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INTRODUCTION

The problem of protein structure prediction is cer-

tainly not yet ‘‘solved.’’ However, enormous progress has
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ABSTRACT

For template-based modeling in the CASP8 Critical Assess-

ment of Techniques for Protein Structure Prediction, this

work develops and applies six new full-model metrics. They

are designed to complement and add value to the traditional

template-based assessment by the global distance test (GDT)

and related scores (based on multiple superpositions of Ca

atoms between target structure and predictions labeled

‘‘Model 1’’). The new metrics evaluate each predictor group

on each target, using all atoms of their best model with

above-average GDT. Two metrics evaluate how ‘‘protein-like’’

the predicted model is: the MolProbity score used for vali-

dating experimental structures, and a mainchain reality

score using all-atom steric clashes, bond length and angle

outliers, and backbone dihedrals. Four other new metrics

evaluate match of model to target for mainchain and side-

chain hydrogen bonds, sidechain end positioning, and side-

chain rotamers. Group-average Z-score across the six full-

model measures is averaged with group-average GDT Z-score

to produce the overall ranking for full-model, high-accuracy

performance. Separate assessments are reported for specific

aspects of predictor-group performance, such as robustness

of approximately correct template or fold identification, and

self-scoring ability at identifying the best of their models.

Fold identification is distinct from but correlated with

group-average GDT Z-score if target difficulty is taken into

account, whereas self-scoring is done best by servers and is

uncorrelated with GDT performance. Outstanding individ-

ual models on specific targets are identified and discussed.

Predictor groups excelled at different aspects, highlighting

the diversity of current methodologies. However, good full-

model scores correlate robustly with high Ca accuracy.
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been made in recent years, with much credit due to the

objective, double-blind assessments of the biennial CASP

experiments.1 In CASP8, even for difficult targets some

individual predictions were very accurate, and for rela-

tively easy targets many groups submitted good models,

as seen for T0512 and its 354 predicted models in Figure

1. As assessors, we had the task of evaluating the 55,000

models submitted for CASP8 template-based modeling

(TBM). (Descriptions, statistics, and results for CASP8

are available at http://www.predictioncenter.org/casp8/.)

The existence and relatively automated application2 of an

appropriate, highly tuned, well accepted tool for assessing

the overall success of TBM predictions—the GDT-TS Z-

score for Ca superposition3,4—has allowed us to explore

new ways of adding information and value to the CASP

TBM process. Specifically, because that primary GDT

assessment uses only the Ca atoms, we have developed a

set of full-model measures that take into consideration

the other 90% of the protein that provides essentially all

of the biologically relevant interactions.

In the long run, correct predictions will satisfy the

same steric and conformational constraints that are satis-

fied by accurate experimental structures. One general

question we addressed was whether the time has yet

come when evaluating full-model details can contribute

productively to achieving more correct predictions, by

spurring methods development and by guiding local

choices during individual model construction. This is not

a foregone conclusion, since too much detail is irrelevant

or even detrimental to judging model correctness if mod-

eling remains very approximate. Our second general aim

was to increase the diversity and specificity of assessment

measures within the TBM category. The TBM prediction

process encompasses many somewhat independent

aspects, and both targets and methods are highly diverse.

It seems likely, therefore, that future methods develop-

ment could be catalyzed more effectively if more

extensive separate evaluations of distinct aspects (such as

template/fold recognition or sidechain rotamer correct-

ness) were provided where feasible, in addition to the

single, winner-take-all assessment of predictor groups. It

is not a new idea to penalize backbone clashes5,6 or to

include sidechain or H-bond assessment,5,7,8 but the

quantity and quality of models in CASP8 allow those

things to be done more extensively than before, and we

have adopted a different perspective. For instance, we con-

sider steric clashes for all atoms, using a well-validated

physical model rather than an ad-hoc cutoff. These new

full-model metrics provide a model-oriented rather than

target-oriented version of a ‘‘high-accuracy’’ (HA) assess-

ment for CASP8 predictions, as suggested for future devel-

opment by the CASP7 HA assessor.8 The scope here is

over models accurate enough to score in the top section

of the bimodal GDT-HA distribution, rather than over

targets assigned as TBM-HA based on having a close tem-

plate,9 as was done for the HA assessment in CASP7.8

The work described here, therefore, even further broad-

ens the scope of assessment techniques and delves into finer

atomic detail, by separately evaluating multiple aspects of

TBM prediction, by identifying outstanding individual

models, and especially by examining backbone sterics and

geometry, sidechain placement, and hydrogen bond predic-

tion in the CASP8 template-based models. Ultimately, our

goal is to encourage fully detailed and ‘‘protein-like’’ models

that can be used productively by experimental biologists. A

relatively large number of prediction groups are found to

score well on various of these measures, including the

demanding new measures of full-model detail.

MATERIALS AND METHODS

General approach and nomenclature

Previous assessments of CASP template-based models

have focused primarily on GDT (global distance test)

from the program LGA (local–global alignment).3 GDT

is an excellent indicator of one structure’s similarity to

another, applicable across the entire range of difficulty

for TBM targets and, to a large extent, for free modeling

(FM)) as well. Its power derives primarily from its use of

multiple superpositions to assess both high- and low-ac-

curacy similarity, as opposed to more quotidian metrics

such as root-mean-square deviation (RMSD), which use

a single superposition. Specifically, a version of GDT

using relatively loose interatomic distance cutoffs of 1, 2,

4, and 8 Å called GDT-TS (‘‘total score’’) has tradition-

ally been the principal metric for correctness of predic-

tions. However, a variant using stricter cutoffs of 0.5, 1,

Figure 1
All 354 predicted models for T0512-D1. Target backbone is in ribbon

representation colored blue to red in N- to C-terminal order; model Ca
traces are in translucent gray. PDB code: 3DSM (NESG, unpublished).
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2, and 4 Å called GDT-HA (‘‘high accuracy’’) was used

for much of the CASP7 TBM assessment because of its

enhanced sensitivity to finer structural details.6,8 We

believe that GDT-HA probes a level of structural detail

similar to that achieved by our new measures (see

below), and we therefore continue to use it widely here.

Despite the power of LGA’s traditional scores, they

consider only the Ca atoms—in other words, they ignore

more than 90% of the protein. Many current prediction

methods make use of all the atoms, and many of this

year’s CASP models are accurate enough to make a

broader assessment appropriate. Therefore, our primary

contribution to CASP8 TBM assessment is additional

full-model structure accuracy and quality metrics that

are, to some degree, orthogonal to Ca coordinate super-

position metrics like GDT. Our group has extensive expe-

rience in structure validation for models built using ex-

perimental data, mainly from X-ray crystallography and

nuclear magnetic resonance (NMR), and has, over the

years, developed strong descriptors of what makes a

model ‘‘protein-like.’’10–13 Here we seek to apply some

of those same rules to homology models in CASP8.

Two of the new full-model metrics evaluate steric, geo-

metric, and conformational outliers in the model, and are

normalized on a per-residue basis. The other four measures

match model to target on hydrogen bond or sidechain fea-

tures, and are expressed as percentages. Raw scores, for

these or other metrics, are the appropriate way to judge

quality of an individual model. Averaging the raw scores of

all models for an individual target provides a rough esti-

mate of that target’s difficulty (which varies widely). Finally,

to combine the six new metrics into a single full-model

measure, or to evaluate relative performance between pre-

diction groups, the metrics were converted into Z-scores

measured in standard deviations above or below the mean,

as has been standard practice in CASP for some time.4

Group-average Z-scores are not reported here for groups

that submitted usable models for fewer than 20 targets.

In the descriptions that follow, three-digit target codes

are written starting with ‘‘T0’’ (ranging from T0387 to

T0514 for CASP8), whereas prediction groups are

referred to by their brief names, except when making up

part of a model number (e.g., 387_1 is Model 1 from

group 387). Name, identifying number, and participants

for prediction groups can be looked up at http://

www.predictioncenter.org/casp8/, as well as definitions,

statistics, and results for CASP8. Groups are designated

either as human or server. Server groups employ auto-

mated methods and are required to return a prediction

within 3 days; that server may or may not be publicly ac-

cessible. Human groups need not use purely automated

methods and are allowed 3 weeks to respond. Targets are

also designated as either server or human (the latter are

more difficult on average); typically, servers submit mod-

els for all targets and human groups submit for human

targets only. When a target is illustrated or discussed

individually, its four-character PDB code will also be

given (e.g., 3DSM for T0512); those coordinates can be

obtained from the Protein Data Bank14 at http://

www.rcsb.org/pdb/.

Model file preprocessing

CASP8 TBM assessment involved evaluating more than

55,000 whole-target predictions and more than 77,000

target domain predictions (250–550 models per target, as

shown for T0512 in Fig. 1), which highlighted the impor-

tance of file management, clean formatting, and inter-

pretable content. It was discovered early in our work that

a surprisingly high percentage of the prediction files did

not adhere to the PDB format,14 even though CASP

model files require only a very simple and limited subset

of the format, with some checks done at submission. The

commonest problems involved spacing, column alignment,

or atom names, but there were a few global issues such as

concatenated models, empty files, and even a set of files

with the text ‘‘NAN’’ in place of all coordinates. General-

purpose software, including our structural evaluation

tools, must deal correctly with the full complexity of the

PDB format and thus cannot be designed for tolerance of

these errors in the simpler all-protein mode of CASP.

Therefore, as noted also for CASP6,15 most format irregu-

larities produce incorrect or skipped calculations, and the

most inventive ones occasionally cause crashes.

