
Premonoidal categories and a graphical view of
programs

Alan Jeffrey
School of Cognitive and Computing Sciences

University of Sussex
Brighton BN1 9QH

UK
alanje@cogs.susx.ac.uk

December 1997

f

Abstract

This paper describes the relationship between two different presentations of the
semantics of programs:

� Mixed data and control flow graphs are commonly used in software engi-
neering as a semi-formal notation for describing and analysing algorithms.

� Category theory is used as an abstract presentation of the mathematical struc-
tures used to give a formal semantics to programs.

In this paper, we formalize an appropriate notion of flow graph, and show that
acyclic flow graphs form the initial symmetric premonoidal category. Thus, giving
a semantics for a programming language in flow graphs uniquely determines a
semantics in any symmetric premonoidal category.

For languages with recursive definitions, we show that cyclic flow graphs form
the initial partially traced cartesian category.

Finally, we conclude with some more speculative work, showing how closed
structure (to represent higher-order functions) or two-categorical structure (to rep-
resent operational semantics) might be included in this graphical framework.

The semantics has been implemented as a Java applet, which takes a program
text and draws the corresponding flow graph (all the diagrams in this paper are
drawn using this applet).

1

The categorical presentation is based on Power and Robinson’s premonoidal
categories and Joyal, Street and Verity’s monoidal traced categories, and uses sim-
ilar techniques to Hasegawa’s semantics for recursive declarations. The closed and
two-categorical structure is related to Gardner’s name-free presentation of Milner’s
action calculi.

1 Introduction

Two techniques for giving semantics of programs are graphically using data flow and
control flow diagrams, or categorically using mathematical structures such as monads or
premonoidal categories. Usually, the graphical presentation is semi-formal, and forms
part of the dataflow-oriented design process taught to most computer science undergrad-
uates, whereas the categorical presentation is used in giving formal semantics, and is the
subject of specialist research.

In this paper, we shall give a formalization of flow graphs, and show how this can be
used to give a categorical semantics in a framework based on Power and Robinson’s
premonoidal categories and Joyal, Street and Verity’s traced monoidal categories.

As an example of the flow graphs described in this paper, consider a nondeterministic
programming language with a single imperative integer variable. Such a programming
language contains expressions which can be drawn as data flow diagrams such as:

1

1
+

1

1
+

*
1

1
+ * 1

+

+
* 1 + *

We can also add nondeterminism to the language by adding a node representing nonde-
terministic choice, for example:

1

2
/

1

2
/

*
1

2
/ *

Note that nondeterministic choice nodes are drawn differently to other nodes. This is
because other nodes can be duplicated or discarded (for example all of the first examples
are considered equal) but nondeterminism nodes cannot (for example the two nondeter-
ministic expressions are not equal since the former might evaluate to 2 where the latter
can only evaluate to 1 or 4). We shall call nodes which can be duplicated and discarded
value nodes, and nodes which cannot central nodes (the terminology will be explained
below).

2

We can add imperative statements to set an integer variable and get its value, but these
statements cannot be drawn in the same fashion as the others, since order of evaluation
is important for imperative expressions. For example, if we were to make imperative
expressions central, then the following diagrams would be graph isomorphic:

get 1 set 1 set get

To distinguish graphs such as these, we add a new class of process nodes, and a new
class of control arcs. The control arcs allow us to specify the causal order of a program,
for example we can now distinguish between the graphs:

get

1
set 1

set get

We can add higher-order functions to this graphical language by allowing function nodes
which contain subgraphs, for example a function to increment the variable is:

get

1
+

set

Function application is denoted using application nodes, for example applying the in-
crement function twice is drawn:

get

1
+

set
@

@

These graphs are viewed up to an equivalence where:

get

1
+

set
@

@

=
get

1
+

set

get

1
+

set
@

(Beta)

=
get

1
+

set
get

1
+

set

get

1
+

set (Beta)

=
get

1
+

set
get

1
+

set (Garbage collection)

For recursive function declarations we allow cyclic graphs, for example a factorial func-
tion is:

3

1 - @
* 1 0

==

if

We can give a denotational semantics for this language using domains:

� value expressions can be given a semantics in the category of complete partial
orders (not necessarily with bottom) Cpo.

� central expressions can be given a semantics in the category of complete partial
orders with binary join (to give the semantics for nondeterminism) Cpo � .

� process expressions can be given a semantics in the category of complete partial
orders with binary join, bottom (to give the semantics of fixed points) and a state
of type N (to give the semantics for imperative statements) StateP(N)(Cpo ���).

where, when C is a symmetric monoidal category with object X, StateX (C) is the cate-
gory given by:

� Objects are objects from C.

� Morphisms Y � Z in StateX(C) are morphisms Y � X � Z � X in C.

This gives a concrete denotational semantics in particular categories of domains. Ab-
stracting away from the details of domain theory, we discover that the structures neces-
sary to give this denotational semantics were:

� A category V in which to interpret value expressions. Since this language has tu-
ples and allows expressions to be duplicated or discarded, V should be a strict
cartesian category (a strict symmetric monoidal category where the monoidal
structure forms finite products).

� A category C in which to interpret central expressions. Central expressions have
tuples which cannot be duplicated or discarded, so C should be a strict symmetric
monoidal category.

� A category P in which to interpret process expressions. Process expressions have
tuples which cannot be duplicated or discarded and for which evaluation order is
important, so P should be a strict symmetric premonoidal category (defined by
Power and Robinson for such semantics).

