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Abstract. There are two extrapolation methods methods which are de-
scribed in almost all numerical analysis books: Richardson’s extrapola-
tion method (which forms the basic ingredient for Romberg’s method),
and Aitken’s ∆2 process. In this paper, we consider the historical roots
of these two procedures (in fact, the computation of π) with an empha-
sis on the pioneers of this domain of numerical analysis. Finally, we will
discuss some more recent developments and applications.

Richardson’s extrapolation method and Aitken’s ∆2 process are certainly the
most well known methods for the acceleration of a slowly converging sequence.
Both are based on the idea of extrapolation, and they have their historical roots
in the computation of π.

We will first explain what extrapolation methods are, and how they lead to
sequence transformations for accelerating the convergence. Then, we will present
the history of Richardson’s extrapolation method, of Romberg’s method, and of
Aitken’s ∆2 process, with an emphasis on the lives and the works of the pioneers
of these topics.

The study of extrapolation methods and convergence acceleration algorithms
now forms an important domain of numerical analysis having many applications;
see [15, 24, 71, 77, 78, 80]. More details about its mathematical developments and
its history could be found in [11, 13, 26, 34].

1 Interpolation, extrapolation, sequence transformations

Assume that the values of a function f are known at k distinct points xi, that is

yi = f(xi), i = 0, . . . , k − 1.

Choose a function Fk depending on k parameters a0, . . . , ak−1, and belonging to
some class of functions Fk (for example polynomials of degree k − 1).

What is interpolation? Compute ae
0, . . . , a

e
k−1 solution of the system of equa-

tions (the meaning of the superscript .e will appear below)

Fk(ae
0, . . . , a

e
k−1, xi) = yi, i = 0, . . . , k − 1. (1.1)
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Then, for any ∀x ∈ I = [mini xi, maxi xi], we say that f has been interpolated
by Fk ∈ Fk, and we have Fk(ae

0, . . . , a
e
k−1, x) ' f(x). Moreover, if f ∈ Fk, then,

for all x, Fk(ae
0, . . . , a

e
k−1, x) = f(x).

What is extrapolation? Now choose xe /∈ I, and compute

ye = Fk(ae
0, . . . , a

e
k−1, x

e),

where the coefficients ae
i are those computed as the solution of the system (1.1).

The function f has been extrapolated by Fk ∈ Fk at the point xe, and ye ' f(xe).
Again, if f ∈ Fk, then Fk(ae

0, . . . , a
e
k−1, x

e) = f(xe).

What is a sequence transformation? Assume now, without restricting the
generality, that we have an infinite decreasing sequence of points x0 > x1 >
x2 > · · · > x∗ such that limn→∞ xn = x∗. We set yi = f(xi), i = 0, 1, . . ., and we
also assume that limn→∞ yn = limn→∞ f(xn) = y∗. For any fixed n, compute
a
(n)
0 , . . . , a

(n)
k−1 solution of the system

Fk(a(n)
0 , . . . , a

(n)
k−1, xn+i) = yn+i, i = 0, . . . , k − 1.

Then, compute Fk(a(n)
0 , . . . , a

(n)
k−1, x

∗). This value obviously depends on n and,
for that reason, it will be denoted by zn. Then, the sequence (yn) has been
transformed into the new sequence (zn), and T : (yn) 7−→ (zn) is called a se-
quence transformation. As we can see, it’s a kind of moving extrapolation or,
if one prefers, it is a sequence of extrapolated values based on different points.
Obviously, if f ∈ Fk, then, for all n, zn = y∗. Instead of a decreasing sequence
(xn), we can take an increasing one, for example (xn = n).

A sequence transformation can be defined without any reference to a function
f , but only to a sequence (yn). An important concept is the notion of kernel of
a sequence transformation: it is the set KT of sequences (yn) such that, for all
n, zn = y∗. If (yn) converges, y∗ is its limit, otherwise it is called its antilimit.

For readers who are not familiar with the topics of interpolation, extrapola-
tion, and sequence transformations, these notions will be explained again at the
beginning of Section 3 via the construction of Aitken’s ∆2 process.

When are extrapolation and sequence transformations powerful? As
explained above, extrapolation and sequence transformations are based on the
choice of the the class of functions Fk. Thus, if the function f to be extrapolated
behaves like a function of Fk, the extrapolated value ye will be a good approxi-
mation of f(xe). Similarly, the sequence (zn) will converge to y∗ faster than the
sequence (yn), that is limn→∞(zn− y∗)/(yn− y∗) = 0, if (yn) is close, in a sense
to be defined (an open problem), to KT .

For each sequence transformation, there are sufficient conditions so that (zn)
converges to the same limit as (yn), but faster. It was proved that a universal
sequence transformation able to accelerate the convergence of all converging
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sequences cannot exist [25]. This is even true for some classes of sequences such
as the monotonically decreasing ones. This negative result does not mean that
a particular sequence belonging to such a class cannot be accelerated, but that
an algorithm for accelerating all of them cannot exist.

2 Richardson’s extrapolation

The procedure named after Richardson consists in extrapolation at xe = 0 by
a polynomial. It is carried out by means of the Neville-Aitken scheme for the
recursive computation of interpolation polynomials.

2.1 First contributions

The number π can be approximated by considering polygons with n sides in-
scribed into and circumscribed to a circle. With n = 96, Archimedes obtained
two significant figures. He also proved, by geometrical arguments, that the area
of a circle is equal to rp/2, where r is its radius and p its perimeter.