To address the reparable issues, we created a Python

script to ‘‘preprocess’’ and correct most of the formatting

and typographical errors. Among the errors it can

address are nonstandard header tags, new (version 3.x)

vs. old (version 2.3) PDB format, nonstandard hydrogen

names, incorrect significant digits in numerical columns,

and incorrectly justified columns, specifically the atom

name, residue number, coordinate, occupancy, and B-fac-

tor fields. Unfortunately, because of the number and va-

riety of model files, some formatting errors slipped past

the preprocessing. One example, discovered only later,

was a set of models with interacting errors both in col-

umn spacing and in chain-ID entries placed into the field

normally containing the insertion code; these produced

incorrect results even from LGA, which is admirably tol-

erant and needs only to interpret Ca records.

Beyond format are issues of incorrect or misleading

content, which are nearly impossible to stipulate in

advance and were usually discovered either by accident

or by aberrant results from the assessment software. A

few of the many cases in CASP8 TBM models were Cbs
on glycines, multiple atoms with identical coordinates,

and sidechain centroids left in as ‘‘CEN’’ atoms misinter-

preted as badly clashing carbon atoms. Usually, format or

content problems result in falsely poor scores, which

should concern the predictor but did not worry the

assessor except for distortions in the overall statistics.

However, sometimes the errors produce falsely good
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scores (such as low clashscores from missing or incom-

plete sidechains), making their diagnosis and removal a

very serious concern to everyone involved in CASP.

Hydrogen atoms

Explicit hydrogens must be present for all-atom con-

tact analysis to yield meaningful results. The program

Reduce was used to add both polar and non-polar H

atoms at geometrically ideal positions.16 When H atoms

were already present in the model or target file, we used

them but standardized their bond lengths for consistency

in evaluation. For all files, we optimized local H-bonding

networks for the orientations of rotatable polar groups

such as OH and NH3 and for the protonation pattern of

His rings, but did not apply MolProbity’s usual automatic

correction for 1808 flips of Asn/Gln/His sidechains.16

Measure 1: MolProbity Score (MPscore)

The first two of the six new full-atom metrics, Mol-

Probity score and mainchain reality score, are based only

on properties of the predicted model. Previous work on

all-atom contact analysis demonstrated that protein

structures are exquisitely well packed, with interdigitating

favorable van der Waals contacts and minimal overlaps

between atoms not involved in hydrogen bonds.10

Unfavorable steric clashes are strongly correlated with

poor data quality, with clashes reduced nearly to zero in

the well-ordered parts of very high-resolution crystal

structures.17 From this analysis—originally intended to

improve protein core redesign, but since applied also to

improving experimental structures—came the clashscore,

reported by the program Probe10; lower numbers indi-

cate better models.

In addition, the details of protein conformation are

remarkably relaxed, such as staggered v angles11 and

even staggered methyls.10 Forces applied to a given local

motif in the crowded environment of a folded protein in-

terior can result in a locally strained conformation, but

evolution seems to keep significant strain near the mini-

mum needed for function, presumably because protein

stability is too marginal to tolerate more. In updates of

traditional validation measures, we have compiled statis-

tics from rigorously quality-filtered crystal structures (by

resolution, homology, and overall validation scores at the

file level, and by B-factor and sometimes by all-atom

steric clashes at the residue level). After appropriate

smoothing, the resulting multi-dimensional distributions

are used to score how ‘‘protein-like’’ each local confor-

mation is relative to known structures, either for side-

chain rotamers11 or for backbone Ramachandran val-

ues.12 Rotamer outliers asymptote to <1% at high reso-

lution, general-case Ramachandran outliers to <0.05%,

and Ramachandran favored to 98% (Fig. 2).

All-atom contact, rotamer, and Ramachandran criteria

are central to the MolProbity structure-validation

web site,13 which has become an accepted standard in

macromolecular crystallography: MolProbity hosted more

than 78,000 serious work sessions in the past year. To

satisfy a general demand for a single composite metric

for model quality, the MolProbity score (MPscore) was

defined as:

MPscore ¼ 0:4263 lnð1þ clashscoreÞ
þ 0:333 lnð1þmaxð0; rota out� 1ÞÞ
þ 0:253 lnð1þmaxð0; rama iffy � 2ÞÞ þ 0:5

where clashscore is defined as the number of unfavorable

all-atom steric overlaps �0.4 Å per 1000 atoms10; rota_-

out is the percentage of sidechain conformations classed

as rotamer outliers, from those sidechains that can be

evaluated; and rama_iffy is the percentage of backbone

Ramachandran conformations outside the favored region,

from those residues that can be evaluated. The coeffi-

cients were derived from a log-linear fit to crystallo-

graphic resolution on a filtered set of PDB structures, so

that a model’s MPscore is the resolution at which its

individual scores would be the expected values. Thus,

lower MPscores are better.

Figure 2
Empirical Ramachandran distribution,12 one component in both

MolProbity and mainchain reality scores. The data points are u,w
backbone dihedral angles for all general-case residues with maximum

mainchain B-factor �30, from the Top500 quality-filtered set of crystal

structures; Gly, Pro, and pre-Pro residues are analyzed separately.

Contours are calculated with a density-dependent smoothing algorithm.

98% of the data fall within the favored region (inside gray contour),

99.95% within the allowed or favored regions (inside black contour),

and 0.05% in the outlier region (outside black contour).
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CASP8 marks the first use of the MolProbity score for

evaluation of non–experimentally based structural mod-

els. It is a very sensitive and demanding metric, a fact

also evident for low-resolution crystal structures or for

NMR ensembles. It must be paired with a constraint on

compactness, provided by the electron density in crystal-

lographic use and approximately by the GDT score in

CASP evaluation. Crystal contacts occasionally alter local

conformation, but are too weak to sustain unfavorable

strain. Those changes are much smaller than at multimer

or ligand interfaces. For CASP8 targets, potential prob-

lems between chains or at crystal contacts were addressed

as part of defining the assessment units.9

Measure 2: Mainchain reality score (MCRS)

To complement the MolProbity score, it seems desira-

ble to have a model evaluation that (1) only uses back-

bone atoms in its analysis, and (2) takes account of ex-

cessive deviations of bond lengths and bond angles from

their chemically expected ideal values. For those pur-

poses, the mainchain reality score (MCRS) was devel-

oped, defined as follows:

MCRS ¼ 100� 103 spike� 53 rama out

� 2:53 length out� 2:53 angle out

where spike is the per-residue average of the sum of

‘‘spike’’ lengths from Probe (indicating the severity of

steric clashes) between pairs of mainchain atoms, rama_-

out is the percentage of backbone Ramachandran confor-

mations classed as outliers (as opposed to favored or

allowed; Fig. 2), and length_out and angle_out are the

percentages of residues with mainchain bond lengths and

bond angles respectively that are outliers >4r from

ideal.18 The perfect MCRS is 100 (achieved fairly often

by predicted models), and any non-idealities are sub-

tracted to yield less desirable scores. The coefficients were

set manually to achieve a range of approximately 0–100

for each of the four terms, so that egregious errors in

just one of these categories can ‘‘make or break’’ the

score. To counter this and achieve a reasonable overall

distribution, we truncated the overall MCRS at 0 (neces-

sary for �14% of all models); note that 0 is already such

a bad MCRS that truncation is not unduly forgiving of

the model. However, we did not discover any models as

charmingly dreadful as in CASP6 TBM Figure 1.5

Measures 3, 4: Hydrogen bond correctness
(HBmc and HBsc)

The last four of these six new full-model metrics are

based on comparisons between the predicted model and

the target structure. Knowing the importance of H-bonds

in determining the specificity of protein folds,19 the CASP7

TBM assessors examined H-bond correctness relative to the

target.6 We have followed their lead but have separated cat-

egories for mainchain (HBmc: mainchain-mainchain only)

and sidechain (HBsc: sidechain-mainchain and sidechain-

sidechain), using Probe10 to identify the H-bonds.

Briefly, the approach was to calculate the atom pairs

involved in H-bonds for the target, to do the same for

the model, and then to score the percentage of H-bond

pairs in the target correctly recapitulated in the model.

Probe defines hydrogen bonding rather strictly, as do-

nor–acceptor pairs closer than van der Waals contact.

That definition was used for all target H-bonds and for

mainchain H-bonds in the models, which often reached

close to 100% match (see Results). However, it is more

difficult to predict sidechain H-bonds, as they require

accurately modeling both backbone and sidechains.

Therefore, for HBsc model (but not target) H-bonds, we

also counted donor–acceptor pairs �0.5 Å beyond van

der Waals contact; this raised the scores for otherwise

good models from the 20%–40% range to the 30%–80%

range. This extended H-bond tolerance was readily

accomplished using Probe atom selections of ‘‘donor, sc’’

and ‘‘acceptor, sc’’ with the normal 0.5 Å diameter probe

radius, thus identifying these slightly more distant pairs

as well as the usual H-bond atom pairs. Note that both

HBmc and HBsc measure the match of model to target,

as we (like the CASP7 assessors) explicitly required that a

model H-bond be between the same pair of named

atoms as in the target H-bond.

CASP7 excluded surface H-bonds, but we did not. We

believe that the best strategy would be in between those

two extremes, whereby sidechain H-bonds would be

excluded if they were in regions of uncertain conforma-

tion in the target. However, surface H-bonds are gener-

ally under- rather than overrepresented in crystal struc-

tures (perhaps because of high ionic strength in many

crystallization media), so prediction of those recognizable

in the target should be feasible.

Measure 5: Rotamer correctness (corRot)

For sidechain rotamers, MolProbity works from

smoothed, contoured, multidimensional distributions of

the high-quality v-angle data11,13; the score value at

each point is the percentage of good data that lies outside

that contour level. For each individual sidechain confor-

mation, MolProbity looks up the percentile score for its

v-angle values; if that score is �1%, MolProbity assigns

the name of the local rotamer peak and if <1%, it

declares an outlier. Rotamer names use a letter for each v
angle (t 5 trans, m 5 near 2608, p 5 near 1608), or an
approximate number for final v angles that significantly

differ from one of those three values. Using this mecha-

nism, we can define rotamer correctness (corRot) as the

match of valid rotamer names between model and target.

