
Occlusion tutorial

Document version 1.0
April 27th, 2005

Copyright Information

Copyright c© 1986-2005 mental images GmbH, Berlin, Germany.

All rights reserved.

This document is protected under copyright law. The contents of this document may not be
translated, copied or duplicated in any form, in whole or in part, without the express written
permission of mental images GmbH.

The information contained in this document is subject to change without notice. mental images
GmbH and its employees shall not be responsible for incidental or consequential damages
resulting from the use of this material or liable for technical or editorial omissions made
herein.

mental images
� c, incremental imagesTM, mental ray

� c, mental matter
� c, mental ray Phenomenon

� c, mental ray PhenomenaTM, PhenomenonTM, PhenomenaTM, Phenomenon CreatorTM,
Phenomenon EditorTM, Photon MapTM, mental ray RelayTM Library, RelayTM Library, SPM

� c, Shape-By-ShadingTM, Internet Rendering PlatformTM, iRPTM, RealityTM, RealityServer
�c,

RealityPlayerTM, RealityDesignerTM, iray
�c, imatter

� c, neurayTM, mental millTM, MetaSLTM,
Meta Shading LanguageTM, Network Rendering ManagerTM, and NRMTM are trademarks or,
in some countries, registered trademarks of mental images GmbH, Berlin, Germany.

All other product names mentioned in this document may be trademarks or registered
trademarks of their respective companies and are hereby acknowledged.

Table of Contents

1 Occlusion 1

1.1 Intro . 1

1.1.1 Further resources . 1

1.2 What is Occlusion . 1

1.3 Usage of Occlusion . 2

1.4 The occlusion shaders set . 4

1.4.1 Example uses of the occlusion shaders . 6

1.4.1.1 Ambient (or diffuse) occlusion . 8

1.4.1.2 Diffuse, environment sampled, occlusion . 9

1.4.1.3 Reflective, environment sampled, occlusion . 9

1.4.1.4 Bent normals . 11

1.5 Using mib amb occlusion as a light shader . 17

1.6 Ambient Occlusion vs. standard Final Gathering . 18

1.6.1 Tips . 20

1.7 Ambient Occlusion using Final Gathering . 21

Chapter 1

Occlusion

1.1 Intro

The base shader library from mental images1 provides a set of utility shaders helpful to gather
and control occlusion information. This document covers the practical usage of such shaders.

Please note that the shaders described in this tutorial require mental ray version 3.4.3 and
newer. The library we document here contains 2 shaders introduced in 3.4.3 mib fg occlusion
and mib bent normal env and an updated version of mib amb occlusion.

1.1.1 Further resources

If you need further information, please refer to the mental ray base shader library
documentation, which is provided in HTML form. This document includes parts of that
documentation, and tries to put its contents more in the usage perspective.

For further information about mental ray refer to its online documentation and to the two
books by Thomas Driemeyer “Rendering with mental ray” and “Programming mental ray”2

Another useful source of information is http://www.lamrug.org LAmrUG, the Los Angeles
mental ray User Group.

1.2 What is Occlusion

Occlusion is the extent to which the area above a point is covered by other geometry and is
generally used as a simplified method to “simulate” Global Illumination. This is achieved by

1part of mental ray and present in its OEM integrations
2both edited by http://www.springer.at SpringerWienNewYork

2 1 Occlusion

tracing a number of “probe rays” inside the hemispherical area above the point and testing to
what extent this region is blocked. Obviously the raytracing algorithm is required to send such
rays. Our implementation is accomplished at the shading level through the mib amb occlusion
shader.

Occlusion through mib amb occlusion

Using this shader is not the only way to get an occlusion effect in mental ray. In fact, the
Final Gathering algorithm can also be used to achieve a similar, though slightly different, and
in some senses more “accurate” effect. In mental ray one can also calculate actual Ambient
Occlusion by using the Final Gathering algorithm.

At the end of this document you will find a table which compares standard Ambient Occlusion
vs. Final Gathering and Ambient Occlusion through Final Gathering.

