
Fast Support Vector Machine Training and Classification on
Graphics Processors

Bryan Catanzaro catanzar@eecs.berkeley.edu
Narayanan Sundaram narayans@eecs.berkeley.edu
Kurt Keutzer keutzer@eecs.berkeley.edu

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA

Abstract

Recent developments in programmable,
highly parallel Graphics Processing Units
(GPUs) have enabled high performance
implementations of machine learning algo-
rithms. We describe a solver for Support
Vector Machine training running on a GPU,
using Platt’s Sequential Minimal Optimiza-
tion algorithm and an adaptive first and
second order working set selection heuristic,
which achieves speedups of 9-35× over
LIBSVM running on a traditional processor.
We also present a GPU-based system for
SVM classification which achieves speedups
of 81-138× over LIBSVM (4.9-23.9× over our
own SVM classifier).

1. Introduction

Driven by the capabilities and limitations of modern
semiconductor manufacturing, the computing indus-
try is currently undergoing a massive shift towards
parallel computing (Asanović et al., 2006). This shift
brings dramatically enhanced performance to those al-
gorithms which can be adapted to parallel computers.

One set of such algorithms are those used to imple-
ment Support Vector Machines (Cortes & Vapnik,
1995). Thanks to their robust generalization perfor-
mance, SVMs have found use in diverse classification
tasks, such as image recognition, bioinformatics, and
text processing. Yet, training Support Vector Ma-
chines and using them for classification remains very
computationally intensive. Much research has been
done to accelerate training time, such as Osuna’s de-
composition approach (Osuna et al., 1997), Joachims’

Appearing in Proceedings of the 25 th International Confer-
ence on Machine Learning, Helsinki, Finland, 2008. Copy-
right 2008 by the author(s)/owner(s).

SVM light (Joachims, 1999), which introduced shrink-
ing and kernel caching, Platt’s Sequential Minimal Op-
timization (SMO) algorithm (Platt, 1999), and the
working set selection heuristics presented in LIBSVM
(Fan et al., 2005). Despite this research, SVM training
time is still significant for larger training sets.

In this paper, we show how Support Vector Machine
training and classification can be adapted to a highly
parallel, yet widely available and affordable computing
platform: the graphics processor, or more specifically,
the Nvidia GeForce 8800 GTX, and detail the perfor-
mance gains achieved.

The organization of the paper is as follows. Section 2
describes the SVM training and classification problems
briefly. Section 3 gives an overview of the architec-
tural and programming features of the GPU. Section
4 presents the details of implementation of the paral-
lel SMO approach on the GPU. Section 5 explains the
implementation details of the SVM classification prob-
lem. We present our results in Section 6 and conclude
in Section 7.

2. Support Vector Machines

We consider the standard two-class soft-margin SVM
classification problem (C-SVM), which classifies a
given data point x ∈ Rn by assigning a label y ∈
{−1, 1}.

2.1. SVM Training

Given a labeled training set consisting of a set of data
points xi, i ∈ {1, ..., l} with their accompanying la-
bels yi, i ∈ {1, ..., l}, the SVM training problem can

Fast Support Vector Machine Training and Classification on Graphics Processors

be written as the following Quadratic Program:

max
α

F (α) =
l∑
i=1

αi −
1
2
αTQα

subject to 0 ≤ αi ≤ C, ∀i ∈ 1 . . . l

yTα = 0

(1)

where xi ∈ Rn is training data point i, yi ∈ {−1, 1}
is the label attached to point xi, and αi is a set of
weights, one for each training point, which are being
optimized to determine the SVM classifier. C is a pa-
rameter which trades classifier generality for accuracy
on the training set, and Qij = yiyjΦ(xi, xj), where
Φ(xi, xj) is a kernel function. We consider the stan-
dard kernel functions shown in table 1.

