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Invariant Body Kinematics:

II. Reaching and Neurogeometry

DAVID HESTENES

Abstract. Invariant methods for formulating and analying the mechanics
of the skeleto-muscular system with geometric algebra are further devel-
oped and applied to reaching kinematics. This work is set in the context
of a neurogeometry research program to develop a coherent mathematical
theory of neural sensory-motor control systems.

1. INTRODUCTION

When a primate reaches for an object, the trajectory of the hand is very nearly a straight line
with a bell-shaped velocity profile, unless such motion is impeded by external constraints
(Morasso, 1981). In contrast, the profiles of joint variables involved in reaching do not
display comparable simplicity (Soechting & Lacquanti, 1981). This suggests that kinematics
of the hand plays a primary role in the neural planning and control of reaching movements.
More specifically, because a straight line trajectory is uniquely determined by its endpoints,
it suggests that the hand position end points are control variables for reaching movements.
This idea has been incorporated in the VITE model of Bullock and Grossberg (1988), which
accounts for an impressive range of empirical data, despite its simplicity.

Most studies of reaching motion have constrained the allowed arm movements to two
degrees of freedom, in part to avoid the daunting kinematics of unconstrained hand-arm
movements. This article aims to show that arm kinematics is not so daunting when ex-
pressed in terms of geometric algebra. A completely general and invariant formulation of
reaching kinematics is presented. This includes a solution of the inverse kinematics problem
that parametrizes the joint variables in terms of the wrist position endpoints. It should
be helpful for generalizing the VITE model to apply to the full kinematic range of arm
movements. But, it is equally applicable to the kinematics of any theory of arm-hand
movement.

To achieve an invariant formulation of reaching kinematics, we employ the geometric
algebra expounded and applied to eye-head kinematics in a companion article (Hestenes,
1993). Familiarity with the definitions, techniques, and results in that article is an essential
prerequisite to the developments below, so it will be taken for granted henceforth without
further comment. As noted there, the formulation in terms of geometric algebra is invari-
ant in the sense of being coordinate-free. Everything is expressed in terms of invariants
expressing the three-dimensional (3D)-Euclidean structure of physical space and the rigid
body constraints imposed by the skeletal system.

The invariant formulation provides a complete and irreducible description of the compu-
tational problem that must be solved to achieve kinematic control. Moreover, it suggests
computational devices for solving that problem most efficiently. Thus, it provides a well-
defined theoretical framework for analyzing how nature has solved the problem.
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The invariant treatment of reaching and oculomotor kinematics in this article and its
companion generalize without difficulty to kinematic modeling of the entire skeleto-muscular
system. The essential mathematical apparatus and special techniques are fully developed
in these articles. However, there are generalizations of geometric algebra that may prove to
facilitate the treatment of complex kinematics. One of them is described in an appendix.

Although these articles are directed at putting geometric algebra at the service of compu-
tational neuroscience, it will be recognized that the mathematical techniques and analysis
are of equal value to robotics. In robotics the problem is to design movement control sys-
tems, and in neuroscience the problem is to figure out how neural control systems work.
Because geometric algebra is so efficient computationally, direct implementations of it in
robotic control systems may optimize robotic design.

The concluding section of this article places kinematic analysis in the context of a coherent
neuroscience research program aimed at discovering the functional geometry of biological
sensory-motor systems. This has been an explicit research program for more than a decade
(Pellionisz & Llinas, 1980), and it has been dubbed neurogeometry by Andras Pellionisz
(Pellionisz & Llinas, 1985), an outspoken advocate for theoretical neurogeometry to sys-
tematize, interpret, and explain empirical findings as well as to guide further investigations.
The field of neurogeometry is only beginning to take shape. Its immaturity is evident in
a lack of synergy among theoretical efforts in the field. There is no lack of empirical fod-
der for theoretical rumination, however. Indeed, the burgeoning store of data garnered by
experimental neuroscience already threatens to become unmanageable for lack of adequate
theory. So there is a genuine need to clarify the scientific issues and coordinate efforts in
theoretical neuroscience.

2. FORWARD KINEMATlCS

To determine the change in arm configuration (or arm position) due to a specified change
in joint angles is called a forward kinematics problem in robotics (Spong & Vidyasagar,
1989). The arm configuration can be designated by a set of vectors a,b, c as illustrated and
explained in Figure 1. We will be concerned only with arm motion relative to the trunk of
the body. In other words, we take the trunk as our frame of reference and so regard the
position of the shoulder as a fixed point. However, the generalization to arbitrary motions
of the trunk does not require any changes in our analysis.

Changes in the shoulder, elbow, and wrist joints are all rotations, so they can be charac-
terized by attitude spinors A, B, and C, respectively. Accordingly, a change in elbow can
be described by the equation

a = Aa0A
−1 . (1)

From a fixed elbow position, bending the elbow produces a rotation of the wrist position
described by

b′ = Bb0B
−1 . (2)

with B = B(t) satisfying B(0) = 1. Simultaneous rotation at the shoulder produces the
composite rotation

b = ABb0B
−1A−1 . (3)
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The trajectory r = r(t) of the wrist is therefore given by

r = a + b = A(a0 + Bb0B
−1)A−1 . (4)

This solves the forward kinematics problem for wrist motion, as it expresses the wrist
position as a function of the joint attitude spinors A and B.