In 1596, Adriaan van Roomen, also called Adrianus Romanus (Leuven, 1561
- Mainz, 1615), obtained 15 figures with n = 230 while, in 1610, Ludolph van
Ceulen (Hildesheim, 1540 - Leiden, 1610), with the help of his student Pieter Cor-
nelisz (Amsterdam, 1581 - The Hague, 1647), gave 36 figures by using n = 262.
According to the Dutch mathematician David Bierens de Haan (1822 - 1895),
these values were, in fact, obtained at about the same time. Van Ceulen’s result
was carved on his tombstone in the St. Peters church in Leiden. His work was
continued in 1616 by Philips van Lansbergen (Ghent, 1561 - Middleburg, 1632)
who held him in high esteem. He was a minister who published books on mathe-
matics and astronomy where he supported Copernic’s theories. However, he did
not accept Kepler’s theory of elliptic orbits. He suggested the approximation

2π ' p2n + (p2n − pn)
p2n − 4

pn
,

where pn is the perimeter of the regular n-gons inscribed in the unit circle. He
obtained π with 28 exacts decimal figures. The Dutch astronomer Willebrord
Snel van Royen (Leiden, 1580 - Leiden, 1626), known as Snellius, was the intro-
ducer of the method of triangulation for measuring the length of the meridian.
He also proposed, in 1621, the lower and upper bounds

3p2
2n

2p2n + pn
< 2π <

p2n(p2n + 2pn)
3pn

.

These formulae were preparing the ground for the next step.

2.2 C. Huygens

In 1654, Christiaan Huygens (The Hague, 1629 - id., 1695), in his De Circuli
Magnitudine Inventa [33], proved 16 theorems or lemmas on the geometry of in-
scribed and circumscribed regular polygons. In particular, he gave the difference
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between the areas of the polygon with 2n sides and that with n sides. Let ac

and an be the areas of the circle and of the n-gons, respectively. He proved that
(see [50] for an analysis of the proof)

ac = an + (a2n − an) + (a4n − a2n) + (a8n − a4n) + · · ·
> an + (a2n − an) + (a2n − an)/4 + (a2n − an)/16 + · · ·
= a2n + (a2n − an)(1/4 + 1/16 + · · · ).

Then Huygens refers to Archimedes when stating that the sum of this geometric
series is 1/3, thus leading to

ac > a2n +
a2n − an

3
.

We have

an =
1
2
n sin

(
2π

n

)
< π < An = n tan

(π

n

)
,

where An is the area of the circumscribed n-gons. Series expansions of trigono-
metric functions were not available to Huygens. However

an = π − 2π3

3n2
+

2π5

15n4
− 4π7

315n6
+ · · · ,

and so Huygens’ lower bound is such that

a2n +
a2n − an

3
= π − 8π5

15 · 16n4
+

16π7

63 · 64n6
− · · ·

Similarly

An = π +
π3

2n2
+

2π5

15n4
+

17π7

315n6
+ · · ·

and it follows

A2n +
A2n −An

3
= π − 8π5

15 · 16n4
− 68π7

63 · 64n6
− · · · ,

which is also a lower bound for π, but slightly poorer than the previous one.

Thus, Huygens’ formulae for lower bounds are exactly those obtained by the
first step of Richardson’s extrapolation method. Moreover, in order to obtain an
upper bound, he proposed

An − An − an

3
= π +

2π5

15n4
+ · · · ,

whose error is bigger than for the lower bounds but uses only polygons with
n sides instead of 2n. With n = 230, this last formula doubles (up to 35) the
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number of exact digits of π. In letters to Frans van Schooten (Leiden, 1615 - id.,
1660) and Daniel Lipstorp (1631 - 1684), he claimed that he was able to triple
the number of exact decimals. Therefore, Huygens achieved approximations of
π which are even better than those given by Richardson’s extrapolation!

Huygens’ method was later used by Jacques Frédéric Saigey in 1856 and 1859
[61]. He considered the three approximations

A′n = A2n +
1
3
(A2n −An)

A′′n = A′2n +
1
15

(A′2n −A′n)

A′′′n = A′′2n +
1
63

(A′′2n −A′′n)

which are similar to those that will be given later by Romberg in the context of
accelerating the convergence of the trapezoidal rule.

Saigey was born in Montbéliard in 1797. He studied at the École Normale
Supérieure in Paris, but the school was closed in June 1822 by the regime of Louis
XVIII. Saigey became the secretary of Victor Cousin and helped him to publish
the volume V of Descartes’ complete works. Then, he became one of the main
editors of the journal Bulletin des Sciences Mathématiques. He published several
papers in mathematics and physics, but he was mostly known for his elementary
treatises and memoranda which had several editions. He died in Paris in 1871.

In 1903, Robert Moir Milne (1873 - ?) applied Huygens’ ideas for computing
π [43], as also did Karl Kommerell (1871 - 1948) in his book of 1936 [36]. As ex-
plained in [76], Kommerell can be considered as the real discoverer of Romberg’s
method since he suggested the repeated use of Richardson’s rule, although it
was in a different context.

2.3 L.F. Richardson

In 1910, Lewis Fry Richardson (1881 - 1953) suggested to eliminate the first error
term in the central differences formulæ given by William Fleetwood Sheppard
(Sydney, 1863 - 1936) [69] by using several values of the stepsize. He wrote [52]

... the errors of the integral and of any differential expressions derived
from it, due to using the simple central differences of §1.1 instead of the
differential coefficients, are of the form

h2f2(x, y, z) + h4f4(x, y, z) + h6f6(x, y, z) + &tc.

Consequently, if the equation be integrated for several different values of
h, extrapolation on the supposition that the error is of this form will give
numbers very close to the infinitesimal integral.

