
An Appreciation of the Work of Reinhard Wilhelm

Thomas Reps1, Mooly Sagiv2, and J̈org Bauer3

1 Comp. Sci. Dept., University of Wisconsin; reps@cs.wisc.edu
2 School of Comp. Sci., Tel-Aviv University; msagiv@post.tau.ac.il
3 Fachrichtung Informatik, Univ. des Saarlandes;joba@cs.uni-sb.de

Reinhard Wilhelm’s career in Computer Science spans more than a third of a cen-
tury. During this time, he has made numerous research contributions in the areas of pro-
gramming languages, compilers and compiler generators, static program analysis, pro-
gram transformation, algorithm animation, and real-time systems; co-founded a com-
pany to transfer some of these ideas to industry; held the Chair for Programming Lan-
guages and Compiler Construction at Saarland University; and served since its incep-
tion as the Scientific Director of the International Conference and Research Center for
Computer Science at Schloß Dagstuhl.

1 Research Activities

1.1 Foundations of Programming and Programming Languages

Reinhard’s work in the area of programming languages is unusual in that he has had an
interest in, and made contributions in,all styles of programming languages (imperative,
functional, logic, parallel, object-oriented, and constraint-oriented) [14–17, 20, 19, 21,
22, 24–26, 31, 77].

1.2 Compilers, Compiler Generators, and Compilation Algorithms

Compilersconvert a program or specification written in some language into a form that
allows it to be executed on a computer or network of computers.Compiler generators
are tools for creating compilers themselves (or components of compilers) from speci-
fications. From the number of his publications on these subjects, and their distribution
in time, it is easy to see that Reinhard’s longest-held interest and deepest attachment in
Computer Science has been to the area of compilers [32], including compiler generators
[27–30] and the algorithms needed to accomplish the tasks required in various phases
of compilation (see below).

Attribute Grammars. Attribute grammars are a language-description formalism that
was introduced by Donald Knuth in 1968.4 In an attribute grammar, a language and its
properties are specified by giving

– a context-free grammar for the language,
– sets of “attributes” (annotations) to be attached to nodes of the grammar’s derivation

trees, and

4 D.E. Knuth: Semantics of context-free languages. Math. Syst. Theory 2(2): 127-145 (1968).



– rules that describe how information from one node’s attributes affects the attributes
of other nodes.

Reinhard’s research in this area concerned analysis and applications of attribute gram-
mars [33–41, 60, 61]. Reinhard also spearheaded the implementation of three of the
most influential compiler-generation systems that were based on attribute grammars:
MUG1 [28], MUG2 [29, 30], and OPTRAN [38, 77, 40, 41, 72].

Code Generation via Transformational Grammars/Tree Automata. The code-ge-
neration phase of a compiler turns an intermediate representation of a program into a se-
quence of machine-code instructions. One code-generation subtask is code selection—
the actual selection of the instructions to be emitted. In a sequence of papers [44, 46,
48], Reinhard together with Helmut Seidl developed the connections between the code-
selection problem and the theories of regular-tree grammars and finite tree automata.
This work provided a sound theoretical basis for code selection, generalized and im-
proved existing methods, and furthered the understanding of how to generate code-
selection components of compilers from machine descriptions.

Other Compilation Algorithms. Other compilation issues with which Reinhard has
been concerned include table compression [47], graph reduction [42], code optimization
[43, 49], and virtual machines [50, 51].

1.3 Static Program Analysis

One of the areas in which Reinhard has worked for multiple decades, and made many
important contributions, isstatic program analysis(also known as “dataflow analysis”
or “abstract interpretation”). Static analysis is the basic technique used in optimizing
compilers and other programming tools for obtaining information about the possible
states that a program can reach during execution, but without actually running the pro-
gram on specific inputs. Instead, static-analysis techniques explore a program’s behav-
ior for all possible inputs to determine (an approximation of)all possible states that the
program can reach. To make this feasible, the program is “run in the aggregate”—i.e.,
on descriptors that represent collections of many states. The fundamental theory that
provides the foundation for such techniques is that ofabstract interpretation, enunci-
ated in 1977 by Patrick and Radhia Cousot.5

Reinhard’s work in the area of static analysis includes [52–58, 61, 59], as well as
many other papers mentioned below.

