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C H A P T E R 3

MAGNETIC DIPOLAR
BROADENING AND
TRANSPORT DYNAMICS
OF RIGID LATTICES
(AS IMAGINED FOR THE 21ST CENTURY)

3·1 INTRODUCTION

KEY: Slichter’s 1963 text (verbatim) is typeset on a yellow background

added content for the 52nd ENC is highlighted in green

marginal notes are highlighted in red

A tribute to

Charles P. Slichter

Note 1 This chapter will consider magnetic dipolar interactions in two idealized limits: the zero-
gradient limit of spectral magnetic resonance applications, and the strong-gradient limit of
nanometer-scale imaging applications.1

In spectral applicationsNote 2 a number of physical phenomena may contribute to the width
of a resonance line. The most prosaic is the lack of homogeneity of the applied static
magnetic field. By dint of hard work and clever techniques, this source can be reduced
to a few milligauss out of 104 gauss, although more typically magnet homogeneities are
a few tenths of a gauss. The homogeneity depends on sample size. Typical samples
have a volume between 0.1 cc to several cubic centimeters. Of course fields of ultrahigh
homogeneity place severe requirements on the frequency stability of the oscillator used to
generate the alternating fields. Although these matters are of great technical importance,
we shall not discuss them here. If a nucleus possesses a non-vanishing electric quadrupole
moment, the degeneracy of the resonance frequencies between different m-values may be
lifted, giving rise to either resolved or unresolved splittings. The fact that T1 processes
produce an equilibrium population by balancing rates of transitions puts a limit on the
lifetime of the Zeeman states, which effectively broadens the resonance lines by an energy
of the order of h̄/T1.

Similarly, in ultra-strong field gradients (of order gauss per angstrom) we will see that
polarization processes are associated to conservation laws that are exact for purely dipo-
lar interactions in purely linear gradients. Of course, in real life these conservation laws
are only approximately exact, in consequence of nonlinear field geometries and various

1Plain text is verbatim from Chapter 3 of Slichter’s Principles of Magnetic Resonance (1963); highlighted
text is a modern perspective, written for poster 015, Quantum Spin Microscopy’s Emerging Methods, Roadmaps,
and Enterprises, presented at the 52nd ENC, April 10–15, 2011, Asilomar CA, on the occasion of John Sidles
sharing with Dan Rugar and John Mamin (of IBM) the Günther Laukien Prize for 2011.

This work is dedicated to the families of the Ceremony in Honor of Wounded Marines, 12 May 2006, Marine
Corps Barracks, Washington, DC. This research is supported by the Army Research Office (ARO) under
MURI program #W911NF-05-1-0403.
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SEC. 3.2 BASIC INTERACTION 45

non-dipole interactions (particularly for electrons).
In this chapter, however, we shall ignore all these effects and concentrate on the

contribution of the magnetic dipole coupling between the various nuclei to the width
of the Zeeman transition. This approximation is often excellent, particularly when the
nuclei have spin 1

2 (thus a vanishing quadrupole moment) and a rather long spin-lattice
relaxation time.

Regardless of whether a gradient is present, a rough estimate of the effect of the dipolar
coupling is easily made. If typical neighboring nuclei are a distance r apart and have
magnetic moment µ, they produce a magnetic field Hloc of the order

Hloc =
µ

r3

By using r = 2 Å and µ = 10−23 erg/gauss (10−3 of a Bohr magneton), we find Hloc "
1 gauss. Since this field may either aid or oppose the static field H0, a spread in the
resonance conditions results, with significant absorption occurring over a range of H0 ∼
1 gauss. The resonance width on this argument is independent of H0, but for typical
laboratory field of 104 gauss, we see there is indeed a sharp resonant line. Since the width
is substantially greater than the magnet inhomogeneity, it is possible to study the shape in
detail without instrumental limitations.

3·2 BASIC INTERACTION

The classical interaction energy E between two magnetic moments µ1 and µ2 is

E =
µ1 · µ2

r3 − 3(µ1 · r)(µ2 · r)
r5 (1)

where r is the radius vector from µ1 to µ2 (the expression is unchanged if r is taken as the
vector from µ2 to µ1.) If we regard µ1 and µ2 as coordinates on a classical state-space, then
we recognize that Eq. 1 specifies E as the Hamiltonian potential on that state-space.

For the quantum mechanical Hamiltonian operator we simply take Eq. (1), treating µ1
and µ2 as operators as usual:

µ1 = γ1h̄ I1

µ2 = γ2h̄ I2
(2)

where we have assumed that both the gyromagnetic rations and the spins may be different.
The general dipolar contribution to the Hamiltonian for N spins then becomes the operator

Hdipole =
1
2

N

∑
j=1

N

∑
k=1

[
µk · µj

r3
jk

−
3(µ1 · r jk)(µ2 · r jk)

r5
jk

]
(3)

where the 1
2 is needed, since the sums over j and k would count each pair twise and where,

of course, we exclude terms with j = k.
Associated to the Hamiltonian operator Hdipole is a potential function

hdipole
H

= 〈ψ̄|Hdipole|ψ〉

Mathematicians call hdipole
H the symbol function of Hdipole. Here we are regarding Hibert space

as a state-space manifold H that is equipped with a set of (complex) coordinate functions
(ψ1, . . . , ψdimH, ψ̄1, . . . , ψ̄dimH) : H → C; thus symbol functions are bilinear in ψ̄ and ψ.

v2.0 ( June 14, 2011 )



46 MAGNETIC DIPOLAR DYNAMICS CHAPTER 3

FIG. 3.1. Relationship
between rectangular
coordinates x, y, z
(describing the position
of nucleus 2 relative to
nucleus 1) and the polar
coordinates r, θ, φ.

