Dead Code Elimination through
Dependent Types*

Hongwei Xi

Department of Computer Science and Engineering
Oregon Graduate Institute
P.O. Box 91000
Portland, OR 97291, USA

e-mail: hongwei@cse.ogi.edu

Abstract. Pattern matching is an important feature in various func-
tional programming languages such as SML, Caml, Haskell, etc. In these
languages, unreachable or redundant matching clauses, which can be re-
garded as a special form of dead code, are a rich source for program
errors. Therefore, eliminating unreachable matching clauses at compile-
time can significantly enhance program error detection. Furthermore,
this can also lead to significantly more efficient code at run-time.

We present a novel approach to eliminating unreachable matching
clauses through the use of the dependent type system of DML, a func-
tional programming language that enriches ML with a restricted form of
dependent types. We then prove the correctness of the approach, which
consists of the major technical contribution of the paper. In addition, we
demonstrate the applicability of our approach to dead code elimination
through some realistic examples. This constitutes a practical application
of dependent types to functional programming, and in return it provides
us with further support for the methodology adopted in our research on
dependent types in practical programming.

1 Introduction

There is no precise definition of dead code in the literature. In this paper, we
refer dead code as the code which can never be executed at run-time. Notice that
this is essentially different from dead computation [1], that is, the computation
producing values which are never used. For instance, in the following C code,

x =1; x = 2;

the part x = 1 is dead computation but not dead code since it is executed but
its execution does not affect the entire computation. Also dead code is different
from partially dead code, which is not executed only on some computation paths
[10]. For instance, the part y = 1 in the following C code is partially dead since
it is not executed when x is not zero.
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if (x==0) {y=1;1}%

Pattern matching is an important feature in many functional programming lan-
guages such as Standard ML[12], Caml[16], Haskell[6], etc. A particular form of
dead code in these languages is unreachable or redundant matching clauses, that
is, matching clauses which can never be chosen at run-time. The following is a
straightforward but unrealistic example of dead code in Standard ML.

exception Unreachable
fun foo 1 =
case 1 of nil => 1 | _::_ => 1 | _ => raise Unreachable

The function foois of type ’a list -> ’a list. Clearly, the third matching
clause in the definition of foo can never be chosen since every value of type
’a list matches either the first or the second clause. This form of unreachable
matching clauses can be readily detected in practice. For instance, if the above
code is passed to the (current version of) SML/NJ compiler, an error message is
reported describing the redundancy of the third matching clause. However, there
are realistic cases which are much more subtle. Let us consider the following
example.

exception ZipException

fun zip(nil, nil) = nil
| zip(x::xs, y::ys) = (x, y)::zip(xs, ys)
| zip _ = raise ZipException

The function zip is meant to zip two lists of equal length into one. This is some-
what hinted in the program since an exception is raised if two given lists are
of different lengths. If zip is applied to a pair of lists of equal length, then the
third matching clause in its definition can never be chosen for the obvious reason.
Therefore, we can eliminate the third matching clause as long as we can guaran-
tee that zip is always applied to a pair of lists of equal length. Unfortunately, it
is 4mpossible in Standard ML (or other languages with similar or weaker typing
systems) to restrict the application of zip only to pairs of lists of equal length
since its type system cannot distinguish lists of different lengths. This partially
motivated our research on strengthening the type system of ML with dependent
types so that we can formulated more accurate types such as the type of all pairs
of lists of equal length.