Grammar Flow Analysis. In two papers with U. M̈oncke [60, 61], Reinhard proposed
the technique of “grammar flow analysis”. This work generalized the concepts and algo-
rithms of (intraprocedural) dataflow analysis—which generally is applied to graph data
structures—to a method for obtaining information about properties of derivation trees

5 P. Cousot, R. Cousot: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. POPL 1977: 238-252.



of the nonterminals in context-free grammars (but without actually building the gram-
mar’s derivation trees). Not only does this generalization have important applications
in interprocedural dataflow analysis, but Möncke and Wilhelm also showed how gram-
mar flow analysis has applications in many other areas of compilers—ranging from
static-semantic analysis to code generation.

Shape Analysis. In a series of papers with M. Sagiv, T. Reps, and others, (e.g., [62–
71]), Reinhard has addressed one of the major remaining challenges in static analysis
of program behavior—sometimes calledshape analysis—namely, how to check proper-
ties of programs that manipulate linked data structures (i.e., programs that use dynamic
allocation and freeing of storage cells, and destructive updating of structure fields—as
happens pervasively in languages such as C, C++, and Java). In such programs, data
structures can grow and shrink dynamically, with no fixed upper bound on their size
or number. The analysis problem is complicated even more by the fact that such lan-
guages also permit fields of dynamically allocated objects to be destructively updated.
In the case of thread-based languages, such as Java, the number of threads can also
grow and shrink dynamically—again with no fixed upper bound on size or number.
These features create considerable difficulties for any method that tries to check pro-
gram properties, and this subject is considered to be one of the most challenging areas
of program analysis.

A key issue when analyzing programs that use such features is how to create finite-
sized descriptors of memory configurations, such that the descriptors

– abstract away certain details, but
– retain enough key information so that the analysis can identify interesting properties

that hold.
One of the crucial obstacles is that dynamically-allocated storage cells have no static
names, and the number of such objects is, in general, unbounded.

The Sagiv-Reps-Wilhelm approach [67] provides a solution to the problem of de-
vising finite-sized descriptors of the infinite number of storage configurations that can
arise at a point in the program. Moreover, it also provides a way to tune the precision
of the descriptors in use, which is important both for reducing the time required to run
an analysis, and for reducing the number of false positives that an analysis may report.
From a static-analysis perspective, the work is novel because of the way that it uses
3-valued logic to address these issues.

1.4 Program Transformation/Rewriting

The heart of many compilation steps (such as optimization and code generation) is
tree transformationor rewriting. Reinhard’s work in this area has concerned systems
for program transformation and optimization—originally formalized using attribute-
grammar-based notations and implemented as rewriting of attributed abstract-syntax
trees [72–75, 77]. Later work addressed these problems using a specialized functional
notation for specifying patterns and transformations [78].



1.5 Algorithm Animation and Visualization

Algorithm animationconcerns how to create visual presentations of computations. This
area has been another of Reinhard’s long-term interests [79–83]. He has worked on such
varied problems as the depiction of compilation steps [83], finite-state automata [82],
and abstract interpretation [79, 80].

1.6 Timing Analysis for Real-Time Systems

In a series of papers with various authors (beginning with [84]), Reinhard spearheaded
a new approach to predicting the timing behavior of processors that are equipped with
cache memory. Because of the substantial differences exhibited by modern processors
between the latency for an access that goes to main memory versus an access that can be
resolved in the cache, cache behavior has to be taken into account to predict a program’s
execution time. Classical methods based on experimental measurement provide only
soft guarantees: any measurement-based approach, via either hardware or software,
only determines the execution time for the specific inputs of the test suite. Moreover,
software-based monitoring alters the code, thereby influencing the cache behavior—and
hence the performance—of the program whose performance one is trying to measure.

The behavior-prediction techniques that Reinhard has helped to devise make use of
static program analysis, which (as noted above) provides a way to obtain information
about the possible states that a program reaches during execution, but without actually
running the program on specific inputs. Using this approach, Reinhard and his col-
leagues have shown that it is possible to determine the worst-case cache behavior (i.e.,
to identify what could be in the cache at each point in the program) [84–89], as well as
to bound the worst-case running time of real-time programs and to check the program
for the possibility of cache conflicts that could affect time-critical parts [90–98]. The
advantage of their approach is that the predictions obtained using their techniques are
valid for all inputs. From a static-analysis perspective, the work often combines “may”
and “must” information in an unusual way.