Note that any model sidechain not in a defined rotamer

(i.e., an outlier) is considered nonmatching, unless the

Assessment Beyond Cas for CASP8 TBM and HA

PROTEINS 33



corresponding target rotamer is also undefined, in which

case that residue is simply ignored for corRot. The side-

chain rotamers used in SCWRL20 are quite similar to the

MolProbity rotamers, as both are based on recent high-re-

solution data, quality-filtered at the residue level.

For X-ray targets, the target rotamer set consists of all

residues for which a valid rotamer name could be

assigned (i.e., not <1% rotamer score and not undefined

because of missing atoms). For NMR targets, we defined

the target rotamer set to include only those residues for

which one named rotamer comprised a specified percent-

age (85, 70, 55, and 40% for sidechains with one, two,

three, and four v angles, respectively) of the ensemble.

We also considered requiring a sufficient number of

nuclear Overhauser effect (NOE) restraints for a residue

for it to be included, but concluded that in practice this

would be largely redundant with the simpler consensus

criterion (data not shown).

Because incorrect 1808 flips of Asn/Gln/His sidechains

are caused by a systematic error in interpreting electron

density maps, there is no reason for them to be wrong

by 1808 in predicted models, which could thus some-

times improve locally on the deposited target structure.

However, we found that applying automatic correction of

Asn/Gln/His flips in targets by MolProbity’s standard

function yielded only 1% or less improvement in any

group-average corRot score. We therefore chose not to

apply target flips for the final scoring.

Using rotamer names based on multidimensional dis-

tributions rather than simple agreement of individual v1,
or v1 and v2, values5,7,8 has the advantage of favoring

predictions in real local-minimum conformations and

with good placement of the functional sidechain ends.

However, a disadvantage is that matching is all-or-none;

for example, model rotamers tttm and mmmm would be

equally ‘‘wrong’’ matches to a target rotamer tttt in our

formulation, meaning the corRot score is more stringent

for long sidechains. An improved weighting system might

be devised for future use.

Measure 6: Sidechain Positioning (GDC-sc)

To apply superposition-based scoring to the functional

ends of protein sidechains, we developed a GDT-like

score called global distance calculation for sidechains

(GDC-sc), using a modification of the LGA program.3

Instead of comparing residue positions on the basis of

Cas, GDC-sc uses a characteristic atom near the end of

each sidechain type for the evaluation of residue–residue

distance deviations. The list of 18 atoms is given by the

-gdc_at flag in the LGA command shown below, in which

each one-letter amino-acid code is followed by the PDB-

format atom name to be used:

-3 -ie -o1 -sda -d:4 -swap -gdc:10

-gdc_at _flag:V.CG1,L.CD1,I.CD1,P.CG,M.CE,F.CZ,W.CH2,

S.OG,T.OG1,C.SG,Y.OH,

N.OD1,Q.OE1,D.OD2,E.OE2,K.NZ,R.NH2,H.NE2

or, alternatively with a new flag, just:

23 -ie -o1 -sda -d:4 -gdc_sc

Gly and Ala are not included, as their positions are

directly determined by the backbone. The -swap flag

takes care of the possible ambiguity in Asp or Glu

terminal oxygen naming.

The traditional GDT-TS score is a weighted sum of the

fraction of residues superimposed within limits of 1, 2, 4,

and 8 Å. For GDC-sc, the LGA backbone superposition

is used to calculate fractions of corresponding model-tar-

get sidechain atom pairs that fit under 10 distance-limit

values from 0.5 Å to 5 Å, as 8 Å would be a displacement

too large to be meaningful for a local sidechain differ-

ence. The procedure assigns each reference atom to the

relevant bin for its model vs. target distance: < 0.5 Å,

< 1.0 Å,... < 4.5 Å, < 5.0 Å; for each bin_i, the fraction

(Pa_i) of assigned atoms is calculated. Finally the frac-

tions are added and scaled to give a GDC-sc value

between 0 and 100, by the formula:

GDC-sc ¼1003 23 ðk3Pa 1þ ðk � 1Þ3Pa 2 . . .

þ 13Pa kÞ=ðk þ 1Þ3 k; where k ¼ 10:

The goal was a measure sensitive to correct placement of

sidechain functional or terminal groups relative to the

entire domain, both in the core and forming the surface

that makes interactions. The three sidechain measures

(HBsc, corRot, and GDC-sc) are meaningful evaluations

only for models with an approximately correct overall

backbone fold, and so we make use of them only

for models with above-average GDT scores (see Model

Selection, below).

Databases, statistics, and visualizations

We have made extensive manual use of the comprehen-

sive summaries, charts, tables, and alignments provided on

the Prediction Center website21 for CASP8, now available

at http://www.predictioncenter.org/casp8/. A MySQL22

database was constructed for storing and querying all the

basic data needed for our TBM assessments. It was loaded

with the full contents of the Prediction Center’s Results

tables (including re-run values for Dali23 scores in which

format-error crashes had been incorrectly registered as

zeroes), plus all of our own analyses and scores on all tar-

gets, models, and groups. Statistical properties were calcu-

lated in the R program,24 and plots were made in pro Fit

(QuantumSoft, Uetikon am See, Switzerland).

For model superpositions onto both whole targets and

domain targets, we used the results from the standard

LGA sequence-dependent analysis runs3 provided by the

Prediction Center. The full set of superimposed models

for each target was converted by a script into a kinemage

file for viewing in KiNG13 or Mage,25,26 organized by

LGA score and arranged for animation through the
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models (e.g., Fig. 1). Structural figures were made in

KiNG and plot figures in pro Fit, with some post-proc-

essing in PhotoShop (Adobe, San Jose, CA). Once targets

were deposited, their electron density maps were

obtained from the Electron Density Server27 (http://

eds.bmc.uu.se/eds/). For many individual targets and

models, multi-criterion kinemages that display clashes,

rotamer, Ramachandran, and geometry outliers on the

structure in 3D were produced in MolProbity.13

Model selection and filtering

Although predictors are allowed to submit up to five

models per target, most statistics require the choice of

one model per group per target for assessment. The cen-

tral GDT-TS assessment in CASP has always used the

first model, designated ‘‘Model 1’’; this is what predictors

expect, and the precedent was followed again in CASP8

for the official group rankings.2 This has the advantage

of rewarding the groups that are best at self-scoring to

decide which of their predictions is best, a skill of real

value to end users. However, using Model 1 comes at the

expense of eliminating many of the very best models. So,

for the full-model TBM assessments in this paper, we

have instead chosen to assess success at self-scoring sepa-

rately (see Results), allowing the main evaluations to use

the best model (as judged by GDT-TS) for each group

on each target.

Superposition-based scores (GDT-HA, GDT-TS, GDC-

sc) were computed on domain targets because, as in past

CASP TBM assessments, we wished not to penalize pre-

dictors that correctly modeled domain architectures but

incorrectly modeled relative inter-domain orientations.

Model quality and local match-to-target scores (MPscore,

MCRS, corRot, HBmc, HBsc) were computed on whole

targets, because such scores are approximately additive

even across inaccurate domain orientations.

Some targets contain domains assigned to different

assessment classes9; for example, 443-D1 is FM/TBM,

443-D2 is FM, and 443-D3 is TBM. For our scores com-

puted on target domains, any FM domains were omitted.

For scores computed on whole targets, any targets for

which all domains were FM were omitted, but targets

with at least one TBM or FM/TBM domain were

retained.

We eliminated from assessment all models for canceled

or reassigned targets (T0387, T0403, T0410, T0439,

T0467, T0484, T0510) and from groups (067, 265, 303)

that withdrew. The full-model measures are inappropriate

for ‘‘AL’’ submissions (done by only two groups), which

consist of a sequence alignment to a specified template,

with coordinates then generated at the Prediction Center

by taking the aligned parts from the template structure;

therefore, only the usual ‘‘TS’’ models are assessed here,

for which at least all backbone and usually also sidechain

coordinates are directly predicted.

Predictors were allowed to submit a prediction model

in multiple ‘‘segments,’’ which they believed to be likely

domain divisions in the true target but which did not

necessarily coincide with the official CASP8 domain

boundaries.9 Full-model scores additive across domains

are also additive across segments. GDT or GDC scores

are fundamentally nonadditive, however, so we evaluated

GDC-sc by domain, using whichever segment had the

highest GDT-TS score for that domain.

After the segment selection/combination, we required

that each model contain at least 40 residues to avoid arti-

facts from essentially partial predictions. For all side-

chain-relevant metrics (including MolProbity score), a

further filter was applied on a per-model basis requiring

that at least 80% of the model Ca atoms be attached to

sidechains that included coordinates for the residue-type-

specific terminal atom defined for the GDC-sc metric

(see above). This avoids misleadingly high or low side-

chain scores on incomplete models.

