
283

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

10

Rootkit

Detection

10-ch10.indd 28310-ch10.indd 283 9/3/2009 12:02:29 PM9/3/2009 12:02:29 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 284 Hacking Exposed Malware & Rootkits

Knock, knock, a guest raps on the door of your house. You open the door and tell
the guest, “No one is here.” The guest says, “OK,” and leaves. Seems a little odd
right? Well, that’s a metaphor for rootkit detection. You see rootkit detection is an

oxymoron. If a rootkit is doing its job properly, it controls the operating system or
application completely and should then remain hidden from anything attempting to
discover it.

For example, the majority of kernel rootkits should be able to prevent every major
rootkit detection technology that operates in userland from working properly because
the kernel controls what data is passed into userland. If a rootkit detector running as a
normal user application attempts to scan memory, the rootkit running in the kernel can
detect this and provide fake memory for the rootkit detector to analyze (for instance,
telling the rootkit detector that “No one is home”). This sounds easy but actually
implementing anti-rootkit detection functionality is much harder for the rootkit author
to implement than writing the rootkit itself so many don’t bother. The lack of available
source code, the number of rootkit detection tools, and time are all factors that make anti-
rootkit detection functionality pretty much nonexistent in the wild. The fact that
implementing anti-rootkit functionality is so complex and difficult plays in the good
guys favor—the white hats—because most of the time we can win the battle and detect
and remove the rootkit.

THE ROOTKIT AUTHOR’S PARADOX
What’s interesting about rootkits is that, by nature, they’re paradoxical. The rootkit
author has two core requirements for every rootkit he or she writes:

• The rootkit must remain hidden.

• The rootkit must run on the same physical resources as the host it has infected;
in other words, the host must execute the rootkit.

These two core requirements create a paradox. If the OS or, in the case of a virtual
rootkit, process/machine must know about the rootkit in order to execute it, then how
can the rootkit remain hidden? The answer: most of the time, the rootkit can’t remain
hidden.

You must remember that rootkit detection, like all malware detection, is an arms race,
and the arms race is advanced by each opposing side as needed. Right now, as this book
is being written, the rootkit detection side (the good guys) is winning. Many new anti-
rootkit application and rootkit detection techniques are available for use by the public;
however, every rootkit detection application requires a fair amount of technical
knowledge to operate, and the commercial vendors, that normally make software easy
to use, haven’t really caught up with the latest rootkit detection technology.

10-ch10.indd 28410-ch10.indd 284 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 285

A QUICK HISTORY
With every arms race, knowing where you’ve been so you can understand where you’re
going is important, so a quick history of rootkit detection is in order. The first attempts
to find rootkits didn’t involve detection, rather they involved prevention. Anti-rootkit
technology focused on preventing malicious kernel drivers or userland applications from
executing or being loaded by the operating system. Of course, this approach worked
until the rootkit authors started analyzing how the applications prevented the rootkits
from loading and developed new ways to load the rootkits.

For example, the Integrity Protection Driver (IPD) prevented kernel-mode rootkits
from loading by hooking the functions in the System Service Dispatch Table (SSDT)—
NtOpenSection and NtLoadDriver—and ensuring only predetermined drivers
could call those functions. If a rootkit attempted to load and it wasn’t in the predetermined
list, the rootkit would be prevented from loading.

This approach had a couple initial problems. First, it relied upon an initial “clean” or
“pristine” baseline to create the predetermined list of allowed drivers. Second, rootkit
developers, such as Greg Hoglund, found ways to circumvent the IPD by using
ZwSetSystemInformation to load the driver. The IPD authors immediately updated
their tool, but so many new methods continued to be published on how to bypass the
IPD that, today, it has become relatively ineffective.

IPD’s approach to preventing unknown or unapproved software from loading was
to employ the whitelist technology used by many personal firewall companies. All of the
problems of whitelisting technology are also apparent within IPD and IPD-like
applications. One of the major issues with the whitelisting approach is that the detection
application must hook or analyze every possible entry point that an unknown kernel
driver (e.g., rootkit) can use to load. The latest version of IPD has over eight different
entry points, not including the number of use cases those eight entry points are connected
to. For example, the Registry can be used to load kernel-based rootkits. The Registry,
however, uses symbolic links, where one name actually references another name, to
enable certain functionality; this means that whitelisting applications must realize that
the HKEY_LOCAL_MACHINE in the registry is not the same as in the kernel. The kernel
will receive \Registry\MACHINE instead. Multiply the possible registry/filesystem
symbolic links by the number of entry points to be monitored, and you can see what a
daunting task it is for an anti-rootkit developer!

A new type of whitelisting then emerged that still had the same problems as the
existing technique but was much more accurate—cryptographic signing. In this technique,
the kernel is asked to execute a process, but before the kernel executes the process, it
verifies with a key authority that the unique key located within the process is okay.
Similar to how SSL encryption works within your web browser, this technique will
effectively not allow any unknown applications from accessing the computer hardware,
therefore not allowing malware to even execute!

Because the whitelisting approach was very time intensive, developers moved to a
tried-and-true method—signature-based detection. Many of the first public rootkits, and
even some rootkits today, are easily detected by signatures. Signature-based detection is

10-ch10.indd 28510-ch10.indd 285 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 286 Hacking Exposed Malware & Rootkits

a process whereby an application stores a database of bytes, strings of bytes, and
combinations of bytes that, when detected within a binary, marks the binary as malicious.
For example, if the binary contained the hex string 0xDEADBEEF at position 1145 in the
file, then the binary may be considered malicious. Although rudimentary, this method
has been the primary antivirus and anti-rootkit detection method for years. Whereas the
first few signature systems were extensions of antivirus technology that relied upon
signature matching of files in the file system, new techniques use memory signatures to
identify malicious code executing on the system. The process works rather well for public
rootkits because their binaries are available for the analysts who can make binary
signatures to review. Private, custom-written rootkits will not be detected by signature-
based systems.

Once signature-based systems started to be bypassed, a new set of approaches were
developed. Commonly referred to as either cross-view or tainted view, the majority of the
current rootkit detection applications use this new technique. The tainted view approach
works by comparing different snapshots of the system such as the type of processes
running, the hardware installed on the machine, or the names and numbers of functions
required to execute a specific system task and seeing where a difference occurs. The
assumption is that the view of data executed one way won’t match the view of the data
when executed a different way if a rootkit is on the system. The view by the user is
considered the tainted view. The view seen by the hardware is considered the clean or
trusted view. For example, the rootkit detector takes a snapshot of the processes that are
currently running according to the userland APIs; this is the tainted view. The rootkit
detection tool would then take a snapshot of the processes running according to the
internal threading structures in the kernel that control process execution; this is the clean
view. Next, the rootkit detector compares these two snapshots and generates a list of
processes in the clean view that are not in the tainted view. Those processes are considered
hidden and, therefore, malicious and should be investigated by the rootkit detector
operator. Figure 10-1 illustrates this comparison.

The tainted-view approach works whether you are comparing files, processes,
registry keys, structures within memory, or even areas of memory such as those used by
the operating system’s internals. When this approach was first developed, it was very
powerful and detected many rootkits. Almost all of the rootkit detectors available today
employ the tainted-view technique as their main method for discovering rootkits. The
differences among the various rootkit detectors are the methods used to implement the
clean view and the steps the detectors take to ensure the clean view or the detector itself
hasn’t been tampered with. Although we refer to this method as the tainted-view
approach, others refer to it as a the cross-view or clean/un-clean view approach. Regardless,
the methodology is the same.

