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Preface

The main purpose of the present treatise is to give an account of some of the
topics in algebraic geometry which while having occupied the minds of many
mathematicians in previous generations have fallen out of fashion in modern
times. Often in the history of mathematics new ideas and techniques make the
work of previous generations of researchers obsolete, especially this applies
to the foundations of the subject and the fundamental general theoretical facts
used heavily in research. Even the greatest achievements of the past genera-
tions which can be found for example in the work of F. Severi on algebraic
cycles or in the work of O. Zariski’s in the theory of algebraic surfaces have
been greatly generalized and clarified so that they now remain only of histor-
ical interest. In contrast, the fact that a nonsingular cubic surface has 27 lines
or that a plane quartic has 28 bitangents is something that cannot be improved
upon and continues to fascinate modern geometers. One of the goals of this
present work is then to save from oblivion the work of many mathematicians
who discovered these classic tenets and many other beautiful results.

In writing this book the greatest challenge the author has faced was distilling
the material down to what should be covered. The number of concrete facts,
examples of special varieties and beautiful geometric constructions that have
accumulated during the classical period of development of algebraic geometry
is enormous and what the reader is going to find in the book is really only a
tip of the iceberg; a work that is sort of a taste sampler of classical algebraic
geometry. It avoids most of the material found in other modern books on the
subject, such as, for exampld,(] where one can find many of the classical
results on algebraic curves. Instead, it tries to assemble or, in other words, to
create a compendium of material that either cannot be found, is too dispersed to
be found easily, or is simply not treated adequately by contemporary research
papers. On the other hand, while most of the material treated in the book exists
in classical treatises in algebraic geometry, their somewhat archaic terminology
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and what is by now completely forgotten background knowledge makes these
books useful to but a handful of experts in the classical literature. Lastly, one

must admit that the personal taste of the author also has much sway in the
choice of material.

The reader should be warned that the book is by ho means an introduction
to algebraic geometry. Although some of the exposition can be followed with
only a minimum background in algebraic geometry, for example, based on
Shafarevich’s book577], it often relies on current cohomological techniques,
such as those found in Hartshorne’s bo8&J]. The idea was to reconstruct
a result by using modern techniques but not necessarily its original proof. For
one, the ingenious geometric constructions in those proofs were often beyond
the authors abilities to follow them completely. Understandably, the price of
this was often to replace a beautiful geometric argument with a dull cohomo-
logical one. For those looking for a less demanding sample of some of the
topics covered in the book the recent beautiful ba2® may be of great use.

No attempt has been made to give a complete bibliography. To give an idea
of such an enormous task one could mention that the report on the status of
topics in algebraic geometry submitted to the National Research Council in
Washington in 1928582 contains more than 500 items of bibliography by
130 different authors only in the subject of planar Cremona transformations
(covered in one of the chapters of the present book.) Another example is the
bibliography on cubic surfaces compiled by J. E. H8Rf in 1896 which
alone contains 205 titles. Meyer's articé2[H cites around 130 papers pub-
lished 1896-1928. The title search in MathSciNet reveals more than 200 papers
refereed since 1940, many of them published only in the last twenty years. How
sad it is when one considers the impossibility of saving from oblivion so many
names of researchers of the past years who have contributed so much to our
subject.

A word about exercises: some of them are easy and follow from the defi-
nitions, some of them are hard and are meant to provide additional facts not
covered in the main text. In this case we indicate the sources for the statements
and solutions.

| am very grateful to many people for their comments and corrections to
many previous versions of the manuscript. | am especially thankful to Sergey
Tikhomirov whose help in mathematical editing of the book was essential for
getting rid of many mistakes in the previous versions. For all the errors still
found in the book the author bears sole responsibility.
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1
Polarity

1.1 Polar hypersurfaces

1.1.1 The polar pairing

We will take C as the base field, although many constructions in this book

work over an arbitrary algebraically closed field.

We will usually denote byF a vector space of dimension+ 1. Its dual
vector space will be denoted " .

Let S(F) be thesymmetric algebraf E, the quotient of the tensor algebra

T(E) = ®4>0E%? by the two-sided ideal generated by tensors of the form
v®w—w®v,v,w € E. The symmetric algebra is a graded commutative

algebra, its graded componerst$(E) are the images aE®? in the quotient.
The vector spacg?(E) is called thel-th symmetric poweof E. Its dimension
is equal(“*™). The image of a tensan ® - -- ® vy in S4(E) is denoted by
V1 g

The permutation grou®, has a natural linear representationAf#¢ via
permuting the factors. The symmetrization operatge s, o is a projection
operator onto the subspace of symmetric tensb(s?) = (E%9)%+ multi-
plied byd!. It factors throught?(E) and defines a natural isomorphism

SYUE) — S4(E).
ReplacingFE by its dual spacé&’", we obtain a natural isomorphism
pa: SUEY) — Sa(EY). (1.1)
Under the identification of £V)®? with the spacg E®?)V, we will be able
to identify Sy(EY) with the space Hoif2?, C)®¢ of symmetricd-multilinear
functions B¢ — C. The isomorphisnyp, is classically known as theotal

polarization map
Next we use that the quotient m&»¢ — S(E) is a universal symmetric
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d-multilinear map, i.e. any linear map®? — F with values in some vector
spaceF factors through a linear mag?(E) — F. If F = C, this gives a
natural isomorphism
(B®9)Y = S4(BY) — SU(E)".
Composing it withp;, we get a natural isomorphism
SYEY) — SYE)Y. (1.2)
It can be viewed as perfect bilinear pairing, fhaar pairing
(,):SYEY)® SYE) — C. (1.3)

This pairing extends the natural pairing betwéemnd £ to the symmetric
powers. Explicitly,

(I - lg,wy -+ wq) = Z lo-11y(wi) - - lo—1(ay (wa).
ceGy

One can extend the total polarization isomorphism feadial polarization
map

(,):SYEY)® S*(E) — STHEY), k<d, (1.4)

(Iy - lg,wy - wg) = Z (L, -+l wy -+ - wg) H ;.
1<i)<...<ip<n G
In coordinates, if we choose a bas,...,&,) in E and its dual basis
to, .-, tn In EY, then we can identifyS(EY) with the polynomial algebra
Clto, - - ., tn] andS4(EY) with the spac€|ty, . . . , t,]s of homogeneous poly-
nomials of degred. Similarly, we identifyS?(E) with C[¢, . . ., &,]. The po-
larization isomorphism extends by linearity the pairing on monomials

n S0

. .fﬁ;”):{io!...in! it (0, in) = (o, .- Jn),

<t(i)0 e tin glo, .
0 otherwise.

One can give an explicit formula for pairindg.@) in terms of differential
operators. Sincet;,&;) = d;;, it is convenient to view a basis vectgy as
the partial derivative operat@l; = a%- Hence any element € S*(E) =
Cl&o, - - -,&n]a can be viewed as a differential operator

Dy =9(8,. .., 00).

The pairing (.4) becomes
<¢(§07 s 7571/)’ f(tO’ s 7t71/)> = le(f)
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For any monomiab' = 9 - - - 9i» and any monomiat = t° - - - ti», we
have

iU i if s s
i)y = |t Ti-i=0, (1.5)
0 otherwise.

Here and later we use the vector notation:

il =gl -y, = [i| =dp + -+ in.

The total polarizatiorf of a polynomialf is given explicitly by the following
formula:

f(v1,...,0q) = Dy opy (f) = (Dyy 0.0 Dy, )(f).

Takingv, = ... = vg = v, we get

flo,...;v) =dif(v) = Dyu(f) = D ({)a'd'f. (1.6)
li|=d

Remarkl.1.1 The polarization isomorphism was known in the classical liter-
ature as theymbolic methadSupposef = [ is ad-th power of a linear form.
ThenD,(f) = di(v)¢~! and

Dy, 0...0Dy (f)=d(d—1)---(d—k+ 1)l(vy) - U(vg)l4F.

In classical notation, a linear fordn a;z; on C**! is denoted by, and the
dot-product of two vectors, b is denoted by ab). Symbolically, one denotes
any homogeneous form lyf and the right-hand side of the previous formula
reads agl(d — 1) -+ (d — k + 1)(ab)*ad~F.

Let us takeE = S™(UY) for some vector spade and consider the linear
spaceS4(S™(UV)V). Using the polarization isomorphism, we can identify
(S™(UVY))Y with S™(U). Let (&, - .,&-) be a basis i/ and(tg, ..., tm11)
be the dual basis itr. Then we can take for a basis $f*(U') the monomials
¢'. The dual basis i5™(U") is formed by the monomial§x!. Thus, for any
f e s™UY), we can write

mlf = Z ("f)aixi. 2.7)
li|l=m
In symbolic form,m!f = (a;)™. Consider the matrix
d
SIS

b g
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where(¢{® ..., &") is a copy of a basis il/. Then the spac&?(S™(U))
is equal to the subspace of the polynomial aIgdb[r@”)} in d(r + 1) vari-

ablesgj(.i) of polynomials which are homogeneous of degrem each column
of the matrix and symmetric with respect to permutations of the columns. Let
J c{1,...,d}with#J = r+1and(J) be the corresponding maximal minor
of the matrix=. Assume-+ 1 dividesdm. Consider a product df = T’% such
minors in which each column participates exaetlyimes. Then a sum of such
products which is invariant with respect to permutations of columns represents
an element frons4(S™ (U)) which has an additional property that it is invari-
ant with respect to the group 8I) = SL(r + 1, C) which acts oriJ by the
left multiplication with a vectok¢&y, . . ., ). TheFirst Fundamental Theorem
of invariant theory states that any elementsit(S™ (U))S-) is obtained in
this way (see199). We can interpret elements 6F(S™(UV)V) as polyno-
mials in coefficients ofi; of a homogeneous form of degréen r + 1 vari-
ables written in the form1(.7). We write symbolically an invariant in the form
(J1) - - (Jx) meaning that it is obtained as sum of such products with some
coefficients. If the numbed is small, we can use letters, sayb, ¢, ..., in-
stead of numbers, . .., d. For example(12)%(13)?(23)? = (ab)?(bc)?(ac)?
represents an elementSt (S4(C?)).

In a similar way, one considers the matrix

1 d 1 s
R I R
S S St

The product ofc maximal minors such that each of the fidlstolumns occurs
exactlyk times and each of the lastolumns occurs exactlytimes represents
a covariantof degreep and orderk. For example{ab)?a.b, represents the
Hessian determinant

8% f 9% f
ox2 Ox10x:
He(f) =det< o f %%“)

02011 Ox32

of a cubic ternary forny.

The projective spacef lines in £ will be denoted by E|. The spaceE"|
will be denoted byP(E) (following Grothendieck’s notation). We cdli(E)
thedual projective spacef | E|. We will often denote it by E|" .

A basis&, ..., &, in E defines an isomorphist® =~ C"*! and identi-
fies |E| with the projective spac®" := |C"*!|. For any non-zero vector
v € E we denote byjv] the corresponding point ifE|. If £ = C**! and
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v = (ag,...,a,) € C**! we setlv] = [ag,...,a,]. We call[ag, ..., ay]
theprojective coordinatesf a point[a] € P™. Other common notation for the
projective coordinates d&] is (ag : a1 : ... : ay), or simply(ao, ..., a,), if

no confusion arises.

The projective space comes with the tautological invertible stigaf(1)
whose space of global sections is identified with the dual spacelts d-th
tensor power is denoted 9z (d). Its space of global sections is identified
with the symmetriei-th powerS?(EV).

Foranyf € S%EV),d > 0, we denote byV(f) the corresponding ef-
fective divisor from|O,(d)|, considered as a closed subschemgrf not
necessary reduced. We cHl( f) ahypersurfacef degreed in | E| defined by
equationf = 0! A hypersurface of degree 1 istgyperplane By definition,
V(0) = |E| andV (1) = (). The projective spacg?(E")| can be views as the
projective space of hypersurfaces . It is equal to the complete linear sys-
temO,g|(d)|. Using isomorphism(.2), we may identify the projective space
|S4(E)| of hypersurfaces of degregin |EV| with the dual of the projective
space/S?EV|. A hypersurface of degreéin |EV| is classically known as an
envelopeof classd.

The natural isomorphisms

(BY)® = HO(|B|%, 015(1)%), Sa(EY) = HO(|B|, Oy (1))

allow one to give the following geometric interpretation of the polarization
isomorphism. Consider the diagonal embeddipg |E| — |E|¢. Then the
total polarization map is the inverse of the isomorphism

65+ HO(| B, 015 (1)) — HO(|E|, Oy (d)).

We viewaodp + - - - + a, 0, # 0 as a point € |E| with projective coordi-
nateslao, . . . , ay].

Definition 1.1.1 Let X = V(f) be a hypersurface of degrekin |E| and
x = [v] be a point in| E|. The hypersurface

Por(X) 1= V(Dyx (f))
of degreal — k is called thek-th polar hypersurfacef the pointa with respect

to the hypersurfac& ( f) (or of the hypersurface with respect to the point).

1 This notation should not be confused with the notation of the closed subset in Zariski topology
defined by the idedlf). It is equal toV ( f)reg.



6 Polarity

Examplel.1.1 Letd =2,i.e.

n
f = Z Oéi,‘t? + 2 Z Oéijtitj
=0

0<i<j<n
is a quadratic form o€ 1. For anyx = ag,...,a,] € P", P.(V(f)) =
V(g), where
g = Zazaftl =2 Z aiaijtj, Oéji = aij.
=0 0<i<j<n

The linear map — D, (f) is a map fromC"** to (C**!)V which can be
identified with thepolar bilinear formassociated tg' with matrix 2(«;;).

Let us give another definition of the polar hypersurfages(X). Choose
two different pointsz = [ao, . .., a,] @andb = [bo, ..., b,] in P™ and consider
the line? = ab spanned by the two points as the image of the map

Y P! — P, [wo, u1] — woa + urb := [agug + bou, . . ., anty + byuq]

(a parametric equation @f. The intersection X is isomorphic to the positive
divisor onP! defined by the degreéhomogeneous form

©*(f) = f(upa 4+ u1b) = flaouo + boui, ..., anug + bpuy).

Using the Taylor formula af0, 0), we can write

* 1 m
©*(f) = Z Tl ubul A (a, b), (1.8)
k+m=d
where
%" (f)
Apn (@, b) = 0,0).
km(,) 8u’53u§”( )

Using the Chain Rule, we get
Apm(ab) = D () (])a'bIo™f = Dypn (). (1.9)
lil=F,|j|=m
Observe the symmetry
Agm(a,b) = Ap (b, a). (1.10)

When we fixa and letb vary in P" we obtain a hypersurfacé(A(a,x)) of

degreed — k which is thek-th polar hypersurface oX = V() with respect
to the pointa. When we fixb and varya in P*, we obtain them-th polar
hypersurfacd (A(z, b)) of X with respect to the poirit
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Note that
D iy (f) = Do (Dym (f)) = Dem (a) = Dym (Dr (f)) = Dox (f)(D)-
(1.11)
This gives the symmetry property of polars
be Pu(X) s ac Puar(X). (1.12)

Since we are in characteristic 0yif < d, D, (f) cannot be zero for all. To
see this we use theuler formula

n

_ of
df = ; tza—ti.
Applying this formula to the partial derivatives, we obtain
dd-1)...(d-k+1)f=>_ (Ht'o's (1.13)
li|=k

(also called the Euler formula). It follows from this formula that, foriak d,

a€P(X)saeX (1.14)

This is known as theeciprocity theorem

Examplel.1.2 Let M, be the vector space of complex square matrices of
sized with coordinates;;. We view the determinant functiatet : My — C
as an element of¢(M)), i.e. a polynomial of degreé in the variableg;;.
LetCy; = %%t. For any pointd = (a;;) in M, the value ofC;; at A is equal
to theij-th cofactor ofA. Applying (1.6), for any B = (b;;) € My, we obtain

D qa-1p(det) = DG (Dp(det)) = DG () bi;Ciy) = (d— 1)1y bi;Cij(A).

ThusD% ! (det) is a linear functiory_ t;;C;; on M. The linear map

_ 1 _
S4TY(M,) — MY, A~ WDj !(det),

can be identified with the functiod — adj(A), where adjA) is the cofactor
matrix (classically called thadjugate matrivof A, but not the adjoint matrix
as it is often called in modern text-books).

1.1.2 First polars

Let us consider some special cases.Xet V( f) be a hypersurface of degree
d. Obviously, any0-th polar of X is equal toX and, by (.12, thed-th polar
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P,i(X) isempty ifa ¢ X. and equal®” if a € X. Now takek = 1,d — 1.
Using (1.6), we obtain

n

)
Du(f) =D 5L,
i=0 v

Together with {.12) this implies the following.
Theorem 1.1.1 For any smooth point € X, we have
Poa1(X) = T4 (X).
If  is a singular point ofX, P,.—.(X) = P™. Moreover, for any: € P,
XNP(X)={re€X:acT,(X)}

Here and later on we denote Hy,(X) the embedded tangent spacéa
projective subvarietX' C P™ at its pointz. Itis a linear subspace &* equal
to the projective closure of the affine Zariski tangent spgBgeX) of X atz
(see BO7, p. 181).
In classical terminology, the intersectiohn P,(X) is called theapparent
boundaryof X from the pointa. If one projectsX to P*~! from the pointa,
then the apparent boundary is the ramification divisor of the projection map.
The following picture makes an attempt to show what happens in the case
when X is a conic.

P.(X)

\

Figure 1.1 Polar line of a conic

The set of first polar$, (X) defines a linear system contained in the com-
plete linear systedﬂpn (d—1) | The dimension of this linear systemn. We
will be freely using the language of linear systems and divisors on algebraic
varieties (seedl11).



1.1 Polar hypersurfaces 9

Proposition 1.1.2 The dimension of the linear system of first polars- if
and only if, after a linear change of variables, the polynomfiabecomes a
polynomial inr + 1 variables.

Proof LetX = V(f). Itis obvious that the dimension of the linear system of
first polars< r if and only if the linear magz — S4=1(EV),v — D,(f) has
kernel of dimensio> n — r. Choosing an appropriate basis, we may assume
that the kernel is generated by vect6ts0, . .. , 0), etc. Now, it is obvious that

f does not depend on the variabigs. .., ¢, 1. O

It follows from Theoreml.1.1that the first polat?, (X) of a pointa with
respect to a hypersurfacé passes through all singular points ¥f One can
say more.

Proposition 1.1.3 Leta be a singular point ofX of multiplicity m. For each
r < deg X — m, P,»(X) has a singular point at. of multiplicity m and the
tangent cone oP,- (X) at a coincides with the tangent cofieC, (X)) of X at

a. For any pointb # a, ther-th polar P,-(X) has multiplicity> m — r ata

and its tangent cone at is equal to the--th polar of TC,(X) with respect to
b.

Proof Let us prove the first assertion. Without loss of generality, we may
assume thai = [1,0,...,0]. ThenX = V(f), where

F=tm (b, b)) ™ (b)) A fa(t, ).

(1.15)
The equationf,,(t1,...,t,) = 0 defines the tangent cone &f atb. The
equation ofP,- (X) is

8Tf d—m—r )
= Y (T T it ) = 0.
0 i=0

Itis clear thafl,0,...,0]is a singular point of,~(X) of multiplicity m with
the tangent con® (fo, (t1,...,tn)).

Now we prove the second assertion. Without loss of generality, we may
assume that = [1,0,...,0] andb = [0,1,0,...,0]. Then the equation of
Py (X) is

I _ am9 fm 9" fa

— < =t . =

oty Y o ot oty
The pointa is a singular point of multiplicity> m — r. The tangent cone of
P,+(X) at the pointa is equal toV(agfi.m) and this coincides with the-th
polar of TG,(X) = V(f.,,) with respect td. O

0.
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We leave to the reader to see what happenssifd — m.

Keeping the notation from the previous proposition, consider &liheough
the pointa such that it intersect&®” at some point: # « with multiplicity larger
than one. The closure ECX) of the union of such lines is called teavelop-
ing coneof X at the pointa. If X is not a cone with vertex at, the branch
divisor of the projectionp : X \ {a} — P"~! from a is equal to the projection
of the enveloping cone. Let us find the equation of the enveloping cone.

As above, we assume that= 1,0, ..., 0]. Let H be the hyperplang = 0.
Write ¢ in a parametric formua + vz for somez € H. Plugging in equation
(1.15, we get

P(t) =t fr(@1, o )T i (21, @)+ fa(@a, - 2n) =0,

wheret = u/v.

We assume thaX # TC,(X), i.e. X is not a cone with vertex at (oth-
erwise, by definition, EQX{X) = TC,(X)). The image of the tangent cone
under the projectiop : X \ {a} — H = P"~! is a proper closed subset of
H.If fo(z1,...,2,) # 0, then a multiple root o?(¢) defines a line in the
enveloping cone. LeD (A, ..., Ax) be the discriminant of a general poly-
nomial P = AqT* + ... + A, of degreek. Recall that

AODIC(A07 teey Ak?) = (_1>k(k_1)/2ReE(P7 P/)(AOa teey Ak)7

where Re&P, P’) is the resultant of? and its derivativel’. It follows from
the known determinant expression of the resultant that

K2 k42

Dk(O,Al,...,Ak):(—l) 2 Ang_l(Al,...,Ak).

The equationP(t) = 0 has a multiple zero with # 0 if and only if
Dd—m(fm('r)7 ceey fd(.]?)) =0.

So, we see that

ECLL(X) C V(Dd—m(fm(x)7'"7fd($)))’ (116)
EC.(X)NTCo(X) C V(Da—m—1(frmt1(2), ..., fa(z))).

It follows from the computation of(;—f in the proof of the previous Proposition
that the hypersurfaciz’(Dd,m(fm(xo), ..., fa(z))) is equal to the projection
of P,(X)NX to H.

SupposeV (Dg—m—1(fm+1(x),..., fa(x))) and TC,(X) do not share an

irreducible component. Then

V(Da-m(fm(x), .., fa(@))) \ TCa(X) NV (Da—m(fm (), ..., fa(x)))
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= V(Da-m(fm(@), .-, fa(@)) \ V(Da-m-1(fm+1(2), ..., fa(x))) C ECa(X),

gives the opposite inclusion of (16), and we get

ECa(X) = V(Dd—m(fm(x)aafd(x))) (117)

Note that the discriminar®,_,, (Ao, ..., Ax) is an invariant of the group
SL(2) in its natural representation on degfekinary forms. Taking the diago-
nal subtorus, we immediately infer that any monomﬁlé‘l e Aﬁj entering in
the discriminant polynomial satisfies

k

k
kY io=2)si..
s=0

s=0

It is also known that the discriminant is a homogeneous polynomial of degree
2k — 2. Thus, we get

k
k(k—1) =) sis.
s=0

In our casek = d — m, we obtain that

d—

deg V(Da—m(fm(2), ..., fa(x))) = Y _ (m+ s)i
5=0

=m(2d—2m —2)+(d—m)(d—m—1)=(d+m)(d—m —1).

This is the expected degree of the enveloping cone.

Examplel.1.3 Assumem = d — 2, then

Da(fa-2(2), fa-1(2), fa(x)) = fa-1(2)* = 4fa-a(2)fa(),
D2(0, fa—1(2), fa(z)) = fa—2(x) = 0.

Supposef,_2(x) and f,_; are coprime. Then our assumption is satisfied, and
we obtain

ECo(X) = V(fa-1(2)* — 4fa—2(2) fa(x)).

Observe that the hypersurfadésf,_»(x)) andV (f4(z)) are everywhere tan-
gent to the enveloping cone. In particular, the quadric tangent copeXrds
everywhere tangent to the enveloping cone along the intersectiéfef »(x))
with V(fg—1(x)).
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For any nonsingular quadri@, the mapx — P,(Q) defines a projective
isomorphism from the projective space to the dual projective space. This is a
special case of a correlation.

According to classical terminology, a projective automorphisniPbfis
called acollineation An isomorphism fromE| to its dual spac®(FE) is called
acorrelation A correlatione : |E| — P(E) is given by an invertible linear map
¢ : E — EV defined uniguely up to proportionality. A correlation transforms
points in|E| to hyperplanes inE|. A pointz € |E| is calledconjugateto a
pointy € | E| with respect to the correlatianf y € ¢(z). The transpose of the
inverse mapo~! : EV — E transforms hyperplanes ji| to points in| E|. It
can be considered as a correlation between the dual spaggsand|E|. It is
denoted by and is called thelual correlation It is clear that(c¢V)¥ = ¢. If
H is a hyperplane inE| andz is a point inH, then pointy € |E| conjugate
to = underc belongs to any hyperplané’ in | E| conjugate taH underc”.

A correlation can be considered as a lind M® E)V spanned by a nonde-
generate bilinear form, or, in other words as a nonsingular correspondence of
type(1,1) in |E| x |E|. The dual correlation is the image of the divisor under
the switch of the factors. A paitz, y) € |E| x | E| of conjugate points is just
a point on this divisor.

We can define theomposition of correlations’ o ¢V. Collineations and
correlations form a grou@PGL(FE) isomorphic to the group of outer auto-
morphisms of PGLE). The subgroup of collineations is of index 2.

A correlationc of order 2 in the groufEPGL(FE) is called apolarity. In
linear representative, this means that= \¢ for some nonzero scalar After
transposing, we obtaih = +1. The case\ = 1 corresponds to the (quadric)
polarity with respect to a nonsingular quadrid iy which we discussed in this
section. The cask = —1 corresponds to aull-systen{or null polarity) which
we will discuss in Chapters 2 and 10. In terms of bilinear forms, a correlation
is a quadric polarity (resp. null polarity) if it can be represented by a symmetric
(skew-symmetric) bilinear form.

Theorem 1.1.4 Any projective automorphism is equal to the product of two
guadric polarities.

Proof Choose a basis ift to represent the automorphism by a Jordan matrix
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J. Let Ji(\) be its block of size: with A at the diagonal. Let

0 0 0 1
0 0 1 0
By=1: : :
0 1 0 0
1 0 0 0
Then

0 0 0 A
0 0 A1
Ck(A) = BpJik(\) = | P
0 ... 0 0
A1 ... 00

Observe that the matriceB;, and Cy(\) are symmetric. Thus each Jordan
block of J can be written as the product of symmetric matrices, hehisghe
product of two symmetric matrices. It follows from the definition of composi-
tion in the groupCPGL(FE) that the product of the matrices representing the
bilinear forms associated to correlations coincides with the matrix representing
the projective transformation equal to the composition of the correlatidis.

1.1.3 Polar quadrics
A (d — 2)-polar of X = V() is a quadric, called thpolar quadricof X with

respect tar = [ay, . . ., a,]. It is defined by the quadratic form
q=Du-=(f)= > (}})a'd'f.
li|=d—2

Using equationX.9), we obtain
2\ ,iqi
q= lZ_:Q (i)t ' f(a).

By (1.14), eacha € X belongs to the polar quadri€,.--(X). Also, by
Theoreml.1.],

To(Pya—2(X)) = Py(Pya-2(X)) = Pya1(X) = To(X). (1.18)

This shows that the polar quadric is tangent to the hypersurface at thezpoint
Consider the ling = ab through two pointsz, b. Let  : P! — P" be
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its parametric equation, i.e. a closed embedding with the image equaltto
follows from (1.8) and (.9) that

i(X,ab)y > s+1<=b€ Puw(X), k<s. (1.19)

For s = 0, the condition means thatc X. Fors = 1, by Theorem1.1.],
this condition implies thak, and hencé, belongs to the tangent plafig (X).
For s = 2, this condition implies thal € P,.—»(X). Since/l is tangent taX
ata, andP,.-»(X) is tangent taX ata, this is equivalent to that belongs to
P,a2(X).

It follows from (1.19 thata is a singular point ofX’ of multiplicity > s + 1
if and only if P,a—x(X) = P™ for k < s. In particular, the quadric polar
P,a—2(X) =P"ifand only if a is a singular point ofX" of multiplicity > 3.

Definition 1.1.2 Aline is called arinflection tangento X at a pointa if
(X, 0)q > 2.

Proposition 1.1.5 Let/ be a line through a point. Then/ is an inflection
tangent toX ata if and only if it is contained in the intersection Bf, (X') with
the polar quadricP, -2 (X).

Note that the intersection of an irreducible quadric hypersurfaee V' (q)
with its tangent hyperplan# at a pointa € @ is a cone inH over the quadric
Q in the imageH of H in |E/[a]|.

Corollary 1.1.6 Assumen > 3. For anya € X, there exists an inflection
tangent line. The union of the inflection tangents containing the poisithe
coneT,(X) N Pya—2(X)in Ty (X).

Examplel.1.4 Assumeq is a singular point ofX. By Theorem1.1.], this

is equivalent to thaP,.—.(X) = P". By (1.18, the polar quadri@) is also
singular atz and therefore it must be a cone over its image under the projection
from a. The union of inflection tangents is equal@o

Examplel.1.5 Assumea is a nonsingular point of an irreducible surfake

in P2. A tangent hyperplan@&, (X) cuts out inX a curveC with a singular
pointa. If a is an ordinary double point af, there are two inflection tangents
corresponding to the two branches(@fta. The polar quadric) is nonsingu-

lar ata. The tangent cone @ at the pointu is a cone over a quadri@ in P.

If Q consists of two points, there are two inflection tangents corresponding to
the two branches of' ata. If  consists of one point (corresponding to non-
reduced hypersurface i), then we have one branch. The latter case happens
only if @ is singular at some poirt# a.
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1.1.4 The Hessian hypersurface

LetQ(a) be the polar quadric oX = V (f) with respect to some poiate P".
The symmetric matrix defining the corresponding quadratic form is equal to
theHessian matriof second partial derivatives g¢f

2
He(f) = (aiéffj )z’,jzoan’

evaluated at the point. The quadrial(a) is singular if and only if the deter-
minant of the matrix is equal to zero (the locus of singular points is equal to
the projectivization of the null-space of the matrix). The hypersurface

He(X) = V(det He(f))

describes the set of points € P™ such that the polar quadri€,.—»(X) is
singular. Itis called thélessian hypersurfacef X . Its degree is equal t@l —
2)(n + 1) unless it coincides witf™.