� We have identity-on-objects inclusions V � � C � � P which respect the prod-
uct/symmetric monoidal/symmetric premonoidal structure.

4

� To model recursive declarations, we have a partial trace in V. This is an adapta-
tion of Joyal, Street and Verity’s traced monoidal categories taking account of the
fact that we cannot find fixed points for every object in V. In our Cpo example it
is only objects which have least elements which can be traced.

� To model functions we have adjunctions:

V[X, Y � Z] � V[X � Y , Z]
V[X, Y � Z] � C[X � Y , Z]
V[X, Y � Z] � P[X � Y , Z]

� To model recursive functions, we have all objects of the form X � Y are traceable.

There are a large number of such triples, for example:

� Take V to be Set and C and P to be Rel.

� Take V to be any partially traced cartesian closed category with a commutative
strong monad T , a strong monad U, both satisfying the mono requirement, and a
monic natural transformation T � U which respects the monad structure. Then
let C be the Kleisli category VT and let P be the Kleisli category VU .

� Take V, C and P to be appropriate categories of mixed data flow and control flow
graphs.

Since there are so many examples of such triples of categories, it would be useful if
there was an initial such triple. Then providing a semantics in this initial triple would
be enough to give a semantics in any such triple.

The purpose of this paper is to show that flow graphs form the initial such triple of
categories, so by giving the flow graph for a program, its semantics is given for any
categorical semantics fitting the framework given above.

The paper is divided into sections:

� First, we show that an appropriate category of data flow graphs Graph(ΣV) is the
initial category with finite products over a signature ΣV .

� Then we show that an appropriate category of two-coloured data flow graphs
Graph(ΣV,ΣC) is the initial symmetric monoidal category over a signature ΣC with
Graph(ΣV) as a sub smc.

� Then we show that an appropriate category of mixed data flow and control flow
graphs Graph(ΣV,ΣC,ΣP) is the initial symmetric monoidal category over a signa-
ture ΣP with centre Graph(ΣV,ΣC).

5

� Then we show that by allowing appropriate cyclic graphs we have the initial triple
of categories where V is a partially traced cartesian category.

� Finally we add nodes with nested subgraphs, and show that this gives us the re-
quired closed structure.

The last section is more speculative than the others, since it requires factoring the cat-
egory of graphs up to beta-equivalence, eta-equivalence, and naturality. The other sec-
tions do not require such factoring, and view graphs up to an appropriate notion of
bisimulation.

In each case, the main result is a soundness and completeness result, given in an ap-
pendix. These results make heavy use of the graphical presentation, which make the
proofs much simpler to read. The style of the proofs should be familiar to readers with a
background in process algebra, for example the normal form result for cyclic graphs is
similar to Milner’s proof of completeness of his axiomatization of strong bisimulation.

The observant reader may have noted that in the above example (where the premonoidal
category is given as a State construction over a symmetric monoidal category) that the
control line can be considered as just another data line, carrying the value of the state
variable. For example we could consider the constructors:

set get

as syntax sugar for:

This similarity is not a coincidence: the categorical basis of the graphical presentation
of premonoidal categories as single-threaded graphs with one control line is that any
premonoidal category C � � P is a full sub-symmetric-premonoidal-category of a state
transformer category D � � State(D). This result is proved in appendix.

We also provide a sketch of how two-categorical structure can be used to give an op-
erational semantics for the graphical language, adapting Milner’s semantics for action
calculi.

The semantics has been implemented as a Java applet, which takes a program text and
draws the corresponding flow graph (all the diagrams in this paper are drawn using this
applet).

I would like to thank Adam Eppendahl, Philipa Gardner, Andy Gordon, Matthew Hen-
nessy, Paul Levy, Rudi Lutz, Valeria de Paiva, Dusko Pavlovic, Prakash Panangaden,
Eike Ritter, Edmund Robinson and Peter Selinger for discussions and suggestions.

6

2 Value category

2.1 Syntax

A signature Σ is:

� A set of sorts (ranged over by X, Y, Z).

� A set of constructors (ranged over by c, d).

� For each constructor, a source and target vector of sorts, written c : X � Y.

Given a signature ΣV, define the language Exp(ΣV) as having types:

T ::= X (Base type, X in ΣV)
�

(T ,...,T) (Tuple type)

expressions:

M ::= x (Variable)
�

c M (Value constructor, c in ΣV)
�

(M,...,M) (Tuple expression)
�

D M (Declaration binding)

declarations:

D ::= let P = M; (Singleton declaration)
�

D D (Composition of declarations)
�

(Singleton declaration)

and patterns:

P ::= x : T (Singleton pattern)
�

(P,...,P) (Tuple pattern)

This language is similar to de Paiva and Ritter’s lambda-calculus with explicit substitu-
tions, although we have presented explicit substitutions as declarations.

In examples, we will use some syntax sugar, for example writing 1 + 2 for +(1(),2()).

The novel feature of the type system for this language is to tag the judgements with a
category C to determine whether the expression is a value expression, a central expres-
sion, or a process expression:

7

Γ � M : T in C

For example the expression 1 + 2 is entirely composed of value constructors, so is in the
val category:

� (1 + 2) : int in val

whereas set(1 + 2) contains a process constructor, so is in the process category:

� set(1 + 2) : () in proc

For this section, we shall only consider value constructors, so the only category we need
consider is val. Later sections will introduce the central and proc categories.