The tainted-view approach has a major flaw that some rootkits take advantage of,
however. The tainted-view concept works based on the supposition that the lower-level
clean view will report different data and that the rootkit cannot control the data returned
by the technical processes that produce the clean view. You know from Chapters 4 and 5
that advanced rootkits, such as kernel rootkits and virtual rootkits, essentially control
everything but the actual scheduling of processing time within the system, and can
return any type of data to a user-mode application.

10-ch10.indd 28610-ch10.indd 286 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 287

As previously discussed, there are many ways to hook a rootkit in kernel- or user-
mode. Here are a few that we’ve discussed:

• The Hypervisor

• System Service Dispatch Table (SSDT)

• Inline function hooks (detours)

• I/O Request Packet (IRP) handlers

• System boot loader

Each of these techniques has various issues that make detection either easy or hard when
implementing the tainted-view detection approach.

One of the first rootkit detection tools to utilize a tainted-view approach was
Patchfinder by Joanna Rutkowska. Patchfinder assumes that most rootkits need to extend
or modify an execution path to accomplish their goals. Say the standard list of functions
executed by the operating system to open a file was kernel32.OpenFile() followed
by ntdll.NtOpenFile(), which then switched to the kernel function ZwOpenFile.
Patchfinder first totals the number of instructions required to perform this operation and
then attempts to detect changes in the execution path for a specific function or functions

Figure 10-1 Tainted view versus clean view

10-ch10.indd 28710-ch10.indd 287 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 288 Hacking Exposed Malware & Rootkits

within a kernel driver, because an increasing number of instructions is a good indicator
that a rootkit is installed on the system.

Returning to our example, if kernel32.OpenFile() was hooked and the rootkit
added 128 more bytes of instruction, then Patchfinder would find the difference in the
sizes of the execution paths and issue an alert that the machine may be compromised.
Patchfinder operates by taking a baseline at system boot of all the kernel drivers in
memory and counting the number of instructions contained in each driver’s specific
execution path; this is commonly referred to as execution path analysis. Patchfinder does
this by utilizing the debug registers within the CPU to watch each instruction execute in
the CPU. Often called single stepping, this debugging technique is commonly used by
developers when testing software. Patchfinder will then periodically rescan the system
and compare the number of instructions recorded during the baseline to the latest scan.
This approach works fairly well, but because Windows is a dynamic and extendable
operating system through using file-system filter drivers and network drivers such as
firewalls, legitimate cases occur in which an execution path may change and a rootkit is
not actually installed. To counteract these situations, Patchfinder uses statistics to
determine whether the additional instructions are legitimate or not. The statistical
approach works but false positives still get through, and Patchfinder can be easily
defeated by rootkits that are written to detect when they are being traced or “single step”
debugged, a process developers use to walk through each instruction executed by a
program or driver.

DETAILS ON DETECTION METHODS
Before we dive into the tools and applications that are available to detect rootkits, we
want to spend some time dissecting how the various tools implement tainted-view
detection against the many hooking methods available to a rootkit developer. To learn
how to write your own rootkit detector using these detection methods, see the Appendix,
where we walk you through developing your own rootkit tool. We purposefully
minimized the amount of programming code in this chapter in order to illustrate the
concepts and not just fill up pages with source code. If you want to dive directly into the
source code, read this section and then turn to the Appendix.

System Service Descriptor Table Hooking
One of the simplest and most used techniques, System Service Descriptor Table or SSDT
hooking is fairly easy to detect, and almost every tool available detects SSDT hooks. In
Chapter 4, we discussed how SSDT hooking works and mentioned that SSDT hooking
became the most commonly used method simply because of how easy it is to implement.
The Windows kernel keeps a table of all functions that are exported for use by drivers. A
rootkit author simply needs to find this table, its shadow version, which is used by the
GUI subsystem, and replace the pointer in the table that points to the real location for the
kernel function with the rootkit’s version of the kernel function. By replacing that pointer
in the KiServiceTable, which stores the address of all kernel functions within the

10-ch10.indd 28810-ch10.indd 288 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 289

operating system, the rootkit author changes the overall flow of memory within the
table. For example, if you use WinDBG to look at the structure of a normal
KiServiceTable, you’ll notice a trend:

kd> dps nt!kiServiceTable L11c
....
804e2dac 8056b553 nt!NtCreateEvent
804e2db0 80647bac nt!NtCreateEventPair
804e2db4 8057164c nt!NtCreateFile
804e2db8 80597eed nt!NtCreateIoCompletion
804e2dbc 805ad39a nt!NtCreateJobObject
...

You can see that all of the functions are generally in the 0x80000000 range. Now, look
what happens when you install a rootkit that uses SSDT hooking:

kd> dps nt!kiServiceTable L11c
...
804e2dac 8056b553 nt!NtCreateEvent
804e2db0 80647bac nt!NtCreateEventPair
804e2db4 f985b710 rootkit+0x8710
804e2db8 80597eed nt!NtCreateIoCompletion
804e2dbc 805ad39a nt!NtCreateJobObject
...

You can see that nt!NtCreateFile, which was located at address 0x8057164c, has
been replaced by a function with a new address that cannot be resolved by the debugger.
The new address is 0xf985b710, which is hex notation for the byte at decimal
4,186,289,936. That address definitely does not fall in the 0 to 0x80000000 (2,147,483,648)
range.

Most SSDT hookers use that simple logic by finding the lowest and highest pointer
values in the table that properly map to the addresses found in ntoskrnl.exe. If a function
pointer address in the table falls outside that range, you have a good indicator that the
function is hooked.

IRP Hooking
The method for detecting IRP hooking is the same as for detecting SSDT hooking. Each
driver exports a set of 28 function pointers to handle I/O request packets. These
functions are stored within the driver’s DRIVER_OBJECT, and each function pointer
can be replaced with another function pointer. As you can guess, this means the
DRIVER_OBJECT acts very similarly to KiServiceTable. If you scan the DRIVER_
OBJECT and compare each function pointer address to see if that address falls within
the driver’s address range, you can determine if the function pointer has been hooked
for that specific IRP.

10-ch10.indd 28910-ch10.indd 289 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 290 Hacking Exposed Malware & Rootkits

Inline Hooking
Inline hooking, or detours, is the process of rewriting the first few instructions for a function
with other instructions that cause a jump to a rootkit’s function. This method is preferred
to replacing a function pointer address, as you can see how simple it is to detect those.
Although preferred, this method of hooking is not always easy or even possible.
Nevertheless, the process for detecting whether a function has been detoured is the same
as the process for detecting SSDT hooking.

The anti-rootkit tool will load the binary that contains the function that could be
hooked and stores the instructions for the function. Some rootkit detection defense tools
will only analyze the first X number of bytes to improve speed. Once the real function’s
instructions are stored, the instructions that are loaded into memory are compared to the
real function’s instructions. If there are any discrepancies, this may indicate the function
has been detoured.

Interrupt Descriptor Table Hooks
The Interrupt Descriptor Table (IDT) is hooked in the same way as the SSDT and IRP
hooking methods. The table has a set of function pointers for each interrupt. To hook the
interrupt, the rootkit replaces the interrupt with its own function.