Proposition 1.1.7 The following is equivalent:

() He(X) =Pm,
(i) there exists a nonzero polynomigkyo, . . ., z,) such that

g(a()f7vanf)50

Proof Thisis a special case of a more general result abouabebian!determinant
(also known as théunctional determinantof n 4+ 1 polynomial functions
fo,--., fn defined by

0fiyy.

J(f07~-~7frb) = det((at.
J

Suppose/(fy, - .., fn) = 0. Then the mag : C**1 — C"*! defined by the
functions fy, .. ., f, is degenerate at each point (i#, is of rank< n + 1

at each pointr). Thus the closure of the image is a proper closed subset of
C"*1. Hence there is an irreducible polynomial which vanishes identically on

the image.
Conversely, assume thatfo, ..., f,) = 0 for some polynomial which
we may assume to be irreducible. Then

99 _ N~ 09 o _ o
8ti_;6zj(f0""7fn)ati_0»7/—07...,TL.

Sincey is irreducible, its set of zeros is nonsingular on a Zariski oper/set
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Thus the vector
9 0
(aijj(fo(r)7 ey fn(z)), ceey %(fo(x), ceey fn(ilf))

is a nontrivial solution of the system of linear equations with ma(tg%(x)),
wherex € U. Therefore, the determinant of this matrix must be equal to zero.
This implies that/(fo, - .., f») = 0onU, hence itis identically zero. [

Remark1.1.2 It was claimed by O. Hesse that the vanishing of the Hessian

implies that the partial derivatives are linearly dependent. Unfortunately, his
attempted proof was wrong. The first counterexample was given by P. Gordan
and M. Noether in280. Consider the polynomial

f = tot? + t3t? + tytot; = 0.

Note that the partial derivatives

of o Of _

=t =t - =tgt

aty O oty v oty !
are algebraically dependent. This implies that the Hessian is identically equal
to zero. We have

of of
—— = 2tot tat — = 21t talo.
oty ote + tat1, ot 1t3 + 14?0

Suppose that a linear combination of the partials is equal to zero. Then
coti + 1t + catoty + c3(2tota + taty) + ca(2t1tz + tato) = 0.
Collecting the terms in whichy, t3, t4 enter, we get
2c3tg =0, 2c4t1 =0, c3t1 4+ cqato =0.

This givescs = ¢4 = 0. Since the polynomialgl, t2, tot; are linearly inde-
pendent, we also gep = ¢; = ¢ = 0.

The known cases when the assertion of Hesse is tru¢ aré (anyn) and
n < 3 (anyd) (see p8Q, [410, [114]).

Recall that the set of singular quadricshf is thediscriminant hypersur-
faceD,(n) in P*("1+3)/2 defined by the equation

too tor --- ton
tor t11 ... tin

det . . . . =0.
ton tin .- tan

By differentiating, we easily find that its singular points are defined by the
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determinants of. x n minors of the matrix. This shows that the singular locus
of Dy(n) parameterizes quadrics defined by quadratic forms of ramk— 1

(or corank> 2). Abusing the terminology, we say that a quadric is of rank
the corresponding quadratic form is of this rank. Note that

dim Sing(@) = corank@ — 1.

Assume that Hef) # 0. Consider the rational map : |E| — |S?(EY)|
defined bya — P,s—2(X). Note thatP,«—2(f) = 0 implies Pa—:(f) = 0
and hencé_"" , b;0; f(a) = 0 for all b. This shows that is a singular point
of X. Thusp is defined everywhere except maybe at singular poinfs .d6o
the mapp is regular if X is nonsingular, and the preimage of the discriminant
hypersurface is equal to the Hessian¥df The preimage of the singular locus
Sing(D2(n)) is the subset of points € He(f) such that SingP,.-» (X)) is of
positive dimension.

Here is another description of the Hessian hypersurface.

Proposition 1.1.8 The Hessian hypersurfa¢ée(X) is the locus of singular
points of the first polars ok .

Proof Leta € He(X) and letb € Sing(P,a-2(X)). Then

Dy(Dya-2(f)) = Daa-=(Dy(f)) = 0.

SinceDy(f) is of degreel — 1, this means thdl, (P,(X)) = P", i.e.,ais a
singular point ofP,(X).

Conversely, ifa € Sing(Py(X)), thenD a—2(Dy(f)) = Dp(Dga-2(f)) =
0. This means thai is a singular point of the polar quadric with respectito
Hencea € He(X). O

Let us find the affine equation of the Hessian hypersurface. Applying the
Euler formula (.13, we can write

tofoi = (d—1)0;if —t1fri — .. — tufni
toOof =df —t101f — ... —tp0nf,

where f;; denote the second partial derivative. Multiplying the first row of
the Hessian determinant sy and adding to it the linear combination of the
remaining rows taken with the coefficierits we get the following equality:

f Of ... Onf

d—1 fio fur - fin

det(He(f)) = det

0

an fnl fnn
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Repeating the same procedure but this time with the columns, we finally get

“f of ... Onf
_1)2 onf  fuu - fin
det(He(f)) = t%l) det| (1.20)
Let ¢(z1, ..., z,) be the dehomogenization ¢fwith respect tay, i.e.,
t [7%
Fltos- .. ta) :tg¢(ti,...,7).
0 0
We have
of a1, *f _d—2 2
o, =ty ¢i(z1, ..., 2n), AL =ty “0ij(z1,...,2m), GLi=1,...,n,
where
_ 09 D¢
¢Z o 82’1" ¢Z] B 62’132] '

Plugging these expressions ihZ0), we obtain, that up to a nonzero constant
factor,

%qﬁ(z) d1(z) .. dn(2)
$1(z)  oul(z) ... d1n(2)

)

tg "YU et (He(¢)) = det

Pn(2)  Pm(2) - Pnn(2)
(1.21)
wherez = (Zl7 . ,Zn),Zi = ti/to, 1=1,...,n.

Remarkl.1.3 If f(«,y) is a real polynomial in three variables, the value of
(1.2 at a pointy € R™ with [v] € V() multiplied by fl(a)2+f2?al)2+f3(a)2 is
equal to theGauss curvaturef X (R) at the pointz (see R47)).

1.1.5 Parabolic points

Let us see where H&) intersectsX . We assume that H&) is a hypersurface
of degree(n + 1)(d — 2) > 0. A glance at the expressiof.2]) reveals the
following fact.

Proposition 1.1.9 Each singular point ofX belongs tdHe(X).
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Let us see now when a nonsingular paine X lies in its Hessian hyper-
surface HéX).

By Corollary1.1.6 the inflection tangents ifi, (X)) sweep the intersection
of T,(X) with the polar quadric®,«—=(X). If a € He(X), then the polar
guadric is singular at some poiht

If n = 2, a singular quadric is the union of two lines, so this means that one
of the lines is an inflection tangent. A poiatof a plane curveX such that
there exists an inflection tangenteais called arinflection pointof X .

If n > 2, the inflection tangents lines at a pointe X N He(X) sweep
a cone over a singular quadric #=2 (or the wholeP"~2 if the point is
singular). Such a point is calledparabolic pointof X. The closure of the set
of parabolic points is thearabolic hypersurfacén X (it could be the whole
X).

Theorem 1.1.10 Let X be a hypersurface of degree> 2 in P™. If n = 2,
thenHe(X') N X consists of inflection points df. In particular, each nonsin-
gular curve of degree- 3 has an inflection point, and the number of inflections
points is either infinite or less than or equal 3d(d — 2). If n > 2, then the
setX N He(X) consists of parabolic points. The parabolic hypersurfac&’in

is either the wholeX or a subvariety of degreg: + 1)d(d — 2) in P".

Examplel.1.6 LetX be asurface of degrekin P3. If o is a parabolic point of
X, thenT,(X)N X is a singular curve whose singularityeais of multiplicity
higher than 3 or it has only one branch. In fact, otherwiSé@as at least two
distinct inflection tangent lines which cannot sweep a cone over a singular
quadric inP'. The converse is also true. For example, a nonsingular quadric
has no parabolic points, and all nonsingular points of a singular quadric are
parabolic.

A generalization of a quadratic cone islavelopable surfacét is a special
kind of aruled surfacewhich characterized by the condition that the tangent
plane does not change along a ruling. We will discuss these surfaces later in
Chapter 10. The Hessian surface of a developable surface contains this surface.
The residual surface of degreéd — 8 is called thepro-Hessian surfaceAn
example of a developable surface is the quartic surface

(tots—tita)> —4(t5 —tota) (t3—tits) = —6tot1tata+A4tsta+Atots+tgts—3tits = 0.

It is the surface swept out by the tangent lines of a rational normal curve of
degree 3. It is also thdiscriminant surfacef a binary cubic, i.e. the surface
parameterizing binary cubiesu?® + 3a;u?v + 3azuv? + azv® with a multiple
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root. The pro-Hessian of any quartic developable surface is the surface itself
[89].

Assume now thafX is a curve. Let us see when it has infinitely many in-
flection points. Certainly, this happens wh&hcontains a line component;
each of its point is an inflection point. It must be also an irreducible compo-
nent of HE X'). The set of inflection points is a closed subsefXofSo, if X
has infinitely many inflection points, it must have an irreducible component
consisting of inflection points. Each such component is contained {iXhe
Conversely, each common irreducible componenXand He X) consists of
inflection points.

We will prove the converse in a little more general form taking care of not
necessary reduced curves.

Proposition 1.1.11 A polynomialf (¢, t1, t2) divides its Hessian polynomial
He(f) if and only if each of its multiple factors is a linear polynomial.

Proof Since each point on a non-reduced componef,gf C V(f) is a sin-
gular point (i.e. all the first partials vanish), and each point on a line component
is an inflection point, we see that the condition is sufficientXorc He(f).
Suppose this happens and tbe a reduced irreducible component of the
curve X which is contained in the Hessian. Take a nonsingular poitit ahd
consider an affine equation &f with coordinategz, y). We may assume that
Og, is included in@R@ =~ K[[t]] such thatr = t,y = t"¢, wheree(0) = 1.

Thus the equation aR looks like

f(x,y):y—xr+g(:v,y), (122)

whereg(z, y) does not contain termsy, ¢ € C. It is easy to see thdD,0) is
an inflection point if and only if- > 2 with the inflection tangerg = 0.
We use the affine equation of the Hessiar2(), and obtain that the image

of
d
—=f fh  fa
hz,y) =det [ fi fir  fie
fo fa fo2
in K[[t]] is equal to
0 —rt"t + gy 1+g2
det | —rt"t+g; —r(r—1)t""2+4 g3 g12
1+¢o g12 922

Since every monomial entering inis divisible byy?, zy or z*,i > r, we
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see thaf? is divisible byt and 3¢ is divisible by¢™~'. Also gy, is divisible
by ¢! ThIS shows that

0 at" .. 1+...
h(z,y)=det |at"™" +... —r(r—1Dt"2+... g2 ,
1+... gi12 g22

where. .. denotes terms of higher degree ie compute the determinant and
see that it is equal to(r — 1)t"~2 + .. .. This means that its image i [[t]]

is not equal to zero, unless the equation of the curve is equaHd), i.e. the
curve is aline. O

In fact, we have proved more. We say that a nonsingular poift fan in-
flection point oforder r — 2 and denote the order by orgft” if one can choose
an equation of the curve as .22 with » > 3. It follows from the previous
proof thatr — 2 is equal to the multiplicityi (X, He),. of the intersection of the
curve and its Hessian at the pointlt is clear that ordflX = i(¢, X), — 2,
where/ is the inflection tangent line oX atz. If X is nonsingular, we have

> (X, He), = Y ordfl, X = 3d(d - 2). (1.23)

zeX zeX

1.1.6 The Steinerian hypersurface

Recall that the Hessian hypersurface of a hypersutkaee V (f) is the locus
of pointsa such that the polar quadri€,.—- (X) is singular. TheSteinerian
hypersurfaceSt(X) of X is the locus of singular points of the polar quadrics.
Thus

StX)= |J SingP2(X)). (1.24)

a€He(X)

The proof of Propositionl.1.8shows that it can be equivalently defined as

St(X) = {a € P": P,(X) is singulag. (1.25)
We also have
U singP.(x)). (1.26)
a€eSt(X)

A pointb = [by, ..., b,] € St(X) satisfies the equation
bo
He(f)(a)- | : | =0, (1.27)
by
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wherea € He(X). This equation defines a subvariety
HS(X) Cc P x P" (1.28)

given byn + 1 equations of bidegreé — 2,1). When the Steinerian map
is defined, it is just its graph. The projection to the second factor is a closed
subscheme dP™ with support at StX). This gives a scheme-theoretical defi-
nition of the Steinerian hypersurface which we will accept from now on. It also
makes clear why $X) is a hypersurface, not obvious from the definition. The
expected dimension of the image of the second projectian-sl.

The following argument confirms our expectation. It is known (see, for ex-
ample, P64]) that the locus of singular hypersurfaces of degfée |F| is a
hypersurface

Da(n)  [S4(EY)|

of degree(n + 1)(d — 1)™ defined by thaliscriminantof a general degreé
homogeneous polynomial im+ 1 variables (thaliscriminant hypersurfage
Let L be the projective subspace [¢i~!(E")| which consists of first polars
of X. Assume that no polaP,(X) is equal taP™. Then

StX) = LND,(d—1).

So, unlesd. is contained irD,,(d — 1), we get a hypersurface. Moreover, we
obtain

deg(St(X)) = (n+1)(d —2)™. (1.29)

Assume that the quadri€,.--(X) is of corank 1. Then it has a unique
singular pointh with the coordinate$y, . .., b,] proportional to any column
or a row of the adjugate matrix gdje(f)) evaluated at the point. Thus,
St(X) coincides with the image of the Hessian hypersurface under the rational
map

st: He(X) --» St(X), a+ SingP,a-2(X)),
given by polynomials of degree(d — 2). We call it theSteinerian mapOf
course, it is not defined when all polar quadrics are of corank. Also, if

the first polar hypersurfacE, (X) has an isolated singular point for a general
pointa, we get a rational map

st™!: St(X) --» He(X), ar Sing P, (X)).

These maps are obviously inverse to each other. It is a difficult question to
determine the sets of indeterminacy points for both maps.
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Proposition 1.1.12 Let X be a reduced hypersurface. The Steinerian hyper-
surface ofX coincides withP™ if X has a singular point of multiplicity> 3.
The converse is true if we additionally assume tKatas only isolated singu-
lar points.

Proof Assume thafX has a triple point. We may harmlessly assume that the
pointisp = [1,0, ..., 0]. Write the equation o in the form

F=thga r(tr, . tn)+th  gapa1(t, s tn) -+ galts, ... tn) =0,

(1.30)
where the subscript indicates the degree of the polynomial. Since the multi-
plicity of p is greater than or equal 8) we must havel — k& > 3. Then a first
polar P,(X) has the equation

k

n k
N h—1—i — 09d—k+i
ao Y (k= Dt g i+ Y ag Y th gdat’“ —0.  (1.31)
s=1  i=0 8

=0

It is clear that the poinp is a singular point of?, (X) of multiplicity > d —
k—12>2.

Conversely, assume that all polars are singular. By Bertini's Theorem (see
[307], Theorem 17.16), the singular locus of a general polar is contained in
the base locus of the linear system of polars. The latter is equal to the singular
locus of X. By assumption, it consists of isolated points, hence we can find
a singular point ofX at which a general polar has a singular point. We may
assume that the singular pointis= [1,0,...,0] and (.30 is the equation of
X. Then the first polaP, (X) is given by equationl(.31). The largest power of
to in this expression is at most The degree of the equationds- 1. Thus the
pointp is a singular point o, (X) if and only if ¥ < d — 3, or, equivalently,
if p is at least triple point o . O

Examplel.1.7 The assumption on the singular locus is essential. First, it is
easy to check thaX = V/(f?), whereV (f) is a nonsingular hypersurface has
no points of multiplicity> 3 and its Steinerian coincides wilt{". An example

of a reduced hypersurface with the same property is a surface of degree 6 in
P3 given by the equation

® 2). Each of its points is

=0 "1

Its singular locus is the cur\)[é(Zfzo NV
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a double point onX. Easy calculation shows that
3 3 3 3
1=0 =0 =0 =0
and

3 3 3
VO NVt NV (D aity) C Sing Pu(X)).
1=0 =0 =0

By Propositionl.1.3 Sing(X) is contained in StX). Since the same is true
for He(X), we obtain the following.

Proposition 1.1.13 The intersectiorHe(X) N St(X') contains the singular
locus ofX.

One can assign one more variety to a hypersurfice V(f). This is the
Cayleyan varietylt is defined as the image C@y) of the rational map

HS(X) @ Gl(Pn)v (a7 b) = %7

whereG.,.(P™) denotes the Grassmannianreflimensional subspaces By.
In the sequel we will also use the notati6hr + 1, E) = G,.(|E|) for the
variety of linearr + 1-dimensional subspaces of a linear spatelhe map
is not defined at the intersection of the diagonal with(F{$ We know that
HS(a,a) = 0 means thaP,.-: (X) = 0, and the latter means thais a singu-
lar point of X. Thus the map is a regular map for a nonsingular hypersurface
X.

Note that in the case = 2, the Cayleyan variety is a plane curve in the dual
plane, theCayleyan curvef X.

Proposition 1.1.14 Let X be a general hypersurface of degrée> 3. Then

n d722n+1 7_L—1 ifd> 3
degCay(X) = {122:5( n+1) (nz_l)(z—l) I )
3 i (T (2D ifd =3,
where the degree is considered with respect to thiekdr embedding of the
Grassmanniartz; (P").

Proof Since S{X) # P, the correspondence KIX) is a complete inter-
section ofn + 1 hypersurfaces iP* x P™ of bidegree(d — 2,1). Since
a € Sing(P,(X)) implies thate € Sing(X), the intersection of HSX) with
the diagonal is empty. Consider the regular map

r:HS(X) — G1(P"), (a,b) > ab. (1.32)

It is given by the linear system of divisors of typke 1) onP" x P" restricted
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to HS(X). The genericity assumption implies that this map is of degree 1 onto
the image ifd > 3 and of degree 2 itl = 3 (in this case the map factors
through the involution oP™ x P™ that switches the factors).

It is known that the set of lines intersecting a codimension 2 linear sub-
spaceA is a hyperplane section of the GrassmanniaP") in its Plicker
embedding. Writ®" = |E| andA = |L|. Letw = v1 A ... A v, for some
basis(vy,...,v,—1) of L. The locus of pairs of points:, b) = ([w1], [w2]) in
P" x P such that the linab intersects\ is given by the equatiom; Aws Aw =
0. This is a hypersurface of bidegrék 1) in P x P". This shows that the map
(1.32 is given by a linear system of divisors of typk 1). Its degree (or twice
of the degree) is equal to the intersecti®d — 2)hy + ho)" T (hy + ho)" 1,
whereh;, h, are the natural generators BF (P" x P, Z). We have

((d = 2)hy + ho)" T (hy + hy)" ! =

n+1 _
(Z (n-j—l)(d 2 hzhn+1 z Z n 1 hn 1— jh])
i=0 j=0

n
n+1 n 1)
z : [ z 1/

For example, if» = 2,d > 3, we obtain a classical result
degCay(X) = 3(d — 2) + 3(d — 2)? = 3(d — 2)(d — 1),
anddeg Cay(X) = 3if d = 3.
Remarkl.1.4 The homogeneous forms defining the Hessian and Steinerian
hypersurfaces of ( f) are examples afovariantsof f. We already discussed

them in the case = 1. The form defining the Cayleyan of a plane curve is an
example of aontravariantof f.

1.1.7 The Jacobian hypersurface

In the previous sections we discussed some natural varieties attached to the lin-
ear system of first polars of a hypersurface. We can extend these constructions
to arbitraryn-dimensional linear systems of hypersurface®in= |E|. We
assume that the linear system has no fixed components, i.e. its general member
is an irreducible hypersurface of some degieket L ¢ S¢(EV) be a linear
subspace of dimensiom + 1 and|L| be the corresponding linear system of
hypersurfaces of degreke Note that, in the case of linear system of polars of a
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hypersurfaceX of degreei+ 1, the linear subspade can be canonically iden-
tified with £ and the inclusionZ| c |S¢(E")| corresponds to the polarization
mapa — P,(X).

LetDg4(n) C |SY(EY)| be the discriminant hypersurface. The intersection

D(IL]) = [L] N Da(n)

is called thediscriminant hypersurfacef |L|. We assume that it is not equal
to P, i.e. not all members df_| are singular. Let

D(|L|) = {(z,D) € P"* x |L| : = € Sing(D)}

with two projectiong : D — D(|L|) andg : D — |L|. We define thedacobian
hypersurfacef |L| as

Jad|L|) = q(D(|L])).

It parameterizes singular points of singular membersLof Again, it may
coincide with the wholé?™. In the case of polar linear systems, the discrim-
inant hypersurface is equal to the Steinerian hypersurface, and the Jacobian
hypersurface is equal to the Hessian hypersurface.

TheSteinerian hypersurfacst(|L|) is defined as the locus of pointsc P"
such that there exists € P" such thate € Np¢r|Pyn-1(D). Sincedim L =
n+ 1, the intersection is empty, unless there exi3tsuch thatP,.-. (D) = 0.
Thus P,» (D) = 0 anda € Sing(D), hencea € Jad|L|) andD € D(|L|).
Conversely, ifa € Jad|L|), thenNpe | Pn-1(D) # 0 and it is contained in
St(|L|). By duality (1.12),

€ () Poi(D)&ac [ Pu(D).
De|L| De|L|

Thus the Jacobian hypersurface is equal to the locus of points which belong to
the intersection of the first polars of divisors|ib| with respect to some point
x € St X). Let

HS(|L|) = {(a,b) € He(|L|) x S{|L|) :a € (7] Fy(D)}
De|L|

= {(a,b) € He(|L|) x SY(|L|) : b € ﬂ P,a-1(D)}.
De|L|

Itis clear that HH|L|) C P x P™ is a complete intersection af+ 1 divisors
of type(d — 1,1). In particular,

One expects that, for a general paint St(|L|), there exists a unique €
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Jac|L|) and a uniqueéD € D(|L|) as above. In this case, the correspondence
HS(|L|) defines a birational isomorphism between the Jacobian and Steinerian
hypersurface. Also, itis clear that H&|) = St(|L|) if d = 2.

Assume thatZ| has no base points. Then HE|) does not intersect the
diagonal ofP™ x P™. This defines a map

HS(IL) = G1(P"),  (a,b) + ab.

Its image Cay|L|) is called theCayleyan varietyf |L|.

Aline ¢ € Cay(|L|) is called aReye lineof |L|. It follows from the defini-
tions that a Reye line is characterized by the property that it contains a point
such that there is a hyperplanég Ir] of hypersurfaces tangent £at this point.

For example, ifd = 2 this is equivalent to the property thats contained is a
linear subsystem df_| of codimension 2 (instead of expected codimension 3).

The proof of Propositiorl.1.14 applies to our more general situation to
give the degree of Ca&jL|) for a generah-dimensional linear systetd| of
hypersurfaces of degreke

md— DY (Y i d> 2

deg Cay(X) = {?7=711( n+1) (nz_l) (1—1) I > 2, (134)
521':1( i )(ifl) if d = 2.

Let f = (fo,- .-, fa) be a basis ofL. Choose coordinates " to iden-

tify S¢(EY) with the polynomial ringClto, . . . , t,]. A well-known fact from
the complex analysis asserts that(J&f) is given by the determinant of the
Jacobian matrix

dofo Oifo ... Onfo

Oofr Oift ... Onhfi
JH=| . : : :

aofn 61fn e 67Lfn

In particular, we expect that
degJagq|L|) = (n+1)(d —1).

If « € Jag|L|), then a non-zero vector in the null-space/¢f ) defines a point
a such thatP,(fo)(a) = ... = P.(fn)(a) = 0. Equivalently,

Ponci (fo) (@) = ... = Py (fa)(z) = 0.

This shows that $t7|) is equal to the projectivization of the union of the null-
spaces Nullag f(a))),a € C"*!. Also, a nonzero vector in the null space of
the transpose matrix/( f) defines a hypersurface | L|) with singularity at
the pointa.
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Let Jag|L|)° be the open subset of points where the corank of the jacobian
matrix is equal to 1. We assume that it is a dense subset ¢fL.JacThen,
taking the right and the left kernels of the Jacobian matrix, defines two maps

Jag|L|)® — D(IL]), Jag|L|)® — St|L]).

Explicitly, the maps are defined by the nonzero rows (resp. columns) of the
adjugate matrix adHe(f)).

Let)z : P" --» |LY| be the rational map defined by the linear systéin
Under some assumptions of generality which we do not want to spell out, one
can identify Jag L|) with the ramification divisor of the map ari®{|L|) with
the dual hypersurface of the branch divisor.

Let us now define a new variety attached ta-dimensional linear system
in P". Consider the inclusion map — S¢(EY) and let

L— SYEB)Y, fwf,

be the restriction of the total polarization mdp3) to L. Now we can consider
|L| as an-dimensional linear systei | on |E|¢ of divisors of type(1, ..., 1).
Let

PB(L))= () Dc|E

De|L]

be the base scheme |af| We call it thepolar base locusf |L|. It is equal to
the complete intersection af+ 1 effective divisors of typ€l,...,1). By the
adjunction formula,

wes(|z]) = Opsg(|L))-

If smooth, PR|L|) is aCalabi-Yau varietyf dimension(d — 1)n — 1.

Foranyf € L, let N(f) be the set of points = (o], ..., [v¥]) € |E|?
such that
f(v(l), U g Ul v(d)) =0
foreveryj =1,...,dandv € E. Since

f(v(l)v ey v(j_l)a v, v(j+1)7 s 7U(d)) = D?;(l)uﬂ)(j*l)’z)(j*l)~~1J(d) (Dﬂ(f))7
This can be also expressed in the form
@vf(v(l), ool U ,v(d)) =0,=0,...,n. (1.35)

Choose coordinates, . .., u,, in L and coordinateg, . .., t, in E. Leti be



1.1 Polar hypersurfaces 29

the image of a basig of L in (EY)?. Then PR|L|) is a subvariety of P")¢
given by a system af multilinear equations

o@D, Dy = = f,tW, ... D) =0,
wheret®) = (¢, ... t9),5 = 1,...,d. For anyA = (Ao, ..., \,), set
In= Z?:o Aifi
Proposition 1.1.15 The following is equivalent:

(i) = € PB(|L]) is a singular point,
(i) = € N(fy) for some\ # 0.

Proof The variety PB|L|) is smooth at a point if and only if the rank of
thed(n + 1) x (n + 1)-size matrix

Ofi
(a%) :(8t(j) (x))i,k:(],“.,n.,jzl,.“,d

i

is equal ton + 1. Let f, = uofo + - + wn fn, Whereug, ..., u, are un-
knowns. Then the nullspace of the matrix is equal to the space of solutions
u= (Ao, ..., A\,) Of the system of linear equations
Ofu Ofu Ofu
=...= = : =0. 1.36
Oug () Oy, . 3t§]) (@) ( )

For a fixed), in terminology of P64, p. 445, the system has a solutiorin
|E|%if fx = 3 \:fi is adegenerate multilinear fornBy Proposition 1.1 from
Chapter 14 of loc.cit.f is degenerate if and only i¥ ( f, ) is non-empty. This
proves the assertion. O

For any non-empty subsétof {1,...,d}, let A; be the subset of points
x € |E|? with equal projections to-th factors withi € 1. Let A;, be the union
of Ay with #1 = k. The setA, is denoted byA (the small diagonal).

Observe that PBL|) = HS(|L|) if d = 2 and PR|L|) N A4—; consists of
d copies isomorphic to HSL|) if d > 2.

Definition 1.1.3 A n-dimensional linear systeri.| ¢ |S?(EV)| is called
regularif PB(|L|) is smooth at each point @,_;.

Proposition 1.1.16 AssumelL| is regular. Then

(i) |L| has no base points,
(i) D(]L|) is smooth.
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Proof (i) Assume that: = ([v], ..., [vo]) € PB(]L|) N A. Consider the lin-
ear mapL — E defined by evaluating at a point(vg, . . . , o, v, Vg, - - - , Vo),
wherev € E. This map factors through a linear map— FE/[vo], and hence
has a nonzerg in its kernel. This implies that € N(f), and hence: is a
singular point of PB|L|).

(ii) In coordinates, the variet(|L|) is a subvariety of typél,d — 1) of
P x P given by the equations

S e N, O

The tangent space at a poifii], [a]) is given by the system of + 1 linear
equations ir2n + 2 variables( Xy, ..., X,,, Yo,...,Yy)

iaﬁf (a)XkJri agff(a)yj =0, i=0,...,n, (1.37)
; =

where fx = Y ;_ \ufr. Suppose([A],[a]) is a singular point. Then the
equations are linearly dependent. Thus there exists a nonzero vector
(o, .. ., o) such that

> i @) = Dy(@) = filasecsa) =0,k =0,

=0

and
. 0 Ofx Ofx .
‘ = Y = D -2 A, = - «s e
& atlatj (a’> U( 8tj )(a) ad ’U( 8tj ) 0, j 0, , N,
where f\ = 3" A\, fx. The first equation implies that = ([a], ..., [a], [v])

belongs to PBL|). Sincea € Sing(fy), we haveDaa1(52) = 0, j =

0,...,n. By (1.35, this and the second equation now imply that N(f).