The type system of DML (Dependent ML) in [20] enriches that of ML with
a restricted form of dependent types. The primary goal of this enrichment is to
provide for specification and inference of significantly more accurate informa-
tion, facilitating both program error detection and compiler optimization. For
instance, the following declaration in DML enables the type system to distinguish
lists of different lengths.

datatype ’a list = nil | :: of ’a * ’a list
typeref ’a list of nat with

nil <| ’a 1list(0)
| :: <| {n:nat} ’a * ’a list(n) -> ’a list(n+1)



The declaration defines a (polymorphic) datatype ’a list to represent the type
of lists. This datatype is then indexed by a natural number, which stands for
the length of a list in this case. The constructors associated with the datatype
’a list are then assigned dependent types:

— nil <| ’a 1list(0) states that nil is a list of length 0, and

— :: <| {n:nat} ’a * ’a list(n) -> ’a list(n+1) states that :: yields
a list of length n + 1 when given a pair consisting of an element and a list
of length n. Note that {n:nat} means that n is universally quantified over
natural numbers, usually written as IIn : nat.

Now the following definition of the zip function in DML guarantees that this
function can only be applied to a pair of lists of equal length.

fun(’a,’b)
zip_safe(nil, nil) = nil
| zip_safe(x::xs, y::ys) = (x, y)::zip_safe(xs, ys)
where zip_safe <| {n:nat} ’a list(n)*’b list(n)->(’a * ’b) list(n)

The use of fun(’a, ’b) is a recent feature of Standard ML [12], which allows the
programmer to explicitly control the scope of the type variables ’a and ’b. The
type of zip_safe is {n:nat} ’a list(n) * ’b list(n)->(’a * ’b)list(n)
which states that zip_safe can only accept a pair of lists of equal length and
always returns a list of the same length. Notice that the where clause is a type
annotation which must be provided by the programmer. If this function is applied
to a pair of lists of unequal lengths, the code cannot pass the type-checking in
DML and therefore is rejected. In this case, the programmer can certainly choose
to use the previously defined zip if necessary in order to pass type-checking.

The programmer often knows that certain matching clauses can never be
executed if a program is implemented correctly. Therefore, it can lead to pro-
gram error detection at compile-time if we can verify whether these clauses can
indeed be eliminated in an implementation. For example, when implementing
an evaluator for the pure call-by-value A-calculus, we know that we can never
encounter a variable which is not bound to a closure during the evaluation of
a closed M-expression. As shown in Section 4.2, this can be readily verified by
our approach. Eliminating dead code can also lead to more efficient execution
at run-time. For instance, zip_safe need not check the tag of the second list in
its argument since it is always the same as that of the first one, and this can
contribute to 20% speedup on a Sun Sparc 20 running SML/NJ version 110.
In general, our approach can be regarded as an example which supports that
safety and efficiency can be complementary. These advantages yield some strong
justification for our approach to eliminating unreachable matching clauses at
compile-time.

We organize the paper as follows. In Section 2, we give some preliminaries on
the core of DML, which provides all the machinery needed to establish the cor-
rectness of our approach to dead code elimination. We then present in Section 3
the derivation rules which formalize the approach, and prove the correctness of



these rules. This constitutes the main technical contribution of this paper. In
Section 4, we use some realistic examples to demonstrate the applicability of our
approach. The rest of the paper discusses some related work and then concludes.

2 Preliminaries

It is both infeasible and unnecessary to present in this paper the entire DML,
which can be found in [20]. We refer the reader to [18] for an overview of DML.
The essence of our approach will be fully captured in an core language ML(I)7 (©),
which is a monomorphic extension of mini-ML with general pattern matching
and universal dependent types.

Note that the omission of ML let-polymorphism in ML(I)T (C), which is fully
supported in DML, is simply for the sake of brevity of the presentation. Since
ML (C) parameterizes over a constraint domain C from which type index ob-
jects are drawn, we start with a brief introduction of the formation of a constraint
domain.

2.1 Constraint Domains

We emphasize that the general constraint language itself is typed. In order to
avoid potential confusion we call the types in the constraint language index sorts.
We use b for base index sorts such as o for propositions and int for integers.
A signature X' declares a set of function symbols and associates with every
function symbol an index sort defined below. A X-structure D consists of a
set dom(D) and an assignment of functions to the function symbols in X. A
constraint domain C' = (¥, D) consists of a signature X and a X-structure D.