In 1927, Richardson called this procedure the deferred approach to the limit
[55]. Let us quote him
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Confining attention to problems involving a single independent variable
x, let h be the “step”, that is to say, the difference of x which is used in
the arithmetic, and let φ(x, h) be the solution of the problem in differ-
ences. Let f(x) be the solution of the analogous problem in the infinites-
imal calculus. It is f(x) which we want to know, and φ(x, h) which is
known for several values of h. A theory, published in 1910, but too brief
and vague, has suggested that, if the differences are “centered” then

φ(x, h) = f(x) + h2f2(x) + h4f4(x) + h6f6(x)...to infinity... (1)

odd powers of h being absent. The functions f2(x), f4(x), f6(x) are usu-
ally unknown. Numerous arithmetical examples have confirmed the ab-
sence of odd powers, and have shown that it is often easy to perform the
arithmetic with several values of h so small that f(x)+h2f2(x) is a good
approximation to the sum to infinity of the series in (1).
If generally true, this would be very useful, for it would mean that if we
have found two solutions for unequal steps h1, h2, then by eliminating
f2(x) we would obtain the desired f(x) in the form

f(x) =
h2

2φ(x, h1)− h2
1φ(x, h2)

h2
2 − h2

1

. (2)

This process represented by the formula (2) will be named the “h2-extra-
polation”.
If the difference problem has been solved for three unequal values of h it is
possible to write three equations of the type (1) for h1, h2, h3, retaining
the term h4f4(x). Then f(x) is found by eliminating both f2(x) and
f4(x). This process will be named the “h4-extrapolation”.

Let us mention that Richardson referred to a paper by Nikolai Nikolaevich
Bogolyubov (Nijni-Novgorod, 1909 - Moscow, 1992) and Nikolai Mitrofanovich
Krylov (Saint Petersburg, 1879 - Moscow, 1955) of 1926 where the deferred
approach to the limit can already be found [7].

In the same paper, Richardson used this technique for solving a 6th order
differential eigenvalue problem. Richardson extrapolation consists in fact in com-
puting the value at 0, denoted by T

(n)
k , of the interpolation polynomial of the de-

gree at most k which passes through the points (xn, S(xn)), . . . , (xn+k, S(xn+k)).
Thus, using the Neville-Aitken scheme for these interpolation polynomials, the
numbers T

(n)
k can be recursively computed by the formula

T
(n)
k+1 =

xn+k+1T
(n)
k − xnT

(n+1)
k

xn+k+1 − xn
, k, n = 0, 1, . . . (2.1)

with T
(n)
0 = S(xn) for n = 0, 1, . . ..

Extensions of the Richardson extrapolation process are reviewed in [15, 71],
and many applications are discussed in [39].
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Lewis Fry (the maiden name of his mother) Richardson was born on October
11, 1881 in Newcastle upon Tyne, England, the youngest of seven children in a
Quaker family. He early showed an independent mind and had an empirical ap-
proach. In 1898, he entered the Durham College of Science where he took courses
in mathematics, physics, chemistry, botany, and zoology. Then, in 1900, he went
to King’s College in Cambridge, and followed the physics lectures of Joseph John
Thompson (Cheetham Hill near Manchester, 1856 - Cambridge, 1940), the dis-
coverer of the electron. He graduated with a first-class degree in 1903. He spent
the next ten years holding a series of positions in various academic and industrial
laboratories. When serving as a chemist at the National Peat Industry Ltd., he
had to study the percolation of water. The process was described by the Laplace
equation on an irregular domain and Richardson used finite differences, and ex-
trapolation. But it was only after much deliberation and correspondence that
his paper was accepted for publication [52]. He submitted this work for a D.Sc.
and a fellowship at Cambridge, but it was rejected. The ideas were too new,
and the mathematics were considered as “approximate mathematics”! Hence,
Richardson never worked in any of the main academic research centers. This
isolation probably affected him. For some time, he worked with the well-known
statistician Karl Pearson (London, 1857 - Coldharbour, 1936), and became to
be interested in “living things”.

In 1913, Richardson became Superintendent of the Eskdalemuir Observatory
in southern Scotland. He had no experience in meteorology, but was appointed
to bring some theory in its understanding. He again made use of finite differ-
ences. Although he was certainly aware of the difficulty of the problem since
he estimated at 64.000 the number of people that have to be involved in the
computations in order to obtain the prediction of tomorrow’s weather before
day actually began, it seems that he did not realize that the problem was ill-
conditioned. He also began to write his book on this topic [53]. The quote at the
end of its preface is amusing.

This investigation grew out of a study of finite differences and fist took
shape in 1911 as the fantasy which is now relegated to Chap. 11/2. Se-
rious attention to the problem was begun in 1913 at Eskdalemuir Ob-
servatory with the permission and encouragement of Sir Napier Shaw,
then Director of the Meteorological Office, to whom I am greatly in-
debted for facilities, informations and ideas. I wish to thank Mr. W.H.
Dines, F.R.S., for his interest in some early arithmetical experiments,
and Dr. Crichton Mitchell, F.R.S.E., for some criticisms of the first
draft. The arithmetical reduction of the balloon, and other observations,
was done with much help from my wife. In May 1916 the manuscript was
communicated by Sir Napier Shaw to the Royal Society, which generously
voted £100 towards to cost of its publication. The manuscript was re-
vised and the detailed example of Chap. IX was worked out in France in
the intervals of transporting wounded in 1916-1918. During the battle of
Champagne in April 1917 the working copy was sent to the rear, where
it became lost, to be re-discovered some months later under a heap of
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coal. In 1919, as printing was delayed by the legacy of the war, various
excrescences were removed for separate publication, and an introductory
example was added. This was done at Benson, where I had again the
good fortune to be able to discuss the hypotheses with Mr. W.H. Dines.
The whole work has been thoroughly revised in 1920, 1921. As the cost
of printing had by this time much increased, an application was made to
Dr. G.C. Simpson, F.R.S., for a further grant in aid, and the sum of
fifty pounds was provided by the Meteorological Office.

As Richardson wrote, on May 16, 1916 he resigned and joined the Friends’
Ambulance Unit (a Quaker organisation) in France. He began to think about
the causes of wars and how to prevent them. He suggested that the animosity
between two countries could be measured, and that some differential equations
are involved into the process. He published a book on these ideas [54], and then
returned to weather prediction.

Along the years, Richardson made important contributions to fluid dynamics,
in particular to eddy-diffusion in the atmosphere. The so-called “Richardson
number” is a fundamental quantity involving gradients of temperature and wind
velocity.

