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The Backpropagation Algorithm

7.1 Learning as gradient descent

We saw in the last chapter that multilayered networks are capable of com-
puting a wider range of Boolean functions than networks with a single layer
of computing units. However the computational effort needed for finding the
correct combination of weights increases substantially when more parameters
and more complicated topologies are considered. In this chapter we discuss a
popular learning method capable of handling such large learning problems —
the backpropagation algorithm. This numerical method was used by different
research communities in different contexts, was discovered and rediscovered,
until in 1985 it found its way into connectionist AI mainly through the work of
the PDP group [382]. It has been one of the most studied and used algorithms
for neural networks learning ever since.

In this chapter we present a proof of the backpropagation algorithm based
on a graphical approach in which the algorithm reduces to a graph labeling
problem. This method is not only more general than the usual analytical
derivations, which handle only the case of special network topologies, but
also much easier to follow. It also shows how the algorithm can be efficiently
implemented in computing systems in which only local information can be
transported through the network.

7.1.1 Differentiable activation functions

The backpropagation algorithm looks for the minimum of the error function
in weight space using the method of gradient descent. The combination of
weights which minimizes the error function is considered to be a solution of
the learning problem. Since this method requires computation of the gradient
of the error function at each iteration step, we must guarantee the conti-
nuity and differentiability of the error function. Obviously we have to use a
kind of activation function other than the step function used in perceptrons,
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because the composite function produced by interconnected perceptrons is
discontinuous, and therefore the error function too. One of the more popu-
lar activation functions for backpropagation networks is the sigmoid, a real
function sc : IR→ (0, 1) defined by the expression

sc(x) =
1

1 + e−cx
.

The constant c can be selected arbitrarily and its reciprocal 1/c is called
the temperature parameter in stochastic neural networks. The shape of the
sigmoid changes according to the value of c, as can be seen in Figure 7.1. The
graph shows the shape of the sigmoid for c = 1, c = 2 and c = 3. Higher
values of c bring the shape of the sigmoid closer to that of the step function
and in the limit c→∞ the sigmoid converges to a step function at the origin.
In order to simplify all expressions derived in this chapter we set c = 1, but
after going through this material the reader should be able to generalize all
the expressions for a variable c. In the following we call the sigmoid s1(x) just
s(x).
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x

1

Fig. 7.1. Three sigmoids (for c = 1, c = 2 and c = 3)

The derivative of the sigmoid with respect to x, needed later on in this
chapter, is

d

dx
s(x) =

e−x

(1 + e−x)2
= s(x)(1 − s(x)).

We have already shown that, in the case of perceptrons, a symmetrical activa-
tion function has some advantages for learning. An alternative to the sigmoid
is the symmetrical sigmoid S(x) defined as

S(x) = 2s(x)− 1 =
1− e−x

1 + e−x
.

This is nothing but the hyperbolic tangent for the argument x/2 whose shape
is shown in Figure 7.2 (upper right). The figure shows four types of continuous
“squashing” functions. The ramp function (lower right) can also be used in
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learning algorithms taking care to avoid the two points where the derivative
is undefined.
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Fig. 7.2. Graphics of some “squashing” functions

Many other kinds of activation functions have been proposed and the back-
propagation algorithm is applicable to all of them. A differentiable activation
function makes the function computed by a neural network differentiable (as-
suming that the integration function at each node is just the sum of the
inputs), since the network itself computes only function compositions. The
error function also becomes differentiable.

Figure 7.3 shows the smoothing produced by a sigmoid in a step of the error
function. Since we want to follow the gradient direction to find the minimum of
this function, it is important that no regions exist in which the error function
is completely flat. As the sigmoid always has a positive derivative, the slope of
the error function provides a greater or lesser descent direction which can be
followed. We can think of our search algorithm as a physical process in which
a small sphere is allowed to roll on the surface of the error function until it
reaches the bottom.

7.1.2 Regions in input space

The sigmoid’s output range contains all numbers strictly between 0 and 1.
Both extreme values can only be reached asymptotically. The computing units
considered in this chapter evaluate the sigmoid using the net amount of exci-
tation as its argument. Given weights w1, . . . , wn and a bias −θ, a sigmoidal
unit computes for the input x1, . . . , xn the output

1

1 + exp (
∑n

i=1 wixi − θ)
.

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996



R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

154 7 The Backpropagation Algorithm

Fig. 7.3. A step of the error function

A higher net amount of excitation brings the unit’s output nearer to 1. The
continuum of output values can be compared to a division of the input space
in a continuum of classes. A higher value of c makes the separation in input
space sharper.

(0,0)

(0,1)

(1,0)

(1,1)

weight

Fig. 7.4. Continuum of classes in input space

Note that the step of the sigmoid is normal to the vector (w1, . . . , wn,−θ)
so that the weight vector points in the direction in extended input space in
which the output of the sigmoid changes faster.

7.1.3 Local minima of the error function

A price has to be paid for all the positive features of the sigmoid as activation
function. The most important problem is that, under some circumstances,
local minima appear in the error function which would not be there if the
step function had been used. Figure 7.5 shows an example of a local minimum
with a higher error level than in other regions. The function was computed
for a single unit with two weights, constant threshold, and four input-output
patterns in the training set. There is a valley in the error function and if
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gradient descent is started there the algorithm will not converge to the global
minimum.

Fig. 7.5. A local minimum of the error function

In many cases local minima appear because the targets for the outputs
of the computing units are values other than 0 or 1. If a network for the
computation of XOR is trained to produce 0.9 at the inputs (0,1) and (1,0)
then the surface of the error function develops some protuberances, where
local minima can arise. In the case of binary target values some local minima
are also present, as shown by Lisboa and Perantonis who analytically found
all local minima of the XOR function [277].

7.2 General feed-forward networks

In this section we show that backpropagation can easily be derived by linking
the calculation of the gradient to a graph labeling problem. This approach is
not only elegant, but also more general than the traditional derivations found
in most textbooks. General network topologies are handled right from the
beginning, so that the proof of the algorithm is not reduced to the multilayered
case. Thus one can have it both ways, more general yet simpler [375].

7.2.1 The learning problem

Recall that in our general definition a feed-forward neural network is a com-
putational graph whose nodes are computing units and whose directed edges
transmit numerical information from node to node. Each computing unit is ca-
pable of evaluating a single primitive function of its input. In fact the network
represents a chain of function compositions which transform an input to an
output vector (called a pattern). The network is a particular implementation
of a composite function from input to output space, which we call the network
function. The learning problem consists of finding the optimal combination
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of weights so that the network function ϕ approximates a given function f
as closely as possible. However, we are not given the function f explicitly but
only implicitly through some examples.

