


Today we’re going to present 5 rendering techniques from the Frostbite 2 

engine, the engine behind both Battlefield 3 and Need For Speed. So, let’s 

begin. 





So, FB2 is DICE’s next-generation engine for current generation platforms. Its 

design is based on 5 pillars, such as animation, audio, scale, destruction, and 

rendering.  

 

As we said earlier, this engine is versatile and flexible enough to power both 

Battlefield 3 (a first person shooter) and Need for Speed: The Run (a racing 

game). 





Here’s an in-game shot of BF3 



And here’s an in-game shot of Need for Speed: The Run. 





Bokeh refers to the out of focus areas of an image when taking a photograph. 

Specifically it refers to the shape and the aesthetic quality of the out of focus 

areas. 

Though it is effectively an unwanted side effect of a camera lens system it is 

artistically desirable. DOF as a general rule has great benefits as a storytelling 

device to divert the eye to points of interest. 

Here is a real world image of Bokeh. The disc shape of the lights in the distant 

scene smear out into a disc due to the light converging to a point before the 

sensor plane the light therefore separates radially outwards leading to the 

energy spreading out into a disc shape . The disc shape is because the lenses 

are circular. 



Here is a shot with a higher F/Stop. This causing blades in the camera to 

constrict the size of the opening of the lens. This blocks some of the incoming 

light leading to a smaller Circle of confusion and gives a pentagonal shape to 

the bokeh. This lens clearly has a 5 blade aperture. 

 

At high F/Stop rating the blades almost fully cross over leading to an almost 

pin hole camera which will exhibit very little bokeh. 

  



Using real world camera parameters is important 

Avoids the toy town look 

More intuitive for people with real world camera knowledge 

Inputs are Lens length which is derived from the Camera FOV 

F/Stop which is artist controlled. Intuitively is the inverse of the aperture. The 

Higher the F-stop the lower the blur and vice versa. 

Focal plane. What you want in focus. Either key frame in cinematic editor or 

auto-focus on the item of interest (i.e. hero or car) 



A technique I use is to premultiply the colour by the CoC . This way you can 

use simple blurs and avoid halo artifacts where in focus pixels bleed into out of 

focus pixels. Ensure you have the texture address mode to border zero so off 

screen taps will not influence the blur. 

 

Also the CoC is stored in the alpha channel so the depth buffer is no longer 

needed. 

We do this step during the down sample from the 720p buffer to 640x360 

When the bokeh blur is completed the final colour can be recomputed by 

dividing the RGB by the A channel. Note all colour values are in linear space 

here. 

 

We always ensure the CoC is set to at least a small number so all colour can 

be recovered. This is important as the final result of the bokeh blur texture is 

used as the input to the 320x180 buffer for bloom generation. 

 

  



Gaussian bokeh is common in games because it is fairly cheap as it can be 

made separable.  

 

Poisson disc and other shapes such as octagonal are popular but is a 2D 

sampling technique. Doubling the radius quadruples the taps. 

Samaritan and CE3 DX11 bokeh is great. Allows artist definable bokeh shapes 

with texture rather than uniform . But is fill rate heavy. 





Gaussian. Two passes horizontal and vertical . Weights follow a Gaussian 

distribution so samples close to the centre have a higher influence. Resultant 

shape is a bell shape to the energy distribution. 

Box. Like the Gaussian but all weights are equal. Stops the mushy look but 

gives a strange box shape to the bokeh. Looks uglier 

Skewed box. Like the box but the horizontal and vertical axes non orthogonal. 

Note I have deliberately sampled in a simple direction only from the sample 

being blurred.  



By doing a skewed box at 120deg with equal length we end up with a rhombus 

shape. By doing this a total of 3 times on the source we have 3 rhombi blurs 

radiating away from the central point. 

We can then average all 3 results together leading to a hexagon. 

We also apply a half sample offset to stop overlapping rhombi. Other wise 

you’ll end up with a double brightening artifact in an upside Y shape. 



Looks good but frankly 7 passes is not going to cut it. Gaussian is way ahead 

in performance and for reasonable filter kernel widths the single pass Poisson 

disc is going to beat it. A 7 pass linear time algorithm won’t beat an N^2 

algorithm for suitable small value of N. We need to reduce it. 

So looking at the above we notice the first pass blur for Rhombus1 and 

Rhombus2 are the same. Also First pass blur on Rhombus 3 shares the same 

source so we can reduce this down to 2 passes (With a little MRT help) 



Great 2 Passes in total but Pass 1 has to output two MRTs. And pass 2 has to 

read from 2 MRT sources.  

Total of 5 blurs now which is also 1 reduced and final combine pass is part of 

pass2. 

 

This is still not optimal. We have 2 identical blurs down and right in pass 2 but 

they read from different sources. Can we reduce this further? 