In 1920, he became a Lecturer in mathematics and physics at the Westmin-
ster Training College, an institution training prospective school teachers up to
a bachelor’s degree. In 1926, he changed again his field of research to psychol-
ogy where he wanted to apply the ideas and the methods of mathematics and
physics. He established that many sensations are quantifiable, he found methods
for measuring them, and modelled them by equations. The same year, he was
elected as a Fellow of the Royal Society of London.

Richardson left the Westminster Training College in 1929 for the position of
Principal at the Technical College in Paisley, an industrial city near Glasgow.
Although he had to teach sixteen hours a week, he continued his research but
came back to the study of the causes of wars and their prevention. He prepared
a model for the tendencies of nations to prepare for wars, and worked out its
applications using historical data from the previous conflicts. He also made pre-
dictions for 1935, and showed that the situation was unstable, which could only
be prevented by a change in the nation’s policies. Richardson wanted to “see
whether there is any statistical connection between war, riot and murder”. He
began to accumulate such data [57], and decided to search for a relation between
the probability of two countries going to war and the length of their common
border. To his surprise, the lengths of the borders were varying from one source
to another. Therefore, he investigated how to measure the length of a border,
and he realized that it highly depends on the length of the ruler. Using a small
ruler allows to follow more wiggles, more irregularities, than a long one which
cuts the details. Thus, the smaller the ruler, the larger the result. The relation
between the length of the border and that of the ruler leads to a new mathe-
matical measure of wiggliness. At that time, Richardson’s results were ignored
by the scientific community, and they were only published posthumously [58].
Today, they are considered to be at the origin of fractals.
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In 1943, Richardson and his wife moved to their last home at Kilmun, 25
miles from Glasgow. He returned to his research on differential equations, and
solved the associated system of linear equations by the so-called Richardson’s
method [56]. He mentioned that the idea was suggested to him in 1948 by Arnold
Lubin. At home, Richardson was also constructing an analogous computer for
his meteorological computations. He died on September 30, 1953 in Kilmun.

Richardson was a very original character whose contributions to many differ-
ent fields were prominent but, unfortunately, not appreciated at their real values
at his epoch; see [32] for details.

2.4 W. Romberg

Let us now come to the procedures for improving the accuracy of the trapezoidal
rule for computing approximations to a definite integral. If the function to be
integrated is sufficiently differentiable, the error of the trapezoidal rule is given
by the Euler-Maclaurin expansion. In 1742, Colin Maclaurin (Kilmodan, 1698
- Edinburgh, 1746) [38] showed that the precision could be improved by linear
combinations of the results obtained with various stepsizes. His procedure can
be interpreted as a preliminary version of Romberg’s method; see [21] for a
discussion.

In 1900, Sheppard used an elimination strategy in the Euler-Maclaurin quadra-
ture formula, with hn = rnh and 1 = r0 < r1 < r2 < · · · , for producing a better
approximation [70]. In 1952, Mario Salvadori (Rome, 1907 - 1997), an architect
and structural engineer, and Melvin L. Baron (1927 - 1997), a civil engineer,
proposed to use Richardson’s deferred approach to the limit for improving the
trapezoidal rule [62]. This new approximation was obtained as a linear combi-
nation of the initial results.

In 1955, Werner Romberg was the first to use repeatedly an elimination
approach for improving the accuracy of the trapezoidal rule [59]. He gave the
well known formula

T
(n)
k+1 =

4k+1T
(n+1)
k − T

(n)
k

4k+1 − 1
,

where T
(n)
0 is the result obtained by the trapezoidal rule with the stepsize h0/2n.

In his paper, Romberg refers to the book of Lothar Collatz (Arnsberg, Westfalia,
1910 - Varna, 1990) of 1951 [22].

In 1960, Eduard L. Stiefel (1909 - 1978), in his inaugural address as the Pres-
ident of the ifip congress in Munich, draws a line from Archimedes to Romberg.
The procedure became widely known after the rigorous error analysis given in
1961 by Friedrich L. Bauer (born 1924 in Regensburg) [6] and the synthesis of
Stiefel [75]. Romberg’s derivation of his process was mainly heuristic. It was
proved by Pierre-Jean Laurent in 1963 [37] that the process comes out, in fact,
from the Richardson process when taking xn = h2

n and hn = h0/2n. Laurent
also gave the condition on the sequence (hn) that there exists α < 1 such that
∀n, hn+1/hn ≤ α in order that the sequences (T (n)

k ) tend to the exact value of
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the definite integral to be computed either when k or n tends to infinity. The
case of a harmonic sequence of steps is studied in [23, p. 52]. Romberg’s work
on the extrapolation of the trapezoidal rule has been continued Tore H̊avie for
less regular integrands [28].

Werner Romberg was born on May 16, 1909 in Berlin. In 1928, he started to
study physics and mathematics in Heidelberg where the Nobel laureate Philip
Lenard (Pozsony, Pressburg, 1862 - Messelhausen, 1947) was still quite influen-
tial. After two years, Romberg decided to go to the Ludwig-Maximilians Univer-
sity in Munich. He followed the mathematics courses of Constantin Carathéodory
(Berlin, 1873 - Munich, 1950) and Oskar Perron (Frankenthal, Pfalz, 1880 - Mu-
nich, 1975), and had physics lectures by Arnold Sommerfeld (Königsberg, 1868
- Munich, 1951), who became his advisor. In 1933, he defended his thesis Zur
Polarisation des Kanalstrahllichtes (On the polarization of canal jet rays). The
same year, he had to leave Germany and went to the USSR. He stayed at the
Department of Physics and Technology in Dnepropetrovsk from 1934 to 1937 as
a theoretical physicist. He was briefly at the Institute of Astrophysics in Prag in
1938, but he had to escape from there. Then, he got a position in Oslo in the au-
tumn of 1938 as the assistant of the physicist Egil Andersen Hylleraas (Engerdal,
1898 - 1965). He also worked for a short period with Johan Holtsmark (1894 -
1975), who built a Van de Graaff generator (the second one in Europe and the
first particle accelerator in Scandinavia) for nuclear disintegration between 1933
and 1937 at Norwegian Institute of Technology (nth) in Trondheim. Romberg
had again to escape for some time to Uppsala during the German occupation
of Norway. In 1949, he joined the nth in Trondheim as an associate professor
in physics. In 1960, he was appointed head of the Applied Mathematics Depart-
ment at the nth. He organized a teaching program in applied mathematics, and
began to build a research group in numerical analysis. He was strongly involved
in the introduction of digital computers in Norway, and in the installation of
the first computer (gier) at nth. He became a Norwegian citizen and stayed
Norwegian until the end of his life.

