRNA injections.  
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Preparation of dsRNA and siRNA  

PCR primers with T7 promoter sequences were used to prepare double-stranded RNA 

(Tomoyasu et al. 2005). For C002 RNA, the primers had the following sequences: 5'--

TAA TAC GAC TCA CTA TAG GGA AGT TA--3' and 5'--TAA TAC GAC TCA CTA 

TAG GGA AAC TT--3' (forward and reverse, respectively). The two primers cover a 

region that extends from position 5 to position 637 in the open reading frame that, in its 

entirety, is 660 bases. Primers for green fluorescent protein RNA that were used in 

controls had the following sequences: 5'--TAA TAC GAC TCA CTA TAG GGC GAT 

GC--3' and 5'--TAA TAC GAC TCA CTA TAG GGC GGA CT -- 3' (forward and 

reverse, respectively). These cover a region of 520 bases in the open reading frame for 

the green fluorescent protein.  

 

PCR products were gel purified using Qiaquick Gel Extraction Kit (Qiagen, Valencia, 

CA). dsRNA was then made using Megascript RNAi Kit (Ambion, Austin, TX) 

following the manufacturer’s protocol. dsRNA was purified using phenol:choloform 

extraction. siRNA was generated from dsRNA using the Dicer siRNA Generation Kit 

T5200002 (Genetherapy Systems) and purified using siRNA purification columns of 

Genlantis. Products of Dicer digestion were checked for size (21 – 23 base pairs) on 15% 

acrylamide gels.  

 

siRNA Injections 

Glass needles (outer diameter of 1.0 mm, inner diameter of 0.50 mm; Sutter Instruments, 

Navato, CA) were made using a micropipette puller (Model P-87, Sutter Instruments) at 
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settings of: heat, 355; velocity, 50; time, 150. A PMI-200 pressure microinjector (Dagan) 

was used for siRNA injections. Aphids were held on their dorsa over a small hole in 

piece of plastic tubing (5 mm inner diameter) that was blocked at one end, held in place 

on a flat surface and connected at the other end to a small vacuum pump (Pro-Craft, 

Grobet USA, Carlstadt, NJ). Aphids were injected at the suture joining the ventral 

mesothorax and metathorax, at an angle of about 45 degrees, aimed toward the head of 

the aphid. We estimate that 5 nl of siRNA (10µg/µl) was injected into each aphid.  

 

Leaves were cut from healthy, intact fava beans and put into a sterilized 2% agar (Fisher 

Scientific) supplemented with 0.1% Miracle Grow fertilizer and 0.03% methyl 4-

hydroxybenzoate (Sigma-Aldrich, St. Louis, MO) as a fungicide, essentially as described 

on the David Stern website (http://www.princeton.edu/%7Edstern/PlatesProtocol.htm) for 

Medicago leaves. About 7 ml of medium was placed in a Petri plate (100 x 15 mm) and 

one leaf was inserted into the agar as it cooled. One injected aphid was placed on each 

leaf. The plates were placed under GE Utility Shoplite with F48/25 watt/UTSL 

fluorescent lights, with 16:8 L:D, at a temperature of 23o C. Plates were checked several 

times a day for dead aphids, which were identified by lack of movement, being off the 

leaves and, after several hours, darkened coloration. 

 

Examining Transcript Levels by RT-PCR 

Total RNA was isolated from individual pea aphid heads using TRI reagent (Molecular 

Research Center, Inc. Cincinnati, OH) following the procedure provided by the 

manufacturer. RNA was treated with DNase I (Ambion, Austin, TX) following the 
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company’s instructions. AMV reverse transcriptase was used with oligo-dT primers to 

synthesize single-stranded cDNA following the procedure in Technical Bulletin 099 of  

Promega. PCR was done using 5'--CCA GTG CGA TAG CGA TAA TTT ACA AC--3' 

and  5'--CAC CTC TCT TAT GAT GAA CGC CAA C--3' for C002 forward and reverse 

primers, respectively, giving a final product of 397 base pairs, and using 5'--CCG AAA 

