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25 Years of Quantum Hall Effect (QHE)
A Personal View on the Discovery,
Physics and Applications of this Quantum Effect

Klaus von Klitzing

1 Historical Aspects

The birthday of the quantum Hall effect (QHE) can be fixed very accurately. It
was the night of the 4th to the 5th of February 1980 at around 2 a.m. during
an experiment at the High Magnetic Field Laboratory in Grenoble. The research
topic included the characterization of the electronic transport of silicon field effect
transistors. How can one improve the mobility of these devices? Which scattering
processes (surface roughness, interface charges, impurities etc.) dominate the mo-
tion of the electrons in the very thin layer of only a few nanometers at the interface
between silicon and silicon dioxide? For this research, Dr. Dorda (Siemens AG) and
Dr. Pepper (Plessey Company) provided specially designed devices (Hall devices)
as shown in Fig.1, which allow direct measurements of the resistivity tensor.

For the experiments, low temperatures (typically 4.2 K) were used in order
to suppress disturbing scattering processes originating from electron-phonon in-
teractions. The application of a strong magnetic field was an established method
to get more information about microscopic details of the semiconductor. A review
article published in 1982 by T. Ando, A. Fowler, and F. Stern about the electronic
properties of two-dimensional systems summarizes nicely the knowledge in this
field at the time of the discovery of the QHE [1].

Since 1966 it was known, that electrons, accumulated at the surface of a
silicon single crystal by a positive voltage at the gate (= metal plate parallel to
the surface), form a two-dimensional electron gas [2]. The energy of the electrons
for a motion perpendicular to the surface is quantized (“particle in a box”) and
even the free motion of the electrons in the plane of the two-dimensional system
becomes quantized (Landau quantization), if a strong magnetic field is applied
perpendicular to the plane. In the ideal case, the energy spectrum of a 2DEG in
strong magnetic fields consists of discrete energy levels (normally broadened due
to impurities) with energy gaps between these levels. The quantum Hall effect is
observed, if the Fermi energy is located in the gap of the electronic spectrum and
if the temperature is so low, that excitations across the gap are not possible.

The experimental curve, which led to the discovery of the QHE, is shown in
Fig. 2. The blue curve is the electrical resistance of the silicon field effect tran-
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Figure 1: Typical silicon MOSFET device used for measurements of the xx- and
xy-components of the resistivity tensor. For a fixed source-drain current between
the contacts S and D, the potential drops between the probes P − P and H − H
are directly proportional to the resistivities ρxx and ρxy. A positive gate voltage
increases the carrier density below the gate.

sistor as a function of the gate voltage. Since the electron concentration increases
linearly with increasing gate voltage, the electrical resistance becomes monotoni-
cally smaller. Also the Hall voltage (if a constant magnetic field of e.g. 19.8 Tesla
is applied) decreases with increasing gate voltage, since the Hall voltage is basi-
cally inversely proportional to the electron concentration. The black curve shows
the Hall resistance, which is the ratio of the Hall voltage divided by the current
through the sample. Nice plateaus in the Hall resistance (identical with the trans-
verse resistivity ρxy) are observed at gate voltages, where the electrical resistance
(which is proportional to the longitudinal resistivity ρxx) becomes zero. These ze-
ros are expected for a vanishing density of state of (mobile) electrons at the Fermi
energy. The finite gate voltage regions where the resistivities ρxx and ρxy remain
unchanged indicate, that the gate voltage induced electrons in these regions do not
contribute to the electronic transport- they are localized. The role of localized elec-
trons in Hall effect measurements was not clear. The majority of experimentalists
believed, that the Hall effect measures only delocalized electrons. This assump-
tion was partly supported by theory [3] and formed the basis of the analysis of
QHE data published already in 1977 [4]. These experimental data, available to
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Figure 2: Hall resistance and longitudinal resistance (at zero magnetic field and at
B = 19.8 Tesla) of a silicon MOSFET at liquid helium temperature as a function
of the gate voltage. The quantized Hall plateau for filling factor 4 is enlarged.