C ::= val

With this exception, the type system is given as usual for the term algebra with declara-
tions, using contexts:

Γ ::= x : T ,..., x : T

The judgements for expressions are of the form Γ � M : T in C, and are given for
variables:

Γ, x:T , Γ ��� x : T in C
[x not in Γ �]

value constructors:

Γ � M : (B1,...,Bm) in val
Γ � c M : (C1,...,Cn) in val

[c : B1,...,Bm � C1,...,Cn in ΣV]

tuples:

Γ � M1 : T1 in C
...

Γ � Mn : Tn in C
Γ � (M1,...,Mn) : (T1,...,Tn) in C

and declaration bindings:

8

Γ � D : Γ � in C
Γ, Γ � � M : T in C
Γ � D M : T in C

Judgements for declarations are of the form Γ � D : Γ in C and are given for singleton
declarations:

Γ � (P : T) : Γ �
Γ � M : T in C
Γ � let P = M; : Γ � in C

composition of declarations:

Γ � D1 : Γ1 in C
Γ, Γ1 � D2 : Γ2 in C
Γ � D1 D2 : Γ1, Γ2 in C

[Γ1 and Γ2 disjoint]

and empty declarations:

Γ � () : () in C

Judgements for patterns are of the form Γ � (P : T) : Γ and are given for singleton
patterns:

Γ � ((x : T) : T) : (x : T)

and tuple patterns:

Γ � (P1 : T1) : Γ1
...

Γ � (Pn : Tn) : Γn

Γ � ((P1,...,Pn) : (T1,...,Tn)) : (Γ1,...,Γn)

[Γi have disjoint vars]

2.2 Graphical semantics

The semantics of a type is given as a vector of sorts:

[[X]] = X [[(T1,...,Tn)]] = [[T1]],...,[[Tn]]

9

The semantics of a context is given as a vector of sorts:

[[x1:T1,...,xn:Tn]] = [[T1]],...,[[Tn]]

The semantics of terms is given as a flow graph (defined formally in an appendix):

[[Γ � M : T in val]] : [[Γ]] � [[T]]

These graphs can be drawn with incoming edges on the left and outgoing edges on the
right:

G

We shall usually elide the context and types where they are obvious. The semantics is
defined inductively:

[[x in val]] =

[[c M in val]] = M c

[[(M1,...,Mn) in val]] =
M1

Mn

[[D M in val]] =
D

M

The semantics of declarations is given as a graph:

[[Γ � D : Γ � in val]] : [[Γ]] � [[Γ �]]

The semantics is defined inductively:

[[let P = M; in val]] = M

[[D1 D2 in val]] =
D1

D2

[[in val]] =

10

For example, here are four graphs for the same arithmetic expression:

1

1
+

1

1
+

*
1

1
+ * 1

+

+
* 1 + *

return ((1+1)*(1+1)); let x:int = 1+1; let y:int = 1; let y:int = 1;
return (x*x); return ((y+y)*(y+y)); let x:int = y+y;

return (x*x);

These graphs can be proved equal using the axioms for a category with finite products,
but they are not graph isomorphic. This means that graph isomorphism is not an appro-
priate equivalence on graphs if we wish to build the initial category with finite products
over ΣV. Instead, in an appendix we define an appropriate notion of bisimulation on
flow graphs, and construct a category Graph(ΣV) where:

� Objects are vectors of sorts.

� Morphisms are acyclic flow graphs, viewed up to bisimulation.

We show that Graph(ΣV) is the initial strict cartesian category over ΣV. Thus the graphi-
cal semantics defined above uniquely determines a semantics in any category with finite
products over ΣV.

3 Central category

3.1 Syntax

Given two signatures ΣV and ΣC with the same sorts, define the language Exp(ΣV,ΣC) as
as extending Exp(ΣV) with:

M ::= ...as before...
�

c M (Central constructor, c in ΣC)

and add a new category:

C ::= ...as before...
�

central

The judgements Γ � M : T in central are as before, but we now have two new rules, one
for value constructors:

11

Γ � M : (B1,...,Bm) in central
Γ � c M : (C1,...,Cn) in central

[c : B1,...,Bm � C1,...,Cn in ΣV]

and one for central constructors:

Γ � M : (B1,...,Bm) in central
Γ � c M : (C1,...,Cn) in central

[c : B1,...,Bm � C1,...,Cn in ΣC]

Note that the two subsumption rules are sound, one for expressions:

Γ � M : T in val
Γ � M : T in central

and one for declarations:

Γ � D : Γ � in val
Γ � D : Γ � in central

3.2 Graphical semantics

The graphical semantics of central is the same as for val, but we now have two colours
of nodes. Nodes labelled with constructors from ΣV are drawn:

c

Nodes labelled with constructors from ΣC are drawn:

c

Graphs which only contain ΣV nodes are drawn:

G

Graphs which contain ΣV nodes and ΣC nodes are drawn:

G

The graphical semantics of central expressions is the same as that of val expressions:

12

[[x in central]] =

[[c M in central]] = M c

[[c M in central]] = M c

[[(M1,...,Mn) in central]] =
M1

Mn

[[D M in central]] =
D

M

The graphical semantics of central declarations is the same as that of val declarations:

