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1 Introduction

An important challenge in outdoor mobile robotic perception is maintaining terrain classification
performance throughout the extremely variable conditions that we may wish a robot to operate
under. Outdoor robots operate in a series of “environments” that consist of diverse terrain,
vegetation, weather, and lighting conditions. A physical robot does not randomly jump between
environments; typically it will operate for long stretches of time in one particular environment,
making it advantageous to adapt the robot’s performance to its current environment.

We apply and adapt recent advances in learning from multiple sources [1, 2] to the mobile robot
navigation problem. Specifically, we examine a terrain classification problem that is an important
stage in many mobile robot navigation systems, including the UPI/Crusher autonomy system we
have developed. Our extensive field experiments demonstrate large differences in the appearance of
terrain to cameras and Lidar between environments, making it necessary to treat each environment
as a separate data source. We demonstrate significant improvements in classification and the
resulting navigation performance by compensating for covariate shift between the environments
where training data was collected and the current test environment using unlabeled data from the
robot’s current locale.

2 Terrain Classification Application

The “Crusher” robot is a capable platform for research in off-road autonomous driving. The
high-level task that the robot is designed to perform is driving from its current location to an
arbitrary goal location defined by GPS coordinates (Figure 2). The task of the perception system
is to predict a safe and efficient path (shown as the green dotted line) from the current location of
the robot to the goal, using the data from a suite of onboard cameras and laser scanners to avoid
obstacles. This task is accomplished by first classifying each 3-D voxel of space around the robot
into “ground”, “vegetation”, or “obstacle” terrain classes, and then computing a traversal cost for
each 2-D cell as a function of the classification of the voxels contained in each column of the map
as well as the local shape of the underlying ground supporting surface.

The “Crusher” robot has operated in many different terrain types and seasonal conditions. In
each environment, sensor data has been collected and labeled to make sure that the perception
system is operating correctly. As shown by the randomly selected training set images in Figure
1, over the life of the program this has resulted in data from a diverse set of terrain, seasons and
weather/lighting conditions. After the robot had operated in a few different environments, it was
observed that training the voxel classifier on labeled data collected from certain environments
was hurting performance on other environments, and it became necessary to selectively drop
some training data from the training set in order to improve voxel classification accuracy on the
environment in which the robot was currently operating.

Table 1 displays the difference in voxel classification accuracy between using a labeled training
set drawn from the other environments the robot has operated in and one drawn from the current
environment the robot is operating in. It shows that in many cases the performance of the voxel
classifier on a particular environment is significantly handicapped by training on labeled data from
the other environments.



Figure 1: Randomly-sampled images from the the labeled voxel data-set collected for the UPI program reflect
the wide variety in environments in which the Crusher robot has operated. Different regions of the country, and
even different times of day, can produce substantially different distributions within voxels. As shown in Table
1, minimizing training error over all the environments is not as effective as training only on environments
similar to the one the robot is currently operating in.

Environment Training Set Drawn From:

Name Location Season Terrain Others Current
Taylor PA Winter & Snow | Woods & Grassland | 71.8% 92.0%
Gascola PA Summer Woods & Grassland | 70.3% 94.3%
Ft. Bliss TX Winter Scrubland 74.1% 98.5%
Sommerset PA Spring Woods & Grassland | 93.0% 95.5%
Ft. Drum NY Summer Woods & Grassland | 97.6% 98.7%
Gascola PA Winter Woods & Grassland | 94.7% 95.6%
Willow St. PA Fall Urban 88.3% 98.9%

Table 1: It is possible to dramatically improve the accuracy of the voxel classifier component of Crusher’s
perception system by training its parameters only on data that is relevant to the environment the robot is
currently operating in. This table compares classification accuracy in several different environments when the
voxel classifier training set is drawn from the current environment with the accuracy when the training set is
drawn from other environments.

The difference between environments can also be seen directly in terms of the voxel feature
vectors. Figure 2 shows the result of projecting the feature vector associated with each labeled voxel
into the most discriminative 2-D subspace, as computed by Linear Discriminants Analysis (LDA)
to separate “road”, “vegetation” and “obstacle” classes. Each plot shows the labeled voxel data
from a particular environment as points colored by class. The decision boundaries of the optimal
maxent classifier for each environment are shown as black lines. These optimal decision boundaries
can change substantially between environments.
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Figure 2: (Left) Mobile robot Navigation problem. The “Crusher” robot uses a variety of onboard sensors
to plan a safe path (green line) to a goal location through hazardous off-road environments (red X). (Right)
Different environments produce voxel class distributions, with substantially different optimal classification
boundaries. Shown is the distribution of labeled data for 7 environments in the training set that had a good mix
of "rigid” (road & obstacle) and “non-rigid” (vegetation) voxels. Labeled voxels are ploted as colored points
in the most discriminative 2-D subspace (as computed by multi-class LDA across the entire training set). The
optimal classification boundaries in each case are denoted by black lines.