By Propositionl.1.15 PB(|L|) is singular atz, contradicting the assumption.
O

Corollary 1.1.17 SupposeL| is regular. Then the projection
g:D(|Z]) — D(|L))
is a resolution of singularities.

Consider the projectiop : D(|L|) — Jad|L|), (D, z) — . Its fibres are
linear spaces of divisors ifl.| singular at the poinfa]. Conversely, suppose
D(|L|) contains a linear subspace, in particular, a line. Then, by Bertini’s The-
orem all singular divisors parameterized by the line have a common singular



1.1 Polar hypersurfaces 31

point. This implies that the morphismphas positive dimensional fibres. This
simple observation gives the following.

Proposition 1.1.18 SupposeD(|L|) does not contain lines. Thed(|L|) is
smooth if and only iflad¢|L|) is smooth. MoreoveldS(|L|) = St(|L|) =
Jad|L]).

Remarkl.1.5 We will prove later in Exampld.2.1that the tangent space of
the discriminant hypersurfa®;(n) at a point corresponding to a hypersurface

X = V/(f) with only one ordinary double point is naturally isomorphic to

the linear space of homogeneous forms of degreanishing at the point
moduloCf. This implies thaD(| L|) is nonsingular at a point corresponding to

a hypersurface with one ordinary double point unless this point is a base point
of |L|. If |L| has no base points, the singular point®¢fL|) are of two sorts:
either they correspond to divisors with worse singularities than one ordinary
double point, or the linear spadé| is tangent toD,(n) at its nonsingular
point.

Consider the natural action of the symmetric gra@pon (P"). It leaves
PB(|L|) invarian. The quotient variety

Rey(|L]) = PB(|L|)/Ga

is called theReye varietyof |L|. If d > 2 andn > 1, the Reye variety is
singular.

Examplel.1.8 Assumed = 2. Then PR|L|) = HS(|L|) and Ja¢|L|) =
St(|L|). Moreover, Rey|L|) = Cay(|L|). We have

degJaq|L|) = degD(|L|) =n+1, degCay(L])=Y_ (") ("7]).
i=1

The linear system is regular if and only if PB|) is smooth. This coincides
with the notion of regularity of a web of quadricsIi discussed in144].

A Reye line/ is contained in a codimension 2 subspadg) of |L|, and
is characterized by this condition. The linear subsysteff) of dimension
n — 2 containg’ in its base locus. The residual component is a curve of degree
2n=1 — 1 which intersectg at two points. The points are the two ramification
points of the penci) N ¢, Q € |L|. The two singular points of the base locus
of A(¢) define two singular points of the intersectiai\) N D(|L|). Thus
A(¢) is a codimension 2 subspace|@f which is tangent to the determinantal
hypersurface at two points.

If |L|is regularandv = 3, PB(|L|) is a K3 surface, and its quotient R&¥|)
is an Enriques surface. The Cayley variety is a congruence (i.e. a surface) of
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lines inG1(P3) of order 7 and class 3 (this means that there are 7 Reye lines
through a general point iR? and there 3 Reye lines in a general plane). The
Reye lines are bitangents of the quartic surfa¢d.|). The quartic surface has

10 nodes and is calle@ayley quartic symmetroidVe refer for the details to
[146]. The Reye congruenceaf lines is also discussed i295.

1.2 The dual hypersurface
1.2.1 The polar map

Let X = V(f) for somef € SY(EY). We assume that it is not a cone. The
polarisation map

E— STHEY), v Do(f),

allows us to identifyl E/| with ann-dimensional linear system of hypersurfaces
of degreed — 1. This linear system defines a rational map

px ¢ |E] --» P(E)

. It follows from (1.12 that the map is given by assigning to a pairthe linear
polar P,a-1(X). We call the map the polar mapdefined by the hypersurface
X. In coordinates, the polar map is given by
of of
ErE E}'
Recall that a hyperpland, = V(3 a;&;) in the dual projective spad@”)"
is the pointa = [ao, . .. ,a,] € P". The preimage of the hyperplaig, under
px isthe polarP,(f) =V (3. ai%{)-

If X is nonsingular, the polar map is a regular map given by polynomials of
degreed — 1. Since it is a composition of the Veronese map and a projection,
it is a finite map of degre&l — 1)™.

[to, ... tn] — [

Proposition 1.2.1 AssumeX is nonsingular. The ramification divisor of the
polar map is equal tade(X).

Proof Note that, for any finite map : X — Y of nonsingular varieties, the
ramification divisor Rarfy) is defined locally by the determinant of the linear
map of locally free sheaves*(Q},) — Q. The image of Rarf) in Y is
called thebranch divisor Both of the divisors may be nonreduced. We have
the Hurwitz formula

Kx = ¢*(Ky) + Ran(g). (1.38)
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The mape is étale outside Ratw), i.e., for any point: € X the homomor-
phism of local ringOy. 4(,y — Ox . defines an isomorphism of their formal
completions. In particular, the preimage!(Z) of a nonsingular subvariety
Z C Y is nonsingular outside the support of Rafi Applying this to the
polar map we see that the singular pointshf X) = p' (H,) are contained
in the ramification locus Rafpy ) of the polar map. On the other hand, we
know that the set of singular points of first polars is the HessiaiXHeThis
shows that HEX') € Ram(px ). Applying the Hurwitz formula for the canon-
ical sheaf

Kpn = p}(K(Pn)\/) + Ran'(px).

we obtain thatleg(Rampx)) = (n + 1)(d — 2) = deg(He(X)). This shows
that HE X') = Ram(px ). O

What is the branch divisor? One can show that the preimage of a hyperplane
H, in P(E) corresponding to a point € |E| is singular if and only if its in-
tersection with the branch divisor is not transversal. This means that the dual
hypersurface of the branch divisor is the Steinerian hypersurface. Equivalently,
the branch divisor is the dual of the Steinerian hypersurface. hy does not in-
tersect tran tangent to the branch locus of the map. The preimadg isfthe
polar hypersurfacé, (X ). Thus the set of hyperplanes tangent to the branch
divisor is equal to the Steinerian(Sf).

1.2.2 Dual varieties

Recall that thedual variety XV of a subvarietyX in P™ = |E] is the closure
in the dual projective spag®™)" = |EVY| of the locus of hyperplanes A"
which are tangent t& at some nonsingular point of.

The dual variety of a hypersurfacé = V(f) is the image ofX under the
rational map given by the first polars. In fact, the pdf (z), ..., 0, f(x)]
in (P™) is the hyperplan& (}_""_, 9; f (z)t;) in P™ which is tangent to¥ at
the pointz.

The following result is called thReflexivity theoreOne can find its proof
in many modern text-books (e.@64], [307], [61]], [661]).

Theorem 1.2.2(Reflexivity Theorem)
(XV)Y =X.

It follows from any proof in loc. cit. that, for any nonsingular poine XV
and any nonsingular pointe X,

T.(X) C H, = T, (X") C H,.
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Here we continue to identify a poiatin |E| with a hyperplandd, in P(E).
The set of all hyperplanes i)Y containing the linear subspatg(X") is
the dual linear space @, (X") in P". Thus the fibre of theluality map(or
Gauss map

v X = XY 2 Tu(X), (1.39)

over a nonsingular point € XV is an open subset of the projective subspace
in P equal to the dual of the tangent spatg X "). Here and late’X ™ de-
notes the set of nonsingular points of a varigfy In particular, if XV is a
hypersurface, the dual spacelf(X V) must be a point, and hence the map

is birational.

Let us apply this to the case when is a nonsingular hypersurface. The
polar map is a finite map, hence the dual of a nonsingular hypersurface is a
hypersurface. The duality map is a birational morphism

pX|X ZX—>XV.

The degree of the dual hypersurfa&e’ (if it is a hypersurface) is called
the classof X. For example, the class of any plane curve of degreé is
well-defined.

Examplel.2.1 LetDy(n) be the discriminant hypersurface|isi(E£V)|. We
would like to describe explicitly the tangent hyperplan®gfr) at its nonsin-
gular point. Let

Dy(n) = {(X,z) € |Opn(d)| x P" : z € Sing(X)}.
Let us see thaf)d(n) is nonsingular and the projection to the first factor
7 : Dg(n) — Dg(n) (1.40)

is a resolution of singularities. In particularjs an isomorphism over the open
setD,(n)" of nonsingular points oD 4(n).

The fact thalﬁd(n) is nonsingular follows easily from considering the pro-
jection toP™. For any pointz € P™ the fibre of the projection is the projective
space of hypersurfaces which have a singular point(étis amounts ta + 1
linear conditions on the coefficients). Th@@(n) is a projective bundle over
P and hence is nonsingular.

Let us see where is an isomorphism. Le#l;, |i| = d, be the projective
coordinates inOp- (d)| = |S¢(EV)| corresponding to the coefficients of a
hypersurface of degre@ and lett, ..., ¢, be projective coordinates ™.
ThenD,(n) is given byn+ 1 bihomogeneous equations of bidegfeel —1):
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> i AT =0, s=0,...,n, (1.41)
li|=d

Heree, is thes-th unit vector inz"*1,

A point (X, [vo]) = (V(f),[vo]) € |Opn(d)| x P belongs toDgy(n) if
and only if, replacingA; with the coefficient off att’ and¢; with the i-th
coefficient ofvy, we get the identities.

We identify the tangent space [f¢(EV)| x | E| at a point( X, [vo]) with the
spaceS?(EY)/Cf @ E/Cuvy. In coordinates, a vector in the tangent space is a
pair (g, [v]), whereg = 3", a;t!, v = (zo,...,z,) are considered modulo
pairs(Af, pvo). Differentiating equationsl(41), we see that the tangent space
is defined by theén + 1) x ("}%)-matrix

- i—eg - . .i—eg—eqg - . ei—eg—en
10T Zm:dz(ﬂoAlx Z‘i‘:dlolnz‘hx

inl,ifen . Em:d Z'niOAi.,L,ifen*eo L Z|i|:d ,L-ninAixifen*en7
wherez'~¢ = 0if i — e, iS not a non-negative vector. It is easy to interpret
solutions of these equations as pdijsv) from above such that

V(g)(vo) + He(f)(vo) - v = 0. (1.42)

Since[vp] is a singular point of’ (f), V(f)([ve]) = 0. Also Hef)(v) -
vg = 0, as follows from Theorenrt.1.1Q This confirms that pair6\ f, uvg) are
always solutions. The tangent mép at the pointV'(f), [vo]) is given by the
projection(g,v) — g, where(g, v) is a solution of L.42). Its kernel consists
of the pairg A f, v) modulo pairg A f, pvg). For such pairs the equatioris42
give

He(f)(vp) -v =0. (1.43)

We may assume that = (1,0, ...,0). Since[vy] is a singular point o¥/( f),
we can writef = t372fy(t1,...,t,) + .... Computing the Hessian matrix at
the pointy, we see that it is equal to

o ... ... 0
0 aill . A1n
, (1.44)
0 an1 ... Qpn
wherefa(ti, ... . tn) = D o<, j<, aijtitj. Thus a solution ofX.43, not pro-

portional tovg exists if and only ifdet He( f2) = 0. By definition, this means
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that the singular point oK atz is not an ordinary double point. Thus we ob-
tain that the projection mad (40 is an isomorphism over the open subset of
Dq(n) representing hypersurfaces with an isolated ordinary singularity.

We can also find the description of the tangent spadegf:) at its point
X = V/(f) representing a hypersurface with a unique ordinary singular point
z. It follows from calculation of the Hessian matrix ifh.¢4), that its corank at
the ordinary singular point is equal to 1. Since the matrix is symmetric, the dot-
product of a vector in its nullspace is orthogonal to the column of the matrix.
We know that Héf)(vo) - vo = 0. Thus the dot-produc¥ (g)(vo) - vo is equal
to zero. By Euler's formula, we obtain(vy) = 0. The converse is also true.
This proves that

T(Da(n))x = {g € SY(EY)/Cf : g(z) = 0}. (1.45)

Now we are ready to compute the dual varietylf(n). The condition
g(b) = 0, where SingX) = {b} is equivalent tdD,.(f) = 0. Thus the tangent
hyperplane, considered as a point in the dual spaéer)| = |(S4(EY))Y|
corresponds to the envelopé= (3""_ b,9;)?. The set of such envelopes is
the Veronese variety?;, the image of E| under the Veronese map : |E| —
|S4(E)|. Thus

Da(n)” = va(P"), (1.46)

Of course, it is predictable. Recall that the Veronese variety is embedded
naturally in|Op- (d)|". Its hyperplane section can be identified with a hyper-
surface of degreé in P™. A tangent hyperplane is a hypersurface with a sin-
gular point, i.e. a point iD4(n). Thus the dual o¥7} is isomorphic tdD4(n),
and hence, by duality, the dual bf;(n) is isomorphic tov?.

Examplel.2.2 Let@ = V(g) be a nonsingular quadric If*. Let A = (a;;)
be a symmetric matrix defining. The tangent hyperplane @} at a point
[x] € P™ is the hyperplane

n n
to Zaojl‘j + -+ t, Zanjxj =0.
=0 =0

Thus the vector of coordinates= (yo, ..., y,) of the tangent hyperplane is
equal to the vectod - . SinceA is invertible, we can write: = A~! - y. We
have

O=z-A-z=(y - AN - A-(A.y)=y-A1.y=0.

Here we treaf: or y as a row-matrix or as a column-matrix in order the matrix
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multiplication makes sense. Sinde'! = det(A)~'adj(A), we obtain that the
dual variety ofQ is also a quadric given by the adjugate matrix(2dj

The description of the tangent space of the discriminant hypersurface from
Examplel.2.1has the following nice application (see also Remhik5.

Proposition 1.2.3 Let X be a hypersurface of degreein P"*. Suppose: is
a nonsingular point of the Steinerian hypersurf&teX). ThenSing( P, (X))
consists of an ordinary singular poihtand

T, (SUX)) = Pya—r (X).

1.2.3 Plicker formulas

Let X = V(f) be a nonsingular irreducible hypersurface which is not a cone.
Fix n — 1 general points, ..., a,_1 in P". Consider the intersection

XNP, (X)N...AP, (X)={beP":ay,...,an1 € Ty(X)}.

The set of hyperplanes through a general set-ofl points is a line in the dual
space. This shows that

deg XV = #X NP, (X)N... Py, (X)=d(d—1)""".  (1.47)

The computation does not apply to singularsince all polarsP, (X) pass
through singular points oX . In the case whetX has only isolated singular-
ities, the intersection ofi — 1 polars with X contains singular points which
correspond to hyperplanes which we excluded from the definition of the dual
hypersurface. So we get the following formula

deg(XV) =d(d—1)"" = Y (X, P, (X),..., Pa,_,(X))a (1.48)

zeSing(X)
To state an explicit formula we need some definition. het (¢1, ..., ¢x)
be a set of polynomials i€€[z1, . . ., z,,]. We assume that the holomorphic map

C" — CF defined by these polynomials has an isolated critical point at the
origin. Let J(¢) be the jacobian matrix. The idedl(¢) in the ring of formal

power serie€[[z1, . . ., z,]] generated by the maximal minors of the Jacobian
matrix is called theJacobian ideabf ¢. The number

M(?) = dim(c[[zlv ) Zn]]/j(?)

is called theMilnor numberof ¢. Passing to affine coordinates, this definition
easily extends to the definition of the Milnor numhe&iX, =) of an isolated
singularity of a complete intersection subvarigfyin P™.
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We will need the following result of & Diing Tiang {00, Theorem 3.7.1.

Lemmal.2.4 LetZ be acomplete intersection " defined by polynomials
o1, ..., ¢ With isolated singularity at the origin. Lef; = V(¢1,...,0k—1).
Then

.U’((bh .. '7¢k¢—1) +}L(¢1, .. '7¢k—17¢k)

= dim(CHZl,...,Zn]]/((bh...,¢k_1,j(¢1,...,d)k-)).

Now we can state and prove tR#icker-Teissier formuléor a hypersurface
with isolated singularities:

Theorem 1.2.5 Let X be a hypersurface if?" of degreed. SupposeX has
only isolated singularities. For any poiat € Sing(X), let

e(X,z) = u(X,x) +pu(HNX,xz),
whereH is a general hyperplane section &f containingz. Then

deg XV =d(d—1)"" = Y e(X,x).
z€Sing(X)

Proof We have to show that( X, z) = i(X, Py, (X),..., Pa,_,(X)).. We
may assume that = [1,0,...,0] and choose affine coordinates with =
ti/to. Let f(to,...,tn) = tdg(21,...,2,). Easy calculations employing the

Chain Rule, give the formula for the dehomogenized partial derivatives

_q0f Z dg
di = —_—
dg+ azizh

Y0 Bto
_40f dg

d

—_— = =1,...,n.
o ot; 82i7z et

Let H = V(h) be a general hyperplane spannedrby- 1 general points
ai,...,a,_1,andh : C* — C be the projection defined by the linear function
h = Z a;z;. Let

F:C"—C?% z=(z1,...,2,)  (9(2),h(2)).

Consider the Jacobian determinant of the two functigh#)

o
J(g,h) = ‘2511 ‘2;’" .
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The ideal(g, J(g, b)) defines the set of critical points of the restriction of the
mapF to X \ V(ty). We have

99 99
(gﬂj(ga h)) = (gvaiaizj - aj%)l§i<j§na

The points(0, . ..,0,a;,0,...,0,—a;,0,...,0) span the hyperplang. We
may assume that these points are our paints..,a,_1. So, we see that
(g, J (g, h)) coincides with the ideal in the completion of local ri&g- ., gen-
erated byf and the polars,, (f). By definition of the index of intersection,
we have

(X, Pay (X), -, Payy (X))2 = g, h).-

It remains to apply Lemmé&.2.4 whereZ = V(g) andZ; = V(g) NV (h).
O

Examplel.2.3 An isolated singular point of a hypersurfaceX in P" is

called anA,-singularity (or a singular point of typel;,) if the formal comple-
tion of Ox ,, is isomorphic taC[z1, ..., 2,]] /(AT + 23 + ... +22). 1f k =1,

it is an ordinary quadratic singularity (orreode, if £k = 2, it is anordinary
cusp We get

w(X,x) =k, p(XNH,z)=1

This gives the Ricker formula for hypersurfaces withsingularities of type
Ak‘l’ AR Ak

deg XV =d(d—1)""" — (kg +1) — ... — (ks + 1). (1.49)

In particularly, whenX is a plane curv&’ with § nodes and: ordinary cusps,
we get a familiaPlicker formula

degCY =d(d —1) — 25 — 3k. (1.50)

Note that, in case of plane curveg,H N X, z) is always equal to multX —1,
where mulg X is the multiplicity of X atx. This gives the Ricker formula for
plane curves with arbitrary singularities

degCV =d(d—1)— Y (u(X,z)+mul, X — 1). (1.51)
z€eSing(X)

Note that the dual curvé’ of a nonsingular curv€’ of degreed > 2 is
always singular. This follows from the formula for the genus of a nonsingular
plane curve and the fact thét andC"V are birationally isomorphic. The po-
lar mapC — CV is equal to the normalization map. A singular point®f
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corresponds to a line which is either tangen€tat several points, or is an in-
flection tangent. We skip a local computation which shows that a line which is
an inflection tangent at one point with orefl 1 (anhonest inflection tangent
gives an ordinary cusp @'V and a line which is tangent at two points which
are not inflection pointshpnest bitangeftgives a node. Thus we obtain that
the numben of nodes ofC" is equal to the number of honest bitangents of
C and the numbek of ordinary cusps of”" is equal to the number of honest
inflection tangents t@".

Assume that”' is nonsingular and’¥ has no other singular points except
ordinary nodes and cusps. We know that the number of inflection points is
equal to3d(d — 2). Applying Plicker formula £.50 to CV, we get that

6= %(d(d—l)(d(d—l)—l)—d79d(d72)) = %d(d—2)(d279)~ (1.52)

This is the (expected) number of bitangents of a nonsingular plane curve. For
example, we expect that a nonsingular plane quartic has 28 bitangents.

We refer for discussions of &tker formulas to many modern text-books
(e.g. P41), [253, [299, [264]). A proof of Plucker-Teissiere formula can be
found in [607]. A generalization of the Ricker-Teissier formula to complete
intersections in projective space was given by S. Kleingat?]

1.3 Polar s-hedra

1.3.1 Apolar schemes

We continue to usé’ to denote a complex vector space of dimensios 1.
Consider the polarization pairing.@)

SUEY) x 85(B) — STH(EY), (f,4) = Dy(f).

Definition 1.3.1 1+ € S*(E) is calledapolarto f € S4(EV) if D, (f) = 0.
We extend this definition to hypersurfaces in the obvious way.

Lemma 1.3.1 Foranyy € S¥(E),¢' € S™(E)andf € S4(EY),
Dy (Dy(f)) = Dy (f)-

Proof By linearity and induction on the degree, it suffices to verify the asser-
tions in the case when = 9; andy)’ = 0;. In this case they are obvious.]

Corollary 1.3.2 Let f € S4EVY). Let AP.(f) be the subspace «f*(E)
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spanned by forms of degréeapolar to f. Then
AP(f) = D AP:(f)
k=0
is @ homogeneous ideal in the symmetric algefif&’).

Definition 1.3.2 The quotient ring
Ay = S(E)/AP(f)
is called theapolar ringof f.

The ring Ay inherits the grading of (E'). Since any polynomia) € S”(E)
with » > d is apolar tof, we see thatd ¢ is annihilated by the idea:hffrl =
(Do, - ., 0p)0FL. Thus Ay is an Artinian graded local algebra ov€r Since
the pairing betwees?(F) and S¢(EV) has values ins°(EV) = C, we see
that AP, ( f) is of codimensiort in S¢(E). Thus(A;), is a vector space of di-
mensionl overC and coincides with theocleof A, i.e. the ideal of elements
of Ay annihilated by its maximal ideal.
Note that the latter property characterizes Gorenstein graded local Artinian
rings, see22§, [347].

Proposition 1.3.3(F. S. Macaulay) The correspondencg — Ay is a bijec-
tion betweenS¢(E"Y)| and graded Artinian quotient algebra$(E)/.J with
one-dimensional socle.

Proof Let us show how to reconstru€tf from S(E)/J. The multiplication
of d vectors inE composed with the projection t§¢(E)/.J, defines a linear
map S¢(E) — S4(E)/Js = C. Choosing a basi§éS(E)/J)4, we obtain a
linear functionf on S¢(E). It corresponds to an element8f(EV).

O

Recall that any closed non-empty subscheéfme P™ is defined by a unique
saturated homogeneous idéalin Cl[to, . . ., t,,]. Its locus of zeros in the affine
spaceA™ ! is the affine con€’; of Z isomorphic to SpeCto, ..., t.]/I2).

Definition 1.3.3 Letf € S¢(EVY). A subschem& C |EY| = P(E) is called
apolar tof if its homogeneous idedl; is contained in APf), or, equivalently,
Spe¢A/) is a closed subscheme of the affine caheof Z.

This definition agrees with the definition of an apolar homogeneousform
A homogeneous formp € S*(E) is apolar tof if and only if the hypersurface
V(v) is apolar toV ( f).
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Consider the natural pairing
(Ap)p x (Af)a—r — (Ap)a=C (1.53)

defined by multiplication of polynomials. It is well defined because of Lemma
1.3.1 The left kernel of this pairing consists of € S*(E) mod AP(f) N
Sk(E) such thatDy,(f) = 0 for all ¢/ € S4=*(E). By Lemmal.3.],

Dyy (f) = Dy (Dy(f)) = 0forall ' € ST=k(E). This impliesD,(f) =

0. Thusy € AP(f) and hence is zero iA ;. This shows that the pairind 53

is a perfect pairing. This is one of the nice features of a Gorenstein Artinian
algebra (see?29g, 21.2).

It follows that the Hilbert polynomial

d
HAf (ﬁ) = Zdlm(Af>ltz = adtd + -+ ao
=0

is a reciprocal monic polynomial, i.e; = aq_;,aq = 1. Itis an important
invariant of a homogeneous forf

Examplel.3.1 Let f = [ be thed-th power of a linear fornd € EV. For any
v € SF(E) = (S¥(E)V)Y we have
Dy(I%) =d(d—1)...(d —k+ DI Fp(l) = dlld=Fly(1),

where we set

i _ Hltifk<d,
0 otherwise

Here we viewy) € S(E) as a homogeneous form @' . In coordinates] =
Yoo aiti, 0 =¥(do, . .., 0,) andyy(l) = dl(ay, - . ., a,). Thus we see that
APy (f),k < d, consists of polynomials of degréevanishing at. Assume,
for simplicity, thatl = ¢,. The idealAP(t?) is generated by, , . .., d,,, 95 .
The Hilbert polynomial is equal tb + ¢ + - - - + ¢,

1.3.2 Sums of powers

For any pointz € |EV| we continue to denote b¥,, the corresponding hyper-
plane in|E|.
Supposef € S4(EY) is equal to a sum of powers of nonzero linear forms

f=1++1d (1.54)
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This implies that for any) € S*(E),
Dy(f)=Dy(3_1) =D v, (1.55)
=1 =1

In particular, takingl = k, we obtain that

(11, D s = {0 € SUE) : (L) = 0,i =1,..., s} = (Iz)a,

where Z is the closed reduced subscheme of pofits|, ..., [ls]} C |EY|
corresponding to the linear formhs andi; denotes its homogeneous ideal.
This implies that the codimension of the linear sggh. . ., 14) in SY(EVY)
is equal to the dimension @f 7),4, hence the formg, ..., ¢ are linearly in-
dependent if and only if the poinis ], . . . , [Is] impose independent conditions
on hypersurfaces of degréen P(E) = |EV|.
Supposef € (I¢,...,1%), then(Iz)q C AP4(f). Conversely, if this is true,
we have

feAPy(f)F C (Iz)g = (..., 19).

If we additionally assume thdtl 7 ), ¢ AP, (f) for any proper subset’ of
Z, we obtain, after replacing the fornfis by proportional ones, that

f=08+ 1l

Definition 1.3.4 Apolars-hedronof f is a set of hyperplanel; = V' (l;),i =
1,...,s,in|E| such that

f=lie 4l

and, considered as points] in P(E), the hyperplanes]; impose independent
conditions in the linear systet®p ) (d)|. A polar s-hedron is callechonde-
generatef the hyperplaned/(l;) are in general linear position (i.e. no + 1
hyperplanes intersect).

Note that this definition does not depend on the choice of linear forms defin-
ing the hyperplanes. Also it does not depend on the choice of the equation
defining the hypersurfacg(f). We ca also view a polas-hedron as an un-
ordered set of points in the dual space. In the case 2, it is often called a
polar s-gon although this terminology is somewhat confusing since a polygon
comes with an order of its set of vertices.. Also in dimension 2 we cam employ
the terminology ofs-laterals

The following propositions follow from the above discussion.

Proposition 1.3.4 Let f € S4EV). ThenZ = {[l1],...,[ls]} is a polar
s-hedron off if and only if the following properties are satisfied
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(i) Iz(d) C APq(f);
(i) Iz:/(d) ¢ AP4(f) for any proper subset’ of Z.

Proposition 1.3.5 A setZ = {[l1],...,[ls]} is a polar s-hedron of f €
S4(EV) if and only if Z, considered as a closed subschemgf|, is apolar
to f but no proper subscheme Bfis apolar to f.

1.3.3 Generalized polar s-hedra

Proposition1.3.5allows one to generalize the definition of a polar s-hedron.
A polar s-hedron can be viewed as a reduced closed subsch@hB(E) =
|E|Y consisting ofs points. Obviously,

h°(0z) = dim H*(P(E),Oz) = s.

More generally, we may consider non-reduced closed subsch8roeB(E)
of dimension0 satisfyingh’(Oz) = s. The set of such subschemes is pa-
rameterized by a projective algebraic variety H{lB(E)) called thepunctual
Hilbert schemef P(FE) of 0-cycles of lengtts.

Any Z € Hilb®*(P(E)) defines the subspace

I7(d) = P(H(B(E), T7(d)) C H*(B(E), Op(z)(d)) = SU(E).
The exact sequence

0 — HY(P(E),Zz(d)) — H"(P(E), Op(r)(d)) — H°(P(E),0z) (1.56)

— HY(P(E),Iz(d)) — 0
shows that the dimension of the subspace
(Z)a =P(H(P(E),Zz(d))") C |SU(EY)] (1.57)

is equal toh?(Oz) — k1 (Zz(d)) — 1 = s — 1 — h}(Zz(d)). If Z is reduced
and consists of pointgy, ..., ps, then(Z)y = (va(p1),...,va(ps)), Where
vq : P(E) — P(S4(E)) is the Veronese map. Heneim(Z), = s — 1 if the
pointsvg(p1), - .., vq4(ps) are linearly independent. We say ttats linearly
d-independenif dim{(Z); = s — 1.

Definition 1.3.5 A generalizeds-hedronof f € S4(EV) is a linearly d-
independent subscheriec Hilb®*(IP(E)) which is apolar tof.

Recall thatZ is apolar tof if, for eachk > 0,

Iz(k) = HY(P(E),Zz(k)) C APy(f). (1.58)
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According to this definition, a polar s-hedron is a reduced generalized s-hedron.
The following is a generalization of Propositir3.4

Proposition 1.3.6 A linearly d-independent subschemdec Hilb*(P(E)) is
a generalized polas-hedron off € S¢(EV) if and only if

I7(d) C APy(f).