Table 1. Standard Kernel Functions

Linear Φ(xi, xj) = xi · xj

Polynomial Φ(xi, xj ; a, r, d) = (axi · xj + r)d

Gaussian Φ(xi, xj ; γ) = exp
˘
−γ||xi − xj ||2

¯
Sigmoid Φ(xi, xj ; a, r) = tanh(axi · xj + r)

2.1.1. SMO Algorithm

The SVM Training problem can be solved by many
methods, each with different parallelism implications.
We have implemented the Sequential Minimal Opti-
mization algorithm, first proposed by Platt (Platt,
1999), with a hybrid working set selection heuristic
making use of the first order heuristic proposed by
(Keerthi et al., 2001) as well as the second order heuris-
tic proposed by (Fan et al., 2005).

The SMO algorithm is a specialized optimization ap-
proach for the SVM quadratic program. It takes ad-
vantage of the sparse nature of the support vector
problem and the simple nature of the constraints in
the SVM QP to reduce each optimization step to its
minimum form: updating two αi weights. The bulk of
the computation is then to update the Karush-Kuhn-
Tucker optimality conditions for the remaining set of
weights and then find the next two weights to update
in the next iteration. This is repeated until conver-
gence. We state this algorithm briefly, for reference
purposes.

The optimality conditions can be tracked through the
vector fi =

∑l
j=1 αjyjΦ(xi, xj) − yi, which is con-

structed iteratively as the algorithm progresses.

We initialize bhigh = −1, ihigh = min{i : yi = 1},
blow = 1, and ilow = min{i : yi = −1}.

Algorithm 1 Sequential Minimal Optimization
Input: training data xi, labels yi, ∀i ∈ {1..l}
Initialize: αi = 0, fi = −yi, ∀i ∈ {1..l},
Initialize: bhigh, blow, ihigh, ilow
Update αihigh

and αilow

repeat
Update fi, ∀i ∈ {1..l}
Compute: bhigh, ihigh, blow, ilow
Update αihigh

and αilow

until blow ≤ bhigh + 2τ

Updating the two alpha weights is done as follows:

α′
ilow

= αilow
+ yilow

(bhigh − blow)/η (2)
α′
ihigh

= αihigh
+ yilow

yihigh
(αilow

− α′
ilow

) (3)

where η = Φ(xihigh
, xihigh

) + Φ(xilow
, xilow

) −
2Φ(xihigh

, xilow
). To ensure that this update is fea-

sible, α′
ilow

and α′
ihigh

must be clipped to the valid
range 0 ≤ αi ≤ C.

After the α update, the optimality condition vector
f is updated for all points. This is one of the major
computational steps of the algorithm, and is done as
follows:

f ′
i = fi + (α′

ihigh
− αihigh

)yihigh
Φ(xihigh

, xi)

+ (α′
ilow
− αilow

)yilow
Φ(xilow

, xi)
(4)

We define index sets:

Ihigh = {i : 0 < αi < C} ∪ {i : yi > 0, αi = 0}
∪ {i : yi < 0, αi = C}

(5)

Ilow = {i : 0 < αi < C} ∪ {i : yi > 0, αi = C}
∪ {i : yi < 0, αi = 0}

(6)

Because of the approximate nature of the solution pro-
cess, these index sets are computed to within a toler-
ance ε, e.g. {i : ε < αi < (C − ε)}.

We measure convergence by computing bhigh =
min{fi : i ∈ Ihigh}, and blow = max{fi : i ∈ Ilow}.
The final offset for the solver is then b = (bhigh +
blow)/2.

2.1.2. Working set selection

At this point, we need to choose ihigh and ilow, which
correspond to the weights which will be changed in
the optimization step. The first order heuristic from
(Keerthi et al., 2001) chooses them as follows:

ihigh = arg min{fi : i ∈ Ihigh} (7)
ilow = arg max{fi : i ∈ Ilow} (8)

Fast Support Vector Machine Training and Classification on Graphics Processors

The second order heuristic from (Fan et al., 2005)
chooses ihigh and ilow to optimize the SVM functional
without regards to feasibility. A fully general solution
to this problem would require examining

(
l
2

)
candidate

pairs, which would be computationally intractable. To
reduce the complexity, ihigh is instead chosen as in the
first order heuristic, and then ilow is chosen to maxi-
mally improve the objective function after αihigh

and
αilow

have been optimized, making sure to progress to-
wards the optimum from problem (1). More explicitly:

ihigh = arg min{fi : i ∈ Ihigh} (9)
ilow = arg max{∆Fi(α) : i ∈ Ilow, fihigh

< fi} (10)