We use f for interpreted function symbols (constants are 0-ary functions),
p for atomic predicates (that is, functions of sort v — o) and we assume that
we have constants such as equality, truth values T and L, conjunction A, and
disjunction V, all of which are interpreted as usual.

index sorts yu=b|1l|m*v2|{a:v]| P}
index propositions P::=T | L | p(i) | A APy | P,V Py

Here {a : v | P} is the subset index sort for those elements of index sort 7y
satisfying proposition P, where P is an index proposition. For instance, nat is
an abbreviation for {a : int | a > 0}, that is, nat is a subset index sort of int.

We use a for index variables in the following formation. We assume that there
exists a predicate = of sort vy — o for every index sort -y, which is interpreted
as equality. Also we emphasize that all function symbols declared in X must be
associated with index sorts of form v — b or b. In other words, the constraint
language is first-order.

index objects i, m=a|f(G@) | ()| (5, 7) | fst(i) | snd(7)

index contexts 10) “ind | 9ya:v| @, P

index constraints @ n=i=j|T |® APy |PDP|Va:v.9|Ta:~.P
index substitutions 6 []]6la+> 1]

satisfiability relation p=9



Note +inq is for the empty index context. We omit the standard sorting rules for
this language for the sake of brevity. The satisfiability relation ¢ = ¢ means
that (¢)® is satisfiable in the domain dom(D) of the X-structure D, where (¢)P
is defined as follows.

¢ {a:y | PH® = (¢)(a:7)(P D P)
P)® = (¢)(P > 9)

In this paper, we are primarily interested in the integer constraint domain,
where the signature Y, is given in Figure 1 and the domain of Y, ¢-structure is
simply the set of integers. For instance, let ¢ = n : nat,a : nat,a+1=n,0=n,
then ¢ = L holds in this domain since (¢).L, defined as follows, is true.

Vn:intn>0DVa:int.a>0D(a+1=nD(0=nD 1))

Basically, a+1 = n implies n > 0 since a is a natural number, and this contradicts
0 = n. In other words, the index context ¢ is inconsistent. This example will be
used later.

(i
(a:
Ea M *72)4s (a1 :m)(az : 72)Pla = (a1, az)]
(¢,

Yint = abs :int — int sgn : int — int + :int *int — int
— int xint — int * 1 ant xint — int  div :int xint — int
min : int * int — int mazx : int * int — int mod : int * int — int

< :intxint = o <:intxint = o =:intxint = o

> :int xint — o > :int xint — o #:int*int — o

Fig. 1. The signature of the integer domain

2.2 The Language ML(I]T(C)

Given a constraint domain C, the syntax of ML (C) is given in Figure 2. The
syntax is relatively involved because we must include general pattern matching
in order to present our approach. This is an explicitly typed language since the
dead code elimination we propose is performed when type-checking a program
is done and an explicitly typed version of the program has been constructed.

We use ¢ for base type families, where we use §({)) for an unindexed type.
Also we use ‘s, +ing and - for empty matches, empty index context and empty
context, respectively. The difference between values and value forms is that the
former is only closed under value substitutions while the latter is closed under
all substitutions. We write e[i] for the application of an expression to a type
index and Aa : v.e for index variable abstraction.



families
signature

types
patterns

matches
expressions

value forms
values
contexts

index contexts
substitutions

0 ::= (family of refined datatypes)

| S,c:Hay :y1 ... Hap : yn.T — 6(1)
Tu=00)|1|(n*m)|(n—m)| Ta:v.7)
pu=w|cai].. [an] ] clar]. . [an](p) | () | {P1,p2)

ms = -ms | (p = e | ms)
ex=a| ()| (er,e2) | clir]...[in] | c[ir]. .. [in](e)
| (case e of ms) | (lam z : 7.e) | e1(e2)

|let z =e; in ey end | (fix f: T.u)

| (ha:y.e) | efi]

w = clia]. . fin] [ efin] - [in](w) ) | ur, ue)
| lam z : 7€) | (Aa : y.u)

va=a|cfia]. . fin] | cfin]. . [in](@) | )| {v1,v2)
| lam z : 7.€) | (Aa : y.v)

's=.|Iz:T

¢ = tind | ¢7a:7 | ¢7P

=1[|0[z — €] | bla > 9]

S
|

We leave out polymorphism in ML{ (C) because polymorphism is largely
orthogonal to the development of dependent types and has little effect on the
dead code elimination presented in this paper. This tremendously simplifies the

presentation.