Proof We have to show that the inclusion in the assertion impligsl) C
AP (f) foranyk < d. Foranyy’ € S?—*(E) and anyy € I (k), the product
Py’ belongs tolz (k). Thus Dy (f) = 0. By the duality,D,(f) = 0, i.e.
Y € AP,(f). O

Examplel.3.2 Let Z € Hilb*(IP(E)) be the union of: fat pointspy, i.e. at
eachp; € Z the idealZ ,, is equal to then,-th power of the maximal ideal.
Obviously,

().

m;—1

k
s =

=1

Then the linear systenf;(d)| consists of hypersurfaces of degréewith
pointsp; of multiplicity > m,;. One can show (se@&47, Theorem 5.3) that
Z is apolar tof if and only if

f=1mmtlg et

wherep; = V(I;) andg; is a homogeneous polynomial of degree — 1 or
the zero polynomial.

Remark1.3.1 It is not known whether the set of generalizetiedra off is

a closed subset of HiffP(E)). It is known to be true fos < d + 1 since

in this caselim Iz(d) = t := dim S¢(E) — s for all Z € Hilb*(P(E)) (see
[347), p.48). This defines a regular map of Hi(?(E)) to the Grassmannian
G:-1(|S%(E)|) and the set of generalizedhedra equal to the preimage of a
closed subset consisting of subspaces contained ji{ APAlso we see that
h'(Zz(d)) = 0, henceZ is always linearlyd-independent.

1.3.4 Secant varieties and sums of powers
Consider thé/eronese mapf degreed
va: Bl = [SUE), [v] = [,

defined by the complete linear systéff £V|. The image of this map is the
Veronese variety’; of dimensionr and degred™. It is isomorphic taP”. By
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choosing a monomial basiéin the linear space of homogeneous polynomials
of degreed we obtain that the Veronese variety is isomorphic to the subvariety

(n+d)_1 . .
of P\ 4 given by equations
Aij*AkAm:O, i+j=k+m,

where A; are dual coordinates in the space of polynomials of dedrééhe
image of P" under the map defined by a choice of a basis of the complete
linear system of hypersurfaces of degtkis called an-dimensional Veronese
variety of degreel™.

One can combine the Veronese mapping and the Segre mapping to define
aSegre-Veronese varieW,, ., (di,...,ds). Itis equal to the image of the
mapP™ x - - - x P defined by the complete linear systéfhn, (d1)X- - - X
Opni (dy)].

The notion of a polag-hedron acquires a simple geometric interpretation
in terms of the secant varieties of the Veronese vanétyIf a set of points
[l1],...,[ls] in |E| is a polars-hedron off, then[f] € ([I¢],...,[l%]), and
hence|f] belongs to thés — 1)-secant subspace ®f;. Conversely, a general
point in this subspace admits a polar s-hedron. Recall that for any irreducible
nondegenerate projective varieXy c PV of dimensionr its t-secant variety
Seg(X) is defined to be the Zariski closure of the set of point&®hwhich
lie in the linear span of dimensidnof some set of + 1 linearly independent
points inX.

The counting constants easily gives

dim Seg(X) < min(r(t + 1) + ¢, N).

The subvarietyX c PV is calledt-defectiveif the inequality is strict. An
example of al-defective variety is a Veronese surfacéin

A fundamental result about secant varieties is the following Lemma whose
modern proof can be found i®§1], Chapter Il, and in165

Lemma 1.3.7(A. Terracini) Letpy,...,p;+1 be generak + 1 points in X
andp be a general point in their span. Then

Tp(Seg(X)) = Tp, (X), -, Tp,,, (X).

) TPt

The inclusion part

Tp, (X),...,T (X) C T,(Seg(X))

cc TPt

is easy to prove. We assume for simplicity that 1. Then Seg(X) contains
the coneC(p;, X) which is swept out by the linegg,q € X. Therefore,
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T,(C(p1,X)) C T,(Seqg (X)). However, it is easy to see th@,(C'(p1, X))
containsT,, (X).

Corollary 1.3.8 Seg(X) # PV if and only if, for anyt + 1 general points
of X, there exists a hyperplane sectionXfsingular at these points. In par-
ticular, if N < r(t + 1) + ¢t, the varietyX is t-defective if and only if for any
t + 1 general points ofX there exists a hyperplane section®fsingular at
these points.

Examplel.3.3 Let X =V} C P(d:n)‘l be a Veronese variety. Assume
n(t+1) +¢ > (*") — 1. A hyperplane section ok is isomorphic to a
hypersurface of degregin P". Thus Seg(V") # |S4(EV)| if and only if, for
anyt + 1 general points if*™, there exists a hypersurface of degtiesngular
at these points.

Consider a Veronese cur¥g, C P?. Assume2t + 1 > d. Sinced < 2t + 2,
there are no homogeneous forms of degteéhich havet + 1 multiple roots.
Thus the Veronese curvB; = vy4(P!) C P? is nott-degenerate fot >
(d—1)/2.

Taken = 2 andd = 2. For any two points ifP? there exists a conic singular
at these points, namely the double line through the points. This explains why a
Veronese surfacgy is 1-defective.

Another example 8/ ¢ P! andt = 4. The expected dimension of
Seq (X) is equal tol4. For any 5 points ifP? there exists a conic passing
through these points. Taking it with multiplicity 2, we obtain a quartic which
is singular at these points. This shows thatis 4-defective.

The following Corollary of Terracini’s Lemma is called tRést Main Theo-
rem on apolarityin [226. The authors gave an algebraic proof of this Theorem
without using Terracini’s Lemma.

Corollary 1.3.9 A general homogeneous form &f(E") admits a polar
s-hedron if and only if there exist linear fornis,...,l; € EY such that,
for any nonzera) € S4(E), the ideal AP(y))  S(EY) does not contain
{1d=1

Proof A general form inS¢(EY) admits a polar s-hedron if and only if the
secant variety Sec,(V}) is equal to the whole space. This means that the
span of the tangent spaces at some paints V (1¢),i = 1,..., s, is equal to

the whole space. By Terracini's Lemma, this is equivalent to that the tangent
spaces of the Veronese variety at the poiptare not contained in a hyper-
plane defined by some¢ ¢ S4(E) = S4(EY)V. It remains to use that the
tangent space of the Veronese varietyais equal to the projective space of
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all homogeneous formg 11,1 € EV \ {0} (see Exercises). Thus, for any
nonzeroy) € S%(E), it is impossible that,.—1,(y)) = 0 for all I and for all

i. ButPlffll(w) = 0 for all { if and only ifZPli_ifl(w) = 0. This proves the
assertion. O

The following fundamental result is due to J. Alexander and A. Hirschowitz
[5]. A simplified proof can be found irgp] or [97].

Theorem 1.3.10 If d > 2, the Veronese variety’ is ¢t-defective if and only
if

(n,d,t) = (2,4,4),(3,4,8),(4,3,6), (4,4, 13).

In all these cases the secant vari&gg (V%) is a hypersurface. The Veronese
variety V3 is t-defective only it < ¢ < n. lts¢-secant variety is of dimension
n(t+1)—3(t—-2)(t+1) 1.

For the sufficiency of the condition, only the cage3, 6) is not trivial. It
asserts that for general points iP? there exists a cubic hypersurface which
is singular at these points. To see this, we use a well-known fact that &3y
general points irP" lie on a Veronese curve of degree(see, for example,
[307], Theorem 1.18). So, we find such a cuke¢hrough 7 general points in
P* and consider the 1-secant variety §g¢). It is a cubic hypersurface given
by the catalecticant invariant of a binary quartic form. It contains the cBrve
as it singular locus.

Other cases are easy. We have seen already the first two cases. The third
case follows from the existence of a quadric through 9 general poirits.in
The square of its equation defines a quartic with 9 points. The last case is
similar. For any 14 general points there exists a quadrit*inontaining these
points. In the case of quadrics we use that the variety of quadrics of cerank
is of codimension-(r + 1)/2 in the variety of all quadrics.

Obviously, if dim Seg_ (V%) < dim|S¢EY)| = (") — 1, a general
form f € S4(EY) cannot be written as a sum efpowers of linear forms.
Sincedim Se¢_; (V%) < min{(n+1)s—1, (%) — 1}, the minimal number
s(n, d) of powers needed to writfas a sum of powers of linear forms satisfies

s(n,d)z[ ! (”‘Ld)]. (1.59)

n+1 n

If V7 is not (s — 1)-defective, then the equality holds. Applying Theorem
1.3.1Q we obtain the following.



1.3 Polar s-hedra 49

s(n, d) = [nil(”zd)]

unless(n,d) = (n,2),(2,4),(3,4), (4, 3), (4,4). In these exceptional cases
s(n,d) =n+1,6,10,8,15 instead of expecteﬁ"g—lLE), 9,8,14.

Corollary 1.3.11

Remarkl1.3.2 If d > 2, in all the exceptional cases listed in the previous
corollary, s(n, d) is larger by one than the expected number. The variety of
forms of degreel which can be written as the sum of the expected number of
powers of linear forms is a hypersurface|®p- (d)|. In the cas€n,d,t) =
(2,4,5), the hypersurface is of degree 6 and is given by the catalecticant matrix
which we will discuss later in this chapter. The curves parameterized by this
hypersurface are Clebsch quartics which we will discuss in Chapter 6. The
case(n,d) = (4,3) was studied only recently iMpZ. The hypersurface is

of degree 15. In the other two cases, the equation expresses that the second
partials of the quartic are linearly dependent (285, pp. 58-59.)

One can also consider the problem of a representation of several forms
fis--, fr € SYEY) as a sum of powers of the same set (up to proportional-
ity) of linear formsly, .. ., l,. This means that the forms share a common polar
s-hedron. For example, a well-known result from linear algebra states that two
general quadratic formg,, g2 in k variables can be simultaneously diagonal-
ized. In our terminilogy this means that they have a common polar k-hedron.
More precisely, this is possible if thiet(g; + Ag2) hasn + 1 distinct roots (we
will discuss this later in Chapter 8 while studying del Pezzo surfaces of degree
4).

Suppose

fi=>a1l j=1,...k (1.60)
i=1

We view this as an elemegtc UV ® S¢(EY), whereU = C*. The mape

is the sum ofs linear mapsp of rank 1 with the images spanned iy So, we
can view eacly as a vector ir/V ® S¢(E"V) equal to the image of a vector in
UV ®EY embedded i/ @ EY by u®1 — u® 1% Now, everything becomes
clear. We consider the Segre-Veronese embedding

U] x [EY| = U] x |SUEY)| — [UY @ SYEY)]

defined by the linear system of divisors of tyfle d) and view[¢] as a point
in the projective spacé/¥ ® S?(EV)| which lies on thes — 1)-secant variety
of Vk—l,n(la d)



50 Polarity

For any linear mag € Hom(U, S¢(EV)), consider the linear map
2
Ty : Hom(U, E) — Hom(\ U, S~ (E")),
defined by

Tp(@) 1 uAv = Doy (9(v)) — Do) (d(u)).

We call this map th@oeplitz mapSuppose thap is of rank 1 with the image
spanned by?, then¥,; is of rank equal talim A*U — 1 = (k — 2)(k +1)/2.
If we choose a basis, ..., u; in U and coordinates,, . . ., t, in E, then the
image is spanned by ! (a;u; — a;u;), wherel = 3" a;t;. This shows that, if
¢ belongs to Sec. 1 (|UY| x |EY]),

rank¥, < s(k —2)(k+1)/2. (1.61)

The expected dimension of Seg (|U"| x |EY|) is equal tas(k + n) — 1.
Thus, we expect that Sec, (|UV| x |EV|) coincides with|UY @ S¢(EV))|

when
sz[kinczdﬂ (1.62)

If this happens, we obtain that a general sét &drms admits a common polar
s-hedron. Of course, as in the cdse= 1, there could be exceptions if the
secant variety i$s — 1)-defective.

Examplel.3.4 Assumed = 2 andk = 3. In this case the matrix oIy is
a square matrix of siz& x (n + 1). Let us identify the spacds" and \> U
by means of the volume form; A us A ug € /\3 U = C. Also identify
#(u;) € S?(EY) with a square symmetric matrig; of size3(n + 1). Then,
an easy computation shows that one can represent the linea€mbyp the

skew-symmetric matrix
0 A As
-4 0 As]. (1.63)

—Ay —As3 O
Now condition (.61) for

(3n+2) if niseven
(B3n+1) if nisodd> 3,
ifn=1

5= k+n

kn+d n n
(2 - ) -

W = =
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becomes equivalent to the condition

0 A A
A=Pil -4, 0 As;]|=0. (1.64)
—Ay —A; 0

It is known that the trisecant!line Sgg (|U| x |E|) of the Segre-Veronese
variety is a hypersurface if > 3 is odd and the whole spacerifis even (see
[597, Lemma 4.4). It implies that, in the odd case, the hypersurface is equal
to V(A). Its degree is equal t8(n + 1)/2. Of course, in the even case, the
pfaffian vanishes identically.

In the casen = 3, the pfaffianA was introduced by E. Toeplit613. It
is an invariant of the nétof quadrics inP? that vanishes on the nets with
common polar pentahedron. FollowirgjZ, we call A the Toeplitz invariant
Let us write its generatorg,, f, f3 in the form (.60 with n = 3 ands =
1(3n+ 1) = 5. Since the four linear formg are linearly dependent, we can
normalize them by assuming thiat+ ... + 5 = 0 and assume tha{, ..., 5
span a 4-dimensional subspace. Consider a cubic form

1 5
_ 3
F=g Z 2,
=1
and find three vectors; in C* such that

(ll(’l}j),. .. ,l5(Uj)) = (a?), e ,aéj)), j = 1,2,3.

Now we check thatf; = D, (F) for j = 1,2,3. This shows that the net
spanned by, f2, f3 is a net of polar quadrics of the cubi¢ Conversely, we

will see later that any general cubic form in 4 variables admits a polar pentahe-
dron. Thus any net of polars of a general cubic surface admits a common polar
pentahedron. So, the Toeplitz invariant vanishes on a general net of quadrics in
P3 if and only if the net is realized as a net of polar quadrics of a cubic.

Remarkl.3.3 Let(n,d, k, s) denote the numbers such that we have the strict

inequality in (L.62. We call such4-tuples exceptional. Examples of excep-

tional 4-tuples arén, 2,3, 1(3n + 1)) with oddn > 2. The secant hypersur-

faces in these cases are given by the Toeplitz invariafhe casd3, 2,3, 5)

was first discovered by G. Darbou%d§.? It has been rediscovered and ex-

tended to any oda, by G. Ottaviani 61]. There are other two known ex-

amples. The case, 3,2,5) was discovered by F. Londod(€]. The secant

2 We employ classical terminology calling a 1-dimensional (resp. 2-dimensional, resp.
3-dimensional) linear systempencil (resp. anet, resp. aveb).

3 Darboux also wrongly claimed that the ca8g2, 4, 6) is exceptional, the mistake was
pointed out by Terracini0g without proof, a proof is in§7].
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variety is a hypersurface given by the determinant of oédafrthe linear map
% (see Exercise 1.30). The examp(8s2, 5, 6) and (5, 2, 3, 8) were discov-
ered recently by E. Carlini and J. Chipalka@i’]l. The secant hypersurface in
the second case is a hypersurface of degree 18 given by the determi@ant of
There are no exceptional 4-tuplés, 2, 2, s) [67] and no exceptional 4-tuples
(n,d, k, s) for largen (with some explicit bound}]]. We refer to L0§], where
the varieties of common polar s-hedra are studied.

Remarkl.3.4 Assume that one of the matricds, As, Az in (1.63 is invert-
ible, say let it bed,. Then

I 0 0 0 A A\ /I 0 0
0 I —-AA ) [-4 0 Aszlfo I 0
0 0 I ~Ay —A3 0 0 —Ay'A; T

0 0 A
= 0 B A3 5
—Ay —A; 0

where
B=A1A; A3 — A3AST A,
This shows that
0 A A
rank | —A; 0 Az ]| =rankB + 2n + 2.
—Ay —A; 0

The condition that ranB < 2 is known in the theory of vector bundles over
the projective plane aBarth’s conditionon the net of quadrics if#”. It does

not depend on the choice of a basis of the net of quadrics spanned by the
guadrics with matricesl;, A5, As. Under Barth’s condition, the discriminant
curvedet(zgA;+21A2+2A3) = 0 of singular quadrics in the net isrboux
curveof degreen + 1 (see R4)).

1.3.5 The Waring problems

The well-known Waring problem in number theory asks about the smallest

numbers(d) such that each natural number can be written as a swlofi-

th powers of natural numbers. It also asks in how many ways it can be done. Its

polynomial analog asks about the smallest numi¢er d) such that a general

homogeneous polynomial of degréen n + 1 variables can be written as a

sum ofs d-th powers of linear forms. Corollary.(3.11) solves this problem.
Other versions of the Waring problem ask the following questions:
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[ d[n] s] #] reference|
2s-1| 1 S 1 J. Sylvester$02
5] 2 7 1 | D. Hilbert [325, H. Richmond p172,
F. Palatini 467
712]12] 5 A. Dixon and T. Stuart[86],

K. Ranestad and F.-O. Schreyd®p

15 | 16 | K. Ranestad and F.-O. Schreyé®f
5 1 J. Sylvester$02

e (W1) Given a homogeneous fornys ¢ S¢(EY), study thevariety of
sums of power®/SP(f, s)°, i.e. the subvariety oP(E)(*) which con-
sists of polars-hedra off or, more general, the subvariety V§Ps) of
Hilb®(P(E)) parameterizing generalized polar s-hedrg of

e (W2) Givens, find the equations of the closure ®Sd;n) in S4(EV) of
the locus of homogeneous forms of degreehich can be written as a
sum ofs powers of linear forms.

We can also ask similar questions for several formS4aE").

Note that P$s, d; n) is the affine cone over the secant variety Se¢V?).
In the language of secant varieties, the variety YSF)° is the set of linearly
independent sets afpointsps, . .., ps in V2 such tha{f] € (pi,...,ps) and
does not belong to the span of the proper subset of the set of these points. The
variety VSR f, s) is the set of linearly independefite Hilb*(P(E)) such that
[f] € {(Z). Note that we have a natural map

VSP(f,s) — G(s,SUE)), Zw (Z)q,

whereG(s, SU(E)) = Gs_1(|S4(E)|) is the Grassmannian efdimensional
subspaces o§¢(E). This map is not injective in general.

Also note that for a general fornfi, the variety VSPf, s) is equal to the
closure of VSRS, s)? in the Hilbert scheme HIlP(E)) (see B47, 7.2).
It is not true for an arbitrary formf. One can also embed V&P, s)° in
P(S4(E)) by assigning td!y, . .., [} the product; - - - I,. Thus we can com-
pactify VSR £, s)° by taking its closure if?(S¢(E)). In general, this closure
is not isomorphic to VSF, s).

Remark1.3.5 If (d,n) is not one of the exceptional cases from Corollary
1.3.11and("}%) = (n+1)s for some intege, then a general form of degree
d admits only finitely many polas-hedra. How many? The known cases are
given in the following table.
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It seems that among these are the only cases when the number of polar s-
hedra of a general form is equal to 1. The evidence for this can be found in
papers of M. Mella42Q, [421], where it is proven that there are no new cases
whenn = 2,d > 5 andn > 3 andn divides (""%).

An explicit description of positive-dimensional varieties of sums of pow-
ers VSR, s) is known only in a few case&d, n,s). We will discuss the
caseqd,n,s) = (2s — 1,1, ), (3,3, 5) later. For other cases see pap&49
((d,n, s) = (3,5,10)),[441, ((d,n, s) = (6,2,10)),[194 ((d,n, s) = (3,2,4))
and 96 ((d,n, s) = (3,4,8),(2,3,4),(6,2,10)),

1.4 Dual homogeneous forms

1.4.1 Catalecticant matrices
Let f € SY(EY). Consider the linear map (ttaolarity mag
ap; : S*E — S“H(EY), ¢ Dy(/). (1.65)
Its kernel is the space ARf) of forms of degreé: which are apolar tg.
Assume thaff =7, 14 for somel; € EV. It follows from (1.55 that
agi(S*(E)) (1§ 7", 147,
and hence
rankap}) < s. (1.66)

If we choose a basis if and a basis i, then a§ is given by a matrix of

size (*1") x ("+9*) whose entries are linear forms in coefficientsfof
Choose abasi), . .., &, in E and the dual basis, ..., t, in EV. Consider
a monomial lexicographically ordered basis9h(E) (resp. inS¢—*(EVY)).
The matrix of a§ with respect to these bases is called thth catalecticant
matrix of f and is denoted by Cgtf). Its entriesc,, are parameterized by

pairs(u, v) € Nt x N+ with [u| = d — k and|v| = k. If we write
d i
F=> (i)ait :
li|=d
then
Cuv = Qu+v-

This follows easily from formula(.5).
Consideringa; as independent variablég we obtain the definition of a
general catalecticant matrix Gatl, ).
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Examplel.4.1 Letn = 1. Write f = >0 (%)a;td~t%. Then

an aq . ag
[25] as e Qg4

Cat.(f) =
adg—r  QAQg4+1 - .- Qg

A square matrix of this type is calledcérculant matrix or aHankel matrix It

follows from (1.66) that f € PS(s, d; 1) implies that all(s+1) x (s+1) minors
of Cat,(f) are equal to zero. Thus we obtain that Se¢V}) is contained in
the subvariety oP? defined by(s + 1) x (s + 1)-minors of the matrices

to t1 R tr

t1 to R ]
Cay(d,1) = : .
ta—k td—k+1 .- td

For example, ifs = 1, we obtain that the Veronese cuivg c P? satisfies
the equations;t; — tyt; = 0, wherei + j = k + [. It is well-known that
these equations generate the homogeneous ideal of the Veronese curve (see,
for example,B07).

Assumed = 2k. Then the Hankel matrix is a square matrix of size 1. Its
determinant vanishes if and only ffadmits a nonzero apolar form of degree
k. The set of suclf’s is a hypersurface in the space of binary forms of degree
2k. It contains the Zariski open subset of forms which can be written as a sum
of k powers of linear forms (see sectiarb.1).

For example, také = 2. Then the equation

ap ai; az
det a3 as a3 ] =0 (1.67)
as a3 Qa4

describes binary quartics
[ = aoty + daitity + 6astyts + dagtots + agst]

which lie in the Zariski closure of the locus of quartics represented in the form
(aoto + Bot1)* + (a1te + Bit1)*. Note that a quartic of this form has simple
roots unless it has a root of multiplicity 4. Thus any binary quartic with simple
roots satisfying equatiorL(67) can be represented as a sum of two powers of
linear forms.

The determinantl(.67) is an invariant of a binary quartic. The cubic hyper-
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surface inP* defined by equationi(67) is equal to the 1-secant variety of a
rational normal curveR, in P*.

Note that

dim AP;(f) = dim Ker(ap;) = (") — rank Caf(f).

K3

Therefore,
dim(Ay); = rank Cat(f),
and
d
Hy,(t) = rank Caf(f)t'. (1.68)
=0

Since the ranks of @mnd its transpose are the same, we obtain

rank Cat(f) = rank Cag_;(f)

confirming thatf 4, (¢) is a reciprocal monic polynomial.

Supposel = 2k is even. Then the coefficient &t in Ha,(t) is equal to the
rank of Cat(f). The matrix Cat(f) is a square matrix of sizéljg"'). One can
show that for a generdl, this matrix is invertible. A polynomiaf is calledde-
generatdf det(Cat,(f)) = 0. It is callednondegeneratetherwise. Thus, the
set of degenerate polynomials is a hypersurfaegalecticant hypersurfage
given by the equation

det(Caty(2k,n)) = 0. (1.69)
The polynomiaHlet(Cat, (2k, n)) in variablest;, |i| = d, is called thecatalec-
ticant determinant

Examplel.4.2 Letd = 2. Itis easy to see that the catalecticant polynomial is
the discriminant polynomial. Thus a quadratic form is degenerate if and only if
it is degenerate in the usual sense. The Hilbert polynomial of a quadratic form

fis
Ha, (t)=1+rt+1t,
wherer is the rank of the quadratic form.

Examplel.4.3 Supposef = td+---+td s <n.Thent}, ...t are linearly
independent for any, and hence rank Cdtf) = s for 0 < ¢ < d. This shows
that

Ha,(t)=1+s(t+ -+t +1h
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Let P be the set of reciprocal monic polynomials of degie®ne can strat-
ify the spaceS?(EV) by setting, for any € P,

SUEY), = {f € SUEY): Ha, = p}.
If f € PY(s,d;n) we know that
rank Cat,(f) < h(s,d,n)r = min(s, <n+k>’ (n+d—k)).

n n

One can show that, for a general enoyglhe equality holds (se&47), p.13).
Thus there is a Zariski open subset of(Rg;n) which is contained in the
strataS?(E"),,, wherep = Z;i:o h(s,d,n);t.

1.4.2 Dual homogeneous forms

In Chapter 1 we introduced the notion of a dual quadri@ K= V' (g), wheregq
is a nondegenerate quadratic form, then the dual vafjétis a quadric defined
by the quadratic forng" whose matrix is the adjugate matrix @fUsing the
notion of the catalecticant matrix, for any homogeneous form of even degree
f € S?*(EVY), in a similar fashion one can define the dual homogeneous form
Y e S?(E).

Consider the pairing

Qs : S*(E) x S*(E) — C, (1.70)
defined by

Qp (1, 2) = agf (1) (2) = Dy, (@ (¥1)) = Dy (),

where we identify the spacé (EV) andS*(E)V. The pairing can be consid-
ered as a symmetric bilinear form 6 (E). Its matrix with respect to a mono-
mial basis inS* (E) and its dual monomial basis #F(EV) is the catalecticant
matrix Ca,(f).

Let us identifyS2 ; with the associated quadratic form §fi(E) (the restric-
tion of Q2 to the diagonal). This defines a linear map

Q:S*(EY) — S2(SH(E)Y), [ Q.
There is also a natural left inverse mapbf
P:S%*(SH(E)Y) — S*(EY)

defined by multiplicatiors* (EV) x S*(EY) — S?¢(EV). All these maps are
GL(E)-equivariant and realize the linear representai8h(EV) as a direct
summand in the representatiSA(S*(EV)).
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Definition 1.4.1 Assume thatf € S%*(EVY) is nondegenerate. The dual
quadratic formQ} of Q; is called thedual homogeneous forf f. We will
identify it with the polar bilinest form o8* V.

Remark1.4.1 Note that, contrary to the assertion of Theorem 2.320,
Q¥ is not equal, in general, 1 ;v for somef" € S%*(V). We thank Bart van
den Dries for pointing out that the adjugate matrix of the catelecticant matrix
is not, in general, a catalecticant matrix as was wrongly asserted in the proof.
Recall that the locus of zeros of a quadratic frong S?(EY) consists of
vectorsv € E such that the value of the polarized bilinear fospx £ — EY
atv vanishes av. Dually, the set of zeros ofV € S?(E) consists of linear
functions! € EV such thatthe value @fv : EY — E atl is equal to zero. The
same is true for the dual formjvc. Its locus of zeros consists of linear foris
such thaﬂ;l(lk) € S*(E) vanishes ori. The degreé homogeneous form
Q;l(l’“) is classically known as thanti-polar of [ (with respect tqf).

Definition 1.4.2 Two linear forms,m € EV are calledconjugatewith re-
spect to a nondegenerate forfne S2*(EV) if

Q}(lk,mk) =0.

Proposition 1.4.1 Supposef is given by(1.54), where the powers} are
linearly independent is* (EV). Then each pait;, I, is conjugate with respect
to f.

Proof Since the power# are linearly independent, we may include them
in a basis ofS*(E"). Choose the dual basis & (E). Then the catalecticant
matrix of f has the upper corner matrix of sizequal to the diagonal matrix.
Its adjugate matrix has the same property. This impIiesl(haj,z' £ j, are
conjugate with respect @}. O

1.4.3 The Waring rank of a homogeneous form

Since any quadratic formpcan be reduced to a sum of squares, one can define
its rank as the smallest numbesuch that

g=05+-+1
for somely,...,l. € EV.

Definition 1.4.3 Let f € S?EV. Its Waring rank wrK f) is the smallest num-
berr such that

f=8+ 1 (1.71)
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for some linear formg,,...,l,. € EV.
The next result follows immediately from the proof of Propositiod. 1

Proposition 1.4.2 Let Q; be the quadratic form or$*(E) associated to
f € S?k(EY). Then the Waring rank of is greater than or equal to the rank
of Qf.

Let f be a nondegenerate form of even degteeBy Corollary1.3.1],
1 n+d
= > —_—
wrk(f) = s(2k,n) > [n o ( J )]
with strict inequality only in the following cases
d=2,wrk(f) =rankQy =n+1,
n=2,d=4,wrk(f) = rankQ; = 6;
n=3,d =4,wrk(f) = rank; = 10;
n=4,d =4,wrk(f) = rankQ; = 15.

In all non-exceptional cases,

)2 () = (1 R

In most cases, we have strict inequality.

1.4.4 Mukai’'s skew-symmetric form

Letw € A\’ E be a skew-symmetric bilinear form dg". It admits a unique
extension to a Poisson brackgt},, on S(EY) which restricts to a skew-
symmetric bilinear form

{,},: SMTYEY) x SFTYEY) — SR (EY). (1.72)

Recall that @oisson brackebn a commutative algebréis a skew-symmetric
bilinear mapA x A — A, (a,b) — {a,b} such that its left and right partial
mapsA — A are derivations.

Let f € S**(EY) be a nondegenerate form aff € S*(S*(E)) be its

dual form. For eachv as above, define,, ; € A> S**1(E) by

Uw,f(ga h) = Q}/({g, h}w)

Theorem 1.4.3 Let f be a nondegenerate form %% (EY) of Waring rank
N =rankQ; = ("T*). ForanyZ = {[t1],...,[¢n]} € VSP(f,N)°, let

n

Z)+1 be the linear span of the powels"! in S¥*1(EV). Then
+ 7
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(i) (Z)r+1 is isotropic with respect to each form, ¢;
(i) agi ™ (S*1E) € (Z)rs;
(iii) ad“ (S¥~1E) is contained in the radical of each, ;.