As long as our dynamical trajectories are confined to the Hilbert space H there is
no particular advantage to working with the Hamiltonian symbol function hdipole

H as con-
trasted with the Hamiltonian operator Hdipole, but when we pullback onto lower-dimension
manifolds we will see that working with symbol functions conveys significant computa-
tional advantages (these advantages are well-known to geometric dynamicists, but to our
knowledge they have not been exploited in magnetic resonance calculations).

By writing µ1 and µ2 in component form and omitting the subscripts from r, we see
from Eq. (1) that the dipolar Hamiltonian will contain terms such as

γ1γ2h̄2 I1zI2z
1
r3

γ1γ2h̄2 I1zI2z
xy
r5

(4)

If we express I1z and I2z in terms of the raising and lowering operators I+1 and I−1 , respec-
tively, and express the rectangular coordinates x, y, z in terms of spherical coordinates
r, θ, φ (Fig. 3.1), we may write the Hamiltonian in a form that is particularly convenient
for computing matrix elements:

Hd =
γ1γ2h̄2

r3 [A + B + C + D + E + F] (5)

where
A = I1zI2z (1 − 3 cos2 θ) aH(ψ̄, ψ) = 〈ψ̄|A|ψ〉

B = − 1
4
[
I+1 I

−
2 + I−1 I

+
2
]
(1 − 3 cos2 θ) bH(ψ̄, ψ) = 〈ψ̄|B|ψ〉

C = − 3
2
[
I+1 I2z + I1zI

+
2
]

sin θ cos θ e−iφ cH(ψ̄, ψ) = 〈ψ̄|C|ψ〉

D = − 3
2
[
I−1 I2z + I1zI

−
2
]

sin θ cos θ eiφ dH(ψ̄, ψ) = 〈ψ̄|D|ψ〉

E = − 3
4 I
+
1 I

+
2 sin2θ e−2iφ eH(ψ̄, ψ) = 〈ψ̄|E|ψ〉

F = − 3
4 I
−
1 I

−
2 sin2θ e+2iφ f

H
(ψ̄, ψ) = 〈ψ̄|F|ψ〉

(6)

and the symbol functions (aH, . . . , fH) associated to operators (A, . . . , F) are viewed as
functions aH : H → R. Given an orthonormal basis |k〉 on the Hilbert space, it is natural to
define coordinate functions ψk = 〈k|ψ〉 : H → C, in which case (for example)

〈k|A|l〉 = ∂2

∂ψ̄k ∂ψl aH(ψ̄, ψ) (7)

v4.0a (final version, June 14, 2011)



SEC. 3.4 SPIN DYNAMICS DESCRIBED BY OPERATORS 47

so that an operator and its symbol function each determine the other. In geometric dynam-
ics, the (complex) functions (ψ1, . . . , ψdimH) are a coordinate atlas on the Hilbert state-space
and the (real) functions (aH, . . . , fH, . . .) are dynamical potentials. Soon we will demon-
strate (see Theorem 1) that specifying quantum dynamics in terms of symbol functions
substantial practical advantages.

As we have remarked, (γ1γ2h̄2)/r3 corresponds to the interaction of a nuclear moment
with a field of about 1 gauss, whereas the Zeeman Hamiltonian HZ = −γ1h̄H0I1z −γ2h̄H0I2z
corresponds to an interaction with a field of 104 gauss. It is therefore appropriate to solve
the Zeeman problem first and then treat the dipole term as a small perturbation. (Actually,
for two spins of 1

2 , an exact solution is possible.)

3·3 SPIN DYNAMICS DESCRIBED BY HILBERT-SPACE OPERATORS

To see the significance of the various terms operators A, B, C and so on, we shall consider
a simple example of two identical moments, both of spin 1

2 .
The Zeeman energy and wave functions can be given in terms of the individual

quantum numbers m1 and m2, which are eigenfunctions of I1z and I2z. Then the Zee-
man energy is

EZ = −γh̄H0m1 − γh̄H0m2 (8)

We shall diagram the appropriate matrix elements and energy levels in Fig. 3.2.

+h̄ω0 |−−〉

0 |+−〉 |−+〉

−h̄ω0 |++〉

B

A A

A

A

FIG. 3.2. Energy levels of two identical spins.

It is convenient to denote a state in which m1 = + 1
2 , m2 = − 1

2 by the notation (+−).
The two states |+−〉 and |−+〉 are degenerate, and both have EZ = 0. The states |++〉
and |−−〉 have respectively −h̄ω0 and +h̄ω0, where ω0 = γH0 as usual. We first inquire
into what parts of states are connected by the various terms in the dipolar expression. The
term A, which is proportional to I1zI2z, is clearly completely diagonal: it connects |m1m2〉
with 〈m1m2|. On the other hand, B, which is proportional to I+1 I

−
2 + I−1 I

+
2 , only connects

|m1m2〉 to states 〈m1 + 1, m2 − 1| or 〈m1 − 1, m2 + 1|. A customary parlance is to say that B
simultaneously flips one spin up and the other down. B therefore can join only the states
|+−〉 and |−+〉.

We can express these same physical ideas more formally via operator algebra. The
following commutation relations are readily verified:

[A, I1z] = 0 and [A, I2z] = 0

but [B, I1z] '= 0 and [B, I2z] '= 0

however [B, I1z + I2z] = 0

(9)

which is to say, the A interaction conserves z-axis polarization of spin-species 1 and 2
separately, while the B interaction conserves only their sum.

v2.0 ( June 14, 2011 )



48 MAGNETIC DIPOLAR DYNAMICS CHAPTER 3

3·4 SPIN DYNAMICS DESCRIBED BY DYNAMICAL POTENTIALS

Now we express the above operator commutation relations equivalently in terms of dy-
namical potentials. The rules for this conversion are simply2

operators → symbol functions
commutators → Poisson brackets

by which Eq. (9) becomes (with I1z → i1z = 〈ψ̄|I1z|ψ〉, etc., as above)