Consider a feed-forward network with n input and m output units. It can
consist of any number of hidden units and can exhibit any desired feed-forward
connection pattern. We are also given a training set {(x1, t1), . . . , (xp, tp)}
consisting of p ordered pairs of n- and m-dimensional vectors, which are called
the input and output patterns. Let the primitive functions at each node of the
network be continuous and differentiable. The weights of the edges are real
numbers selected at random. When the input pattern xi from the training set
is presented to this network, it produces an output oi different in general from
the target ti. What we want is to make oi and ti identical for i = 1, . . . , p,
by using a learning algorithm. More precisely, we want to minimize the error
function of the network, defined as

E =
1

2

p
∑

i=1

‖oi − ti‖2.

After minimizing this function for the training set, new unknown input pat-
terns are presented to the network and we expect it to interpolate. The network
must recognize whether a new input vector is similar to learned patterns and
produce a similar output.

The backpropagation algorithm is used to find a local minimum of the
error function. The network is initialized with randomly chosen weights. The
gradient of the error function is computed and used to correct the initial
weights. Our task is to compute this gradient recursively.

network +network +

.

.

.

xi1

xi 2

xin

Ei

1
2(oi1 − t i1 )

2

1
2(oi 2 − t i2 )

2

1
2(oim − tim)

2

Fig. 7.6. Extended network for the computation of the error function

The first step of the minimization process consists of extending the net-
work, so that it computes the error function automatically. Figure 7.6 shows
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how this is done. Every one of the j output units of the network is connected
to a node which evaluates the function 1

2 (oij − tij)2, where oij and tij denote
the j-th component of the output vector oi and of the target ti. The outputs
of the additional m nodes are collected at a node which adds them up and
gives the sum Ei as its output. The same network extension has to be built for
each pattern ti. A computing unit collects all quadratic errors and outputs
their sum E1 + · · · + Ep. The output of this extended network is the error
function E.

We now have a network capable of calculating the total error for a given
training set. The weights in the network are the only parameters that can
be modified to make the quadratic error E as low as possible. Because E is
calculated by the extended network exclusively through composition of the
node functions, it is a continuous and differentiable function of the ` weights
w1, w2, . . . , w` in the network. We can thus minimize E by using an iterative
process of gradient descent, for which we need to calculate the gradient

∇E = (
∂E

∂w1
,
∂E

∂w2
, . . . ,

∂E

∂w`
).

Each weight is updated using the increment

∆wi = −γ ∂E
∂wi

for i = 1, . . . , `,

where γ represents a learning constant, i.e., a proportionality parameter which
defines the step length of each iteration in the negative gradient direction.

With this extension of the original network the whole learning problem
now reduces to the question of calculating the gradient of a network function
with respect to its weights. Once we have a method to compute this gradient,
we can adjust the network weights iteratively. In this way we expect to find a
minimum of the error function, where ∇E = 0.

7.2.2 Derivatives of network functions

Now forget everything about training sets and learning. Our objective is to find
a method for efficiently calculating the gradient of a one-dimensional network
function according to the weights of the network. Because the network is
equivalent to a complex chain of function compositions, we expect the chain
rule of differential calculus to play a major role in finding the gradient of the
function. We take account of this fact by giving the nodes of the network
a composite structure. Each node now consists of a left and a right side, as
shown in Figure 7.7. We call this kind of representation a B-diagram (for
backpropagation diagram).

The right side computes the primitive function associated with the node,
whereas the left side computes the derivative of this primitive function for the
same input.
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f′ f 

Fig. 7.7. The two sides of a computing unit

s′ s+1

Fig. 7.8. Separation of integration and activation function

Note that the integration function can be separated from the activation
function by splitting each node into two parts, as shown in Figure 7.8. The first
node computes the sum of the incoming inputs, the second one the activation
function s. The derivative of s is s′ and the partial derivative of the sum of n
arguments with respect to any one of them is just 1. This separation simplifies
our discussion, as we only have to think of a single function which is being
computed at each node and not of two.

The network is evaluated in two stages: in the first one, the feed-forward
step, information comes from the left and each unit evaluates its primitive
function f in its right side as well as the derivative f ′ in its left side. Both
results are stored in the unit, but only the result from the right side is transmit-
ted to the units connected to the right. The second step, the backpropagation
step, consists in running the whole network backwards, whereby the stored
results are now used. There are three main cases which we have to consider.

First case: function composition

The B-diagram of Figure 7.9 contains only two nodes. In the feed-forward step,
incoming information into a unit is used as the argument for the evaluation
of the node’s primitive function and its derivative. In this step the network
computes the composition of the functions f and g. Figure 7.10 shows the
state of the network after the feed-forward step. The correct result of the
function composition has been produced at the output unit and each unit has
stored some information on its left side.

In the backpropagation step the input from the right of the network is
the constant 1. Incoming information to a node is multiplied by the value
stored in its left side. The result of the multiplication is transmitted to the
next unit to the left. We call the result at each node the traversing value
at this node. Figure 7.11 shows the final result of the backpropagation step,
which is f ′(g(x))g′(x), i.e., the derivative of the function composition f(g(x))
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x g′ g ′ f f

Fig. 7.9. Network for the composition of two functions

x

function composition

f (g(x))g′ g (x) ′ f (g(x)) f

Fig. 7.10. Result of the feed-forward step

implemented by this network. The backpropagation step provides an imple-
mentation of the chain rule. Any sequence of function compositions can be
evaluated in this way and its derivative can be obtained in the backpropa-
gation step. We can think of the network as being used backwards with the
input 1, whereby at each node the product with the value stored in the left
side is computed.

g′ g (x) ′ f (g(x)) f 1

backpropagation

′ f (g(x)) ′ g (x)

Fig. 7.11. Result of the backpropagation step

+
1

1
x

function composition

f1

f2

f1(x) + f2(x)

′ f 1 (x)

′ f 2(x)

Fig. 7.12. Addition of functions
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Second case: function addition

The next case to consider is the addition of two primitive functions. Fig-
ure 7.12 shows a network for the computation of the addition of the functions
f1 and f2 . The additional node has been included to handle the addition of
the two functions. The partial derivative of the addition function with respect
to any one of the two inputs is 1. In the feed-forward step the network com-
putes the result f1(x) + f2(x). In the backpropagation step the constant 1 is
fed from the left side into the network. All incoming edges to a unit fan out
the traversing value at this node and distribute it to the connected units to
the left. Where two right-to-left paths meet, the computed traversing values
are added. Figure 7.13 shows the result f ′

1(x) + f ′
2(x) of the backpropagation

step, which is the derivative of the function addition f1 + f2 evaluated at x.
A simple proof by induction shows that the derivative of the addition of any
number of functions can be handled in the same way.