Proof To prove the first assertion it is enough to check that, fof,gll one
haso., (157, 1571) = 0. We have

o (L) = Q{151 ) = QF (1, 1)w(li, 1)
Since}’ are linearly independent, by Propositir#.1, Q7 (IF,1¥) = 0. This
checks the first assertion.

For anyy € S*—1(E),

N

N N
Dy(f) = Dp(D 1) = Dy (%) = (355 > Dy (I
=1

=1 =1

This shows that d}:)‘l(Sk—l(E)) is contained in(Z) 1. It remains to check

thato,, ;(Dy(f),g) = 0foranysyp € S¥-1(E),g € S*1(EY),w € A*E.
Choose coordinatds, . . ., t, in EV and the dual coordinatés, . .., &, in E.
The spacg\” E is spanned by the forms;; = & A €;. We have

{Dy(f), g}wi; = De,(Dy(f))De,;(9) — De; (Dy(f)) D¢, (9)

= D¢,y (f)D¢,;(9) — De;p(f) D, (9) = Dye,(f)De;(9) — Dye,; (f)De, (9)-
For anyg, h € S*(EY),

Thus
Oy f (Dy(£),9) = QF (Dye, (f), De, (9)) — QF (Dye, (f), De,(9))
= <w§i7D£j (g)> - <¢§jaD&(9)> = D¢(D£i§j (g)ingfi(g)) = D¢(O) =0.
O

Since a§_1(E) is contained in the radical af,, r, we have the induced
skew-symmetric form OS’f“(EV)/adJi_l(E). By Lemmal.3.],

SPHHEY) /agi ! (B) = APy (f)

If no confusion arises we denote the induced formohy; and call it the
Mukai's skew-form
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One can also consider the collection of the Mulai skew-forms as a
linear map

of: /\E—> /\APkJrl(f)7 W= oy f,

or, its transpose

2 2
‘or: \APe1(f)Y — \EY. (1.73)

Let Z = {[lu],...,[ls]} € VSP(f,s)° be a polars-hedron of a nonde-
generate forny € S2k(EV) and, as before, l6tZ)11 be the linear span of
(k + 1)-th powers of the linear forms. Let

L(Z) = (Z)r41/ap; " (S*H(E)). (1.74)

It is a subspace of***(EY)/api~" (%! (E)) which we identify with the
dual space AR, 1(f)Y of AP (f).

Now observe thatZ);., , is equal tolz (k + 1), where we identifyZ with
the reduced closed subscheme of the dual projective $pdce This allows
one to extend the definition di(Z) to any generalized polarhedronZ €

VSPH(f;s):
L(Z) = Iz(k+ 1)*/ag~ (S 1(B)) c S*TY(EY)/ag ! (S*1(E)).

Proposition 1.4.4 Let f be a nondegenerate homogeneous form of detjree
of Waring rank equal taVy, = ("1*). LetZ, Z’ € VSP(f, N). Then

L2)=L(Z")+ Z=7.
Proof Itis enough to show that
IZ(k+1) :Iz/(k-f—l) = 7Z=27.

SupposeZ # Z'. Choose a subscheni& of Z of length N, — 1 which
is not a subscheme d¢f’. Sincedim I, (k) > dim S¥(EY) — h%(Oz) =
("I*) — Ny +1 = 1, we can find a nonzerg € I, (k). The sheafl;/Zz,
is concentrated at one poimtand is annihilated by the maximal ideal,.
Thusm,Zz, C ZIz.Leté € F be a linear form onE" vanishing atz but
not vanishing at any proper closed subschem&’ofThis implies thatty €
Iz(kE+1)=1Iz(k+1)andhence) € Iz (k) C AP;(f) contradicting the
nondegeneracy of. O
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Lemma 1.45 Letf € S*(EY) be a nondegenerate form of Waring rank
Ny = (M), ForanyZ € VSP(f, N,)°,
dim L(Z) = ("I*1).

n—1
Proof Counting constants, we see that
dim(Z) 41 > dim S*H(E) — Ny,
hence

dim L(Z) = dim(Z),, —dimapt 1 (S* 1 (E)) < N ("5 = (R ).

n—1

We have to consider the exceptional cases wheréfyri rank2;. The as-
sertion is obvious in the cage= 1. The spacd.(Z) is of expected dimension
unlessi?, ..., I2,, are linearly dependent. This implies thais a quadratic
form of rank less tham + 1, contradicting the assumption.

Assumen = 2,k = 2 anddim L(Z) > 3, or, equivalentlydim(Z)s > 4.
Since ARB(f) = {0}, there are no conics passing throughIn particular,
no four points are collinear. L&t be a conic through the poinig ], .. ., [Is]
and letzy, x5 be two additional points o6’ such that each irreducible com-
ponent ofC' contains at least four points. Sindém(Z)s > 4, we can find
a 2-dimensional linear system of cubics throdgh, .. ., [i5], 1, z2. By Be-
zout’'s Theorem({' belongs to the fixed part of the linear system. The residual
part is a 2-dimensional linear system of lines throligh an obvious contra-
diction.

Similar arguments check the assertion in the cases 2,k = 3,4. In the
remaining case = 3, k = 2, we argue as follows. We havé, = 10. Assume
L(Z) < 6, or, equivalentlydim(Z); > 10. Since AB(f) = {0}, no 4 lines
are collinear (otherwise we pass a quadric through 3 points on the line and the
remaining 6 points, it will contain all ten points). Choose three non-collinear
points p1, p2, p3 among the ten points and two general points on each line
Di, p; and one general point in the plane containing the three points. Then we
can find a 3-dimensional linear system of cubic§(ii)s| passing through the
additional 7 points. It contains the plane throyghps, p3. The residual linear
system consists of quadrics through the remaining 7 points Bince no four
lines are collinear, it is easy to see that the dimension of the linear system
of quadrics through 7 points is of dimension 2. This contradiction proves the
assertion. O

Corollary 1.4.6 Letf € S?*(EY) be a nondegenerate form of Waring rank
N = ("1%). LetVSP(f, N;,)° be the variety of polar polyhedra ¢f. Then

n
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the mapZ — L(Z) is an injective map
VSP(f, Ni)® — G(("FET) AP (1)),

Its image is contained in the subvariety of subspaces isotropic with respect to
all Mukai’s skew formsr,, s onAP,1(f)".

Examplel.4.4 Assumen = 2. Then wrk f) = rankQ; = (*1?) if and

onlyif k = 1,2, 3,4. In these cases the Corollary applies. We will consider the
cases: = 1 andk = 2 later. If k = 3, we obtain that VSEf, 10)° embeds in
G(4,9). Its closure is a K3 surfacdf41], [496. If k = 4, VSP(f, 15)° embeds

in G(5,15). It consists of 16 point4P6].

1.4.5 Harmonic polynomials

Letq € S?(EY) be a nondegenerate quadratic formnFor convenience of
notation, we identify; with the apolarity map a}p: E — EV. By the universal

property of the symmetric power, the isomorphigmE — EV extends to a
linear isomorphisms*(q) : S¥(E) — S*¥(EV) which defines a symmetric
nondegenerate pairing

(,)r:S*E)x S*E) — C. (1.75)
It is easy to check that, for aye S*(FE) andv € E,
(& 0") = KIEW),

wherel, € EY is the linear function agf{v).

Let us compare the pairingy 75with the pairing2,» from (1.70. Choose
a basisng,...,n, in E and the dual basi,...,t, in EY such thaty =
1(>-t?) so thatg(n;) = t;. Then

S*(q)(n*) = ¢*.
However,
agi (n*) = k't* + qg,
for someg € S¥~2(EV). Thus
(5"(a) ~ el )(SH(B)) € a8*2(BV)".
Let
Hy(E) = (¢5**(EY))* C $¥(B)
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be the subspace @fharmonic symmetric tensorén more convenient lan-
guage, exchanging the roles Bfand £V, and replacing with the dual form
q" € S*(E), we have

HE(EY) =Ker(Dgv : S*(EY) — S*72(EY)).

In the previous choice of coordinates, the operdlgr is theLaplace opera-
tor 1 3° g—; Restricting a. to the subspacg(; (E), we obtain a nondegen-
erate symmetric pairing

H(E) x HE(E) — C

which coincides with the restriction &€, to the same subspace. Changing
E to EV, we also obtain a symmetric nondegenerate pairing

HE(EY) x HE(EY) — C

which can be defined either by the restriction of the pairib@% or by the
quadratic form%ﬂ(qm. Note that all these pairings are equivariant with re-
spect to the orthogonal group &, ¢), i.e. can be considered as pairings of the
linear representations of (@, ¢). We have the direct sum decomposition of
linear representations

SK(E) =HEE) ® ¢V S*2(E). (1.76)

The summang" S*~2(E) coincides with afy; ' (S"~2(E)). The linear repre-
sentatioﬁH’;(E) is an irreducible representation of B, ¢) (see R78).

Next let us see that, in the case whgris a power of a nondegenerate
guadratic polynomial, the Mukai form coincides, up to a scalar multiple, with
the skew form on the space of harmonic polynomials studied by N. Hitchin in
[33(Q and [331].

The Lie algebra(E, q) of the orthogonal group @, ¢) is equal to the Lie
subalgebra of the Lie algebg&( E') of endomorphisms oF which consists of
operatorsd : E — E such that the compositodo ¢! : EY — E — E
is equal to the negative of its transpose. This defines a linear isomorphism of
vector spaces

2
/\EV—>0(E,q), w—o=q¢ low:E—EY—E.

Now, takingw € A% EV, and identifyingS’“’“l(EV)/ap(;;l(S’“—l(E)) with
HETL(EY), we obtain the Mukai pairing
Tugr P HETHEY) x HEYHEY) — C

on the space of harmonic+ 1-forms onkE.
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Proposition 1.4.7 Foranyg,h € H:+'(EY) and anyw € A* EV,

k+1)2 _
rarloh) = @ gy,

where(, )11 : SFHL(EY) x SFHL(EY) — Cis the symmetric pairing defined
bysk+1(q71)‘

Proof Itis known that the spack*!(E") is spanned by the formguv)*+*,
wherew is an isotropic vector foy, i.e. [v] € V(q) (see R78, Proposition
5.2.6). So, it is suffices to check the assertion whea ¢(v)**! andh =
q(w)**! for some isotropic vectors,w € E. Choose a basigy, ..., &,) in

E and the dual basig), . ..,t, in EV as in the beginning of this subsection.
An element: € o(E, ¢) can be written in the form _ a;;t; m for some skew-
symmetric matri{a;; ). We identify(a;;) with the skew 2-formv A E. We

can also writgy = (a-t)**! andh = (3-t)¥*+1, where we use the dot-product
notation for the sumy_ «;t,;. We have

(wg, b1 = (k+D)!(> az-jti%(a-t)’““)(ﬁ) = (k+1)!(k+1)(a-B) w(at, Bt).
J
The computations from the proof of Theordmd.3 show that

o (g,h) = Qh (- )%, (B )" w (e £, 8- 1).

It is easy to see thaﬂzvk coincides with2,vyx on the subspace of harmonic
polynomials. We have

Qe (- ), (B- 1)) = Dy (3D €D

= KDy (8- D)%) = (k)2(a - B)*.

This checks the assertion.
O

Computing the catalecticant matrix @f we find thatg* is a nondegenerate
form of degreek. Applying Corollary1.4.6 we obtain that in the cases listed
in Corollary1.3.11 there is an injective map

VSP(q <n+k>) - G((n+k 1) Hk+1(EV)) (1‘77)

Its image is contained in the subvariety of subspaces isotropic with respect to
the skew-symmetric formgy, h) — (u - g, k)g+1,u € o(E, q).

The following Proposition gives a basis in the space of harmonic polynomi-
als (see428). We assume thate, q) = (C"+1, 1 5 ¢2).
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Proposition 1.4.8 For any set of non-negative integé€is), . . . , b, ) such that
b; <land) b; =k, let

K![ag/2)! o
Hlic cbn T (71)[(10/2] n n —a, t?l7
o Z ai!Hz‘:1(bqu)! Z];[)

where the summation is taken over the set of all sequences of non-negative
integers(ao, . . . , a,) such that

e a;=b; mod2,i=0,...,n,

L] Z?:Oai:k,
[ aigbi,iZL...,n.

Then the polynomial&;” , form a basis of the spack’ (C"+*).

yeeey

For any polynomialf € Clty,...,t,] one can find the projectiofl f to
the subspace of harmonic polynomials. The following formula is taken from
[641].

[k/2] P
Hf = f— _1)s+1
r= Sz:;( : 25s!(n — 34 2k)(n —5+42k) -+ (n — 25 — 1+ 2k)’

(1.78)
whereA =" g—; is the Laplace operator.

Examplel.4.5 Letn = 2 so thatdim E = 3. The space of harmonic poly-
nomialsH¥(EV) is of dimension(*$?) — (§) = 2k + 1. Since the dimen-
sion is odd, the skew form,, .~ is degenerate. It follows from Proposition
1.4.7that its radical is equal to the subspace of harmonic polynomiaisch
thato - ¢ = 0 (recall thatw denotes the element of £, ¢) corresponding to
w € /\2 E). In coordinates, a vectar = (ug,u1,u2) € C? corresponds to the

skew-symmetric matrix

0 Ug (751
—Ug 0 U
—u1 —uy O

representing an endomorphismef or an element 07\2 E. The Lie bracket
is the cross-product of vectors. The action of a veaton f € Cltg, t1, 2] IS
given by
2
of
u-f= Z GijktiujaTk,
1,5,k=0

wheree; ; .. = 0 is totally skew-symmetic with values equalGol, —1.
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For anyv € E, let us consider the linear forfy = ¢(v) € EY. We know
thatq(v)* € HE(EV)if [v] € V(q). If [v] € V(g), then we can consider the
projectionf, of (1,)* to H(EV). By (1.78), we get

(k/2]

[ ) LG S R L)

sg*lh=2s. (1.79
SOk 1) (@h—2s 1 )WL (2.79)

We have
u- lv = luxv-
Sincef — u - f is a derivation of SyrE") andw - ¢ = 0, we obtain

[k/2]
ufo=luxo (KL 4> (=1)°

s=1

k(k — 1) .. (k — 25+ 1)(k _ 28)(1(,0)51572572
25sl(2k —1)--- (2k — 25+ 1) ’

(1.80)

This implies that the harmonic polynomi#} satisfiesu - f, = 0 and hence
belongs to the radical of the skew form, . The Lie algebrao(3) is iso-
morphic to the Lie algebrsi(2) and its irreducible representation on the space
of degreek harmonic polynomials is isomorphic to the representatios! (@)
on the space of binary forms of degrk. It is easy to see that the space of
binary forms invariant under a non-zero elemensi@®) is one-dimensional.
This implies that the harmonic polynomig, spans the radical of, .~ on
H’;(EV).

Let f € H*(EY) be a non-zero harmonic polynomial of degreeThe
orthogonal complemenft- of f with respecttd , )i : HF (EY)x HF(EY) —
C is of dimensiorek. The restriction of the skew-symmetric fom) ,» to ft
is degenerate if and only if, € £+, i.e. (fu,)r = (&, f) = f(u) = 0.
Here we used that the decompositidn7@ is an orthogonal decomposition
with respect ta , ). Let Pf be the pfaffian of the skew form, .~ on fro
is equal to zero if and only if the form is degenerate. By the above, it occurs if
and only if f(u) = 0. Comparing the degrees, this gives

So, every harmonic polynomial can be expressed in a canonical way as a pfaf-
fian of a skew-symmetric matrix with entries linear forms, a result due to N.
Hitchin [332.
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1.5 First examples

1.5.1 Binary forms

Let U be a 2-dimensional linear space afie S¢(U") \ {0}. The hypersur-
face X = V(f) can be identified with a positive divisor dif) = > m,x;

of degreed on |U| = P!. Since/\’ U = C, we have a natural isomorphism
U — U of linear representations of $). It defines a natural isomorphism
between the projective ling/| and its dual projective lin@®(U). In coordi-
nates, a point = [ag, a1] is mapped to the hyperplan&a;to — aot1) whose
zero set is equal to the point If X is reduced (i.ef has no multiple roots),
then, under the identification of/| andP(U), X coincides with its dualX'".

In general XV consists of simple roots gf. Note that this is consistent with
the Plckeri-Teissier formula. The degrees of the Hessian and the Steinerian
coincide, although they are differentdf> 3. Assume thaiX is reduced. The
partial derivatives off define the polar map : |U| — |U| of degreed — 1.
The ramification divisor HEX) consists of2d — 2 points and it is mapped
bijectively onto the branch divisor &).

Examplel.5.1 We leave the casé = 2 to the reader. Consider the case
d = 3. In coordinates

f = aotd + 3aitity + 3astots + asts.
All invariants are powers of thdiscriminant invariant
A = a2a + dapal + 4aas — 6agaiasas — 3atas. (1.81)
whose symbolic expression [$2)2(13)(24)(34)? (see p31], p. 244).
H = (apag — a?)t2 + (apaz — a1az)tots + (araz — ad)ts.
Its symbolic expression i&wb)a,b,. There is also a cubic covariant

3 3tdty  3totd 3

-2
J=J(f H) = det |2 2 a0 0O
as —as —ai an
0 —as —2&2 ay

with symbolic expressiofiab)? (ac)?b,.c2. The covariants, H andJ form a
complete system of covariants, i.e. generate the module of covariants over the
algebra of invariants.

Examplel.5.2 Consider the casé = 4. In coordinates,

[ = aoty + 4artdty + 6aqtit? + dastot? + ayt].
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There are two basic invariantsandT' on the space of quartic binary forms.
Their symbolic expression arg = (12)* andT = (12)2(13)%(23)2. Explic-
itly,

S = agay — 4aqa3 + 3a%, (1.82)

T = apgasay + 2a1a2a3 — agag — a%a4 — a‘;’.

Note thatT' coincides with the determinant of the catalecticant matrix of
Each invariant is a polynomial if andT'. For example, the discriminant in-
variant is equal to

A= 83— 27172

The Hessian HgX) = V(H) and the Steinerial§(X) = V(K) are both of
degree 4. We have

H = (agag — a?)ty + 2(agaz — araz)tity + (apas + 2a1a3 — 3a3)t3t3
—‘1-2(&1&4 — agag)tot? + (a2a4 — a%)t‘f.
and
K = A((aoto+arty)z® +3(arto+azty )z’ y+3(asto+asts)zy’ + (asto+aat1)y?).

Observe that the coefficients @¢f (resp. K) are of degree 2 (resp. 4) in
coefficients of f. There is also a covariant = J(f, H) of degree6 and
the module of covariants is generated pyH, J over C[S, T]. In particular,
K = oTf + pSH, for some constants and. By taking f in the form

f =ty +6mtats +ti, (1.83)
and comparing the coefficients we find
2K = —3Tf + 2SH. (1.84)
Under identificatiorfU| = P(U), a generalize@-hedronZ of f € S4(UV)
is the zero divisor of a forrg € S*(U) which is apolar tof. Since
HY(|E|,Zz(d)) = H' (P',Op(d — k) =0, k>d+1,

any Z is automatically linearly independent. Identifying a pdigite |S*(U)|
with the zero divisor diyg), we obtain

Theorem 1.5.1 Assume: = 1. Then

VSH(f; k) = |APL(f)]-
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Note that the kernel of the map
SHU) — STRHUY), ¥ Dy(f)

is of dimension> dim S*(U) —dim S¢=*(UV) = k+1—(d—k+1) = 2k—d.
ThusD,,(f) = 0for some nonzerg € S*(U), whenevelk > d. This shows
that f has always generalized pofathedron fork > d/2. If d is even, a binary
form has an apolat/2-form if and only ifdet Cat; /2 (f) = 0. This is a divisor
in the space of all binarg-forms.

Examplel.5.3 Taked = 3. Assume thayf admits a polar 2-hedron . Then
f = (a1t0 + bltl)g + (agt() + b2t1)3.

It is clear thatf has 3 distinct roots. Thus, jf = (a1t + b1t1)?(asto + baty)
has a double root, it does not admit a pdainedron. However, it admits a
generalized-hedron defined by the divis@p, wherep = (b1, —a;). In the
secant variety interpretation, we know that any pointSA(EV)| either lies
on a unique secant or on a unique tangent line of the rational cubic curve. The
space AR(f) is always one-dimensional. It is generated either by a binary
quadric(—b1§0 + alfl)(—bQ&) + 0251), or by(—blgo + alfl)z.

Thus VSR, 2)° consists of one point or empty but VER2) always con-
sists of one point. This example shows that VER) # VSP(f, 2)0 in gen-
eral.

1.5.2 Quadrics

It follows from Examplel.3.3that Seg(V%) # |S?(EVY)| if and only if there
exists a quadric with+1 singular points in general position. Since the singular
locus of a quadrid’ (¢) is a linear subspace of dimension equal to cofapk

1, we obtain that SedV#) = |S?(EY)|, hence any general quadratic form can
be written as a sum of+1 squares of linear forms, . . . , I,,. Of course, linear
algebra gives more. Any quadratic form of rank 1 can be reduced to sum of
squares of the coordinate functions. Assumeghatt3 +- - - +t2. Suppose we
also have; = I2 + - - - + [2. Then the linear transformatian — [; preserves

g and hence is an orthogonal transformation. Since polar polyhedyaofl

Aq are the same, we see that the projective orthogonal grop RQ) acts
transitively on the set VSF, n+1)° of polar(n+1)-hedra ofg. The stabilizer
group G of the coordinate polar polyhedron is generated by permutations of
coordinates and diagonal orthogonal matrices. It is isomorphic to the semi-
direct produc™ x &, (the Weyl group of root systems of typés,, D,,),
where we use the notatidf" for the 2-elementary abelian grog@/2Z)".
Thus we obtain
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Theorem 1.5.2 Letq be a quadratic form im + 1 variables of rankn + 1.
Then

VSP(g,n+1)° 2 PO(n+1)/2" X &,41.
The dimension 6¢SP(g, n + 1)° is equal toln(n + 1).

Examplel.5.4 Taken = 1. Using the Veronese map, : P! — P2, we
consider a nonsingular quadidz = V' (q) as a point in P2 not lying on the
conicC = V(toty — t2). A polar 2-gon ofq is a pair of distinct pointg1, p»
on C such thatp € (p1,p2). The set of polaR-gons can be identified with
the pencil of lines througlp with the two tangent lines t¢’' deleted. Thus
W(q,2)° = P!\ {0,00} = C*. There are two generalized 2-go?s, and
2poo defined by the tangent lines. Each of them gives the representatjaasof
l1l2, whereV (1;) are the tangents. We have V§P2) = VSP(f, 2)0 =~ Pl

Letq € S?%(EV) be a nondegenerate quadratic form. We have an injective
map (1.77)

VSP(q,n +1)° = G(n, H2(E)) = G(n, ("3%) = 1). (1.85)

Its image is contained in the subvarigiyn, H2(E)), of subspaces isotropic
with respect to the Mukai skew forms.

Recall that the Grassmann varigfi{m, W) of linear m-dimensional sub-
spaces of a linear spad¢®¥ of dimensionN carries the natural rank vector
bundleS, theuniversal subbundléts fibre over a poin. € G(m, W) is equal
to L. Itis a subbundle of the trivial bundl’¢ ., 1) associated to the vector
spaceV. We have a natural exact sequence

0—38—=Wgumw) —<2—0,

whereQ is theuniversal quotient bund|evhose fibre oveL. is equal tolW/ L.
By restriction, we can view the Mukai form, : A\ E — A’ H2(EY) as a
section of the vector bundla® SV ® A\* EV. The image of VSRy,n + 1) is
contained in the zero locus of a section of this bundle defineg,b$ince the
rank of the vector bundle is equal {§) ("1'), we expect that the dimension
of its zero locus is equal to

e 20-(0) 1) 53 2-0- (1)

Unfortunately, this number is 0 for n > 2, so the expected dimension is
wrong. However, when = 2, we obtain that the expected dimension is equal
to3 = dim VSP(q, 3). We can views, , as a hyperplane in theiriker embed-
ding of G(2,HZ(E)) = G(2,5). So, VSRq, 3) embeds into the intersection
of 3 hyperplane sections 6f(2, 5).
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Theorem 1.5.3 Letq be a nondegenerate quadratic form on a 3-dimensional
vector spacet. Then the image 0¥'SP(¢, 3) in G(2,H2(E)), embedded in
the Plicker space, is a smooth irreducible 3-fold equal to the intersection of
G(2,H2(E)) with a linear space of codimension 3.

Proof We havedim H?(E) = 5, soG(2, H2(E)) = G(2,5) is of dimension

6. Hyperplanes in the Btker space are elements of the spbAé Hg(E)V|.
Note that the functions, ., are linearly independent. In fact, a ba&is¢i, &2

in B gives a baSi$)01 = 50 A fl,woz = fo A 52,(4}12 = fl VAN 52 in /\2 E.
Thus the space of sectiong,, is spanned by 3 sectiong:, sp2, s12 corre-
sponding to the forms;;. Without loss of generality, we may assume that
q = t3 +t7 + 3. If we takea = tot; + t3,b = —t3 + 3 + 13, we see
that so1(a,b) # 0,s12(a,b) = 0,sp2(a,b) = 0. Thus a linear dependence
between the functions;; implies the linear dependence between two func-
tions. It is easy to see that no two functions are proportional. So our 3 func-
tions ;5,0 < ¢ < j < 2 span a 3-dimensional subspace/p? HZ(EY)
and hence define a codimension 3 projective subspanahe Plicker space
A\ HZ2(E)|. The image of VSRy, 3) under the map1(89) is contained in the
intersection7(2, E) N L. This is a 3-dimensional subvariety 612, H2(E)),

and hence contains(VSP(q, 3)) as an irreducible component. We skip an ar-
gument, based on counting constants, which proves that the subsgdzze
longs to an open Zariski subset of codimension 3 subspacg§’ ®12(E)

for which the intersectiorl. N G(2, H2(E)) is smooth and irreducible (see
[200Q). O

It follows from the adjunction formula and the known degre&2, 5) that
the closure of VSRy,3)° in G(2,’H2(E)) is a smooth Fano variety of degree
5. We will discuss it again in the next chapter.

Remarkl.5.1 One can also consider the varieties V&R) for s > n + 1.

For example, we have

to—t5=12(to+t1)> +3(to—t1)® — L(ti +t2)* — L(&f — t2)%,
24134 t2 = (to +t2)> + (to +11)> + (1 +12)% — (to +t1 +12)2

This shows that VSi, n + 2), VSP(¢, n + 3) are not empty for any nonde-
generate quadriQ) in P, n > 2.
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Exercises

1.1 SupposeX is a plane curve and € X is its ordinary double point. Show that
the pair consisting of the tangent line 8% (X) atz and the lineaz is harmonically
conjugate (see sectidhl.? to the pair of tangents to the branchesXofat = in the
pencil of lines throughe. If x is an ordinary cusp, then show that the polar line of
P,(X) atzx is equal to the cuspidal tangent &fat .

1.2 Show that a line contained in a hypersurfaXebelongs to all polars oX with
respect to any point on this line.

1.3 Find the multiplicity of the intersection of a plane curgewith its Hessian at an
ordinary double point and at an ordinary cusglofShow that the Hessian has a triple
point at the cusp.

1.4 Suppose a hypersurface in P has a singular point of multiplicity m > 1.
Prove that HEX) has this point as a point of multiplicity (n + 1)m — 2n.

1.5Suppose a hyperplane is tangent to a hypersutkaedong a closed subvariely
of codimension 1. Show thaf is contained in HEX).

1.6 Supposef is the product ofd distinct linear formsl; (o, . ..,t,). Let A be the
matrix of size(n+1) x d whosei-th column is formed by the coefficients Bf(defined,
of course up to proportionality). Lek; be the maximal minor ofA corresponding to a
subsetl of [1, ..., d] and f; be the product of linear formis, i ¢ I. Show that

He(f) = (~1)"(d — D" 3 A%,
I

([437, p. 660).

1.7 Find an example of a reduced hypersurface whose Hessian surface is nowhere re-
duced.

1.8Show that the locus of the points on the plane where the first polars of a plane curve
X are tangent to each other is the HessiaiXadind the set of common tangents is the
Cayleyan curve .

1.9 Show that each inflection tangent of a plane cukeconsidered as a point in the
dual plane, lies on the Cayleyan &f.

1.10Show that the class of the Steineriat(.®}) of a plane curveX of degreed is equal
to3(d — 1)(d — 2) but its dual is not equal to C&X ).

1.11LetD,, , C P™" ! be the image in the projective space of the varietynok n
matrices of rank min{m, n} — 1. Show that the variety

D ={(A,2) e P™ ' xP": A-2 =0}
is a resolution of singularities dd,,, ,,. Find the dual variety ob,,, ,,. 1.12Find the

dual variety of the Segre variefP" x P™) C pritan,

1.13Let X be the union o nonsingular conics in general position. Show that is
also the union o nonsingular conics in general position.

1.14Let X has onlys ordinary nodes and ordinary cusps as singularities. Assume that
the dual curveX " has also only ordinary nodes and ordinary cusps as singularities.
Find ¢ and% in terms ofd, 9, .

1.15Give an example of a self-dual (i.&X" = X) plane curve of degree 2.
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1.16Show that the Jacobian of a net of plane curves has a double point at each simple
base point unless the net contains a curve with a triple point at the baseZf&t [

1.17Let |L| be a generah-dimensional linear system of quadricsift and|L|* be
the (("1?) — n — 2)-dimensional subspace of apolar quadric in the dual space. Show
that the variety of reducible quadrics fib|* is isomorphic to the Reye variety ¢f |

and has the same degree.

1.18Show that the embedded tangent space of the Veronese Wdfietlya point repre-
sented by the forrif is equal to the projectivization of the linear space of homogeneous
polynomials of degred of the formi¢~1m.