To do this, after choosing ihigh, we compute for all
i ∈ {1..l}

βi = fihigh
− fi (11)

ηi = Φ(xihigh
, xihigh

) + Φ(xi, xi)− 2Φ(xihigh
, xi)

(12)

∆Fi(α) = β2
i /ηi (13)

We then find the maximum change in the objective
function (∆Fi) over all valid points (i ∈ Ilow) for which
we are guaranteed to progress towards the constrained
optimum (fihigh

< fi).

2.1.3. Adaptive heuristic

Computationally, the second order heuristic requires
significantly more work than the first order heuristic
due to extra kernel function evaluations. In our GPU
implementation, the geometric mean of iteration time
over our benchmark set increased by 1.9× compared
to the first order heuristic. On some benchmarks, the
total number of iterations is decreased enough to pro-
vide a significant speedup, but on others, the second
order heuristic slows computation down considerably.

To overcome this, we implemented an adaptive heuris-
tic that chooses between the two selection heuristics
dynamically, with no input or tuning from the user.
The adaptive heuristic periodically samples progress
towards convergence as a function of time using both
heuristics, then chooses the more productive heuristic.

This sampling occurs every l/10 iterations, and dur-
ing each sample, the heuristic under test is executed
for two phases of 64 iterations each. The average op-
timality gap in each of these phases is computed, and
then the rate of progress is estimated by dividing the
change in the optimality gap over the two phases by
the time it has taken to execute them. The same sam-
pling process is then performed with the other heuris-
tic, and the best heuristic is then used until the next
sampling period.

2.2. SVM Classification

The SVM classification problem is as follows: for each
data point z which should be classified, compute

ẑ = sgn

{
b+

l∑
i=1

yiαiΦ(xi, z)

}
(14)

where z ∈ Rn is a point which needs to be classified,
and all other variables remain as previously defined.

From the classification problem definition, it follows
immediately that the decision surface is defined by ref-
erencing a subset of the training data, or more specif-
ically, those training data points for which the cor-
responding αi > 0. Such points are called support
vectors.

Generally, we classify not just one point, but a set
of points. We exploit this for better performance, as
explained in Section 5.

3. Graphics Processors

Graphics processors are currently transitioning from
their initial role as specialized accelerators for trian-
gle rasterization to general purpose engines for high
throughput floating-point computation. Because they
still service the large gaming industry, they are ubiq-
uitous and relatively inexpensive.

GPU architectures are specialized for compute-
intensive, memory-intensive, highly-parallel computa-
tion, and therefore are designed such that more re-
sources are devoted to data processing than caching or
control flow. State of the art GPUs provide up to an
order of magnitude more peak IEEE single-precision
floating-point than their CPU counterparts. Addition-
ally, GPUs have much more aggressive memory sub-
systems, typically endowed with more than 10x higher
memory bandwidth than a CPU. Peak performance is
usually impossible to achieve on general purpose ap-
plications, yet capturing even a fraction of peak per-
formance yields significant speedup.

GPU performance is dependent on finding high degrees
of parallelism: a typical computation running on the
GPU must express thousands of threads in order to
effectively use the hardware capabilities. As such, we
consider it an example of future “many-core” process-
ing (Asanović et al., 2006). Algorithms for machine
learning applications will need to consider such par-
allelism in order to utilize many-core processors. Ap-
plications which do not express parallelism will not
continue improving their performance when run on
newer computing platforms at the rates we have en-
joyed in the past. Therefore, finding large scale par-

Fast Support Vector Machine Training and Classification on Graphics Processors

allelism is important for compute performance in the
future. Programming for GPUs is then indicative of
the future many-core programming experience.

3.1. Nvidia GeForce 8800 GTX

In this project, we employ the NVIDIA GeForce 8800
GTX GPU, which is an instance of the G80 GPU ar-
chitecture, and is a standard GPU widely available
on the market. Pertinent facts about the GPU plat-
form can be found in table 2. We refer the reader to
the Nvidia CUDA reference manual for more details
(Nvidia, 2007).