[[let P = M; in central]] = M

[[D1 D2 in central]] =
D1

D2

[[in central]] =

In an appendix we adapt the notion of bisimulation between graphs to require that any
bisimulation is an isomorphism on central nodes. This means that for central nodes
there is no natural diagonal:

c ��
c

c

nor a natural terminal:

c ��

For example, the following graphs are bisimilar:

1

1
+ ref 1 + ref

let r:ref = ref(1+1); let y:int = 1;
return (r,r); let r:ref = ref(y+y); return (r,r);

but they are not bisimilar to:

13

1

1
+

ref

ref
1 +

ref

ref

let x:int = 1+1; let y:int = 1;
return (ref(x),ref(x)); let x:int = y+y;

return (ref(x),ref(x));

In an appendix we construct a category Graph(ΣV,ΣC) with:

Graph(ΣV) � � Graph(ΣV,ΣC)

and show that this is the initial pair of categories:

V � � C

with:

� V a strict cartesian category over ΣV.

� C a strict symmetric monoidal category over ΣC.

� The inclusion an identity on objects symmetric monoidal functor.

Thus the graphical semantics defined above uniquely determines a semantics in any
such pairs of categories.

Such pairs of categories have been studied by Benton in the form of mixed linear/non-
linear logic, although he allows V and C to have different objects. The presentation here
is based on Hasegawa’s, although we have provided a graphical presentation rather than
a term model construction. These categories form a natural model of computation where
order of evaluation is unimportant, such as nondeterminism or unique name generation.
In the next section we shall allow more general computations.

4 Process category

4.1 Syntax

Given three signatures ΣV, ΣC and ΣP with the same sorts, define Exp(ΣV,ΣC,ΣP) as
extending Exp(ΣV,ΣC) with:

M ::= ...as before...
�

c M (Process constructor, c in ΣP)

14

and add a new category:

C ::= ...as before...
�

proc

The judgements Γ � M : T in central are as before, but we now have three new rules,
one for value constructors:

Γ � M : (B1,...,Bm) in proc
Γ � c M : (C1,...,Cn) in proc

[c : B1,...,Bm � C1,...,Cn in ΣV]

one for central constructors:

Γ � M : (B1,...,Bm) in proc
Γ � c M : (C1,...,Cn) in proc

[c : B1,...,Bm � C1,...,Cn in ΣC]

and one for process constructors:

Γ � M : (B1,...,Bm) in proc
Γ � c M : (C1,...,Cn) in proc

[c : B1,...,Bm � C1,...,Cn in ΣP]

Again, we have the soundness of the two subsumption rules, one for expressions:

Γ � M : T in central
Γ � M : T in proc

and one for declarations:

Γ � D : Γ � in central
Γ � D : Γ � in proc

4.2 Graphical semantics

The graphical presentation of proc is rather different from that of central and val. If
we were to use the ‘obvious’ semantics, then we would discover that not all graph-
isomorphic terms are equal. In particular, in central we have:

g
f = f

g

15

This is not true in proc where order of evaluation is important. We would like to retain
the notion that if two terms have isomorphic graphs then they are provably equal, so we
shall not use this graphical presentation. Instead we shall introduce new control arcs in
addition to the existing data arcs. Each proc node has incoming and outgoing control
arcs in addition to its data arcs, for example:

’hello’

’world’
print

print

let (h:string, w:string) = (’hello’, ’world’);
print (h);
print (w);

The values ’hello’ and ’world’ come from val, so order of evaluation is unimportant.
The print nodes, however, come from proc, where order of evaluation is significant, so
print has an incoming and outgoing control arc as well as its incoming data arc:

print

As another example, the ML reference functions can be typed (using only integer refer-
ences for this example):

ref : central (int) : ref
:= : proc (ref,int) : ()
! : proc (ref) : int

or graphically:

ref := !

For example:

0 ref
1

!
+ :=

let r:ref = ref(0);
r := (1 + !(r));
return r;

The semantics of proc terms is given as a graph with one incoming and one outgoing
control edge:

16

G

Note that we can embed central graphs into proc graphs by adding a control edge:

G

The graphical semantics of proc expressions is (we give the semantics for nullary tuples
and pairs below, other tuples are similar):

[[x in proc]] =

[[c M in proc]] = M c

[[c M in proc]] = M c

[[c M in proc]] = M c

[[() in proc]] =

[[(M,N) in proc]] =
M

N

[[D M in proc]] =
D

M

The graphical semantics of proc expressions is:

[[let P = M; in proc]] = M

[[D1 D2 in proc]] =
D1

D2

[[in proc]] =

Graphs with one incoming control arc and one outgoing control arc form a strict sym-
metric premonoidal category, a notion introduced (in slightly different form) by Power

17

and Robinson. In an appendix we construct a category Graph(ΣV ,ΣC,ΣP) of graphs with
one control line, with:

Graph(ΣV) � � Graph(ΣV,ΣC) � � Graph(ΣV,ΣC,ΣP)

and show that this is the initial triple of categories:

V � � C � � P

with:

� V a strict cartesian category over ΣV.

� C a strict symmetric monoidal category over ΣC.

� P a strict symmetric premonoidal category over ΣP.

� The inclusions are identity on objects symmetric premonoidal functors.

Thus the graphical semantics defined above uniquely determines a semantics in any
such triples of categories.