In the rest of the paper, we assume that datatypes intList (for integer lists)
and intPairList (for integer pair lists) have been declared with associated con-
structors intNil, intCons and intPairNil, intPairCons, respectively, and re-

fined as follows.

Fig. 2. The syntax for ML{ (C)

intNil : intList(0)

intCons :IIn:

nat.int x intList(n) — intList(n + 1)

intPairNil :intPairList(0)

intPairCons : IIn : nat.(int * int) x int Pair List(n) — intPairList(n + 1)

However, we will write nil for either intNil or intPairNil and cons for either
intCons or int PairCons if there is no danger of confusion. The following expres-
sion zipdef in MLé7 (C) corresponds a monomorphic version of the previously

defined function zip_safe (we use b for an index variable here).

fix zip: IIn : nat.intList(n) * intList(n) — intPairList(n).
An :natdam | : intList(n) * intList(n).
case [ of (nil,nil) = nil

| (cons[a](x, zs), cons[b(y, ys)) = conslal((z, ), zipla)(zs, ys))




Static Semantics We use ¢ = 7 = 7’ for the congruent extension of ¢ =i = j
from index objects to types, which is determined by the following rules.

plEi=] ¢pEn=T dER=T
¢ = 6(i) = 6(5) pET T =T xT]
pETI=En pER=T pa:yE=ET=T
pETLOTR=T 2T pEHa:yr=1a:~.1

We start with the typing rules for patterns, which are listed in Figure 3. These
rules are essential to the formulation of our approach to eliminating unreachable
matching clauses. The judgment p | 7 > (¢;I") expresses that the index and
ordinary variables in pattern p have the sorts and types in ¢ and I, respectively,
if we know that p must have type 7.

(pat-var) (pat-unit)

) 7> (ina;T: 7) ) 41> (vinas-)
prd D> (P1;11) p2 L 72D (¢2; 1)
(p1,p2) L 1% T2 D> (1, P23 11, 1)
S(c)=Iay:y1... Hap : v,.6(1)
cla1]...[an] L 6(F) > (a1 : 71, -, G0 Y0yt = J;+)
Sey=1Iay :y1... Hay : yo.(r = 8(3)) pl7T>($T)
cai]...[an](p) 4 8(3) > (a1 : 71,0 san i Ynyi = Gy ;)

(pat-prod)

(pat-cons-wo)

(pat-cons-w)

Fig. 3. Typing rules for patterns

We omit the rest of typing rules for ML{ (C'), which can be found in [20].
The following lemma is at the heart of our approach to dead code elimination.

Lemma 1. (Main Lemma) Suppose that p | 7 > ¢;I" is derivable and ¢ = L
satisfiable. If inq;- v : 7 is derivable, then v does not match the pattern p.

Proof. The proof proceeds by structural induction on the derivation of p | 7>
¢; I'. We present one interesting case where p is of form c[ay] .. . [a,](p") for some
constructor ¢. Then the derivation of p | 7> ¢; I must be of the following form.

Sle)=IHay :v1...Hap : yp.(7" = 63) p' L7 > (¢;1)
cla].. - [an](p) 4 6(4) > (a1 : 71, -y an s Yy i =, 95 T)

where 7 = 6(j), d = a1 : Y1,---,8n : VYn,t = j,¢'. Assume that v matches p.
Then v is of form c[i1]. .. [in](v"), v' matches p’ and -ing F @k : v are derivable for
1 <k < n. Since c[i1] ...[in](v") is of type §(i[6]) for 8 = [a1 — i1,...,an > ip],
-ind = ¢[#] = j is satisfiable. This leads to the satisfiability of ¢'[d] |= L since

(pat-cons-w)



¢ = L is satisfiable. Notice that we can also derive -inq;- F ¢’ : 7'[f] and
p' | T'[6] > (¢'[0], ['[6]). By induction hypothesis, v' does not match p’. This
yields a contradiction, and therefore v does not match p.