1.19Using the following steps, show thet is 6-defective by proving that for 7 general
pointsp; in P* there is a cubic hypersurface with singular points atpif®

(i) Show that there exists a Veronese cuReof degree 4 through the seven points.
(i) Show that the secant variety & is a cubic hypersurface which is singular
alongR4.

1.20Let g be a nondegenerate quadratic formift 1 variables. Show that VSR, n +
1)° embedded irtZ(n, E) is contained in the linear subspace of codimension

1.21 Compute the catalecticant matrix G@f), where f is a homogeneous form of
degree 4 in 3 variables.

1.22Let f € S?*(EY) andQ; be the corresponding quadratic form 8A(E). Show
that the quadrid’(Q2;) in |S*®(E)| is characterized by the following two properties:

e Its preimage under the Veronese map: |E| — |S*(E)| is equal toV (f);
e Q) is apolar to any quadric ifs* (E")| which contains the image of the Veronese
map|E"| = P(E) — [S*(EY)| = [P(S"(E))].

1.23Let Cy, be the locus inS%*(EV)| of hypersurface¥ (f) such thatlet Cat, (f) =
0. Show thatC}, is a rational variety. [Hint: Consider the rational méf --» |E|)
which assigns td/( f) the point defined by the subspace AlP) and study its fibres].

1.24Give an example of a polar 4-gon of the cuhi¢;t2 = 0.
1.25Find all binary forms of degreé for which VSR f, 2)° = 0.

1.26Let f be a form of degred in n + 1 variables. Show that VSR, ("1%))° is an

irreducible variety of dimension ("}).

1.27 Describe the variety VSH, 4), wheref is a nondegenerate quadratic form in 3
variables.

1.28 Show that a smooth point of a hypersurfaceX belongs to the intersection of
the polar hypersurfaceB, (X) and P, (X) if and only if the line connecting andy
intersectsX at the pointy with multiplicity > 3.

1.29 Show that the vertices of two polar tetrahedra of a nonsingular quadfit are

base points of a net of quadrics. Conversely, the set of 8 base points of a general net of
guadrics can be divided in any way into two sets, each of two sets is the set of vertices
of a polar tetrahedron of the same quadi&.

1.30Suppose two cubic plane curveq f) andV (g) admit a common polar pentagon.
Show that the determinant of tisex 6-matrix [Cat; (f)Cat, (¢g)] vanishes246].
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Historical Notes

Although some aspects of the theory of polarity for conics were known to
mathematicians of Ancient Greece, the theory originates in projective geom-
etry, in the works of G. Desargues, G. Monge and J. Poncelet. For Desargues
the polar of a conic was a generalization of the diameter of a circle (when
the pole is taken at infinity). He referred to a polar line as a“transversale de
I'ordonnance”. According to the historical accounts founddgd, vol. I, and

[148, p. 60, the name “polaire” was introduced by J. Gergonne. Apparently,
the polars of curves of higher degree appear first in the works of E. Bobilier
[46] and, then with introduction of projective coordinates, in the works of J.
Plucker 488. They were the first to realize the duality property of polars: if

a pointx belongs to thes-th polar of a pointy with respect to a curve of de-
greed, theny belongs to théd — s)-th polar ofx with respect to the same
curve. Many properties of polar curves were stated in a purely geometric way
by J. Steiner$9(, as was customary for him, with no proofs. Good historical
accounts can be found idf] and 473, p.279.

The Hessian and the Steinerian curves with their relations to the theory of
polars were first studied by J. Stein@8[] who called thentonjugate Kern-
curven The current name for the Hessian curve was coined by J. Sylvester
[603 in honor of O. Hesse who was the first to study the Hessian of a ternary
cubic [317 under the namaer Determianteof the form. The current name
of the Steinerian curve goes back to G. Salmsdd and L. Cremona156.

The Cayleyan curve was introduced by A. Cayley 13][who called it the
pippiana The current name was proposed by L. Cremona. Most of the popular
classical text-books in analytic geometry contain an exposition of the polarity
theory (e.g. 125, [239, [539).

The theory of dual varieties, generalization ofiéker formulae to arbitrary
dimension is still a popular subject of modern algebraic geometry. It is well-
documented in modern literature and for this reason this topic is barely touched
here.

The theory of apolarity was a very popular topic of classical algebraic ge-
ometry. It originates from the works of Rosan&23 who called apolar forms
of the same degreeonjugate form&nd Reye $05. who introduced the term
“apolar”. The condition of polarityD,, ( f) = 0 was viewed as vanishing of the
simultaneous bilinear invariant of a forifhof degreed and a formy of class
d. It was called theharmonizant We refer for survey of classical results to
[473 and to a modern exposition of some of these result2@d][which we
followed here.

The Waring problem for homogeneous forms originates from a more gen-
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eral problem of finding a canonical form for a homogeneous form. Sylvester’s
result about reducing a cubic form in four variables to the sum of 5 powers
of linear forms is one of the earliest examples of solution of the Waring prob-
lem. We will discuss this later in the book. F. Palatini was the first who recog-
nized the problem as a problem about the secant variety of the Vleronese variety
[465, [46€6 and as a problem of the existence of envelopes with a given num-
ber of singular points (in less general form the relationship was found earlier
by J. E. Campbellg3]). The Alexander-Hirschowitz Theorem was claimed by

J. Bronowski in 1933, but citing C. Cilibertd 14, he had only a plausibility
argument. The case = 2 was first established by F. Palatidigg and the
casen = 3 was solved by A. Terracinig09. Terracini was the first to rec-
ognize the exceptional case of cubic hypersurfacé®*if608. The original
proof of Terracini’s Lemma can be found i6J0. We also refer to265 for

a good modern survey of the problem. A good historical account and in depth
theory of the Waring problems and the varieties associated to it can be found
in the book of A. larrobino and V. Kane{7].

The fact that a general plane quintic admits a unique polar 7-gon was first
mentioned by D. Hilbert in his letter to C. Hermit8J5. The proofs were
given later by Palatini468 and H. Richmond$12,

In earlier editions of his boolo9 G. Salmon mistakenly applied counting
constants to assert that three general quadrie3 admit a common polar pen-
tahedron. G. DarbouxLpg was the fist to show that the counting of constants
is wrong. W. Frahm 46| proved that the net of quadrics generated by three
guadrics with a common polar pentahedron must be a net of polars of a cubic
surface and also has the property that its discriminant curve igath quar-
tic, a plane quartic which admits an inscribed pentagon6Irg[ E.Toeplitz
(the father of Otto Toeplitz) introduced the invariahtof three quadric sur-
faces whose vanishing is necessary and sufficient for the existence of a com-
mon polar pentahedron. The fact that two general plane cubics do not admit a
common polar pentagon was first discovered by F. Lond@6][ The Waring
Problem continues to attract attention of contemporary mathematicians. Some
references to the modern literature can found in this chapter.
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Conics and quadric surfaces

2.1 Self-polar triangles

2.1.1 Veronese guartic surfaces

LetP? = |E| and|S?(EV)| = P° be the space of conics #¥. Recall, for this
special case, the geometry of tieronese quartic surfacés, the image of the
Veronese map

vo 1 [EY| = [SHEY)], (1] = (7).

If we view S?(EV) as the dual space & (FE), then the Veronese surface pa-
rameterizes hyperplanég in S?(E) of conics passing through the poffitin
the dual plan¢E" |. The Veronese may; is given by the complete linear sys-
tem|O|gv((2)| = |S*(E)|. Thus the preimage of a hyperpland #t(E")| is
a conic in the planéEV|. The conic is singular if and only if the hyperplane is
tangent to the Veronese surface. There are two possibilities, either the singular
conicC is the union of two distinct lines (a line-pair), or it is equal to a double
line. In the first case the hyperplane is tangent to the surface at a single point.
The point is the image of the singular pojijtof the conic. In the second case,
the hyperplane is tangent to the Veronese surface along a fuegeal to the
image of the lineCyeq under the restriction of the Veronese map. It follows
that the curveR is a conic cut out on the Veronese surface by a plane. We see
in this way that thedual variety of the Veronese surfaieisomorphic to the
discriminant cubic hypersurfad®; (2) parameterizing singular conics.

The tangent plane to the Veronese surface at a pitnis the intersection
of hyperplanes which cut out a conicli?V | with singular poin{i]. The plane
of conics in| E| apolar to such conics is the plane of reducible conics with one
component equal to the lirfé(7).

Since any quadratic form of rank 2 i can be written as a sum of quadratic
forms of rank 1, the secant variety $€¢2) coincides withD,(2). Also, it
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coincides with thetangential varietyTan(V3), the union of tangent planes
T.(V3),x € V3. Itis singular along the Veronese surface.

Choosing a basis it we can identify the spacg?(E") with the space of
symmetric3 x 3-matrices. The Veronese surfa¢g in |S?(EY)| is identified
with matrices of rank 1. Its equations are givendy 2-minors. The variety
of matrices of rank< 2 is the cubic hypersurface whose equation is given by
the determinant.

Let us look at a possible projection @ to P*. It is given by a linear sub-
system|V| of |S%(E)|. Let K be the apolar conic to all conics frof|. It is
a pointo in the dual spacgS?(E")| equal to the center of the projection. The
conic K could be nonsingular, a line-pair, or a double line. In the first two cases
o ¢ V2. The image of the projection is a quartic surfacein called apro-
jected Veronese surfack K is nonsingulare does not lie on Se¢V2), hence
the projected Veronese surface is a nonsingular quartic surfae=snP(V).
If K is a line-pair, them lies on a tangent plane ® at some poinf/?]. Hence
it lies on the plane spanning a conic contained3nThe restriction of the pro-
jection map to this conic is of degree 2, and its image is a double line on the
projected Veronese surface. Two ramification points are mapped tpiheb
pointsof the surface. Finallyy could be orv3. The image of the projection is
a cubic surfaces in P*. All conics onV2 containingo are projected to lines on
S. So,S is a nonsingular cubic scroll iB* isomorphic to the blow-up 02,
hence ofP?, at one point. In our future notation for rational normal scrolls (see
8.1.1), it is the scrolb 4.

Let us now projecV3 further tolP3. This time, the linear systefi'| defining
the projection is of dimension 3. Its apolar linear system is a pencil, a line
¢in |S%2(EVY)|. Suppose the apolar pencil does not interd&ctin this case
the pencil of conics does not contain a double line, hence contains exactly
three line-pairs. The three line-pairs correspond to the intersectiéwith
the cubic hypersurface Sg&/3). As we saw in above, this implies that the
imageS of the projection is a quartic surface with three double lines. These
lines are concurrent. In fact, a pencil of plane sectionS obntaining one of
the lines has residual conics singular at the points of intersection with the other
two lines. Since the surface is irreducible, this implies that the other two lines
intersect the first one. Changing the order of the lines, we obtain that each pair
of lines intersect. This is possible only if they are concurrent (otherwise they
are coplanar, and plane containing the lines intersect the quartic surface along
a cubic taken with multiplicity 2).

The projection of a Veronese surface from a line not intersedtinig called
aSteiner quarticChoose coordinates, t1, to, t3 such that the equations of the
singular lines are¢; = t; = 0,t; = t3 = 0 andt, = t3 = 0. Then the equation
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of a Steiner surface can be reduced to the fegtatots + g4 = 0. By taking
the partial derivatives at the poifit, 0, 0, 0] and general points of the singular
lines, we find thay, is a linear combination of the monomigit3, t3¢3, t3t3.
Finally, by scaling the coordinates, we reduce the equation to the form

totitats + 165 + 315 + t5t5 = 0. (2.1)
An explicit birational map fron®? onto the surface is given by

[Wo, y1,y2) — [(—yo+y1+12)%, (Wo—y1+y2), (Yot+y1—y2)%, (Yo+y1+y2)?].

Next, we assume that the center of the projection is finetersectingVvz.
In this case the image of the projection is a cubic scroll, the projection of
the rational normal scrolb; 4 to P3. There are two possibilities, the pencil
of conics defined by has two singular members, or one singular member, a
double line. This gives two possible cubic scrolls. We will give their equations
in the next Chapter.

ReplacingE with |EV| we can define the Veronese surfacéSA(E)|, the
image of the planéE| under the map given by the complete linear system of
conics. We leave to the reader to “dualize” the statements from above.

2.1.2 Polar lines

Let C be a nonsingular conic. For any point P2, the first polarP, (C) is a
line, thepolar line of a. For any line/ there exists a unique poinatsuch that
P,(C) = 1. The pointa is called thepoleof ¢. The pointa considered as a line
in the dual plane is the polar line of the poihtvith respect to the dual conic
C.

Borrowing terminology from the Euclidean geometry, we call three non-
collinear lines inP? atriangle. The lines themselves will be called tBiles
of the triangle. The three intersection points of pairs of sides are called the
verticesof the triangle.

A set of three non-collinear lings, ¢5, /5 is called aself-polar trianglewith
respect ta” if each/; is the polar line of” with respect to the opposite vertex.
It is easy to see that it suffices that only two sides are polar to the opposite
vertices.

Proposition 2.1.1 Three linest; = V (I;) form a self-polar triangle for a
conicC = V(q) if and only if they form a polar triangle aof .

Proof Letl; N{; = [vy]. If ¢ = 1§ + 13 + 13, thenD,, (q) = 2l), where
k # i,j. Thus a polar triangle of’ is a self-conjugate triangle. Conversely,
if V(Dy,,;(q)) = L, then Dy, .. (q) = Dy,0,;(q) = 0. This shows that



80 Conics and quadric surfaces

the conicC' is apolar to the linear system of conics spanned by the reducible
conics?; + £;. It coincides with the linear system of conics through the three
points/y, 5, /3 in the dual plane. Applying Propositich3.5 we obtain that
the self-conjugate triangle is a polar triangle.

Of course, we can prove the converse by computation. Let

2q = apoty + a11ts + agats + 2ag1toty + 2agetots + 2aiatits = 0.
Choose projective coordinateslti such that; = V (¢;). Then

Jq
to
dq
oty
dq
Ot

Pr1,0,0/(X) =01 = V() = V(aooto + ao1t1 + ao2tz), (2.2)

Po,1,0/(X) =Llo = V() = V(ant: + aoito + aiatz),

Pro,0,1)(X) =ty = V(=) = V(agata + aozto + aiat)

implies thaty = 1 (3 + ¢} + ¢3). O

Remark2.1.1 Similarly one can define a self-poldn + 1)-hedron of a
quadric inP™ and prove that it coincides with its polar + 1)-hedron. The
proof of the existence of sudh+1)-hedron was the classical equivalent of the
theorem from linear algebra about reduction of a quadratic form to principal
axes.

Let Q@ = V(q) and@Q’ = V(q’) be two quadrics in a projective spakeé.
We say that) and@’ areharmonically conjugatéf the dual quadric ofy is
apolar to@’. In other words, ifD,v (¢) = 0. In coordinates, if

q= ot +2Btots +t3, ¢ =12 +208tot, + 15
theng¥ = yn2 — 26nom + an?, and the condition becomes
—2B8" 4+ ay +a'y = 0. (2.3)

It shows that the relation is symmetric (one can extend it to quadrics in higher-
dimensional spaces but it will not be symmetric).

Of course, a quadric iR' can be identified with a set of two pointsIi, or
one point with multiplicity 2. This leads to the classical definitiorhafmoni-
cally conjugate{a, b} and{c, d} in P1. We will see later many other equivalent
definitions of this relation.

LetP! = |U|, wheredim U = 2. Sincedim A*> U = 1, we can identify £
with P(E). Explicitly, a point with coordinateg:, b] is identified with a point
[—b,a] in the dual coordinates. Under this identification, the dual quagtic
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vanishes at the zeros @f Thus, @.3) is equivalent to the polarity condition

Dea(q) = Dap(q') = 0, (2.4)
whereV (q) = {a,b},V(¢') = {c,d}.

Proposition 2.1.2 Let/y, {5, ¢3 be a triangle with verticea = /1 N4y, b =
{1 N {3 andc = £5 N ¢3. Then the triangle is a self-polar triangle of a cortit
if and only ifa € P,(C) N P.(C) and the pairs of point§' N ¢5 and (b, ¢) are
harmonically conjugate.

Proof Consider the pai€ N /5 as a quadrig in ¢5. We haver € P,(C), thus
Dy.(q) = 0. Restricting to/s and using 2.4), we see that the paiis c and
C N ¢3 are harmonically conjugate. Converselylf.(q) = 0, the polar line
P,(C) containse and intersectgs at ¢, hence coincides witiic. Similarly,
P.(C) = ab. O

Any triangle inP? defines the dual triangle in the dual plafi&)V. Its sides
are the pencils of lines with the base point of one of the vertices.

Corollary 2.1.3 The dual of a self-polar triangle of a conc is a self-polar
triangle of the dual conic.

2.1.3 The variety of self-polar triangles

Here, by more elementary methods, we will discuss a compactification of the
variety VSHg, 3) of polar triangles of a nondegenerate quadratic form in three
variables.

Let C be a nonsingular conic. The group of projective transformatiof® of
leavingC invariant is isomorphic to the projective complex orthogonal group

PO(3) = O(3)/(£15) = SO3).
It is also isomorphic to the group P8&Y) via the Veronese map
vy : Pt P2 [to, ty] v [t3, tot1, t3).

Obviously, PQ acts transitively on the set of self-polar triangleg€biWe may
assume tha€ = V(3" t2). The stabilizer subgroup of the self-polar triangle
defined by the coordinate lines is equal to the subgroup generated by permu-
tation matrices and orthogonal diagonal matrices. It is easy to see that it is
isomorphic to the semi-direct produ/27Z)* x &3 = &,. Thus we obtain

the following.
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Theorem 2.1.4 The set of self-polar triangles of a nonsingular conic has a
structure of a homogeneous space; 3 whereT is a finite subgroup iso-
morphic toS,.

A natural compactification of the variety of self-conjugate triangles of a non-
degenerate conigis the variety VSPy, 3) which we discussed in the previous
chapter. In Corollant.5.3 we have shown that it is isomorphic to the intersec-
tion of the Grassmanniafi(3, 5) with a linear subspace of codimension 3. Let
us see this construction in another way, independent of the theory developed
in the previous chapter.

Let V3 be a Veronese surface Y. We viewP® as the projective space of
conics inP? andV3 as its subvariety of double lines. A trisecant plané/af
spanned by three linearly independent double lines. A cnie P° belongs
to this trisecant if and only if the corresponding three lines form a self-polar
triangle ofC'. Thus the set of self-polar triangles@fcan be identified with the
set of trisecant planes of the Veronese surface which co6taire latter will
also includedegenerate self-polar trianglesorresponding to the case when
the trisecant plane is tangent to the Veronese surface at some point. Projecting
from C to P* we will identify the set of self-polar triangles (maybe degenerate)
with the set of trisecant lines of the projected Veronese suNacdhis is a
closed subvariety of the Grassmann variéy(P*) of lines inP*.

Let E be a linear space of odd dimensiin+1 and letG(2, E) := G1(|E|)
be the Grassmannian of lines ii7|. Consider its Ricker embedding\? :
G(2,E) — G1(AN*E) = | \>E|. Any nonzerow € (A*E)Y = A*EY
defines a hyperpland,, in | \® E|. Considet as a linear map, : E — EV
defined byo,, (v)(w) = w(v, w). The mapy,, is skew-symmetric in the sense
that its transpose map coincides withy,,. Thus its determinant is equal to
zero, and Kefoy,) # {0}. Letwvy be a nonzero element of the kernel. Then for
anyv € E we havew(vg,v) = a,(v)(vg) = 0. This shows thaty vanishes
on all decomposable 2-vectotg A v. This implies that the intersection of
the hyperplandi,, with G(2, E) contains all lines which intersect the linear
subspacé,, = |Ker(w, )| C |E| which we call thepoleof the hyperplanéi,,.

Now recall the following result from linear algebra (see Exercise 2.1). Let
A be a skew-symmetric matrix of odd si2é + 1. Its principal submatrices
A; of size2k (obtained by deleting theth row and the-th column) are skew-
symmetric matrices of even size. Let BE the pfaffians oft; (i.e.det(4;) =
Pf). Assume that rarfkd) = 2k, or, equivalently, not all Rfvanish. Then the
system of linear equation$- x = 0 has one-dimensional null-space generated
by the vector(ay, . . ., agi+1), Wherea; = (—1)*F1Pf;.

Let us go back to Grassmannians. Suppose we havetah-dimensional
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subspacéV in /\2 EVY spanned by, . .., ws. Suppose that, for any € W,
we have ranky, = 2k, or, equivalently, the polg,, of H,, is a point. It follows
from the theory of determinant varieties that the subvariety

2
{Cwe | \EY|: coranka,, > i}

is of codimensior(}) in | A* EV| (see B0g, [380)). Thus, ifs < 4, a general
W will satisfy the assumption. Consider a regular ndap|WW| — |E| defined
by w — C,. If we takew = towg + - - - + tsws SO thatt = (¢o,...,ts) are
projective coordinate functions ifi¥’|, we obtain thatb is given by2k + 1

principal pfaffians of the matrix; definingw.

We shall apply the preceding to the case whan E = 5. Take a general
3-dimensional subspad® of A? EV. The map® : |[W| — |E| = Pis
defined by homogeneous polynomials of degree 2. Its image is a projected
Veronese surfacg. Any trisecant line of5 passes through 3 points hwhich
are the poles of elements;, w», w3 from W. These elements are linearly
independent, otherwise their poles lie on the conic image of a line dndzut
no trisecant line can be contained in a conic plane sectigh ¥fle consider
w € W as a hyperplane in the iRlker spac¢/\2 E)|. Thus, any trisecant line
is contained in all hyperplanes defined By. Now, we are ready to prove the
following.

Theorem 2.1.5 Let X be the closure irt7; (P*) of the locus of trisecant lines
of a projected Veronese surface. ThEris equal to the intersection ¢f; (P*)
with three linearly independent hyperplanes. In particulgris a Fano 3-fold
of degree 5 with canonical sheak =~ O (—2).

Proof Aswe observed in above, the locus of poles of a general 3-dimensional
linear spacéV of hyperplanes in the Btker space is a projected Veronese
surfaceV and its trisecant variety is containedYn= Ny Hy N Gy (P4).

So, its closureX is also contained iy". On the other hand, we know that

is irreducible and 3-dimensional (it contains an open subset isomorphic to a
homogeneous spacé = SQ(3)/&,). By Bertini's Theorem the intersection

of G1(P*) with a general linear space of codimension 3 is an irreducible 3-
dimensional variety. This proves thgt= X. By another Bertini’'s Theorem,

Y is smooth. The rest is the standard computation of the canonical class of the
Grassmann variety and the adjunction formula. It is known that the canonical
class of the Grassmannigh= G.,,,(P™) of m-dimensional subspacesBf is

equal to

KG = Og(—n - 1) (25)
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By the adjunction formula, the canonical classof= G, (P*)NH, N HyN H3
is equal toO ¢ (—2). O

Corollary 2.1.6 The homogeneous spage= SO(3)/&, admits a smooth
compactificationX isomorphic to the intersection @, (P*), embedded via
Plucker inP?, with a linear subspace of codimension 3. The boundéary X
is an anticanonical divisor cut out by a hypersurface of degree 2.

Proof The only unproven assertion is one about the boundary. To check this,
we use that the 3-dimensional grodp = SL(2) acts transitively on a 3-
dimensional varietyX minus the boundary. For any point€ X, consider

the mapu, : G — X, g — g - x. Its fibre over the point is the isotropy sub-
groupG, of z. The differential of this map defines a linear map- 7.(G) —
T.(X). When we letc vary in X, we get a map of vector bundles

d:gx =g x X - T(X).

Now take the determinant of this map

3 3 3
No=N\ox X = \T(X) =KX,

where K x is the canonical line bundle of. The left-hand side is the trivial
line bundle overX. The map/\3 ¢ defines a section of the anticanonical line
bundle. The zeros of this section are the points where the differential of the map
1z 1S Not injective, i.e., wherdim G, > 0. But this is exactly the boundary
of X. In fact, the boundary consists of orbits of dimension smaller than 3,
hence the isotropy of each such orbit is of positive dimension. This shows that
the boundary is contained in our anticanonical divisor. Obviously, the latter
is contained in the boundary. Thus we see that the boundary is equal to the
intersection of7; (P*) with a quadric hypersurface.

O

Remark2.1.2 There is another construction of the variety () due to

S. Mukai and H. UmemuraiBg. Let V5 be the space of homogeneous binary
formsf(to, t1) of degree 6. The group $2) has a natural linear representation
in Vs via linear change of variables. Lgt= tot; (3 — t1). The zeros of this
polynomials are the vertices of a regular octahedron inscribéd is P1(C).
The stabilizer subgroup gf in SL(2) is isomorphic to the binary octahedron
groupl’ = &,4. Consider the projective linear representation of Blin |Vg| &

IP°. In the loc. cit. it is proven that the closuie of this orbit in| V5| is smooth
andB = X \ X is the union of the orbits oftj¢;] and[tS]. The first orbit
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is of dimension 2. Its isotropy subgroup is isomorphic to the multiplicative
groupC*. The second orbit is one-dimensional and is contained in the closure
of the first one. The isotropy subgroup is isomorphic to the subgroup of upper
triangular matrices. One can also show tR&s equal to the image &' x P!
under a Sl(2)-equivariant map given by a linear system of curves of bidegree
(5,1). ThusB is of degree 10, hence is cut out by a quadric. The image of the
second orbit is a smooth rational curvehfnand is equal to the singular locus

of B. The fact that the two varieties are isomorphic follows from the theory
of Fano 3-folds. It can be shown that there is a unique Fano thregfelith
Pic(V) = Z3 Ky andK3, = 40. We will discuss this variety in a later chapter.

2.1.4 Conjugate triangles

LetC = V(f) be anonsingular conic. Given a triangle with sidg¥s, /3, the
poles of the sides are the vertices of the triangle which is calleddahpigate
triangle. Its sides are the polar lines of the vertices of the original triangle. It
is clear that this defines a duality in the set of triangles. Clearly, a triangle is
self-conjugatef and only if it is a self-polar triangle.

The following is an example of conjugate triangles. Letls, ¢35 be three
tangents ta” at the point, p2, p3, respectively. They form a triangle which
can be viewed as@rcumscribed trianglelt follows from Theoreni.1.1that
the conjugate triangle has vertices p2, ps. It can be viewed as anscribed
triangle. The lines?, = paps, ¢, = pips,t) = Pipz are polar lines with
respect to the verticeg, ¢2, g3 of the circumscribed triangle (see the picture).

oo
!/
o |
ls
j2) o
A
3
Y
2

Figure 2.1 Special conjugate triangles

In general, let a sidé; of a triangleA intersect the coni€' at p; andp.
Then the vertices of the conjugate triangle are the intersection points of the
tangent ofC' at the point;, p!.

Two lines inP? are callecconjugatewith respect taC' if the pole of one of
the lines belongs to the other line. It is a reflexive relation on the set of lines.
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Obviously, two triangles are conjugate if and only if each of the sides of the
first triangle is conjugate to a side of the second triangle.

Recall the basic notion of projective geometry, pherspectivity Two tri-
angles are callederspectivédrom a line (resp. from a point) if there exists a
bijection between their sets of sides (resp. vertices) such that the intersection
points of the corresponding sides (resp. the lines joining the corresponding
points) lie on the same line (resp. intersect at one point). The line is called the
line of perspectivityor perspectrix and the point is called theenter of per-
spectivityor perspector The Desargues Theoreasserts that the properties of
being perspective from a line or from a point are equivalent.

Theorem 2.1.7(M. Chasles) Two conjugate triangles with no common vertex
are perspective.

Proof Chose coordinates such that the sided,, /3 of the first triangle are
to = 0,t1 = 0,t2 = 0, respectively. Then the vertices of the first triangle
loNily = P11 = [1,0,0],61 Nty = p2 = [0, 1,0} and/; N b3 = p3 = [0,0, 1]
Let

a b ¢

A=1b d e (2.6)

c e f
be the symmetric matrix defining the conic. Then the lines p&laf the point
p; IS given by the equationst, + (t; + vt2 = 0, where(q, 3,~) is thei-th
column of A. The vertices we have N ¢} = (0,¢,—b), ¢ N th = (e,0,—b)
and?s N ¢4 = (e,—c,—0). The condition that the points are on a line is the
vanishing of the determinant

0 ¢ -—b
det|e 0 —b
e —c 0
Computing the determinant, we verify that it indeed vanishes. O

Now let us consider the following problem. Given two triang{és, (-, (3}
and{¢;, ¢,, ¢4} without common sides, find a coni@ such that the triangles
are conjugate to each other with respeat’to

Sincedim A® E = 1, we can define a natural isomorphisfy”* EV| — | E|.
Explicitly, it sends the linél Al’] to the intersection poirit] N [I']. Suppose the
two triangles are conjugate with respect to a cafiidet |[E| — |EV| be the
isomorphism defined by the conic. The compositigt® EV| — |E| — |EY|
must send; A £; to ¢, Let?; = [;], ¢; = [I}]. Choose coordinates, t1, t2 in



2.1 Self-polar triangles 87

E and letX, Y be the3 x 3-matrices withj-row equal to coordinates éf and

¢, respectively. Of course, these matrices are defined by the triangles only up
to scaling the columns. Itis clear that thecolumn of the inverse matrix —!

can be taken for the coordinates of the pdin ¢; (herei # j # k). Now we

are looking for a symmetric matrix such thatAX —! = *Y". The converse is

also true. If we find such a matrix, the rows &fandY would represent two
conjugate triangles with respect to the conic defined by the matrisix some
coordinates of the sides of the two triangles to fix the matri¢es. Then we

are looking for a diagonal invertible matri® such that

QA ='YDX isasymmetric matrix (2.7

There are three linear conditions; = a;; for a matrix A = (a;;) to be
symmetric. So we have three equations and we also have three unknowns, the
entries of the matrixD. The condition for the existence of a solution must be
given in terms of a determinant whose entries depend on the coordinates of the
sides of the triangles. We identify andi’ with vectors inC? and use the dot-
product inC3 to get the following three equations with unknowns o, A3

M-l —Xolo 1 =0
Aly -l — Agls -1 =0
Aaly - Uy — Agls - 1, = 0.