Direct Kernel Object Manipulation
Direct Kernel Object Manipulation (DKOM) is a unique hooking method because the
author manipulates objects in the kernel that may change between service packs or even
patches released by Microsoft. Detecting modified kernel objects requires understanding
what type of objects you want to detect. For example, rootkits will frequently use DKOM
to hide processes by adjusting the EPROCESS structure and removing the process they
want to hide from the process list.

To detect a hidden process that uses DKOM, you have to look at the other places the
information you require may be stored. For example, the operating system usually has
more than one place for storing information such as processes, threads, and so on, as
many different portions of the operating system require this information. Because of this,
if the rootkit author only removes the process from the EPROCESS list, the anti-rootkit
author can check the PspCidTable and compare the Process IDs (PIDs) from the two
lists, searching for discrepancies.

IAT Hooking
Hooking doesn’t just happen in kernel mode. User-mode hooking occurs frequently and
is very easy to implement. One of the more prominent user hooks is the IAT hook. IAT
hook detection is straightforward. First, rootkit detectors find the list of DLLs that a
process requires. For each DLL, the detector loads that DLL and analyzes the imported
functions and saves the import addresses for those DLL functions. The rootkit detector

10-ch10.indd 29010-ch10.indd 290 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 291

then compares that list of addresses with the imported addresses being used by all of the
DLLs within the process being examined. If the detector finds any discrepancies, this
indicates the imported function may be hooked.

WINDOWS ANTI-ROOTKIT FEATURES
Windows certainly has its flaws, but to its credit, Microsoft has invested significant
resources in securing and hardening its operating systems since Windows XP Service
Pack 3, Vista, and all the way up to Windows 7. In fact, Microsoft even has a System
Integrity Team Blog located at http://blogs.msdn.com/si_team/. In 2005, Microsoft
unveiled a new suite of technologies that supports advances in system integrity. These
technologies are

• Secure Development Lifecycle (SDL) Windows Vista was the fi rst operating
system released by Microsoft that uses SDL, which is essentially a modifi cation
to Microsoft’s software engineering process to incorporate required security
procedures.

• Windows service hardening Microsoft claims to run more of its core services
using restricted privileges, so if malware or rootkits take over the service, the
operating system will prevent privilege escalation.

• No-execute (NX) and address space layout randomization (ASLR) These
two techniques were mainly added to help prevent buffer overfl ows, an exploit
technique that rootkits sometimes use.

• Kernel patch protection (KPP) Better known as PatchGuard, KPP prevents
any program from modifying the kernel or kernel data structures such as the
SSDT and IDT. This development was a major blow to rootkit authors and
antivirus vendors alike. KPP is only enforced on 64-bit systems.

• Required driver signing On 64-bit systems, all kernel-mode drivers must be
digitally signed by approved entities or they will not be loaded by the kernel.

• BitLocker drive encryption Primarily considered a full-disk encryption
solution, Microsoft also considers it a component of overall system integrity
because it possesses an operation mode that communicates with a trusted key
stored in a hardware TPM.

• Authenticode Microsoft introduced this application signing service to allow
vendors to sign their applications so the kernel can check the provided hash at
runtime to ensure it matches the Authenticode signature.

• User Account Control (UAC) This technology enforces industry best practices
for regular user accounts such as least privilege and limited roles.

• Software restriction policy This term is fancy for software control on an
enterprise via Group Policy. Simply put, if, in Group Policy, an administrator

10-ch10.indd 29110-ch10.indd 291 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 292 Hacking Exposed Malware & Rootkits

has not approved the installation on the system of a certain piece of software,
the software will not install.

• Microsoft Malicious Software Removal Tool (MSRT) This is Microsoft’s
anti-malware product that uses traditional signature detection techniques.

• Internet Explorer 7 Several security improvements were added to IE 7,
including full control over add-ons, IE protected mode, phishing fi lters, and
built-in anti-spyware.

Microsoft’s introduction of these technologies is a landmark in their history, as they
represent the first major commitment of resources and marketing to directly address
rootkits, malware, and operating system security in general.

SOFTWARE-BASED ROOTKIT DETECTION
Many anti-rootkit applications are available on the Internet now. All of the major
commercial antivirus vendors integrate anti-rootkit products with their tools or provide
them for free. When the anti-rootkit applications were first released, they focused mostly
on proof-of-concept ideas to help solve detection problems. For example, VICE is a free
tool that detects hooks by resolving function pointers in the kernel’s SSDT or in user
mode and ensuring they point to the proper application. For example, if a resolved
address from the SSDT points to test.sys when it should point to ntoskrnl.exe, a rootkit
might be hooking that function. How do you know whether a specific entry in the SSDT
points to ntoskrnl.exe or not? You simply iterate through the list of drivers registered
with the OS and compare the function pointer address within the SSDT entry to the
driver’s base and end address. If the value in the SSDT is within that range, then it is
located in that driver. If you don’t find a driver with that address, it’s probably a
rootkit.

When VICE was first released, it was one of a kind because it implemented a new
technique that no one had seen before: it detected both userland and kernel hooks and
could discover normal IAT hooks, inline function hooks, and SSDT hooks; however,
VICE was complex, not very user friendly and didn’t clean any rootkits it found. The
majority of the applications discussed in this section are similar to VICE. Very few tools
available today have risen to the level that an end user can employ the tool effectively.
Many tools are still very difficult to understand, cause many false positives, and fail to
clean up or quarantine properly, which causes the end user more grief.

Software-based rootkit detectors are beneficial when used together with other
software-based rootkit detectors and with certain directions. For example, one tool will
detect something that another tool does not or one tool may partially remove an item but
another will remove it more thoroughly by removing additional files or registry keys.
Running each of these tools (as most are free) is the best method for detecting and
removing rootkits properly. We recommend using tools that are highly rated by either
industry magazines, industry experts, or security companies.

10-ch10.indd 29210-ch10.indd 292 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 293

Live Detection vs. Offl ine Detection
Before discussing the tools available for rootkit detection, we need to explain the context
of the analysis being performed. In the digital forensics world, the terms live and offline
indicate whether the analysis is performed on the suspect system or a duplicate of the
suspect system in a lab. Live forensics involves performing analysis at the same time
evidence is collected—while the system is powered on, running, and in a state where the
memory can be gathered. Live systems also allow you to collect much more robust data
in that the malware or rootkit is still running and can respond to stimuli such as reading
from a directory or writing a file to the disk. That data also includes changes in system
memory that can be captured during a live analysis. Offline analysis, often referred to in
the forensic world as deadbox forensics, involves first collecting digital evidence in a live
environment but then analyzing that evidence on another machine.

The important distinction here is where the analysis is done. If it is done on the
suspect system in a live manner, then the malware has a chance to taint the evidence and
thereby taint the analysis. As we’ve discussed, rootkits can easily hide their processes
from command-line tools like netstat, which lists incoming and outgoing network
connections, routing tables, and various network-related statuses. Thus, if a forensic
examiner relies on running netstat on the suspect machine with a rootkit on it, chances
are high the analysis will be incorrect or be purposefully misguided.

Rootkit detection falls victim to the same limitations as forensic analysis: live detection
can almost always be defeated by resident rootkits. Thus, this concept of live versus
offline has some bearing on the choice of methodologies used by the rootkit detection
tools discussed in this section (some tools take a hybrid approach).The live versus offline
debate is also a focal point in the arms race discussion, since successful rootkit detection
ultimately relies on one issue: which one gets installed or executed on the system first.
Furthermore, offline analysis is much more difficult to implement because you don’t
have the benefit of the operating system to help analyze structures, access data types,
and so on. All of the functions that the operating system performs must be re-created in
a tool to enable the offline analysis to resemble live analysis.