In 1968, Romberg came back to Heidelberg where he accepted a professorship.
He built up a group in numerical mathematics, at that time quite underdeveloped
in Heidelberg, and was the head of the Computing Center of the University from
1969 to 1975. Romberg retired in 1978, and died on February 5, 2003.

3 Aitken’s process and Steffensen’s method

Let (Sn) be a sequence of scalars converging to S. The most popular nonlinear
acceleration method is certainly Aitken’s ∆2 process which consists in building
a new sequence (Tn) by

Tn =
SnSn+2 − S2

n+1

Sn+2 − 2Sn+1 + Sn
, n = 0, 1, . . . (3.1)
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For deriving this formula, Aitken assumed that he had a sequence (Sn) of
the form

Sn = S + αλn, n = 0, 1, . . . (3.2)

with λ 6= 1, and he wanted to compute S (the limit of the sequence if |λ| < 1, its
antilimit otherwise). Then, ∆Sn = αλn(λ− 1), and λ = ∆Sn+1/∆Sn. It follows

S = Sn − ∆Sn

(1− λ)
= Sn − ∆Sn

(1−∆Sn+1/∆Sn)
=

SnSn+2 − S2
n+1

Sn+2 − 2Sn+1 + Sn
.

If (Sn) has not the form (3.2), the preceding formula can still be used, but
the result is no longer equal to S. It depends on n, and it is denoted by Tn

as in (3.1). This construction of Aitken’s process illustrates how interpolation,
extrapolation, and sequence transformations are related. Indeed, let (Sn) be any
sequence. We are looking for S, α and λ satisfying the interpolation conditions
Si = S + αλi for i = n, n + 1, n + 2. Then, the unknown S is taken as the limit
when n tends to infinity of the model sequence (S+αλn). This is an extrapolation
process. But, since the value of S obtained in this procedure depends of n, it has
been denoted by (Sn), and, thus, the given sequence (Sn) has been transformed
into the new sequence (Tn).

Thus, by construction, the kernel of Aitken’s process consists in sequences
of the form (3.2), or, in other terms, of sequences satisfying a first order linear
difference equation

a0(Sn − S) + a1(Sn+1 − S) = 0, n = 0, 1, . . .

with a0 + a1 6= 0.
If (Sn) is linearly converging, i.e. if a number λ 6= 1 exists such that

lim
n→∞

Sn+1 − S

Sn − S
= λ,

then (Tn) converges to S faster than (Sn). This result illustrates the fact men-
tioned above that sequences not too far away from the kernel (in a meaning to be
defined) are accelerated. Acceleration is also obtained for some subclasses of se-
quences satisfying the preceding property with λ = 1 (logarithmically converging
sequences).

In a paper of 1937 [2], Aitken used his process for accelerating the convergence
of the power method (Rayleigh quotients) for computing the dominant eigenvalue
of a matrix. A section is entitled The δ2-process for accelerating convergence, and,
on pages 291-292, he wrote

For practical computation it may be remembered by the following memo-
ria technica: product of outers minors [minus] square of middle, divided
by sum of outers minus double of middle.
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Aitken’s paper [2] also contains almost all the ideas that will be developed
later by Heinz Rutishauser (Weinfelden, 1918 - 1970) in his QD-algorithm [60].

Notice that Formula (3.1) is numerically unstable, and that one should prefer
the following one

Tn = Sn+1 +
(Sn+1 − Sn)(Sn+2 − Sn+1)

(Sn+1 − Sn)− (Sn+2 − Sn+1)
. (3.3)

It is well known that the fixed point iterative method due to Johan Frederik
Steffensen (1873-1961) in 1933 is based on Aitken’s process. However, Steffensen
does not quote Aitken in his paper, and his discovery seems to have been ob-
tained independently. Consider the computation of x such that x = f(x) and
the iterations xν+1 = f(xν). Steffensen writes [74]

In the linear interpolation formula with divided differences

f(x) = f(a0) + (x− a0)f(a0, a1) + (x− a0)(x− a1)f(x, a0, a1) (5)

we put aν = xν and obtain

f(x) = x1 + (x− x0)
x1 − x2

x0 − x1
+ R1

where

R1 = (x− x0)(x− x1)f(x, x0, x1). (6)

Replacing, on the left of (6), f(x) by x, we have

x = x1 + (x− x0)
x1 − x2

x0 − x1
+ R1

and solving for x, as if R1 were a constant, we obtain after a simple
reduction

x = x0 − (∆x0)2

∆2x0
+ R (7)

where

R = −(x− x0)(x− x1)
∆x0

∆2x0
f(x, x0, x1). (8)

If f(x) possesses a continuous second derivative, the remainder may be
written

R = −1
2
(x− x0)(x− x1)

∆x0

∆2x0
f ′′(ξ). (9)

The formula (7) is the desired result. The approximation obtained may
often be estimated by (9), but we shall make no use of this formula,
preferring to test the result by other methods. We shall therefore use as
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working formula the approximation

x = xν − (∆xν)2

∆2xν
(10)

where, according to the remark made above, xν may be any element of
the sequence.

