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On Dickson’s theorem on invariants

To my friend Nagayoshi Iwahori

By Robert STEINBERG

1. Introduction.

The theorem in question, first proved in [3], is as follows.

THEOREM A. Let G:GL,,(k) (k=F,)) act on k[X,, X, -+, X,], the algebra
of formal polynomials, in the wusual way. Then k[X, X, -+, X.]¢, the
algebra of invariants, is a polynomial algebra on the generators

L=[017--n]/[01-n—1] 0=r=n—1).

Here, for any nonnegative integers, [ee, - e,] denotes the determinant
of the matrix whose 75 entry is the ¢%th power of X;. This is nonzero if
the ¢’s are distinct, since the main diagonal term is not cancelled by any
other term. Also since it is reproduced by each T in GL,(k) with the
scalar factor det(7'), by an easy calculation using Fermat’s theorem that
c¢?=c for each ¢ in k, it follows that every [e, -+ e,] is SL,(k)-invariant and
that the ratio of any two such is GL,(k)-invariant. The I,’s are called the
Dickson invariants.

Simultaneously with Theorem A we shall consider the following result
which we believe to be new.

THEOREM B. Ek[X,, X, -+, X,] is free as a module over k[ X, X, -+, X,]¢
with a basis consisting of the monomials X X2« Xir (04, <q"—q "' for
all 7).

Dickson’s original proof of Theorem A was very complicated. Since
then a number of other proofs have appeared (see Bourbaki [2, p. 187-8],
Ore [7, p. 566-8] and Wilkerson [11]), some of them quite simple. In Sec-
tion 2 we present a proof which, we believe, is simpler than any of these
and has the additional advantage that it yields Theorems A and B together.
It should be mentioned that the polynomial nature of k[X]® and the freeness
of k[X] over k[X]¢ are equivalent under quite general conditions, but the
proof involves some serious commutative algebra (see [2]). The essential
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step of our proof is a relative version of the above results (Theorem E
below) which at once yields Theorems A and B and analogous results for
many of its subgroups.

In [8] Dickson also proved the following result.

THEOREM C. If G=SL,(k) in Theorem A then the conclusion there
holds with I, replaced by IV P=[01---n—1].

The equality here follows from I,=[12---n]/[01-:n—1]=[01---n—1]¢/
[01---n—1]. As is known Theorem C follows easily from Theorem A (and
vice versa), and we have included a proof of this fact.

The invariants that depend on several formal vectors have not yet
been determined, except in case n=2, ¢ is a prime, and there are just two
vectors, by Krathwohl [56]. In Section 3 we present some contributions to
this problem which lead to yet another proof of Dickson’s Theorem.

Finally we consider the situation over Z/p"Z. Here the invariants
have been obtained by Feldstein [4], following Turner [10] who did the case
r=2. In Section 4 we obtain more general results in a simpler way which
makes transparent the transition from modp invariants to modp” invariants
for GL,(Z|p"Z) and many of its subgroups.

2. Dickson’s theorem.

In this section we shall prove Theorems A, B and C. Our approach is
that of Artin [1, p. 39-41] who considered the invariants of the symmetric
group S,.

THEOREM D. For 0<r<n let G(r) be the subgroup of GL,(k) con-
sisting of the matrices that agree with the identity in the first r rows.

(a) E[X]" is generated by Xi,--+, X, I,,-+, I,_,, hence is a polynomial
algebra over k.

(b) For r=1 E[X]°™ is free as a module over k[X]°T with {X;|i<
q"—q" 7'} as a basts.

Observe that G(n)=1 and G(0)=GL,(k) and that the proposed genera-
tors in (a) all belong to K[X]°™. Part (a) with »r=0 yields Theorem A,
while part (b) for the values of r from 1 to » combined yields Theorem B
as well as an analogous theorem for each of the groups G(r). We start
our proof with two simple lemmas.

LEMMA 1. The polynomial T —I, T '+1I, ,7" *— - +(—=1)"L,T
has as its roots the q" distinct linear forms in X, X, -+, Xa.
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Let [01::-n] be defined as [01---n—1] above but with an extra variable
X+ and an extra exponent ¢". As a polynomial in X,,, its degree is ¢”
since the highest coefficient [01:--n—1] is, as noted above, nonzero. If
X, is replaced in [01:--n] by any linear combination of the first n X’s
then the (n+1)th row is replaced by the same linear combination of the
first n rows. It follows that the roots are just the ¢" linear forms in the
first » X’s. If we expand [01:--n] along the (n+1)th row, divide through
by [01---n—1] and then replace X,,, by T, we get the polynomial of
Lemma 1, as required.