+
1

1

backpropagation

f1

f2

′ f 1 (x)

′ f 2(x)

1′ f 1 (x) + ′ f 2 (x)

Fig. 7.13. Result of the backpropagation step

w
x wx

backpropagation

w
1

feed-forward

w

Fig. 7.14. Forward computation and backpropagation at an edge
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Third case: weighted edges

Weighted edges could be handled in the same manner as function composi-
tions, but there is an easier way to deal with them. In the feed-forward step
the incoming information x is multiplied by the edge’s weight w. The result
is wx. In the backpropagation step the traversing value 1 is multiplied by
the weight of the edge. The result is w, which is the derivative of wx with
respect to x. From this we conclude that weighted edges are used in exactly
the same way in both steps: they modulate the information transmitted in
each direction by multiplying it by the edges’ weight.

7.2.3 Steps of the backpropagation algorithm

We can now formulate the complete backpropagation algorithm and prove by
induction that it works in arbitrary feed-forward networks with differentiable
activation functions at the nodes. We assume that we are dealing with a
network with a single input and a single output unit.

Algorithm 7.2.1 Backpropagation algorithm.

Consider a network with a single real input x and network function F . The
derivative F ′(x) is computed in two phases:

Feed-forward: the input x is fed into the network. The primitive func-
tions at the nodes and their derivatives are evaluated at
each node. The derivatives are stored.

Backpropagation: the constant 1 is fed into the output unit and the network
is run backwards. Incoming information to a node is added
and the result is multiplied by the value stored in the left
part of the unit. The result is transmitted to the left of the
unit. The result collected at the input unit is the derivative
of the network function with respect to x.

The following proposition shows that the algorithm is correct.

Proposition 11. Algorithm 7.2.1 computes the derivative of the network
function F with respect to the input x correctly.

Proof. We have already shown that the algorithm works for units in series,
units in parallel and also for weighted edges. Let us make the induction as-
sumption that the algorithm works for any feed-forward network with n or
fewer nodes. Consider now the B-diagram of Figure 7.15, which contains n+1
nodes. The feed-forward step is executed first and the result of the single
output unit is the network function F evaluated at x. Assume that m units,
whose respective outputs are F1(x), . . . , Fm(x) are connected to the output
unit. Since the primitive function of the output unit is ϕ, we know that
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F(x)

F
1
(x)

F
2

(x)

F
m

(x)

w
1

w
2

w
m

x ϕ(s)′ ϕ (s)
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Fig. 7.15. Backpropagation at the last node

F (x) = ϕ(w1F1(x) + w2F2(x) + · · ·+ wmFm(x)).

The derivative of F at x is thus

F ′(x) = ϕ′(s)(w1F
′
1(x) + w2F

′
2(x) + · · ·+ wmF

′
m(x)),

where s = ϕ(w1F1(x) + w2F2(x) + · · · + wmFm(x)). The subgraph of the
main graph which includes all possible paths from the input unit to the unit
whose output is F1(x) defines a subnetwork whose network function is F1

and which consists of n or fewer units. By the induction assumption we can
calculate the derivative of F1 at x, by introducing a 1 into the unit and
running the subnetwork backwards. The same can be done with the units
whose outputs are F2(x), . . . , Fm(x). If instead of 1 we introduce the constant
ϕ′(s) and multiply it by w1 we get w1F

′
1(x)ϕ

′(s) at the input unit in the
backpropagation step. Similarly we get w2F

′
2(x)ϕ

′(s), . . . , wmF
′
m(x)ϕ′(s) for

the rest of the units. In the backpropagation step with the whole network we
add these m results and we finally get

ϕ′(s)(w1F
′
1(x) + w2F

′
2(x) + · · ·+ wmF

′
m(x))

which is the derivative of F evaluated at x. Note that introducing the con-
stants w1ϕ

′(s), . . . , wmϕ
′(s) into the m units connected to the output unit can

be done by introducing a 1 into the output unit, multiplying by the stored
value ϕ′(s) and distributing the result to the m units through the edges with
weights w1, w2, . . . , wm. We are in fact running the network backwards as the
backpropagation algorithm demands. This means that the algorithm works
with networks of n+ 1 nodes and this concludes the proof. 2

Implicit in the above analysis is that all inputs to a node are added be-
fore the one-dimensional activation function is computed. We can consider
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also activation functions f of several variables, but in this case the left side
of the unit stores all partial derivatives of f with respect to each variable.
Figure 7.16 shows an example for a function f of two variables x1 and x2, de-
livered through two different edges. In the backpropagation step each stored
partial derivative is multiplied by the traversing value at the node and trans-
mitted to the left through its own edge. It is easy to see that backpropagation
still works in this more general case.

∂F

∂x1

∂F

∂x2

F

x2

x1

Fig. 7.16. Stored partial derivatives at a node

The backpropagation algorithm also works correctly for networks with
more than one input unit in which several independent variables are involved.
In a network with two inputs for example, where the independent variables x1

and x2 are fed into the network, the network result can be called F (x1, x2).
The network function now has two arguments and we can compute the par-
tial derivative of F with respect to x1 or x2. The feed-forward step remains
unchanged and all left side slots of the units are filled as usual. However, in
the backpropagation step we can identify two subnetworks: one consists of all
paths connecting the first input unit to the output unit and another of all
paths from the second input unit to the output unit. By applying the back-
propagation step in the first subnetwork we get the partial derivative of F
with respect to x1 at the first input unit. The backpropagation step on the
second subnetwork yields the partial derivative of F with respect to x2 at the
second input unit. Note that we can overlap both computations and perform
a single backpropagation step over the whole network. We still get the same
results.

7.2.4 Learning with backpropagation

We consider again the learning problem for neural networks. Since we want
to minimize the error function E, which depends on the network weights, we
have to deal with all weights in the network one at a time. The feed-forward
step is computed in the usual way, but now we also store the output of each
unit in its right side. We perform the backpropagation step in the extended
network that computes the error function and we then fix our attention on
one of the weights, say wij whose associated edge points from the i-th to the
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j-th node in the network. This weight can be treated as an input channel into
the subnetwork made of all paths starting at wij and ending in the single
output unit of the network. The information fed into the subnetwork in the
feed-forward step was oiwij , where oi is the stored output of unit i. The
backpropagation step computes the gradient of E with respect to this input,
i.e., ∂E/∂oiwij . Since in the backpropagation step oi is treated as a constant,
we finally have

∂E

∂wij
= oi

∂E

∂oiwij
.