System Virginity Verifi er
The System Virginity Verifier (SVV) is a tool written by Joanna Rutkowska that implements
a unique method to determine if a rootkit is on a system. SVV checks the integrity of
critical operating system elements to detect a possible compromise. Because each driver
and executable on a system is comprised of multiple data types, SVV will analyze the
code portion of the binary, which contains all of the executable code such as assembly
instructions, and the text section of the binary, which contains all of the strings such as
module names, function names, or the titles of buttons and windows. SVV will analyze
and compare the code and text sections of kernel modules that are loaded into memory
with their physical representation on the file system, as shown in Figure 10-2. If a
difference is detected between the physical file and the image, or a copy of that file
detected in memory, SVV determines the type of change and generates an infection level

10-ch10.indd 29310-ch10.indd 293 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 294 Hacking Exposed Malware & Rootkits

alert. The infection level helps the user identify the severity of the modification and
determine whether that modification is malicious.

Although the tool was last updated in 2005 and must be run from the command line,
the tool is still effective and can aide users who are technical enough to understand the
output generated. Furthermore, SVV also demonstrates some of the problems that rootkit
detection tools encounter such as reading memory in kernel mode for other kernel- and
user-mode applications. Reading memory seems like a simple operation but a couple of
items cause problems:

• Use of __try/__except will not protect the system from page faults in
nonpaged memory.

• Use of MmIsAddressValid() will introduce a race condition and is unable to
access swapped memory.

• Use of MmProbeAndLockPages() may crash the system for various reasons.

What does this mean? Essentially, for any application, accessing memory that it does not
own, even in a read-only situation, is unreliable. This fact makes it very difficult to

Figure 10-2 System Virginity Verifi er compares drivers on disk to memory.

10-ch10.indd 29410-ch10.indd 294 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 295

analyze rootkits loaded into memory reliably. The only dependable method for analyzing
memory is to perform an offline dump of the memory.

IceSword and DarkSpy
IceSword and DarkSpy are also tainted-view approach detectors, but they require a high
amount of user interactivity. For example, analysis of the current running processes and
loaded kernel modules can be refreshed by the user when the environment changes,
such as when the user opens a web browser (see Figure 10-3). Although these tools are
very accurate and detailed, they are difficult to use and require a high level of skill.
IceSword is used by people during forensic analysis of live machines and to dive into
how unknown malware functions.

IceSword is unique in that it allows the user to look at the system in a couple of
different ways in order to determine if a rootkit is present. As shown in Figure 10-4,
instead of automatically trying to determine if there is a difference in the tainted view
versus the trusted view, IceSword allows the user to actually browse the file system or
registry to see the difference.

Figure 10-3 List of loaded kernel drivers reports by IceSword

10-ch10.indd 29510-ch10.indd 295 9/3/2009 12:02:30 PM9/3/2009 12:02:30 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 296 Hacking Exposed Malware & Rootkits

As you can see in Figure 10-4, the Registry cannot see the key named rootkit, but
IceSword can see it through its interface to the Registry. Manually comparing the Registry
using one function call with another function call requires a deep understanding of
where rootkits may place registry keys or files. The use of alternative data streams in
NTFS or advanced registry hiding methods may defeat IceSword, however.

In addition to IceSword’s manual nature, Figure 10-4 illustrates some of the advanced
techniques that IceSword employs to ensure rootkits cannot hide. For example, the title
of the window shown in Figure 10-4 is “zqxo110387,” which is a random value created
by the application. IceSword will randomly create new names for its window titles and
files, and it randomizes other areas of its executable file to remain a step ahead of the
attackers.

IceSword is not perfect, and even with manual review a rootkit can avoid detection.
In Figure 10-5, IceSword is listing the kernel modules loaded into memory; however,
rootkit.sys, which is the rootkit we installed for this example, is not listed even though
we know it’s running because the rootkit has hidden itself from the Registry.

Figure 10-4 IceSword allows you to fi nd the information hidden by rootkits.

10-ch10.indd 29610-ch10.indd 296 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 297

RootkitRevealer
RootkitRevealer was one of the first user-friendly tools released. Written by Bryce
Cogswell and Mark Russinovich of SysInternals, which was acquired by Microsoft,
RootkitRevealer uses a cross-view approach and focuses only on the file system and
Registry. The benefits to this tool are that it’s fast, simple, and effective. A user simply
runs the utility, selects File | Scan, and waits a minute or so for the system to be analyzed.
For example, in Figure 10-6, even though RootkitRevealer does not scan for loaded kernel
modules, it quickly detects both the hidden registry keys and the files being hidden by
the rootkit.

F-Secure’s Blacklight
F-Secure’s Blacklight implements the tainted or cross-view approach mentioned earlier
and was the first tool to do this and provide a simple, clean, and friendly user interface.
F-Secure is an antivirus company, and it has leveraged Blacklight in their commercial
product as well. A free version is available from their website. Although Blacklight has
been bypassed by rootkits that are written to avoid or bypass detection schemes that rely
upon the tainted-view approach, Blacklight is still useful because you can “quarantine”
hidden files by renaming them and rebooting, which should prevent the rootkit from
loading. One drawback is that you can’t rename the files themselves as Blacklight handles
this automatically. Figure 10-7 gives an example.

What makes this tool special is that when it was first released, Blacklight used a novel
approach to detecting DKOM rootkits that hide processes. Instead of simply relying on
a different view of the process list such as PspCidTable, Blacklight bruteforces every
possible PID and tries opening the PID with the OpenProcess() function. If the
OpenProcess() succeeds and the PID is not in the PspCidTable or EPROCESS list,
the process has most likely been hidden on purpose.

Figure 10-5 IceSword, although powerful, doesn’t detect this rootkit.

10-ch10.indd 29710-ch10.indd 297 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 298 Hacking Exposed Malware & Rootkits

As the arms race has intensified and rootkit developers have found new ways to
bypass Blacklight and other rootkit detection tools, F-Secure has changed its underlying
algorithms and approach. F-Secure releases new versions of Blacklight often and
integrates these new developments into its commercial product.

Rootkit Unhooker
Rootkit Unhooker is a tool for advanced users. Its functionality is deep and broad,
although not as broad as GMER, a tool we will discuss next. Rootkit Unhooker allows
the user to peer into the system in a variety of ways, including viewing the SSDT, Shadow
SSDT, low-level scans of the file system by accessing the hard drive directly instead of
through the OS, process tables, and so on. As we can see in Figure 10-8, Rootkit Unhooker
was able to find the hooks placed in the TCP/IP stack by the rootkit.

Figure 10-6 RootkitRevealer can help you fi nd the rootkits that keep themselves hidden.

10-ch10.indd 29810-ch10.indd 298 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 299

Figure 10-7 Blacklight: a simple but effective interface reduces the number of decisions the user
needs to make.

Figure 10-8 Rootkit Unhooker, not for the faint of heart, requires a deep understanding of the
operating system.