An immediate consequence of this lemma is that the I's are all poly-
nomials.

LEMMA 2. For each r, X, 18 a root of a monic polynomial of degree
q" _qr—l over k[le ) Xr—l: I’r—l, ) In—l]-

If F, is the polynomial of Lemma 1 and F, , is defined similarly so
that its roots are the ¢"' linear forms in the first »r—1 X’s, then F,/F,_,
is the required polynomial. First it is monic of degree ¢"—q"™' and has
X, as a root. Further its coefficients are in k[X,, -+, X,_,, I, -+, I,] since
those of F,_, are in k[X,, -+, X,._,] and those of F, are in k[[,---,I,], by
Lemma 1. Finally, the I, (s<r—1) can be dropped since their degrees are
all larger than that of F,/F,_,.

We come now to the heart of the proof, the deduction of Theorem D
from Lemma 2. Since the argument is valid in a number of other cases
of interest to us, we carry it out in a more general context which focuses
attention on the essential features of the situation.

THEOREM E. Let G and H be subgroups of GL,(k) with H contained
i G. Let S be a subset of k[X]¥ and T a subset of k[X]° such that (1) S
generates k[ X%, (2) S contains just one element, Y, which is not in T,
and (3) Y is a root of a polynomial over k[T] which 18 monic and of
degree at most |G/H|. Then T generates k[X]1%, and k[X]¥ is free as a
module over k[X]¢ with {Y*|0<1<|G/H|} as a basis.

Here k can be any field as long as G is finite. Let A be the polynomial
of (3) and F any element of k[X1]?. Then F is in k[S] by (1), and by using
the equation A(Y)=0 we can write F as a polynomial in Y of degree less
than |G/H|, with coefficients in k[T'] because of the assumption (2). Thus
the given Ys generate k[X]7 as a module over k[T], hence also k[X]¥
over k[X]° and k(X)¥ over k(X)¢ the last because for any P(X)/Q(X) in
E(X)" the denominator can always be converted to one in k[X]% namely,
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ITg-Q(X) (¢ in G). However the number of Ys is at. most |G/H|, which
by the first theorem of Galois theory equals the dimension of k(X)¥ as a
vector space over k(X)¢ (see [1,Th. 14]). It follows that the Y*s form a
basis for this space and hence a free generating set for K[X]¥ over k[X]°.
It remains to show that each F in k[X]° belongs to k[T]. Write F=
>C.Y' (1<|G/H|) as a linear combination over k[T], and F=FY" over
k[X]¢." Since the Y¥s are free over k[X]% we get F=C, an element of
k[T], as required. -

Labelling the two parts of Theorem D (a,) and (b;), we shall now show
that for r=1 (a,) implies (b,) and (a,_,). Then since (a,) is obviously true,
the theorem will follow. The hypotheses of Theorem E are satisfied with
G=G(r—1), H=G(r), S={X}, -, X, I, -+, L.}, T={X,, -+, X, .y, L,.y, -+, Iy}
and Y=X,, in view of Lemma 2 and the assumption (a,). We conclude
that (b,) and (a,.,) hold, except for the last point of (a,.,). Since k[X] is
algebraic over K[X]°" P, the transcendence degree of the latter over k
equals that of the former, which is %, so that that point also holds and
the proof of Theorem D is complete.

REMARKS. (a) If X, is replaced by 1 the group G, above becomes the
affine group on the remaining coordinates. It follows that for this group
also the invariants form a polynomial algebra, with generators obtained
from the Is (r+0) by the same replacement. (b) The above method, as
embodied in Theorem E, also works for all parabolic subgroups of GL,(k)
and their unipotent radicals. To indicate the results obtained we state
them in a simple, but typical, case. Let n=4 and let P be the parabolic
subgroup in which the 2 by 2 block in the upper right hand corner is re-
quired to be 0. Then k[X]? is generated by I, I}, I,, I, with the first two
I's calculated on the space of the first two coordinates, and a basis for
k[X]/k[X]® consists of the monomials with 0<14,<¢*—¢ ' for r=1 and 2
and 0=<4,<¢*—q " for r=3 and 4.

We come now to the proof of Theorem C. For this we need another
(well-known) lemma.