Then, Steffensen gave several numerical examples where, after 3 iterations,
he restarted them from the approximation given by (10). In a footnote to page
64 (the first page of his paper), he wrote

The present notes had already been written when a paper by H. Holme
appeared in this journal (1932, pp. 225-250), covering to some extend
the same ground. Mr. Holme’s treatment of the subject differs, however,
so much from mine that I think there is room for both.

In his paper [31], Harald Holme was solving a fixed point problem due to
Birger Øivind Meidell (1882-1958) and related to the interest rate of loans [41].
He used linear interpolation passing through 3 consecutive iterates, and he ob-
tained a method quite close to Steffensen’s but different from it.

3.1 Seki Takakazu

In the fourth volume of his book Katsuyō Sanpō, published in 1674, Seki Takakazu
considered the perimeters ci of the polygons with 2i sides inscribed into a circle
of diameter 1. For deriving a better approximation of π, he used a method called
Yenri, which means principle (or theory) of the circle, and consists in the formula

c16 +
(c16 − c15)(c17 − c16)

(c16 − c15)− (c17 − c16)
.

This is exactly Aitken’s ∆2 process (as given by (3.3)) which leads to 12 exact
decimal digits while c17 has only 10. With

c15 = 3.1415926487769856708
c16 = 3.1415926523565913571
c17 = 3.1415926532889027755,

Seki obtained 3.14159265359 (π = 3, 14159265358979323846 . . .). His result is,
in fact, exact to 16 places. Seki did not explain how he got his formula but,
probably, setting a = c15, b = c16 = a + ar, and c = c17 = a + ar + ar2, he
obtained [30]

b +
(b− a)(c− b)

(b− a)− (c− b)
=

a

1− r
= a + ar + ar2 + ar3 + · · ·

The same method was used by his student Takaaki Takebe (1661 - 1716), who
developed it further. Seki also studied how to compute an arc of a circle, given
the chord, and he used again his formula for improving his first approximations.
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Seki Takakazu is considered as the greatest Japanese mathematician. He was
born in Fujioka in 1637 or in 1642. He was later adopted by the Seki family.
However, little is known about his life, but it seems that he was self-educated
and an infant prodigy in mathematics. In his book mentioned above, he intro-
duced a notation for representing unknowns and variables in equations, and he
solved fifteen problems which had been posed three years earlier by Kazuyuki
Sawaguchi (it was the habit to end a book by open problems). He anticipated
many discoveries of western mathematicians: determinants (1683, ten years be-
fore Leibniz) for solving systems of 2 or 3 linear equations, Bernoulli numbers,
Newton-Raphson method, and Newton interpolation formula. He studied the
solution of equations with negative and positive zeros, and, in 1685, he solved
the cubic equation 30 + 14x − 5x2 − x3 = 0 by the same method as Horner a
hundred years later. He was also interested in magic squares, and Diophantine
equations. He died in 1708.

3.2 A.C. Aitken

The sequence transformation defined by (3.1) was stated by Alexander Craig
Aitken in 1926 [1] who used it for accelerating the convergence of Daniel Bernoul-
li’s method of 1728 for the computation of the dominant zero z1 of the polynomial
a0z

n+· · ·+an−1z+an. The method imagined by Bernoulli consists in considering
the sequence Z1(t) = f(t+1)/f(t) generated from the recursion a0f(t+n)+· · ·+
anf(t) = 0, and whose limit is z1 (assuming that all other zeros of the polynomial
have a modulus strictly smaller than |z1|). With this condition, Aitken writes

∆Z1(t) tends to become a geometric sequence... of common ratio z2/z1.
Hence the derivations of Z1(t) from z1 will also tend to become a geomet-
ric sequence with the same common ratio. Thus a further approximate
solution is suggested, viz.

z1 − Z1(t + 2)
z1 − Z1(t + 1)

=
∆Z1(t + 1)

∆Z1(t)

and solving for z1 we are led to investigate the derived sequence

Z
(1)
1 (t) =

∣∣∣∣
Z1(t + 1) Z1(t + 2)

Z1(t) Z1(t + 1)

∣∣∣∣
∆2Z(t)

. (8.2)

This is exactly (3.1). Aitken claims that this new sequence converges geomet-
rically with the ratio (z2/z1)2 or z3/z1, and that the process can be repeated on
the sequence (Z(1)

1 (t). In a footnote, he says that Naegelsbach, in the course of
a very detailed investigation of Fürstenau method of solving equations, obtains
the formulæ (8.2) and (8.4), but only incidentally. The reference for the work of
Eduard Fürstenau is [27]. It must be pointed out that, on page 22 of his second
paper [44], Hans von Naegelsbach (1838 - ?) gave the stable formulation (3.3) of
the process.
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The process was also given by James Clerk Maxwell (Edinburgh, 1831 - Cam-
bridge, 1879) in his Treatise on Electricity and Magnetism of 1873 [40]. However,
neither Naegelsbach nor Maxwell used it for the purpose of acceleration. Maxwell
wanted to find the equilibrium position of a pointer oscillating with an exponen-
tially damped simple harmonic motion from three experimental measurements
(as in (3.2)).

Aitken was born in Dunedin, New Zealand, on April 1st, 1895. He attended
Otago’s High School from 1908 to 1912, where he was not particularly brillant.
But, at the age of 15, he realized that he had a real power in mental calculations,
and that his memory was extraordinary. He was able to recite the first 1000 dec-
imals of π, and to multiply two numbers of nine digits in a few seconds [72]. He
also knew the Aeneid by heart. He was also very good at several sports and be-
gan to study violin. He studied mathematics, French and Latin at the University
of Otago in 1913 and 1914. It seems that the professor of mathematics there,
David J. Richards, a “temperamental, eccentric Welshman”, was lacking of the
power to communicate his knowledge to the students, and Aitken’s interest in
mathematics lowered. Richards was trained as an engineer as well as mathemati-
cian, and was working as an engineer in Newcastle prior to his appointment to
the Chair of Mathematics at Otago in 1907, where he stayed until 1917.