As previously noted,28 the distribution of GDT scores

is strongly bimodal. As illustrated in Figure 3, models

therefore fall under one of two clearly separable peaks in

GDT-HA or GDT-TS, separated by a valley at 33 for

GDT-HA or at 50 for GDT-TS. These distributions are

discussed and used in the Results sections on full-model

measures and on robust ‘‘right fold’’ identification. This

basic bimodal division also holds within most individual

target domains (though there is much variability between

targets in the positions and shapes of the peaks), imply-

ing that the TBM-wide bimodality is not caused by

bimodality of target difficulty. This property of the distri-

butions suggests a possible cutoff for models that have

an approximately correct fold and are therefore appropri-

Figure 3
Bimodal distributions of GDT-HA and GDT-TS scores. All CASP8 TBM

models were placed into 33 equally spaced bins, separately for GDT-HA

and for GDT-TS. The division between ‘‘right fold’’ and ‘‘wrong fold’’

occurs at approximately GDT-HA of 33 (which we used for our later

analysis) and GDT-TS of 50. Note that bimodal distributions were also

observed within most individual targets (data not shown).
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ate for the more detailed, local quality assessment our

new metrics provide. Accordingly, we only considered the

following: (1) models with GDT-HA �33 for our do-

main-based metrics and (2) models with at least one do-

main with GDT-HA �33 for our whole-target–based

metrics. (Note that each target has at most three domains

except for T0487 with five domains, so we increased its

model requirement to two domains with GDT-HA �33.)

For full-model measures, this model-based GDT-HA cut-

off was judged preferable to the target-based system used

for GDT-TS (server groups evaluated on all targets and

all groups on human targets2,6), because restricting

assessment to the small number of high-accuracy targets

in the human category would yield only 24/88 human

groups with a statistically reasonable number of targets,

whereas filtering by model can more than double that

number to 51/88.

Because NMR targets are ensembles of multiple models

and are derived primarily from local interatomic distance

measurements, they require treatment that is different

from that of crystal structures for some purposes. Modi-

fications adopted for the rotamer-match metric are

described above. In defining domain targets for the offi-

cial GDT evaluations,9 NMR targets were trimmed

according to the same 3.5 Å cutoff on differences in

superimposed Ca coordinates that was used for multiple

chains in x-ray structures. Although Model 1 of the

NMR ensemble was usually used as the reference, in

some cases another model was chosen as staying closer

to the ensemble center throughout the relevant parts of

the entire target structure. The outer edges of NMR

ensembles typically diverge somewhat even when the

local conformation is well defined by experimental data.

Except for GDC-sc, the full-model metrics are still mean-

ingful despite gradual divergence in coordinate space.

Therefore we specified alternative ‘‘D9’’ target definitions

for many of the NMR targets, which were trimmed only

where local conformation became poorly correlated

within the ensemble. This was manually judged using the

translational ‘‘co-centering’’ tool in KiNG graphics.29

The resulting residue ranges were also used for CASP8

disorder assessment.30 A D9 alternative target was

defined for the T0409 domain-swap dimer target (see

Results), by constructing a reconnected, compact mono-

mer version.

RESULTS

Information content of full-model measures

Structure prediction is progressing to a level of accu-

racy whereby models can be routinely used to generate

detailed biological hypotheses. To track this maturation,

we have added new metrics to TBM assessment to probe

the fine-grained structure quality we think homology

models can ultimately achieve. In evaluating the suitabil-

ity of these full-model metrics for CASP8 assessment, it

is important to understand their relationship to tradi-

tional superposition-based metrics. Any appropriate new

metric of model quality should show an overall positive

correlation to GDT scores, but should also provide addi-

tional, orthogonal information with a significant spread

and some models scoring quite well.

Figure 4 plots each of the six full-model measures

against either GDT-TS or GDT-HA, showing strong posi-

tive correlation in all cases. (Note that the correlation is

technically negative for MPscore, but lower MPscore is

better.) Plots 4a and 4b, including all models across the

full GDT range, show that detail is relatively uncoupled

for the lower half of the GDT range but well correlated

for the upper half, in correspondence with the bimodal

GDT distributions in Figure 3 above. Therefore Figure

4(c–f) plot only the best models with GDT-HA �33.

Tables with the detailed score data on all the full-model

measures, by target and group, are available on our web-

site (http://kinemage.biochem.duke.edu) and at the Pre-

diction Center.

The slope, linearity, and scatter vary: correlation coeffi-

cients for fits of models with the ‘‘right fold’’ (see section

below) to GDT-HA range from 0.24 for MPscore to 0.87

for GDC-sc. Large dots plot median values of each mea-

sure within bins spaced by three GDT-HA units, to

improve visibility of the trends, although with high vari-

ability at the tails due to less occupied bins. Taken to-

gether, these results show that as a general rule all aspects

improve together, but that different detailed parameters

couple in different ways to get the backbone Ca atoms

into roughly the right place, as evidenced by the varying

levels of saturation and scatter.

Not too surprisingly, GDC-sc has the tightest correla-

tion to GDT-HA. It measures match of sidechain end

positions between model and target, for which match of

Ca positions is a prerequisite. The vertical spread of

scores indicates some independent information but less

than for the other full-model scores. However, GDC-sc

shows the most pronounced upturn at high GDT-HA, an

effect detectable for most of the six plots. It will require

further investigation to decide to what extent this is

caused by copying from more complete templates and to

what extent there is a threshold of backbone accuracy

beyond which it becomes much more feasible to achieve

full-model accuracy. Taken together, the GDC-sc, corRot,

and HBsc measures assess the challenging optimization

problem of sidechain placement in distinct ways, and

they can provide tools to push future CASP assessments

in the direction of higher-resolution, closer-to-atomic

detail.

Interestingly, the model-only ‘‘quality’’ measures—i.e.,

MCRS and MPscore—also correlate with correct back-

bone superposition scores [Fig. 3(e–f)]. Seemingly, pro-

teins must relax (in terms of sterics and covalent geome-

try) into the proper backbone conformation, but details
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of the relationships differ in revealing ways. MolProbity

score has high scatter and relatively low slope but is lin-

ear over the entire range; it includes the clashscore for all

atoms, an extremely demanding criterion that improves

at higher GDT-HA but that still leaves much scope for

further gains. In contrast, mainchain reality score, which

measures Ramachandran, steric, and geometric ideality

along the backbone, is often quite dire in poor models

Figure 4
Distributions of the new full-model scores for individual models. (a, b) All models, regardless of GDT; (c–f) only the best models with GDT-HA

�33. Dual linear fits are on models with GDT-TS <55 vs. � 55 in (a) and (b) and on models with GDT-HA <60 vs. � 60 in (e); these divisions

were chosen manually to highlight visible inflection points. Larger dots in (c–f) are median values for bins of 3 GDT-HA units; bins at high GDT-

HA include many fewer models, producing high variability for some measures (e.g., corRot). The fit lines are well below the median points in (e),

because many points lie at zero MCRS. Note that the y-axis for MPscore in (f) has been reversed relative to other panels, because lower MPscores

are better.
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(e.g., more than half of the residues with geometry out-

liers, sometimes by >50r), but it saturates to quite good

values on the upper end. The dearth of any really bad

MCRS models for good GDT-HA suggests that modeling

physically realistic mainchain may be essential for achiev-

ing really accurate predictions; however, as noted for

GDC-sc, this relationship needs further study.

The H-bond recapitulation measures, developed from

ideas introduced in CASP7,6 seem clearly to be inform-

ative. The new separation of mainchain and sidechain

H-bonds appears to be helpful, as they show strongly

correlated but distinctly different 2D distributions that

would be less informative if combined. In both cases,

the diagnostic range is for models with better than av-

erage GDT scores [Fig. 4(a,b)), and that range is there-

fore used in assessment. At low GDT, almost no side-

chain H-bonds are matched, whereas mainchain

H-bonds show an artificial peak because of secondary-

structure prediction of a-helices without correct tertiary

structure. To correct this overemphasis, future versions

of HBmc could somewhat downweight either specifically

helical H-bonds or perhaps all short-range backbone H-

bonds (i to i14 or less). The upper half of both H-

bond measures shows the desirable behavior of a very

strong correlation and high slope relative to GDT, but

with a large spread indicative of a significant contribu-

tion from independent information.

Group rankings on full-model measures

Traditionally, CASP assessment has involved a single

ranking of groups relative to each other, to determine

which approaches represent the current state of the art.