1.3 Usage of Occlusion

Occlusion does have several uses on the practical side:

• Ambient Occlusion The “classic” Ambient Occlusion effect, also called diffuse
occlusion, can be used to scale down the contribution of ambient light (which in turn
may come from a diffuse environment map shader). For this use, the shader works
well when assigned to the ambient parameter of a material like mib illum lambert.
Ideally, Ambient Occlusion should be used with diffuse illumination models such as the
lambertian one.

Ambient Occlusion shading graph

• Reflective Occlusion A more specific occlusion effect for reflective materials simulating
reflections with environment maps, allowing the shader to scale down the contribution

1.3 Usage of Occlusion 3

from an environment (reflection) map. For this use, the shader is generally plugged into
an environment or reflection shader slot of a material, and the actual environment map
image is plugged into the bright parameter. An alternative is to allow the return value
of the occlusion shader to modulate the strength attribute of a reflection map shader.

Reflective Occlusion shading graph

Reflective Occlusion second shading graph

Reflective occlusion sends “probe rays” around the reflection ray direction instead of
around the geometry normal vector, as it happens in regular Ambient Occlusion. The
following diagram shows the difference.

Ambient Occlusion Vs. Reflective Occlusion

• Occlusion files for compositing Often in feature film production one wants the extra
control and flexibility in tweaking the lighting situation in post production. (It is much

4 1 Occlusion

easier to just change the opacity of a layer in a compositing application and see the result
in realtime than changing a shading parameter and re-rendering the entire image... or
animation!) For this reason it is actually quite seldom one renders a complete rendering
including all the “bells and wistles”. Instead, rendering is broken into separate passes
for later compositing.

One common such “pass” is an occlusion pass : a separate grayscale rendering of Ambient
Occlusion only that is multiplied with an ambient lighting pass and/or a diffuse lighting
pass (or similar) in post.

Another is a bent normal pass, which encodes the direction vector to look up the
ambient environment. This pass actually moves nearly the entire lighting equation to
post production, allowing almost complete re- lighting of the objects in the compositing
stage! The primary purpose of “bent normals” is to delay the ambient lighting to
a later stage. “Later” may be either in an external compositing application (having
rendered a bent normal pass and using as a layer in said application) or in a later
rendering pass within mental ray (having rendered to a texture, performing the lookup
with mib bent normal env).

mib amb occlusion supports creating both these passes at once by storing the bent
normal in the color components, and the occlusion in the alpha component of the
rendering, by turning on occlusion in alpha flag. For this to work, the rendering
must be saved with neither the alpha nor the color modified from the exact output value
of the shader. In standalone mental ray this means the“colorclip” mode must be set
to“raw” in the options block. Standalone default is “RGB”. 3

The compositing graph logic

Finally the shader may be used as a light shader. The light source must be an area
light of the user type. This generates an ambient light source with built in occlusion,
useful if you don’t want to apply the shader on a per-object basis.

Occlusion as light shading graph

1.4 The occlusion shaders set

On the practical side, you will end up using the following shaders, all part of the base shader
library included with the mental images release of mental ray. These occlusion shaders become
available after the library is correctly linked and included.

3The availability, and the defaut value, of this option varies between OEM integrations of mental ray -
consult your application documentation for details.

1.4 The occlusion shaders set 5

• mib amb occlusion This is the occlusion shader itself, which handles all computations.
Following here its .mi declaration:

color "mib_amb_occlusion" (

integer "samples"

color "bright"

color "dark"

scalar "spread"

scalar "max_distance"

boolean "reflective"

integer "output_mode"

boolean "occlusion_in_alpha"

scalar "falloff"

integer "id_inclexcl"

integer "id_nonself"

)

version 2

• mib bent normal env This is a shader to be used after light mapping (also known as
“texture baking”): it reuses previously rendered occlusion passes allowing environment
lighting retouch without recomputing occlusion. Following here its relative .mi
declaration:

color "mib_bent_normal_env" (

color "bent_normals"

boolean "occlusion_in_alpha"

color "occlusion"

scalar "strength"

shader "environment",

integer "coordinate_space"

integer "env_samples"

scalar "samples_spread"

transform "matrix"

)

• mib fg occlusion This is a utility shader which returns occlusion calculated with the
help of the Final Gathering algorithm if the Final Gathering algorithm is active. If Final
Gathering is instead ’OFF’ it returns a result choosen by the user.4 Following here its
relative .mi declaration:

color "mib_fg_occlusion" (

color "result_when_fg_is_off"

)

version 1

4It could return result of the mib amb occlusion shader as well as the result of a regular illumination model.