〈da, di1z〉ω−1
H

= 0 and 〈da, di2z〉ω−1
H

= 0

but 〈db, di1z〉ω−1
H

'= 0 and 〈db, di1z〉ω−1
H

'= 0

however 〈db, di1z + di2z〉ω−1
H

= 0

(10)

Here we have embraced the standard notation and idioms of geometric dynamics, in which
ωH is the canonical symplectic structure of Hilbert space (which we will give explicitly in
Eq. 15), 〈·, ·〉ω−1

H
is the symplectic inner product that is induced by ω−1

H
, and d is the exterior

derivative.
It is customary parlance in geometric dynamics that whenever functions ( f , g, h) on

a state-space satisfy 〈d f , dg〉ω−1 = h, where ω is a symplectic structure, then h is said to
be the Poisson bracket of f and g with respect to that symplectic structure. Furthermore, ω
associates to every smooth function f a vector-valued tangent bundle X f = φ−1

ω d f , which is
known as a Hamiltonian flow with respect to f . Equivalent commonly seen notations for
Poisson brackets and Hamiltonian flows are

{ f , d} = 〈d f , dg〉ω−1 and X f !ω = iX f ω = d f (11)

and thus we have for any vector field Y

ω(Xf , Y) = d f (Y) = Y( f ) (12)

The connection to quantum physics upon a Hilbert state-space H is established when we
associate to our Hamiltonian operator Hdipole

H a symbol function, hdipole = 〈ψ̄|Hdipole
H |ψ〉; then

Xhdipole is the dynamical flow associated to the Schroedinger equation.
Given two symbol functions f and g, their Poisson bracket h = 〈d f , dg〉ω−1 specifies a

third flow Xh that is related to the Lie bracket [X f , Xg] by a well-known relation

Xh = [Xg, Xf ] (13)

We observe that the Hilbert space operator commutation relation [Ix, Iy] = Iz is associated
to the Lie bracket flow relation [Xix , Xiy ] = Xiz . No confusion need arise as to whether
[·, ·] is an operator commutator versus a Lie bracket, as this will always be clear from the
arguments supplied to the brackets.

2Our notation is that of John Lee’s Introduction to Smooth Manifolds.

v4.0a (final version, June 14, 2011)
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3·5 DYNAMICAL COMPRESSION AND DYNAMICAL FIDELITY

We have seen in Eqs. 10–13 that the set of quantum operator matrices (F, G, H, . . .), the
set of symbol functions ( f , g, h, . . .), and the set of symplectic flows (Xf , Xg, Xh, . . .) are
associated to a single algebra that is embodied respectively in the operation of commutator
for operators, Poisson bracket for functions, and Lie bracket for flows. Thus the standard
results of quantum mechanics (that are derived typically via operator algebra) map isomor-
phically onto geometric dynamics (as derived typically via Poisson brackets of dynamical
functions, or alternatively by Lie brackets of dynamical flows).

Given this algebraic equivalence, what practical advantage(s) might lead us to prefer
potential formalisms, versus operator formalisms, versus flow formalisms? Computation-
ally speaking the main advantage of potential/pullback methods arises from dimensional
reduction: the metric and symplectic structures associated to Kronecker join state-spaces
lend themselves to quantum trajectory integration of systems of hundreds or even thou-
sands of spins.3 To take advantage of these large-scale computational efficiencies, the
pullback map must have two attributes:

Dynamical compression There must be a physical process that acts to pullback trajec-
tories from higher-dimension Hilbert spaces onto lower-dimension state-spaces. We
will see in later chapters that the noise and measurement processes described by
Lindbladian dynamics supply dimension-reducing dynamics.

Dynamical fidelity Pullback must respect the dynamical structures of Hilbert-space
quantum mechanics, including in particular conservation laws and symmetries.

In later chapters we will discuss Lindbladian noise and measurement processes in detail;
for now it suffices to conceive them as playing in quantum mechanical calculations a
role similar to viscosity in fluid dynamical calculations, that is, the role of damping-out
small-scale/high-order correlations that are physically irrelevant and costly to compute.

For now, we focus our attention on proving a theorem that will help us to optimize
the second criterion, namely dynamical fidelity of the pullback map, while at the same
time accommodate the first criterion, namely dynamical compression onto low-dimension
simulation state-spaces.

3·6 A QUANTUM PULLBACK THEOREM

In considering n-spin Hilbert spaces, by definition a single-spin linear operator S that acts
upon on the m’th spin has the tensor product representation

Sm = id⊗ . . . ⊗ id︸ ︷︷ ︸
m − 1 times

⊗ S ⊗ id⊗ . . . ⊗ id︸ ︷︷ ︸
n − m times

(14)

where id is the identity. Thus if the m’th particle has spin jm, then dim S = 2jm + 1.
A Hilbert space H is endowed with a canonical symplectic structure ωH that is specified

(in conventional physics normalization) via orthonormal basis functions ψk by

Note 3ωH = −
dimH

∑
k=1

[
dψk ⊗ dψ̄k − dψ̄k ⊗ dψk] (15)

3For computational details, see “Elements of naturality in dynamical simulation frameworks for Hamiltonian,
thermostatic, and Lindbladian flows on classical and quantum state-spaces,” arXiv:1007.1958.
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50 MAGNETIC DIPOLAR DYNAMICS CHAPTER 3

To assist readers new to geometric dynamics, in the following we will color-code those
dynamical structures that exist on the large-dimension Hilbert state-space H in blue, and
those that exist on smaller-dimension Kählerian state-spaces K in red.

To begin, we define symbol functions upon H in Dirac bra-ket notation as follows:

sH = 〈ψ̄|S|ψ〉 the symbol of a general single-spin operator S
(for example, any operators I(m)

x , I(m)
y , I(m)

z ; m ∈ 1, nspin)

hH = 〈ψ̄|H|ψ〉 the symbol of a completely general operator H
(for example, any pairwise Hamiltonian interaction)

cH = 〈dsH, dhH〉ω−1
H

the symbol of the commutator CH ≡ [S,H],
(equivalently, the Poisson bracket of iH and hH)

Let K be the rank-r join of the embedded subset of n-spin tensor product states in H
and let ι : K ↪→ H be the natural inclusion map of K in H. The inclusion is specified
concretely as follows




ψ1

...
ψnψ



 =




1ξ 1

1
...