AGC TGT CAT AAT GAA GAC C--3' and 5'--GGT GAA ACC TTG TCT ACT GTT 

ACA TCT TG--3' for ribosomal protein L27 forward and reverse, primers, respectively, 

giving a final product of 231 base pairs. The sequence of pea aphid L27 has accession 

number CN584974. Both primer pairs were used in each PCR, with L27 serving as an 

internal control. PCR was performed for one cycle at 95o C for 2 min followed by 26 

cycles of:  95o C for 30 s, 54o C for 30 s and 72o C for 35 s. Primers were used at 0.3 µM 

and PCR master mix from Promega (Madison, WI) was used in a final volume of 50 µl. 

PCR products were separated on 1% agarose gels prepared in 40 mM Tris-acetate (pH 

8.3) and 1 mM EDTA. Ethidium bromide was added to a final concentration of 0.7 µg/ml 

before allowing the agarose to solidify. The gels were photographed under ultraviolet 

light and band intensities were obtained using SigmaScan’s Pro5 image measurement 

software.  

 

Results and Discussion 

Injection of siC002-RNA into adult parthenogenetic pea aphids led to greatly reduced 

life-span, as shown in Figure 1. Aphids injected with siC002-RNA died well before 

control aphids injected with green fluorescent protein si-RNA. Half of the aphids injected 

with siC002-RNA had died at 3 days after injection whereas 11 days was required for 
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death of half of the aphids injected with control siRNA. The survival of uninjected aphids 

was similar to that of aphids injected with control siRNA, indicating that the small 

injection wound was tolerated by the aphids and that injection of control siRNA and 

buffer components not have a toxic effect. 

 

RT-PCR was used to assess C002 transcript levels in RNA extracted from heads. The 

signal obtained by RT-PCR using head RNA as template is from transcripts in salivary 

glands, since using RNA from heads from which salivary glands had been removed by 

injected aphids are shown in Fig. 2. Using the transcript for ribosomal protein L27 as 

internal control, we found that transcript levels from C002 dropped dramatically within 3 

days after injection with siC002-RNA. On the other hand, in control siRNA injected 

insects, C002 transcript levels, normalized to L27 transcript levels, did not change 

significantly.  

 

Semiquantitative data from such measurements are plotted in Figure 3 (open triangles), 

where, for purposes of comparison of the timing, the decline in the number of live insects 

(from Fig. 1) is again shown. We note that the measurements of C002 transcript levels 

may somewhat overestimate the levels of the transcript and thus underestimate the timing 

of the knockdown, since in examining transcript levels only insects that were alive at 

each time point were used. Insects that had already died might well have had extensive 

knockdown of the C002 transcript.  
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These data demonstrate that siRNA injection into adult pea aphids can lower the 

transcript level of a target gene, C002, expressed in the salivary gland. The injections 

have a profound effect on lifespan, lowering the time to 50% survival from 11 days in 

control injections to about 3 days for injection of siC002-RNA. Several questions remain 

unanswered. Will the same procedure work for other salivary transcripts? There are no 

data at this time regarding this point, but we will soon undertake siRNA studies on other 

salivary transcripts. Will the same procedure work for lowering transcript levels in other 

organs? Again, there are no data on this point. Judging from results in other insects, it 

seems likely that gut (Rajagapol et al. 2002, Osta et al. 2004, Arakane et al. 2005), fat 

body (Attardo et al. 2003, Amdam et al. 2003) and hemocytes (Levin et al. 2005) would 

be sensitive to the effects of injected interfering RNA. Does siRNA enter aphid embryos 

developing within the injected adult female?  We have not studied this systematically, 

but, informally, we have noticed that a significant fraction of nymphs from adults 

injected with siC002 RNA do die prematurely. This suggests the possibility that siRNA 

does indeed enter at least some embryos. 