 

  



Now in pass 1 we out put the up blur to MRT0 as usual but we also add it onto 

the result of the down left blur before outputting to MRT1 

Now in pass 2 the downright blur will operate on Rhombi 2 and 3 at the same 

time.  

Great 1 blur less! 

So Does it actually work 









Example with extreme filter kernel. 

Note there are some blight blobs in some of the hexagons. This is an artifact of 

a later pass to composite the coronal particles and not of the hexagonal blur 

process. 

 



How do we measure up with the Gaussian. 

We are doing the same number of taps but our bandwidth has increased. Total 

of 50%more. 

BUT we do have some advantages over Gaussian. We need less taps for a 

wanted kernel size as each sample contributes equally.  

And we can improve this further for very large kernel sizes in sub linear time.  

 













Hi Z is very common on modern graphics hardware. Its an important HW 

optimisation as it allows pixel groups to be discarded before they are shaded. 

Without this you’ll end up wasting time shading pixels which later are rejected 

because they fail the depth test.  

This Special Z Buffer is usually at a lower resolution than the actual Z buffer so 

you will end up shading some pixels which are later discarded. Usually this is 

not huge. 

 



So here is a top down view on a typical view.  In it we have already drawn two 

cubes. 



The red line denotes how the ZBuffer looks when viewed in perspective space. 

So everything on the right hand side is in solid occluded space. If we render an 

object or part of an object here he can ignore it. 



It is common in deferred rendering to draw convex polyhedra to represent the 

volume they enclose. You don’t actually care about the surface. So draw the 

polyhedra to the screen and reproject back into world space from the pixels it 

covers in screenspace 

However not all pixels will reproject into the bounds of the volume 



A. A will waste fill rate 

B. Hopefully should fail quickly with HiZ. Problem with holes 

C  Some wasted fill 

 

Can use Stencil capping and Depth bounds 



The Z buffer can be thought of a per pixel delimiter between empty space and 

solid space. We can make use of this property to reload the Z buffer in 

reverse. This is super cheap on X360. Bit more expensive on PS3 



So what does our Z Buffer look like now? 

We have the space from the camera to the nearest surface as the occluded 

solid space . And beyond that is empty. How does this help us? 

 

 

 



So any the GPU will now quickly cull pixels if they are too close to the camera, 

and trivially accept distant ones. 

Because we are rendering convex polyhedra we can instead render the 

backfaces. How does this help us? Lets go back to the example from before. 

 



We render the backfaces of A but they fail the Hi Z as they are closer than the 

current value. B will pass but this will be wasted fill. C will correctly 

pass for the pixels inside the volume. 

 So we have traded the cases but they’re are some advantages. 

 

We are rendering backfaces so we don’t care about cases of the camera 

cutting inside the volume. Also the erroneneous ones are projected 

smaller. The usual tricks of stencil capping and depth bounds still work 

 

Also we can use SW occlusion techniques to cull B before it goes near the 

GPU. Finally another trick is to render the front faces of the volumes 

before the reverse reload and count how many pixels pass. Ts a 

conditional query after the reverse reload. This should then discard B 

 

 

 



Perfect for CSM. CSM’s are designed so the volumes they enclose intersect 

and enclose the camera near plane.  

Not true for later cascades but they will enclose the previous cascade. 







Red denotes the shadow mask value. This is later read in as a way of 

modulating the diffuse lighting calculation. 

Green is the current state of the stencil buffer. 

 











 

 



Note in this I’ll denote white in the mask for the trivially accepted pixels, and 

red for the complex PCF ones. 

Note how the alpha test ensure the stencil remain untouched for the pixels 

which couldn’t be trivially accepted or rejected. 

First pass done. Now the second pass 



Here the red shows the newly touched pixels and the stencil is now updated. 



And here is the update for the later cascades. 



This image shows the total pixel overdraw. A lot of it is 1 with a smaller 

percentage at 2. Note for the 2 overdraw case 1 of them was the fast single 

tap shader 



Also by doing this we can reuse the shadow map for each cascade. Nice 

memory saving. Caveat is problems if you later need them to shadow fwd 

rendered transparent.  





















Also need a half texel offset before saturate. Omitted for clarity. 

 





Let’s now talk about our tiled-based approach to deferred shading, but this 

time for Xbox 360.  

 

Many of you have probably attended or read Christina Coffin’s GDC talk about 

tiled based deferred shading on SPUs. This time, Christina, Johan Andersson 

and I teamed-up and came-up with a somewhat different approach, tailored for 

the Xbox 360. 



Again, why tiled based deferred shading? Basically, we want more interesting 

lighting. One way to achieve this is via more dynamic lights, and this is where 

deferred shading shines! 

 

Unfortunately, the 360 won’t change. We need to figure out ways to better use 

the rendering resources that we have. This is where tiled-based deferred 

shading comes in. 

