Abstract:Notes on vertex atlas of planar Danzer tiling

Hiroko Hayashi ${ }^{1)}$, Yuu Kawachi, Kazushi Komatsu ${ }^{2)}$, Aya Konda, Miho Kurozoe, Fumihiko Nakano ${ }^{3)}$, Naomi Odawara, Rika Onda, Akinobu Sugio, Masatetsu Yamauchi
(Department of Mathematics, Kochi University, E-mail:1) b09d6a06@s.kochi-u.ac.jp, 2) komatsu@math.kochi-u.ac.jp, 3) nakano@math.kochi-u.ac.jp)

In 1982 a quasi-crystal with 5 -fold rotational symmetry was discovered by Shechtman et al. The most famous 2-dimensional mathematical model for the quasi-crystal may be the Penrose tiling with 5 -fold rotational symmetry. In addition, there are the Ammann-Beenker tiling with 8-fold rotational symmetry and the Danzer tiling with 7 -fold rotational symmetry(cf.[3]) in typical tilings. Such tilings are called nonperiodic tilings.

We prepare several basic definitions. A planar tiling \mathcal{T} is a countable family of polygons T_{i} called tiles: $\mathcal{T}=\left\{T_{i} \mid i=1,2, \cdots\right\}$ such that $\bigcup_{i=1}^{\infty} T_{i}=\mathbf{R}^{2}$ and Int $T_{i} \cap$ Int $T_{j}=\emptyset$ if $i \neq j$, where \mathbf{R}^{2} denotes the 2-dimensional Euclidean space. A configuration (without gap and overlapping) of tiles around a vertex in a tiling is called vertex atlas.

Let $\mathcal{S}=\left\{S_{1}, S_{2}, \cdots, S_{l}\right\}$ be a finite set of polygons. When each tile T in a tiling \mathcal{T} is congruent to some $S_{i} \in \mathcal{S}, \mathcal{S}$ is called a prototile set of \mathcal{T}. A set of matching rules for a prototile set \mathcal{S} is a finite set of patches that may appear in the tilings admitted by \mathcal{S}. Fix $\lambda(>1)$. For a prototile set \mathcal{S}, any prototile is decomposed into λ^{-1} scale-down copies of \mathcal{S}. This decomposition is called a substitution rule of \mathcal{S} if such a decomposition is possible. We can construct nonperiodic tilings with a given prototile set by the up-down generation using substitution rule (cf.[1]).

The prototiles of Danzer tiling are six types of triangles with arrows on the edges (three triangles a, b, c in Figure 1 and their reflections).

Figure 1: Three prototiles with arrows of Danzer tiling $(\theta=\pi / 7)$

Figure 2: The Danzer tiling with 7 -fold rotational symmetry (erasing arrows)

We can construct the Danzer tiling with 7 -fold rotational symmetry in Figure 2 using the
up-down generation and reflection and rotation(cf.[2],[3]). This note is motivated by the following remark in the appendix of [3]: " 29 kinds of vertex atlases appear in Danzer tiling, and these vertex atlases may serve as a matching rule." We study details of his remark, and meet a lot of strange things. We state these results comparing Danzer tiling (DT, in short) with Penrose tiling (PT, in short).
(1) What kinds of vertex atlases ?

PT: (well-known) 8 kinds of vertex atlases with arrows appear in Penrose tilings constructed only by the up-down generation procedure.
DT: In Danzer tilings constructed only by the up-down generation procedure, 39 kinds of vertex atlases with arrows appear, and 29 kinds of vertex atlases appear by erasing arrows.
(2) rotational symmetry and up-down generation:

PT and DT with rotational symmetry cannot be constructed only by the up-down generation procedure. It is necessary to expand to whole plane by using reflection and rotation.

The set of tilings has the canonical metric, called tiling metric.
(3) A limit of sequence of tilings :

PT: The Penrose tiling with 5 -fold symmetry is obtained as a limit of sequence of tilings constructed only by the up-down generation procedure.
DT: The Danzer tiling with 7 -fold symmetry cannot be obtained as a limit of sequence of tilings constructed only by the up-down generation procedure.
(4) Matching rule:

PT: 8 kinds of vertex atlases with arrows serve as a matching rule in the set of tilings constructed by the up-down generation and reflection and rotation.
DT: 39 kinds of vertex atlases with arrows serve as a matching rule in the set of tilings constructed by the up-down generation, but cannot do in the set of tilings constructed by the up-down generation and reflection and rotation.

It seems that the following questions are open:
(a) For which n tilings with n-fold symmetry can be constructed only by the up-down generation procedure ? (Of course, for $n=4,6$ we have the trivial and boring example.)
(b) What is the explicit procedure for constructing tilings as limit? (We need reflection and rotaition when we construct tilings with rotational symmetry in Penrose tiling.)

References

[1] N. G. de Bruijn, Updown generation of Penrose patterns, Indagationes Mathematicae, New Series 1 (1990), 201-220.
[2] K. Kato, K. Komatsu, F. Nakano, K. Nomakuchi and M. Yamauchi, Remarks on 2dimensional quasiperiodic tilings with rotational symmetries, Hiroshima Math. J., 38 (2008), 385-395.
[3] K. -P. Nischke and L. Danzer, A Construction of Inflation Rules Based on n-Fold Symmetry, Discrete Comput. Geom. 15 (1996), 221-236.