1ξ 1
m1



⊗




1ξ 2

1
...

1ξ 2
m2



⊗




1ξ 3

1
...

1ξ 3
m3



⊗ . . . ⊗




1ξ n

1
...

1ξ n
mn





+




2ξ 1

1
...

2ξ 1
m1



⊗




2ξ 2

1
...

2ξ 2
m2



⊗




2ξ 3

1
...

2ξ 3
m3



⊗ . . . ⊗




2ξ n

1
...

2ξ n
mn





+ . . .

+




rξ 1

1
...

rξ 1
m1



⊗




rξ 2

1
...

rξ 2
m2



⊗




rξ 3

1
...

rξ 3
m3



⊗ . . . ⊗




rξ n

1
...

rξ n
mn





increasing algebraic degree n →

increasing
join

rank
r→

(16)

Here the ψk are coordinate functions on H. From a geometric point of view, the lξk
m are

not coordinates on K, but rather are the complex coordinate functions of an auxilliary
coordinate manifold C such that (16) specifies a composition of holomorphic maps

C
quotient /ψ
−→

(surjective map)
K

immersion
−→

(injective map)
H (17)

We will regard K (not C) as the “true” geometric venue upon which our quantum tra-
jectories evolve, and we will state all our theorems with reference to it. We will see
that in practical numerical calculations the surjection C → K is associated to gauge-like
invariances that pose only minor computational difficulties.

More seriously, we notice that the Kronecker join K is not itself a linear subspace of
H (in consequence of the high-order polynomials in lξk

m of Eq. (16)). We wonder, “What
algebraic and geometric properties of K might allow it to accurately render quantum spin
dynamics on the linear Hilbert state-space H?” The following definitions and theorem
help us to a better appreciation of these desired properties.

v4.0a (final version, June 14, 2011)
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Definitions and synopsis. Note 4Let Hn be a Hilbert space of vectors ψ that is spanned by a preferred
basis that is given as an orthonormal set of n-factor tensor products (in physical terms, such
a basis is variously called an n-particle, n-spin, or n-qudit basis). Allow the component vectors of
the n-factor product to have various dimensions (in physical terms, allow the individual particles
to carry various quantum numbers). Let S be any linear Hilbert operator that when given in
the n-factor basis acts solely upon one particle (for example, S may raise or lower single-particle
quantum numbers) and associate to S the bilinear symbol function sH : H→C that is given by
sH(ψ̄, ψ) = 〈ψ̄|S|ψ〉. Similarly, let H be any general linear Hilbert operator (for example, H may be
a multi-particle Hamiltonian) and associate to H the bilinear symbol function hH(ψ̄, ψ) = 〈ψ̄|H|ψ〉.
Let K1 be the subset of vectors in Hn that are n-factor products in the n-particle basis (algebraic
geometers call K1 an n-factor Segre variety). Then by definition the rank-r Kronecker join Kr is the
immersed join of r copies of K1 (algebraic geometers call Kr an (r−1)’th secant variety). Thus from
the initial (non-entangled) state-space K1 there arises a rank-indexed stratification of Kronecker
joins K1 ⊆ K2 ⊆ ...⊆ Kr ⊆ ...⊆ K∞ = Hn (in physical terms, the rank r is a measure of quantum
entanglement). Finally, let ωH be Hn’s canonical (Kählerian) symplectic form, let ιr : Kr ↪→Hn
be Kr’s inclusion map, and let ι∗r be the pullback induced by ιr. In summary, immersed in any
n-particle Hilbert space Hn is a geometrically and algebraically natural stratification of Kronecker
joins Kr, that in physical terms is a rank-indexed classical-to-quantum succession of state-spaces
K1 ,K2 , ... ,Kr , ... , each of which supports the natural pullback ι∗r : (ωH, sH, hH)→ (ωK, sK, hK)
of the symplectic forms and symbol functions that specify Hamiltonian dynamical flows.

Theorem 1 (QUANTUM PULLBACK THEOREM). For all n-particle Hilbert spaces Hn, at all
points of all ranks of Hn’s natural stratification of Kronecker joins Kr, this diagram commutes:

Kronecker join state-space Kr

Hilbert state-space Hn

(ωH, sH, hH) cH

(ωK, sK, hK) cK

〈dsH, dhH〉ω−1
H

Poisson bracket

ι∗rι∗r

〈dsK, dhK〉ω−1
K

Poisson bracket

Note 5

3·7 QUANTUM SYSTEMS ENGINEERING APPLICATIONS

The dynamics that the quantum pullback theorem specifies upon state-spaces having
join rank r = 0 is comfortingly familiar—it is classical Bloch dynamics.4 It follows that
the dynamical predictions of Chapter 3 of Slichter’s Principles of Magnetic Resonance—
predictions that in the first three editions were derived solely by quantum methods—are
valid not only quantum mechanically, and not only classically, but are valid generally upon
Kronecker joins of arbitrary rank, from wholly classical to wholly quantum. Now we turn
our attention to practical applications of the preceding dynamical insights.