 

Unanswered by these experiments is the function of C002. We had no way of anticipating 

the profound effect of knockdown of the C002 transcript and in light of that effect, we 

will be investigating the function of C002 in ongoing experiments. One interesting piece 

of information that we have at this point is that siC002-RNA-injected aphids exhibit a 

peculiar behavior. Whereas uninjected aphids or aphids injected with siGFP-RNA stay 

quite still on the underside of the fava bean leaves, the siC002-RNA-injected aphids 

move around a good deal and do not stay confined to the underside of the leaves. Using 
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electrical penetration graph methods we hope to understand the effect of C002 transcript 

knockdown on detailed aspects of the insects’ feeding behavior. 
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Figure 12. Survival of pea aphids after injection of siRNA. 

The graph shows the number of surviving aphids at daily intervals after injection.  Green 

line and open triangles:  injections with siC002-RNA.  Red line and closed triangles:  

injections with siGFP-RNA (control). Blue line and open squares: uninjected insects.  For 

the siRNA-injected insects, the data points are averages from three experiments, each of 

which began with 12 insects in the experimental and control groups.  The bars depict 

standard errors.   
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Figure 13. Knockdown of the C002 transcript after siRNA injections. 

Insects were injected either with siC002-RNA or siGFP-RNA. RNA from heads of 

injected insects was used in RT-PCR in which two primer-pairs were included, for C002 

itself and for the transcript encoding ribosomal protein L27. The L27 PCR product serves 

as an internal control. The results shown (agarose gels after ethidium bromide staining) 

are of individual aphids at time points from 1 to 5 days after injection. Panel A: PCR 

products from reactions (26 cycles) with head RNA from siC002-RNA-injected insects.  

Panel B: PCR products from reactions (26 cycles)  with head RNA from siGFP-RNA-

injected insects.  Panel C:  PCR products from reactions (26 cycles) carried out on RNA 

extracted from heads from which salivary glands had been removed.  Analysis of samples 

from 4 separate insects are shown.  
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Figure 14. Timing of knockdown of C002 transcript after siRNA injection. 

Data from RT-PCR analysis of C002 transcript levels (normalized against L27 transcript 

levels) are plotted over a several day period after injection with either siC002-RNA (blue 

line, closed triangles) or siGFP-RNA (red line, open squares).  Data are averages of 

normalized intensities from several individual insects at each time point and bars depict 

standard errors. The green line (open triangles) shows the survival of siC002-RNA-

injected insects from Figure 1.   
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Appendix 1 

 

Supplemental Information to Chapter 4 
 

Injection of siC002-RNA into adult parthenogenetic pea aphids led to greatly reduced 

life-span, as shown in Fig. 15.  Aphids injected with siC002-RNA died well before 

aphids injected with siGFP-RNA (as a control). Results from 3 experiments (each with 12 

replications) at different time intervals (Feb 03, Feb 13 and Feb 18) and 3 experiments 

with aged cohorts (March 20, May 21 and June 13) also with 12 replication for 

experimental group (siC002-RNA injections) and control group (siGFP-RNA injections) 

are shown in Fig. 15. Half of the aphids injected with siC002-RNA had died at about 3 

days after injection whereas 11 days was required for death of half of the aphids injected 

with siGFP-RNA.  The survival of uninjected aphids was similar to that of aphids 

injected with siGFP-RNA, indicating that the wound created was tolerated by the aphids 

and that injection of control siRNA and buffer components not have toxic effects. 

 

RT-PCR data from individual aphid heads injected with siC002-RNA is shown in Fig. 

16a and with siGFP-RNA injections in Figure 16b. There was no effect on the transcript 

level within 48 h of injection but the transcript levels decrease rapidly thereafter to almost 

undetectable levels at 120 h after siC002-RNA injections (Fig. 16a). On the other hand 

siGFP-RNA injections had no effect on transcript levels of C002 (Fig. 16b). 
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Suppression of C002 transcript had a drastic effect on the reproduction of siC002-RNA 

injected aphids, when compared with siGFP-RNA injected aphids. Different experiments 

conducted over time and with different experimental set-up are shown in Fig. 17(a, b, c 

and d). Aphids injected with dsC002-RNA had on an average of 1.5 – 2.0 nymphs / day 

of life, whereas, dsGFP-RNA injected aphids has 3.5 – 4.5 nymphs / day of life (Fig. 