the public 3 years before the discovery of the quantum Hall effect, contain already
all information of this new quantum effect so that everyone had the chance to
make a discovery that led to the Nobel Prize in Physics 1985. The unexpected
finding in the night of 4./5.2.1980 was the fact, that the plateau values in the Hall
resistance ρxy are not influenced by the amount of localized electrons and can be
expressed with high precision by the equation ρxy = h/ie2 (h=Planck constant,
e=elementary charge and i the number of fully occupied Landau levels). Also it
became clear, that the component ρxy of the resistivity tensor can be measured di-
rectly with a volt- and amperemeter (a fact overlooked by many theoreticians) and
that for the plateau values no information about the carrier density, the magnetic
field, and the geometry of the device is necessary.
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Figure 3: Copy of the original notes, which led to the discovery of the quantum
Hall effect. The calculations for the Hall voltage UH for one fully occupied Landau
level show, that the Hall resistance UH/I depends exclusively on the fundamental
constant h/e2.
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Figure 4: Experimental uncertainties for the realization of the resistance 1 Ohm
in SI units and the determination of the fine structure constant α as a function of
time.

The most important equation in connection with the quantized Hall resis-
tance, the equation UH = h/e2 ·I, is written down for the first time in my notebook
with the date 4.2.1980. A copy of this page is reproduced in Fig. 3. The validity
and the experimental confirmation of this fundamental equation was so high that
for the experimental determination of the voltage (measured with a x−y recorder)
the finite input resistance of 1 MΩ for the x − y recorder had to be included as a
correction. The calculations in the lower part of Fig. 3 show, that instead of the
theoretical value of 25813 Ohm for the fundamental constant h/e2 a value of about
25163 Ohm should be measured with the x−y recorder, which was confirmed with
high precision. These first measurements of the quantized Hall resistance showed
already, that localized electrons are unimportant and the simple derivation on the
basis of an ideal electron system leads to the correct result. It was immediately
clear, that an electrical resistance which is independent of the geometry of the
sample and insensitive to microscopic details of the material will be important for
metrology institutes like NBS in the US (today NIST) or PTB in Germany. So
it is not surprising, that discussions with Prof. Kose at the PTB about this new
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quantum phenomenon started already one day after the discovery of the quantized
Hall resistance (see notes in Fig. 3).

Figure 5: The number of publications related to the quantum Hall effect increased
continuously up to a value of about one publication per day since 1995.

The experimental results were submitted to Phys. Rev. Letters with the ti-
tle: “Realization of a Resistance Standard based on Fundamental Constants” but
the referee pointed out, that (at this time) not a more accurate electrical resis-
tor was needed but a better value for the fundamental constant h/e2. Interest-
ingly, the constant h/e2 is identical with the inverse fine-structure constant α−1 =
(h/e2)(2/µ0c) = 137.036 · · · where the magnetic constant µ0 = 4π10−7N/A2 and
the velocity of light c = 299 792 458 m/s are fixed numbers with no uncertain-
ties. The data in Fig. 4 show indeed, that the uncertainty in the realization of
the electrical unit of 1Ω within the International System of Units (SI units) was
smaller (until 1985) than the uncertainty for h/e2 or the inverse fine-structure
constant. As a consequence, the title of the first publication about the quantum
Hall effect was changed to: “New Method for High-Accuracy Determination of the
Fine-Structure Constant Based on Quantized Hall Resistance”[5]. The number of
publications with this new topic “quantum Hall effect” in the title or abstract
increased drastically in the following years with about one publication per day
for the last 10 years as shown in Fig. 5. The publicity of the quantized Hall ef-
fect originates from the fact, that not only solid state physics but nearly all other
fields in physics have connections to the QHE as exemplarily demonstrated by the
following title of publications:

BTZ black hole and quantum Hall effects in the bulk/boundary dynamics [6].
Quantum Hall quarks or short distance physics of quantized Hall fluids [7].
A four-dimensional generalization of the quantum Hall effect [8].
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Quantum computation in quantum-Hall systems [9].
Higher-dimensional quantum Hall effect in string theory [10].
Is the quantum Hall effect influenced by the gravitational field? [11].