COUNTER-CURRENT SPIN PUMPS At the quantum level, we have already seen in the
diagram levels of Fig. 3.2, and in the operator commutators of Eq. 9, and in the Poisson
brackets of Eq. 10, that the A and B dipole interactions conserve polarization, such that

4As a concrete example, for spin j = 1/2 particles the m’th-spin coordinates (1ξm
1 , 1ξm

2 ) of the rank r = 0
Kronecker join (16) are effectively complex coordinates on the Bloch sphere.

v2.0 ( June 14, 2011 )
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equilibrium magnetization

increasing depth
into sample
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⇒ γa ρa ja ( flow of nuclear
magnetization )

⇐ γb ρb jb ( driven by an
external RF )

γa ρa ja ⇐

γb ρb jb ⇒

a ∼ nuclear magnetization

b ∼ electron magnetization

spin species (nominal)

FIG. 3.3. The mechanism of dynamic spin polarization. An RF field satu-
rates the electron spin polarization (b); the resulting flow jb of electron spin
polarization (equivalently, a flow of electron magnetization γb ρb jb ) drives a
steady, accumulative flow ja of nuclear spin polarization (equivalently, a flow
of nuclear magnetization γa ρa ja ).

there a transport equation associated to them. This suggests that in the large magnetic
field gradients that are characteristic of nanoscale sensing modalities such as magnetic
resonance force microscopy (MRFM), it may be feasible to dynamically pump nuclear
polarization to high levels.

For dipole interactions on a rigid lattice, the pullback theorem tells us that for differ-
ing spin species a and b, the integrated polarizations

∫
pa(x, t) d3x and

∫
pb(x, t) d3x are

separately conserved, no matter what the algebraic rank of the Kählerian state-space.
We introduce the locality and linearity approximation that polarization currents ja(x, t)

and jb(x, t) are linearly driven by gradients of pa and pb. Then the most general dynamical
equations governing polarization transport are

∂

∂t
pa = −div ja ja = −φ−1

g
[
Daa dpa + Dab dpb

]

∂

∂t
pb = −div jb jb = −φ−1

g
[
Dba dpa + Dbb dpb

]

where Daa, Dba, Dbb, and Dab are diffusion coefficients, and d is the exterior derivative
(gradient) operator. We assume Zeeman energy dominance, that is, we regard the dipole
interaction energy as a zero-average perturbation upon the Zeeman energy, such that
Zeeman energy is globally conserved. Then energy conservation provides two constraints:

γb ρbDba = −γa ρaDaa

γa ρaDab = −γb ρbDbb
(18)

Here γa and ρa are respectively the gyromagnetic ratio and spatial density of spin species a,
and similarly for species b. Then the associated spin transport equations can be summa-
rized in matrix form as:

∂

∂t

[
γa ρa pa(x, t)
γb ρb pb(x, t)

]
=

[
+γa ρa Daa −γb ρb Dbb

−γa ρa Daa +γb ρb Dbb

]
∇2

[
pa(x, t)
pb(x, t)

]
(19)

Here ∇2 f = div φ−1
g d f is the familiar Laplacian, with g the Riemannian metric associated

to sample coordinates x. Often the metric is Cartesian, but sometimes sample geometry is
non-Cartesian (for example, polarization flow within spherical shells)

TheseNote 6 equations predict that in a large magnetic field gradient, to the extent that
a continuous flow of species b polarization can be sustained (recharged by spin-lattice

v4.0a (final version, June 14, 2011)
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interactions for example), then nuclear spin polarization flows continuously toward regions
of depleted electron polarization (depleted by resonant RF interactions, for example).
Because this mechanism is continuous rather than intermittent, and because two opposing
flows are present, this mechanism is called counter-current spin pumping.

From a physical point of view, the preceding analysis leads us to appreciate that the
diffusion matrix of Eq. 18 is 2× 2 because the dipole operators A and B (of Eq. 5)—or equiv-
alently, the symbol functions aH and bH (of Eq. 6), or also equivalently, the Hamiltonian
flows XaH and XbH (of Eq. 13)—conserve both total energy and total polarization. In the
absence of a gradient, these two conserved quantities are effectively identical, but in a
gradient they differ substantially; this is the physical reason to expect novel polarization
transport dynamics in strong magnetic field gradients.

MARGINALIA

Note 1: This document is a tribute to Charles Slichter’s textbook Principles of Magnetic Resonance
(1963). The authors have wonderfully pleasant memories of puzzling through Slichter’s textbook
with Dan Rugar in the early days of magnetic resonance force microscopy (MRFM), guided by
patient advice from Nino Yannoni.

Since then many other textbooks have provided a similarly wonderful experience. Our
research has particularly benefited in particular from (in chronological order of publication)
Michael Spivak’s Calculus on Manifolds (1965), Ralph Abraham and Jerrold Marsden’s Founda-
tions of Mechanics (1978), Vladimir Arnol’d’s Mathematical Methods of Classical Mechanics
(1998), Abhay Ashtekar and Troy Schilling’s monograph Geometrical formulation of quantum
mechanics (1999, see arXiv:gr-qc/9706069), Michael Nielsen and Isaac Chuang’s Quantum
Computation and Quantum Information (2000), and more than any other single textbook, John
Lee’s Introduction to Smooth Manifolds (2000). We have sought to apply these authors’ methods
to the practical problems of dipolar spin interactions.

Note 2: We have preserved Slichter’s 1963 account of dipolar broadening wholly intact and complete
here, the reason being that subsequent decades of theoretical and experimental work have
established that Slichter’s 1963 account was correct in all essential respects. We seek to extend
Slichter’s account by reviewing:

• Mathematical advances that unify descriptions of classical vs quantum dynamics,
• Physics advances that boost signals from nanoscale samples, and
• Nanosensing advances that observe these small signals.

As quantum systems engineers and medical researchers, we also have in mind practical
means for achieving practical objectives, namely, pumping-up polarization signals in quantum
spin microscopy to levels sufficient for directly imaging nanometer-scale structures that are
associated both to materials science and to regenerative healing processes.