An additional area of concern has been with processor models—e.g., with such
issues as the semantics of processors and how to specify them—as well as with gaining
an understanding of which real-time systems are time-predictable [99–103].

2 Technology Transfer

Reinhard has been successful in making the work on timing analysis for real-time sys-
tems accessible to the embedded-systems and real-time communities, thereby demon-
strating how static program analysis can be applied to the problems that arise in these
domains. This work also forms the basis for the products of a company that Reinhard
co-founded (AbsInt Angewandte Informatik GmbH, Saarbruecken, Germany [104]).
Their tool has been successfully used to certify time-critical subsystems of the Airbus
A380 plane.



3 Pedagogical Activities

Reinhard Wilhelm holds the Chair for Programming Languages and Compiler Con-
struction at Saarland University, where he has supervised twenty-five Ph.D. theses and
nearly one hundred fifty Masters/Diploma theses.

Reinhard’s textbook (“Compiler Design”), co-authored with D. Maurer and pub-
lished in German [10], French [11], and English [12], is successfully used in many
graduate and undergraduate compiler courses. The book is noteworthy for the way that it
presents the problems of compiling imperative languages, functional languages, object-
oriented languages, and logic-programming languages in a way that draws out their
commonalities. The book covers in depth many difficult aspects of compilation, such
as bottom-up parsing with error recovery, attribute grammars, and abstract interpreta-
tion. Compared with other textbooks, Reinhard’s book provides the most theoretically
well-grounded treatment of the problems that arise in writing compilers.

Recently, Reinhard also participated in an effort to design a graduate curriculum on
embedded software and systems [13].

4 Schloß Dagstuhl

Reinhard has also performed a notable service to the international Computer Science
community by having served since its inception as the Scientific Director of the Inter-
national Conference and Research Center for Computer Science at Schloß Dagstuhl.
Dagstuhl was set up in 1990 along the lines of the famous conference center for Math-
ematics at Oberwolfach. Dagstuhl hosts several kinds of activities, but predominantly
“Dagstuhl Seminars”, which are week-long intensive seminars involving lectures, group
discussions, software demonstrations, etc. By now, Dagstuhl Seminars have been held
in a large number of different subject areas of Computer Science. There are about forty
of these every year, each with somewhere between twenty and sixty participants from
all over the world.

Reinhard has been involved with Dagstuhl from the start, and as the founding Sci-
entific Director, his imprint is to be found on all aspects of its operation, including not
just the choice of seminar topics and attention to maintaining the highest scientific stan-
dards, but also the original renovation of Schloß Dagstuhl, the design and construction
of a major second building, the solicitation of donations from industry and charita-
ble foundations, the arrangement of a special funding program for junior researchers
(young faculty and graduate students), and the list could go on and on. Many weeks, he
even leads the traditional Wednesday mid-week hike.

Reinhard has made Dagstuhl a very special place for Computer Scientists by his
quiet, but skillful, way of using his “bully pulpit” to nudge the Computer Science com-
munity into fruitful and interesting interactions:

– He has made seminars that bring together groups that have common interests, but
that for one reason or another have had relatively limited contact, a Dagstuhl spe-
cialty.

– He attends at least one day of each Dagstuhl seminar to monitor progress and offer
advice to that week’s organizers about possible mid-course corrections.



– He actively solicits Seminars on new and promising topics.
– During the planning stages of Seminars, he keeps an eye out for potential attendees

who might have been overlooked, but who would especially profit from and/or
contribute to the activities of a Seminar.
Dagstuhl and its attendees have also benefited from Reinhard’s careful—and tasteful—

attention to detail, which goes far beyond the scientific aspects of the establishment: the
choice of music scores and musical instruments in Dagstuhl’s music room; the organiz-
ing of displays of modern art in the Dagstuhl buildings and on the Dagstuhl grounds;
even the choice of wine in the famous Dagstuhl Wine Cellar, where participants are
encouraged to repair for the evening for both technical and non-technical conversation.