For a fixed wrist position, a wrist rotation takes an arbitrary point c0 in the hand to a
new relative position

c′ = Cc0C
−1 , (5)

If a = a(t) is the trajectory of the elbow with initial position a0 = a(0), then A = A(t) can
be taken to satisfy the initial condition A(0) = 1. with C(0) = 1. We do not consider here
the independent motions of fingers and thumb, as in grasping. The hand is taken to be in
some rigid configuration that can be rotated about the wrist. When the wrist rotation (5)
is combined with elbow and shoulder rotations,
the result is

c = WC0W
−1 , (6a)

where the spinor

W = ABC (6b)

completely describes the attitude of the hand
with respect to the trunk. With respect to the
trunk, the position f of any point in the hand
(say, a fingertip) is accordingly described in
complete generality by

f = a + b + c

= A[a0 + B(b0 + Cc0C
−1)B−1 ]A−1 .(7)

This completes the general solution of the for-
ward kinematics problem for arm motion.

The general reaching equation (7) describes
the finite displacement from an arbitrary ini-
tial arm configuration {a0,b0, c0} to an arbi-

FIGURE 1. Arm configuration or posture is de-
scribed by a set of relative position vectors a,b,c

relating the joints. The position of a joint is de-
fined to be its center of rotation. The vector a

designates the position of the elbow relative to
the shoulder; b designates the position of the
wrist relative to the elbow; c designates the po-
sition of any point in the hand relative to the
wrist.

trary final configuration {a,b, c} as a function of the changes in joint attitude described by
spinors {A, B, C}. A great advantage of this formulation is that it incorporates the rigid
body constraints of the skeletal system in a completely coordinate-free fashion. To be sure,
the arm has an intrinsic coordinate system determined by the lengths and attachments
of muscles, and ultimately any arm motion must be expressed in terms of these muscle
coordinates.

Moreover, geometric algebra can be a great help in modeling the action of muscle coordi-
nates by explicit parametrizations of the joint spinors A, B, C. However, muscle coordinates
are certainly not appropriate variables for the planning and control of movements, so the
coordinate-free formulation simplifies the task of analyzing alternative parametrizations by
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avoiding the complexities of muscle coordinates. Limitations on the range of motion im-
posed by muscle and joint structure can easily be expressed as restrictions on the allowed
values for the spinors A, B, C without reference to muscle coordinates, but that is a detail
that need not concern us here.

3. INVERSE KINEMATICS

A reaching movement takes the wrist from an initial position r0 = a0 + b0 to a target
position r = a + b. The inverse kinematics problem in this case is to solve for the joint
movement spinors A and B in (2.4) in terms of the initial and final arm configurations.

The solution is to be expressed in terms of the most behaviorally relevant variables,
namely, the target direction r̂ = r/r and the arm extension r = | r |. To apply to pointing
gestures and target objects out of reach, the arm extension need not be identified with
target distance. Note that for reaching with a rigid wrist, eqn (7) has C = 1 and takes the
same form as eqn (4) with b0 replaced by a longer vector b0 + c0, so the analysis will be
the same if r is regarded as a point in the hand instead of wrist position.

The shoulder joint has three degrees of freedom, while the elbow has two, but only the
one affecting wrist position is relevant here. The target position r determines only three of
these four degrees of freedom. The remaining parameter specifies the relative position of
the elbow. Geometrically, a reaching movement can be described as an (internal) change
of shape of the triangle in Figure 1 composed with an (external) rigid rotation about the
shoulder vertex. Let us analyze the internal movement first.

The shape of the triangle in Figure 1 is completely determined by the lengths of its sides
r = | r |, a = |a |, b = |b |. Alternatively, the angles θ or ϕ can be employed. These angles
and the unit bivector i for the plane are defined algebraically by the products

b̂â = e−iθ , (8)

r̂â = e−iϕ , (9)

where â = a/a and b̂ = b/b are unit vectors. Later, we will want i expressed as the dual

i = ie2 , (10)

where i, as always, is the unit pseudoscalar, and e2 is the direction of the elbow joint axis
that is, of course, normal to the plane. The identification of e2 with elbow axis can be
expressed algebraically by solving eqn (8) for

e2 =
a × b
|a × b | . (11)

The right side of this equation is undefined when the arm is fully extended so a×b = 0, but
e2 is well-defined nevertheless by the joint attitude spinor A. The sign in the exponential
in eqn (8) has been chosen so that the elbow rotation from the extended arm position

b̂ = e−iθâ = âeiθ (12)
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is a right-handed rotation about the axis e2 for positive θ. The joint angle θ is limited to
the range 0 ≤ θ < π.