Note 3: A striking feature of articles on geometric quantum dynamics is the general absence of the unit
complex number “ .” For example, “ ” does not appear in geometrically natural relations like
Theorem 1, but rather appears solely in relations that are coordinate-dependent, like Eq. 15.
The geometric point-of-view associates “quantum dynamical mysteries” not to , but rather to
the Kählerian complex structure J = φω ◦ φ−1

g , where g is the euclidean metric of Hilbert space.
We note that J satisfies the natural compositional relation J ◦ J = −id, which is algebraically
isomorphic to × = −1, and we therefore appreciate that it is entirely feasible to eliminate
complex coordinates from quantum dynamical calculations.
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Note 4: Regarding the numerous mathematical and physical definitions5 that are associated to the
statement of Theorem 1, Michael Spivak has written in his Calculus on Manifolds:

There are good reasons why theorems should all be easy and the definitions hard [...]
Definitions serve a twofold purpose: they are rigorous replacements for vague notions,
and machinery for elegant proofs. [...] A fully evolved major theorem has three important
attributes: (1) It is trivial. (2) It is trivial because the terms appearing in it have been
properly defined. (3) It has significant consequences.

Judged by Spivak’s criteria,6 Theorem 1 definitely is trivial ... because after all, computer codes
discovered it before the authors did! Undoubtedly too, the definitions required to state the
theorem are markedly more sophisticated than the theorem itself.

Theorem 1 was discovered serendipitously when certain dynamical conservation laws that
we expected to hold only in the large-rank limit were observed to be be numerically exact for
all join ranks r. The theorem came as a surprise too because it is not geometrically universal,
in the sense that it does not hold for general Kähler manifolds K, but rather is restricted to
to Kronecker joins of the form of Eq. 16. Furthermore Theorem 1 does not hold for general
operators; at least one of the pulled-back operators must be either a single-spin operator,
or a sum of such operators. Nonetheless, the quantum pullback theorem has proved to be
broadly useful in practical simulations. For example, it does hold for general magnetic-dipole
Hamiltonians that are Poisson-bracked with arbitrary sums of single-spin symbol operators.

Given that we happened upon the quantum pullback theorem serendipitously, it is plausible
(in our view) that similar pullback theorems may apply to a broader class of state-spaces than
the Kronecker joins is specified in Eq. 16; this will be a topic of future investigations.

Note 5: The diagram that expresses the essence of Theorem 1 is a commutative diagram. These
diagrams characterize structure-preserving transformations in a coordinate-free way, and they
are as ubiquitous in geometric dynamics (and many other disciplines) as Dirac-style “bras” and
“kets” were ubiquitous in 20th century quantum physics. To assist readers to whom commutative
diagram notation is unfamiliar, outline blocks associating the nodes to the state-spaces H and
K have been added.

Note 6: Many practical experiment-related questions remain to be answered. For example, it will
be important to determine the functional form of the diffusion coefficients Daa and Dbb as
functions of spin density, field strength, and magnetic field strength. Another concern obvi-
ously is the strength and robustness of the counter-current spin pump mechanism relative to
competing decoherent polarization dynamics. Moreover, when (19) is generalized to include
entropy constraints—as required to ensure −1 ≤ pa, pb ≤ 1—striking parallels between spin
pump physics and laser physics become evident. The physical intuition is that spin pumps
(resp. lasers) concentrate polarization quanta (resp. light quanta) within a low-entropy sample
region (resp. within an optical cavity). Our theoretical investigations encourage us in the hope
that our general simulation methods, and in particular counter-current spin pump dynamics,
may find broad applications, and in this regard we welcome inquiries from colleagues.

5From the nineteen-line “definitions and synopsis” prior to Theorem 1, we read-off (in order) forty terms
that have specialized meanings for mathematicians: Hilbert space, spanned, preferred, basis, orthonormal, set,
factor, tensor products, particle, spin, qudit, component, vectors, various, dimensions, quantum numbers, linear
operator, bilinear, symbol function, associate, raising, lowering, Hamiltonian, subset, Segre variety, rank, Kronecker
join, immersed, secant variety, non-entangled, state-space, rank-indexed, stratification, support, entanglement,
canonical, Kahlerian, symplectic form, inclusion map, pullback, Hamiltonian dynamics.

6Spivak’s criterion of “triviality” is echoed by Grothendieck’s memorable image of a “rising sea” of understanding
that “advances insensibly in silence” until “the resistant substance is surrounded.” Grothendieck’s approach to
describing complex systems is congenial to engineers.
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Quantum Spin Microscopy’s
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Heritage Achievements Prospects
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Figure 1 Magnetic resonance microscopes can be viewed as
communication channels between the sample and microscope.
Present microscopes are far from quantum limits [3].

Achieving three-dimensional, in-depth, atomic-resolution biolog-
ical microscopy of undenatured specimens is one of the oldest
dreams of science. Recently an IBM team led by Dan Rugar and
John Mamin has taken us substantially closer to this goal [1]
using magnetic resonance force microscopy (MRFM) to obtain
three-dimensional images of tobacco mosaic viruses having voxel
resolution down to ∼ 4 nm. A 1946 letter from John von Neu-
mann to Norbert Wiener [2] invites Wiener to consider whether
comprehensive atomic-resolution biological microscopy might
be achieved “by developments of which we can already foresee
the character, the caliber, and the duration. And are the latter
two not excessive and impractical?” Obtaining reliable answers
to von Neumann’s question is the overall objective of this work.

dynamical
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first law of thermodynamics
→ symplectic flows conserve energy
→← Hamiltonian potential is Lie-invariant
← traverse ski-paths are constant-altitude

A

second law of thermodynamics
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→← symplectic structure is Lie-invariant
← traverse skiers do not concentrate

B

concentration & pullback
→ metric flows concentrate trajectories
→← metric structure is not Lie-invariant
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C

reciprocity & causality*

→ communication is reciprocal & causal
→← Kähler-Lindblad-Ito-Stratonovich pullback
← skiers mutually communicate & react

D

*these principles are unique to quantum simulation

Figure 2 Dynamical processes in spin microscopy are naturally described in
terms of symplectic flows (A–B) that respect thermodynamical laws, and
metric flows (C–D) that describe measurement, control, and noise processes.
In consequence of compressive Lindbladian dynamics, numerical trajectory
integration is efficient even for systems of hundreds of spins [5].