Up to now, more than 10 books were published about the quantum Hall effect
[12–19] and the most interesting aspects are summarized in the Proceedings of the
International Symposium “Quantum Hall Effect: Past, Present and Future” [20].

Figure 6: Summary of high precision data for the quantized Hall resistance up to
1988 which led to the fixed value of 25 812.807 Ohm recommended as a reference
standard for all resistance calibrations after 1.1.1990 .

2 Quantum Hall Effect and Metrology

The most important aspect of the quantum Hall effect for applications is the
fact that the quantized Hall resistance has always a fundamental value of h/e2 =
25812.807 · · · Ohm. This value is independent of the material, geometry and mi-
croscopic details of the semiconductor. After the discovery of this macroscopic
quantum effect many metrological institutes repeated the experiment with much
higher accuracy than available in a research laboratory and they confirmed, that
this effect is extremely stable and reproducible. Fig. 6 summarizes the data (pub-
lished until 1988) for the fundamental value of the quantized Hall resistance and
it is evident that the uncertainty in the measurements is dominated by the un-
certainty in the realization of the SI Ohm. From the internationally accepted def-
initions for the basic SI units “second”, “meter”, “kilogram”, and “Ampere” it is
clear, that all mechanical and electrical quantities are well defined. However the
overview in Fig. 7 shows also, that the base unit Ampere has a relatively large un-
certainty of about 10−6 if deduced from the force between current carrying wires.
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Figure 7: Basic and derived SI units for mechanical and electrical quantities.

Apparently, the derived unit 1Ω = 1s−3m2kgA−2 (which depends in principle on
all basic units) should have an even larger uncertainty than 10−6. However, as
shown in Fig. 4, the SI Ohm is known with a smaller uncertainty than the basic
unit Ampere which originates from the fact, that a resistance can be realized via
the a.c. resistance R = 1/ωC of a capacitor C. Since the capacitance C of a ca-
pacitor depends exclusively on the geometry (with vacuum as a dielectric media),
one can realize a SI Ohm just by using the basic units time (for the frequency
ω/2π) and length (for a calculable Thomson-Lampert capacitor [21]), which are
known with very small uncertainties. Therefore an uncertainty of about 10−7 for
the realization of the SI Ohm is possible so that the fine-structure constant can
be measured via the QHE directly with the corresponding accuracy. However, the
quantized Hall resistance is more stable and more reproducible than any resistor
calibrated in SI units so that the Comité Consultatif d’Electricité recommended,
“that exactly 25 812.807 Ohm should be adopted as a conventional value, denoted
by RK−90, for the von Klitzing constant RK” and that this value should be used
starting on 1.1.1990 to form laboratory reference standards of resistances all over
the world [22]. Direct comparisons between these reference standards at different
national laboratories (see Fig. 8) have shown, that deviations smaller than 2 ·10−9

for the reference standards in different countries are found [23] if the published
guidelines for reliable measurements of the quantized Hall resistance are obeyed
[24]. Unfortunately, this high reproducibility and stability of the quantized Hall re-
sistance cannot be used to determine the fine-structure constant directly with high
accuracy since the value of the quantized Hall resistance in SI units is not known.
Only the combination with other experiments like high precision measurements
(and calculations) of the anomalous magnetic moment of the electron, gyromag-
netic ratio of protons or mass of neutrons lead to a least square adjustment of the
value of the fine-structure constant with an uncertainty of only 3.3 ·10−9 resulting
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Figure 8: Reproducibility and stability of the quantized Hall resistance deduced
from comparisons between different metrological institutes. The observed uncer-
tainties of about 2.10−9 is two orders of magnitude smaller than the uncertainty
in the realization of a resistance calibrated in SI Ohms.

in a value for the von Klitzing constant of RK = 25812.807449 ± 0.000086 Ohm
(CODATA 2002 [25]). Accurate values for fundamental constants (especially for
the fine-structure constant) are important in connection with the speculation that
some fundamental constants may vary with time. Publications about the evidence
of cosmological evolution of the fine-structure constant are questioned and could
not be confirmed. The variation ∂α/∂t per year is smaller than 10−16.