LEMMA 3. [01---n—1] equals the product of all of the nonzero linear
forms in the X’s for which the last nonzero coefficient is 1, and it divides
every SL,(k)-invariant which X, divides.

Any such invariant is divisible by all of the transforms of X, under
SL,(k), hence by all of the linear forms as above and hence also by their
product. But this product and [01---n»—1] have the same lowest terms
(lexicographically). Thus they are equal and the lemma follows.

It also follows that [01:--n—1] divides every [e,e, ‘- e,], which provides
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another proof that the I.’s are polynomials.

Now let F' be any invariant for SL,(k). We must show that it is ex-
pressible in terms of the n invariants given by Theorem C. The elements
T.=diag(c,1,1,:--,1) (¢ in k*). form a system of representatives for the
cosets of GL,(k) over SL,(k). If we write F=—->T.F+X(T.F-—-F)
=F\+F, say, it follows that F) is an invariant for GL,(k) and hence by
Theorem A is expressible as required by Theorem C. From the form of
F, it is divisible by X, and hence also by [01:--n—1] by Lemma 3. We
can now finish by induction since the degree of F,/[01---n—1] is less than
that of F.

3 Several vectors.

In this section we consider GL,(k) acting on several vectors. The re-
sults are fragmentary, but the ideas introduced may be of further use.

THEOREM F. If the group G=GL,(k) acts on a set of m=n independ-
ent formal vectors whose coordinates are viewed as functions on k™ and
written n matrixz form as v, Va=XY with X consisting of the- first
nv's and Y of the others, then on the set where det X=[X]+#0, or more
generally on any locally closed G-invariant subset of this set, the map
[ XY—> (X' X9)(X1Y) defines a quotient for the action.

Here X‘© denotes the matrix of gth powers of the entries of X. The
Lang-Speiser Theorem states that the map X—X X on GL,(k) is surjec-
tive. In [9] a refinement is proved, that this map is a finite morphism.
From this the theorem readily follows.

THEOREM G. In addition to the above motation let [X;;] denote the
quantity obtaimed from [X] by replacing v, by v if j<n, by v; if j>n.
Then on the set in k™ where [X]#0 the algebra of polynomials invariant
under G 1s generated by the mn elements [X,,]/[X] together with [X]'

By Theorem F we need only work out the coordinates of XX, X'Y
and [X'X°]™! in terms of those of X and Y. By Cramer’s rule for X!
the results are as stated.

This result also holds for SL,(k) provided that [X]'"? is replaced by
(X1

COROLLARY. If m=mn, then k(vw, - vn)¢ is purely transcendental over
k with the mn [X;;]/[X]s as a generating set.
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This follows at once from Theorem G.

For m<mn analogous results may be obtained as follows. We first ex-
pand v, -+ v, to a square matrix X by adjoining the ¢’th powers of v, for
j=1,--+,n—m. (We could also adjoin powers of several v’s.) With this X
and the resulting »’*+1 functions of Theorem G which can be brought
down to mn—+1 since those with m<j<mn are constant, the result there
holds. Finally, dropping the function [X]'"% we see that the corollary also
holds, all for m<n.

To solve our main problem, the determination of k[v, --+ v,]¢, we would,
according to the present approach, have to remove the condition [X]+#0,
that is, determine the polynomials in the [X;,]'s that are divisible by [X],
and we can not do this. We can, however, do this in case m=1 and thus
obtain another proof of Dickson’s Theorem, with which we close this sec-
tion.

Let v be any formal vector. We expand it to a square matrix X by
adjoining n—1 of its powers as in the preceding proof. The n+1 noncon-
stant invariants that result from Theorem G in this case are just the
Dickson invariants I, ---, I,_; together with I;?!, in terms of the coordinates
X, -+, X, of v. These therefore generate the invariant polynomials on the
open set in k™ where I,+0. Let F be any element of k[X]°. Then Fis a
polynomial in the I’s and I3', so that for some m=0, I7F is a polynomial
in the I's and is thus expressible as > H.([, -+, I,.,)]; with each H, a
polynomial. Assuming m to be minimal we must show that m=0. Sup-
pose not. Then H,#0. Since X, divides I,, H, vanishes at X,=0. However,
as easily follows from the definitions, the substitution X,=0 converts the
I’s (1£r<n—1) into the gth powers of the (n—1)-dimensional Dickson in-
variants, and these are algebraically independent over k, by what has been
said above (or else by a direct proof by induction). Thus H,=0, a con-
tradiction. This shows that »=0 and thus that F is a polynomial in the
I’s, as required.