Emerging Methods Our practical focus is the
development of numerical algorithms for the end-
to-end simulation of atomic-resolution quantum
spin microscopy [3], with emphasis upon polariza-
tion transport processes. Here “end-to-end” means
an integrated simulation of all the dynamical ele-
ments of a quantum spin microscope, from macro-
scopic elements like sample positioners, to meso-
scopic elements like force microscope cantilevers, to
fully quantum elements, like the individual spins in
supramolecular structures. In brief, the simulation
strategy is to transcribe Hilbert-space descriptions
of quantum dynamics into the geometric language of symplectic flows and Lindbladian stochastic processes [4, 5].
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Figure 3 The large magnetic gradients of spin microscopes are a new environ-
ment for polarization transport. Novel (and potentially practical) mechanisms
for dynamical spin polarization are associated to these gradients [5].

Emerging Roadmaps and Enterprises As large-
scale quantum simulation methods become more
efficient, quantum systems engineering methods
become more practical; in consequence the present
decade is effectively a “Sputnik Moment” for mag-
netic resonance research and enterprise that is wit-
nessing a “Cambrian Explosion” of diverse experi-
mental methods and theoretical ideas. Our present
theoretical and experimental investigations are ex-
ploring the physics of polarization transport pro-
cesses in large magnetic gradients, with a view toward achieving by dynamical nuclear spin polarization an MRFM
signal strength sufficient for imaging with (0.5 nm)3 voxel resolution, sufficient for the direct imaging of (for example)
the changes in chromatin architecture that are associated to cell differentiation in regenerative healing processes.
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Spin microscopy’s heritage, achievements, and prospects
John A. Sidles1

Quantum Systems Engineering Laboratory, School of Medicine, and College of Engineering, University of Washington, Seattle,
WA 98195

A chieving 3-dimensional, in-
depth, atomic-resolution
biological microscopy of unde-
natured specimens is one of

the oldest dreams of science, and for
good reason: it unites the thrilling pros-
pect of opening vast new scientific
frontiers with cutting-edge technical
challenges from every domain of mathe-
matics, science, and engineering.

In a recent issue of PNAS, a team
from IBM Research led by Dan Rugar
and John Mamin has taken us a giant
step closer to this goal (1) by using mag-
netic resonance force microscopy
(MRFM) to obtain 3-dimensional im-
ages of tobacco mosaic viruses having
voxel resolution down to !4 nm. Our
comments on the IBM experiment will
be modeled on a 1946 letter from John
von Neumann to Norbert Wiener (2), in
which von Neumann discusses, at con-
siderable length, both the practical prob-
lem of achieving atomic-resolution bio-
logical microscopy and the potential
applications of this capability. Von Neu-
mann’s letter invites Wiener to consider
whether atomic-resolution biological mi-
croscopy might be achieved ‘‘by develop-
ments of which we can already foresee
the character, the caliber, and the dura-
tion. And are the latter two not exces-
sive and impractical?’’

We adopt von Neumann’s question as
this commentary’s focus, and we seek to
describe paths by which mathematicians,
scientists, and engineers—of almost ev-
ery discipline—can contribute to, or
benefit from, this centuries-old quest.

We begin by conceiving of spin mi-
croscopy in terms of communication: we
regard sample spins as being modulated
by Alice so as to create a signal force
f(t) that is observed by Bob (Fig. 1).

We ask the natural question, how fast
can Alice transmit information to Bob?
This rate, called the channel capacity, is
rigorously bounded by Claude Shannon’s
1949 Capacity Theorem as

C ! 0.476 " fsig/"m2#0
2SfSq#

1/4. [1]

The meaning of these parameters and
their values in the IBM experiments are
as follows: Alice’s root-mean-square
force signal is fsig ! 10 aN, Bob’s
MRFM cantilever has mass m ! 0.26
ng, frequency #0/(2$) ! 2.9 kHz, force
noise Sf

1/2 ! 10 aN/$Hz (one-sided), and
measurement noise Sq

1/2 ! 1.0 pm/$Hz.
The coefficient 0.476 is the extremum of

Shannon’s waterfilling integral (equation
32 in ref. 4) for Sf and Sq varied with
SfSq held fixed.

Inserting these IBM device parame-
ters into Eq. 1, we compute a capacity
bound of C % 40 bits/s. This figure-of-
merit, and elaborations of it, will be the
main focus of this commentary. Von
Neumann and Wiener would recognize
this approach as a Fermi calculation, and
perhaps would be pleased that the
methods of their colleague Enrico
Fermi are now regarded as essential to
design and systems engineering (5).

Multiple paths of inquiry depart from
this Fermi calculation starting point.
Communication theorists will recognize
that a stronger capacity bound is ob-
tained by specifying Sf and Sq individu-
ally, rather than constraining only their
product Sf Sq as in Eq. 1. The resulting
expression is more complicated than Eq.
1 (and is not given here) but the bound
obtained is not much stronger: C % 8.5
bits/s. This means that the IBM team
has balanced force and measurement
noise nearly optimally. Good.

Imaging researchers will appreciate
that 8.5 bits/s is painfully slow, equiva-
lent to transmitting a 90-kB image file

in 24 h. Together with inevitable real-
world inefficiencies, this explains the
lengthy 120-h acquisition time of the
IBM images (1). Slow imaging is a ge-
neric challenge in magnetic resonance,
and an array of remediating techniques
stand ready to be applied, including sig-
nal multiplexing, incorporation of ab
initio information into modulation and
deconvolution algorithms, and (very re-
cently) sparse sampling. Researchers will
not soon exhaust these possibilities.

It is good to acquire data faster, so let
us now consider paths for boosting the
raw channel capacity of Eq. 1.