Such triples of categories have been studied by Power and Thielecke, and compared
with indexed categories. The presentation here is slightly different, in that we have
presented V and C a priori rather than synthesizing it from P. Since central constructors
play an important role in languages such as the ν-calculus, it seems natural to include C
in the categorical presentation. See Selinger’s discussion in his presentation of control
categories. Our presentation of premonoidal categories is based on Power’s presentation
using Subset-enriched categories.

5 Partial trace

5.1 Syntax

Given three signatures ΣV, ΣC and ΣP with the same sorts, where a subset of the sorts
are tagged as traceable, define RecExp(ΣV ,ΣC,ΣP) as extending Exp(ΣV,ΣC,ΣP) with:

D ::= ...as before...
�

local rec x; D (Local recursive declaration)

Add new judgements Γ � T traceable, which for this section just inherits the tags from
the signatures. Then the type rule for local recursive declarations is:

18

Γ � T traceable
Γ, x : T � D : (Γ1, x : T , Γ2) in val
Γ � (local rec x; D) : (Γ1, Γ2) in val

Note that recursive declarations are only allowed in val: this restriction is based on the
motivating denotational model, where non-trivial fixed points only exist in Cpo, not in
Cpo � . The restriction to traceable types is also based on this example: Cpo does not
have fixed points for all objects, only those with least elements. So in this motivating
example, V is Cpo, P is Cpo � , and the traceable objects are those with least elements.

5.2 Graphical semantics

Previously, all of the graphs we have described have been acyclic. In order to give the
semantics for recursive declarations, we allow cyclic graphs:

[[local rec x; D in val]] = D

For example, the fixed point of f is (when f has a traceable result):

f

This is an indexed fixed point becase:

f

=
f

f
(Naturality of copy)

=
f

f
(Naturality of Tr)

= f
f

(Indexed dinaturality of Tr)

However, not all cyclic graphs can be expressed as a program. In particular:

19

� We have restricted local rec declarations to traceable types, so any cyclic path
must go through at least one traceable edge.

� We have restricted local rec declarations to val declarations, so any nodes in a
cycle are val nodes.

Traces were initially proposed as a categorical model of cycles in knots, and this graph-
ical presentation is just a simplified version of the knot diagrams presented by Joyal,
Street and Verity. Where they were concerned with knots, we are just concerned with
graphs, so we have replaced their braided monoidal setting with a simpler symmetric
monoidal one.

However, our graphs do not have a trace, because of the restriction that only traceable
sorts can be declared recursively. Instead, we use a weaker notion of partial traceability,
where we impose the restriction that feedback edges are traceable. In the case where all
types are traceable, the two notions coincide.

In an an appendix we define partially traced cartesian categories, and show that when
the categories of cyclic graphs:

CGraph(ΣV) � � CGraph(ΣV,ΣC) � � CGraph(ΣV,ΣC,ΣP)

form the initial triple of categories:

V � � C � � P

with:

� V a partially traced cartesian category over ΣV.

� C a strict symmetric monoidal category over ΣC.

� P a strict symmetric premonoidal category over ΣP.

� The inclusions are identity on objects symmetric premonoidal functors.

The axiomatization used for partially traced cartesian categories is more powerful that
that of Joyal, Street and Verity’s axiomatization for traced monoidal categories. Their
axiomatization is sound and complete for graphs up to graph isomorphism, but in order
to get completeness for graphs up to bisimulation, an additional property is needed
(thanks to Peter Selinger for demonstrating a mistake in an earlier formulation, and for
pointing out the connection with Plotkin uniformity).

A shuffle s is a morphism built only from composition, tensor, identity, symmetry, diag-
onal and terminal. A trace is uniform wrt shuffles whenever:

20

If:
s

f = g
s

then:
f

=
g

It is routine to show that Plotkin uniformity is equivalent to a trace which is uniform wrt
strict morphisms, where a strict morphism is one such that:

h
=

It is easy to show that any shuffle is strict, and so uniformity wrt shuffles is weaker than
uniformity wrt strict morphisms.

Uniformity is, unfortunately, not algebraic, and it remains to be seen whether there is an
algebraic axiomatization for flow graphs.

6 Functions

6.1 Syntax

Define the language RecFun(ΣV,ΣC,ΣP) as extending RecExp(ΣV,ΣC,ΣP) with new types:

T ::= ...as before...
�

C T : T

and new expressions:

M ::= ...as before...
�

fn C P {M} (Anonymous function)
�

M M (Function application)

The typing for anonymous functions is:

Γ � (P : T) : Γ �
Γ, Γ � � M : T � in C
Γ � fn C P {M} : (C T : T �) in val

21

and for function application is:

Γ � M : (C T : T �) in val
Γ � M � : T in C
Γ � M M � : T � in C

In particular, note that anonymous functions are always values, even if the function
body is central or process. This agrees with the usual definition of normal forms for
operational semantics.