Angles and sides of the triangle are related by the constraint r = a + b, from which,
using eqns (8) and (9) we obtain

râ = re−iϕ = a + be−iθ . (13)

Note that this relation among the three alternative variables r, θ, ϕ is independent of how
the triangle is positioned in space. Thus, it provides an intrinsic description of triangle
shape.

We can easily solve eqn (13) to get the joint angle θ as a function of arm extension r.
However, we know that it is better to describe the elbow joint by a spinor E defined by

b̂ = EâE† = E2â . (14)

so comparison with eqn (12) gives

E = e−iθ/2 = α − iβ =̇ 1 + b̂â . (15)

To express E as a function of r, we solve for scalars α and β as functions of r. Using the
normalization

EE† = α2 + β2 = 1 (16)

from eqn (13), we obtain

r2 = (a + bE2)(a + bE−2) = (a − b)2 + 4abα2 = (a + b)2 − 4abβ2 . (17)

The variable r is confined to the range r− < r ≤ r+, where

r± = | a ± b | . (18)

Hence,
4ab = r2

+ − r2
−, 2(a2 + b2) = r2

+ + r2
− , (19)

and eqn (17) can be written

α2 =
r2 − r2

−
r2
+ − r2−

,
(20a)

β2 =
r2
+ − r2

r2
+ − r2−

.
(20b)

Inserted into eqn (15), this gives the desired function

E(r) = α − iβ =̇ (r2 − r2
−)1/2 − i(r2

+ − r2)1/2 , (21)

where the constant normalizing factor in eqns (20a,b) has been dropped on the right. Even
so, the unnormalized spinor determines the r-dependence of the elbow joint angle θ by
giving

tan 1
2 θ =

β

α
=

[
r2
+ − r2

r2 − r2−

] 1
2

. (22)
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The elbow joint angle θ, or better, the elbow spinor E correspond to muscle commands
for holding the elbow in a particular posture. Accordingly, eqns (21) or (22) describe neural
computations necessary to determine the muscle commands for a specified arm extension r.
However, for computational efficiency the parameters α and β are more suitable for neural
encoding than r itself. First, note that eqns (20a) or (20b) can be regarded as a rescaling
of the variable r from the interval [r−, r+] to a new variable α or β on the interval [0, 1].
Second, note that if both α and β are computed then they need not be normalized, because,
as implied by eqn (22), their ratio determines the muscle command.

Comparing eqn (14) with eqn (2), we find that the spinor B describes a change in elbow
extension from r0 to r is given by

B = EE
†
0 = αα0 + ββ0 − i(βα0 − αβ0) , (23)

where E = E(r) and E0 = E(r0) = α0 − iβ0. This is a general result describing any
(internal) change in the shape of the arm triangle in Figure 1.

The next task is to describe the (external) repositioning of the arm in space. First, to
ascertain how changes in arm extension r are coupled to changes in target direction r̂, we
examine movements confined to the i-plane, that is, the plane in which the wrist, elbow,
and shoulder lie. The relation of the wrist direction r̂ to the elbow direction â can be
described by a spinor defined by

r̂ = U âU† = U2â . (24)

Comparison with eqns (13) and (15) shows that

U2 = e−iϕ =
1
r

(a + bE2) . (25)

Whence, with the help of eqns (21) and (19), we obtain U as an explicit function of the
arm extension r:

U = e−iϕ/2 =̇ 1 + U2 =̇ r + a + bE2

=̇ 4a(r + a) + (r2 − r2
−)1/2 − i(r2

+ − r2)1/2 . (26)

where inessential normalizing factors have been dropped in the alternative forms for U .
For a change in arm extension from r to r0, the relative changes in wrist and elbow

directions can be described by

r̂r̂0 = U2âU2
0 â0 = U2U−2

0 ââ0 , (27)

where the last equality depends on the assumption that initial and final arm configurations
lie in the same plane. Now, if the movement in question is simply an elbow flexion, then
â = â0 and the change in wrist direction is given by

r̂r̂0 = U2U−2
0 . (28)

However, we are more interested in an arm extension along a straight line, in which case
r̂ = r̂0 and eqn (27) yields

ââ0 = U2
0 U−2 . (29)
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Comparing this with eqn (1) and writing A = A0 for this special case gives us

A0 = (ââ0)1/2 =̇ 1 + U2
0 U−2 =̇ r0/r + (a + bE2

0)(a + bE2)−1 . (30)

This spinor describes the compensatory shoulder rotation that must accompany an elbow
flexion to constrain the wrist motion to a straight line. Of course, it can be expressed as
an explicit function of r by using eqn (21).

The expressions (23) and (30) for the elbow and shoulder movement spinors B and
A0 constitute the general solution of the inverse kinematics problem for straight line arm
extension controlled by the single parameter r. The next step is to solve the problem for
directional control by r̂.