Quantum information researchers will
recognize that the noise product SfSq is
subject to a fundamental (and rigorous)
inequality SfSq & %2 (one-sided) (equa-
tion 6.7 in ref. 6), which is called the
standard quantum limit (SQL). Eq. 1
then implies the test-mass capacity bound

C ! 0.476 " fsig/"m#0%#1/2. [2]
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Fig. 1. Spin microscopy continues a heritage that began with Robert Hooke’s 1667 vision that (3) ‘‘by the
help of microscopes, there is nothing so small, as to escape our inquiry’’ (Left). The imaging achievements
of the IBM Research Division (Center) extend and strengthen this heritage. These achievements lead us to
conceive of microscopy as sample spins (Alice, at lower right) transmitting information to observers (Bob,
at upper right). With continued advances in nanotechnology, materials science, quantum information
science, and many other disciplines—advances that in aggregate are transforming present conceptions of
microscopy—Hooke’s centuries-old vision may become a twenty-first century reality (Alice and Bob figures
by permission of www.xkcd.com).
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We see that if the noise in the IBM ex-
periment were reduced to its quantum
limit, such that (SfSq)1/2 was reduced
from !3.0 " 104 # to !1#, the informa-
tion flow would increase by !170, and
the imaging time would drop from 120 h
to !40 min, which is comparable to tra-
ditional imaging methods.

Again, our Fermi calculation illumi-
nates multiple paths of inquiry. Con-
densed matter physicists will recognize
the need to understand the force noise
Sf. Sensor scientists will perceive an op-
portunity to reduce the measurement
noise Sq. Nanotechnologists will con-
ceive of lower-mass, sharper-tipped
MRFM cantilevers. Spin physicists and
chemists will seek to augment signal
strength via dynamic polarization. Biolo-
gists will appreciate that sample prepa-
ration is an immensely challenging and
creative scientific discipline in its own
right. Again, researchers will not soon
exhaust these possibilities.

In the early days of MRFM, it was fore-
seen that progress in these areas eventu-
ally would arrive at atomic-resolution spin
microscopy. For example, a 1992 MRFM
theory article (7) analyzed a device having
(per Eq. 2) a single-proton quantum
capacity bound of !3,300 bits/s. Nowa-
days, this early MRFM vision has not
altered much . . . except that the MRFM
community has developed a sober ap-
preciation of the immense challenges of
approaching quantum limits, in particular,
in demonstrating the requisite systems-
level innovation and integration. The
IBM team has consistently led the world
in innovative MRFM systems integra-
tion, achieving numerous important
milestones such as the first MRFM ex-
periment (8), the first detection of sta-
tistical polarization by MRFM (9), the
first detection of gradient suppression of
spin diffusion (10), the first MRFM de-
tection and imaging of a single (elec-
tron) spin (11), and now the first high-
resolution MRFM biological images (1).

Let us consider one final Fermi calcu-
lation, with a view toward illuminating
some of the paths that lie ahead. We
notice that an MRFM cantilever and a

spin-j particle in a magnetic field both
have uniform energy-level spacing, so
that an MRFM cantilever can be re-
garded as a large-j spin. This simple
change of variables induces an equiva-
lence fsig/(m!0#)1/2 7 $jB "BBA [which
also follows from quantum simulation
theory (12)] under which Eq. 2 becomes
a linearized spin capacity bound:

C # 0.476 $ !jB "BBA. [3]

Here, jB and "B are the quantum num-
ber and gyromagnetic ratio of Bob’s re-
ceiver spin, and BA is the rms signal

field from Alice’s transmitter spin.
Now we adopt a point of view that

would have seemed fantastical to von
Neumann and Wiener’s generation: we
regard Eq. 3 as a literal description of a
spin microscope. Suppose, for example,
that Bob observes a single electron spin
that is acted on at a distance of (say) 25
nm by the 85 pT (rms) field of Alice’s
single proton. Then, Eq. 3 tells us that
the Alice–Bob single-spin channel has a
spin capacity bound of !5.0 bits/s.

What was a fantastical dream in the
twentieth century is becoming a con-
crete reality in the twenty-first century,
thanks to recent work on diamond-spin
imaging (13–16) that has greatly ex-
panded our conception of the challenges
and opportunities of quantum spin
microscopy (17).

Now for the third time our Fermi cal-
culation (Eq. 3) illuminates multiple
paths of inquiry. To cite just one exam-
ple: the obvious parameter to improve
in Eq. 3 is the quantum number jB.
Ought we to begin conceiving of spin
microscopes having resonant ferromag-

netic receivers with jB " 106, for a fur-
ther 1,000" gain in the capacity bound?

Such possibilities refocus our atten-
tion on the key question that von
Neumann asked Wiener: Can atomic-
resolution microscopy be achieved by
developments of which we can already
foresee the character, the caliber, and
the duration? And are the latter two not
excessive and impractical?

The caliber (meaning ‘‘size’’) of the
effort is easiest to foresee: the IBM de-
vice is comparable in complexity and
sophistication to a small earth-orbiting
satellite—or to a laser printer. These
technologies required a considerable
investment in talent and resources to
become practical realities, and achieving
atomic-resolution spin imaging likely
will prove similar. As for the duration of
the effort, it likely will be mainly deter-
mined by the resources and talent in-
vested in the effort (as with most
technologies).

The character of the effort likely will
be largely determined by whether quan-
tum theorists and systems engineers can
keep up with the experimental physi-
cists. New methods originating in quan-
tum information and simulation theory,
in condensed matter physics, and ab ini-
tio quantum chemistry are rapidly accel-
erating the pace and retiring the risks of
developing not only quantum spin mi-
croscopes, but all technologies that press
against quantum limits.

Medical researchers (the tribe to
which the author belongs) have aspira-
tions too. We are tantalized by a vision
of medical practice becoming fully cura-
tive and regenerative. We are frustrat-
ed—as the generation of von Neumann
and Wiener was frustrated—by the limi-
tations of our present tools. We de-
sire—as Feynman famously desired—to
‘‘just look at the thing’’ (18). And we
plan—as every previous generation has
planned—for these aspirations to
become realities.
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