5 A Partial List of Reinhard Wilhelm’s Collaborators

L. Almeida, M. Alt, H.-J. Bach, M. Baston, J. Bauer, G. Becker, Y. Ben-Asher, A.
Benveniste, C. Berg, J. B̈orstler, P. G. Bouillon, B. Bouyssounouse, B. Braune, F. War-
ren Burton, G. C. Buttazzo, P. Caspi, J. Ciesinger, V. Claus, I. Crnkovic, W. Damm,
S. Diehl, J. Engblom, A. A. Evstiougov-Babaev, C. Fecht, C. Ferdinand, G. Fohler, F.
Fontaine, N. Francez, N. Fritz, H. Ganzinger, M. Garcı́a-Valls, R. Giegerich, I. Glasner,
H. Hagen, R. Heckmann, E. Hoffmann, D. Johannes, D. Kästner, A. Kerren, H. Kopetz,
B. Kuhn, W. Lahner, Y. Lakhnech, M. Langenbach, F. Laroussinie, L. Lavagno, T.
Lev-Ami, G. Lipari, P. Lipps, J. Loeckx, P. Lucas, A. Lucks-Baus, F. Maraninchi, F.
Martin, D. Maurer, K. Mehlhorn, J. Messerschmidt, U. Möncke, T. M̈uldner, F. M̈uller,
R. Nollmann, H.-G. Oberhauser, M. Olk, O. Parshin, P. Peti, J. Antonio de la Puente, M.
Raber, A. Rakib, F. Randimbivololona, T. Rauber, T. Remmel, T. Reps, N. Rinetzky,
K. Ripken, B. Robinet, M. Rodeh, G. Rünger, M. Sagiv, G. Sander, A. L. Sangiovanni-
Vincentelli, N. Scaife, M. Schmidt, J. Schneider, A. Schuster, R. Seidel, H. Seidl, M.
Sicks, J. Sifakis, R. de Simone, J. Souyris, O. Spaniol, H. Theiling, S. Thesing, L.
Thiele, W. Thome, M. T̈orngren, P. Veŕıssimo, B. Weisgerber, A.J. Wellings, D.B.
Whalley, S. Wilhelm, T.A.C. Willemse, E. Yahav, W. Yi, G. Yorsh.

Acknowledgments

We would like to thank Angelika M̈uller, Rosi Bardohl, Annette Beyer, and all of
the Dagstuhl staff for the splendid job they did organizing and hosting the Reinhard
Wilhelm 60th-Birthday Celebratory Symposium. We would also like to thank Patrick
Cousot for furnishing us with the list of references to Reinhard’s publications that he as-
sembled for the presentation of Reinhard’s work at the Saarland University celebration
of Reinhard’s birthday.

References

1. R. Wilhelm. Informatics: 10 Years Back. 10 Years Ahead. Lecture Notes in Computer
Science 2000. Springer, Berlin, Germany, 2001.

2. R. Wilhelm: Compiler Construction, 10th International Conference, CC 2001 Held as Part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2001 Genova,
Italy, April 2-6, 2001, Proceedings Springer 2001



3. R. Wilhelm: Informatik: Grundlagen - Amwendungen - Perspektiven [Forum ”Perspektiven
der Informatik”, Dagstuhl, November 1993] Verlag C. H. Beck 1996

4. R. Wilhelm: Generische und generative Methoden. Perspektiven der Informatik 1993: 84-85
5. R. Wilhelm, H. Hagen: Programmiersprachen. Perspektiven der Informatik 1993: 86-90
6. V. Claus, R. Wilhelm: Einleitung. Perspektiven der Informatik 1993: 9-12
7. R. Wilhelm, O. Spaniol: Parallele und verteilte Systeme. Perspektiven der Informatik 1993:

90-94
8. B. Robinet, R. Wilhelm: ESOP 86, European Symposium on Programming, Saarbrücken,

Federal Republic of Germany, March 17-19, 1986, Proceedings, LNCS 213, Springer 1986
9. R. Wilhelm: GI - 10. Jahrestagung, Saarbrücken, 30. September - 2. Oktober 1980, Proceed-

ings Springer 1980
10. R. Wilhelm and D. Maurer.̈Ubersetzerbau - Theorie, Konstruktion, Generierung. Springer,