Aitken volunteered in the Otago infantry during World War I, and he took
part in the Gallipoli landing and in the campaign in Egypt. Then, he was com-
missioned in the north of France, and was wounded in the shoulder and foot
during the battle on the river Somme. Did he met Richardson at this time?
After a stay in a London hospital, he was invalided home in 1917, and spent
one year of recovering in Dunedin where he wrote a first account of his memoirs
published later [4].

Aitken resumed his studies at Otago University, and graduated with first
class honours in languages, but only with second ones in mathematics. He mar-
ried Winifred Betts in 1920, and became a school teacher at his old Otago High
School. Richards’ successor in the Chair of Mathematics, Robert John Tainsh
Bell was born in 1877. He graduated from the University of Glasgow in 1898,
and was appointed Lecturer there three years later. He was awarded a D.Sc. in
1911, and was appointed Professor of Pure and Applied Mathematics at Otago
University in 1919. Bell was the only staff member in the Mathematics Depart-
ment, lecturing five days a week, each day from 8.00 am to 1.00 pm. He retired
in 1948, and died in 1963. When Bell required an assistant he called on Aitken.
He encouraged him to apply for a scholarship for studying with Edmund Taylor
Whittaker (Southport, 1873 - Edinburgh, 1956) at Edinburgh. Aitken left New
Zealand in 1923. His Ph.D. on the smoothing of data, completed in 1925, was
considered so outstanding that he was awarded a D.Sc. for it. The same year,
Aitken was appointed as a Lecturer at the University of Edinburgh where he
stayed for the rest of his life. But, the efforts for obtaining his degree led him to
a first severe breakdown in 1927, and then he was periodically affected by such
crisis. They were certainly in part due to his fantastic memory which did not
fade with time, and he was always remembering the horrors he saw during the
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war [5] (see also the biographical introduction by Peter C. Fenton given in this
volume).

In 1936, Aitken became a Reader in statistics, and he was elected a Fellow
of the Royal Society. In 1946, he was appointed to Whittaker’s Chair in Math-
ematics. In 1956, he received the prestigious Gunning Victoria Jubilee Prize of
the Royal Society of Edinburgh. In 1964, he was elected to the Royal Society of
Literature. Aitken died in Edinburgh on November 3, 1967.

3.3 J.F. Steffensen

Since the life of Steffensen is not so well-known, let us give some informations
about it following [49]. Johan Frederik Steffensen was born in Copenhagen on
February 28, 1873. His father was the Supreme Judge of the Danish Army, and
he, himself, took a degree in law at the University of Copenhagen. After a short
period in Fredericia in the eastern part of the Jutland peninsula in Denmark, he
returned to Copenhagen and began a career in insurance. He was self-taught in
mathematics and, in 1912, he got a Ph.D. for a study in number theory. After
three years as the managing director of a mutual life assurance society, he turned
to teach insurance mathematics at the University of Copenhagen, first as a Lec-
turer and, from 1923 to 1943, as a Professor. However, he was still continuing
to be interested in the world of affairs, and was an active member, and even
the Chairman, of several societies. He published around 100 research papers in
various fields of mathematics, and his book of 1927 [73] can be considered as one
of the first books in numerical analysis since its chapters cover interpolation in
one and several variables, numerical derivation, solution of differential equations,
and quadrature. Steffensen loved English literature, especially Shakespeare. He
died on December 20, 1961. For a photography of Steffensen, see [47].

3.4 D. Shanks

The idea of generalizing Aitken’s process is due to Daniel Shanks. He wanted
to construct a sequence transformation with a kernel consisting of sequences
satisfying, for all n,

a0(Sn − S) + a1(Sn+1 − S) + · · ·+ ak(Sn+k − S) = 0, (3.4)

with a0 +a1 + · · ·+ak 6= 0. Let us mention that a particular case of an arbitrary
value of k was already studied by Thomas H. O’Beirne in 1947 [48]. Writing the
relation (3.4) for the indexes n, n + 1, . . . , n + k leads to

∣∣∣∣∣∣∣∣∣

Sn − S Sn+1 − S · · · Sn+k − S
Sn+1 − S Sn+2 − S · · · Sn+k+1 − S

...
...

...
Sn+k − S Sn+k+1 − S · · · Sn+2k − S

∣∣∣∣∣∣∣∣∣
= 0.
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After elementary manipulations on the rows and columns of this determinant,
Shanks obtained

S = Hk+1(Sn)/Hk(∆2Sn), (3.5)

where ∆2Sn = Sn+2−2Sn+1 +Sn, and where Hk denotes a Hankel determinant
defined as

Hk(un) =

∣∣∣∣∣∣∣∣∣

un un+1 · · · un+k−1

un+1 un+2 · · · un+k

...
...

...
un+k−1 un+k · · · un+2k−2

∣∣∣∣∣∣∣∣∣
.

If (Sn) does not satisfy the relation (3.4), the ratio of determinants in the right
hand side of (3.5) could nevertheless be computed but, in this case, the result
obtained depends on n, and it is denoted by ek(Sn). Thus, the sequence (Sn)
has been transformed into the new sequence (ek(Sn)) for a fixed value of k or,
more generally, into a set of new sequences depending on k and n. This sequence
transformation is known as Shanks’ transformation. Let us also mention that
the same ratio of determinants was obtained by R.J. Schmidt in 1941 [63] while
studying a method for solving systems of linear equations.