All other cases can be treated similarly.

Dynamic Semantics The operational semantics of ML (C) can be given as
usual in the style of natural semantics [9]. Again we omit the standard evalu-
ation rules, which can be found in [20]

We use e —4 v to mean that e reduces to a value v in this semantics. These
evaluation rules are only needed for proving the correctness of our approach.
The following type-preservation theorem is also needed for this purpose.

Theorem 1. (Type preservation in MLE (C)) Given e,v in ML{ (C) such that
e —q v is derivable. If -ing;- F e : 7 is derivable, then -inq;- v : 7 is derivable.

Proof. Please see Section 4.1.2 in [20] for details.

Notice that there is some nondeterminism associated with the rule for evalu-
ating a case statement. If more than one matching clauses can match the value,
there is no order to determine which one should be chosen. This is different from
the deterministic strategy adopted in ML, which always chooses the first one
which matches. We shall come back to this point later.

2.3 Operational Equivalence

In order to prove the correctness of our approach to dead code elimination, we
must show that this approach does not alter the semantics of a program. We
introduce the operational equivalence relation = as follows for this purpose.

Definition 1. We present the definition of contexts as follows.

(matching contexts) Cp, = | (p= C |ms) | (p=e|Cn)

(contexts) C ==[1(Ce)|{e,C) | c(C)|lam z : 7.C | C(e) | e(C)
| case C of ms | case e of Cp, | fix f:7.C
|let t =C in e end |let x =€ in C end

Given a context C' and an expression e, Ce] stands for the expression formulated
by replacing with e the hole [| in C. We emphasize that this replacement is
variable capturing.

Definition 2. Given two expression e; and ez in MLg(C), ey 1s operationally
equivalent to ez if the following holds.

— Given any context C such that -ing;- + Cle;] : 1 are derivable for i = 1,2,
Cle1] =4 () is derivable if and only if Clea] =4 () is.

We write e; = ey if e1 is operationally equivalent to es.

Clearly =2 is an equivalence relation. Our aim is to prove that if a program e
is transformed into e after dead code elimination, the e = e. In other words,
we intend to show that dead code elimination does not alter the operational

semantics of a program.



3 Dead Code Elimination

We now go through an example to show how dead code elimination is performed
on a program. This approach is then formalized and proven correct. This con-
stitutes the main technical contribution of the paper.

3.1 An Example
Let us declare the function zip_safe in DML as follows.

fun zip_safe(intNil, intNil) = intPairNil
| zip_safe(intCons(x,xs), intCons(y,ys)) =
intPairCons((x, y), zip_safe(xs, ys))
| zip_safe _ = raise ZipException
where zip_safe <| {n:nat} intList(n)*intList(n)->intPairlList(n)

This declaration is then elaborated (after type-checking) to the following expres-
sion in ML (C) (we assume that raise(ZipException) is a legal expression).
Notice that the third matching clause in the above definition is transformed into
two non-overlapping matching clauses. This is necessary since pattern matching
is done sequentially in ML, and therefore the value must match either pattern
(intNil, intCons(_,_)) or (intCons(_,_), intNil) if the third clause is
chosen. The approach to performing such a transform is standard and therefore
omitted.

fix zip : IIn : nat.intList(n) * intList(n) — intPairList(n).
An : natlam [ : intList(n) x intList(n).
case [ of (nil,nil) = nil
| (consla](z,zs),cons[b](y, ys) = consla]((z,y), zip[a](xs,ys))
| (nil, cons[b)(y,ys)) = raise(ZipException)
| (consla)(z,xzs),nil) = raise(ZipException)

If the third clause in the above expression can be chosen, then (nil, cons[b](y, ys))
must match a value of type intList(n) = intList(n) for some natural number
n. Checking (nil, cons[b](y,ys)) against intList(n) x intList(n), we derive the
following for ¢ = (0 =mn,b: nat,b+ 1 =n).