The attitude of the arm in space can be described by the direction of the wrist r̂ and
the elbow axis e2. These two vectors are necessarily orthogonal, so they determine a right-
handed orthonormal frame {ek} defined, for k = 1, 2, 3, by

e1 = r̂, e2, e3 = e1 × e2 = ie2e1 . (31)

For an arbitrary arm movement, these are time-dependent vector-valued functions ek =
ek(t). Let their initial values be

σ1 = e1(0) = r̂0, σ2 = e2(0), σ3 = σ1 × σ2 = iσ2σ1 . (32)

Then the movement can be described by an attitude spinor S = S(t) determined by the
equations

ek = SσkS† . (33)

These equations can be solved for S, with the result (Hestenes, 1986)

S =̇ 1 + e1σ1 + e2σ2 + e3σ3 . (34)

Furthermore, S can be factored into the product

S = RT , (35a)

where the spinor R is defined by

R = 1 + e1σ1 = 1 + r̂r̂0 , (35b)

and, after some nontrivial algebra, T can be expressed in the form

T = 1 + e1 · σ1 + e2 · σ2 + e3 · σ3 − iσ1(σ2 × e2) · (σ1 + e1) . (35c)

The change in wrist direction is completely determined by R, for Tσ1T
† = σ1, so

e1 = r̂ = Sr̂0S
† = Rr̂0R

† = R2r̂0 . (36)

The spinor T describes a rotation of the elbow about the initial wrist direction σ1 =
r̂0. By analogy to the description of eye movement, let us refer to such a movement
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as reaching torsion. Torsion does not affect the wrist position, but it does affect the
positioning of the hand for grasping. Accordingly, the factoring of S into R and T in
eqn (35a) can be interpreted as a factoring of arm movement into reaching and grasping
synergies. This mathematical representation should be helpful in empirical studies on the
coupling of reaching and grasping movements. For example, eqn (35c) tells us immediately
that the condition

(σ2 × e2) · (σ1 + e1) = 0 (37)

is necessary and sufficient for pure reaching, so the empirical conditions under which it
is fulfilled are worth studying. It might be expected to hold in pointing movements, for
example. In combined reaching and grasping movements, it would be of interest to compare
the temporal developments of R and T . There may be general neural rules governing torsion
in reaching, just as there are in eye movement (Listing’s law), but they will undoubtedly
depend on what movement synergies are activated. Lacquanti and Soechting (1982) have
already found invariants coupling shoulder and elbow movement in experimental studies of
reaching.

The pieces can now be assembled to give the general solution to the inverse kinematics
problem for reaching. For any arm movement from one posture to another, as described by
eqn (4), the elbow flexion is described by the spinor B = B(r) in eqn (23) and the shoulder
rotation is described by the spinor

A = SA0 = RTA0 , (38)

where A0 = A0(r) is given by eqn (30) and S, R, T are given by eqns (35a,b,c). This
solution is expressed as a function of the target wrist position r factored into distance
control expressed by A0 = A0(r), B = B(r) and direction control expressed by R = R(r̂).
This factorization is of interest if (or when) the nervous system employs r = | r | and r̂ as
movement control variables, and it should be helpful for studying that possibility exper-
imentally. However, if the nervous system employs different control variables, geometric
algebra should be just as helpful for analyzing their relation to the kinematics.

4. TRAJECTORY DESCRIPTION

In a reaching movement from an initial position r0 = r(t0) to a (final) target position
rf = r(tf ), the wrist follows a trajectory r = r(t) where t is the time or any other convenient
time parameter in the interval [ t0, tf ] (Figure 2). The solution of the inverse problem in
Section 3 determines the joint spinors A, B, and A0 for each value of r(t) on the trajectory.
The problem remains to describe the trajectory in terms of appropriate control parameters.
The ultimate aim, of course, is to discover the control parameters employed by the central
nervous system. This can be facilitated by comparing alternative descriptions of trajectory
kinematics with experimental data. Two such alternatives will be considered here: first, the
factorization of position into distance and direction; second, the factorization of velocity
into speed and direction.

The solution of the inverse kinematics problem in Section 3 suggests that factorization
of wrist position r into extension (or distance) r = | r | and direction r̂ = n may be optimal
for computational purposes, because control of r = r(t) requires coordination of elbow and
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volves only the shoulder. Accordingly, we write

r = rn . (39)

In terms of the independent variables r and
n, the velocity v of the wrist is given by

v = ṙ = ṙn + rṅ , (40)

where the overdot signifies time derivative. The
relation of n to n0 can be described by an an-
gle ψ defined algebraically by

n = n0e
Iψ, (41)

where I is the unit bivector for the plane
FIGURE 2. A wrist trajectory r=r(t) with
velocity v = ṙ.

containing n and n0. If the wrist trajectory lies in a plane, then ṅ is constant and differ-
entiation of eqn (41) gives

ṅ = nI ψ̇ = −ψ̇ In . (42)

Then eqn (40) can be expressed in the form of a complex variable:

vn = ṙ + rṅn = ṙ − Ir ψ̇ . (43)

Its modulus is
v2 = v2 = ṙ2 + r2ṅ2 = ṙ2 + r2ψ̇

2
, (44)

where v = |v | is the speed of the wrist. Of course, the last equality in eqns (43) and (44)
applies only to planar trajectories. The elementary relation (44) should be compared with
experimental data for possible evidence of independent control of r and n.