Table 2. Nvidia GeForce 8800 GTX Parameters

of stream processors 128
Peak general purpose IEEE SP 346 GFlops
Multiprocessor local store size 16 kB
Clock rate 1.35 GHz
Memory capacity 768 MB
Memory bandwidth 86.4 GB/s
CPU←→GPU bandwidth 3.2 Gbit/s

3.2. CUDA

Nvidia provides a programming environment for its
GPUs called the Compute Unified Device Architecture
(CUDA). The user codes in annotated C++, acceler-
ating compute intensive portions of the application by
executing them on the GPU.

!"#$

!%&'(%)*+,&"-

.%&/0)1

2&/(%)34&"+

5+6#74+"7

89"+($)1

5+6#74+"7

89"+($)!:::

.%&/0)!

2&/(%)34&"+

5+6#74+"7

89"+($)1

5+6#74+"7

89"+($)!::::::

Figure 1. Logical organization of the GeForce 8800

Figure 1 illustrates how the GPU appears to the pro-
grammer. The programmer organizes the computa-
tion into grids, which are organized as a set of thread
blocks. The grids run sequentially on the GPU, mean-
ing that all computation in the grid must finish before
another grid is invoked. As mentioned, grids contain
thread blocks, which are batches of threads that exe-
cute together, sharing local memories and synchroniz-
ing at programmer specified barriers. A maximum of
512 threads can comprise a thread block, which puts a

limit on the scope of synchronization and communica-
tion in the computation. However, enormous numbers
of blocks can be launched in parallel in the grid, so
that the total number of threads that can be launched
in parallel is very high. In practice, we need a large
number of thread blocks to ensure that the compute
power of the GPU is efficiently utilized.

4. SVM Training Implementation

Since GPUs need a large number of threads to effi-
ciently exploit parallelism, we create one thread for
every data point in the training set. For the first
phase of the computation, each thread computes f ′

from equation (4). We then apply a working set selec-
tion heuristic to select the next points which will be
optimized. The details are explained in the following
section.

4.1. Map Reduce

At least since the LISP programming language, pro-
grammers have been mapping independent computa-
tions onto partitioned data sets, using reduce oper-
ations to summarize the results. Recently, Google
proposed a Map Reduce variant for processing large
datasets on compute clusters (Dean & Ghemawat,
2004). This algorithmic pattern is very useful for ex-
tracting parallelism, since it is simple to understand,
and maps well to parallel hardware, given the inherent
parallelism in the map stage of the computation.

The Map Reduce pattern has been shown to be useful
for many machine learning applications (Chu et al.,
2007), and is a natural fit for our SVM training algo-
rithm. For the first order heuristic, the computation
of f ′ in (4) is the map function, and the search for
blow, bhigh, ilow and ihigh is the reduction operation.
For the second order heuristic, there are two Map Re-
duce stages: one to compute f ′, bhigh and ihigh, and
another where the map stage computes ∆Fi for all
points, and the reduce stage computes blow and ilow.
In order to extract maximum parallelism, we struc-
ture the reductions as a tree, where the number of
elements still participating in each reduction halves at
each level.

Because the CUDA programming model has strict lim-
itations on synchronization and communication be-
tween thread blocks, we have organized the reduction
in two phases, as shown in figure 2. The first phase
does the map computation, as well as a local reduce
within a thread block. The second phase finishes the
global reduction. Each phase of this process is imple-
mented as a separate call to the GPU.

Fast Support Vector Machine Training and Classification on Graphics Processors

Map +

Local

Reduce

Global

Reduce

Figure 2. Structuring the Map Reduce

4.2. Implementation Details

4.2.1. Caching

Since evaluating the kernel function Φ(·) is the dom-
inant part of the computation, it is useful to cache
as much as possible from the matrix of kernel func-
tion evaluations Kij = Φ(xi, xj) (Joachims, 1999). We
compute rows of this matrix on the fly, as needed by
the algorithm, and cache them in the available memory
on the GPU.