A group’s official ranking is arrived at by (1) determining

the top 25 groups in terms of average GDT-TS (or GDT-

HA) Z-score on all first models with Z-score �0, then

(2) performing a paired t-test for each of those 25 groups

against every other on common targets to determine the

statistical significance of the pairwise difference.2,5–7,15

The full-model assessment presented here is analogous

to previous rankings in that we compute group average

Z-scores on models above GDT-HA raw score of 33 for

the top 20 groups. It differs in using the best model (by

GDT-TS) rather than Model 1, in using raw GDT rather

than Z-score for the model cutoff, and in evaluating the

full model. A further difference from recent versions is

consideration of multiple dimensions of performance: the

two model-only and the four match-to-target full-model

scores as well as GDT-TS or HA. Those six full-model

scores are combined with each other and the result aver-

aged with GDT-HA Z for our final ranking of high-accu-

racy performance. Table I lists the top 20 prediction

groups on each of the full-model measures, on the over-

all full-model average Z-score among groups in the top

half of GDT rank, and on the average of the full-model

Table I
Predictor Group Rankings on Combined Full-Model, High-Accuracy Scores

Group
ID

Group
name

6Full 1 GDT
HA rank

6full
rank

Model-only measures Match-to-target measures

MCRS avg Z MPscore avg Z HBmc avg Z HBsc avg Z GDC-sc avg Z corRot avg Z

489 DBaker 1 2 Yasara Yasara LevittGroup Lee-s Lee Lee-s
293-s Lee-s 2 3 Lee Ozkan-Shell Sam-T08-h DBaker Lee-s Lee
453 Multicom 3 5 DBaker DBaker DBaker Lee IBT_LT Bates_BMM
407 Lee 4 4 Lee-s A-Tasser Keasar Keasar-s Multicom Multicom
046 Sam-T08-h 5 9 Bates_BMM Robetta Mufold Yasara McGuffin ChickenGeo
379 McGuffin 6 16 MuProt Bates_BMM Multicom LevittGroup Zhang Robetta
196 ZicofSTP 7 23 Robetta Lee-s Zhang Sam-T08-h LevittGroup Sam-T08-s
138 ZicofSTPfData 8 22 Multicom Keasar PoemQA Robetta Zhang-s DBaker
299 Zico 9 26 MulticomRef Lee Bates_BMM McGuffin ChickenGeo Fais@hgc
310 Mufold 10 21 PoemQA Multicom Sam-T08-s Multicom Sam-T08-s Pcons_multi
283 IBT_LT 11 15 Elofsson Pcons_dot_net Keasar-s Sam-T08-s Sam-T08-h LevittGroup
178 Bates_BMM 12 8 Pcons.net ChickenGeo Lee Ozkan-Shell ZicofSTPfData Zhang
147s Yasara 13 1 HHpred5 Sam-T08-h McGuffin MulticomClust Mufold Zhang-s
071 Zhang 14 32 Fais-s Mufold Lee-s GeneSilico Bates_BMM Yasara
081 ChickenGeo 15 20 GSKudlatyPred Sam-T08-s Yasara Keasar DBaker Pcons_dot_net
485 Ozkan-Shell 16 10 Hao_Kihara Pcons_multi ZicofSTP ZicofSTP ZicofSTP IBT_LT
034 Samudrala 17 30 MulticomRank Samudrala ZicofSTPfData MulticomRank Zico Keasar
425s Robetta 18 7 MulticomClust MulticomCMFR Zico Fams-multi Fams-multi MulticomCMFR
426s Zhang-s 19 41 MulticomCMFR Hao_Kihara IBT_LT ZicofSTPfData Samudrala Sam-T08-h
434 Fams-ace2 20 49 PS2-s IBT_LT Zhang-s IBT_LT Fams-ace2 Phyredenovo

Groups in boldface type appear in the top four at least once and in the top 20 for five of the six full-model metrics.

MCRS 5 mainchain "reality" score: all-atom clashes, Ramachandran outliers, bond length or angle outliers for backbone; MPscore 5 MolProbity score: all-atom clashes,

Ramachandran and rotamer outliers (scaled) for whole model; HBmc 5 fraction of target mainchain Hbonds matched in model; HBsc 5 fraction of target sidechain

Hbonds matched in model; GDC-sc 5 GDT-style score for atom at end of each sidechain except Gly or Ala, 0.5 to 5Å limits (by LGA program); corRot 5 fraction of

target sidechain rotamers matched by model (all v angles).

6Full rank: group ranking based on the average of all six full-model-measure Z-scores; overall best models with GDT-HA >33.

6Full 1 GDT HA rank: group ranking based on the sum of (1) by-domain, best-model GDT-HA Z-score, and (2) average of six full-model–measure Z-scores.
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and the GDT-HA Z scores. A more complete version of

Table I, with specific scores for all qualifying groups, is

available as supplementary information. Figure 5 shows

the combined performance on GDT and full-model

scores more explicitly by a two-dimensional plot of

group-average full-model Z-score vs. group-average

GDT-HA Z-score, with diagonal lines to follow the final

ranking that combines those two axes.

A small set of top-tier groups scored outstandingly

well on most of the six model-only and model-to-target

metrics (Table I). Yasara is highest on model-only criteria

and LevittGroup on mainchain H-bonds, whereas Lee

and Lee-server sweep the sidechain scores. Most of the

same top groups also excelled in Ca positioning (Fig. 5).

DBaker is the clear overall winner on this combined eval-

uation of Ca superposition and structure quality/all-

atom correctness. Lee, Lee-server, MultiCom, Sam-T08-h,

and McGuffin are in the next rank on the combined

measure (Fig. 5), whereas Bates-BMM, IBT-LT, and

Yasara are also notable for each scoring in the top 20 on

five of the six full-model measures and once in the top

three (Table I). An accompanying paper31 discusses

aspects of TBM methodology that can contribute to the

differences in detailed performance on this two-dimen-

sional measure.

To examine these relationships further, group-average

Z-scores were plotted for the six new quality and match-

to-target measures individually against group-average

Z-scores for GDT-HA. In addition to trends seen in the

all-model plots of Figure 4, group-average scores for side-

chain rotamer match-to-target (corRot) show two strong

clusters, one at high and one at low values (Figure 6).

Through the range of 21 to 10.5 GDT-HA, corRot is

nearly independent of GDT-HA in both clusters. This

Figure 5
(a) Group-average Z-score for the 6 full-model scores, plotted vs. group-average Z-score for GDT-HA. (b) Close-up of the upper-right quadrant

from panel a, with the groups highlighted that did well on the combined score from both axes (emphasized by the diagonal lines). Group Z-scores

are averaged over best models with GDT-HA �33; groups with a qualifying model for <20 targets are excluded.

Figure 6
Group-average Z-score for rotamer correctness, plotted vs. group-

average Z-score for GDT-HA. The horizontal line at corRot Z-score of

0 was drawn manually to visually highlight the gap between group

clusters on sidechain performance. Group-average Z-scores are for best

models with GDT-HA �33; groups attempting <20 targets are

excluded.
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suggests that many intermediate groups do not pay

attention to sidechain placement and/or use poor

rotamer libraries, leaving sidechain and backbone model-

ing uncoupled. For the very best GDT-HA groups at the

extreme right of the plot, however, corRot is also excel-

lent, which implies that proper sidechain modeling may

in fact be necessary for reliably achieving highly accurate

backbone placement. There is no evidence that excellence

in any of the full-model metrics is achieved by a tradeoff

with GDT scores; rather, they tend to improve together.

Robust ‘‘right fold’’ identification

We also sought to assess which groups excelled at tem-

plate or fold identification, to help delineate the state of

the art for that stage of homology modeling. To do so,

we computed the percentage of all of a group’s models

with approximately the ‘‘right fold,’’ defined as GDT-HA

�33 (Fig. 3) as per our threshold for reasonably accurate

models used above. However, success rates on this metric

are also dependent on average difficulty of attempted tar-

gets. Therefore Figure 7 plots ‘‘right fold’’ percentage as a

function of average target difficulty. Prediction groups

fall into three loose areas of target difficulty: those who

predicted the harder human targets (Fig. 7, left), those

who predicted all targets (center), and those who pre-

dicted only the easier server targets (Fig. 7, right). Table

II lists the top groups in each of these three divisions.

Despite this clustering, the top of Figure 7 is roughly

linear with an upward slope; groups along this ‘‘out-

standing edge’’ can be considered exemplary given their

target choice. This distribution suggests that groups play

to their strengths by focusing on targets for which their

specialties will be most useful. In particular, note that

server groups dominate for easier targets but that human

groups comprise the top groups for average and more

difficult targets (Table II). Within each of the three areas

of target difficulty, these relative rankings provide a

meaningful measure of reproducible success at correct

template/fold identification. This score for the central set

of groups attempting essentially all targets, especially for

the automated servers, can act as a suitable accompani-

ment to the full-model, high-accuracy score shown in

Table I and Figure 5.

Self-scoring: Model 1 vs. best model

To complement our use of best models for the new

assessment metrics, it is important to measure separately

the success of prediction groups in identifying which of

their (up to five) submitted models is the best match to

the target. That ability is very important to end users of

predictions who want a single definitive answer, especially

from publicly available automated servers. This self-scor-

ing aspect was assessed by first calculating for each group

the randomly expected number of targets for which their

Model 1 would be also their best model on the tradi-

tional GDT-TS metric, nM1best,exp, accounting for differ-

ent groups submitting different numbers of models

(including only groups that submitted at least two mod-

els per target on average):

nM1best;exp ¼

P

targets

nmodels

�nmodelsð Þ2 ;

where �nmodels is the average number of models per target

by the group in question. The actual number of targets

for which a group’s Model 1 was also their best model

can then be calculated and converted to the number of

standard deviations from that expected from random

chance:

rM1best;act¼nM1best;act � nM1best;exp

rM1best;exp
¼ nM1best;act � nM1best;expffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ nM1best;exp

p ;

where ‘‘act’’ and ‘‘exp’’ subscripts denote actual and

expected quantities.

Figure 8 plots this self-scoring metric for each group

vs. the average difference in GDT among their sets of

models. Most prediction groups are at least 3r better

than random at picking their best model as Model 1,

but few are right more than 50% of the time. As seen in

Figure 8, servers turn out overwhelmingly to dominate

the top tier of this metric, making up all of the eight

top-scoring groups and all but one of the top 20. Not

surprisingly, groups do somewhat better if their five

models are quite different, but the correlation coefficient

Figure 7
Percentage of models with roughly the ‘‘right fold,’’ plotted vs. difficulty

of targets attempted. The percentage of all of a group’s models with

GDT-HA �33 (‘‘right fold’’) is on the y-axis. The average across a

group’s attempted targets of all-model, all-group average GDT-TS (a

measure of target difficulty) is on the x-axis. All groups attempting at

least 20 targets are included. Names of several groups along the

‘‘outstanding edge’’ are labeled.

D.A. Keedy et al.

40 PROTEINS



is only 0.3 and accounts for only a small part of the total

variance. Unfortunately, success at self-scoring is essen-

tially uncorrelated with high average GDT-TS score (cor-

relation coefficient 0.048). It seems plausible that the

best self-scorers are the groups whose prediction proce-

dure is fairly simple and clearly defined, so that they can

cleanly judge the probable success of that specific proce-

dure. Although we applaud the self-scoring abilities of

these servers, we do not think that these statistics con-

vincingly uphold the traditional CASP practice of com-

bining successful prediction and successful self-scoring

together into a single metric. Both aspects are very im-

portant to further development of the field; but they

seem currently to remain quite unrelated, and we believe

that they should therefore be assessed and encouraged

separately.