Berlin, Germany, 1992, 2. Auflage Springer 1997
11. R. Wilhelm and D. Maurer.Les Compilateurs, th́eorie, construction, ǵeńeration. Masson,

Paris, France, 1994.
12. R. Wilhelm and D. Maurer.Compiler Design: Theory, Construction, Generation. Addison-

Wesley, Reading, MA, 1996.
13. P. Caspi, A. L. Sangiovanni-Vincentelli, Luı́s Almeida, A. Benveniste, B. Bouyssounouse,

G. C. Buttazzo, I. Crnkovic, W. Damm, J. Engblom, G. Fohler, M. Garcı́a-Valls, H. Kopetz,
Y. Lakhnech, François Laroussinie, L. Lavagno, G. Lipari, F. Maraninchi, P. Peti, J. Antonio
de la Puente, N. Scaife, J. Sifakis, R. de Simone, M. Törngren, P. Veŕıssimo, A.J. Wellings,
R. Wilhelm, T.A.C. Willemse, W. Yi: Guidelines for a Graduate Curriculum on Embedded
Software and Systems. ACM Trans. Embedded Comput. Syst. 4(3): 587-611 (2005)

14. R. Wilhelm: Imperative, prädikative und funktionale Programmierung (Kurzfassung). GI
Jahrestagung 1982: 188-193

15. J. Messerschmidt, R. Wilhelm: Constructors for Composed Objects. Comput. Lang. 7(2):
53-59 (1982)

16. R. Wilhelm: Symbolische Programmausführung - Das aktuelle Schlagwort. Informatik Spek-
trum 6(3): 170 (1983)

17. J. Loeckx, K. Mehlhorn, R. Wilhelm: Grundlagen der Programmiersprachen. Teubner, 1986
18. G. Becker, B. Kuhn, D. Maurer, R. Wilhelm: SiATEX - eine interaktive Arbeitsumgeubng

für TEX. Innovative Informations-Infrastrukturen 1988: 162-169
19. J. Loeckx, K. Mehlhorn, R. Wilhelm: Foundations of Programming Languages. John Wiley,

1989
20. M. Baston, H.-J. Bach, A. Lucks-Baus, F. Müller, R. Wilhelm: Implementierung der funk-

tionalen Programmiersprache HOPE mit Hilfe von Kombinatoren. Innovative Informations-
Infrastrukturen 1988: 114-131

21. R. Wilhelm:Übersetzer f̈ur imperative, funktionale und logische Programmiersprachen: Ein
Vergleich (eingeladener Vortrag). Software-Entwicklung 1989: 156-165

22. Y. Ben-Asher, G. R̈unger, A. Schuster, R. Wilhelm: 2DT-FP: An FP Based Programming
Language for Efficient Parallel Programming of Multiprocessor Networks. PARLE 1993:
42-55

23. Y. Ben-Asher, G. R̈unger, R. Wilhelm, A. Schuster: Implementing 2DT on a Multiprocessor.
CC 1994: 113-127

24. T. Rauber, G. R̈unger, R. Wilhelm: An application specific parallel programming paradigm.
HPCN Europe 1995: 735-740

25. R. Heckmann, R. Wilhelm: A Functional Description of TEX’s Formula Layout. J. Funct.
Program. 7(5): 451-485 (1997)

26. P. Lucas, N. Fritz, R. Wilhelm: The Development of the Data-Parallel GPU Programming
Language CGiS. Int. Conf. on Computational Science, 2006: 200-203



27. H. Ganzinger, R. Wilhelm: Verschränkung von Compiler-Moduln. GI Jahrestagung 1975:
654-665

28. R. Wilhelm, K. Ripken, J. Ciesinger, H. Ganzinger, Walter Lahner, R. Nollmann: Design
Evaluation of the Compiler Generating System MUGI. ICSE 1976: 571-576

29. H. Ganzinger, K. Ripken, R. Wilhelm: Automatic Generation of Optimizing Multipass Com-
pilers. IFIP Congress 1977: 535-540

30. H. Ganzinger, R. Giegerich, U. M̈oncke, R. Wilhelm: A Truly Generative Semantics-
Directed Compiler Generator. SIGPLAN Symposium on Compiler Construction 1982: 172-
184