The matrix of the coefficients of the system of linear equations is equal to

Lol -l 0
M=(nL-1 0 -3
0 Il -l

The necessary condition is that
det M = (I3 - 1) (I - 15)(l2 - 13) — (I2 - 1) (11 - 15) (I3 - 15) = 0. (2.8)

We also need a solution with nonzero coordinates. It is easy to check (for
example, by taking coordinates wheXeor Y is the identity matrix), that the
existence of a solution with a zero coordinate implies that the triangles have a
common vertex. This contradicts our assumption.

Note that conditionZ.7) is invariant with respect the action of GE) since
any G € GL(FE) transformsX,Y to GX,GY, and hence transform4 to
tG AG which is still symmetric. Takind; = to,ls = t1,l3 = to, we easily
check that conditionZ.8) is equivalent to the condition that the two triangles
with sides defined by, I2, 13 andiy, 1}, 15 are perspective from a line. Thus
we obtain the following.
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Corollary 2.1.8 Two triangles with no common side are conjugate triangles
with respect to some conic if and only if they are perspective triangles.

Taking the inverse of the matriz from (2.7), we obtain thatY ! D1t B!
is symmetric. It is easy to see that th¢h column of X ~! can be taken for the
coordinates of the side of the triangle opposite the vertex defined bytthe
column of X. This shows that the dual triangles are conjugate with respect to
the dual quadric defined by the mateix *. This proves Desargues’ Theorem,
we used before.

Theorem 2.1.9(G. Desargues) Two triangles are perspective from a point if
and only if they are perspective from a line.

Let C be a nonsingular conic ardbe a point in the plane but not . The
projection fromo defines an involution, on C' with two fixed points equal to
the setP,(C) N C. This involution can be extended to the whole plane such
that o and the polar lineP, is its set of fixed points. To show this, we may
assume’ is the conicV (tpt2 — t3), image of the Veronese map : P! —

C, [ug, u1] — [ud, ugui, u?]. We identify a pointz = [z, 21, x2] in the plane
with a symmetric matrix
X — (330 I1>
1 X2

so that the conic is given by the equatidet X = 0. Consider the action of
G € SL(2) onP? which sendsX to !GXG. This defines an isomorphism
from PSL(2) to the subgroup of PG3) leaving the conic” invariant. In this
way, any automorphism aof’ extends to a projective transformation of the
plane leavingC' invariant. Any nontrivial element of finite order in PG
is represented by a diagonalizable matrix, and hence its set of fixed points
consists of either a line plus a point, or 3 isolated points. The first case occurs
when there are two equal eigenvalues, the second one when all eigenvalues are
distinct. In particular, an involution belongs to the first case. It follows from the
definition of the involutionr that the two intersection points &, (C) with C
are fixed under the extended involutidnSo, the poinb, being the intersection
of the tangents t@’' at these points, is fixed. Thus the set of fixed points of the
extended involutiort is equal to the union of the ling, (C) and the poinb.

As an application, we get a proof of the following Pascal’'s Theorem from
projective geometry.

Theorem 2.1.10 Letpy,...,ps be the set of vertices of a hexagon inscribed
in a nonsingular conia”. Then the intersection points of the opposite sides
DiDi+r1 N PirsPita, Wherei is taken modul@, are collinear.
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Proof A projective transformation dP! is uniquely determined by the im-
ages of three distinct points. Consider the transformation of the ¢o(iten-
tified with P! by a Veronese map) which transformsto p;,3,i = 1,2, 3.

This transformation extends to a projective transformatiohthe whole plane
leavingC invariant. Under this transformation, the pairs of the opposite sides
DiPirs3 are left invariant, thus their intersection point is fixed. A projective
transformation with three fixed points on a line, fixes the line pointwise. So, all
three intersection points lie on a line. O

The line joining the intersection points of opposite sides of a hexagon is
called thePascal line Changing the order of the points, we get 60 Pascal lines
associated with 6 points on a conic.

One can see that the trianglg with sidespipz, p1ps, P2ps and the triangle
A, with sidespsps, P3pa, P5pe are in perspective from the Pascal line. Hence
they are perspective from the pole of the Pascal line with respect to the conic.
Note that not all vertices of the triangles are on the conic.

Dually, we obtairBrianchon’s Theorem

Theorem 2.1.11 Letp,,...,ps be the set of vertices of a hexagon whose
sides touch a nonsingular coni€. Then the diagonal®;p; 3, = 1,2,3
intersect at one point.

We leave to the reader to find two perspective triangles in this situation.

Figure 2.2 Pascal’'s Theorem

We view a triangle as a point i{i??)3. Thus the set of ordered pairs of conju-
gate triangles is an open subset of the hypersurfa¢@p? x (P?)3 = (P?)S
defined by equation2(8). The equation is multi-linear and is invariant with
respect to the projective group P@) acting diagonally, with respect to the
cyclic group of order 3 acting diagonally on the prod(t)® x (P?)3, and
with respect to the switch of the factors in the prod(t)? x (P?)3. It is
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known from the invariant theory that the determinant of the malfixconsid-
ered as a section of the shefdf ((P?)5, O%°) must be a linear combination
of the products of the maximal minofsjk) of the matrix whose columns are
the six vectordy, 1, 12,15, 13,15 such that each columns occurs in the prod-
uct once. We use thaliet M = 0 expresses the condition that the intersection
points¢; N ¢; are collinear.

Fix a basis inA*(E) to define a natural isomorphism

2 2
/\(/\E) — E, (v1 Avg, w1 Aws) — (v1 Avg Awy)ws — (v1 Avg Aws)ws.

This corresponds to the familiar identity for the vector product of 3-vectors
(’U1 X Ug) X (w1 N wg) = (1}1 X V2 X w1)w2 — (U1 X Vg X wg)wl.

If we apply this formula taF" instead ofF, we obtain that the line spanned by
the points/; N¢} and¢;N ¢, has equatiodet (i, 1], 12)l5 —det (11,11, 15)ls = 0.
The condition that this line also passes through the intersection faind;, is

det(lg,lé,det(ll, /1,12)[/2 — det(ll, ll,llg)lg)

= det(ly,11,l2) det(l3, 15, 15) — det(ly, 1}, 15) det(l3, 15, 12) = 0.
This shows that the determinant ia§) can be written in symbolic form as
(12,34,56) := (123)(456) — (124)(356). (2.9)

Remark2.1.3 Let X = (P?)P¥ be the Hilbert scheme @? of 0-cycles of
degree 3. Itis a minimal resolution of singularities of the 3d symmetric product
of P2. Consider the open subset &f formed by unordered sets of 3 non-
collinear points. We may view a point 6f as a triangle. Thus any nonsingular
conicC defines an automorphispg: of U of order 2. Its set of fixed points is
equal to the variety of self-polar triangles 6f The automorphism of/ can
be viewed as a birational automorphismof

One can also give a moduli-theoretical interpretation of the 3-dimensional
GIT-quotient of the varietyX modulo the subgroup of A(iP?) leaving the
conic C invariant. Consider the intersection of the sides of the triangle with
verticesa, b, c. They define three pairs of points on the conic. Assume that
the six points are distinct. The double cover of the conic branched over six
distinct points is a hyperelliptic curv& of genus 2. The three pairs define
3 torsion divisor classes which generate a maximal isotropic subspace in the
group of 2-torsion points in the Jacobian variety of the cus\see Chapter 5).
This gives a point in the moduli space of principally polarized abelian surfaces
together with a choice of a maximal isotropic subspace of 2-torsion points. It
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is isomorphic to the quotient of the Siegel sp&¢g modulo the grouf;(2)

of matrices(é g) € Sp(4,Z) such thaC' =0 mod 2.

2.2 Poncelet relation

2.2.1 Darboux’s Theorem

LetC be a conic, and I€f' = {/y, ¢5, {5} be a circumscribed triangle. A conic

C’ which hasT as an inscribed triangle is called tRencelet related conic
Since passing through a point impose one condition, we ha¥ePoncelet
related conics corresponding to a fixed trian@leVarying T', we expect to
getoo® conics, so that any conic is Poncelet related’twith respect to some
triangle. But surprisingly this is wrong! Darboux’s Theorem asserts that there
is a pencil of divisor®; + p2 + ps such that the triangle€B with sides tangent

to C at the point%, p2, ps define the same Poncelet related conic.

We shall prove it here. In fact, we shall prove a more general result, in which
triangles are replaced with-polygons. Ann-polygonP in P2 is an ordered
set ofn > 3 points(py, ..., p,) in P? such that no three poinis, p; 1, pi1o
are collinear. The pointg; are theverticesof P, the linesp;, p;+1 are called
the sidesof P (herep,+1 = p1). The number of-gons with the same set of
vertices is equal ta!/2n = (n — 1)!/2.

We say thatP circumscribes a nonsingular conitif each side is tangent
to C. Given any ordered sét, . . ., ¢, ) of n points onC, let/; be the tangent
lines toC at the pointgy;. Then they are the sides of thegon P with vertices
pi = L;NLliyg,i =1,...,n (lpy1 = £1). Then-gon P circumscribesC.
This gives a one-to-one correspondence betwegans circumscribing’ and
ordered sets af points onC.

Let P = (p1,...,pn) be an-gon that circumscribes a nonsingular cofiic
A conic S is calledPonceletn-relatedto C' with respect taP if all points p;
lieonC.

Let us start with any two conic§' and S. We choose a point; on S and
a tangent; to C passing througlp; . It intersectsS at another poinp,. We
repeat this construction. If the process stops aftgeps (i.e. we are not getting
new pointsp;), we get an inscribed-gon in S which circumscribeg’. In this
caseS is Poncelet related t6¢’. The Darboux Theoremvhich we will prove
later says that, if the process stops, we can construct infinitely magons
with this property starting from an arbitrary point 6n
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Consider the following correspondence©nx S:
R={(z,y) € C x S:7Tyistangentta atz}.

Since, for anyr € C the tangent t@' atx intersectsS at two points, and, for
anyy € S there are two tangents 0 passing througly, so we get that’ is
of bidegreg(2, 2). This means if we identify’, S with P!, thenR is a curve of
bidegreq2, 2). As is well-knownR is a curve of arithmetic genus 1.

Lemma 2.2.1 The curveR is nonsingular if and only if the conio§ and
S intersect at four distinct points. In this cask,is isomorphic to the double
cover ofC (or S) ramified over the four intersection points.

Proof Consider the projection maps : R — S. This is a map of degree 2.
A branch pointy € S is a point such that there only one tangenftpassing
throughy. Obviously, this is possible only if € C. It is easy to see that is
nonsingular if and only if the double cover : R — S = P! has four branch
points. This proves the assertion. O

Note that, if R is nonsingular, the second projection map : R — C
must also have 4 branch points. A pointe C is a branch point if and only
if the tangent ofC at x is tangent taS. So we obtain that two conics intersect
transversally if and only if there are four different common tangents.

Take a point{z[0], y[0]) € R and let(z[1],y[1]) € R be defined as follows:
y[1] is the second point 0§ on the tangent ta[0], z[1] is the point onC
different fromz[0] at which a line throughy[1] is tangent taC'. This defines a
map7c,s : R — R. This map has no fixed points gdand hence, if we fix a
group law onR, is a translation mafy, with respect to a point. Obviously, we
get ann-gon if and only ift, is of ordern, i.e. the order of: in the group law
is n. As soon as this happens we can use the automorphism for constructing
n-gons starting from an arbitrary poifit[0], y[0]). This is Darboux’s Theorem
which we have mentioned in above.

Theorem 2.2.2(G. Darboux) LetC andS be two nondegenerate conics in-
tersecting transversally. Theri and S are Poncelet:-related if and only if the
automorphismr¢ ¢ of the associated elliptic curvg is of ordern. If C' and

S are Ponceletr related, then starting from any point € C' and any point
y € S there exists am-gon with a vertex afy and one side tangent 10 at y
which circumscribe€”’ and inscribed inS.

In order to check explicitly whether two conics are Poncelet related one
needs to recognize when the automorphigsg is of finite order. Let us
choose projective coordinates such tfds the Veronese conigt, — t2 = 0,
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the image ofP! under the magt, t1] — [t3,tot1,t3]. By using a projective
transformation leaving’ invariant we may assume that the four intersection
pointspy, pa, p3, p4 Of C'and.S are the images of the poinfs1, co, a. Then

R is isomorphic to the elliptic curve given by the affine equation

v? =x(x—1)(z — a).
The conicS belongs to the pencil of conics with base poipts. . . , p4:
(tota — t2) + M1 (atg — (1 + a)ty + t3) = 0.

We choose the zero point in the group law Brio be the poin{x[0], y[0]) =
(p4,p4) € C'x S. Then the automorphismy, s sends this point tex[1], y[1]),
where

y[1] = Aa, \(1 +a) +1,0), z[1] = ((a +1)?X%,2a(1 + a)\, 4a?).

Thusz[1] is the image of the poir(l, (aiiam) € P! under the Veronese map.

The pointy[1] corresponds to one of the two roots of the equation

2 2a 2a 7 2a L
y_(a+1))\((a+1))\ 1)((a+1))\ )

So we need a criterion characterizing poifts£+/z(x — 1)(z — a)) of fi-

nite order. Note that different choice of the sign corresponds to the involution
x — —x of the elliptic curve. So, the order of the points corresponding to two
different choices of the sign are the same. We have the following result of A.
Cayley.

Theorem 2.2.3(A. Cayley) LetR be an elliptic curve with affine equation

whereg(z) is a cubic polynomial with three distinct nonzero roots. Let
Yoo cix’ be the formal powers Taylor expansionpfn terms of the local
parameterz at the pointp = (0, /¢(0)). Thenp is of ordern > 3 if and only
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C2 C3 coe Ck41
C3 Cy4 oo Ck42
=0, n=2k+1,
Ck+1 Ck42 ... Co2g
C3 Cy4 [N Ck+1
Cy Cs e Ck+2 0 ok
= n =
)
Ck+1 Ck+2 ... C2k—1

Proof Let co be the point at infinity of the affine curvg? — g(x) = 0.

The rational functionz (resp.y) has pole of order 2 (resp. 3) ab. If n =

2k + 1, the rational functiond, z, ..., 2%, y, zy, ..., 2" 'y form a basis of

the linear spacél’(C, Oc(noo)). If n = 2k, the same is true for the functions
Lz, ...,o% g, zy,..., 22y, A pointp = (0, cy) is an-torsion point if and
only if there is a linear combination of these functions which vanishes at this
point with ordern. Sincex is a local parameter at the pointwe can expand

y in a formal power serieg = >3, cxz*. Let us assume = 2k + 1, the
other case is treated similarly. We need to find some numbg(s. ., asx)

such that, after plugging in the formal power series,

ao—l—alx—I—...+akxk+a;€+1y+...+a§kf1

is divisible byz2**1. This gives a system of linear equations

a; + ag+1¢i+ ...+ agr14ic0=0,1=0,...,k,
a2kCo+i + A2k—1C3+5 + ... + Apy1Ck+1+: =0, 1 =0,..., k—1.
The firstk + 1 equations allow us to eliminatg, . . ., ax. The lastt equations
have a solution fofay1, ..., as) if and only if the first determinant in the
assertion of the Theorem vanishes.
O
To apply the Proposition we have to take
2a =1+ 2a + 2a
a=—— = — =a+ —.
@+ A’ CES (@ + DX

Let us consider the varietf,, of pairs of conic§C, S) such thatS is Pon-
celetn-related toC. We assume that’ and S intersect transversally. We al-
ready know tha®, is a hypersurface i?®> x P°. Obviously,P,, is invariant
with respect to the diagonal action of the group($L(acting on the space of
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conics). Thus the equation @, is an invariant of a pair of conics. This in-
variant was computed by F. Gerbar@Bf. It is of bidegree(1T'(n), 37 (n)),
whereT'(n) is equal to the number of elements of orden the abelian group
(Z/n7.)3.

Let us look at the quotient oP,, by PSL(3). Consider the rational map
B : P> x P> — (P?)™ which assigns tdC, S) the point setC' N S. The
fibre of 3 over a subseB of 4 points in general linear position is isomor-
phic to an open subset @' x P!, whereP! is the pencil of conics with
base pointB. Since we can always transform suéhto the set of points
{[1,0,0],]0,1,0],[0,0,1],[1,1, 1]}, the group PS[3) acts transitively on the
open subset of such 4-point sets. Its stabilizer is isomorphic to the permutation
group&, generated by the following matrices:

0 -1 0 10 0 1 0 -1
1 0o o], oo —-1], 0o -1 -1
0 0 1 01 0 0 0 -1

The orbit spaceP,,/PSL(3) is isomorphic to a curve in an open subset of
P! x P!/&,, where&, acts diagonally. By considering one of the projection
maps, we obtain th&®,,/PSL(3) is an open subset of a coverBf of degree

N equal to the number of Ponceletrelated conics in a given pencil of conics
with 4 distinct base points with respect to a fixed conic from the pencil. This
number was computed by F. Gerbar#6§ and is equal ta7'(n). A modern
account of Gerbardi’s result is given i2€]. A smooth compactification of
P,./PSL(3) is the modular curvé(° (n) which parameterizes the isomorphism
classes of the pairfSk, ), whereR is an elliptic curve and is a point of order
nin R.

Proposition 2.2.4 Let C and .S be two nonsingular conics. Consider each
n-gon inscribed inC' as a subset of its vertices, and also as a positive divisor
of degreen on C. The closure of the set afgons inscribed irC' and circum-
scribing S is either empty, or &}, i.e. a linear pencil of divisors of degree
n.

Proof First observe that two polygons inscribeddhand circumscribings
which share a common vertex must coincide. In fact, the two sides passing
through the vertex in each polygon must be the two tangent$ péssing
through the vertex. They interseCtat another two common vertices. Contin-
uing in this way, we see that the two polygons have the same set of vertices.
Now consider the Veronese embedding of C = P! in P". An effective
divisor of degreen is a plane section of the Veronese cukie = v, (P!).

Thus the set of effective divisors of degreen C' can be identified with the
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dual projective spacfP™). A hyperplane inP™)" is the set of hyperplanes
in P which pass through a fixed point IP*. The degree of an irreducible
curve X C (P")V of divisors is equal to the cardinality of the set of divisors
containing a fixed general point .. In our case it is equal to 1. O

2.2.2 Poncelet curves and vector bundles

Let C and S be two Poncelet-related conics in the plar®* = |E|. Recall
that this means that there exispointsp,, ..., p, onC such that the tangent
lines¢; = T,,(C) meet onS. One can drop the condition théltis a conic. We
say that a plane curvg of degreen — 1 is Poncelet relatedo the conicC if
there existn points as above such that the tangent§'tat these points meet
ons.

We shall prove an analog of Darboux’s Theorem for Poncelet related curves
of degree larger than 2. First, we have to remind some constructions in the
theory of vector bundles over the projective plane.

Let P! = |U| for some vector spacE of dimension 2 and®? = |V| for
some vector spacg of dimension 3. A closed embedding: P! — P? has
the image isomorphic to a nonsingular conic, a Veronese curve. This defines
an isomorphism

EY = H(|E|, O (1)) = H°(|U|, Op(2)) = S*(UY).

Its transpose defines an isomorphighaz S?(U). This gives a bijective corre-
spondence between nonsingular conics and linear isomorplismsS?(U).
Also, sincedim \* U = 1, a choice of a basis iA\” U defines a linear isomor-
phismU = UV. This gives an isomorphism of projective spafé$ = |U|"
which does not depend on a choice of a basig\ihU. Thus a choice of a
nonsingular conic inE| defines also an isomorphisi" | — |S2(U)| which
must be given by a nonsingular conic|ii¥|. This is of course the dual conic.

Fix an isomorphisn®? = |S2(U)| defined by a choice of a coni@ in P2.
Consider the multiplication mag?(U) ® S"~2(U) — S™(U). It defines a
rank 2 vector bundlé,, - onP? whose fibre at the point = [¢] € |S%(U)| is
equal to the quotient spac® (U)/qS™~2(U). One easily sees that it admits a
resolution of the form

0— S"2(U)(~1) = S"(U) = Spo =0, (2.10)

where we identify a vector spa&éwith the vector bundle* V', wherer is the
structure map to the point. The vector bundlgc is called theSchwarzen-
berger vector bundl@associated to the coniC. Its dual bundle has the fibre



2.2 Poncelet relation 97

over a pointz = [¢] equal to the linear space
(S™(U)/qS"2(U)Y) = {f € S™(UY) : Dy(f) = 0}. (2.11)

EmbeddindU"|in |S™(UY)| by means of the Veronese map, we will identify
the divisor of zeros of with a divisorV (¢) of degree 2 on the Veronese curve
R, C |S™(UVY)|, or, equivalently, with a 1-secant @t,. A hyperplane con-
taining this divisor is equal t& (¢g) for someg € S™~2(U). Thus the linear
space2.11) can be identified with the projective spaniofq). In other words,
the fibres of the dual projective bundli;{c are equal to the secants of the
\eronese curvel,,.

It follows from (2.10 that the vector bundlé,,  has the first Chern class
of degreen — 1 and the second Chern class is equakto — 1)/2. Thus we
expect that a general section 8f - hasn(n — 1)/2 zeros. We identify the
space of sections d,, ¢ with the vector spac8™(U). A point[s] € |S™(U)|
can be viewed as a hyperplafig in |S™(U")|. Its zeros are the secants®f,
contained inH,. SinceH, intersectsR,, atn pointsp, ..., p,, any 1-secant
Dip; is a 1-secant contained ;. The number of such 1-secants is equal to
n(n—1)/2.

Recall that we can identify the conic willy| by means of the Veronese
mapus, : |U| — |S?(U)|. Similarly, the dual coni€V is identified with|UV|.

By using the Veronese map, : |UY| — [S™(UV)|, we can identifyC"
with R,,. Now a point onR,, is a tangent line on the original coni¢, hence
n pointspy, ..., p, from above are the sides of ann-gon circumscribing
C. A secantp;p; from above is a point ifP? equal to the intersection point
¢i; = ¢; N ¢;. And then(n — 1)/2 pointsg;; represent the zeros of a section
of the Schwarzenberger bundig c.

For any two linearly independent sections s, their determinang; A s,
is a section of/\2 Sn,c and hence its divisor of zeros belongs to the linear
system Opz (n — 1)|. When we consider the penci; , s2) spanned by the two
sections, the determinant of each member \s; + uso has the zeros on the
same curvé/(s; A sq) of degreem — 1.

Let us summarize this discussion by stating and proving the following gen-
eralization of Darboux’s Theorem.

Theorem 2.2.5 LetC be a nonsingular conic ifP* and S,, ¢ be the asso-
ciated Scwarzenberger rank 2 vector bundle o#ér Thenn-gons circum-
scribing C are parameterized byH°(S,,.c)|. The vertices of the polygd;
defined by a sectioncorrespond to the subscherf¢s) of zeros of the section

s. A curve of degree — 1 passing through the vertices corresponds to a pencil
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of a sections of,, ¢ containings and is equal to the determinant of a basis of
the pencil.

Proof A sections with the subscheme of zerd&(s) with ideal sheafl )
defines the exact sequence

0— Opz >80 —Iz(n—1)— 0.

A section ofZz(n — 1) is a plane curve of degree— 1 passing througtt(s).
The image of a sectionof S,, ¢ in H*(Zz(n — 1)) is the discriminant curve

s A t. Any curve defined by an element frofi’(Zz(n — 1)) passes through
the vertices of the-gonIl, and is uniquely determined by a pencil of sections
containings. O

One can explicitly write the equation of a Poncelet curve as follows. First
we choose a bas, ¢; of the spacé/ and the basiscd, £071¢,, ..., &%) of
the spaceS®(U). The dual basis in6™(U") is ((¢)ta "t} )o<i<a. Now the
coordinates in the plang?(U)| aret?, 2tot1,t3, so a point in the plane is a
binary conicQ = a&? + 2b&&1 + c€7. For a fixedz = [Q] € |S?(U)|, the
matrix of the multiplication ma™—2(U) — S"(U),G — QG is

a
2b a
c 2b
K(z) = c
a
2b

c

A section ofS,, ¢ is given by f = Y1 ;&) "¢t € S*(U). Its zeros is the
set of pointse such that the vectat of the coefficients belongs to the column
subspace of the matrik’(z). Now we vary f in a pencil of binary forms
whose coefficient vectat belongs to the nullspace of some matrixof size
(n —1) x (n+ 1) and rankn — 1. The determinant of this pencil of sections
is the curve in the plane defined by the degree 1 polynomial equation in
x = la,b, |

det (K (z)- A) = 0.
Note that the coni€ in our choice of coordinates i8(t3 — tot2).

Remark2.2.1 Recall that a section of, ¢ defines an-gon in the plane
|S2(U)| corresponding to the hyperplane sectidnn R,,. Its vertices is the
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scheme of zerog (s) of the sectiors. Let : X (s) — P? be the blow-up of
Z(s). For a genera$, the linear system of Poncelet curves throuffls) em-
beds the surfac& (s) in |S™(U")| with the image equal t&/;NSeg (R,,). The
exceptional curves of the blow-up are mapped onto the secaitswhich are
contained inH. These are the secam®;, whereH, N R,, = {p1,...,pn}-

The linear system defining the embedding is the proper transform of the lin-
ear system of curves of degree— 1 passing througl%n(n — 1) points of
Z(s). This implies that the embedded surfakés) has the degree equal to
(n—1)?—3n(n—1) = 1(n—1)(n—2). This is also the degree of the secant
variety Seg¢(R,,). For example, take. = 4 to get that the secant variety of
R, is a cubic hypersurface if* whose hyperplane sections are cubic surfaces

isomorphic to the blow-up of the six vertices of a complete quadrilateral.

2.2.3 Complex circles

Fix two points in the plane and consider the linear system of conics passing
through the two points. It maps the planeR®® with the image equal to a
nonsingular quadric) = V(q). Thus we may identify each conic from the
linear system with a hyperplanel?, or using the polarity defined ki, with

a point. When the two points are the poifttsl, +] in the real projective plane
with the line at infinityt, = 0, a real conic becomes a circle, and we obtain that
the geometry of circles can be translated into the orthogonal geometry of real
3-dimensional projective space. In coordinates, the rationallPAap » P?3 is

given by

[to, t1,ta] > [0, 21, 2o, 23] = [t3 + 3, toty, tota, t2).
Its image is the quadric
Q = V(zoxs — 23 — z2).
Explicitly, a point[v] = [ag, a1, a2, as] € P? defines theomplex circle
S(v) : ap(t? +t3) — 2to(arty + aots) + asts = 0. (2.12)

By definition, its center is the point = [ag, a1, az), its radius squardk? is
defined by the formula

AZR? = a? + a2 — agaz = q(a). (2.13)

Let us express the property that two circles are tangent to each other. It
applies to complex circles as well.
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Proposition 2.2.6 Let [v], [w] be two points inP3, and S(v), S(w) be two
complex circles corresponding to planeslit? which are polar to the points
with respect to the quadri@ = V' (¢). Then the two circles touch each other if
and only if

(v,v)(w,w) - (U?w)Z = 07 (214)
where(v, w) denotes the bilinear form associated to the quadratic form

Proof Let! =V (\v+ pw) be the line spanned by the point$ and|w]. Via
polarity, it corresponds to a pencil of planedih The preimages of two planes
are tangent if and only if the pencil contains a plane tangent to the qu@dric
Dually this means that the lingis tangent ta). This is equivalent to that the
binary form

g0 + pw) = N2 (0, v) + 2(0, w)A + p(w, w)

has a double root. Of course, this happens if and on8.if4) holds.
O

Note that relationZ.14) is of degree 2 inv andw. If we identify the space
of circles with[P3, this implies that the pairs of touching complex circles is a
hypersurface ifP® x P? of bidegreg(2, 2). It is easy to see that the diagonal of
P3 x P3 is the double locus of the hypersurface.

Fix two complex irreducible circleS = S(v) andS’ = S(w) and consider
the variety R of complex circlesS(z) touchingS and S’. It is equal to the
quartic curve, the intersection of two quadratic cofggsand Qg of conics
touchings ands’,

(v,v)(z,2) — (v,2)? = (w,w)(z,2) — (w,2)? =0

Since the singular points of these cofigsand|[w] satisfy these equations, the
guartic curve has two singular points. In fact, it is the union of two conics given
by the equations

vV (v, v)(w,z) £/ (w,w)(v,x) = 0.

The two conics intersect at the poirjt§ such that(x,z) = 0 and(v,z) =
(v,w) = 0. The first condition means that] is thenull-circle, i.e. a3 R? = 0

in (2.13. It is the union of two lines connecting one if the two intersection
points of S and.S’ outside the line at infinity, = 0 with the two intersection
points at infinity. In the case whe$iandS’ touch each other the whole pencil
generated by andS’ becomes a component of the quartic curve entering with
multiplicity 2. So, the two cone§s and@s: touch each other along the line
spanned by andS’.
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Theorem 2.2.7(J. Steiner) Suppose, aftem steps,S,, is equal toS;. Then,
starting from arbitrary conicS; touchingS and.S’, we get a sequence of concis
i,...,S,, = 5] tangent toS and.S” with .S}, tangent toS;,_;.

Proof Let R be one of the conic components of the variety of complex circles
touchingS andsS’. Let

X ={(51,52) € R x R: SitouchesSs,}.