Figure 9: Realization of a two-dimensional electrons gas close to the interface
between AlGaAs and GaAs.

The combination of the quantum Hall effect with the Josephson effect (which
allows an representation of the electrical voltage in units of h/e) leads to the
possibility, to compare electrical power (which depends on the Planck constant
h) with mechanical power (which depends on the mass m). The best value for
the Planck constant is obtained using such a Watt balance [26]. Alternatively, one
may fix the Planck constant (like the fixed value for the velocity of light for the
definition of the unit of length) in order to have a new realization of the unit of
mass.
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Figure 10: Hall resistance and longitudinal resistivity data as a function of the
magnetic field for a GaAs/AlGaAs heterostructures at 1.5 K .

3 Physics of Quantum Hall Effect

The textbook explanation of the QHE is based on the classical Hall effect dis-
covered 125 years ago [27]. A magnetic field perpendicular to the current I in a
metallic sample generates a Hall voltage UH perpendicular to both, the magnetic
field and the current direction:

UH = (B · I)/(n · e · d)

with the three-dimensional carrier density n and the thickness d of the sample.
For a two-dimensional electron gas the product of n · d can be combined as a
two-dimensional carrier density ns. This leads to a Hall resistance

RH = UH/I = B/(ns · e)

Such a two-dimensional electron gas can be formed at the semiconductor/insulator
interface, for example at the Si−SiO2 interface of a MOSFET (Metal Oxid Semi-
conductor Field Effect Transistor) or at the interface of a GaAs−AlGaAs HEMT
(High Electron Mobility Transistor) as shown in Fig. 9. In these systems the elec-
trons are confined within a very thin layer of few nanometers so that similar to
the problem of “particle in a box” only quantized energies Ei(i = 1, 2, 3 · · ·) for
the electron motion perpendicular to the interface exist (electric subbands).

A strong magnetic field perpendicular to the two-dimensional layer leads to
Landau quantization and therefore to a discrete energy spectrum:

E0,N = E0 + (N + 1/2)h̄ωc (N = 0, 1, 2, ...)

The cyclotron energy h̄ωc = h̄eB/mc is proportional to the magnetic field B and
inversely proportional to the cyclotron mass mc and equal to 1.16 meV at 10 Tesla
for a free electron mass m0.



25 Years of Quantum Hall Effect (QHE) 11

Due to the electron spin an additional Zeeman splitting of each Landau level
appears which is not explicitly included in the following discussion. More important
is the general result, that a discrete energy spectrum with energy gaps exists
for an ideal 2DEG in a strong magnetic field and that the degeneracy of each
discrete level corresponds to the number of flux quanta (F · B)/(h/e) within the
area F of the sample. This corresponds to a carrier density ns = e · B/h for
each fully occupied spin-split energy level E0, N and therefore to a Hall resistance
RH = h/i · e2 for i fully occupied Landau levels as observed in the experiment. A
typical magnetoresistance measurement on a GaAs/AlGaAs heterostructure under
QHE conditions is shown in Fig. 10.

Figure 11: Discrete energy spectrum of a 2DEG in a magnetic field for an ideal
system (no spin, no disorder, infinite system, zero temperature). The Fermi energy
(full red line) jumps between Landau levels at integer filling factors if the electron
concentration is constant.

This simple “explanation” of the quantized Hall resistance leads to the cor-
rect result but contains unrealistic assumptions. A real Hall device has always
a finite width and length with metallic contacts and even high mobility devices
contain impurities and potential fluctuations, which lift the degeneracy of the Lan-
dau levels. These two important aspects, the finite size and the disorder, will be
discussed in the following chapters.