17a).  RT-PCR on dsC002-RNA injected aphids did not show reduction in transcript 

levels. Therefore, injections were done using siRNA instead of dsRNA and RT-PCR 

analysis on siC002-RNA injected aphids showed the reduction in the transcript level. 

Injections done at various time points (Nov 27, Dec 06, Dec 22, Jan 09 and Jan 26) show 

a dramatic decrease in the reproduction of siC002-RNA injected aphids. Aphids injected 

with siC002-RNA had on an average 0.5 – 1.5 nymphs / day of life, when compared to 

4.0 – 5.0 nymphs / day of life, in case of siGFP-RNA injected aphids (Fig. 17b). For 

these experiments, data on the survival was not thoroughly recorded, as the experiment 

was terminated, when all siC002-RNA injected aphids were dead.  

 

Reproduction data from 3 different experiments done on Feb 03, Feb 13 and Feb 18, and 

the corresponding survival data on these injected aphids is part of Fig. 15 (yellow and 

orange line for siC002-RNA and siGFP-RNA injected aphids respectively) is shown in 

Fig. 17c. siC002-RNA injected aphids had an average of 1.3 - 1.8 nymphs / day of life, 

whereas siGFP-RNA injected aphids had 3.9 – 4.6 nymphs / day of life (Fig. 17c). 

Finally 3 different experiments with aged cohorts are shown in Fig. 17d. All the injected 

aphids were of same age i.e. 7-8 days old. siC002-RNA injected aphids had 0.7 – 1.1 
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nymphs / day of life when compared to 4.4 – 4.7 nymphs / day of life in case of siGFP-

RNA injected aphids (Fig. 17d). 

 

Behavior of the siC002-RNA injected aphids was considerably different from siGFP-

RNA injected aphids. siC002-RNA injected aphids did tend to move around (in petri-

plate, on agar and on the upper-side of the fava bean leaves). This behavior was evident 

within two hours of injection in siC002-RNA injected aphids, whereas, in contrast the 

siGFP-RNA injected aphids, settled down within an hour of injection and thereafter 

stayed on the underside of the leaves. This behavioral change may explain the decrease in 

reproduction observed in case of siC002-RNA injected aphids. It is therefore 

hypothesized that the less spent on feeding on leaves led to the decrease in the survival 

and reproduction of a siC002-RNA injected aphids. 
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Figure 15. Survival of siRNA injected pea aphids. 

The graph shows the number of surviving aphids at daily intervals after injection.  

Yellow line and open triangles:  injections with siC002-RNA done on Feb 03, Feb 13 and 

Feb 18. Green line and closed triangles:  injections with siC002-RNA done on March 20, 

May 21 and June 13. Orange line and closed squares:  injections with siGFP-RNA 

(control) on Feb 03, Feb 13 and Feb 18. Red line and open squares:  injections with 

siGFP-RNA (control) done on March 20, May 21 and June 13. Blue line and closed 

circles: uninjected insects.  For each siRNA-injection experiment, the data points are 

averages from three experiments, each of which began with 12 insects in the 

experimental and control groups.  The bars depict standard deviations.   
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Figure 16. Knockdown of the C002 transcript after siRNA injections. 

Insects were injected either with a) siC002-RNA b) siGFP-RNA. RNA from heads of 

injected insects was used in RT-PCR in which two primer-pairs were included, for C002 

itself and for the transcript encoding ribosomal protein L27.  The L27 PCR product 

serves as an internal control. The results shown are of individual aphids at time points 

from 24hours to 120 hours after injection. PCR products from reactions (26 cycles) with 

head RNA either from siC002-RNA-injected insects (a) or from siGFP-RNA-injected 

insects (b) are shown after agarose gel electrophoresis and ethidium bromide staining.   
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Figure 17. Reproduction of pea aphids after siRNA injections. 
a) Reproduction of dsRNA injected aphids (3 experiments), red bar: dsGFP-RNA 