(nil, cons[b](y,ys)) | intList(n) * intList(n) > (¢;y : int,ys : intList(b))

Notice that ¢ is inconsistent since ¢ |= L is satisfiable. Therefore, we know by
Lemma 1 that the third clause is unreachable. Similarly, the fourth clause is also
unreachable. We can thus eliminate the dead code when compiling the program.

3.2 Formalization

While the above informal presentation of dead code elimination is intuitive,
we have yet to demonstrate why this approach is correct and how it can be



I'z)=r

S(e)=H10a : 7.6(3)

oL c7]:0([@ = 7)) > [ 7]

Se) =@ : F.1>6G) ¢;Trhe:r[@— 7>
& Tk c[T)(e) : 8Gi[@ — T1) > e[ )(e)

(elim-var)

(elim-cons-wo)

e
— (elim-cons-w)

—¢; Tro 1> 0 (elim-unit)

¢;I'Fer:m1i>er ¢g;l'kFex:m>er
@' (e1,e2) : 71 x 72 > (e1, e2)
¢ Ietx] ¢bm =1 %
O L F oms : 71 = T2 > oms
pln>(d;I") ¢ [M"Fe:mm>e ¢ T'Fms:m = 1m>ms
o I'-(p=>e|ms):m1=>17> (p=>e|ms)
pdn> (¢ ¢, EL ¢;T'-ms:7m = 1> ms
;' (p=>e|ms): 11 =1 >ms
o I'te:mm>e ¢;'Fms:m1 =1 >ms
¢; ' - case e of ms: 12 > case ¢ of ms
d,a:v;I'Fe:T>e
¢; ' dazve: (Ha:vy.1)> da:vy.e
¢; e Ia:v1T>e dFi:y
¢; I'Feft] : T[a — 4] > efi]
¢;Nx:mbe:m>e
¢ I'Flamz:1ie:7i > >lamx:71i.e
o l'Fer:m =2 >e g lFe:m>er
&; ' ei(e) : 72 > eie2)
o I'Fei:mi e g Le:mbex:m>e
¢p;Flet x =e; in ey end: 72 > let x =e; in e2 end
gL firhu:T>u
o;'-(fix foru):7>f0x f:i1u

(elim-prod)

(elim-mat-empty)

(elim-mat)

(elim-mat-dead)

(elim-case)

(elim-ilam)

(elim-iapp)

(elim-let)

(elim-fix)

Fig. 4. The rules for dead code elimination




implemented. For this purpose, we formalize the approach with derivation rules.
A judgment of form ¢;I" - e : 7 > e means that an expression e of type 7
under ¢; I'" transforms into the expression e through dead code elimination. The
rules for deriving such a judgment are presented in Figure 4. Notice that the
rule (elim-mat-dead) is the only rule which eliminates dead code.

Proposition 1. We have the following.

1. If ;"' e : 7 is derivable, then ¢;I' e : 7 > e is also derivable.

2. if ;' e: 7> e and nq;- b Cle] : 1 are derivable, then -inq;- F Cle] : 1>
Cle] is also derivable.

3. If ;' ke : 7 > e is derivable, then both ¢;I'Fe: 7 and ;1" F e : 7 are
derivable.

Proof. (1) and (2) are straightforward, and (3) follows from structural induction
on the derivation of ¢;I'Fe: 7> e.

Proposition 1 (1) simply means that we can always choose not to eliminate any
code, and (2) means that dead code elimination is independent of context, and
(3) means that dead code elimination is type-preserving.