Morasso’s (1981) original finding that reaching trajectories are nearly straight lines with
bell-shaped velocity profiles has been confirmed, extended, and refined by a number of
investigators (Abend, Bizzi, & Morasso, 1982: Atkeson & Hollerbach, 1985: Uno, Kawato
& Suzuki, 1989). A minimal neural network model for generating such trajectories, the
VITE model, has been developed by Bullock and Grossberg (1988). It is a purely kinematic
model with endpoint control of velocity direction and independent speed control by a Go
signal. It is currently the most viable model of movement control because it is the simplest,
and it accounts for the widest range of behavioral and neural data. The VITE model has
its limitations, however, as Bullock and Grossberg fully realize, but that is not of concern
here. Rather, we examine implications of the VITE model for coordinating direction and
distance control.

For radial trajectories, eqn (44) reduces to v2 = ṙ2 so ṙ must have a bell-shaped profile.
From eqn (13), r is related to the elbow angle θ

r2 = a2 + b2 + 2ab cos θ . (45)
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Differentiating this, we find

ṙ =
−θ̇a sin θ

[ a2 + b2 + ab cos θ ]1/2
, (46)

which shows that θ̇ is certainly not bell-shaped when ṙ is. lf a bell-shaped profile is the
signature of a movement control parameter, as the VITE model suggests, then ṙ rather
than θ̇ is a candidate.

In the more general case, eqn (42) implies that if v and ṙ are both bell-shaped, then rψ̇
must be bell-shaped as well. This raises some interesting questions, because rψ̇ combines
distance and direction control variables. Any failure of perfect coordination between dis-
tance and direction control would produce deviations from straight line trajectories as well
as anomalies in the rψ̇ profile. The issue here is the expression of synergy formation in the
kinematics of complex movements. Of course, there are other causes for deviations from
straight line motion such as uncompensated forces and workspace boundaries. It should
be possible, however, to distinguish them experimentally from imperfect coordination of
distance and direction control if, indeed, the issue is relevant to neural control.

Now we turn to the factorization of velocity into speed and direction and its kinematic
implications. This is an old topic that was thoroughly analyzed by differential geometers
more than a century ago. The aim here is to show how it can be simplified using geometric
algebra. This should be of practical value because the factorization is often employed in
the analysis of experimental data, and it may have theoretical significance.

The description of a smooth trajectory r = r(t) can be decomposed into a description of
the geometrical path traversed and the distance traversed along the path by introducing a
path length variable s = s(t). Accordingly, the velocity can be factored into

v = ṙ = ṡr′ = vv̂ , (47a)

where the speed is given by
v = | ṙ | = ṡ , (47b)

and the velocity direction is given by

v̂ = r′ =
dr
ds

, (47c)

the prime denoting differentiation with respect to path length.
The geometry of the path can be described by specifying the derivatives of v̂ in the fol-

lowing systematic way. A path-dependent orthonormal frame of vectors {ek = ek(s), k =
1, 2, 3}, called a Frenet frame is introduced by identifying e1 with the path tangent vector

e1 = v̂ = r′ , (48)

and defining the other vectors by the system of equations

e′1 = κe2,

e′2 = −κe1,+τ e3,

e′3 = −τ e2, (49)
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where κ is a nonnegative scalar called the curvature of the path, and the scalar τ is called
the torsion. By direct computation it can be shown that

κ = | r′′ | =
| ṙ × ..

r |
| ṙ |3 =

|v × v̇ |
|v |3 . (50)

τ =
(r′ × r′′) · r′′′

| r′′ |3 =
(v × v̇) · ..

v
|v × v̇ |3 . (51)

The eqns (49) are the famous Frenet equations of classical differential geometry (Goetz,
1970).

For a planar trajectory the torsion vanishes, and the geometrical shape of the path can
be described by the curvature κ = κ(t). From experimental data the curvature can be
measured by evaluating the right side of (50). Then the trajectory can be described by
exhibiting the speed and curvature profiles v = v(t) and κ = κ(t). This method for
describing curved arm trajectories has been employed by Abend et al. (1982) and many
other researchers, particularly in the study of complex movements such as handwriting.

The description of arm trajectories by velocity and curvature profiles is certainly con-
venient for experimental data analysis, but its theoretical significance is open to question.
The basic theoretical question it raises is whether speed and velocity direction are subject
to independent control by the CNS. The VITE model asserts that they are for straight
line trajectories. However, for curved trajectories they cannot be independently controlled
because they are coupled dynamically. This suggests an important possibility that does
not seem to have been mentioned in the literature heretofore, namely, that the tendency
toward straight line trajectories in reaching is a consequence of attempts by the CNS to
factor speed and direction control. This idea may be helpful in generalizing the adaptive
features of the VITE model.