3.1 Quantum Hall Systems with Disorder

The experimental fact, that the Hall resistance stays constant even if the filling
factor is changed (e.g. by varying the magnetic field at fixed density), cannot be
explained within the simple single particle picture for an ideal system. A sketch of
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Figure 12: Measured variation of the electrostatic potential of a 2DEG as a function
of the magnetic field. The black line marks a maximum in the coulomb oscillations
of a metallic single electron on top of the heterostructure, which corresponds to a
constant electrostatic potential of the 2DEG relative to the SET.

the energy spectrum and the Fermi energy as a function of the magnetic field is
shown in Fig. 11 for such an ideal system at zero temperature. The Fermi energy
(full blue line) is located only at very special magnetic field values in energy gaps
between Landau levels so that only at these very special magnetic field values and
not in a finite magnetic field range the condition for the observation of the QHE is
fulfilled. On the other hand, if one assumes, that the Fermi energy remains constant
as a function of the magnetic field (dotted line in Fig. 11), wide plateaus for the
quantized Hall resistance are expected, since the Fermi energy remains in energy
gaps (which correspond to integer filling factors and therefore to quantized Hall
resistances) in a wide magnetic field range. However, this picture is unrealistic since
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Figure 13: SET current as a function of time for different magnetic fields close
to filling factor 1. The oscillations in the current originate from the relaxation of
a non-equilibrium electrostatic potential within the 2DEG originating from eddy
currents due to the magnetic field sweep in the plateau region. One oscillation in
the SET current corresponds to a change in the “gate potential” of about 1 meV.

one has to assume that the electron concentration changes drastically as a function
of the magnetic field. If for example the Fermi energy crosses the Landau level N =
1, the electron density has to change abruptly by a factor of two from filling factor
2 to filling factor 1. Such a strong redistribution of charges between the 2DEG and
an electron reservoir (doping layers, metallic contacts) are in contradiction with
electrostatic calculations. The most direct proof, that the Fermi energy jumps
across the gap between Landau levels within a relatively small magnetic field
range (at least smaller than the plateau width) is given by measurements of the
electrostatic potential between a metal (= wire plus sensor connected to the 2DEG)
and the two-dimensional electron gas. The electrochemical potential within the
metal - 2DEG system has to be constant (thermodynamic equilibrium) so that
the magnetic field dependent variation in the chemical potential (characterized by
the Fermi energy) has to be compensated by a change in the electrostatic potential
difference between the metallic system and the 2DEG (=contact voltage). Such a
variation in the electrostatic potential has been measured directly [28] by using
a metallic single electron transistor (SET) at the surface of the quantum Hall
device as shown in Fig 12. The electrostatic potential of the 2DEG relative to the
SET acts as a gate voltage, which influences drastically the current through the
SET. (The SET shows Coulomb blockade oscillations with a gate voltage period
of about 1mV ). The experimental data shown in Fig. 12 clearly demonstrate, that
the contact voltage and therefore the chemical potential of the two-dimensional
system changes saw-tooth like as expected. The height of the jumps corresponds
directly to the energy gap. The “noise” at 2.8 Tesla (filling factor 4) demonstrates,
that the gate potential below the SET detector is fluctuating and not fixed by
the applied voltage ∆V2DES since the vanishing conductivity in the quantum Hall
regime between the metallic contacts at the boundary of the device and the inner
parts of the sample leads to floating potentials within the 2DEG system. Recent



14 K. von Klitzing

Figure 14: Sketch of a device with a filling factor slightly below 1. Long-range
potential fluctuations lead to a finite area within the sample (localized carriers)
with vanishing electrons (= filling factor 0) surrounded by an equipotential line.
The derivation of the measured Hall voltage UH show, that closed areas with
another filling factor than the main part of the device leads to a Hall effect which
is not influenced by localized electrons.

measurements have demonstrated [29], that time constants of many hours are
observed for the equilibration of potential differences between the boundary of a
QHE device and the inner part of the sample as shown in Fig. 13. The oscillations
in the SET current can be directly translated into a variation of the electrostatic
potential below the position of the SET since one period corresponds to a “gate
voltage change” for the SET of about 1 meV. The non-equilibrium originates from
a magnetic field sweep in regions of vanishing energy dissipation, which generates
eddy currents around the detector and corresponding Hall potential differences of
more than 100 meV perpendicular to these currents. These “Hall voltages” are not
measurable at the outer Hall potential probes (at the edge of the sample), since
all eddy currents cancel each other. The current distribution is unimportant for
the accuracy of the quantized Hall resistance!