6 1 Occlusion

1.4.1 Example uses of the occlusion shaders

The setup in use for the following examples is fairly simple, as the helicopter model is the only
geometry we have in the scene. There is also an mib lookup spherical node for environment
reflection and environment sampling. The 3D model is kindly provided by Zhang Jian. A
mib light infinite takes care of the directional lighting while the new mib light cie takes
care of the light color in Kelvin degree temperature; finally, raytraced shadows are active.

When baking, the mib lightmap write is used, the texturing comes from a mib texture vector,
and the lightmap texture is declared as “writable”. When recovering the baked occlusion, the
mib bent normal env shader is used and textures are looked up with mib texture lookup in
the texture space defined by mib texture vector.

So this is a quick render without any occlusion effect:

Ambient Occlusion Our helicopter with direct illumination and no occlusion

You can easily see that much of the geometry detail is unrevealed due to the intrinsic nature
of direct illumination and its shadowing.

The “traditional” approach to solve this issue would be to add ambient light of a constant level,
but this tends to look very unrealistic, since now the details are not lost in black, but instead
lost in a constant color, the following rendering shows our copter with a fixed ”ambient” color
of some dark-ish gray (note that you can either add ambient color via an ambient light or the

1.4 The occlusion shaders set 7

ambient color of your shading model):

Ambient Occlusion Our helicopter with direct illumination and an ambient light (no occlusion yet)

The “modern” approach is instead using our occlusion shader which provides various occlusion
effects available. We can decide which occlusion effect to output by tweaking the mode and
reflective parameters:

• Classic-style Ambient Occlusion (also known as diffuse occlusion)

• Reflective Occlusion

• Environment sampled Occlusion (both diffuse and reflective)

• Bent normals (in world, camera and object space)

Up to now you’ve seen the shading graph logic for all the modes, now let’s analyze them one
by one with reference images where the main parameters are pointed out. You can still refer
to the example scenes which are provided with this tutorial in .mi format.

8 1 Occlusion

1.4.1.1 Ambient (or diffuse) occlusion

Ambient occlusion, output mode = 0

In this case we send probe rays around the geometry normal, adding a percentage of color (in
the range defined by the dark and bright input parameters). As a result, the more occluded
the geometry, the darker the color we see, and conversely, the less occluded, the lighter the
color. This is the default behavior of the mib amb occlusion shader, as this is the default
setting for the output mode.

You may think of the occlusion effect as a “layer” to composite over a directionally lit, or
diffuse, layer. The composite can be performed as desired using additive, multiplied, or other
combination methods. Because this is how it is typically used in production, it is important
to keep it in mind while setting up a scene that performs the equivalent calculation. Visually
speaking, the helicopter image now reveals much more of the detail previously hidden by
shadow.

1.4 The occlusion shaders set 9

1.4.1.2 Diffuse, environment sampled, occlusion

Diffuse, environment sampled, occlusion, output mode = 1

Here we have a sky environment visible (mib spherical lookup attached to the environment
port of your camera); by specifying output mode = 1, the shader multiplies a percentage of
color in the range between the dark and the bright color, by the environment color. As above,
this can be used as a layer over a diffuse layer. And, we are still calculating occlusion around
the geometry normal.

When doing environment sampling you should consider the use of textures with a higher
dynamic range, they will return colors in a wider range allowing “super-white” colors which
greatly enhance visual realism. The use of such textures, in primis the .EXR format, is quite
common in production, if you wish to know more about this you can refer to the mental ray
documentation and you can find various resources and tutorials in the internet. Here we are
using a free .HDR texture, though the .HDR format is slightly less efficient than the .EXR.

1.4.1.3 Reflective, environment sampled, occlusion

If you apply a reflection map to a model with specular shading, it will show reflections
everywhere on the object’s surface, even in areas where the object in reality would self-reflect.