Lemma 2. (Substitution)

1. If both ¢; Iz : o ey : 11 > e1 and ¢;I' - ez : 7o > e are derivable, then
s0is ¢; 'k er[z = es] : 1 > eqz > ea].

2. If both ¢,a : v;T'F e : 7> e and ¢ b i : v are derivable, then so is
¢;Lla i) efla— i]: T[a— i] > e[a— i].

Proof. (1) and (2) follow from structural induction on the derivations of ¢; I, x :
Ta e 71 > e and ¢,a:v; ' e: 7> e, respectively.

Lemma 3. Assume that inq;-F e : 7> e is derivable.

1. If e =4 v is derivable, then e —4 v is derivable for some v such that
“ind; - F v 1T > v is also derivable.

2. If e <4 v is derivable, then e —4 v is derivable for some v such that
“ind; - F v 1T > w is also derivable.

Proof. (1) and (2) follow from structural induction on the derivations of e <4 v
and e <4 v, respectively, using both Lemma 1 and Lemma 2.

Theorem 2. If ;"' Fe: 7> e is derivable, then e = e holds.

Proof. Let C be a context such that both -jnq;- F Cle] : 1 and Cle] <4 () are
derivable. By Proposition 1, -ing;- - Cle] : 1 > Cle] is derivable. Hence, by
Lemma 3 (1), Cle] —q v is derivable for some v such that -ing;- F () : 1 > v.
This implies that v is (). Similarly, by Lemma 3 (2), we can prove that C[e] <4 ()
is derivable for every context C' such that both -nq;- F Cle] : 1 and Cle] <=4 ()
are derivable. Therefore, e = e holds.



4 Examples

We present some realistic examples in this section to demonstrate the effect
of dead code elimination through dependent types. Note that polymorphism is
allowed in this section.

4.1 The nth function

When applied to (I,n), the following nth function returns the nth element in
the list [ if n is less than the length of I and raises the Subscript exception
otherwise. This function is frequently called in functional programming, where
the use of lists is pervasive.

fun nth(nil, _) = raise Subscript
| nth(x::xs, n) = if n = 0 then x else nth(xs, n-1)

If we assign nth the following type, that is, we restrict the application of nth to
pairs (I,n) such that n is always less than the length of [,

{len:nat}{index:nat | index < len} ’a list(len) * int(index) -> ’a

then the first matching clause in the definition of nth is unreachable, and there-
fore can be safely eliminated. Note that we have refined the built-in type int into
infinitely many singleton types such that int (n) contains only n for each integer
n. Let us call this version nth_safe, and we have measured that nth_safe is
about 25% faster than nth on a Sparc 20 station running SML/NJ version 110.
The use of a similar idea to eliminate array bound checks can be found in [17].

4.2 An Evaluator for the Call-By-Value A-Calculus

The code in Figure 5 implements an evaluator for the pure call-by-value \-
calculus. We use de Bruijn’s notation to represent A-expressions. For example,
Az.\y.y(z) is represented as Lam(Lam(App (One, Shift(One)))). We then refine
the datatype lambda_exp into infinitely many types lambda_exp(n). For each
natural numbers n, lambda_exp (n) roughly stands for the type of all A-terms in
which there are at most n free variables.

If a value of type lambda_exp(n) * closure list(n) for some n matches
the last clause in the definition of cbv then it matches either pattern (One, nil)
or pattern (Shift _, nil). In either case, a contradiction is reached since a
value which matches either One or Shift _ can not be of type lambda_exp (0)
but nil is of type closure 1list(0). Therefore, the last clause can be safely
eliminated.