Geometric algebra makes it possible to simplify the Frenet description of path geometry
with a method we have already employed for a different purpose (Hestenes, 1992). The
Frenet frame {ek} is completely determined by a spinor (quaternion)-valued function of the
path length F = F (s) through

ek = FσkF † , (52)

where F is normalized to FF † = 1 and, as before, {σk} is a conveniently chosen fixed
orthonormal frame. The Frenet spinor must satisfy a differential equation of the form

F ′ = −1
2 iωDF , (53)

so differentiation of (52) yields
e′k = ωD × ek . (54)

The rotational velocity vector ωD for a Frenet frame is called the Darboux vector. To
express it in terms of curvature and torsion, we solve the three eqns (54) to get

ωD =
1
2

3∑
k=1

ek × e′k =
1
2

3∑
k=1

ek × e′k . (55)

Inserting eqn (49) into eqn (55) and using e3 = e1 × e2 = ie2e1, we obtain

ωD = κe3 + τ e1 (56)
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or

ωD =
v × v̇
|v |3 +

(v × v̇) × (v × ..
v)

(v × v̇)2|v | . (57)

Substituting eqn (56) into eqn (53), we obtain

F ′ = −1
2 iF (κe3 + τ e1) . (58)

The advantage of this approach is that the set of three Frenet eqns (49) is reduced to a
single spinor eqn (58). Integration of eqn (58) is trivial when τ = 0 and κ is a specified
function of path length. However, particular examples will not be discussed here. Our
concern here is with general method.

This section has discussed two different factorizations of trajectory kinematics: the fac-
torization of position into distance and direction, and the factorization of velocity into
speed and direction. These factorizations may be valuable for analyzing experimental data
by exposing regularities in the data that might otherwise go unnoticed. However, the fun-
damental theoretical question is whether one or both of these factorizations is employed by
the CNS in movement control. No attempt was made to answer this question here; rather,
the aim has been to sharpen the issue and the mathematical tools to be used in its analysis.

5. NEUROGEOMETRY OF MOTOR CONTROL

The invariant formulation of vertebrate body kinematics developed in the present article
and its companion is intended as a contribution to a research program on the neurogeometry
of sensory-motor control. Though the term neurogeometry suggests a certain approach to
sensory-motor research. it is not a widely accepted term. To place the present work within
the neurogeometry program, therefore, let me describe some of the most relevant ideas and
issues as I see them. The account is necessarily; incomplete because neurogeometry is only
a nascent theory. For the sake of brevity, the account is framed in a dogmatic mode without
nuances or caveats.

A primary problem of neuroscience is to decipher the neural codes employed by the CNS.
In the sensorymotor subsystem, the key to the neural code is kinematics. Body kinematics
is the geometry of movement, and to achieve accurate motor control this geometrymust
be expressed in the neural codes at every stage of sensory-motor processing. In other
words, the external geometry of body movement must be expressed in an internal geometry
of sensory-motor control. To characterize this internal geometry mathematically is the
avowed purpose of neurogeometry.

Neurogeometry is thus a mathematical theory of sensory-motor control, with the name
giving explicit recognition to the primacy of geometry (qua kinematics) in the theory.
The development of motor control theory necessarily begins with a description of motor
behavior. The first level of description is qualitative, as is evident in Rosenbaum’s (1991)
introduction to the subject. As the subject matured, it became increasingly quantitative
(Jeannerod, 1988), and formal kinematics is increasingly employed. For a fully quantitative
theory of motor control, a complete mathematical description of motor behavior is essential.
A contention of the present article is that geometric algebra is the best available tool for
this purpose.
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A quantitative theory of motor control requires a quantitative model of what is controlled,
namely, the vertebrate skeleto-muscular svstem. For kinematic purposes, this system can
be accurately modeled as system of N -linked rigid bodies. Because each rigid body has
three rotational and three translational degrees of freedom, the configuration space of the
entire system has dimension 6N . But if the linkages entail K constraints, then any possible
configuration is represented by a point on a (6N −K)-dimensional kinematic manifold (or
surface) in configuration space. Moreover, any body movement is a change in configuration,
which can be described quantitatively as a curve on the kinematic manifold. This config-
uration space description of body kinematics is an alternative to the more direct physical
space description employed in this article, but it can also be efficiently expressed in terms
of geometric algebra. However the body kinematics is described, it is an essential prelude
to neurogeometry.

Neurogeometry begins with a description of the motor neuron signals for kinematic states
(postures and/or movements) of the body. The description must be geometrical because
body kinematics is geometrical. A valid description should make it possible to decipher
empirically measured motor neuron signals, to interpret them geometrically as commands
to the muscles to produce particular kinematic states of the body.

Neurogeometry goes on to produce a neural network theory of sensory-motor control
in which every processing stage has geometrical interpretation specifying its relation to
body kinematics. Much neural network modeling that has already been published can be
reinterpreted neurogeometrically. The most extensive and profound neural network theory
of sensory-motor control has been developed by Grossberg and his coworkers, Bullock and
Kuperstein. Their theory goes far beyond others in analyzing the implications of adaptive
constraints and kinematic invariants. Moreover, it is compatible with the perspective of
neurogeometry.

Neural modeling is done at several different levels of biological organization (Shepherd,
1990). The level at which a geometric interpretation is most appropriate could well be
called the psychophysical level. At that level sensory-motor information is encoded in
activity patterns across neuronal populations (Hestenes, 1991b). This is presumed in the
following discussion.