6.2 Graphical semantics

6.2.1 Cartesian closed

To give a graphical semantics for the cartesian closed structure, we extend the category
of cyclic flow graphs CGraph(ΣV) to that of closed cyclic flow graphs CCGraph(ΣV) by
allowing edges to be labelled by value function types:

A,B,C ::= X
�

A1,...,Am � B1,...,Bn

and allowing nodes of the form:

@ G

with labellings:

@ : (B1,...,Bn � C1,...,Co), B1,...,Bn � C1,...,Co in CCGraph(ΣV)

G : A1,...,Am � (B1,...,Bn � C1,...,Co) in CCGraph(ΣV)

where:

G : A1,...,Am, B1,...,Bn � C1,...,Co in CCGraph(ΣV)

These graphs are factored up to the equivalence required for a cartesian closed category:

CCGraph(ΣV)[A, B � C] � CCGraph(ΣV)[A � B, C]

22

Graphically these axioms are:

Beta:
G

@
= G

Eta: @ =

Naturality: G H =
G

H

The graphical semantics is extended with:

[[fn val P {M} in val]] = M

[[M N in val]] =
M

N
@

6.2.2 Symmetric monoidal closed

To give a semantics for the symmetric monoidal closed structure:

� we extend the category of cyclic flow graphs CGraph(ΣV ,ΣC) to that of closed
cyclic flow graphs CCGraph(ΣV ,ΣC), and

� we extend the category CCGraph(ΣV) to CCGraph(ΣV,ΣC).

by allowing edges to be labelled by central function types:

A,B,C ::= ...
�

A1,...,Am � B1,...,Bn

We extend flow graphs to allow nodes of the form:

@ G

with labellings:

23

@ : (B1,...,Bn � C1,...,Co), B1,...,Bn � C1,...,Co in CCGraph(ΣV,ΣC)

G : A1,...,Am � (B1,...,Bn � C1,...,Co) in CCGraph(ΣV,ΣC)

where:

G : A1,...,Am, B1,...,Bn � C1,...,Co in CCGraph(ΣV,ΣC)

These graphs are factored up to the equivalence required for the adjunction:

CCGraph(ΣV,ΣC)[A, B � C] � CCGraph(ΣV,ΣC)[A � B, C]

Graphically:

Beta:
G

@
= G

Eta: @ =

Naturality: G H =
G

H

The graphical semantics is extended with:

[[fn central P {M} in val]] = M

[[M N in central]] =
M

N
@

6.2.3 Symmetric premonoidal closed

To give a semantics for the symmetric monoidal closed structure:

� we extend the category of cyclic flow graphs CGraph(ΣV ,ΣC,ΣP) to that of closed
cyclic flow graphs CCGraph(ΣV ,ΣC,ΣP),

24

� we extend the category CCGraph(ΣV,ΣC) to CCGraph(ΣV,ΣC,ΣP), and

� we extend the category CCGraph(ΣV,ΣC) to CCGraph(ΣV,ΣC,ΣP).

by allowing edges to be labelled with process function types:

A,B,C ::= ...
�

A1,...,Am � B1,...,Bn

and allowing nodes of the form:

@ G

with labellings:

@ : (B1,...,Bn � C1,...,Co), B1,...,Bn � C1,...,Co in CCGraph(ΣV,ΣC,ΣP)

G : A1,...,Am � (B1,...,Bn � C1,...,Co) in CCGraph(ΣV,ΣC,ΣP)

where:

G : A1,...,Am, B1,...,Bn � C1,...,Co in CCGraph(ΣV,ΣC,ΣP)

These graphs are factored up to the equivalence required for the adjunction:

CCGraph(ΣV,ΣC,ΣP)[A, B � C] � CCGraph(ΣV,ΣC,ΣP)[A � B, C]

Graphically:

Beta:
G

@
= G

Eta: @ =

Naturality:
G

H =
G

H

25

The graphical semantics is extended with:

[[fn proc P {M} in val]] = M

[[M N in proc]] =
M

N
@

6.3 Recursive functions

To allow recursive functions, we just add a new judgement:

Γ � proc T : T � traceable

For example, with appropriate string and I/O primitives, we can write a simple ‘hello’
program:

hello

read
^

print
@

No change is required to the graphical semantics, except to make edges labelled with
types of the form A1,...,Am � B1,...,Bn traceable.

6.4 Initiality

Since we have taken the initial cartesian/monoidal/premonoidal categories and factored
them by equations for the closed structure, the categories:

CCGraph(ΣV,ΣC,ΣP) � � CCGraph(ΣV,ΣC,ΣP) � � CCGraph(ΣV,ΣC,ΣP)

form the initial triple of categories:

V � � C � � P

with:

26

� V a partially traced cartesian category over ΣV.

� C a strict symmetric monoidal category over ΣC.

� P a strict symmetric premonoidal category over ΣP.

� The inclusions are identity on objects symmetric premonoidal functors.

� Adjunctions:

V[X, Y � Z] � V[X � Y , Z]
V[X, Y � Z] � C[X � Y , Z]
V[X, Y � Z] � P[X � Y , Z]

� All objects of the form X � Y are traceable.

Thus the graphical semantics defined above uniquely determines a semantics in any
such triples of categories.

7 Operational semantics

7.1 Examples

In this paper, we have given an equational characterization of programs. Categorically,
we have:

� Vectors of types are objects.

� Graphs are morphisms.

To give a treatment of the dynamics of progams, we would like to give an operational
semantics, for example:

0 ref
1

!
+ :=

� 0 ref
1

0
+ :=

� 0 ref 1 :=

� 1 ref

27

In this example, the reductions � are given as a type-preserving relation between terms.
Following Milner’s operational semantics for action calculi, we would expect to have
the categorical picture:

� Vectors of types are objects.

� Graphs are morphisms.

� Reductions between graphs are 2-cells.