The programmer knows that the last clause is unreachable. After this is
mechanically verified, the programmer gains confidence in the above implemen-
tation. On the other hand, if the last clause could not be safely eliminated, it
would have been an indication of some program errors in the implementation.



datatype lambda_exp =
One | Shift of lambda_exp |
Lam of lambda_exp | App of lambda_exp * lambda_exp

datatype closure = Closure of lambda_exp * closure list

typeref lambda_exp of nat
with One <| {n:nat} lambda_exp(n+1)
| Shift <| {n:nat} lambda_exp(n) -> lambda_exp(n+1)
| Lam <| {n:nat} lambda_exp(n+l) -> lambda_exp(n)
| App <| {n:nat} lambda_exp(n) * lambda_exp(n) -> lambda_exp(n)
| Closure <| {n:nat} lambda_exp(n) * closure list(n) -> closure

exception Unreachable

fun callbyvalue(exp) = let
fun cbv(One, clo::_) = clo
| cbv(Shift(exp), _::env) = cbv(exp, env)
| cbv(exp as Lam _, env) = Closure(exp, env)
| cbv(App(expl, exp2), env) = let
val Closure(Lam(body), envl) = cbv(expl, env)
and clo = cbv(exp2, env)
in cbv(body, clo::envl) end
| cbv _ = raise Unreachable (* this can be safely eliminated *)
where cbv <| {n:nat} lambda_exp(n) * closure list(n) -> closure
in
cbv(exp, nil)
end
where callbyvalue <| lambda_exp(0) -> closure
(* Note: callbyvalue can only apply to CLOSED lambda expressions *)

Fig. 5. An evaluator for the call-by-value A-calculus

4.3 Other Examples

So far all the presented examples involve the use of lists, but this is not neces-
sary. We also have examples involving other data structures such as trees. For
instance, the reader can find in [19] a red/black tree implementation containing
unreachable matching clauses which can be eliminated in the same manner. In
general, unreachable matching clauses are abundant in practice, of which many
can be eliminated with our approach.

5 Related Work and Conclusion

It is beyond reasonable hope to mention even a moderate amount of research
related or similar to dead code or dead computation elimination because of the
vastness of the field. The reader can find further references in [8,1,7,13,10,



14,11,15]. Our approach to dead code elimination differs significantly from the
previous approaches in several aspects.

We have adopted a type-based approach while most of the previous ap-
proaches are based on flow analysis. This gives us a great advantage when the
issue of crossing module boundaries is concerned. For instance, after assigning
the zip function the type

{n:nat} ’a list(n) * ’b list(n) -> (’a * ’b) list(n)

and eliminating the dead code, we can use this function anywhere as long as type-
checking is passed. On the other hand, an approach based on flow analysis usually
analyzes an instance of a function call and check whether there is dead code
associated with this particular function call. One may argue that our approach
must be supported by a dependent type system while an approach based on flow
analysis need not. However, there would be no dead code in the zip function if we
had not assigned it the above dependent type. It is the use of a dependent type
system that enables us to exploit opportunities which do not exist otherwise.

Also we are primarily concerned with program error detection while most of
the previous approaches were mainly designed for compiler optimization, which
is only our secondary goal. Again, this is largely due to our adoption of a type-
based approach.

We emphasize that our approach must rely on the type annotations supplied
by the programmer in order to detect redundant matching clauses. It seems
exceedingly difficult at this moment to find a procedure which can synthesize
type annotations automatically. For instance, without the type annotation in
the zip_safe example, it is unclear whether the programmer intends to apply
the function to a pair lists of unequal lengths, and therefore unclear whether the
last matching clause is redundant.

Our approach is most closely related to the research on refinement types [4,
2], which also aims for assigning programs more accurate types. However, the
restricted form of dependent types in DML allows the programmer to form types
which are not captured by the regular tree grammar [5], e.g., the type of all pairs
of lists of equal length, but this is beyond the reach of refinement types. The
price we pay is the loss of principal types, which may consequently lead to a
more involved type-checking algorithm.

We have experimented our approach to dead code elimination in a prototype
implementation of a type-checker for DML. We plan to incorporate this approach
into the compiler for DML which we are building on top of Caml-light. Clearly,
our approach can also be readily adapted to detecting uncaught exceptions [21],
and we expect it to work well in this direction when combined with the approach
in [3]. We shall report the work in the future.
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