In order to explain the width of the Hall plateaus, localized electrons in the
tails of broadened Landau levels have to be included. A simple thought experiment
illustrates, that localized states added or removed from fully occupied Landau
levels do not change the Hall resistance (see Fig. 14). For long range potential
fluctuations (e.g. due to impurities located close to the 2DEG) the Landau levels
follow this potential landscape so that the energies of the Landau levels change
with position within the plane of the device. If the energy separation between
Landau levels is larger than the peak value of the potential fluctuation, an energy
gap still exists and a fully occupied Landau level (e.g. filling factor 1) with the
expected quantized Hall resistance RK can be realized. In this picture, a filling
factor 0.9 means, that 10% of the area of the device (= top of the hills in the
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Figure 15: Skipping cyclotron orbits (= diamagnetic current) at the boundaries of
a device are equivalent to the edge channels in a 2DEG with finite size.

potential landscape) becomes unoccupied with electrons as sketched in Fig. 14.
The boundary of the unoccupied area is an equipotential line (with an unknown
potential) but the externally measured Hall voltage UH , which is the sum of the
Hall voltages of the upper part of the sample (current I2) and the lower part
(current I1), adds up to the ideal value expected for the filling factor 1 (grey
regions). Eddy currents around the hole with i = 0 will vary the currents I1 and
I2 but the sum is always identical with the external current I.

The quantized Hall resistance breaks down, if electronic states at the Fermi
energy are extended across the whole device. This is the case for a half-filled
Landau level if the simple percolation picture is applied. Such a singularity at
half-filled Landau levels has been observed experimentally [30].

This simple picture of extended and localized electron states indicates, that
extended states always exist at the boundary of the devices. This edge phenomenon
is extremely important for a discussion of the quantum Hall effect in real devices
and will be discussed in more detail in the next chapter. In a classical picture,
skipping orbits as a result of reflected cyclotron orbits at the edge lead to diamag-
netic currents as sketched in Fig 15. Therefore, even if the QHE is characterized
by a vanishing conductivity σxx (no current in the direction of the electric field), a
finite current between source and drain of a Hall device can be established via this
diamagnetic current. If the device is connected to source and drain reservoirs with
different electrochemical potentials (see Fig. 15), the skipping electrons establish
different electrochemical potentials at the upper and lower edge respectively. En-
ergy dissipation appears only at the points (black dots in Fig. 15) where the edge
potentials differ from the source/drain potentials.
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Figure 16: Ideal Landau levels for a device with boundaries. The fully occupied
Landau levels in the inner part of the device rise in energy close to the edge forming
compressible (“metallic”) stripes close to the crossing points of the Landau levels
with the Fermi energy EF .

3.2 Edge Phenomena in QHE Devices

The simple explanation of the quantized Hall resistance as a result of fully occupied
Landau levels (with a gap at the Fermi energy) breaks down for real devices with
finite size. For such a system no energy gap at the Fermi energy exists under
quantum Hall condition even if no disorder due to impurities is included. This is
illustrated in Fig. 16 where the energy of the Landau levels is plotted across the
width of the device. The Fermi energy in the inner part of the sample is assumed to
be in the gap for filling factor 2. Close to the edge (within a characteristic depletion
length of about 1µm) the carrier density becomes finally zero. This corresponds
to an increase in the Landau level energies at the edge so that these levels become
unoccupied outside the sample. All occupied Landau levels inside the sample have
to cross the Fermi energy close to the boundary of the device. At these crossing
points “half-filled Landau levels” with metallic properties are present.