Summarizing, the backpropagation step is performed in the usual way. All
subnetworks defined by each weight of the network can be handled simulta-
neously, but we now store additionally at each node i:

• The output oi of the node in the feed-forward step.

• The cumulative result of the backward computation in the backpropaga-
tion step up to this node. We call this quantity the backpropagated error.

If we denote the backpropagated error at the j-th node by δj , we can then
express the partial derivative of E with respect to wij as:

∂E

∂wij
= oiδj .

Once all partial derivatives have been computed, we can perform gradient
descent by adding to each weight wij the increment

∆wij = −γoiδj .

This correction step is needed to transform the backpropagation algorithm
into a learning method for neural networks.

This graphical proof of the backpropagation algorithm applies to arbitrary
feed-forward topologies. The graphical approach also immediately suggests
hardware implementation techniques for backpropagation.

7.3 The case of layered networks

An important special case of feed-forward networks is that of layered networks
with one or more hidden layers. In this section we give explicit formulas for the
weight updates and show how they can be calculated using linear algebraic
operations. We also show how to label each node with the backpropagated
error in order to avoid redundant computations.
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7.3.1 Extended network

We will consider a network with n input sites, k hidden, and m output units.

The weight between input site i and hidden unit j will be called w
(1)
ij . The

weight between hidden unit i and output unit j will be called w
(2)
ij . The bias

−θ of each unit is implemented as the weight of an additional edge. Input
vectors are thus extended with a 1 component, and the same is done with the
output vector from the hidden layer. Figure 7.17 shows how this is done. The

weight between the constant 1 and the hidden unit j is called w
(1)
n+1,j and the

weight between the constant 1 and the output unit j is denoted by w
(2)
k+1,j .

n

input sites

m

output units

1

1

hidden units

  
connection matrix 

W1   
connection matrix 

W2

  
w n+1,

(1)

  
w +1,k

site n+1

k

k m
(2)

.

.

.

.

.

.

.

.

.

Fig. 7.17. Notation for the three-layered network

There are (n + 1) × k weights between input sites and hidden units and
(k+ 1)×m between hidden and output units. Let W1 denote the (n+ 1)× k
matrix with component w

(1)
ij at the i-th row and the j-th column. Similarly

let W2 denote the (k + 1) × m matrix with components w
(2)
ij . We use an

overlined notation to emphasize that the last row of both matrices corresponds
to the biases of the computing units. The matrix of weights without this last
row will be needed in the backpropagation step. The n-dimensional input
vector o = (o1, . . . , on) is extended, transforming it to ô = (o1, . . . , on, 1). The
excitation netj of the j-th hidden unit is given by

netj =

n+1∑

i=1

w
(1)
ij ôi.

The activation function is a sigmoid and the output o
(1)
j of this unit is thus
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o
(1)
j = s

(
n+1∑

i=1

w
(1)
ij ôi

)

.

The excitation of all units in the hidden layer can be computed with the
vector-matrix multiplication ôW1. The vector o(1) whose components are the
outputs of the hidden units is given by

o(1) = s(ôW1),

using the convention of applying the sigmoid to each component of the ar-
gument vector. The excitation of the units in the output layer is computed

using the extended vector ô(1) = (o
(1)
1 , . . . , o

(1)
k , 1). The output of the network

is the m-dimensional vector o(2), where

o(2) = s(ô(1)W2).

These formulas can be generalized for any number of layers and allow direct
computation of the flow of information in the network with simple matrix
operations.

7.3.2 Steps of the algorithm

Figure 7.18 shows the extended network for computation of the error function.
In order to simplify the discussion we deal with a single input-output pair (o, t)
and generalize later to p training examples. The network has been extended
with an additional layer of units. The right sides compute the quadratic de-

viation 1
2 (o

(2)
i − ti) for the i-th component of the output vector and the left

sides store (o
(2)
i − ti). Each output unit i in the original network computes

the sigmoid s and produces the output o
(2)
i . Addition of the quadratic devi-

ations gives the error E. The error function for p input-output examples can
be computed by creating p networks like the one shown, one for each training
pair, and adding the outputs of all of them to produce the total error of the
training set.

After choosing the weights of the network randomly, the backpropagation
algorithm is used to compute the necessary corrections. The algorithm can be
decomposed in the following four steps:

i) Feed-forward computation

ii) Backpropagation to the output layer

iii) Backpropagation to the hidden layer

iv) Weight updates

The algorithm is stopped when the value of the error function has become
sufficiently small.
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Fig. 7.18. Extended multilayer network for the computation of E

First step: feed-forward computation

The vector o is presented to the network. The vectors o(1) and o(2) are com-
puted and stored. The evaluated derivatives of the activation functions are
also stored at each unit.

Second step: backpropagation to the output layer

We are looking for the first set of partial derivatives ∂E/∂w
(2)
ij . The back-

propagation path from the output of the network up to the output unit j is
shown in the B-diagram of Figure 7.19.

+1 1

j-th  output unit  

i-th  hidden unit quadratic error of the 

j-th component

backpropagated error up to unit j 

backpropagation

oi

(1)

wij

(2)

o j

(2)
1− o j

(2)( )

o j

(2)
1− o j

(2)( ) o j

(2) − t j( )
o j

(2) − t j( ) 1

2
oj

(2) − t j( )
2

o j

(2)

Fig. 7.19. Backpropagation path up to output unit j
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From this path we can collect by simple inspection all the multiplicative

terms which define the backpropagated error δ
(2)
j . Therefore

δ
(2)
j = o

(2)
j (1− o(2)j )(o

(2)
j − tj),

and the partial derivative we are looking for is

∂E

∂w
(2)
ij

= [o
(2)
j (1− o(2)j )(o

(2)
j − tj)]o

(1)
i = δ

(2)
j o

(1)
i .

Remember that for this last step we consider the weight w
(2)
ij to be a variable

and its input oi(1) a constant.

oi

(1) δ j

(2)
wij

(2)

Fig. 7.20. Input and backpropagated error at an edge

Figure 7.20 shows the general situation we find during the backpropagation

algorithm. At the input side of the edge with weight wij we have o
(1)
i and at

the output side the backpropagated error δ
(2)
j .

Third step: backpropagation to the hidden layer

Now we want to compute the partial derivatives ∂E/∂w
(1)
ij . Each unit j in

the hidden layer is connected to each unit q in the output layer with an edge

of weight w
(2)
jq , for q = 1, . . . ,m. The backpropagated error up to unit j in

the hidden layer must be computed taking into account all possible backward
paths, as shown in Figure 7.21. The backpropagated error is then

δ
(1)
j = o

(1)
j (1− o(1)j )

m∑

q=1

w
(2)
jq δ

(2)
q .