injections; green bars: dsC002-RNA injections. b) Reproduction of siRNA injected 

aphids (3 experiments), red bar: siGFP-RNA injections; green bars: siC002-RNA 

injections. c) Reproduction of siRNA injected aphids (3 experiments for these survival 

data is shown in Fig. 1), red bar: siGFP-RNA injections; green bars: siC002-RNA 

injections. d) Reproduction of siRNA injected aphids (3 experiments with aged cohorts 

and for these survival data is also shown in Fig. 1), red bar: siGFP-RNA injections; green 

bars: siC002-RNA injections. Each experiment began with 12 insects in the experimental 

and control groups.  The bars depict standard deviations.   
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SUMMARY 

 

The pea aphid, Acyrthosiphon pisum (Harris), is a member of superfamily Aphidoidae 

and family Aphididae, within the order Hemiptera. Aphid saliva plays a major role in the 

interaction of aphids and host plants (Miles, 1999). The availability of aphid saliva in 

small quantities makes the direct study of salivary components difficult (Miles, 1965; 

Madhusudhan et al., 1994; Miles and Harrewijn, 1991). The proteins of aphid saliva are 

of two types, structural and enzymatic. The structural proteins provide a tube-like sheath 

(Miles 1999; Cherqui and Tjallingi 2000). The secreted salivary enzymes fall into two 

broad categories: hydrolases (pectinases, cellulases, oligosaccharases) and 

oxidation/reduction enzymes (phenol oxidase (E.C. 1.14.18.1) and peroxidases) (Miles 

1999). The role of these enzymes during aphid attack on plants is not well-understood.  

 

Aphid saliva is believed to perform multiple functions; including creation of the stylet 

sheath, assisting the penetrations of substrate for food (by the action of pectinases, 

cellulases, β-glucosidases etc), digesting nutrients (polysaccharases), detoxification of 

phenolic glycosides ingested during feeding by the action of polyphenol oxidases or 

peroxidases (oxidation-reduction enzymes) and suppression of host defenses or elicitation 

of host responses (Miles, 1972; Miles, 1987; Urbanska et al., 1998; Miles, 1999). Aphid 

saliva may also play a role in the ability of aphids to counter resistance factors in plants, 

since some species or biotypes of aphids can feed on plants that are resistant to other 

species or biotypes (Miles, 1999). 
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We have undertaken a functional genomics approach to identify components of aphid 

saliva. 5,098 randomly selected cDNA clones were sequenced. We grouped these 

sequences into 1769 sets of essentially identical sequences, or clusters. Putative functions 

corresponding to these salivary gland ESTs collection was done by comparing these 

ESTs with UniProt database using BLASTX with E value threshold set to 1e-5. Among 

the 1,769 clusters, 1392 (78%) showed no homology with any other protein sequences 

and only 377 cluster (22%) were assigned putative functions. Among our cDNAs, we 

have identified putative oxido-reductases and hydrolases that may be involved in the 

insect's attack on plant tissue. C002 represents an abundant transcript among the genes 

expressed in the salivary glands and was further characterized and also used to develop 

RNAi as a technique in aphids. This cDNA encodes a putative secreted protein that fails 

to match to proteins outside of aphids and is of unknown function. In situ hybridization 

and immunohistochemistry localized C002 in the same sub-set of cells within the 

principal salivary gland. C002 protein is detected in fava beans that were exposed to 

aphids, verifying that C002 protein is a secreted protein. Injection of siC002-RNA causes 

depletion of C002 transcript levels dramatically over a 3 day period after injection.  With 

a lag of 1 - 2 days, the siC002-RNA injected aphids died, on average 8 days before the 

death of control aphids injected with siGFP-RNA. siC002-RNA-injected aphids exhibit 

an peculiar behavior, they tend to move around a good deal and do not stay confined to 

the underside of the leaves, whereas uninjected aphids or aphids injected with siGFP-

RNA stay quite still on the underside of the fava bean leaves. It appears, therefore, that 

siRNA injections of adults will be a useful tool in studying the roles of individual 

transcripts in aphid salivary glands.  