Selfconsistent calculations for the occupation of the Landau levels show that
not lines but metallic stripes with a finite width are formed parallel to the edge [31].
The number of stripes is identical with the number of fully occupied Landau levels
in the inner part of the device. These stripes are characterized by a compressible
electron gas where the electron concentration can easily be changed since the Lan-
dau levels in these regions are only partly filled with electrons and pinned at the
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Figure 17: Experimental determination of the position of incompressible (= insu-
lating) stripes close to the edge of the device for the magnetic field range 1.5 - 10
Tesla.

Figure 18: Hall potential distribution of a QHE device measured with an AFM.
The innermost incompressible stripe (= black lines) acts as an insulating barrier.
The Hall potential is color coded with about half of the total Hall voltage for the
dark grey-light grey potential difference.
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Fermi energy. In contrast, the incompressible stripes between the compressible re-
gions represent fully occupied Landau levels with the typical isolating behavior of
a quantum Hall state. If the single electron transistor shown in Fig. 12 is located
above an incompressible region, increased noise is observed in the SET current
similar to the noise at 2.8 Tesla in Fig. 12. In order to visualize the position of
the stripes close to the edge, not the SET is moved but an artificial edge (= zero
carrier density) is formed with a negative voltage at a gate metal located close to
the SET. The edge (= position with vanishing carrier density) moves with increas-
ing negative gate voltage closer to the detector and alternatively incompressible
(increased SET noise) and compressible strips (no SET noise) are located below
the SET detector. The experimental results in Fig. 17 confirm qualitatively the
picture of incompressible stripes close to the edge which move away from the edge
with increasing magnetic field until the whole inner part of the device becomes
an incompressible region at integer filling factor. At slightly higher magnetic fields
this “bulk” incompressible region disappears and only incompressible stripes with
lower filling factor remain close to the boundary of the device.

The influence of the incompressible stripes on the Hall potential distribution
has been measured with an atomic force microscope. The results in Fig. 18 show,
that the innermost incompressible stripe has such strong “insulating” properties
that about 50% of the Hall potential drops across this stripe. The other 50%
of the Hall potential drops close to the opposite boundary of the device across
the equivalent incompressible stripe. In principle the incompressible stripes should
be able to suppress the backscattering across the width of a Hall device so that
even for an ideal device without impurities (= localized states due to potential
fluctuations) a finite magnetic field range with vanishing resistivity and quantized
Hall plateaus should exist [32]. However, the fact, that the plateau width increases
systematically with increasing impurity concentration (and shows the expected
different behavior for attractive and repulsive impurities) shows, that localized
states due to impurities are the main origin for the stabilization of the quantized
Hall resistance within a finite range of filling factors. A vanishing longitudinal
resistivity always indicates, that a backscattering is not measurable. Under this
condition the quantized Hall resistance is a direct consequence of the transmission
of one-dimensional channels [33].

4 Correlated Electron Phenomena in Quantum Hall Systems

Many physical properties of the quantum Hall effect can be discussed in a sin-
gle electron picture but it is obvious that the majority of modern research and
publications in this field include electron correlation phenomena. Even if the frac-
tional quantum Hall effect [34] (which is a manifestation of the strong electron-
electron interaction in a two-dimensional system) can be nicely discussed as the
integer quantum Hall effect of weakly interacting quasi particles called compos-
ite fermions [35], the many-body wave function of the quantum Hall system is the
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basis for the discussion of different exciting new phenomena observed in correlated
two-dimensional systems in strong magnetic fields. Many of these new phenomena
can only be observed in devices with extremely high mobility where the electron-
electron interaction is not destroyed by disorder. Experiments on such devices
indicate, that phenomena like superfluidity and Bose-Einstein condensation [36],
skyrmionic excitations [37], fractional charges [38], a new zero resistance state
under microwave radiation [39] or new phases based on a decomposition of a half-
integer filling factor into stripes and bubbles with integer filling factors [40] are
observable. The two-dimensional electron system in strong magnetic field seems
to be the ideal system to study electron correlation phenomena in solids with the
possibility to control and vary many parameters so that the quantum Hall effect
will remain a modern research field also in the future.
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