Therefore the partial derivative we are looking for is

∂E

∂w
(1)
ij

= δ
(1)
j oi.

The backpropagated error can be computed in the same way for any number
of hidden layers and the expression for the partial derivatives of E keeps the
same analytic form.
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Fig. 7.21. All paths up to input site i

Fourth step: weight updates

After computing all partial derivatives the network weights are updated in
the negative gradient direction. A learning constant γ defines the step length
of the correction. The corrections for the weights are given by

∆w
(2)
ij = −γo(1)i δ

(2)
j , for i = 1, . . . , k + 1; j = 1, . . . ,m,

and
∆w

(1)
ij = −γoiδ

(1)
j , for i = 1, . . . , n+ 1; j = 1, . . . , k,

where we use the convention that on+1 = o
(1)
k+1 = 1. It is very important

to make the corrections to the weights only after the backpropagated error
has been computed for all units in the network. Otherwise the corrections
become intertwined with the backpropagation of the error and the computed
corrections do not correspond any more to the negative gradient direction.
Some authors fall in this trap [16]. Note also that some books define the
backpropagated error as the negative traversing value in the network. In that
case the update equations for the network weights do not have a negative sign
(which is absorbed by the deltas), but this is a matter of pure convention.

More than one training pattern

In the case of p > 1 input-output patterns, an extended network is used to
compute the error function for each of them separately. The weight corrections
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are computed for each pattern and so we get, for example, for weight w
(1)
ij the

corrections
∆1w

(1)
ij , ∆2w

(1)
ij , . . . , ∆pw

(1)
ij .

The necessary update in the gradient direction is then

∆w
(1)
ij = ∆1w

(1)
ij +∆2w

(1)
ij + · · ·+∆pw

(1)
ij .

We speak of batch or off-line updates when the weight corrections are made
in this way. Often, however, the weight updates are made sequentially after
each pattern presentation (this is called on-line training). In this case the
corrections do not exactly follow the negative gradient direction, but if the
training patterns are selected randomly the search direction oscillates around
the exact gradient direction and, on average, the algorithm implements a
form of descent in the error function. The rationale for using on-line training
is that adding some noise to the gradient direction can help to avoid falling
into shallow local minima of the error function. Also, when the training set
consists of thousands of training patterns, it is very expensive to compute
the exact gradient direction since each epoch (one round of presentation of
all patterns to the network) consists of many feed-forward passes and on-line
training becomes more efficient [391].

7.3.3 Backpropagation in matrix form

We have seen that the graph labeling approach for the proof of the backpropa-
gation algorithm is completely general and is not limited to the case of regular
layered architectures. However this special case can be put into a form suitable
for vector processors or special machines for linear algebraic operations.

We have already shown that in a network with a hidden and an output
layer (n, k and m units) the input o produces the output o(2) = s(ô(1)W2)
where o(1) = s(ôW1). In the backpropagation step we only need the first n
rows of matrix W1. We call this n×k matrix W1. Similarly, the k×m matrix
W2 is composed of the first k rows of the matrix W2. We make this reduction
because we do not need to backpropagate any values to the constant inputs
corresponding to each bias.

The derivatives stored in the feed-forward step at the k hidden units and
the m output units can be written as the two diagonal matrices

D2 =









o
(2)
1 (1− o(2)1 ) 0 · · · 0

0 o
(2)
2 (1 − o(2)2 ) · · · 0

...
...

. . .
...

0 0 · · · o(2)m (1 − o(2)m )









,

and
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D1 =









o
(1)
1 (1− o(1)1 ) 0 · · · 0

0 o
(1)
2 (1 − o(1)2 ) · · · 0

...
...

. . .
...

0 0 · · · o(1)k (1 − o(1)k )









.

Define the vector e of the stored derivatives of the quadratic deviations as

e =









(o
(2)
1 − t1)

(o
(2)
2 − t2)

...

(o
(2)
m − tm)









The m-dimensional vector δ
(2) of the backpropagated error up to the output

units is given by the expression

δ
(2) = D2e.

The k-dimensional vector of the backpropagated error up to the hidden layer
is

δ
(1) = D1W2δ

(2).

The corrections for the matrices W1 and W2 are then given by

∆W
T

2 = −γδ(2)ô1 (7.1)

and
∆W

T

1 = −γδ(1)ô. (7.2)

The only necessary operations are vector-matrix, matrix-vector, and vector-
vector multiplications. In Chap. 16 we describe computer architectures op-
timized for this kind of operation. It is easy to generalize these equations
for ` layers of computing units. Assume that the connection matrix between
layer i and i+ 1 is denoted by Wi+1 (layer 0 is the layer of input sites). The
backpropagated error to the output layer is then

δ
(`) = D`e.

The backpropagated error to the i-th computing layer is defined recursively
by

δ
(i) = DiWi+1δ

(i+1), for i = 1, . . . , `− 1.

or alternatively

δ
(i) = DiWi+1 · · ·W`−1D`−1W`D`e.

The corrections to the weight matrices are computed in the same way as for
two layers of computing units.
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7.3.4 The locality of backpropagation

We can now prove using a B-diagram that addition is the only integration
function which preserves the locality of learning when backpropagation is
used.

f′f*

a

b

a

b

f ′(a b)b

backpropagation

f ′(a b )a

Fig. 7.22. Multiplication as integration function

In the networks we have seen so far the backpropagation algorithm ex-
ploits only local information. This means that only information which arrives
from an input line in the feed-forward step is stored at the unit and sent back
through the same line in the backpropagation step. An example can make this
point clear. Assume that the integration function of a unit is multiplication
and its activation function is f . Figure 7.22 shows a split view of the compu-
tation: two inputs a and b come from two input lines, the integration function
responds with the product ab and this result is passed as argument to f . With
backpropagation we can compute the partial derivative of f(ab) with respect
to a and with respect to b. But in this case the value b must be transported
back through the upper edge and the value a through the lower one. Since
b arrived through the other edge, the locality of the learning algorithm has
been lost. The question is which kinds of integration functions preserve the
locality of learning. The answer is given by the following proposition.

Proposition 12. In a unit with n inputs x1, . . . , xn only integration functions
of the form

I(x1, . . . , xn) = F1(x1) + F2(x2) + · · ·+ Fn(xn) + C,

where C is a constant, guarantee the locality of the backpropagation algorithm
in the sense that at an edge i 6= j no information about xj has to be explicitly
stored.