10 1 Occlusion

This is the old-style approach.

A reference image with a pure chrome-like reflection, no occlusion here

With a reflective occlusion map, the reflection map gets attenuated in these areas where the
object’s reflection is blocked (by itself or other objects).

Reflective, environment sampled, occlusion: reflective ON, output mode = 1

This image features an occlusion effect calculated around the reflective ray direction instead of
the direction of the geometry normal vector. This is necessary especially when the illumination

1.4 The occlusion shaders set 11

model of the occluded object in use is highly specular. Obviously you are not forced to follow
this rule and you can use the reflective occlusion also with other illumination models, visually
speaking the effect will be slightly more pronounced; keep in mind, that reflective occlusion
can enhance the realism of reflection mapping greatly.

When dealing with reflective occlusion it is quite logical to be in environment sampling mode
(output mode = 1), but then again you are not forced to do that. In this first case, let’s
stick to the logical approach and use a visible environment. We are using the same setup as
in the previous image, but in extension the mib sperical lookup is plugged into the bright

parameter of the mib ambient occlusion shader. In this way, the reflections on the helicopter
are coherent with the environment, and we are “layering” on an occlusion effect sampled
around the reflective ray direction in the color range between the dark color and the color of
the environment.

There is another shading graph layout which you could use for reflective environment sampled
occlusion: just use the mib color mix shader in “mode 4” (color multiplier) and multiply the
outcolor of the environment shader with the outcolor of the mib amb occlusion shader.

1.4.1.4 Bent normals

bent normal in world space: output mode = 2

“Bent normal” is a term used for the average un-occluded direction vector from a surface point.
For completely un-occluded surfaces this is the same as the normal vector, but for surfaces
occluded by other geometry it points in the direction in which the least amount of occluding
geometry is found. Bent normals are used as an acceleration technique for Ambient Occlusion,
allowing for very fast rendering that look like Global Illumination or Final Gathering lit by
an environment.

12 1 Occlusion

Ambient occlusion as done by the mib amb occlusion shader is a ray tracing technique that
casts potentially large numbers of probe rays to determine to which extent a surface point is
occluded. The speed of this operation depends on the number of rays (samples), the reach
of the rays (max distance) and the complexity of the scene.

When rendering an animation (or multiple views of the same scene), any object that does
not move, does not change shape, or has no moving occluding object nearby will yield the
same result for every frame. Therefore one can “bake” (render to a file) the ambient occlusion
solution once in a first rendering pass, and re-use this result in subsequent rendering passes
for any number of frames, with potentially huge performance gains. If one also “bakes” the
average un-occluded direction (the bent normal) to a texture, the entire process of lighting
the object based on an environment is moved to this second rendering pass, without having
to trace a single ray.

The lightmapping process in a nutshell

By setting the output mode parameter to 2, 3, or 4 on the ambient occlusion shader
mib amb occlusion, bent normals are returned with the vector being encoded as a color where
x is red, y is green, and z is blue.

If occlusion in alpha is enabled, the scalar occlusion value is returned in the alpha channel.
This color can be baked into a texture, for example with the help of mib lightmap write by

1.4 The occlusion shaders set 13

putting mib amb occlusion into its input parameter and rendering.

The shading graph for the lightmapping operation

Please note that you can use the occlusion in alpha with any value of the output mode.

occlusion can be saved in the alpha channel: occlusion in alpha ON

14 1 Occlusion

bent normal can be baked with mib lightmap write

1.4 The occlusion shaders set 15

occlusion can be baked with mib lightmap write in the alpha channel

Once the texture file is generated, mib bent normal env can be assigned to a surface shader
(for example to the ambient parameter of mib illum phong). There, it will look up an
environment to light the object based on the baked bent normal texture, which should be
connected into the bent normals parameter of mib bent normal env.

Using mib bent normal env into a shading graph

16 1 Occlusion

This allows an extremely low-overhead simulation of global illumination-like effects for rigid
objects and is especially suitable for animations. The technique does not work on deformable
objects since their occlusion, shape, and normals can vary from frame to frame. For deformable
objects, it is better to apply the occlusion shader directly, without baking its output.