31. R. Wilhelm, M. Alt, F. Martin, M. Raber: Parallel Implementation of Functional Languages.
LOMAPS 1996: 279-295

32. P. Lucas, N. Fritz, R. Wilhelm: The CGiS Compiler-A Tool Demonstration. CC 2006: 105-
108

33. R. Giegerich, R. Wilhelm: Implementierbarkeit attributierter Grammatiken. GI Jahrestagung
1977: 17-36

34. R. Giegerich, R. Wilhelm: Counter-One-Pass Features in One-Pass Compilation: A Formal-
ization Using Attribute Grammars. Inf. Process. Lett. 7(6): 279-284 (1978)

35. R. Wilhelm: Attributierte Grammatiken. Informatik Spektrum 2(3): 123-130 (1979)
36. R. Wilhelm: LL- and LR-Attributed Grammars. Fachtagungüber Programmiersprachen

1982: 151-164
37. U. Möncke, B. Weisgerber, R. Wilhelm: How to Implement a System for Manipulation of

Attributed Trees. Fachtagungüber Programmiersprachen 1984: 112-127
38. P. Lipps, U. M̈oncke, M. Olk, R. Wilhelm: Attribute (Re)evaluation in OPTRAN. Acta Inf.

26(3): 213-239 (1988)
39. Winfried Thome, R. Wilhelm: Simulating Circular Attribute Grammars Through Attribute

Reevaluation. Inf. Process. Lett. 33(2): 79-81 (1989)
40. R. Wilhelm: Attribute Reevaluation in OPTRAN. Attribute Grammars, Applications and

Systems 1991: 507
41. P. Lipps, U. M̈oncke, R. Wilhelm: An Overview of the OPTRAN System. Attribute Gram-

mars, Applications and Systems 1991: 505-506
42. M. Raber, T. Remmel, E. Hoffmann, D. Maurer, F. Müller, H.-G. Oberhauser, R. Wilhelm:

Complied Graph Reduction on a Processor Network. ARCS 1988: 198-212
43. R. Wilhelm: Code-Optimierung Mittels Attributierter Transformationsgrammatiken. GI

Jahrestagung 1974: 257-266
44. B. Weisgerber, R. Wilhelm: Two Tree Pattern Matchers for Code Selection. CC 1988: 215-

229
45. C. Ferdinand, H. Seidl, R. Wilhelm: Tree Automata for Code Selection. Code Generation

1991: 30-50
46. R. Wilhelm: Tree Tranformations, Functional Languages, and Attribute Grammars. WAGA

1990: 116-129
47. J. B̈orstler, U. M̈oncke, R. Wilhelm: Table Compression for Tree Automata. ACM Trans.

Program. Lang. Syst. 13(3): 295-314 (1991)
48. C. Ferdinand, H. Seidl, R. Wilhelm: Tree Automata for Code Selection. Acta Inf. 31(8):

741-760 (1994)
49. P. G. Bouillon, G. Sander, R. Wilhelm: Lokale Optimierung ausnahmebehafteter Programme

durch Spuroptimierung. Inform., Forsch. Entwickl. 9(2): 72-81 (1994)
50. D. Maurer, R. Wilhelm: MaMa - eine abstrakte Maschine zur Implementierung funktionaler

Programmiersprachen. Inform., Forsch. Entwickl. 4(2): 67-88 (1989)
51. M. Alt, G. Sander, R. Wilhelm: Generation of Synchronization Code for Parallel Compilers.

PLILP 1993: 420-421



52. N. Rinetzky, J. Bauer, T. Reps, M. Sagiv, R. Wilhelm: A Semantics for Procedure Local
Heaps and its Abstractions. POPL 2005: 296-309

53. T. Lev-Ami, T. Reps, M. Sagiv, R. Wilhelm: Putting Static Analysis to Work for Verification:
A Case Study. ISSTA 2000: 26-38

54. F. Martin, M. Alt, R. Wilhelm, C. Ferdinand: Analysis of Loops. CC 1998: 80-94
55. M. Sagiv, N. Francez, M. Rodeh, R. Wilhelm: A Logic-Based Approach to Program Flow

Analysis. Acta Inf. 35(6): 457-504 (1998) 1997
56. R. Wilhelm: Program Analysis: A Toolmaker’s Perspective. SIGPLAN Notices 32(1): 120-