Proof. Let the integration function of the unit be the function I of n argu-
ments. If, in the backpropagation step, only a function fi of the variable xi

can be stored at the computing unit in order to be transmitted through the
i-th input line in the backpropagation step, then we know that

∂I

∂xi
= fi(xi), for i = 1, . . . , n.
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Therefore by integrating these equations we obtain:

I(x1, x2, . . . , xn) = F1(x1) +G1(x2, . . . , xn),

I(x1, x2, . . . , xn) = F2(x2) +G2(x2, . . . , xn),

...

I(x1, x2, . . . , xn) = Fn(xn) +Gn(x2, . . . , xn),

where Fi denotes the integral of fi and G1, . . . , Gn are real functions of n− 1
arguments. Since the function I has a unique form, the only possibility is

I(x1, x2, . . . , xn) = F1(x1) + F2(x2) + · · ·+ Fn(xn) + C

where C is a constant. This means that information arriving from each line
can be preprocessed by the Fi functions and then has to be added. Therefore
only integration functions with this form preserve locality. 2

7.3.5 Error during training

We discussed the form of the error function for the XOR problem in the
last chapter. It is interesting to see how backpropagation performs when con-
fronted with this problem. Figure 7.23 shows the evolution of the total error
during training of a network of three computing units. After 600 iterations
the algorithm found a solution to the learning problem. In the figure the error
falls fast at the beginning and end of training. Between these two zones lies a
region in which the error function seems to be almost flat and where progress
is slow. This corresponds to a region which would be totally flat if step func-
tions were used as activation functions of the units. Now, using the sigmoid,
this region presents a small slope in the direction of the global minimum.

In the next chapter we discuss how to make backpropagation converge
faster, taking into account the behavior of the algorithm at the flat spots of
the error function.

7.4 Recurrent networks

The backpropagation algorithm can also be extended to the case of recurrent
networks. To deal with this kind of systems we introduce a discrete time
variable t. At time t all units in the network recompute their outputs, which
are then transmitted at time t+1. Continuing in this step-by-step fashion, the
system produces a sequence of output values when a constant or time varying
input is fed into the network. As we already saw in Chap. 2, a recurrent
network behaves like a finite automaton. The question now is how to train
such an automaton to produce a desired sequence of output values.
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Fig. 7.23. Error function for 600 iterations of backpropagation

7.4.1 Backpropagation through time

The simplest way to deal with a recurrent network is to consider a finite num-
ber of iterations only. Assume for generality that a network of n computing
units is fully connected and that wij is the weight associated with the edge
from node i to node j. By unfolding the network at the time steps 1, 2, . . . , T ,
we can think of this recurrent network as a feed-forward network with T stages
of computation. At each time step t an external input x(t) is fed into the net-

work and the outputs (o
(t)
1 , . . . , o

(t)
n ) of all computing units are recorded. We

call the n-dimensional vector of the units’ outputs at time t the network state
o(t). We assume that the initial values of all unit’s outputs are zero at t = 0,
but the external input x(0) can be different from zero. Figure 7.24 shows a
diagram of the unfolded network. This unfolding strategy which converts a
recurrent network into a feed-forward network in order to apply the back-
propagation algorithm is called backpropagation through time or just BPTT
[383].

Let W stand for the n× n matrix of network weights wij . Let W0 stand
for the m× n matrix of interconnections between m input sites and n units.
The feed-forward step is computed in the usual manner, starting with an
initial m-dimensional external input x(0). At each time step t the network
state o(t) (an n-dimensional row vector) and the vector of derivatives of the
activation function at each node o′(t) are stored. The error of the network can
be measured after each time step if a sequence of values is to be produced,
or just after the final step T if only the final output is of importance. We
will handle the first, more general case. Denote the difference between the
n-dimensional target y(t) at time t and the output of the network by e(t) =
(
o(t) − y(t)

)T
. This is an n-dimensional column vector, but in most cases we

are only interested in the outputs of some units in the network. In that case
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unit 2

unit n

t = 1 t = 2 t = Tt = 0

(0) (1) (2) (T)x x x x

(0) (1) (T)o o ounit 1

Fig. 7.24. Backpropagation through time

define ei(t) = 0 for each unit i, whose precise state is unimportant and which
can remain hidden from view.

w1 ≡ w

w2 ≡ w

Fig. 7.25. A duplicated weight in a network

Things become complicated when we consider that each weight in the
network is present at each stage of the unfolded network. Until now we had
only handled the case of unique weights. However, any network with repeated
weights can easily be transformed into a network with unique weights. Assume
that after the feed-forward step the state of the network is the one shown
in Figure 7.25. Weight w is duplicated, but received different inputs o1 and
o2 in the feed-forward step at the two different locations in the network.
The transformed network in Figure 7.26 is indistinguishable from the original
network from the viewpoint of the results it produces. Note that the two edges
associated with weight w now have weight 1 and a multiplication is performed
by the two additional units in the middle of the edges. In this transformed
network w appears only once and we can perform backpropagation as usual.
There are two groups of paths, the ones coming from the first multiplier to w

R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996



R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996

176 7 The Backpropagation Algorithm

w

*

*

Fig. 7.26. Transformed network

and the ones coming from the second. This means that we can just perform
backpropagation as usual in the original network. At the first edge we obtain
∂E/∂w1, at the second ∂E/∂w2, and since w1 is the same variable as w2, the
desired partial derivative is

∂E

∂w
=

∂E

∂w1
+
∂E

∂w2
.

We can thus conclude in general that in the case of the same weight being
associated with several edges, backpropagation is performed as usual for each
of those edges and the results are simply added.

The backpropagation phase of BPTT starts from the right. The backprop-
agated error at time T is given by

δ
(T ) = D(T )e(T ),

where D(T ) is the n×n diagonal matrix whose component at the i-th diagonal

element is o′i
(T )

, i.e., the stored derivative of the i-th unit output at time T .
The backpropagated error at time T − 1 is given by

δ
(T−1) = D(T−1)e(T−1) + D(T−1)WD(T )e(T ) ,

where we have considered all paths from the computed errors at time T and
T − 1 to each weight. In general, the backpropagated error at stage i, for
i = 0, . . . , T − 1 is

δ
(i) = D(i)(e(i) + Wδ

(i+1)).

The analytic expression for the final weight corrections are

∆W
T

= −γ
(

δ
(1)ô(0) + · · ·+ δ

(T )ô(T−1)
)

(7.3)

∆W
T

0 = −γ
(

δ
(0)x̂(0) + · · ·+ δ

(T )x̂(T )
)

, (7.4)
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where ô(1), . . . , ô(T ) denote the extended output vectors at steps 1, . . . , T and
W and W0 the extended matrices W and W0.