2.1 Automatic Adaptation From Unlabeled Data

The environmental variability faced in problems such as outdoor autonomous driving can be
mitigated somewhat by taking advantage of the stream of unlabeled data the robot receives from



its current environment. With certain assumptions, this unlabeled data can be used to allow the
robot to automatically adapt its training set to match a test environment without requiring human
intervention to label additional examples or decide which examples should be dropped from the
training set. The unlabeled examples collected continuously by the robot are automatically used to
estimate an importance weight for each example in the training set that will cause the training set to
better approximate the test environment. The classifier is then retrained to minimize error over this
re-weighted version of the training set. This approach is an example of importance sampling and
is often referred to as adapting to “covariate shift” [1], and bears similarities to methods such as [3]
which use unlabeled data to train a simple classifier that is locally accurate in a complex, non-linear
space. The joint distribution in the labeled test set, P*(Y, X, test) is effectively approximated
with an importance weighted version of the training set, where the weights are chosen by the
ratio of generative density models of P(X). See [4, 1] for details on this procedure as well as the
assumptions necessary for its validity.

2.2 Training Classifiers Instead of Estimating Densities

An “importance weight”, w; = %, for each example can be calculated by estimating the
density of unlabeled samples from the training and test environments. However, density estimation
is difficult to do accurately in high dimensional spaces, and estimating two high-dimensional
distributions in order to compute the scalar weight for each data point is an unnecessarily difficult
estimation problem. An alternative approach introduced in [2] instead estimates a single conditional
distribution, p(train|X), with a probabilistic classifier such as logistic regression. Effectively,
instead of estimating the probability density function of feature vectors in the training and testing
sets independently, we can train a logistic regression classifier to predict if a particular feature
vector came from the test or the training set.

3 Experiments

Terrain classification forms a key component of Crusher’s perception system. In this task features
computed from camera and laser data of a local region of 3-D space (voxel) are classified into a
rigid or a non-rigid terrain type. For certain parts of the system the rigid terrain type is subdivided
into “road” voxels believed to be the ground surface and “obstacle” voxels believed to be above
the ground surface. During the course of the UPI program, a large dataset of labeled voxels was
collected from a variety of different terrain and seasonal conditions. From this data-set seven
environments were defined that each had a mix of labeled rigid and non-rigid voxels. For each
adaptation experiments, one of the seven environments was used as a test set and the other N-1
environments were used to form a training set. For computational efficiency the test environment
was randomly subsampled to 40,000 voxels and the training environment was subsampled to
360,000 voxels. Equally sized unlabeled data samples were also collected by randomly sampling
from the sensor logs that the labeled samples were drawn from.

3.1 Voxel Classification Results

The classification-based reweighting technique provided a performance boost for most of the
environments tested. The results on each of the seven environments are shown in Table 2, and
graphically in Figure 3. In all environments except the “Willow Street” test site, adaptation with the
classifier-based method improved performance. Estimating the probability densities with Gaussian
Mixture Models (GMMs) was not as effective on average, and fitting the GMMs proved to be more
computationally intensive, and less beneficial than training logistic regression classifiers to estimate
the data weights.

As the goal of domain adaptation is to approximate the test set with a weighted version of the train-
ing set, Table 2 also lists the “optimal” classification results of directly training on the test set. These
results were included to show that due to the limited capacity of the linear classifier used for these
experiments and the significant amount of label noise that exists in the training set (due to effects like
vehicle pose error and labeling mistakes), it is not possible to achieve 100% classification accuracy
even by training directly on the test set. Over all environments, the Logistic Regression (LR) classi-
fier based algorithm achieved an average of 20% of the gap between the training set and the optimal
results. The GMM based algorithm improved on some environments but was harmful on others.



Environment Original | GMM LR Optimal
Taylor Winter Snow | 72.0% | 69.5% | 82.9% | 92.1%
Gascola Summer 70.4% | 70.2% | 74.0% | 94.5%
Bliss Winter T43% | 752% | 76.5% | 98.5%
Sommerset Spring 92.9% | 92.9% | 93.4% | 95.5%
Drum summer 97.6% | 97.7% | 98.0% | 98.7%
Gascola Winter 94.6% | 94.6% | 94.9% | 95.5%
Willow Street 882% | 89.1% | 87.3% | 98.9%
Mean 843% | 842% | 86.7% | 96.2%

Table 2: Adaptation Performance on each environment. Environments which are poorly matched to the full
training set show the greatest gains. The left column is the test set performance of classifiers trained on the full
training set. Estimating importance weights with logistic regression (LR) proved better on most environments
than GMM-based density estimation. In all cases except environment 7, adaptation from unlabeled data using
the classifier-based method improved classification performance. The right column shows the result of training
directly on the test set for each environment, and provides an upper bound on the performance of any domain
adaptation algorithm. The regularization parameter was selected by leave-one-out cross validation.
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Figure 3: Performance on most environments benefitted from reweighting. The top bar in each group is the
performance of the classifier trained on the original training set and tested on this environment. The middle
bars shows the performance after adaptation with both approaches to importance weight estimation. Finally,
the bottom bar shows the “optimal” performance possible if the classifier were trained on the actual test set.

3.2 System-level Improvement

A preliminary experiment was also conducted on the impact of this algorithm on final-system
performance, which showed promising performance improvements. The robot traversed a 1.5 Km
course twice, once with classifiers trained from the original labeled training set, and again with
classifiers trained from an adapted training set. The adaptation algorithm made the robot more
willing to call dead November vegetation non-rigid, and led to faster speeds and a more efficient
route which shaved 13% off of the total run. However due to limited robot availability further
system-level experiments were not possible.
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