4. Invariants mod p’.

One of our main theorems in this area, extended by the remarks that
follow its proof, is the following.

THEOREM H. Let H be the subgroup of GL,(Z|p"Z) n=2,r=1) con-
sisting of the matrices that are unimodular and congruent to the unit
matrix modp. Then F in Z|p Z[ X, X,, -+, X,] is invariant under H if
and only if it is expressible in one of the following forms.

(a) F=X9p'F;, with F; a polynomial in the p " *"'th powers of
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X, X, -, X, for each 1=0,1,2,:--,r—1.
by F=Xc,; X' with p ™' dividing c¢;I for every multi-index I=
(ily".;in)-

Since the sufficiency in (a) and (b) are easily verified, we turn to the
proof of necessity, the one in (b), since that yields the one in (a) at once.
Let F be an invariant for H written as the sum of its homogeneous parts
relative to the total degree in X, and X,. If we apply Typ: (X,—>Xi+pX,,
X,— X, if j#1) to F then each of these parts is kept fixed. If F,=
SAXiIXTt (with each A; a polynomial in X, X,,:-+) is the part of de-
gree m then T,F,=F, yields, when like terms are grouped together,
T@:X{X;"”Kkgn_jp”(‘?-;k>A,»+,.=O. Here each of the inner sums must be 0.

The first term in the jth sum is p(j+1)A4,,, and the later terms may be
written as (p""/k)<3+l;—1>p(j+k)A,+k. Here each p*!/k is an integer

mod p since p*'=k so that p can divide k at most k—1 times. It follows
by downward induction that p™ divides piAd,, that is, p"™* divides ©A4,, for
all . In terms of F written as in (b) this means that p ™' divides every
¢zt Similarly this holds with ¢, replaced by 4,,1%s, -+, which proves the
necessity in (b) and hence the theorem.

REMARK. The group H in its entirety is not needed for the above
proof of necessity. If T,; (i#J) is defined as above then one could replace
H by the subgroup generated by any set of T,;’s such that the index 4
takes on all values from 1 to n, for example, T}, and the set T, (2<t<n).

REMARK. A similar theorem holds for the group of unimodular ma-
trices that are congruent to the unit matrix mod p* (0<s<r). It is only
necessary to replace p™ ' by »"* in (b) and make an analogous change in
(a). The proof is essentially the same, with the previous remark still
applying.

THEOREM I. Let G be any subgroup of GL,(Z|p"Z) n=2,r=1) which
contains the subgroup H of Theorem H, or, more generally, any subgroup
of H for which the conclusion there holds (see the first remark above).
Let {J,,--+,Jn} be a generating set for the algebra of polynomial in-
variants i the induced action of G on (Z|pZ)". Then F is an invariant
for G in the original action if and only if 1t can be written F=X p'F;
with F; a polynomial in the p "' "'th powers of the J’s for each 1=
0,1,---,r—1.
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Again the sufficiency is easily verified ; thus we turn to the proof of
necessity. Let F be a G-invariant polynomial. Then by Theorem H it
can be written, mod p, as a polynomial in the p""'th powers of the .X’s.
Now G acts, mod p, on these powers of the X’s and on the X’s themselves
by exactly the same formulas. It follows that, mod p, F' is a polynomial
in the J’s evaluated at the p"“'th powers of the X’s, which, mod p, is the
same polynomial in the p"~'th powers of the J’s. In other words, F=
Fy+pF’ with Fy as in the conclusion of the theorem and F' a polynomial.
Further by the sufficiency, which has already been established, F, is an
invariant -and hence pF’ is also. Thus F is an invariant mod p™~', and
the proof may be completed by induction.

THEOREM J. A polynomial is invariant under GL(Z|p"Z) 1f and only
if 1t can be written Zp'F; with each F; a polynomial in the I's, as in
Theorem A but with q replaced by p, and similarly for SL, with I, re-
placed by [01---n—1].

This result follows at once from Theorems A, C and L

As they are stated above, Theorems H and I also apply to most par-
abolics and, in case' n is even, to the symplectic group. With minor
modifications they apply to all parabolics and their unipotent radicals  and
the groups G, of Section 2.

Using the same methods, we have obtained a version of the above
results for a class of local rings which includes F, and Z/p"Z as special
cases and thus a common generalization of Theorems A and J. Many other
cases that we have worked out lead us to the conjecture that such results
should hold for arbitrary finite local rings.
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