In the above case, the 2-cells are just a preorder, but in general we may be interested in
labelled transition systems, which can be viewed as 2-categories where the 2-cells are
labelled with an appropriate monoid, for example strings of actions. For example, we
can give an lts semantics for programs containing print statements as a string-labelled
2-category:

’hello’
print

’world’
print

� ’hello’ � ’world’
print

� ’world’ �

These 2-cells are generated from atomic reductions, in these examples:

ref
! �

ref

x

y
+ � z (where x + y = z)

ref :=
� ref

and:

s
print � s �

7.2 Pre-2-categories

Unfortunately, we cannot just replay Milner’s presentation in the premonoidal setting,
since one of the axioms of a 2-category is functoriality of composition, which implies:

If f1 � α � f2

and g1 � β � g2

then f1 g1 � α;β � f2 g2

28

For example this would give us:

’hello’
print

’world’
print

� ’world’ � ’hello’
print

� ’hello’ �

This is a similar problem to that solved by premonoidal categories, and the solution is to
lift the premonoidal structure into the 2-cells. In the same way as we divided the 1-cells
into central and process 1-cells, we divide the 2-cells into central and process 2-cells.
Central reductions can take place anywhere in a computation, but process reductions
have to happen in left-to-right order:

If f1 � α � f2

and g1 � β � g2

then f1 g1 � α;β � f2 g2

and:

If f1 � α � f2

and g1 � β � g2

then f1 g1 � α;β � f2 g2

and:

If f1 � α � f2

and g1 � β � g2

then f1
g1 � α;β � f2

g2

This is just the usual definition of big-step reduction to normal form, replayed in cate-
gorical language.

Formally, define C � � P to be a pre-2-category whenever:

� C is a sub 2-category of P with the same objects.

� In addition to the usual hom-category P[X � Y] (the central hom-category) a cat-
egory P[X � Y] (the process hom-category).

� P[X � Y] is a subcategory of P[X � Y] with the same objects (that is the same
1-cells).

� Two functors:

29

;L : P[X � Y] � P[Y � Z] � P[X � Z]
;R : C[X � Y] � P[Y � Z] � P[X � Z]

such that:

P[X � Y] � P[Y � Z] � P[X � Z]�� ��

P[X � Y] � P[Y � Z] � P[X � Z]

and:

C[X � Y] � P[Y � Z] � � C[X � Y] � P[Y � Z]�� �

P[X � Y] � P[Y � Z] � P[X � Z]

commute.

A pre-2-functor is a commuting square of functors respecting the pre-2-categorical
structure.

Note that any 2-category is automatically a pre-2-category, since we can take C and P to
be the same 2-category, and identify all of the hom-categories and composition functors.

We can then replay the definition of a premonoidal category at the 2-level to get a cate-
gorical presentation of a language with its operational semantics.

A premonoidal pre-2-category is a pre-2-category C � � P with:

� C is a symmetric monoidal 2-category.

� Two pre-2-functors:

� : C � P � P
�

: P � C � P

such that:

– the three pre-2-functors � , � and
�

coincide on objects,

– the three ‘obvious’ pre-2-functors from C � C to P coincide, and

– the symmetry in C is a natural isomorphism X � Y � Y
�

X in P.

30

Following Power’s presentation of premonoidal categories as Subset-enriched cate-
gories, we can present pre-2-categories using enriched categories. Define a category
to be centralized if some of its objects are tagged as central, some of its morphisms
are tagged as central, and satisfying the property that if f : X � X � and X is cen-
tral, then f and X � are central. Let Central be the category of centralized categories
with functors respecting the central structure. Central has an asymmetric monoidal
structure where C * D is the subcategory of C � D where for any pair of morphisms
(f ,g) : (X,Y) � (X � ,Y �) either X � is central or g is central. Then the above definition of a
pre-2-category is equivalent to a Central-category with composition given as a functor
P[X,Y] * P[Y ,Z] � P[X,Z]. We can then replay Power’s definition of a premonoidal
category replacing Subset-Cat with Central-Cat to find a definition of a premonoidal
pre-2-category equivalent to the above.

For the closed structure, the isomorphisms:

V[X � (Y � Z)] � V[(X � Y) � Z]
V[X � (Y � Z)] � C[(X � Y) � Z]
V[X � (Y � Z)] � P[(X � Y) � Z]

allow value and central reductions to take place under function bodies, but not process
reductions. For example we allow:

1

2
+

+
� 3 +

but not:

’hello’
print � ’hello’ �

As two extremes, we have:

� categories where the only central 2-cells are the trivial identity reductions, corre-
sponding to languages where no reduction is allowed under lambda, and

� categories where the central and process 2-cells are the same, corresponding to
langauges where reduction is allowed in any sub-term.

Thus the division of 2-cells into central and non-central categories gives a natural de-
scription of both the call-by-value lambda calculus with reduction allowed anywhere,
and the canonical left-to-right reduction strategy.

31

8 Comparisons

8.1 Action calculi

The graphical presentation of programming most similar to that given here is Milner’s
action calculi. This is a framework for describing concurrent languages, based on sym-
metric monoidal 2-categories.

Since they are based on symmetric monoidal 2-categories, they are similar to the central
categories presented here, but in action calculi the nodes (called controls) may contain
sub-graphs.

For example, the lambda-calculus is given as having controls:

� lambda for building lambda-abstractions (originally written � _ �) This control has
one sub-graph (the body of the function), no incoming arcs, and one outgoing arc
(the function).

� ap for function application. This control has no sub-graphs, two incoming arcs
(the function and its argument), and one outgoing arc (the result).