10-ch10.indd 29910-ch10.indd 299 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 300 Hacking Exposed Malware & Rootkits

By simply right-clicking and selecting UnHook Selected, you can remove the rootkit’s
TCP/IP filtering. Figure 10-9 shows the rootkit disabled and the code hooks removed.
Being able to quickly remove the rootkit’s capability to continue to operate even without
removing the rootkit itself reduces the impact of an infection dramatically. Furthermore,
the Rootkit Unhooker helps with forensic investigations where the researcher is trying to
determine each and every type of functionality within a rootkit. In this case, the researcher
may want to disable the hooks but still keep the driver in memory for analysis.

In addition to the removal methods that disable or remove an infection, Rootkit
Unhooker provides the capability to cause a blue screen of death (BSOD). This is
important; a forensic investigator may want to hook up debugging software such as
WinDBG via serial port or USB to the machine and, by forcing a BSOD, obtain a copy of
all memory at the time of the crash. The investigator can then do an offline memory
analysis to learn more about the rootkit.

Although Rootkit Unhooker is complex and feature rich and very verbose in its
output, it is unstable and will cause a BSOD on some machines when you try to close the

Figure 10-9 Even uncommon hooking techniques can be detected by Rootkit Unhooker.

10-ch10.indd 30010-ch10.indd 300 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 301

application or perform some of the malware removal operations such as unhooking a
function or wiping a file. Causing BSODs while on a live system with real disk activity
may render the system unbootable.

GMER
GMER is the tool for the sophisticated though not expert user. It provides pretty much
every possible type of rootkit detection methodology into a single tool. GMER also
provides limited cleanup capabilities. Furthermore, it is updated frequently, supported
by the community, and many anti-rootkit advocates recommend it to users who are
trying to determine if their system is infected. Specifically, GMER starts scanning the
system immediately when launched. GMER looks for hidden files, processes, services,
and also for hooked registry keys. GMER has all the features of every other rootkit
detection tool and automates their use. Figure 10-10 shows an example of GMER first
loading without any user interaction.

Figure 10-10 GMER’s already at work.

10-ch10.indd 30110-ch10.indd 301 9/3/2009 12:02:31 PM9/3/2009 12:02:31 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 302 Hacking Exposed Malware & Rootkits

As Figure 10-10 shows, the infection was immediately detected and color coded to
show the user that he or she needs to address the problem immediately and potentially
perform an in-depth system scan. GMER’s ease of use, and the fact that it provides very
technical users with the tools they need, has helped speed its adoption. GMER has the
ability to simply disable a hidden service by adjusting the Registry so the service can’t
launch if you want to investigate it. Other rootkit detection tools use cleanup methods
such as deleting the hidden file and GMER can do this as well. Similar to Rootkit
Unhooker, GMER also allows the user to perform a low-level scan of the Registry or file
system while operating a familiar looking interface, as shown in Figure 10-11. Low-level
analysis means that GMER will not utilize common APIs and will access the Registry
directly through the files stored on the hard drive.

Helios and Helios Lite
Helios and Helios Lite are rootkit detection tools by MIEL Labs. Both tools use similar
methods for detecting rootkits. Helios is a resident program for active detection and

Figure 10-11 GMER performing a low-level scan and fi nding the rootkit

10-ch10.indd 30210-ch10.indd 302 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 303

remediation of rootkits, whereas Helios Lite is a stand-alone binary that can quickly scan
a system for SSDT hooks, hidden processes, hidden registry entries, and hidden files.

Helios Lite uses a GUI program to communicate with its kernel-mode driver, helios.
sys. Together these two components are able to detect most rootkit hooking and hiding
techniques. Helios consists of a .NET GUI user-mode application, two library/DLLs,
and a kernel driver, chkproc.sys.

To detect hidden processes, Helios Lite uses the cross-view approach discussed
previously. It obtains a low-level view of the active process/thread list by reading a
kernel structure called PspCidTable. This table stores information about running
processes and threads. Helios Lite then compares the information stored in this table
with the result of high-level Windows API calls and notes any discrepancies that may
represent a hidden process. Figure 10-12 shows Helios Lite detecting a Notepad process
hidden with the FU rootkit.

Helios uses the same technology, but with a different approach. Helios attempts to
actively monitor and prevent rootkits from infecting your system. Figure 10-13 shows
the basic user interface before any scanning or active defense has been started.

By clicking On Demand Scan, you can instantly assess the integrity of your system.
Figure 10-14 shows the wealth of information Helios reveals—information about not
only the infection, but also how Helios determined the infection’s existence.

Figure 10-12 Helios Lite

10-ch10.indd 30310-ch10.indd 303 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 304 Hacking Exposed Malware & Rootkits

Figure 10-13 Helios

Notice the entry for the hidden process, notepad.exe. Helios reports that the
Image Path field is empty (FU clears this field) and that clearly this is a hidden
process. But the most useful piece of information that Helios reports is which
techniques failed to see the process and which one(s) successfully detected it. The
columns ZQSI, Eprocess List, and Eproc Enum refer to the three data points in the
cross-view analysis Helios used to find hidden processes. The first, ZQSI, refers to
the Win32 API ZwQuerySystemInformation(), which is used to obtain a process
listing from kernel or user mode. The second, Eprocess List, walks the linked list of
EPROCESS structures. The third, Eproc Enum, bruteforces all of the possible process
ID numbers. If any of these data points differ, Helios reports it. At this point, you can
link the notepad.exe process back into the EPROCESS list by clicking Unhide.

What makes Helios truly unique is its active defense features. By clicking Toggle
Background Scan, Helios will automatically poll the system to see if anything has
changed. This makes Helios somewhat of a real-time reporting tool for malware/rootkit
infection. Additional monitoring capabilities are available under Inoculation and include
Monitor Kernel Module Loading, Block Access to Physical Memory, and Monitor Access
to Files and Applications. The Advanced Detection and Enable App Protection defense
features are not fully implemented in the free product.

10-ch10.indd 30410-ch10.indd 304 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 305

Both Helios and Helios Lite boast a slick user interface backed by proven research
and extensive documentation/whitepapers. The extremely intuitive interface design
and functionality make this a strong candidate for any rootkit detection toolkit.

McAfee Rootkit Detective
McAfee was one of the first commercial vendors to release a free rootkit detection utility.
Releasing Rootkit Detective in 2007 (not too long after competitor F-Secure released
Blacklight in 2006), McAfee’s Avert Labs instantly received praise from the security
community.

Rootkit Detective is about as simplistic a tool as its plain name suggests, allowing
users to view hidden processes, files, registry keys, hooked services, IAT/EAT hooks,
and detour-style patches. The GUI interface consists of a single pane with radio buttons
you can select to change the active screen.

Rootkit Detective offers basic remediation capabilities when findings are displayed.
Figure 10-15 shows the basic remediation actions available for our hidden notepad.exe
process: Submit, Terminate, and Rename.

Numerous other free rootkit detection tools are available at http://antirootkit.com.

Figure 10-14 Helios fi nding the hidden process

10-ch10.indd 30510-ch10.indd 305 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 306 Hacking Exposed Malware & Rootkits

Commercial Rootkit Detection Tools
The majority of commercial (in other words, ones you have to pay for) rootkit detection
tools are not very sophisticated and are easily bypassed by the latest rootkits. The reason
for this is that commercial security companies cannot rely upon the latest rootkit detection
technology because most of that technology is not reliable enough for millions of average
users. Granted, this is not true of every security software company, but those in the
rootkit community believe the free tools such as Rootkit Unhooker and GMER are much
better at detection than their commercial counterparts.

