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In 1982 a quasi-crystal with 5-fold rotational symmetry was discovered by Shechtman et al.
The most famous 2-dimensional mathematical model for the quasi-crystal may be the Penrose
tiling with 5-fold rotational symmetry. In addition, there are the Ammann-Beenker tiling with
8-fold rotational symmetry and the Danzer tiling with 7-fold rotational symmetry(cf.[3]) in typical
tilings. Such tilings are called nonperiodic tilings.

We prepare several basic definitions. A planar tiling T is a countable family of polygons Ti

called tiles: T = {Ti | i = 1, 2, · · · } such that
⋃∞

i=1 Ti = R2 and Int Ti ∩ Int Tj = ∅ if i �= j, where
R2 denotes the 2-dimensional Euclidean space. A configuration (without gap and overlapping) of
tiles around a vertex in a tiling is called vertex atlas.

Let S = {S1, S2, · · · , Sl} be a finite set of polygons. When each tile T in a tiling T is congruent
to some Si ∈ S, S is called a prototile set of T . A set of matching rules for a prototile set S is
a finite set of patches that may appear in the tilings admitted by S. Fix λ(> 1). For a prototile
set S, any prototile is decomposed into λ−1 scale-down copies of S. This decomposition is called
a substitution rule of S if such a decomposition is possible. We can construct nonperiodic tilings
with a given prototile set by the up-down generation using substitution rule (cf.[1]).

The prototiles of Danzer tiling are six types of triangles with arrows on the edges (three
triangles a, b, c in Figure 1 and their reflections).

Figure 1: Three prototiles with arrows
of Danzer tiling (θ = π/7)

Figure 2: The Danzer tiling with 7-fold rotational
symmetry (erasing arrows)

We can construct the Danzer tiling with 7-fold rotational symmetry in Figure 2 using the



up-down generation and reflection and rotation(cf.[2],[3]). This note is motivated by the following
remark in the appendix of [3]: ”29 kinds of vertex atlases appear in Danzer tiling, and these vertex
atlases may serve as a matching rule.” We study details of his remark, and meet a lot of strange
things. We state these results comparing Danzer tiling (DT, in short) with Penrose tiling (PT, in
short).

(1) What kinds of vertex atlases ?

PT: (well-known) 8 kinds of vertex atlases with arrows appear in Penrose tilings constructed
only by the up-down generation procedure.

DT: In Danzer tilings constructed only by the up-down generation procedure, 39 kinds of
vertex atlases with arrows appear, and 29 kinds of vertex atlases appear by erasing
arrows.

(2) rotational symmetry and up-down generation:

PT and DT with rotational symmetry cannot be constructed only by the up-down
generation procedure. It is necessary to expand to whole plane by using reflection and
rotation.

The set of tilings has the canonical metric, called tiling metric.

(3) A limit of sequence of tilings :

PT: The Penrose tiling with 5-fold symmetry is obtained as a limit of sequence of tilings
constructed only by the up-down generation procedure.

DT: The Danzer tiling with 7-fold symmetry cannot be obtained as a limit of sequence of
tilings constructed only by the up-down generation procedure.

(4) Matching rule:

PT: 8 kinds of vertex atlases with arrows serve as a matching rule in the set of tilings
constructed by the up-down generation and reflection and rotation.

DT: 39 kinds of vertex atlases with arrows serve as a matching rule in the set of tilings
constructed by the up-down generation, but cannot do in the set of tilings constructed
by the up-down generation and reflection and rotation.

It seems that the following questions are open:

(a) For which n tilings with n-fold symmetry can be constructed only by the up-down generation
procedure ? (Of course, for n = 4, 6 we have the trivial and boring example.)

(b) What is the explicit procedure for constructing tilings as limit ? (We need reflection and
rotaition when we construct tilings with rotational symmetry in Penrose tiling.)
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