Backpropagation through time can be extended to the case of infinite time
T . In this case we are interested in the limit value of the network’s state, on
the assumption that the network’s state stabilizes to a fixpoint õ. Under some
conditions over the activation functions and network topology such a fixpoint
exists and its derivative can be calculated by backpropagation. The feed-
forward step is repeated a certain number of times, until the network relaxes to
a numerically stable state (with certain precision). The stored node’s outputs
and derivatives are the ones computed in the last iteration. The network is
then run backwards in backpropagation manner until it reaches a numerically
stable state. The gradient of the network function with respect to each weight
can then be calculated in the usual manner. Note that in this case, we do
not need to store all intermediate values of outputs and derivatives at the
units, only the final ones. This algorithm, called recurrent backpropagation,
was proposed independently by Pineda [342] and Almeida [20].

7.4.2 Hidden Markov Models

Hidden Markov Models (HMM) form an important special type of recurrent
network. A first-order Markov model is any system capable of assuming one of
n different states at time t. The system does not change its state at each time
step deterministically but according to a stochastic dynamics. The probability
of transition from the i-th to the j-th state at each step is given by 0 ≤ aij ≤ 1
and does not depend on the previous history of transitions. These probabilities
can be arranged in an n × n matrix A. We also assume that at each step
the model emits one of m possible output values. We call the probability of
emitting the k-th output value while in the i-th state bik. Starting from a
definite state at time t = 0, the system is allowed to run for T time units and
the generated outputs are recorded. Each new run of the system generally
produces a different sequence of output values. The system is called a HMM
because only the emitted values, not the state transitions, can be observed.

An example may make this point clear. In speech recognition researchers
postulate that the vocal tract shapes can be quantized in a discrete set of states
roughly associated with the phonemes which compose speech. When speech is
recorded the exact transitions in the vocal tract cannot be observed and only
the produced sound can be measured at some predefined time intervals. These
are the emissions, and the states of the system are the quantized configurations
of the vocal tract. From the measurements we want to infer the sequence of
states of the vocal tract, i.e., the sequence of utterances which gave rise to
the recorded sounds. In order to make this problem manageable, the set of
states and the set of possible sound parameters are quantized (see Chap. 9
for a deeper discussion of automatic speech recognition).

The general problem when confronted with the recorded sequence of out-
put values of a HMM is to compute the most probable sequence of state
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Fig. 7.27. Transition probabilities of a Markov model with three states

transitions which could have produced them. This is done with a recursive
algorithm.

The state diagram of a HMM can be represented by a network made of n
units (one for each state) and with connections from each unit to each other.
The weights of the connections are the transition probabilities (Figure 7.27).

As in the case of backpropagation through time, we can unfold the network
in order to observe it at each time step. At t = 0 only one of the n units, say
the i-th, produces the output 1, all others zero. State i is the the actual state
of the system. The probability that at time t = 1 the system reaches state j
is given by aij (to avoid cluttering only some of these values are shown in the
diagram). The probability of reaching state k at t = 2 is

n∑

j=1

aijajk

which is just the net input at the k-th node in the stage t = 2 of the network
shown in Figure 7.28. Consider now what happens when we can only observe
the output of the system but not the state transitions (refer to Figure 7.29). If
the system starts at t = 0 in a state given by a discrete probability distribution
ρ1, ρ2, . . . , ρn, then the probability of observing the k-th output at t = 0 is
given by

n∑

i=1

ρibik.

The probability of observing the k-th output at t = 0 and the m-th output at
t = 1 is

n∑

j=1

n∑

i=1

ρibikaijbjm.

The rest of the stages of the network compute the corresponding probabilities
in a similar manner.
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Fig. 7.28. Unfolded Hidden Markov Model
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Fig. 7.29. Computation of the likelihood of a sequence of observations

How can we find the unknown transition and emission probabilities for
such an HMM? If we are given a sequence of T observed outputs with indices
k1, k2, . . . , kT we would like to maximize the likelihood of this sequence, i.e.,
the product of the probabilities that each of them occurs. This can be done by
transforming the unfolded network as shown in Figure 7.29 for T = 3. Notice
that at each stage h we introduced an additional edge from the node i with the
weight bi,kh

. In this way the final node which collects the sum of the whole
computation effectively computes the likelihood of the observed sequence.
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Since this unfolded network contains only differentiable functions at its nodes
(in fact only addition and the identity function) it can be trained using the
backpropagation algorithm. However, care must be taken to avoid updating
the probabilities in such a way that they become negative or greater than 1.
Also the transition probabilities starting from the same node must always add
up to 1. These conditions can be enforced by an additional transformation of
the network (introducing for example a “softmax” function [39]) or using the
method of Lagrange multipliers. We give only a hint of how this last technique
can be implemented so that the reader may complete the network by her- or
himself.

Assume that a function F of n parameters x1, x2, . . . , xn is to be mini-
mized, subject to the constraint C(x1, x2, . . . , xn) = 0. We introduce a La-
grange multiplier λ and define the new function

L(x1, . . . , xn, λ) = F (x1, . . . , xn) + λC(x1, . . . , xn).

To minimize L we compute its gradient and set it to zero. To do this numer-
ically, we follow the negative gradient direction to find the minimum. Note
that since

∂L

∂λ
= C(x1, . . . , xn)

the iteration process does not finish as long as C(x1, . . . , xn) 6= 0, because
in that case the partial derivative of L with respect to λ is non-zero. If the
iteration process converges, we can be sure that the constraint C is satisfied.
Care must be taken when the minimum of F is reached at a saddle point
of L. In this case some modifications of the basic gradient descent algorithm
are needed [343]. Figure 7.30 shows a diagram of the network (a Lagrange
neural network [468]) adapted to include a constraint. Since all functions in
the network are differentiable, the partial derivatives needed can be computed
with the backpropagation algorithm.

x1

x2

xn

+

C

λ

F

Fig. 7.30. Lagrange neural network
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7.4.3 Variational problems

Our next example, deals not with a recurrent network, but with a class of
networks built of many repeated stages. Variational problems can also be ex-
pressed and solved numerically using backpropagation networks. A variational
problem is one in which we are looking for a function which can optimize a
certain cost function. Usually cost is expressed analytically in terms of the
unknown function and finding a solution is in many cases an extremely dif-
ficult problem. An example can illustrate the general technique that can be
used.

Assume that the problem is to minimize P with two boundary conditions:

P (u) =

∫ 1

o

F (u, u′)dx with u(0) = a and u(1) = b.