Model compaction or stretching

Large geometrical outliers on main-chain bond lengths

and angles can result from difficulties in stitching

together model fragments or from inconsistencies in

building a local region, whereas small but consistent non-

ideal values can indicate overall scaling problems.

Previous CASP assessors have found that a few predic-

tor groups built models with quite extreme compaction

across large regions,5 which had the side effect of achiev-

ing artificially high GDT scores. As assessors we felt the

Table II
Groups Robustly in Top Half of GDT-HA

Target choice Group ID Group name
No. of targets
attempted

Average of
(target avg GDT-TS)

% Models
GDT-HA �33

Easier targets 147s Yasara 60 72.06 92.6
293s Lee-server 78 63.40 83.6
394s Fiser-M4T 76 68.56 83.5

Average targets
or � all targets

379 McGuffin 119 58.09 79.2
299 Zico 119 57.93 77.0
138 ZicoFullSTPFullData 119 57.93 76.6
266 FAMS-multi 120 57.59 76.1
434 Fams-ace2 120 57.59 76.0
196 ZicoFullSTP 119 57.93 76.0
282 3DShot1 113 57.14 75.9
485 Ozkan-Shell 27 56.75 75.5
453 Multicom 119 57.93 74.7
426s Zhang-server 121 57.64 74.6
007s FFASstandard 121 58.58 74.5
425s Robetta 121 57.64 74.2
475 AMU-Biology 98 60.64 74.0
193s CpHModels 120 59.19 73.6
419 3DShotMQ 113 57.14 73.5
340 ABIpro 119 57.86 73.5
149 A-Tasser 119 57.93 73.1
407 Lee 120 57.59 72.7
409s Pro-sp3-Tasser 121 57.64 72.4
154s HHpred2 121 57.64 72.3
436s Pcons_dot_net 117 58.14 72.1
142s FFASsuboptimal 121 58.77 72.1
135s Pipe_int 111 58.31 72.0
122s HHpred4 121 57.64 71.8
297s GeneSilicoMetaServer 119 58.43 71.1
247s FFASflextemplate 120 58.54 70.7
443s MUProt 121 57.64 70.6
182s MetaTasser 121 57.64 70.4
438s Raptor 121 57.64 70.3
429s Pcons_multi 121 58.11 70.3

Harder targets 310 Mufold 51 49.88 67.8
283 IBT_LT 52 48.63 66.3
489 DBaker 52 48.33 64.5
353 CBSU 29 51.99 63.7
200 Elofsson 53 48.51 60.8
198 Fais@hgc 43 49.32 59.1
178 Bates_BMM 52 48.33 58.7
371 GeneSilico 52 48.33 58.0
208 MidwayFolding 51 48.15 56.6
442 LevittGroup 51 48.32 56.4

Group names in boldface type indicate servers.
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need to check for such unrealistic distortions on a per-

group basis by measuring the average of signed bond

length and angle nonidealities over all models submitted;

these deviations should average out to zero if there is no

systematic directionality. Among groups with poor values

on the geometry components of the mainchain reality

score, the most skewed bond lengths found for any group

had an average difference less than one standard devia-

tion short. This represents less than a 1% compaction in

the models, which seems unlikely to produce any signifi-

cant effect on overall GDT scores. Such small systematic

properties are unlikely to be intentional, although this

phenomenon does highlight the unintended consequen-

ces of focusing assessment too strongly on a single mea-

sure: prediction methods can inadvertently become

‘‘trained’’ to optimize that metric at the expense of other

factors.

Local compaction or stretching is much more common

and, in some cases, could be an informative diagnostic.

The most interesting cases occur along individual

b-strands, occasionally compacted but more frequently

stretched, to an extent that would match compensation

for a single-residue deletion. Trying to span what should

be seven residues with only six, as in the example shown

in Figure 9, produces a string of bond-length outliers at

10r or more, marked as stretched red springs. This

response to avoiding prediction of the specific deletion

location keeps all Ca differences under 4Å but gets the

alternation of sidechain direction wrong for half the resi-

dues on average. This is not an entirely unreasonable

strategy, but it would not be part of an optimal predicted

model and could not easily be improved by refinement.

It would be preferable to assume that the structural dele-

tion occurs at one of the strand ends and to choose the

better model of those two alternatives.

Modeling insertions

One of the classic difficulties in template-based model-

ing is dealing with regions of inserted sequence relative

to any available template. Methods for modeling inser-

tions have become much more powerful in recent years,

especially the flexible treatment of information from

many partial templates. That otherwise salutary fact

made a systematic analysis of this problem too complex

for the time scale of this assessment. However, several

individual examples were studied.

A very large insertion usually amounts to free model-

ing of a new domain, such as the FM domain 2 of

T0416.32 Insertion or deletion of only one or two resi-

dues within a helix or strand is presumably best treated

by comparing relevant short fragments such as strands

with b-bulges, with attention to hydrophobicity patterns

and to location of key sequence changes such as Gly, Pro,

and local sidechain–mainchain H-bonds. Anecdotally, it

seems there is still room for improvement, with the

greatly stretched b-strand of Figure 9 as one example.

The most obvious insertion modeling problems come

from an intermediate number (�3–20) of extra residues,

which nearly always means insertion of a new loop or

lengthening an existing one. The problem of modeling

new loops has two distinct parts: first is the alignment

problem of figuring out where in the sequence the extra

residues will choose to pop out away from the template

structure, and second is the modeling of new structure

Figure 8
Ability of groups to self-select their best model as Model 1. The

difference from the percentage expected based on random chance

(correcting for different average numbers of models) is plotted vertically

(in units of standard deviations); range of scores within a group’s

model sets is plotted horizontally. For the best self-scorers, the group

name and the percentage of ‘‘Model 1s’’ that were actually ‘‘best

models’’ are shown. Diamonds indicate server groups, which dominate

the top self-scorers; pluses indicate human groups.

Figure 9
An over-extended b-strand, with main-chain bond-length outliers up to

40r, marked as stretched-out red springs. T0487-D1, PDB code: 3DLB,

argonaute complex.37
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for the part that loops out. Evolutionary comparisons

have taught us that the structural changes from inser-

tions are almost always quite localized and that they sel-

dom occur within secondary structure.33 Therefore the

alignment problem needs to compromise suitably

between optimal sequence alignment and the structural

need to shift the extra piece of structure toward loops

and toward the surface.

As an example, in T0438 loop 255–266 is an insertion

relative to both sequence and structure of 2G39, a good

template declared as the parent for nine distinct models

from seven different server groups. Sequence alignment is

somewhat ambiguous across a stretch of over 30 template

residues, and the nine models place the insertion in five

different locations: D0, D24, D12, D14, and D110.

Figure 10a shows the T0438 loop insertion (green) and

the nine different models (magenta). Three models insert

the loop in exactly the right place: one from AcompMod

(002_1) and two different pairs of identical models (each

pair has all coordinates the same: 220_2 5 351_2 and

220_4 5 351_4) from related Falcon servers. However,

none get the loop conformation quite right.

During prediction, by definition, no match-to-target

measures are available, but perhaps model-only measures

could be used. To test this, the above nine models were

run through MolProbity13 and local density of validation

outliers was examined around the new loops. To increase

signal-to-noise, the cutoff for serious clashes was loos-

ened from 0.4 to 0.5 Å overlap. Nearly all models have a

steric clash at the loop base, between the backbone of the

two residues flanking the loop; those therefore do not

distinguish between correct and incorrect placement but

show that the ends of insertions are usually kept a bit

too close together. The three correctly placed loops, and

one offset but entirely solvent-exposed insertion, have

only one to three other outliers (backbone clashes, Rama-

chandran outliers, bad sidechain rotamers, bond-length

and bond-angle outliers, or large Cb deviations12) and

are not notably different from the rest of the model.

However, the other five incorrectly placed insertions have

between 16 and 28 other outliers and can easily be spot-

ted as among the one or two worst local regions in their

models. Figure 10(b) shows outliers for a correctly placed

loop, and Figure 10(c) shows outliers for an incorrectly

placed loop. For this target, at least, it would clearly be

possible during the prediction process to use local

model-validation measures to distinguish between plausi-

ble and clearly incorrect predicted loop insertions.

Outstanding individual models

To complement the group-average statistics, we have

also compiled information on outstanding individual

models for specific targets. As represented by the three

divisions in Table III, outstanding models for a given tar-

get were identified in three rather different ways: (1) if

their trace stood out from the crowd, to the lower right

on the cumulative GDT-TS plot21; (2) if they involved

correct identification of a tricky aspect such as domain

orientation; or (3) if they had outstanding full-model sta-

tistics within a set of models with high and very similar

GDT scores.

Figure 11(b) illustrates the most dramatic cumulative

GDT-TS plot, for T0460, with two individual models

very much better than all others: 489_3 [DBaker; green

backbone in Fig. 11(a)] and 387_1 (Jones-UCL). The tar-

get is an NMR ensemble (2K4N), shown [black in Fig.

11(a)] trimmed of the disordered section of a long b-
hairpin loop. This is an FM/TBM target, because

although there are quite a few reasonably close templates,

they each differ substantially from the target for one or

more of the secondary-structure elements. Only the two

best models achieved a fairly close match throughout the

target (GDT-TS of 63 and 54, vs. the next group at 40–

Figure 10
Evaluating loop insertion models for residues 255-266 of T0438. PDB

code: 2G39 (MCSG unpublished). (a) Loop insertions (magenta) for

the 9 distinct server models (backbone in brown) that declared the
template 2G39 (blue), as compared to the actual insertion in T0438

(green) relative to 2G39. (b) Correctly aligned insertion for model

002_1 with few geometry problems. (c) Incorrectly aligned insertion

with significant geometry problems. Red spikes are steric clashes with

�0.5Å overlap of van der Waals radii, green kinks are Ramachandran

outliers, gold sidechains are rotamer outliers, pink balls indicate Cb
atoms with excessive deviations from their ideal positions,12 blue and

red springs are too-short and too-long bond lengths, and blue and red

fans are too-tight and too-wide bond angles.
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44); each presumably either made an especially insightful

combination among the templates or else did successful

free modeling of parts not included in one or more of

the better templates.