When updating the vector f , we need access to two
rows of K, since we have changed exactly two entries
in α. In our system, the CPU checks to see which of
these two rows, if any, are present in the cache. If a row
is not present, the CPU voids the least recently used
row of the cache, and assigns it to the new row which
is needed. For the rows which hit in the cache, the
GPU avoids doing the kernel evaluations. Otherwise,
the GPU writes out the appropriate row or rows after
computing the kernel values. When using the second
order heuristic, the computation of ∆F references the
row ofK corresponding to ihigh, which guarantees that
the next update of f will have a cache hit for its access
to the same row.

4.2.2. Data Movement

Programming the GPU requires manually copying
data from the host computer to the GPU and vice
versa, and it also requires manually copying data from
the GPU’s global memory to the fast local stores. As
mentioned previously, if the cache does not contain a
particular row of K corresponding to the point xj , that
row will need to be generated, which means that we
need to compute Φ(xi, xj) ∀i ∈ 1..l. Since the vector
xj is shared between all computations, we load it into
the GPU’s local store. This is key to performance,
since accessing the local store is orders of magnitude
faster than accessing the global memory.

4.3. Related Work

There have been previous attempts to parallelize the
SVM training problem. The most similar to ours is
(Cao et al., 2006), which parallelizes the SMO algo-
rithm on a cluster of computers using MPI. Both our
approach and their approach use the concurrency in-
herent in the KKT condition updates as the major
source of parallelism. However, in terms of imple-
mentation, GPUs present a completely different model
than clusters, and hence the amount of parallelism ex-
ploited, such as the number of threads, granularity of
computation per thread, memory access patterns, and
data partitioning are very different. We also imple-
ment more sophisticated working set selection heuris-
tics.

Many other approaches for parallelizing SVM train-
ing have been presented. The cascade SVM (Graf
et al., 2005) is another proposed method for paralleliz-
ing SVM training on clusters. It uses a method of di-
vide and conquer to solve large SVM problems. (Zanni
et al., 2006) parallelize the underlying QP solver us-
ing Parallel Gradient Projection Technique. Work has
been done on using a parallel Interior Point Method for
solving the SVM training problem (Wu et al., 2006).
(Collobert et al., 2002) proposes a method where the
several smaller SVMs are trained in a parallel fashion
and their outputs weighted using a Artificial Neural
Network. (Ferreira et al., 2006) implement a gradi-
ent based solution for SVM training, which relies on
data parallelism in computing the gradient of the ob-
jective function for an unconstrained QP optimization
at its core. Some of these techniques, for example, the
training set decomposition approaches like the Cas-
cade SVM are orthogonal to the work we describe, and
could be applied to our solver. (Bottou et al., 2007)
gives an extensive overview of parallel SVM implemen-
tations. We implemented the parallel SMO training
algorithm because of its relative simplicity, yet high
performance and robust convergence characteristics.

5. SVM Classification Implementation

We approached the SVM classification problem by
making use of the Map Reduce computations as well
as vendor supplied Basic Linear Algebra Subroutines
- specifically, the Matrix Matrix Multiplication rou-
tine (SGEMM), which calculates C ′ = αAB + βC,
for matrices A, B, and C and scalars α and β. For
the Linear, Polynomial, and Sigmoid kernels, calcu-
lating the classification value involves finding the dot
product between all test points and the support vec-
tors, which is done through SGEMM. For the Gaus-
sian kernel, we use the simple identity ||x − y||2 =

Fast Support Vector Machine Training and Classification on Graphics Processors

x·x+y·y−2x·y to recast the computation into a Matrix
Matrix multiplication, where the SGEMM computes
Dij = −γ||zi − xj ||2 = 2γ(zi · xj)− γ(zi · zi + xj · xj),
for a set of unknown points z and a set of support vec-
tors x. We then apply a map reduce computation to
combine the computed D values to get the final result.

Continuing the Gaussian example, the map function
exponentiates Dij element wise, multiplies each col-
umn of the resulting matrix by the appropriate yjαj .
The reduce function sums the rows of the matrix and
adds b to obtain the final classification for each data
point as given by equation (14). Other kernels require
similar map reduce calculations to finish the classifica-
tion.