Here u is an unknown function of x and F (u, u′) a cost function. P represents
the total cost associated with u over the interval [0, 1]. Since we want to
solve this problem numerically, we discretize the function u by partitioning
the interval [0, 1] into n − 1 subintervals. The discrete successive values of
the function are denoted by u1, u2, . . . , un, where u1 = a and un = b are the
boundary conditions. The length of the subintervals is ∆x = 1/(n− 1). The
discrete function Pd that we want to minimize is thus:

Pd(u) =

n∑

i=1

F (ui, u
′
i)∆x.

Since minimizing Pd(u) is equivalent to minimizing PD(u) = Pd(u)/∆x (∆x
is constant), we proceed to minimize PD(u). We can approximate the deriva-
tive u′i by (ui − ui−1)/∆x. Figure 7.31 shows the network that computes the
discrete approximation PD(u).

We can now compute the gradient of PD with respect to each ui by per-
forming backpropagation on this network. Note that there are three possible
paths from PD to ui, so the partial derivative of PD with respect to ui is

∂PD

∂ui
=
∂F

∂u
(ui, u

′
i)

︸ ︷︷ ︸

path1

+
1

∆x

∂F

∂u′
(ui, u

′
i)

︸ ︷︷ ︸

path2

− 1

∆x

∂F

∂u′
(ui+1, u

′
i+1)

︸ ︷︷ ︸

path3

which can be rearranged to

∂Pd

∂ui
=
∂F

∂u
(ui, u

′
i)−

1

∆x

(
∂F

∂u′
(ui+1, u

′
i+1)−

∂F

∂u′
(ui, u

′
i)

)

.

At the minimum all these terms should vanish and we get the expression

∂F

∂u
(ui, u

′
i)−

1

∆x

(
∂F

∂u′
(ui+1, u

′
i+1)−

∂F

∂u′
(ui, u

′
i)

)

= 0
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Fig. 7.31. A network for variational calculus

which is the discrete version of the celebrated Euler equation

∂F

∂u
− d

dx

(
∂F

∂u′

)

= 0.

In fact this can be considered a simple derivation of Euler’s result in a discrete
setting.

By selecting another function F many variational problems can be solved
numerically. The curve of minimal length between two points can be found
by using the function

F (u, u′) =
√

1 + u′2 =

√
dx2 + du2

dx

which when integrated with respect to x corresponds to the path length
between the boundary conditions. In 1962 Dreyfus solved the constrained
brachystochrone problem, one of the most famous problems of variational
calculus, using a numerical approach similar to the one discussed here [115].

7.5 Historical and bibliographical remarks

The field of neural networks started with the investigations of researchers of
the caliber of McCulloch, Wiener, and von Neumann. The perceptron era was
its Sturm und Drang period, the epoch in which many new ideas were tested
and novel problems were being solved using perceptrons. However, at the end
of the 1960s it became evident that more complex multilayered architectures
demanded a new learning paradigm. In the absence of such an algorithm,
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a new era of cautious incremental improvements and silent experimentation
began.

The algorithm that the neural network community needed had already
been developed by researchers working in the field of optimal control. These
researchers were dealing with variational problems with boundary conditions
in which a function capable of optimizing a cost function subject to some con-
straints must be determined. As in the field of neural networks, a function f
must be found and a set of input-output values is predefined for some points.
Around 1960 Kelley and Bryson developed numerical methods to solve this
variational problem which relied on a recursive calculation of the gradient of a
cost function according to its unknown parameters [241, 76]. In 1962 Dreyfus,
also known for his criticism of symbolic AI, showed how to express the varia-
tional problems as a kind of multistage system and gave a simple derivation of
what we now call the backpropagation algorithm [115, 116]. He was the first to
use an approach based on the chain rule, in fact one very similar to that used
later by the PDP group. Bryson and Ho later summarized this technique in
their classical book on optimal control [76]. However, Bryson gives credit for
the idea of using numerical methods to solve variational problems to Courant,
who in 1943 proposed using gradient descent along the Euler expression (the
partial derivative of the cost function) to find numerical approximations to
variational problems [93].

The algorithm was redeveloped by some other researchers working in the
field of statistics or pattern recognition. We can look as far back as Gauss
to find mathematicians already doing function-fitting with numerical meth-
ods. Gauss developed the method of least squares and considered the fitting
of nonlinear functions of unknown parameters. In the Gauss–Newton method
the function F of parameters w1, . . . , wn is approximated by its Taylor ex-
pansion at an initial point using only the first-order partial derivatives. Then
a least-squares problem is solved and a new set of parameters is found. This
is done iteratively until the function F approximates the empirical data with
the desired accuracy [180]. Another possibility, however, is the use of the par-
tial derivatives of F with respect to the parameters to do a search in the
gradient direction. This approach was already being used by statisticians in
the 1960s [292]. In 1974 Werbos considered the case of general function com-
position and proposed the backpropagation algorithm [442, 443] as a kind of
nonlinear regression. The points given as the training set are considered not
as boundary conditions, which cannot be violated, but as experimental points
which have to be approximated by a suitable function. The special case of
recursive backpropagation for Hidden Markov Models was solved by Baum,
also considering the restrictions on the range of probability values [47], which
he solved by doing a projective transformation after each update of the set of
probabilities. His “forward-backward” algorithm for HMMs can be considered
one of the precursors of the backpropagation algorithm.

Finally, the AI community also came to rediscovering backpropagation on
its own. Rumelhart and his coauthors [383] used it to optimize multilayered
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neural networks in the 1980s. Le Cun is also mentioned frequently as one
of the authors who reinvented backpropagation [269]. The main difference
however to the approach of both the control or statistics community was in
conceiving the networks of functions as interconnected computing units. We
said before that backpropagation reduces to the recursive computation of the
chain rule. But there is also a difference: the network of computing units serves
as the underlying data structure to store values of previous computations,
avoiding redundant work by the simple expedient of running the network
backwards and labeling the nodes with the backpropagated error. In this sense
the backpropagation algorithm, as rediscovered by the AI community, added
something new, namely the concept of functions as dynamical objects being
evaluated by a network of computing elements and backpropagation as an
inversion of the network dynamics.

Exercises

1. Implement the backpropagation algorithm and train a network that com-
putes the parity of 5 input bits.

2. The symmetric sigmoid is defined as t(x) = 2s(x) − 1, where s(·) is the
usual sigmoid function. Find the new expressions for the weight corrections
in a layered network in which the nodes use t as a primitive function.

3. Find the analytic expressions for the partial derivative of the error function
according to each one of the input values to the network. What could be
done with this kind of information?

4. Find a discrete approximation to the curve of minimal length between two
points in IR3 using a backpropagation network.
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