Furthermore, since the majority of commercial software vendors grew from signature-
matching roots, they attempt to use signature methods to identify rootkits before using
the aforementioned techniques. We’ve discussed the pros and cons of signature-based
detection techniques in previous chapters. Sadly, when it comes to commercial software
vendors, they fall into the “when you only have a hammer everything looks like a nail”
category, which means if you only have one method to detect something, then it looks as
if everything can be detected using that method.

Figure 10-15 Rootkit Detective

10-ch10.indd 30610-ch10.indd 306 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 307

Of course only using one method did not stop commercial software vendors from
trying to establish a market where none existed. HBGary, the first to make the scene in
2003, was founded by former rootkit author Greg Hoglund. Marketed as a risk mitigation
company, HBGary actually specializes in reverse engineering and advanced rootkit
detection. Their long-standing flagship product, HBGary Inspector (a stand-alone
software debugger), was discontinued in late 2007 and integrated into their new Incident
Response product named Responder. Responder allows forensic investigators to capture
and analyze physical memory for rootkits and malware. HBGary has become a lead
competitor in the field of enterprise forensics and rootkit detection.

Other players in the industry soon responded, and the race to control the evolving
market was in full swing. Newcomers like Mandiant and HBGary began to challenge the
mainstays of Guidance Software and AccessData, challenging the notion that disk
forensics and cursory volatile data analysis were sufficient for forensic investigations.
Enterprise products like HBGary’s Responder and Mandiant’s Intelligent Response
incorporated analysis techniques to detect advanced malware from memory snapshots.
Introducing these simple capabilities into a commercial product drastically changed the
landscape of digital forensics, malware analysis, and rootkit detection.

As a result, free tools exploded on the scene in 2008, as each company strived to prove
their malware analysis and rootkit detection capabilities. Some of these tools include

• HBGary FlyPaper fi nds malware/rootkits in memory and prevents them from
unloading or terminating.

• Mandiant Red Curtain analyzes program binaries statically to determine their
malicious capabilities, scoring each binary with a numeric value and color
code, indicating the likelihood that the binary is malicious. It uses techniques
like entropy analysis to search for common malware tactics such as packing,
encryption, and other characteristic traits. Although not a novel concept, Red
Curtain is a useful free tool to keep in your toolkit.

Most of the companies mentioned have focused on developing their rootkit detection
capabilities in the area of forensic memory analysis.

Offl ine Detection Using Memory Analysis: The Evolution
of Memory Forensics
The advancement in rootkit detection and digital forensics in the commercial products
just discussed was due in large part to a resurgence of interest in a research area that has
been around the digital forensics community for some time. This research area is called
memory forensics and addresses two broad challenges:

• Memory acquisition How do investigators capture the contents of physical
memory in a forensically sound way?

10-ch10.indd 30710-ch10.indd 307 9/3/2009 12:02:32 PM9/3/2009 12:02:32 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 308 Hacking Exposed Malware & Rootkits

• Memory analysis Once a memory dump has been obtained, how do you
carve artifacts and evidence from that blob of data?

So what does memory forensics have to do with rootkit detection? The answer is
memory forensics gives you another place to look for malware and rootkits. Consider the
case of digital forensics. Traditionally, digital forensic investigations focused on acquiring
and analyzing evidence from hard drives with basic collection of volatile data (information
gathered from system memory such as a list of running processes, system time and
identifying information, network connections, etc.). However, a joint study by NIST
and Volatile Systems in 2008 showed that current analysis methods covered less than
4 percent of the evidence available in volatile storage, such as physical memory (see
http://www.4tphi.net/fatkit/papers/aw_AAFS_pubv2.pdf). Not having solid and
admissible evidence in court has led to the use of system integrity checking, a method to
ensure the system is in a state that the data collected is admissible and correct.

In other words, digital forensics techniques were not doing enough to detect malware
in memory. Furthermore, as malware and rootkits evolved over time, they became
stealthier, largely eliminating their reliance on the hard drive altogether by hiding in
memory. This forced forensic tools to advance as well, and we saw this advancement
become mainstream just recently with the release of the products discussed in the
previous section. We are essentially witnessing the somewhat clumsy merging of the
formal discipline of digital forensics with the elusive concept of rootkit detection.

The commercial tools were certainly not the first tools to marry the concept of memory
acquisition and analysis with rootkit detection techniques. We could argue that the first
community to latch onto the idea and subsequently bring it into mainstream to commercial
companies was the digital forensics community. Specifically, in 2005, the Digital Forensic
Research Workshop (DFRWS, http://www.dfrws.org) posed a challenge to its
community: reconstruct a timeline of an intrusion given a dump of physical memory.
One of the winners, George M. Garner of GMG Systems, Inc., wrote a tool called KNTList
that was able to parse information from the memory dump, reconstruct evidence such as
process listings and loaded DLLs, and analyze the memory dump to decipher the
intrusion scenario. The tool became so popular that GMG Systems made KNTList into a
suite of analysis tools for digital investigations. It remains one of the most respected and
widely used toolkits in the forensics industry.

In more recent history, several free tools for memory acquisition have been released,
including:

• Win32dd by Matthew Suiche

• Memory DD (mdd) by Mantech

• Nigilant32 by Agile Consulting

Just about every major forensics company includes a memory acquisition capability
in their product, though most of these products are severely lacking in analysis of

10-ch10.indd 30810-ch10.indd 308 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 309

memory dumps. Some of the more notable commercial acquisition tools include HBGary
FastDump and Guidance Software’s WinEn, neither of which are free. Most of these tools
are fairly self-explanatory, so we’ll not go into further detail about their use or
functionality.

Fewer memory analysis tools are available, since analysis is the more difficult process.
There are, however, two fairly powerful free tools available that we’ll cover: Volatility by
Volatile Systems and Memoryze by Mandiant.

Volatility
Volatility is a memory analysis environment with an extensible underlying framework
of tools based on research by Aaron Walters of Volatile Systems. Aaron is recognized as
one of the founders of modern advanced memory analysis techniques. He was one of the
co-authors of the FATkit paper, which helped raise awareness of the need for memory
forensics in the digital investigation process.

At its core, Volatility contains a library of python scripts that perform parsing and
reconstruction of data structures stored in a memory dump of a suspect system. The low-
level details of this parsing, reconstruction, and representation is abstracted from the
user, so detailed knowledge of the Windows operating system is not required. Volatility
also supports other memory dump formats, including raw memory dumps using dd,
Windows hibernation file (stored in C:\hiberfil.sys), and crash dumps.

Volatility provides basic information that it parses from the memory dump, including:

• Running processes and threads

• Open network sockets and connections

• Loaded modules in user and kernel mode

• The resources a process is using, such as fi les, objects, registry keys, and
other data

• The capability to dump a single process or any binary in the dump

Figure 10-16 shows a simple process listing parsed from a sample memory dump
using the Volatility core module pslist.

This data can then be analyzed and correlated by the investigator. Typically, an
investigator knows the techniques the rootkit or malware is using (for example, hooking
or patching), so all that remains is to look for evidence of that technique from the data
Volatility provides.