121 (1997) 1996
57. R. Wilhelm: Program Analysis - A Toolmaker’s Perspective. ACM Comput. Surv. 28(4es):

177 (1996)
58. M. Sagiv, N. Francez, M. Rodeh, R. Wilhelm: A Logic-Based Approach to Data Flow Anal-

ysis Problem. PLILP 1990: 277-292
59. R. Wilhelm: Computation and Use of Data Flow Information in Optimizing Compilers. Acta

Inf. 12: 209-225 (1979)
60. U. Möncke, R. Wilhelm: Grammar Flow Analysis. Attribute Grammars, Applications and

Systems 1991: 151-186
61. U. Möncke, R. Wilhelm: Iterative Algorithms on Grammar Graphs, 8th Conf. on Graphthe-

oretic Concepts in Comp. Sci. 1982: 177-194
62. M. Sagiv, T. Reps, R. Wilhelm: Solving Shape-Analysis Problems in Languages with De-

structive Updating. POPL 1996: 16-31
63. M. Sagiv, T. Reps, R. Wilhelm: Solving Shape-Analysis Problems in Languages with De-

structive Updating. ACM Trans. Program. Lang. Syst. 20(1): 1-50 (1998)
64. M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic. POPL 1999:

105-118
65. R. Wilhelm, M. Sagiv, T. Reps: Shape Analysis. CC 2000: 1-17
66. R. Wilhelm, T. Reps, M. Sagiv: Shape Analysis and Applications. The Compiler Design

Handbook 2002: 175-218
67. M. Sagiv, T. Reps, R. Wilhelm: Parametric Shape Analysis via 3-Valued Logic. ACM Trans.

Program. Lang. Syst. 24(3): 217-298 (2002)
68. E. Yahav, T. Reps, M. Sagiv, R. Wilhelm: Verifying Temporal Heap Properties Specified via

Evolution Logic. ESOP 2003: 204-222
69. T. Reps, M. Sagiv, R. Wilhelm: Static Program Analysis via 3-Valued Logic. CAV 2004:

15-30
70. E. Yahav, T. Reps, M. Sagiv, R. Wilhelm: Verifying Temporal Heap Properties Specified Via

Evolution Logic. Logic Journal of the IGPL 14, 5 (Oct. 2006): 755-784
71. G. Yorsh, T. Reps, M. Sagiv, R. Wilhelm: Logical Characterizations of Heap Abstractions.

ACM Trans. Comp. Logic 8, 1 (Jan. 2007)
72. I. Glasner, U. M̈oncke, R. Wilhelm: OPTRAN, a Language for the Specification of Program

Transformations. Fachtagungüber Programmiersprachen 1980: 125-142
73. R. Giegerich, U. M̈oncke, R. Wilhelm: Invariance of Approximate Semantics with Respect

to Program Transformations. GI Jahrestagung 1981: 1-10
74. R. Wilhelm: A Modified Tree-to-Tree Correction Problem. Inf. Process. Lett. 12(3): 127-132

(1981)
75. R. Wilhelm: Inverse Currying Transformation on Attribute Grammars. POPL 1984: 140-147
76. F. Warren Burton, D. Maurer, H.-G. Oberhauser, R. Wilhelm: A Space-Efficient Optimiza-

tion of Call-by-Need. IEEE Trans. Software Eng. 13(6): 636-642 (1987)
77. P. Lipps, U. M̈oncke, R. Wilhelm: OPTRAN - A Language/System for the Specification of

Program Transformations: System Overview and Experiences. CC 1988: 52-65
78. M. Alt, C. Fecht, C. Ferdinand, R. Wilhelm: Transformation Development: TrafoLa-H Sub-

system. PROSPECTRA Book 1993: 539-576



79. D. Johannes, R. Seidel, R. Wilhelm: Algorithm Animation Using Shape Analysis: Visualis-
ing Abstract Executions. SOFTVIS 2005: 17-26

80. R. Wilhelm, T. M̈uldner, R. Seidel: Algorithm Explanation: Visualizing Abstract States and
Invariants. Software Visualization 2001: 381-394