We can draw these (this graphical presentation is slightly different from Milner’s, to
make comparisons with this paper simpler) as:

body lambda ap

The operational semantics is given by the reduction:

body lambda
ap � body

Reductions can take place anywhere in a graph, but not inside controls, for example the
reduction of (λx.xx) (λx.xx) is given by:

ap lambda ap

�
ap lambda

ap lambda
ap

� ap lambda ap

A simple language of print statements can be modelled with controls for string constants
and a print control, containing a subgraph for the continuation:

32

’string’ continuation print

The operational semantics can be given as a 2-category where the 2-cells are strings,
generated by the reduction:

’string’

continuation
print

� ’string’ � continuation

For example:

’hello’

’world’
print

print

� ’hello’ � ’world’
print

� ’world’ �

Since reduction is not allowed inside controls, we do not have:

’hello’

’world’
print

print

� ’world’ � ’hello’
print

In action calculi, control over reduction order is achieved by the use of sub-graphs inside
controls, where in our presentation reduction order is given by control arcs.

Categorically, action calculi are based on symmetric monoidal 2-categories rather than
premonoidal pre-2-categories, so the categorial presentation is simpler. There is a trade-
off here between the simpler categorical presentation, or the simpler graphical view
given by control arcs.

To see the difference between these two presentations categorically, note that there are
two ways to embed a premonoidal category into a monoidal category. The presentation
here is based on an embedding into state transformers, described in an appendix. But
it is also possible to use a CPS translation, in which any computation whose evalua-
tion is delayed is placed in a continuation. Graphically, this corresponds to boxing the
delayed computations, in a manner similar to the graphs above. Whether this informal
connection can be formalized is left for future work.

8.2 Lambda calculus with cyclic definitions

In his thesis, Hasegawa presents a similar categorical model for lambda-calculi with
explicit sharing. His setting is:

33

� A category with finite products V.

� A traced symmetric monoidal category C.

� An identity-on-objects inclusion V � � C.

� Closed structure given by an adjunction:

V[X, Y � Z] � C[X � Y , Z]

This is very similar to the setting described here, with two important differences:

� The addition of the premonoidal category P.

� In Hasegawa’s setting, there is a trace on C rather than a partial trace on V.

The first difference is the most important: Hasegawa’s graphs are pure data flow graphs,
and do not require control edges. The work presented here generalizes his work from
the monoidal case to the premonoidal case.

The second difference is an orthogonal issue, caused by different motivating examples.
Hasegawa’s motivating denotational example is the cartesian closed category Dom,
where all objects have least elements, but maps are not necessarily strict: this provides
a semantics for call by name or call by need languages. Our motivating example is the
categories Cpo � � Cpo � where Cpo only has a partial trace: this provides a semantics
for call by value languages.

9 Future work

9.1 Operational semantics

The operational semantics discussed in the previous section is still preliminary, and
needs more work. For example, there should be a direct graphical presentation where
G � G � iff G has a subgraph G1, there is an axiom G1 � G � 1, and G � is G with G1

replaced by G � 1.

Having defined a notion of labelled transition system for graphs, this opens up the usual
questions of bisimulation, higher-order bisimulation, fully abstract semantics, and so
on.

We could also investigate lax versions of the categorical structure, for example rather
than having beta-equivalence, we could add a 2-cell for beta-reduction. This would add
extra complexity to the categorical picture, but would fit better with the usual practice
in defining operational semantics, and would allow us to remove all of the equivalences

34

which are not graph bisimulations. This would improve the correspondence between the
graphical and equational presentations: terms would be provably equal precisely when
they are bisimilar.

9.2 Typing issues

There are various typing issues left for future work, such as recursive types, universal
and existential polymorphism, and subtyping.

Also, tracing is currently restricted to value declarations. Whilst this is adequate for the
motivating example of recursive functions, there are natural examples (such as building
cyclic ref-structures) where it would be appropriate to allow tracing in central declara-
tions as well. This is left for future work.

9.3 Coproducts

Currently, if-statements are only supported through thunks to delay the evalutation of
the result until the value of the guard is known, for example:

’world’
print

’hello’
print if

A better approach would be to add coproducts to each category, respected by each of the
inclusions V � � C � � P. We can easily add case-statements to the language to incorpo-
rate coproducts, but finding a graphical representation is slightly trickier. The coproduct
structure is monoidal, so we can represent it graphically, however we need to distinguish
between the coproduct graphical structure and the premonoidal graphical structure. One
possible graphical representation is (giving the version in P since the others are simpler)
as follows.

The morphsim f + g:

fg

The mediating morphism f + g:

fg

35

The injections inl and inr:

If we also add a graphical representation for cond : bool � 1+1 as:

then we have a slightly better representation for closed if-statements such as:

print
hello

print
world

Finding a good representation for open if-statements and case-statements is left for fu-
ture work.

9.4 Concurrency

All of the computations we have looked at in this paper have been single-threaded,
since there is only one control arc running through the graph. There is an obvious
generalization to multi-threaded computations, very similar to action calculi, where we
consider graphs with more than one control line. We could then add concurrent features
to the langauge such as process forking:

f

With the appropriate asynchronous pi-calculus constructors:

new out in

we can then add the asynchronous pi-calculus, with operational semantics generated
from:

36

in

out

�

Although this presentation is graphically appealing, it is not obvious what the categori-
cal presentation should be. This is left for future work.

37