T0395 has a long, meandering C-terminal extension

relative to any of the evident templates, and its backbone

forms a knot (it is related to a set of still undeposited

knotted targets from CASP74); that extension was

trimmed from the official T0395-D1 target.9 However,

two models, 283_1 (IBT-LT) and 489_1 (DBaker), placed

the small C-terminal helix quite closely and residues

236–292 fairly well, although neither predicted the knot.

No other models came anywhere close.

T0409 (3D0F) is a domain-swap dimer, so that the

single chain is noncompact. An alternative assessment

was done using a reconnected model for a hypothetical

unswapped compact monomer, on which 485_3 (Ozkan-

Shell) was the outstanding model.

As an additional note, T0467 was canceled because the

ensemble submitted to the Prediction Center was very

loose; it is therefore not included in Table III. However,

the PDB-deposited ensemble (2K5Q) was suitably super-

imposed, and two outstanding models were identified:

489_1 (DBaker) and 149_2 (A-Tasser).

Figure 12 shows one of the cases in which a few pre-

diction groups assigned the correct orientation between

two target domains. T0472 (2K49) is a tightly packed

gene duplication of an a-bbb subdomain [ribbons in

Fig. 12(a)]. There are single-chain templates only for one

repeat, and template dimers show a variety of relation-

ships. As can be seen in the alignment plot of Figure

12(b), the top three models placed both halves cor-

rectly—409_1 (Pipe_int-s), 135_1 (Pro-sp3-Tasser), and

438_1 (Raptor-s)—whereas all other models align only

Table III
Outstanding Individual Models on a Specific Target

Target Group_model

Outstanding on cumulative GDT-TS plot
T0395 DBaker_1 IBT-LT_1
T0407-D2 IBT-LT_1 DBaker_3
T0409-D9 Ozkan-Shell_3
T0414-D1 Phyre_de_novo-s_1 Fams-ace2_3
T0419-D2 Tasser_2 Zhang_4
T0430-D2 Pcons_multi-s_4 Falcon-s_1
T0460-D1 DBaker_3 Jones-UCL_1
T0464 DBaker_5
T0467-D9 DBaker_1 A-Tasser_2
T0476 DBaker_1 Mufold-MD-s_2
T0478-D2 Falcon-s_1
T0482-D9 DBaker_3 Chicken-George_3
T0487-D4 DBaker_1 IBT-LT_1
T0495 Sam-T08-h_1

Outstanding on combining domains or related targets
T0393-D1,D2 IBT-LT_1
T0398-D1,D2 Muster_1 Fams-ace2_5
T0429-D1,D2 Tasser_1,3 Raptor-s_3 DBaker_5
T0472-D1,D2 Pipe_int-s_1 Pro-sp3-Tasser_1 Raptor-s_1
T0498 & T0499 Softberry Feig IBT-LT DBaker

Outstanding on full-model metrics, among top GDT-HA
T0390-D1 McGuffin Pcons-multi-s
T0392-D1 Pcons-multi-s MultiCom
T0396-D1 CpHModels-s IBT-LT
T0450-D1 FFASsubopt-s, flex-s Robetta-s
T0458-D1 FFASsubopt-s MultiCom-Cluster-s
T0490-D1 Lee, Lee-s McGuffin PoemQA
T0494-D1 McGuffin Lee, Lee-s
T0502-D1 Shortle
T0508-D1 Lee, Lee-s
T0511-D1 Lee, Lee-s

Server groups have "-s" appended to their names.

"-D9" targets were evaluated with alternative domain definitions.

Figure 11
Two outstanding predictions for the TBM/FM target T0460-D1. (a) Ca
traces are shown for the target in black, for the 134/521 predicted

models with LGA-S3 from 30 to 60 in peach, and for the particularly

exceptional model 489_3 (DBaker) in green. PDB code: 2K4N (NESG,

unpublished). (b) Cumulative superposition correctness plot21 from the

Prediction Center website. The percentage of model Ca atoms

positioned within a distance cutoff of the corresponding target Ca
atom after optimal LGA superposition is shown (x-axis) for a range of

such distance cutoffs (y-axis); all models for T0460-D1 are shown in

peach. Thus lines lower and further to the right indicate predictions

that better coincide with the target. The rightmost lines are models

489_3 (DBaker, green) and 387_1 (Jones-UCL, blue).
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onto one half or the other. These three models have the

best GDT-TS scores for the whole target and for Domain

1 (which requires placing the C-terminal helix against

the first three b-strands) but are not the top scorers for

the TBM-HA Domain 2.

It would be expected that a group especially good at

modeling relative domain orientations should have an

outstanding GDT-TS Z-score for whole targets (as

opposed to by-domain targets). The top-scoring group

on whole targets is DBaker, with an average Z of 1.001

vs. the next-highest at 0.828 (Zhang). However, those

high whole-target Z-scores are earned primarily on sin-

gle-domain rather than two-domain targets, by unusually

good modeling of difficult loops or ends that were

trimmed off the domain targets.

Another case of recognizing a nonobvious relationship

is the four groups the predictions of which matched both

T0498 and T0499. These are the nearest thing to a ‘‘trick

question’’ in CASP8, as they represent a pair of structures

designed and evolved to have nearly identical sequences

(only three residues different) but very distinct folds:

T0498 resembles the three-helix bundle of Staphylococcal

protein A and T0499 resembles the bb-a-bb structure of

the B-domain of Staphylococcal protein G. Both sequen-

ces are confusingly close to that of protein G, but there

are possible templates (1ZXG and 1ZXH) from an earlier

pair of less-similar designs.34 The four prediction groups

that correctly matched both targets (Softberry, Feig, IBT-

LT, and DBaker) may well have done so by identifying

that earlier work; however, we believe that making effec-

tive use of outside information is an important and posi-

tive asset in template-based modeling.

The final section in Table III includes only easier targets

(mostly TBM-HA, server-only), for which many models

have high and very similar GDT scores. Among those,

there can be a wide spread of full-model scores, and the

listed examples were selected as clearly outstanding on

combined scores. Figure 13(a) shows such a plot for

T0494, and Figure 13(b,c) compare the conformational

outliers for one of these outstanding models (from Lee,

McGuffin, and Lee-s) vs. a model with equivalent GDT

score but poor full-model scores of both model-only and

match-to-target types. Such cases provide examples of

‘‘value added’’ beyond the Cas to produce a predicted

model of much greater utility for many end uses.

DISCUSSION

It has been a fascinating privilege to become deeply

immersed in the complex and diverse world of current

protein structure prediction. The best accomplishments

in CASP8 are truly remarkable in ways that were only

vague and optimistic hopes 15 years ago. Groups whose

work is centrally informed by the process of evolution

can now often pull out from the vast and noisy sequence

universe the relevant parts of extremely distant homologs

and assemble them to successfully cover a target. On the

other hand, methods centrally informed by the process of

protein folding can often build up from the properties of

amino acids and their preferred modes of structural frag-

ment combination to model the correct answer for a spe-

cific target.

Not surprisingly, however, such outstanding successes

are not yet being achieved by most groups and not yet

on most targets by anyone. The prediction process has

many stages and aspects that demand quite different

methods and talents. Our assessments have striven to

separate out various of those aspects and to recognize

and reward excellence in them. Indeed, there is a new

breadth in the groups singled out by the various new

measures: in some cases the same prediction methods

that succeed best at the fundamental GDT Ca measures

also succeed well on other aspects, but in other cases new

Figure 12
Evaluation of relative sub-domain orientation for T0472 (PDB code:

2K49, NESG, unpublished). (a) Ribbon representation of the NMR

ensemble for T0472. Note the twofold pseudo-symmetry between the

similar compact, sheet-to-helix bundles in the top-right and bottom-

left. (b) Position-specific alignment plot for the whole target T0472,

from the Prediction Center website. Domain 1 is on the left, domain

2 on the right. Residues along the sequence (x-axis) are colored white,

red, yellow, and green for increasingly accurate alignment. Note the top

3 models (y-axis), which are the only ones with good alignment in both

sub-domains.
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players are spotlighted who have specific strengths that

could become part of a further synthesis.

Full-model measures

We chose to emphasize local, full-model quality and

correctness in this set of assessments in the service of

two long-range aspirations. One is that such quality is

fundamental to many of the biological uses of homology

modeling; the second is that full-model quality will be an

essential attribute of the fully successful predictions that

this field will eventually achieve. The results reported

above show that the six new full-model measures exhibit

the right behavior for potentially useful assessments: (1)

they each correlate robustly with GDT scores if measured

for models in the upper part of the bimodal GDT distri-

bution, but their spread of scores indicates that they con-

tribute independent information (Fig. 4); (2) a substan-

tial number of models, and of predictor groups, score

well on them, but they are not trivially achievable; and

(3) for individual targets, examination of predicted mod-

els with high vs. low combined full-model scores reveals

features convincingly diagnostic of better vs. worse pre-

dictions of the target (e.g., Fig. 13).

Therefore we conclude that the general approach of

full-model assessment is suitable for evaluating CASP

template–based models. These new metrics have had the

benefit of only one cycle of intensive development and

should continue to be improved; some suggestions for

desirable modifications are noted below. However, we

believe strongly that template-based modeling is ready

for full-model assessment, by these or similar measures.