Dan Shanks was born on January 17, 1917 in Chicago. In 1937, he received
a B.Sc. in physics. From 1941 to 1957, he was employed by the Naval Ordnance
Laboratory (nol) located in White Oak, Maryland. There, in 1949, he pub-
lished a Memorandum describing his transformation [65]. Without having done
any graduate work, he wanted to present this work to the Department of Math-
ematics of the University of Maryland as a Ph.D. thesis. But, he had first to
complete the degree requirements before his work could be examined as a the-
sis. Hence, it was only in 1954 that he obtained his Ph.D. which was published
in the Journal of Mathematical Physics [66]. Dan considered this paper as one
of his best two (the second one was his computation of π to 100.000 decimals
published with John Wrench [67]). After the nol, Shanks worked at the David
Taylor Model Basin in Bethesda where I met him in December 1976. Then, in
1977, he joined the University of Maryland where he stayed until his death on
September 6, 1996. Dan served as an editor of Mathematics of Computation from
1959 until his death. He was very influential in this position which also led him
to turn to number theory, a domain where his book became a classic [68]. More
details on Shanks life and works can be found in [79].

3.5 P. Wynn

The application of Shanks’ transformation to a sequence (Sn) needs the compu-
tation of the ratios of Hankel determinants given by (3.5). The numerators and
the denominators in this formula can be computed separately by the well-known
recurrence relation for Hankel determinants (a by-product of Sylvester’s determi-
nantal identity). This was the way O’Beirne and Shanks were implementing the
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transformation. However, in 1956, Peter Wynn (born in 1932) found a recursive
algorithm for that purpose, the ε-algorithm [81], whose rules are

ε
(n)
k+1 = ε

(n+1)
k−1 +

1

ε
(n+1)
k − ε

(n)
k

, k, n = 0, 1, . . .

with ε
(n)
−1 = 0 and ε

(n)
0 = Sn, for n = 0, 1, . . ..

These quantities are related to Shanks’ transformation by

ε
(n)
2k = ek(Sn),

and the quantities with an odd lower index satisfy ε
(n)
2k+1 = 1/ek(∆Sn). When

k = 1, Aitken’s process is recovered. The proof makes use of Schweins’ and
Sylvester’s determinantal identities that could be found, for example, in Aitken’s
small monograph [3].

Later, Wynn became Bauer’s assistant in Mainz, then he went to Amster-
dam, participating in the birth of algol, and then he held several researcher’s
positions in the United States, Canada, and Mexico. Wynn’s ε-algorithm is cer-
tainly the most important and well-known nonlinear acceleration procedure used
so far. Wynn dedicated many papers to the properties and the applications of
his ε-algorithm. With a vector generalization of it [82], he also opened the way
to special techniques for accelerating the convergence of sequences of vectors.
The ε-algorithm also provides a derivative free extension of Steffensen’s method
for the solution of systems of nonlinear equations [8] (see also [15]).

Let us mention the important connection between the ε-algorithm and Padé
approximants (and, thus, also with continued fractions). Let f be a formal power
series

f(x) =
∞∑

i=0

cixi.

If the ε-algorithm is applied to its partial sums, that is Sn = ε
(n)
0 =

∑n
i=0 cixi,

then ε
(n)
2k = [n + k/k]f (x), the Padé approximant of f with a numerator of

degree n + k and a denominator of degree k, a property exhibited by Shanks
[66]. This connection allowed Wynn to obtain a new relation, known as the
cross rule, between 5 adjacent approximants in the Padé table [83]. However,
the ε-algorithm and the cross rule give the values of the Padé approximants only
at the point x where the partial sums Sn were computed, while knowing the
coefficients of the numerators and the denominators of the Padé approximants
allows to compute them at any point.

4 And now?

In the last twenty years, Richardson’s and Romberg’s methods, Aitken’s process
and the ε-algorithm have been extended to more general kernels, or to acceler-
ate new classes of sequences. Very general extrapolation algorithms have been
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obtained; see, for example, [15, 71]. In particular, the E-algorithm, whose rules
obviously extend those of the Richardson process, was devised almost simultane-
ously by different people in different contexts [9, 29, 42, 64]. These procedures are
now used in many physical applications [78, 20]. An important new field of in-
vestigation is the connection between some convergence acceleration algorithms
and integrable systems, Toda lattices, the KdV equation, and solitons [45, 46,
51].

For the improvement of certain numerical techniques, it is often worth to
construct special extrapolation procedures built on the analysis of the process
to be accelerated (that is to construct extrapolations methods whose sequences
in the kernel mimic as closely as possible the exact behavior of the sequence
to be accelerated). For example, this was the methodology recently followed for
Tikhonov regularization techniques [18], estimations of the error for systems of
linear equations [12], treatment of the Gibbs phenomenon in Fourier and other
series [14], and ranking in web search [35, 19, 16, 17].

Acknowledgments: I would like to thank Prof. Douglas Rogers and Prof.
Haakon Waadeland for providing me informations on the life of W. Romberg. I
am grateful to Prof. Peter C. Fenton for biographical informations on R.J.T. Bell
and D.J. Richards. I am indebted to Michela Redivo-Zaglia for her efficient help
in web searching. Finally, I acknowledge the clarifying comments of the referee
(in particular her/his remarks on the interpolation/extrapolation interpretation
of Aitken’s process, and on Bierens de Haan, van Ceulen, van Roomen, and Seki)
which greatly helped to improve parts of the paper.

References

1. A.C. Aitken, On Bernoulli’s numerical solution of algebraic equations, Proc. R.
Soc. Edinb., 46 (1926) 289–305.

2. A.C. Aitken, Studies in practical mathematics. II. The evaluation of the latent
roots and latent vectors of a matrix, Proc. R. Soc. Edinb., 57 (1937) 269–304.

3. A.C. Aitken, Determinants and Matrices, Oliver and Boyd, Edinburgh and London,
1939.

4. A.C. Aitken, Gallipoli to the Somme. Recollections of a New Zealand Infantryman,
Oxford University Press, London, 1963.

5. A.C. Aitken, To Catch the Spirit. The Memoir of A.C. Aitken with a Biographical
Introduction by P.C. Fenton, University of Otago Press, Dunedin, 1995.
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