We won’t explore the inner workings of Volatility, but understanding the basic
scanning technique Volatility uses to recognize operating system structures in the
memory dump is important (other techniques are used, but we only cover basic scanning).
Volatility uses its knowledge of Windows symbols and data structures to build signatures
based on fields that uniquely define critical data structures. For example, a process is
represented in memory by the EPROCESS data structure. This structure contains many

10-ch10.indd 30910-ch10.indd 309 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 310 Hacking Exposed Malware & Rootkits

fields that no other Windows data structure contains. Therefore, Volatility uses its
knowledge of what unique fields define various structures and then scans through
memory looking for those indicators.

Let’s take our old friend FU as an example. As mentioned in Chapter 4, we know that
one of this rootkit’s capabilities is to hide processes and modules using Direct Kernel
Object Manipulation (DKOM). Specifically, it alters kernel structures in memory that
Windows uses to maintain a list of these items. By altering the structure directly in
memory, it automatically taints any API function call—whether native (e.g., part of
ntoskrnl) or Win32—that requests that information from Windows.

DKOM, however, does not affect offline memory analysis. As we noted earlier, the
major advantage of offline analysis over live analysis is that you’re not dependent on the
operating system or its components (such as the object manager) to give you information.
Instead, you can carve that information out of memory yourself.

You can issue a command to the FU rootkit to hide a process. This operation is shown
in Figure 10-17. The command was issued to FU in the command prompt window, and
the result can be seen in the Windows Task Manager window: no notepad.exe process is
listed, even though the Notepad application is clearly running.

Using one of the memory acquisition tools previously mentioned (in this case
win32dd), you can take a snapshot of physical memory, as shown in Figure 10-18.

Figure 10-16 Volatility performing a simple process listing

10-ch10.indd 31010-ch10.indd 310 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 311

After capturing physical memory, you can then use Volatility to discover the rootkit’s
hidden process using the pslist and psscan2 modules. The pslist module finds the
data structure in the memory dump that Windows uses to maintain a list of active
processes. This data structure is a linked list; hence, this scanning technique is often
referred to as list walking. The disadvantage of this technique is that rootkit tricks like

Figure 10-17 Hiding a process

10-ch10.indd 31110-ch10.indd 311 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 312 Hacking Exposed Malware & Rootkits

DKOM will fool the scanner, because DKOM removes a process from this list. For more
information on how DKOM can remove items from a list in memory, read Chapter 4.

Using psscan2, however, you are able to detect the hidden process. The psscan2
module scans memory in a linear fashion in search of EPROCESS data structures. Each
EPROCESS structure found in a memory dump represents a process in Windows.
Therefore, if psscan2 reports an EPROCESS structure for a process you don’t see in the
pslist output, then the process is possibly hidden. The output from pslist and
psscan2 is shown in Figure 10-19.

Notice that the Notepad application’s process, notepad.exe, does not show up in the
pslist output, but it does appear in psscan2 output. This discrepancy should
immediately alert the analyst to investigate this process further. By understanding the
shortcomings of the scanning techniques behind each module, the analyst would be able
to conclude that DKOM-style rootkit tactics were in play.

The next step for the analyst would be to inspect the notepad.exe process using
Volatility’s procdump module. This module will parse, reconstruct, and dump the
process image to a binary executable that can be further analyzed in a debugger. The
debugger would provide the investigator with the lowest-level view of the suspicious
program’s capabilities.

Extending the Power of Volatility with Plug-Ins
The true power in Volatility lies in its extensible framework, which allows investigators
to write their own plug-ins that use the core capabilities of the framework. Plug-ins are

Figure 10-18 Taking a snapshot of physical memory

10-ch10.indd 31210-ch10.indd 312 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 313

simply higher-level modules that rely on the basic classes and functions provided by the
core Volatility modules.

Essentially, Volatility does the hard work of mining and exposing the data to the
analyst, whose job is to draw meaningful conclusions about the data. To that end,
numerous plug-ins have been written since the release of Volatility 1.3, including plug-
ins to detect advanced code injection and the presence of rootkits, bots, and worms. This
extensibility allows investigators to implement detection techniques produced by
researchers who may not have the time to actually implement the technique in code.

Figure 10-19 Output from pslist and psscan2

10-ch10.indd 31310-ch10.indd 313 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 314 Hacking Exposed Malware & Rootkits

An example of the power of this framework is the Malfind plug-in written by Michael
Hale Ligh (http://mnin.blogspot.com/2009/01/malfind-volatility-plug-in.html). This
plug-in can detect a class of malware that uses code injection to hide its presence on the
system. The general malware technique that this module detects is the injecting of a
malicious DLL into a target process and then the modifying of that process’s image by
removing and/or clearing certain internal data structures that would reveal its presence
to diagnosis tools such as ProcessExplorer (a free tool that provides functionality similar
to Windows Task Manager).

The Malfind plug-in relies on detecting memory that is being used by the injected
code. The address of this memory is stored in a data structure called a Virtual Address
Descriptor (VAD). When a process is created, it is allocated a large amount of virtual RAM
to use during its lifetime. However, it rarely uses all of this available space, so Windows
maintains a list of what addresses the process actually uses. This list is stored inside the
individual process in a structure called a VAD tree, where each node in the tree is an
address to a location in memory being used (a single VAD). The VAD tree is an excellent
resource for analysts to inspect, since loaded malware must use the structure by design
and cannot clear or remove its entries without eliminating its ability to run.

When Malfind runs, it uses the VAD information exposed by core Volatility modules
to detect these locations in memory that the malware/rootkit is using.

Malfind and other Volatility plug-ins illustrate the immense sharing and collaboration
opportunities in the Volatility framework. Even though Malfind was developed by
Michael Hale Ligh, the techniques behind it are based on research by Brendan Dolan-
Gavitt on Virtual Address Descriptors (VAD). The synergy provided by the Volatility
framework allows field investigators to leverage and implement the ideas produced by
the forensics research community.

An ever-expanding list of Volatility plug-ins is maintained at http://www.forensicswiki
.org/wiki/List_of_Volatility_Plugins.

Memoryze
In contrast to the offline nature of Volatility, Mandiant Memoryze is a memory analysis
tool capable of finding rootkits and malware in both memory dumps and on live systems.
Since we covered offline memory analysis using Volatility, we’ll only briefly mention
Memoryze’s capabilities in this area. Memoryze is based on the agent component of their
flagship product, Mandiant Intelligent Response (MIR).

Memoryze has several components:

• XML audit scripts Mandiant refers to these as execution scripts or audit scripts,
and they serve as a confi guration fi le for the Memoryze program. Seven of
these audit scripts defi ne the parameters for various analysis capabilities.

• Memoryze.exe The program binary that reads confi guration data from the
XML settings fi les and imports the necessary libraries/DLLs to perform the
analysis.

10-ch10.indd 31410-ch10.indd 314 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 315

• Batch scripts These DOS batch scripts are provided for user convenience.
A user can execute the batch scripts that will populate the XML audit script
settings interactively. All of the capabilities in the audit scripts are exposed to
the batch scripts via command-line switches.

• Core libraries These DLLs provide the low-level analysis capabilities used in
the program.

• Third-party libraries These are DLLs from open source programs such as
Perl Compatible Regular Expressions (PCRE) for regular expression searching and
ZLIB for compression.

• Kernel driver Mandiant core libraries generate a kernel driver named
mktools.sys and insert it into the program’s directory whenever Memoryze.exe
is successfully executed. This driver provides the kernel-mode component for
the application, where most of data is collected for later analysis.