An especially salient point is that excellent scores on

the model-only measures (MolProbity and mainchain

reality scores), as well as on the match-to-target full-

model measures, correspond with the best backbone pre-

dictions, both at the global and the local level within a

model. For the easiest targets, this could result from

copying very good templates, but not for hard targets. It

would be valuable in the future to study this relationship

quantitatively and in a method-specific manner; but cur-

rent evidence strongly suggests the practical utility of

using physical realism to help guide modeling toward

more correct answers.

Assessing components of the TBM process

High-accuracy assessment for CASP8 was carried out

here over a scope defined by predicted models with

GDT-HA �33, rather than over a scope defined by tar-

gets designated as TBM-HA; this general approach was

suggested after CASP7.8 Three types of evaluations were

done: (1) ‘‘right fold’’ or right template identification for

the initial step (Table II); (2) full-model quality and cor-

rectness for the modeling step, in six components and

overall (Table I); and (3) individual outstanding high-

accuracy models (listed in the last section of Table III). It

is important to note that each of these evaluations is

inherently two-dimensional, in the sense of needing to be

considered jointly with another reference metric such as

GDT-TS (Fig. 5), GDT-HA (Figs. 6 and 13), or target

difficulty (Fig. 7).

Some overall aspects of prediction can be studied for

all models [such as in Fig. 4(a,b)], but any assessment of

predictor-group performance must use one model per

Figure 13
Differentiating models with equally good GDT scores, based on full-

model performance for both physical realism and match to target. (a)

Average full-model Z-score, plotted against raw GDT-HA, on individual
best models for target T0494-D1 (PDB code: 2VX3, SGC, unpublished).

(b) Model 407_3 (Lee) has a GDT-HA of 65.9 and the best average full-

model Z-score on this target. (c) Another model with essentially the

same GDT-HA (65.2) has a much lower full-model Z-score, including

poorer match to target sidechains and H-bonds; the six individual

scores are listed. Mainchain-mainchain steric clashes, rotamer and

Ramachandran outliers, and Cb deviations are flagged in color for (b)

and (c), which show a representative portion of the model structures.
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target (out of up to five possible submissions). The two

reasonable choices are Model 1 (as designated by the pre-

dictor) or the best model (the most accurate by GDT-

TS); this is an extremely contentious issue with strong

opinions on both sides. The official TBM group assess-

ment by GDT-TS has always used Model 1 and continues

to do so for CASP82; some groups have specifically

molded their practices to that expectation. FM assess-

ment always looks for the best among all models, because

excellent free models are too rare to accept missing one.

It is completely clear that having a prediction define a

single optimal model would be extremely valuable for

end users, and also that it will eventually be true for a

mature prediction technology. Therefore self-scoring skill

should definitely be assessed and rewarded, but currently

it seems surprisingly difficult.

To provide a counterpoint to the Model 1 GDT evalua-

tion, to seek out excellence wherever feasible, and per-

haps also because we find it difficult to ignore 80% of

the available data, we chose to use the best model in all

of our full-model scores. Then, separately, we assessed

the ability of groups to pick their best model as Model 1,

measured across the entire range of targets. Those results

(Table II and Fig. 7) show that self-scoring is very much

better than random, especially for some server groups,

but that it is seldom correct more than 50% of the time

and is completely uncorrelated with average prediction

quality. This is a considerably more optimistic evaluation

than found for refinement35 and less optimistic than

found for high-accuracy targets in CASP7.8 Overall,

however, none of these studies show self-scoring to be

at all reliable. We would strongly suggest that it be

assessed prominently but separately from other aspects of

prediction.

As we gather has often been true for past assessors,

some of our new ideas did not work as well as expected.

For instance, we expected that using Cb rather than Ca
atoms for a GDT measure would be sensitive to align-

ment and orientation as well as placement, especially for

b-strands. However, the correlation with GDT-TS was far

too tight to be useful, and we then developed the more

satisfactory GDC-sc measure using sidechain ends.

Many CASP score distributions are bimodal (e.g., Fig.

3) or otherwise highly non-normal, and their shapes vary

between targets. This problem is one reason why GDT Z-

scores are usually truncated at zero2,7 and one reason

why our full-model measures omit models with GDT-HA

<33. We experimented with ‘‘robust’’ statistics36 that use

medians in place of averages and median absolute devia-

tion (MAD) scores in place of Z-scores; but the CASP

distributions are so far from being unimodal and Gaus-

sian that the median/MAD statistics gave no noticeable

improvement and were not adopted. The full-model

scores with model-level GDT-HA �33 filtering showed

skewed but unimodal distributions and could acceptably

be averaged into an overall full-model Z-score.

On the other hand, several of the new TBM assess-

ments have already shown broader applicability by being

incorporated into other aspects of CASP assessment. Our

alternative domain definitions for NMR targets were

used in disorder assessment,30 and the assessment by the

six full-model criteria turned out to demonstrate useful

improvements obtained by predictors in the model

refinement section.35

Future suggestions—procedural

As former outsiders to the CASP process, we undoubt-

edly miss some of the underlying history and subtleties,

but hope that a fresh perspective can identify new trends

and possibilities.

The need to diagnose and correct the many problems

with model file format and content made the process of

evaluating submitted predictions more difficult, as well

as potentially producing incorrect assessment scores (see

Model file preprocessing section in Materials and Meth-

ods). For future CASP experiments, we would urge more

complete and explicit format and content specifications

and a much more thorough checking procedure at sub-

mission. Ultimately, this is in the predictor groups’ best

interests, both for an accurate evaluation within CASP

and, more importantly, for broader use in the scientific

community. If a model file generated by structure predic-

tion does not follow normal format standards, end users

cannot take advantage of general-purpose molecular visu-

alization, modeling, and analysis software to study that

predicted model.

Many prediction assessment tools both internal and

external to CASP are available and routinely run by the

Prediction Center, but there were several tools developed

by previous assessors that we either were not equipped

to run (such as molecular replacement tests8) or redevel-

oped for CASP8 use (such as H-bond match to target6).

Of the newly developed full-model measures, only the

MolProbity score is publicly available in the form needed

for prediction assessment (at http://molprobity.biochem.

duke.edu). We would encourage an effort to provide all

promising evaluation software in a form suitable for use

by the Prediction Center, by future assessors, and by

individual predictors or users of models. We plan to con-

tribute to such an effort, for both format correction tools

and full-model assessment measures.

As explained in the Model selection and filtering sec-

tion of Materials and Methods, we found the standard

rules for trimming targets9 too strict in the case of NMR

ensembles, especially for measures that are more sensitive

to local conformation and less to absolute coordinates.

Even for superposition-based metrics, more of the NMR

ensemble could be meaningfully included if the 3.5 Å

cutoff were measured from a model chosen as the most

centrally positioned representative rather than between

all pairs of models, and one or two outlier NMR models
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could be allowed where the rest clustered satisfactorily.

We believe also that a general decision should be made

by CASP predictors, assessors, and organizers as to

whether TBM prediction has advanced to a level where

all well-ordered, compact, natural parts of a domain

sequence should be assessed even if no template covers

that specific portion.

To support better assessment of separate aspects of

template-based modeling, it would be desirable to

expand the methodological information the ‘‘parent’’

record is meant to provide. As an important start, when

server models are used they should be considered and

declared as templates. Prediction is now often done from

complex combination of fragments, in which case nam-

ing one or a few parent templates may be inappropriate.

Additional keywords could be defined to allow generic

description of the methodologies and sources used, and

gradually after an adjustment period it could be required

that something be entered for each submitted model.

The keywords should be neutral to group identities, and

checks should be put in place to test for incorrect claims;

some automated comparisons between models and tem-

plates were done in CASP5,7 and expansion of such a

system to model–model comparisons would provide a

good check. With this carefully limited but crucial extra

information, assessors would be in a position to make

much more focused and useful comparative evaluations.

It appears to us that the boundaries among FM, TBM,

and HA target types are becoming increasingly blurred,

whereas distinctive styles and aspects of methodology are

more evident than ever. Pure FM targets with no struc-

tural templates whatsoever have nearly disappeared,9,32

but it is still of central scientific value to develop and test

de novo prediction. In evaluating high-accuracy details,

we started out using target distinctions of TBM vs.

TBM-HA and human vs. server categories, but we dis-

covered that we could achieve much better coverage and

statistics by separating on model characteristics than on

target characteristics. (As explained at the end of Materi-

als and Methods, our high-accuracy assessments could

include more than twice as many human groups if

defined by >20 good models than if defined by >20 easy

targets.) The modest amount of additional model-file in-

formation suggested above would further enable mean-

ingful assessments to be made both within and between

methodologies.

Future suggestions—content

Several potential improvements in the full-model crite-

ria are evident now, after their use in CASP8. For main-

chain H-bonds, the plot in Figure 4(a) makes it clear

that H-bonds short-range in sequence (� i to i14)

should be downweighted somewhat. In general, many

measures including GDT scores could profit from investi-

gating differential weighting by secondary-structure type,

as an overall fold is influenced about as much by a single

b-strand as by a single a-helix but the latter has about

twice as many residues per unit length; relative weights

of 1:2:2 for helix:beta:coil would be reasonable default

values from which to start. For sidechain-specific meas-

ures, it would be preferable to compromise between

using all (as here and Ref. 8) and omitting all6 surface

sidechains. Our vote would be for downweighting or

omitting the subset of sidechains that are fully exposed

without good contacts to other structure within their

own domain.

More generally, some form of compactness measure

would be desirable, although finding a suitable one

would be more difficult than it sounds. As in CASP7,6

we limited contact analysis to hydrogen bonding; how-

ever, more general forms should probably be explored

again in the future.

Finally, it is clear that our answer to the question

posed in the Introduction is ‘‘Yes!’’ Template-based mod-

eling is indeed ready to benefit from full-model assess-

ment, and so full-model measures of some sort should

definitely be continued in future CASPs.
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