

Criteria • Organization of the Control and Data Flow • Address Space Organization • Use of Physical Memory

Why Parallel Computing?

Although speed of computers is steadily increasing, new applications require even higher speed.

Performance of serial computers is beginning to saturate.

A natural way to solve the problem is the usage of an ensemble of processors

 \Rightarrow parallel computers

Main Purposes for Parallel Computing

A parallel computer is simply a collection of processors, interconnected in a certain fashion to allow the *coordination of their activities* and the *exchange of data*

Parallel computers **need parallel algorithms, i.e.** algorithms suitable for implementation on parallel computers

Faster solutions

Solution of large size problems

Degree of Parallelism

Moderate Parallel Computers: SMP (Symmetric Multiprocessor)

Massively Parallel Processor: MPP

Hugh number of processing nodes Hugh switching network Single computing resource - for a single job

Symmetric Multiprocessor

In einem (symmetrischen) Multiprozessorsystem können alle Prozessoren auf einen gemeinsamen Hauptspeicher zugreifen.

Dadurch ist es ihnen möglich, Daten auszutauschen.

Den Prozessoren steht aber nur ein gemeinsamer Datenweg zum Hauptspeicher zur Verfügung, z.B. ein **gemeinsamer Bus**.

10

Global Address Space

Global or Shared Address Space: Processors interact by modifying data in a shared address space.

Hardware support exists for coordinating read and write accesses by the processors.

Name	Vector registers	Elements per vector register	Elements computed per clock cycle	Number of functional units	Processor clock rate	Maximum number of processors	Maximur memory size/syste			
Cray J90	8	64	1	4	100 MHz	32	8,192 ME			
Cray T90	8	128	2	8	455 MHz	32	8.192 ME			
Fujitsu VPP300	8-256	64-2048	8	4	140 MHz	16	32,768 ME			
NEC SX-4 single node	8 + 8192 scratchpad	256 + variable up to 8K	8	16	125 MHz	32	8,192 ME			

Institution	Name	Maximum no. of proc.	Bits/ proc.	Proc. clock rate (MHz)	Number of FPUs	Maximum mémory size/system (MB)	Communi- cations BW/system (MB/sec)	Yea			
U. Illinois	Iliac IV	64	64	5	64	0.125	2,560	1972			
ICL	DAP	4,096	1	5	0	2	2,560	198			
Goodyear	MPP	16,384	1	10	0	2	20,480	198			
Thinking Machines	CM-2	65,536	1	7	2048 (optional)	512	16,384	198			
Maspar	MP-1216	16,384	4	25	0	256 or 1024	23,000	198			