6. Results

The SMO implementation on the GPU is compared
with LIBSVM, as LIBSVM uses Sequential Minimal Op-
timization for SVM training. We used the Gaussian
kernel in all of our experiments, since it is widely em-
ployed.

6.1. Training

We tested the performance of our GPU implementa-
tion versus LIBSVM on the datasets detailed in tables
3 and 4.

Table 3. Datasets - References and training parameters

Dataset C γ

Adult (Asuncion & Newman, 2007) 100 0.5
Web (Platt, 1999) 64 7.8125
MNIST (LeCun et al., 1998) 10 0.125
USPS (Hull, 1994) 10 2−8

Forest (Asuncion & Newman, 2007) 10 0.125
Face (Rowley et al., 1998) 10 0.125

Table 4. Dataset Size

Dataset # Points # Dimensions

Adult 32,561 123
Web 49,749 300

MNIST 60,000 784
USPS 7,291 256
Forest 561,012 54
Face 6,977 381

The sizes of the datasets are given in table 4. Refer-
ences for the datasets used and the (C, γ) values used
for SVM training are provided in table 3.

We ran LIBSVM on an Intel Core 2 Duo 2.66 GHz pro-
cessor, and gave LIBSVM a cache size of 650 MB, which
is larger than our GPU implementation was allowed.
CPU-GPU communication overhead was included in

the solver runtime, but file I/O time was excluded for
both our solver and LIBSVM. Table 5 shows results
from our solver. File I/O varies from 1.2 seconds for
USPS to about 12 seconds for Forest dataset. The
CPU - GPU data transfer overhead was also very low.
The time taken to transfer the training data to the
GPU and copy the results back was less than 0.6 sec-
onds, even for our largest dataset (Forest). Since any
two solvers give slightly different answers on the same
optimization problem, due to the inexact nature of the
optimization process, we show the number of support
vectors returned by the two solvers as well as how close
the final values of b were for the GPU solver and LIB-
SVM, which were both run with the same tolerance
value τ = 0.001. As shown in the table, the deviation
in number of support vectors between the two solvers
is less than 2%, and the deviation in the offset b is
always less than 0.1%. Our solver provides equivalent
accuracy to the LIBSVM solver, which will be shown
again in the classification results section.

Table 5. SVM Training Convergence Comparison

Dataset Number of SVs Difference
GPU LIBSVM in b (%)

Adaptive

Adult 18,674 19,058 -0.004
Web 35,220 35,232 -0.01
MNIST 43,730 43,756 -0.04
USPS 684 684 0.07
Forest 270,351 270,311 0.07
Face 3,313 3,322 0.01

Table 6 contains performance results for the two
solvers. We see speedups in all cases from 9× to 35×.
For reference, we have shown results for the solvers
using both heuristics statically. Examining the data
shows that the adaptive heuristic performs robustly,
surpassing or coming close to the performance of the
best static heuristic on all benchmarks.

6.2. Classification

Results for our classifier are presented in table 8.
We achieve 81 − 138× speedup over LibSVM on the
datasets shown. As with the solver, file I/O times
were excluded from overall runtime. File I/O times
vary from 0.4 seconds for Adult dataset to about 6
seconds for MNIST dataset.

6.2.1. Optimizations to CPU based classifier

LIBSVM classifies data points serially. This effectively
precludes data locality optimizations and produces sig-
nificant slowdown. It also represents data in a sparse
format, which can cause overhead as well.

Fast Support Vector Machine Training and Classification on Graphics Processors

Table 6. SVM Training Results

Dataset GPU 1st Order GPU 2nd Order GPU Adaptive LIBSVM Speedup (×)
Iter. Time (s) Iter. Time (s) Iter. Time (s) Iter. Time (s) (Adaptive)

Adult 114,985 30.15 40,044 30.46 64,446 26.92 43,735 550.2 20.4
Web 79,749 174.17 81,498 290.23 70,686 163.89 85,299 2422.46 14.8
MNIST 68,055 475.42 67,731 864.46 68,113 483.07 76,385 16965.79 35.1
USPS 6,949 0.596 3,730 0.546 4,734 0.576 4,614 5.092 8.8
Forest 2,070,867 4571.17 236,601 1441.08 450,506 2023.24 275,516 66523.53 32.9
Face 6,044 1.30 4,876 1.30 5,535 1.32 5,342 27.61 20.8

To optimize the CPU classifier, we performed the fol-
lowing:

1. We changed the data structure used for storing
the support vectors and test vectors from a sparse
indexed set to a dense matrix.