The visual results when using the shader in mode 3 and 4 are the following:

bent normal in camera space: output mode = 3

bent normal in object space: output mode = 4

1.5 Using mib amb occlusion as a light shader 17

1.5 Using mib amb occlusion as a light shader

This is a trick for expert users: the mib amb occlusion shader also works as a light shader
(you’ve seen previously its shading graph); this results into having an “environment light”
with built-in occlusion. When using the shader in such a configuration there is no visual
difference as per the Ambient Occlusion effect, but it can be handy in one particular situation
(hence why we declare it as a “trick”). The following are the pros and cons:

Pros: – The user is relieved from assigning the shader to every surface which can be
annoying if your scene is made of thousands of objects and if you have nested
scenes.

– This ”environment light” correctly affects multiple materials automatically, hence
it is very useful if your material shader does not have an “ambient” parameter,
such as for example the dgs material.

Cons: – The shader still sends probe rays (not shadow rays) and hence does not respect
shadow shaders or surface transparencies; you should use the shader in this way
as an “environment light” while relying on another light shader for shadows and
transparencies.

– Lights in mental ray have no specific “diffuse” or “specular” light outputs. This
may cause a light using mib amb occlusion to generate an undesirable specular
highlight.5

To do this, the light instance in the .mi file must be of the user type:

shader "my_light_shader" "mib_amb_occlusion" (

"samples" 16,

"bright" 0.3 0.3 0.3 1,

"dark" 0 0 0 1,

"output_mode" 0

)

light "my_light" = "my_light_shader"

origin 0 0 0

user 1 1

end light

instance "my_light_instance"

"my_light"

transform

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

()

end instance

5Some OEM application have shaders with specific flags for “diffuse” or “specular” or can solve the issue
with custom tricks.

18 1 Occlusion

The user area light is activated by the user keyword in the light block. Samples is set to 1
1 because to the lightsource the mib amb occlusion call is one sample, even though multiple
samples happen internally inside the shader.

The light position is not important since this creates a light “coming from all directions at
once”, however, depending on the surface shader, it may influence the location of the above
mentioned potentially unwanted specular highlight.

1.6 Ambient Occlusion vs. standard Final Gathering

What is the difference between Ambient Occlusion and Final Gathering?

Final Gathering is concerned with the bounced light and multibounce transparency, reflection,
refraction and diffuse rays, whereas Ambient Occlusion is more concerned with the absence
of light, simulating the bounced light with an assumed omnipresent “environment light”
(generally coming from a diffuse environment map or a solid color) and letting occluding
geometry block this light.

With Ambient Occlusion, the rays shoot out from the shading point, whereas, with Final
Gathering they shoot out from special final gather points created in a preprocess, and this
data is smoothed/filtered to be used later by shaders. The trick with Final Gathering is to
tune this filtering, to acheive results that are both smooth, yet not over-filtered (a situation
which has the potential to cause visible flicker in animations and loss of small details).

The output of mib amb occlusion is not filtered and hence is never as smooth as Final
Gathering, but instead any flicker is never larger than a sample (i.e. less than a pixel,
generally). There is no risk in losing small surface details.

1.6 Ambient Occlusion vs. standard Final Gathering 19

Occlusion obtained with regular Final Gathering

Ambient Occlusion calculated via the mib amb occlusion

Ambient Occlusion can be simpler to use, and can be computationally cheaper (especially if
“baked” to an object). It also creates less “surprises” - all that Ambient Occlusion does is

20 1 Occlusion

attenuate a well known contribution of “ambient light from the environment”. This means
that every object is given a well-known addition of this “environment light” or less. Things
can only become darker (never brighter) than this level, since no actual bouncing of light
occurs.

In contrast, when using Final Gathering, true bouncing of light is performed, and while an
environment map can still act as a “well known base level” of light for all objects, the result
can be both brighter or darker than this level, due to the bounces. Naturally, in many cases
this is desirable or even highly necessary, but in other cases this can cause unwanted problems
and difficulty compositing the rendering into a background plate. Since the bouncing itself
is managed by the surface shaders of the objects, the Ambient Occlusion effect depends on
how well these shaders behave with bouncing light (FG rays). Some shaders may produce odd
non-physical results from too much surface-to-surface bounce.