Mandiant not only provides features you’ll find in Volatility but also offers additional
live analysis capabilities, including:

• Acquiring all or part of physical memory, including an individual process’s
address space

• Dumping program binaries from user mode and drivers from kernel mode

• Information about active processes such as open handles, network connections,
and embedded strings

• Rootkit detection via hook detection in the SSDT, IDT, and driver IRP tables

• Enumerating system information such as processes, drivers, and DLLs

Memoryze reports its results in XML format meant for consumption in an XML
viewer such as Mandiant’s Audit Viewer. However, the XML reports can also be viewed
in any modern browser.

To detect the process that was hidden in earlier examples in this chapter, we simply
execute the Process.bat batch script with no parameters. This batch script populates the
XML Audit Script ProcessAuditMemory.Batch.xml and then launches Memoryze.exe
with the necessary switches. The XML report shows the notepad.exe process; however, it
does not indicate that the process was hidden. Thus, an analyst must have an idea of
what to look for to make the most of the tool’s features.

Although Memoryze provides memory acquisition capabilities, there are several
open source alternatives that have already been discussed. Memoryze’s main advantage
is the capability to perform this analysis on a live system. Some may consider this a
disadvantage, since performing live analysis also subjects the tool to active deception
from live rootkits and malware. Indeed, this is one of the driving design principles
behind Volatility’s offline analysis model. Hook detection is not a native capability of
Volatility; however, the extensible framework provides analysts with the capabilities to
develop such detection plug-ins on their own.

10-ch10.indd 31510-ch10.indd 315 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 316 Hacking Exposed Malware & Rootkits

VIRTUAL ROOTKIT DETECTION
In Chapter 5, we discussed how virtual rootkits are an upcoming trend in the rootkit
space, but are they as undetectable as they seem? Not really. A study released at the end
of 2007 from Stanford and Carnegie Mellon University, Compatibility Is Not Transparency:
VMM Detection Myths and Realities, debunks the myth that virtual rootkits were
undetectable. The researchers conclude that producing a Virtual Machine Manager that
perfectly emulates the true hardware is fundamentally infeasible. If it is infeasible to
produce a perfect VM rootkit, then how do you go about detecting one? The research,
which may be potentially inaccurate (only time will tell), focuses on the fact that many
researchers, users, and system administrators are using VMM detection to determine if
a virtual rootkit is installed. The premise is that if a machine is VMM capable, but is not
running virtualization, then, if a VMM is detected, it must be a rootkit.

Most VMM detection is simple and relies upon detection of known virtualized
hardware, resources, or timing attacks. For example, if the network card is of a specific
type such as VMWare or Virtual PC indicating the OS is running under a VMM, that
could mean the OS is also being controlled by a rootkit.

This type of thinking is flawed, mostly because the real IT world is moving to
virtualization fast and the 2007 study echoes this fact. There are and will be more
legitimate reasons a VMM will be running on a server or workstation in the future.
Simply detecting if your operating system is running underneath a hypervisor will not
be enough to prove a rootkit has control of your system.

Beyond VMM detection, there are not many other techniques that can help determine
if a virtual rootkit such as BluePill is executing. The majority of attacks are simply
executed to determine if a VMM is in place.

HARDWARE-BASED ROOTKIT DETECTION
All of the anti-rootkit solutions discussed are software-based, but creating software to
remove malicious software is very difficult, as both pieces of software have to fight for
the same resources and devices. So if software-based rootkit detection isn’t working,
how about implementing hardware-based rootkit detection? One company did just that.
Founded in 2004, Komoku was funded by the United States Defense Advanced Research
Projects Agency (DARPA), Department of Homeland Security, and the Navy to create
hardware and software rootkit detection solutions. Komoku created a hardware-based
solution called CoPilot, a high-assurance PCI card capable of monitoring a host’s memory
and file system at the hardware level. CoPilot scans and assesses the operating system on
the workstation or server in near real-time and looks for anomalies instead of trying to
find a specific rootkit.

The U.S. government has stated that the deployment of the PCI-based rootkit detector
has been successful, but because CoPilot is being funded by the U.S. government, it is
not available for purchase by the public. Furthermore, with the acquisition of Komoku
by Microsoft in March 2008, many believe Microsoft will not continue development of
CoPilot.

10-ch10.indd 31610-ch10.indd 316 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 Chapter 10: Rootkit Detection 317

In 2004, Grand Idea Studios created a PCI expansion card that can capture RAM from
a live system; the product, which holds a U.S. patent, is called Tribble and was produced
by Brian Carrier and Joe Grand (Kingpin of L0pht fame). Tribble is a PCI expansion
board that can capture the RAM of a live system for analysis. Tribble is not for sale
commercially, however.

In 2005, BBN Technologies developed a hardware device that plugs into a server or
workstation and will take a copy of the RAM from the machine for analysis. Although
the tool allows a person to extract the RAM from a live running system, it’s unknown if
the tool provides any automated analysis of the memory image. We do know that the
RAM capture tool only captures and does not alert or prevent malware from being
loaded into RAM.

Even with these advances in hardware memory acquisition and rootkit detection,
much more remains to be done. In 2007, Joanna Rutkowska proved that even with
hardware detection, specifically crafted rootkits can evade detection. Using the AMD64
platform, Joanna showed how a rootkit could theoretically provide a different view of
the CPU and memory to a hardware device, therefore, potentially circumventing or
removing the memory signatures of the rootkit itself and eluding detection. Even if
hardware detection was the best solution, no product can be purchased as of June 2009.
At present, all of the hardware-based detection methods are only available to specific
government agencies.

We mentioned previously that memory analysis is very difficult because memory is
constantly changing. Many of the new hardware approaches are starting to find new
ways to obtain a snapshot of memory that is both accurate and reliable, while not
interfering with the system itself. Furthermore, as operating systems continue to change,
the number of undocumented and documented structures that must be analyzed within
an offline memory dump increases. These tools will require more research and
development, and the human analysis portion will require more and more prerequisite
knowledge.

SUMMARY
Detecting rootkits is difficult. The techniques used by rootkit detection tools are easily
defeated by attackers who spend the time required to ensure their rootkits are not
detectable by these tools. The fundamental techniques employed by the rootkit detection
tools are flawed and can be bypassed. Even though the rootkit detectors are bypassable,
many rootkit authors don’t even attempt to prevent rootkit detection because most users
aren’t even looking for rootkits today. Furthermore, because many rootkits operate at a
level above the user, a cursory look at the file system or Registry may create the illusion
that no rootkit is installed so the user doesn’t have to run a rootkit detection tool.

Hardware-based rootkit detection shows some promise but is not perfect and requires
additional costs. Although companies are being funded by the U.S. government to
develop such systems, no commercial hardware-based rootkit detection technology
currently exists.

10-ch10.indd 31710-ch10.indd 317 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

Hacking / Hacking Exposed Malware & Rootkits / Davis / 159118-4

 318 Hacking Exposed Malware & Rootkits

Finally, the majority of software-based rootkit detection tools are available for free
but require a high level of skill to analyze the data produced properly. Many of the
techniques used by the rootkit detection tools have been incorporated into commercial
products that can be purchased and deployed across an entire enterprise. Because no
single tool can find all types of rootkits, using a variety of rootkit detection and removal
tools is recommended, along with executing multiple tools to ensure a rootkit is removed
properly from a system.

10-ch10.indd 31810-ch10.indd 318 9/3/2009 12:02:33 PM9/3/2009 12:02:33 PM