2. To maximize performance, we used BLAS rou-
tines from the Intel Math Kernel Library to per-
form operations similar to those mentioned in Sec-
tion 5.

3. Wherever possible, loops were parallelized (2-way
for the dual-core machine) using OpenMP.

These optimizations improved the classification speed
on the CPU by a factor of 3.4 − 28.3×. The speedup
numbers for the different datasets are shown in table 8.
It should be noted that the GPU version is better than
the optimized CPU versions by a factor of 4.9−23.9×.

For some insight into these results, we note that the op-
timized CPU classifier performs best on problems with
a large number of input space dimensions, which helps
make the SVM classification process compute bound.
For problems with a small number of input space di-
mensions, the SVM classification process is memory
bound, meaning it is limited by memory bandwidth.
Since the GPU has much higher memory bandwidth,
as noted in section 3, it is even more attractive for such
problems.

We tested the combined SVM training-classification
process for accuracy by using the SVM classifier pro-
duced by the GPU solver with the GPU classification
routine, and used the SVM classifier provided by LIB-
SVM’s solver to perform classification with LIBSVM.
Thus, the accuracy of the classification results pre-
sented in table 7 reflect the overall accuracy of the
GPU solver and GPU classifier system. The results
are identical, which shows that our GPU based SVM
system is as accurate as traditional CPU based meth-
ods.

Table 7. Accuracy of GPU SVM classification vs. LIBSVM

GPU LIBSVM
Dataset Accuracy Accuracy

Adult 6619/8000 6619/8000
Web 3920/4000 3920/4000
MNIST 2400/2500 2400/2500
USPS 1948/2007 1948/2007
Face 23665/24045 23665/24045

7. Conclusion

This work has demonstrated the utility of graphics
processors for SVM classification and training. Train-
ing time is reduced by 9− 35×, and classification time
is reduced by 81− 138× compared to LIBSVM. These
kinds of performance improvements can change the
scope of SVM problems which are routinely solved,
increasing the applicability of SVMs to difficult clas-
sification problems. For example, finding a classifier
for an input data set with almost 600000 data points
and 50 dimensions takes only 34 minutes on the GPU,
compared with over 18 hours on the CPU.

The GPU is a very low cost way to achieve such high
performance: the GeForce 8800 GTX fits into any
modern desktop machine, and currently costs $300.
Problems which used to require a compute cluster can
now be solved on one’s own desktop. New machine
learning algorithms that can take advantage of this
kind of performance, by expressing parallelism widely,
will provide compelling benefits on future many-core
platforms.

Acknowledgements

The authors acknowledge the support of the Gigascale
Systems Research Center, one of five research centers
funded under the Focus Center Research Program, a
Semiconductor Research Corporation program. Bryan
Catanzaro is also supported by a National Science
Foundation Graduate Research Fellowship. The au-
thors thank the anonymous reviewers for their com-
ments and suggestions.

Fast Support Vector Machine Training and Classification on Graphics Processors

Table 8. Performance of GPU SVM classifier compared to LIBSVM and Optimized CPU classifier

LibSVM CPU Optimized classifier GPU Classifier
Dataset Time (s) Time (s) Speedup (×) compared Time (s) Speedup (×) compared Speedup (×) compared

to LIBSVM to LibSVM to CPU optimized code

Adult 61.307 7.476 8.2 0.575 106.6 13.0
Web 106.835 15.733 6.8 1.063 100.5 14.8
MNIST 269.880 9.522 28.3 1.951 138.3 4.9
USPS 0.777 0.229 3.4 0.00958 81.1 23.9
Face 88.835 5.191 17.1 0.705 126.0 7.4

References

Asanović, K., Bodik, R., Catanzaro, B. C., Gebis, J. J.,
Husbands, P., Keutzer, K., Patterson, D. A., Plishker,
W. L., Shalf, J., Williams, S. W., & Yelick, K. A.
(2006). The Landscape of Parallel Computing Research:
A View from Berkeley (Technical Report UCB/EECS-
2006-183). EECS Department, University of California,
Berkeley.