 

This has been done before, by Matt Swoboda and Christina Coffin on PS3, by 

Johan Andersson on DirectCompute and others have come up with hybrids. 

Here, we'll focus on our approach for the 360. 

 

A quick recap, tiles allow us to load-balance and compute lighting where it 

matters. First, we divide the screen in tiles. Then, we cull all analytical/pure-

math lights, such as point, line and cone lights (here, no lights that project a 

shadow or a texture). Once this is done, we can compute the lighting only for 

the valid lights in each tile. 



Here's a very complex programmer-designed scene :) 



We then add some lights to the scene, but this not optimal... 



So we divide the screen in tiles... 



And we cull the lights. Once the culling is done, we know exactly how many 

lights should be rendered in each tile. Here, we provide a colored grid to help 

our amazing lighting artists make sure the lighting is in budget. 



So, how does this fit on 360? Of course, we don't have DirectCompute nor 

SPUs... 

 

Fortunately, Xenos is a pretty powerful GPU, and will crunch ALU if asked to 

do so 

 

If we pre-digest data, maximum throughput can be achieved at rendering time 

 

Also, if we time things properly, we can use the CPU to help the GPU along 

the way 

 

One thing to not forget is that the GPU is definitely better than the CPU at 

analyzing a scene. This means we can definitely use it to classify our scene. 



This is why we have a GPGPU approach to culling. 

 

First, our scene is divided in 920 tiles of 32x32 pixels 

 

We downsample and classify the scene from 720p to 40x23. Which means, in 

the end, 1 pixel of classification equals to 1 tile on screen.  

 

Classification is done to: 

 

1. Identify the min and max depth value for each tile 

2. Identify all the material permutation in each tile 

 

This is a multi-pass process which can definitely be achieved via MRTs.  



Here's an example of the material classification. If we go back to our scene, 

we have 3 materials. Our default material in red, skin shading in green, and 

metallic in blue. 



As we downsample (by doing manual bilinear taps), we combine the materials 

in the final output color. We can see to the right how the downsampling around 

the head gives yellow, which is the combination of red and green. Same for the 

red and blue, giving magenta. 



Skipping a couple steps here, but this is what we get in the end. This 40x23 

texture will tell us exactly which combination of materials we have in each tile. 

In a parallel MRT, we also downsampled and stored the min/max depth. 

 

With this information we are now ready to use the GPU to cull the lights since:  

 

- We know all lights in the camera frustum 

- We know depth min/max and permutation combinations for each tile (and 

sky), mini-frustums 



First, we quickly read back this texture on the CPU and we build mini-frustas 

for each tile. We know which tiles are sky, from the previous classification 

pass, so those can be skipped since they never will get lit.  

 

We can then use the GPU to cull all lights against the tiles. 

 

We store the culling results in a texture, where each column represents the 

light ID and the row the tile ID. 

 

Actually, we can do 4 lights at a time, and store the results in ARGB. Once this 

is done, we fast-untile using the Microsoft XDK sample and read-back on the 

CPU. We're basically ready for lighting. 



As mentioned previously, we parse the culling results texture on the CPU.  

 

For each light type, for each tile, and for each material permutation, we 

regroup and set the light parameters to the pixel shader constants, we setup 

the shader loop counter and we additively render lights with a single draw call 

to the final HDR buffer. 

 

Since we don't have an infinite number of constants, we have a set limit on 

how many lights we can render per-tile. Since we do this per light type, and 

per material permutation, it's a good load of lights (i.e. 32-64 lights of each 

type, per tile) :) 



Again, our final result, with tiles. 



And without the tiles 



Quickly, here's a timeline of our CPU/GPU synchronization. I collapsed all the 

CPU threads into one for simplicity. 

 

To make sure our CPU jobs start right after the GPU is done with the culling, 

we basically kick-off our CPU job which prepares for the actual lighting using a 

MEMEXPORT shader.  

 

Typically, people use callbacks to do this, which is what Microsoft 

recommends, and not MEMEXPORT, which is not endorsed. In our case, our 

job system works in such a way that you can kick off jobs by writing a token at 

a specific address, which is what MEMEXPORT allows you to do. 

 

 



Here's a bit more about performance, and things you should do to not upset 

the GPU 

 

First, constant waterfall sucks! This will kill performance, even with the most 

optimized shaders (approx. 33% perf, if not more) 

 

To prevent this, you should use the aL register when iterating over lights. If this 

is set properly, your lighting code will run at maximum ALU efficiency. This is 

because if the GPU knows how loops will behave, it can schedule constant 

accesses in a orderly fashion (therefore waterfall-free) 

 

In c++ code, this is basically how you want to set it. 

 

First parameter defines the count of how many iterations, then the start value 

and then the step. Last parameter unused. 



I've highlighted the syntax required to make this happen on the HLSL side. 