81. B. Braune, R. Wilhelm: Focusing in Algorithm Explanation. IEEE Trans. Vis. Comput.
Graph. 6(1): 1-7 (2000)

82. B. Braune, S. Diehl, A. Kerren, R. Wilhelm: Animation of the Generation and Computation
of Finite Automata for Learning Software. WIA 1999: 39-47

83. G. Sander, M. Alt, C. Ferdinand, R. Wilhelm: CLaX - A Visualized Compiler. Graph Draw-
ing 1995: 459-462

84. M. Alt, C. Ferdinand, F. Martin, R. Wilhelm: Cache Behavior Prediction by Abstract Inter-
pretation. SAS 1996: 52-66

85. C. Ferdinand, R. Wilhelm: On Predicting Data Cache Behavior for Real-Time Systems.
LCTES 1998: 16-30

86. C. Ferdinand, F. Martin, R. Wilhelm, M. Alt: Cache Behavior Prediction by Abstract Inter-
pretation. Sci. Comput. Program. 35(2): 163-189 (1999)

87. C. Ferdinand, R. Wilhelm: Efficient and Precise Cache Behavior Prediction for Real-Time
Systems. Real-Time Systems 17(2-3): 131-181 (1999)

88. H. Theiling, C. Ferdinand, R. Wilhelm: Fast and Precise WCET Prediction by Separated
Cache and Path Analyses. Real-Time Systems 18(2/3): 157-179 (2000)

89. A. Rakib, O. Parshin, S. Thesing, R. Wilhelm: Component-Wise Instruction-Cache Behavior
Prediction. ATVA 2004: 211-229

90. R. Wilhelm: Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone. VMCAI
2004: 309-322

91. S. Thesing, J. Souyris, R. Heckmann, F. Randimbivololona, M. Langenbach, R. Wilhelm, C.
Ferdinand: An Abstract Interpretation-Based Timing Validation of Hard Real-Time Avionics
Software. Proc. Int. Performance and Dependability Symp.: 625-632

92. C. Ferdinand, D. K̈astner, F. Martin, M. Langenbach, M. Sicks, S. Wilhelm, R. Heckmann,
Nico Fritz, S. Thesing, F. Fontaine, H. Theiling, M. Schmidt, A. A. Evstiougov-Babaev, R.
Wilhelm: Validierung des Zeitverhaltens von kritischer Echtzeit-Software. GI Jahrestagung
(1) 2003: 335-339

93. C. Ferdinand, R. Heckmann, H. Theiling, R. Wilhelm: Convenient User Annotations for a
WCET Tool. WCET 2003: 17-20

94. R. Wilhelm, J. Engblom, S. Thesing, D.B. Whalley: Industrial Requirements for WCET
Tools - Answers to the ARTIST Questionnaire. WCET 2003: 39-43

95. R. Heckmann, M. Langenbach, S. Thesing, R. Wilhelm: The Influence of Processor Archi-
tecture on the Design and the Results of WCET Tools. Proc. of the IEEE 91(7): 1038-1054
(2003)

96. C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S.
Thesing, R. Wilhelm: Reliable and Precise WCET Determination for a Real-Life Proces-
sor. EMSOFT 2001: 469-485

97. C. Ferdinand, D. K̈astner, M. Langenbach, F. Martin, M. Schmidt, J. Schneider, H. Theil-
ing, S. Thesing, R. Wilhelm: Run-Time Guarantees for Real-Time Systems - The USES
Approach. GI Jahrestagung 1999: 410-419

98. R. Wilhelm: Timing Analysis and Validation for Real-Time Systems - Guest Editor’s Intro-
duction. Real-Time Systems 17(2-3): 127-129 (1999)

99. R. Wilhelm: Timing Analysis and Timing Predictability. FMCO 2004: 317-323
100. R. Wilhelm: Formal Analysis of Processor Timing Models. SPIN 2004: 1-4
101. L. Thiele, R. Wilhelm: Design for Timing Predictability. Real-Time Systems 28(2-3): 157-

177 (2004)



102. R. Wilhelm: Run-Time Guarantees for Real-Time Systems. FORMATS 2003: 166-167
103. R. Wilhelm: Determining Bounds on Execution Times. In R. Zurawski, editor, Handbook

on Embedded Systems, pages 14-1,14-23. CRC Press, 2005.
104. http://www.absint.com/