Asuncion, A., & Newman, D. (2007). UCI machine learning
repository.

Bottou, L., Chapelle, O., DeCoste, D., & Weston, J.
(2007). Large-scale kernel machines. The MIT Press.

Cao, L., Keerthi, S., Ong, C.-J., Zhang, J., Periyathamby,
U., Fu, X. J., & Lee, H. (2006). Parallel sequential
minimal optimization for the training of support vec-
tor machines. IEEE Transactions on Neural Networks,
17, 1039–1049.

Chu, C.-T., Kim, S. K., Lin, Y.-A., Yu, Y., Bradski, G.,
Ng, A. Y., & Olukotun, K. (2007). Map-reduce for ma-
chine learning on multicore. In B. Schölkopf, J. Platt
and T. Hoffman (Eds.), Advances in neural information
processing systems 19, 281–288. Cambridge, MA: MIT
Press.

Collobert, R., Bengio, S., & Bengio, Y. (2002). A parallel
mixture of svms for very large scale problems. Neural
Computation, 14, 1105–1114.

Cortes, C., & Vapnik, V. (1995). Support-vector networks.
Mach. Learn., 20, 273–297.

Dean, J., & Ghemawat, S. (2004). Mapreduce: simplified
data processing on large clusters. OSDI’04: Proceedings
of the 6th Symposium on Operating Systems Design &
Implementation. Berkeley, CA, USA: USENIX Associa-
tion.

Fan, R.-E., Chen, P.-H., & Lin, C.-J. (2005). Working
set selection using second order information for training
support vector machines. J. Mach. Learn. Res., 6, 1889–
1918.

Ferreira, L. V., Kaskurewicz, E., & Bhaya, A. (2006). Par-
allel implementation of gradient-based neural networks
for svm training. International Joint Conference on
Neural Networks.

Graf, H. P., Cosatto, E., Bottou, L., Dourdanovic, I., &
Vapnik, V. (2005). Parallel support vector machines:

The cascade svm. In L. K. Saul, Y. Weiss and L. Bot-
tou (Eds.), Advances in neural information processing
systems 17, 521–528. Cambridge, MA: MIT Press.

Hull, J. J. (1994). A database for handwritten text recogni-
tion research. IEEE Trans. Pattern Anal. Mach. Intell.,
16, 550–554.

Joachims, T. (1999). Making large-scale support vector
machine learning practical. In Advances in kernel meth-
ods: support vector learning. Cambridge, MA, USA:
MIT Press.

Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., &
Murthy, K. R. K. (2001). Improvements to Platt’s SMO
Algorithm for SVM Classifier Design. Neural Comput.,
13, 637–649.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86, 2278–2324.

Nvidia (2007). Nvidia CUDA. http://nvidia.com/cuda.

Osuna, E., Freund, R., & Girosi, F. (1997). An improved
training algorithm for support vector machines. Neural
Networks for Signal Processing [1997] VII. Proceedings
of the 1997 IEEE Workshop, 276–285.

Platt, J. C. (1999). Fast training of support vector ma-
chines using sequential minimal optimization. In Ad-
vances in kernel methods: support vector learning, 185–
208. Cambridge, MA, USA: MIT Press.

Rowley, H. A., Baluja, S., & Kanade, T. (1998). Neu-
ral network-based face detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20, 23–38.

Wu, G., Chang, E., Chen, Y. K., & Hughes, C. (2006). In-
cremental approximate matrix factorization for speed-
ing up support vector machines. KDD ’06: Proceed-
ings of the 12th ACM SIGKDD international conference
on Knowledge discovery and data mining (pp. 760–766).
New York, NY, USA: ACM Press.

Zanni, L., Serafini, T., & Zanghirati, G. (2006). Paral-
lel software for training large scale support vector ma-
chines on multiprocessor systems. J. Mach. Learn. Res.,
7, 1467–1492.