This is similar to Cody's presentation from gamefest, but for our case. 

 

This allows us to iterate over all of the lights in a tile, and access our lighting 

constants in a waterfall-free fashion. 



Also, you need to use Dr.PIX and check shader disassembly. No need to be 

an expert here, but some basic microcode knowledge is a good idea when it 

comes to this level of optimization. 

 

These shaders are definitely ALU bound, so make sure to simplify your math, 

especially in the loops. 

 

(list rest of stuff) 

 

 



Use GPU freebies, such as the texture sampler scale bias 

Also, simplify and remove unneeded code via compile-time permutations 

 

One super important thing is to set your shader constants via constant buffer 

pointers. Basically, you allocate some memory where all your constants are, 

and tell the GPU: Hey, my constants are right there! SetPixelShaderConstant 

is slow, because it does some internal memcopys, which we definitely don't 

need here. 

 

Finally, we use async pre-compiled command buffers, which also need to be 

kept lean and mean. You can easily see their contents in PIX. For more info 

about this, you should definitely check out Ivan Nevraev's awesome Gamefest 

presentation. 



Here is some of the performance numbers. In the case where we have a 

budget of 8 lights for every tile (some can be unique, some can be covering 

multiple tiles) here are some of the numbers. 

 

This includes support for the full lighting model of BF3. This can be optimized 

even more, depending on how much you want to support. This can definitely 

be optimized and tailored for your BRDF.  

 



Let's now talk about our temporally-stable approach to screen-space ambient 

occlusion 



SSAO in Frostbite 2 is for mid-range PCs and consoles. High-end PCs run 

Horizon-based AO, which looks awesome. 

Rather than just handing out some of the code, since pretty much everyone 

here has toyed with AO, we're gonna focus on some of the tricks we do in 

order to get an alternative to HBAO, which works well for consoles and mid-

range PCs. 

First, we use line sampling, and store linear depth in a texture. We basically 

linearize depth for better precision and distribution. A quick way to do this is 

with the following code, which only requires a single division (kZ and kW is 

computed on the CPU).  

Once we have the linear depth, we also sample this texture in our AO pass 

using linear sampling, which is not something people usually since it's depth, 

but this goes hand-in-hand with line sampling and helps reducing jittering. 

Another important thing is to scale AO parameters over distance, this will help 

with performance.Also, make sure to use HiStencil when compositing the final 

AO on screen, to make sure to reject sky pixels and such. 

Finally, with line sampling, a 4x4 random noise texture is sufficient, no need to 

go bigger. 



In case you missed this paper by Loos and Sloan, here's an example of line 

sampling from Volumetric Obscurance.  

 

Line sampling is basically the analytic integral of the occupancy function times 

the depth extent of the sphere at each sample point on a disk.  

 

Line sampling is also more efficient and stable due to the fact that all 2D 

samples will project to distinct points in the z-buffer, whereas the usual 

approach of random point sampling in 3D space, two point samples may 

project to the same location. 



If we compare HBAO to SSAO, here's an example with HBAO 



And here's an example with SSAO. It definitely looks different (since it's in half-

res), but this runs in 1/3 of the time, is pretty stable and there is almost no 

false-occlusion. It also responds well to foliage. 

 



When it comes to blurring, Dynamic AO is done best with bilateral / edge-

preserving blurs 

 

On consoles, we have tighter budgets. Our scenes are also pretty action-

packed, so skipping on bilateral upsampling (which usually costs around 2.0-

2.5ms) is not that big of a deal. We don't notice the halos too much. Then 

again, this works well when AO is a subtle effect.  

 

To fit in budget, we need to find the fastest way to blur the AO, and it has to 

look soft (typically, a 9x9 separable bilinear Gaussian blur) 



Additionally, we can accelerate the blurring of the AO by aliasing the results, 

which is an 8-bit texture, as a ARGB8888 texture.  

 

This means that 1 horizontal tap == 4 taps 

 

We can also combine this trick with bilinear sampling, so reduce even more 

taps (but this only applies to the vertical pass) since bilinear sampling doesn't 

make sense, you cant bilinearly interpolate between "channels" 

 

This means that a 9x9 Gaussian can now be done with 3 horizontal point 

sampled taps, and 5 vertical bilinear taps 

 

On PS3, we can easily do this by directly aliasing the memory. 

 

On 360, formats are different in memory, which means you have to use 

resolve-remap textures. See the FastUntile XDK on how to define and use 

those textures. 



If we visualize this blur, this is how it looks like for the horizontal pass, and 

then the vertical pass. 



Here are the performance numbers for the consoles. As you can see, this 

definitely gives back performance, where a 640x360 grayscale blur only takes 

0.1ms on PS3 and 0.18ms on 360! 



There is obviously no “i” in team, and this wouldn’t have been possible without 

the help of these amazing people. 