When an Ambient Occlusion probe ray hits a (semi)transparent object, the object is treated
as any regular fully opaque object, hence occlusion rays do not traverse semitransparent
geometry. However, with Final Gathering, a separate trace depth option handles multibounce
transparency, reflections, refraction for rays originated at the final gather point.

With Ambient Occlusion probe rays provide a 1-bounce-only illumination effect (or rather,
anti-illumination effect, since it is always subtractive), Final Gathering in mental ray can
provide diffuse multibounce illumination.

Furthermore, the Final Gathering algorithm in mental ray is very much enhanced compared to
earlier versions of mental ray and resolves many issues related to potential animation flickering
and detail loss, closing the gap even further between Ambient Occlusion and Final Gathering,
making it more an artistic and pipeline-architectural choice which method is employed.

1.6.1 Tips

Occlusion is a raytracing process therefore it requires activation of the raytracing algorithm,
trace on. The same of course applies to Final Gathering, as Final Gathering rays are a subset
of ’trace’ rays. Since we are walking through the kingdom of raytracing, the acceleration
structure is important. Hence, take a look at the BSP size and depth parameters in your
options block, check their average value from mental ray feedback messages, and eventually
modify the defaults. Also note that the distance parameter in the mib amb occlusion shader
is very important because it limits a probe ray’s length, allowing it to return the environment
color after the specified distance. This reduces memory footprint and speeds up the algorithm
flow.

The mib amb occlusion shader may appear unable to handle a closed scene. A fully enclosed
scene is by definition fully occluded. So, in such situations, try limiting the distance of the
probe rays. To only detect surfaces within a certain distance, you must set the max distance
parameter. It defaults to 0, which means ”infinity”.

Note that Final Gathering has a similar control called falloff range. As noted previously, this
can also help to reduce the memory footprint.

1.7 Ambient Occlusion using Final Gathering 21

1.7 Ambient Occlusion using Final Gathering

In mental ray the Final Gathering algorithm can return the scalar occlusion value, therefore
one can also calculate actual Ambient Occlusion by using the Final Gathering algorithm.
This ignores any bounced light and simply uses the preprocessed Final Gathering points and
the Final Gathering filtering to generate a grayscale occlusion result, sort of a “best of both
worlds” approach.

We have previously introduced that the mib fg occlusion shader can be used for this target.

Note that calculating Ambient Occlusion with help of the Final Gathering algorithm is different
than using Final Gathering directly, since no actual bouncing of light occurs, only occlusion.
The difference is that the precomputed Final Gathering points and the smoothing and filtering
algorithms of Final Gathering are used.

The single parameter result when fg is off becomes the return value when final gathering
is off. When final gathering is on, the occlusion value is returned as a grayscale value, and the
parameter is never evaluated at all or used in any way.

Note also that if one puts mib amb occlusion into the result when fg is off parameter, the
result will have occlusion calculated by final gathering when it is on, and occlusion calculated
by mib amb occlusion when final gathering is off. Obviously that is just one of the possible
uses: you can connect anything to that parameter.

The following diagram shows the shading graph logic with the occlusion shader:

Occlusion from Final Gathering or from the occlusion shader

22 1 Occlusion

The following image is the result of calculating Ambient Occlusion with the help of the Final
Gathering algorithm through the mib fg occlusion shader:

Ambient Occlusion calculated with the help of the Final Gathering algorithm through the mib fg occlusion shader

Therefore, together with the two images of the previous chapter we can now obtain three kinds
of occlusion effects:

FG occlusion from plain Final Gathering (an additive effect which adds bouncing color, can
be a single bounce or multibounce6)

AO occlusion from mib amb occlusion (subtracting occlusion from assumed omni-present
environment light)

AO-FG occlusion from mib fg occlusion with FG turned ON (where the Final Gathering
algorithm calculates occlusion)

c©2005 mental images, all rights reserved. Tutorial by Paolo Berto, with contributions from
Zap Andersson, Barton Gawboy and Matthias Senz.

6mental ray only