5.1. PPC and Self-Calibration

When the body is maintaining a particular posture, the pattern of neural command signals
to the muscles constitute a representation of posture called the present position command
(PPC) by Bullock and Grossberg (1988). It has often been argued that, for rapid and accu-
rate movement, the PPC must also be employed as an efferent copy (or corollary discharge)
in internal computations. One reason for this is that afferent measurements of posture
are too slow to track rapid movements, so the best available alternative is to employ the
PPC predictively during movement. However, that raises a serious self-calibration problem,
first subjected to a detailed analysis by Grossberg and Kuperstein (1989). They note that
muscle length is a highly nonlinear function of the neural command signals and argue that
this functional relation must be linearized by recalibration to compensate for inevitable
changes in muscle performance due to injury, growth, and so on. However, they tacitly
assume that muscle length is the preferred parametrization of posture, though their argu-
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ment suffices to prove that muscle contraction can be linearly calibrated to any convenient
parameter. Neurogeometry suggests alternatives. For example, our kinematic analysis of
reaching suggests that arm extension is a behaviorally more significant variable than el-
bow angle (which corresponds closely to muscle length). Moreover, it is quite possible, if
not likely, that the contractions of a given muscle have different calibrations depending on
which movement synergy is engaged. Note that such adaptive rescaling changes the neural
code or, as Pellionisz and Linas (1985) would say, changes the metric of the neurogeometry.

5.2. Kinematic Invariants and Motor Synergies

A motor (or muscle) synergy is a coordinated action of muscle groups to produce a sin-
gle class of gestures. Synergy formation reduces the number of degrees of freedom among
the muscles involved, and this is reflected in the existence of kinematic invariants of the
gestures. For example, Listing’s law describes an invariant of saccadic eye movements. As
we have noted, such invariants characterize the constraints on a synergy and so provide
clues about the neural variables controlling the synergy. Neurogeometry seeks to describe
the neural control variables geometrically to make the connection with the kinematics of
movement explicit. Synergy formation is a self-organization process that can be described
geometrically as the formation of a kinematic manifold in configuration space. A gesture
can then be described as a curve on that manifold, a curve with specified endpoints. Ac-
cording to neurogeometry, for given endpoints the curve is determined by the geometry of
the manifold, in much the same way as particle histories are determined by spacetime geom-
etry in Einstein’s General Theory of Relativity. However, neurogeometry is not developed
sufficiently to supply an equally complete mathematical formulation.

Bullock and Grossberg (1991) propose a kinematic invariant of reaching gestures called
position code invariance, which asserts that the path of a given gesture is invariant under
both speed and stiffness rescaling. This is to say that the same gesture can be performed
at different speeds and muscle stiffness levels. As noted in the preceding section, the VITE
model is designed to exhibit speed rescaling invariance. but that is difficult to achieve
for curved trajectories. The outstanding feature of the VITE model is that the movement
control variables are purely kinematical. To preserve this feature when generalizing the
VITE model to accommodate independent muscle stiffness control. Grossberg and Bullock
(1991) developed the FLETE model, which explains how stiffness rescaling invariance can
be implemented in a biologically plausible neural network. Muscle stiffness control can be
interpreted geometrically as sculpting a valley around the movement trajectory to stabilize
it against perturbing external forces. A detailed review of experimental evidence for such
trajectory stabilization is given by Bizzi and Mussa-Ivaldi (1990). The main idea in all
this is that neural motor control can be described geometrically even under the influence
of perturbing forces. Thus, in motor control, dynamics is reduced to kinematics!

These qualitative remarks serve only to provide a neurogeometric perspective for integrat-
ing the present work on body kinematics with the neural motor control theory of Bullock,
Grossberg and Kuperstein. Their rich theory contains a mathematical formulation and
analysis of many more important network principles and designs, such as designs for invari-
ant target maps. The emphasis here is on the primacy of perceptual geometry and body
kinematics for determining the constraints on neural network designs. More specifically, the
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present work is intended to demonstrate the value of geometric algebra for mathematical
formulation and analysis of these design constraints.

It is enlightening to compare the neurogeometry research program with Newton’s original
program for developing mechanics (Hestenes, 1992). In the preface to his great Principia,
Newton concluded that his approach to research can be reduced to this: from the motions
of bodies (kinematics) infer the forces, and from the forces deduce the motions (dynamics).
This iterative cycle of quantitative kinematical description coupled with dynamical model-
ing and testing has been employed by physicists for three centuries with incredible success
to discover the fundamental forces of nature.

Similarly, the neurogeometry approach is to quantify the kinematics of body movement
(including adaptive changes in kinematics) to ascertain constraints on motor control designs,
then to develop neurally plausible models of sensory-motor control that can be tested
empirically. The goal of neurogeometry can be described as deciphering the neural sensory-
motor code. Analogously, Newton’s goal could be described as deciphering the code of
physical motions to discover hidden physical forces. Indeed, Galileo described the goal of
science (philosophy) in precisely these terms (translation from Burtt, 1932):
“Philosophy is written in that great book which ever lies before our eyes—I mean the
Universe—but we cannot understand it if we do not first learn the language and grasp the
symbols in which it is written. This book is written in the mathematical language, and
the symbols are triangles, circles, and other geometrical figures, without whose help it is
impossible to comprehend a single word of it; without which one wanders in vain through
a dark labyrinth.”
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APPENDIX: EUCLIDEAN HYPERSPINORS FOR KlNEMATlC CHAINS

As shown in several references, the geometric algebra employed in this article has rich
generalizations to multilinear spaces and manifolds of arbitrary dimension. This appendix
calls attention to one little-known generalization that may prove to be especially valuable
for describing and analyzing complex body kinematics.

A sequence of rotations and translations is called a kinematic chain in robotic theory
(Spong & Vidyasagar, 1989). The variable position of any point on the body can be
described by a parametrized kinematic chain. Thus, the position vector f of a finger tip
is described by a kinematic chain in eqn (7). We have noted how such a description is

16



simplified by the spinor representation of rotations. Further simplification can be achieved
by introducing a similar representation for translations.

Let x be the position vector for a generic point on a body in Euclidean 3-space. With
geometric algebra, any rigid displacement f of the body can be written in the form

x → f(x) = R(x + a0)R† = RxR† + a , (A.1)

expressing it as a rotation determined by a unimodular spinor R preceded by a translation
by the vector a0 or followed by a translation by

a = Ra0R
† . (A.2)

The drawback with eqn (A.1) is that rotations combine multiplicatively and translations
combine additively. Translations as well as rotations can be expressed multiplicatively by
the following artifice.

We introduce a new algebraic entity ε, which has the null property

ε2 = 0 (A.3)

and commutes with vectors, that is,
εa = aε (A.4)

for every vector a. The translation by a can be represented by a hyperspinor Ta defined by

Ta = e
1
2aε = 1 + 1

2aε . (A.5)

Note that the power series expansion of the exponential function in eqn (A.5) is terminated
by the fact that ε2 = 0.

The rigid displacement f defined by eqn (A.1) can now be represented more compactly
by a hyperspinor F defined by

F = TaR = RTa0 . (A.6)

Assuming that
ε† = ε (A.7)

so
TaT

†
a = T 2

a = T2a = 1 + εa , (A.8)

the relation of f to F can be described by the equation

F (1 + xε)F † = 1 + f(x)ε . (A.9)

That is all there is to it!
The advantage of using hyperspinors to represent rigid displacements is that the com-

position of arbitrary displacements is reduced to multiplication. Thus, for displacements
represented by F1 and F2, the composite is given by

F3 = F2F1 . (A.10)
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Each Fi can be factored into a rotation followed by a translation, as expressed by

Fi = TaiRi . (A.11)

Accordingly, from eqn (A.10) it follows easily that

R3 = R2R1 (A.12a)

and
a3 = a2 + R2a1R

†
2 . (A.12b)

Thus, the translational and rotational factors of the composite transformation can be com-
puted directly without referring to the action on a body point x as eqn (A.1) does.

The set of all rigid displacements form a mathematical group sometimes called the Eu-
clidean group. Equation (A.9) establishes that hyperspinors defined by eqn (A.6) are repre-
sentations of the Euclidean group. [Actually, the representations are double-valued, because
eqn (A.9) is invariant under replacement of F by −F . The significance of this detail is ex-
plained in Section 5-3 of Hestenes (1986).] Equation (A.10) is the basis group property
expressed in terms of hyperspinors. The special power of this representation comes from
the structure of geometric algebra.

As an illustrative application to body kinematics, the kinematic chain determining the
vector f in eqn (7) can now be represented by a hyperspinor

F = ATa0BTb0CTc0 . (A.13)

It follows from eqn (A.9) that f is determined by

FF † = 1 + fε , (A.14)

from which eqn (7) can be derived. This suffices to show how any kinematic chain can be
represented multiplicatively by hyperspinors and related to the vectorial form.

It remains to be seen how valuable hyperspinors will be for modeling complex body
kinematics. Though some evidence has been noted in the preceding paper (Hestenes, 1992b)
that the CNS may, in effect, employ spinors in its computations, the possibility that it
also employs hyperspinors seems utterly remote. That should not gainsay, however, the
value of hyperspinors for the mathematical description and analysis of motor behavior.
Howeover, the efficiency of designs for robotic control might be optimized by incorporating
hyperspinors.

The basic eqns (A.6) and (A.9) for the hyperspinor representation of the Euclidean
group were derived by Hestenes (1991a) from a much more general mathematical content
with a richer group structure—including reflections, inversions, and dilatations in spaces
of arbitrary dimension and signature. It is shown there that the quantity in this appendix
can be interpreted geometrically as a null vector in a space of higher dimension. Though
all of that supplies a powerful mathematical perspective with many other applications, it
is not clear that it can enhance the mathematical treatment of body kinematics.
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