Itis a curve of bidegreét, 4) on R x R = P* x P*. The fibre of its projection

to the first factor over a point represented by a cahiconsists of 3 points.
One them is at the diagonal and enters with multiplicity 2. This implies that
X consists of the diagonal taken with multiplicity 2 and the residual ciitve
of bidegree(2,2). The fibre of the first projectioX — R over.S; consists

of complex circles which touch andS; and also touclty’ and.S; . It consists

of the intersection of two quartic curves, each has a double line as component.
The double lines are represented by the pencil generated &yd S; and

the pencil generated h§’ and S;. The only way when the fibre consists of
one point is wherb; is one of the two null-lines touching and .S’ at their
intersection point not at infinity. In this case the quadpig; of circles touching

S is the double plane of circles passing through the singular poifit.oFhus

we see that the residual curfehas only two branch points for each of the two
projectionsX — R. Since its arithmetic genus is equal to 1, it must consist
of two irreducible curves of bidegre@, 1) intersecting at two points, b. If

we fix one of the components;, then the mag.S;, S2) — (53, S3) is the
automorphism of \ {a, b} = C*. The sequenc§, Ss, Ss, ... terminates if
and only if this automorphism is of finite order. As soon as it is, we can start
from anyS; and obtain a finite sequen¢#,, ..., S,, = S1). O

Remark2.2.2 We followed the proof fromZ6]. WhenS and.S’ are concen-

tric real circles, the assertion is evident. The general case of real conics can be
reduced to this case (s, [54€]). Poncelet’s and Steiner's Theorems are
examples of gorismwhich can be loosely stated as follows. If one can find
one object satisfying a certain special property then there are infinitely many
such objects. There are some other poristic statements for complex circles:
Emch’ Theorem and theig-zag theorendiscussed in46).
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2.3 Quadric surfaces

2.3.1 Polar properties of quadrics

Many of the polar properties of conics admit extension to nonsingular quadrics
in higher-dimensiondP™. For example, aelf-polar(n + 1)-hedronis defined

as a collection of. 4+ 1 ordered hyperplane€g(;) in general linear position
such that the pole of each plaih&!;) is equal to the intersection point of the
remaining hyperplanes. Similarly to the case of conics, one proves that a self-
polar (n + 1)-hedron is the same as a polar+ 1)-hedron of the quadric.

The definition of the conjugate: + 1)-hedra is straightforward extension of
the definition of conjugate triangles. We say that two simpléxesmdY.’ are
mutually polarwith respect to a quadri@ if the poles of the facets &f’ are
vertices ofT". This implies that the images éfdimensional faces df under
the polarity defined byy) are the oppositén — k)-dimensional facets of’.

The condition 2.7) extends to any dimension. However, it does not translate to
a single equation on the coefficients of the linear forms defining the polyhedra.
This time we have a systemo{n+1)/2 linear equations with+1 unknowns

and the condition becomes the rank condition.

We adopt the terminology of convex geometry to call the set ef 1 lin-
early independent hyperplanesienplex The intersection of a subset bhy-
perplanes will be called & — k)-dimensionaface If k = n, this is avertex,
if K =n — 1, thisis anedge if n = 0 this is afacet.

The notion of perspectivity of triangles extends to quadrics of any dimen-
sion. We say that two simplexes guerspectivéfrom a pointo if there is a
bijection between the sets of vertices such that the lines joining the corre-
sponding vertices pass through the peintVe say that the two simplexes are
perspective from a hyperplane if this hyperplane contains the intersections of
corresponding facets. We have also an extension of Desargues’ Theorem.

Theorem 2.3.1(G. Desargues) Two simplexes are perspective from a point
if and only if they are perspective from a hyperplane.

Proof Without loss of generality, we may assume that the first simpléx
the coordinate simplex with vertices = [e;] and it is perspective from the
pointo = [e] = [1,...,1]. Letq; = [v;] be the vertices of the second simplex
Y. Then we have; = e + \;e; for some scalarg,;. After subtracting, we
obtainv; —v; = A;e; — Aje;. Thus any two edgesp; andg;g; meet at a point
r;; which lies on the hyperplan® = V(}_7_, A%t,-). Since the intersection
of the facet o2, opposite to the point;, with the facet of:, opposite to the
point g, contains all points;; with ¢, # k, and they span the intersection,
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we get that the two simplexes are perspective fidmrhe converse assertion
follows by duality. O

Remark2.3.1 Asremarked$74], p.252, the previous assertion is a true space
generalization of the classical Desargues’s Theorem. Other generalization ap-
plies to two space triangles and asserts that the perspectivity from a point im-
plies that the intersection points of the corresponding sides (which automati-
cally intersect) are collinear.

Letb, : E — EY be an isomorphism defined by a nonsingular quadric
Q = V(q). For any linear subspadeof E, the subspack, (L)~ of E is called
polar of L with respect tay. It is clear that the dimensions of a subspace and
its polar subspace add up to the dimensioh/jf Two subspacea andA’ of
the same dimension are callednjugateif the polar subspace of intersects
A

These classical definitions can be rephrased in terms of standard definitions
of multi-linear algebra. Let\ (resp.A’) be spanned by, ..., [vx] (resp.
[wi], ..., [wg]). For any two vectors, w € E, let (v, w), denote the value of
the polar bilinear fornb, of g on (v, w),.

Lemma 2.3.2 A andA’ are conjugate with respect @@ if and only if

(’U],U)l),] (U2;w1)q ('Ukawl)q
(U17w2) V2, W2 Uk7w2)

I (S IR TR S
(Ulvwk)q (vQ,wk)q (Uk"wk)q

Proof Letb, : E — EY be the linear isomorphism defined by the polar
bilinear form of¢. The linear funtiong,(v1),...,b,(vx) form a basis of a
k-dimensional subspack of EV whose dualL* is a (n — k)-dimensional
subspace oF. It is easy to see that the spanswf..., vy andwy, ..., wy
have a common nonzero vector if and onlyLif intersects nontrivially the lat-
ter span. The condition for this is that, under the natural identificatjbe" )
and\"(E)Y, we have

by(v1) Ao Abg(ur)(wi A ... Awy) = det((vi, w;)g) = 0.
O

It follows from the Lemma that the relation to be conjugate is symmetric.

From now on, until the end of this section, we assumesthat3.
A tetrahedron ifP? with conjugate opposite edges is calkalf-conjugate
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Itis clear that a polar tetrahedron@fis self-conjugate, but the converse is not
true.

Let T be a tetrahedron with vertices = [v1],...,ps = [v4]. Suppose
that two pairs of opposite edges are conjugate with respect to some quadric
Q. ThenT is self-conjugate (see(1], B. Ill, p. 135, or 84, 7.381). The
proof is immediate. Suppose the two conjugate pairs of edgepare ¥3p1)
and(pips, p2pa). For brevity, let us denotey;, v;), by (ij). Then(13)(24) —
(14)(23) = 0, and(12)(34)—(14)(23) = 0imply, after subtraction(13)(24)—
(12)(34) = 0. This means that the remaining p&ifips, p2ps) iS conjugate.

We know that two conjugate triangles are perspective. In the case of quadrics
we have a weaker property expressed on the following Chasles’ Theorem.

Theorem 2.3.3 [M. Chasles] Letl" andT” be two mutually polar tetrahedra
with respect to a quadri€). Suppose no two opposite edged'@fre conjugate.
Then the lines joining the corresponding vertices belong to the same ruling of
lines of some nonsingular quadrig’.

Proof Letp1,ps, p3, ps be the vertices of” andqy, ¢», g3, g4 be the vertices
of 7. In the following {3, j, k, 1} = {1, 2, 3,4}. By definition,q; is pole of the
plane spanned by;, p;, pr, and the matching between the verticeg;is— ¢;.
Suppose the edggp; is not conjugate to the opposite edgg;. This means
that it does not intersect the edgg;. This implies that the lineg;q; andp;q;
do not intersect. By symmetry of the conjugacy relation, we also obtain that the
linesprqr andp;q; do not intersect. Together this implies that we may assume
that the first three lineg, = p;q; are not coplanar.

Without loss of generality, we may assume that the first tetrahe@iran
the coordinate tetrahedron. Lét= (a,;) be a symmetric matrix defining the
quadric@ and letC' = adj(A) = (c¢;;) be the adjugate matrix defining the
dual quadric. The coordinates of facetsiofare columns ofA = (a;;). The
coordinates of the intersection point of three facets defined by three columns
A;, A, Ay, of A are equal to the columé@’, of C, wherem # i, j, k. Thus
a general point on the line generated by the pfind, 0, 0] has coordinates
[A, ucie, 13, c14], @and similar for other three lines. Recall that by Steiner’s
construction (see2Pg, p. 528) one can generate a honsingular quadric by two
projectively equivalent pencils of planes through two skew lines. The quadric
is the union of the intersection of the corresponding planes. Apply this con-
struction to the pencil of planes through the first two lines. They projectively
matched by the condition that the corresponding planes in the pencils contain
the same poinicsy, c32, A, c41] on the third line. The two planes from each
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pencil are defined by the equations

to  t1 to  t3
1 0 0 0

det
Aci1 ci2 €13 Cia

€31 C32 A c3
= t1c13¢34 + ta(Cracs2 — C12€34) — t3c13C32 + A(t3c12 — tic1a) = 0,

to t1 to i3
0 1 0 0

C21 C22 C23 C24

det

€31 C32 A C34

= tCa334 + ta(C2ac31 — C21034) — t3Ca3C31 + A(t3c21 — ticas) = 0,
Eliminating A\, we find the equation of the quadric

(c12¢34 — ca4c13)(Castots + c1atita) + (C13¢24 — c14C23)(C1atats + c3atoty)

+(c14ca23 — c12¢34)(c13tits + coatota) = 0.

By definition the quadric contains the first three lines. It is immediately checked
that a general poirft4:, cs2, ca3, A] on the fourth line lies on the quadric.(J

The following result follows from the beginning of the proof.

Proposition 2.3.4 LetT andT” be two mutually polar tetrahedra. Assume
that T' (and hencel”) is self-conjugate. Thef® and T’ are in perspective
from the intersection points of the lines joining the corresponding vertices and
perspective from the polar plane of this point.

One can think that the covariant quadt¥ constructed in the proof of
Chasles’ Theoren2.3.3 degenerates to a quadratic cone. Counting parame-
ters, it is easy to see that the pairs of perspective tetrahedra depend on the
same number 19 of parameters as pairs of tetrahedra mutually polar with re-
spect to some quadric. It is claimed 1], v. 3, p.45 that any two perspective
tetrahedra are, in fact, mutually polar with respect to some quadric. Note that
the polarity condition imposes three conditions, and the self-conjugacy con-
dition imposes two additional conditions. This agrees with counting constants
(5=124—19).

One can apply the previous construction to the problem of writing a quadratic
form ¢ as a sum of 5 squares of lines forms. Suppose we have two self-
conjugate tetrahedr@ and 7’ with respect to a quadri§ which are also
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mutually polar with respect t@). By Proposition2.3.4 they are in perspec-
tive. Choose coordinates such th&tis the coordinate tetrahedron and let
A = (aij)o<i,j<3 be a symmetric matrix definin@. We know that the equa-
tions of facetsH; of T" are V(Z?:o a;;t;). SinceT is self-conjugate, the
intersection lineddy, N H; meet the coordinate lingg = t; = 0. This means
that the equationssgts + asots = 0 andaoits + azits = 0 have a nonzero
solution, i.e.a20a31 = a921030- Slmllarly, we get thaﬁloagg = azpa12 and
ap1asze = ageasr. Using the symmetry of the matrix, this implies that all the
six products are equal. Henegsa13/a12 = assags/age = agzais/ae; are all
equal to some number. Then the equation of the quadrics can be written as a
sum of five squares

3
Zaiitf + 2 Z aijtitj
i=0

0<i<j<3

2 2
= Z(aii — OéCLi3)t12 + (a33 — a)t% + Oé_l(z a;st; + Oétg)Q =0.
=0 1=0
Here we assume that is general enough. The center of perspective of the two
tetrahedra is the pole of the plal@aosto + a13ti + agste + ats).

The pentad of points consisting of the vertices of a self-conjugate tetrahe-
dron with regard to a quadri@ and the center of the perspectiviiyof the
tetrahedron and its polar tetrahedron forse#f-conjugate pentathnd penta-
hedron in the dual space). This means that the pole of each plane spanned by
three vertices lies on the opposite edge. As follows from above, the pentad of
points defined by a self-conjugate tetrahedron defines a polar polyhedépn of
consisting of the polar planes of the pentad.

Proposition 2.3.5 LetH; =V (l;),i=1...,5, form a nondegenerate polar
pentahedron of a quadriQ = V (¢). Letpy, ..., ps be the poles of the planes
V(1;) with respect ta)). Then the pentag, . . ., ps is self-conjugate and is a
polar polyhedron of the dual quadric.

Proof Letx; be the pole ofd; with respect tay). Then the pole of the plane
spanned byz;, z;, z, is the pointz;;, = H; N H; N H,. We may assume
thatqg = Z?:o 12. ThenP,,,, (Q) belongs to the penciP generated by the
remaining two planeél,., H;. When we vary a point along the edggz; the

polar plane of the point belongs to the perRilFor one of the points, the polar
plane will be equal to the plan@,, , (Q), hence this points coincide with ;..

By definition, the pentad is self-conjugate.

The second assertion can be checked by straightforward computation. Since
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the polar pentahedron is nondegenerate, we can choose coordinates such that
the polar pentahedron @ is equal to equal to the union of the coordinate
tetrahedron and the plai&(}_ ¢;). We can write

3 3
20=Y Nt?+ (D t)?
1=0

=0
for some non-zero scalaks. For anyv = (ag, a1, as,a3) € C*, we have

3
Dy(g) =Y (a+ Niat;
=0
wherea = Z?:o a;. Leté; = a+ \;a; be considered as coordinates in the dual
space. We can expressin terms of¢; by solving a system of linear equations
with matrix

N 101 1
1 AN 11
1 1 X 1

1 1 1 X3

Write a; = L;(éo,...,&3) = Z] o ¢ij&;, where(c;;) is the inverse matrix.
Letv] = (coj, c15, €25, c35). The dual quadric consists of poir, &1, &2, &3)
such thay(aog, a1, az, as) = 0. This gives the equation of the dual quadric

3
Q" = V(O ALi(0.£1,62,6)2 + (Y Lil€o.£1,62,3))").
A =0

So, we see that the dual quadric has the polar polyhedron defined by the planes
V(L;),V(>_ L;). We have

3
Dy:(q) = > _(Miai + a)eijts = t,5 = 0,1,2,3,
=0
henceDs~ v (g) = >_t;. This checks that the points of the pentad are poles of
the planes of the polar pentahedroripf O

Remark2.3.2 LetIly,...,IIy be sets ofm-hedra inP™, n > 1, with no
common elements. Suppose that these polyhedra considered as hypersurfaces
in P™ of degreen (the unions of their hyperplanes) belong to the same pencil.
It is easy to see that this is equivalent to that the first twvbedrall,, II, are
perspective from each hyperplaneldf, . . ., II,. The open problem:

What is the maximal possible number N (n, m) of such polyhedra?

By taking a general hyperplane, we gg€fn, m) < N(2,m). It is known
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that N(2,m) > 3 and N(2,2),N(2,3) = 4. It was proven by J. Stipins
[596 (see also §6Q) that N(2,m) < 4 for all m and it is conjectured that
N(2,m) =3 form # 3.

In the next chapter we will consider the case= 2,m = 3,N = 4. In
the casen = 3,m = 4, N = 3, the three tetrahedra are callddsmic The
configuration of the 12 planes forming three desmic tetrahedra has a beautiful
geometry. A general member of the pencil generated by three desmic tetra-
hedra is adesmic quartic surfacdt has 12 singular points and represents a
special embedding of a Kummer surface of the product of two isomorphic el-
liptic curves. We refer to341] for some modern treatment of desmic quartic
surfaces. We will encounter them later in Chapter 9.

2.3.2 Invariants of a pair of quadrics

Let@; = V(f) andQ2 = V(g) be two quadrics ifP™ (not necessary nonsin-
gular). Consider the pendif (¢, f + t1¢g) of quadrics spanned by andS. The
zeros of the discriminant equatidn = discr(tof + t19) = 0 correspond to
singular quadrics in the pencil. In coordinates,ify are defined by symmetric
matricesA = (ai;), B = (bi;), respectively, theD = det(tpA + t1B) is
a homogeneous polynomial of degreen + 1. Choosing different system of
coordinates replaces, B by QT AQ, QT BQ, whereQ is an invertible matrix.
This replacesD with det(Q)2D. Thus the coefficients ab are invariants on
the space of pairs of quadratic forms@©f*! with respect to the action of the
group Sl{n + 1). To computeD explicitly, we use the following formula for
the determinant of the sum of twa x m matricesX + Y

det(X + Y) = Z Ai],...,ika (215)
1< <. <ipg<n
whereA;, ;. is the determinant of the matrix obtained frakhby replac-

ing the columnsX; , ..., X, with the columnsY;,,...,Y; . Applying this
formula to our case, we get

D =0oty™ +> 0ty + 0, 0 t! (2.16)
=1
where®y = det A4,0,,11 = det B, and
@k: Z det(A1~~~Bj1~-~Bjk‘~'An+1);

1<y <...<ip<n+1

whereA = [A; ... Ap+1], B = [B; ... By4+1]. We immediately recognize the
geometric meanings of vanishing of the first and the last coefficieriis dhe
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coefficient®, (resp.©,,11) vanishes if and only i€); (resp.Q)-) is a singular
conic.

Proposition 2.3.6 Let (); and Q2 be two general quadrics. The following
conditions are equivalent.

(i) ©1=0;
(i) Q- is apolar to the dual quadri®)y;
(iii) @ admits a polar simplex with vertices opy.

Proof First note that
©; = Tr(Badj(A4)). (2.17)

Now adj A) is the matrix definingl} and the equivalence of (i) and (ii) be-
comes clear.

SinceO; are invariants ofQ1, Q2), we may assume thgt, = V(37 7).
Suppose (iii) holds. Since the orthogonal groupCbfcts transitively on the
set of polar simplexes af);, we may assume that the coordinate simplex is
inscribed inQ. Then the point$l, 0, ...,0],...,[0,...,0, 1], must be orQ-.
Hence

Q=V( > aytity),

0<i<k<n

and the conditior{:) is verified.

Now suppose (i) holds. Choose coordinates such@hat V («;t?). Start
from any point onQ2 but not on@;, and choose a projective transformation
that leave$); invariant and sends the point to the paint= [1,0,...,0]. The
quadric@- transforms to a quadric with equation in which the coefficient at
z3 is equal to 0. The polar line gf, with respect toQ; is V(> a;t;). It
intersect), along a quadric of dimensiom — 2 in the hyperplang, = 0.
Using a transformation leaving (¢y) and@; invariant, we transforn®, to
another quadric such that the pojat= [0, 1,0, ..., 0] belongs td/ (ty) N Q5.
This implies that the coefficients of the equation(gf att32 andt? are equal
to zero. Continuing in this way, we may assume that the equatidp, a$ of
the forma,,,,t3 + > (<, <, aijtit; = 0. The trace condition ig,,,a;, ' = 0.

It implies thata,,, = 0 and hence the poini,+; = [0,...,0,1] is onQ-.
The triangle with vertice$l,0,...,0],...,[0,...,0,1] is a polar simplex of
(1 which is inscribed inQ-. O

Observe that, if); = V(3" t7), the trace condition means that the coic
is defined by a harmonic polynomial with respect to the Laplace operator.
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Definition 2.3.1 A quadricQ); is calledapolarto a quadricQs if one of the
equivalent conditions in PropositioP.3.6 holds. If @, is apolar to @, and
vice versa, the quadrics are calledutually apolar

The geometric interpretation of other invariagis is less clear. First note
that a quadratic forng on a vector spac& defines a quadratic form*q on
the space\" E. Its polar bilinear form is the map" b, : A" E — A" EY =
(N"E)Y, whereb, : E — EV is the polar bilinear form of. Explicitly, the
polar bilinear form/\k b, is defined by the formula

(Vi A AR, W AL A wyg) = det(bg (v, wy))

which we used already in Lemn2a3.2

If A is the symmetric matrix defining, then the matrix defining\k qis
denoted byA®) and is called thé&-th compound matriof A. If we index the
rows and the columns of*) by increasing sequenceé = (ji,...,j%) C
{1,...,n + 1}, then the entryAff}, of A is equal to the(J, J')-minor
Ay of A. Replacing eachﬁlf,’f}, with the minorATj taken with the sign
(=1)<-7") we obtain the definition of thadjugatek-th compound matrix
adf*)(A4) (not to be confused with agjl*))). The Laplace formula for the
determinant gives

AMad{®) (A) = det(A)I.

If Ais invertible, thenA®) is invertible and A®))~! = —L_adj(A®)).
We leave to the reader to check the following fact.

Proposition 2.3.7 Let@: = V(q),Q2 = V(q¢') be defined by symmetric
matricesA, B and letA*) and B(*) be theirk-th compound matrices. Then

Ok(A, B) = Tr(A+1=Radj B®)).

Example2.3.1 Letn = 3. Then there is only one new invariant to interpret.
This is©; = Tr(A®adjB®. The compound matriced® and B(?) are
6 x 6 symmetric matrices whose entries &re 2-minors of A and B taken
with an appropriate sign. Let = (a,;). The equation of the quadric defined
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by A is given by thebordered determinant

ago @o1 @o2 ao3 &o Mo
alo air a2 a3 &1 M
azo az1 a2 a3 & 1M -0 (2.18)
asg a3 azz asz &3 N3
& & & & 000
nm m mn2 n3 0 0

The equation is called théne-equationor complex equatiomf the quadric
Q defined by the matri. If we take the minorg;n; — &;n; as Plicker co-
ordinates in| /\2 C*|, the line equation parameterizes linesFih which are
tangent to the quadri@. This can be immediately checked by considering a
parametric equation of a ling(&o, &1, &2, &3) + (Mo, 11, M2, M3), INserting it in
the equation of the quadric and finding the condition when the corresponding
quadratic form in\, u has a double root. In matrix notation, the condition is
(€AE)(nAn) — (€An)? = 0 which can be easily seen rewritten in the form the
vanishing of the bordered determinant. The intersection of the quadric defined
by the matrix4(?) with the Klein quadric defining the Grassmannian of lines
in P3 is an example of guadratic line complexWe will discuss this and other
guadratic line complexes in the last Chapter of the book.

Take@ = V(3 t2). Then the bordered determinant becomes equal to

3 3 3
(Z f?)(z ) — (Z &imi)? = Z (&nj — &mi)* = Z jg
1=0 =0

i=0 i i 0<i<j<3 0<i<j<3

det

wherep;; are the Rlicker coordinates. We have

O2(A,B) =Tr(Ba) = > (bijbji — biiby;)-
0<i<j<3

The coordinate ling; = t; = 0 touches the quadriQ, whenb;;b;; — b;;b;; =
0. ThusO, vanishes when a polar tetrahedror¢iafhas its edges touchings.

Itis clear that the invariant®;, are bihomogeneous of degréen + 1 — )
in coefficients ofA and B. We can consider them as invariants of the group
SL(n+1) acting on the product of two copies of the space of square symmetric
matrices of sizen + 1. One can prove that the + 1 invariants®, form a
complete system of polynomial invariants of two symmetric matrices. This
means that the polynomiats; generate the algebra of invariant polynomials
(see p31], p. 304).

One can use the invarian®s to express different mutual geometric proper-
ties of two quadrics. We refer t&84] for many examples. We give only one
example.
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Theorem 2.3.8 Two quadrics touch each other if and only if
J=D(O,...,0n41) =0,

whereD is the discriminant of a binary form of degreet 1.

Proof This follows from the description of the tangent space of the discrimi-
nant hypersurface of quadratic forms. The line defining the pencil of quadrics
generated by the two quadrics does not intersect the discriminant hypersurface
transversally if and only if one of quadrics in the pencil is of coran®, or one

of the quadrics has a singular point at the base locus of the pencill(gé&p (

In the case of pencils the first condition implies the second one. Thus the con-
dition for tangency is that one of the roots of the equatier{to A+t B) = 0

is a multiple root. O

The invariant/ is called thetact-invariantof two quadrics. Note that two
guadrics touch each other if and only if their intersection has a singular point.

Corollary 2.3.9 The degree of the hypersurface of quadricBntouching a
given nonsingular quadric is equal tg(n + 1).

Proof This follows from the known property of the discriminant of a binary
form Y% a;td~'t:. If we assign the degre@ — i, ) to each coefficient;,

then the total degree of the discriminant is equatitd — 1). This can be
checked, for example, by computing the discriminant of the fagrg + a4t¢
which is equal tad%ad a9~ (see P64, p. 406). In our case, eadd; has
bidegree(n + 1 — k, k), and we get that the total bidegree is equaliton +
1),n(n + 1)). Fixing one of the quadrics, we obtain the asserted degree of the
hypersurface. O

2.3.3 Invariants of a pair of conics

In this case we have four invarianBy, ©1, ©5, ©3 which are traditionallyd
enoted byA, ©,0’, A/, respectively.
The polynomials

(Ro, R1, Ry, R3) = (00, AN, A, ©3A)

are bi-homogeneneous of degrg8s3), (3,3), (6,6), (6,6). They define a
rational magP® x P5 --» P(1, 1,2, 2). We have the obvious relatiaR3 R, —
Ry R3 = 0. After dehomogenization, we obtain rational functions

X =Ry/R}, Y =Ry/Ry, Z = R3/R3

L The terminology is due to A. Cayley, taction = tangency.
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such thatX = Y Z. The rational functions
Y =0'A/0% Z=0A/0"

generate the field of rational invariants of pairs of conics (588 [ p. 280).
The polynomialsRy, Ry, R2, R3 generate the algebra of bihomogeneous in-
variants onP® x PP® with respect to the diagonal action of Q) and the GIT-
quotient is isomorphic to the rational surfacétjt; — tot3) in the weighted
projective spac®(1, 1,2, 2). The surface is a normal surface with one singular
point [0, 1, 0, 0] of type A,. The singular point corresponds to a unique orbit
of a pair of nonsingular conic&”, S) such thatC" is apolar toS and SV is
apolar toC. It is represented by the pair

2+t 412 =0, t2+et?+X2=0,

wheree = ¢27/3, The stabilizer subgroup of this orbit is a cyclic group of
order 3 generated by a cyclic permutation of the coordinates.

Recall that the GIT-quotient parameterizes minimal orbits of semi-stable
points. In our case, all semi-stable points are stable, and unstable points cor-
responds to a pairs of conics, one of which has a singular point on the other
conic.

Using the invariantd\, ©, ©’, A’, one can express the condition that the two
conics are Poncelet related.

Theorem 2.3.10 LetC andS be two nonsingular conics. A triangle inscribed
in C' and circumscribingS exists if and only if

0’2 —40A’ = 0.

Proof Suppose there is a triangle inscribed’irand circumscribings. Ap-
plying a linear transformation, we may assume that the vertices of the triangle
are the points$l, 0, 0], [0, 1,0] and[0, 0, 1] andC' = V (tot1 + tote + t1t — 2).

LetS =V (g), where

g = atd + bt? + ct3 + 2dtot, + 2etots + 2ftito. (2.19)
The triangle circumscribeS when the pointg1, 0, 0], [0, 1, 0], [0, 0, 1] lie on
the dual conicS. This implies that the diagonal entrigs— 2, ac—e?, ab— d?

of the matrix adjB) are equal to zero. Therefore, we may assume that

g = &t + %] + 4215 — 2abtot; — 2aytots — 2B7t1ts. (2.20)
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We get
01 1 0 20872 2ay3?

o =Tr([1 0 1] (208 0 2090 |) =dapyla+F+7),
110 2076%  2B7a’? 0
a?  —af —ay -1 1

@:Tr( —af 2 gy 1 -1 1 )z—(a+5+v)2,
—ay =By 9° 1 -1

A = —4(aBy)>.

This checks tha®’? — 40A’ = 0.

Let us prove the sufficiency of the condition. Take a tangent dinto S
intersectingC' at two pointse, y and consider tangent linég, /5 to S passing
throughz andy, respectively. The triangle with sidés, /5, {3 circumscribes
S and has two vertices ofi. Choose the coordinates such that this triangle
is the coordinate triangle. Then, we may assume @hat V (at? + 2tot; +
2t1ts + 2tote) @andS = V(g), whereg is as in 2.20. Computing®’? — 40 A’
we find that it is equal to zero if and onlydf= 0. Thus the coordinate triangle
is inscribed inC'. O

Darboux’s Theorem is another example of a poristic statement. with respect
to the property of the existence of a polygon inscribed in one conic and cir-
cumscribing the other conic. Another example of a poristic statement is one of
the equivalent properties of a pair of conics from Proposifiché Given two
nonsingular conic§’ and.S, there exists a polar triangle 6f inscribed inS,
or, in other words( is apolar toS.

Recall from Theoreni.1.4that any projective automorphism Bft = |E|
is a composition of two polaritieg, ¢ : |E| — |EV|.

Proposition 2.3.11 Let C' and S be two different nonsingular conics and
g € Aut(P?) be the composition of the two polarities defined by the conics.
Theng is of order 3 if and only ilC and .S are mutually apolar.

Proof Let A, B be symmetri@ x 3 matrices corresponding t0 andS. The
conicsC and S are mutually apolar if and only if TUB~1) = Tr(BA™!)
= 0. The projective transformation is given by the matrixX = AB~!.
This transformation is of orde} if and only if the characteristic polynomial
|X — M\I3| of the matrix X has zero coefficients at, \2. Since T(X) = 0,
the coefficient at\? is equal to zero. The coefficient atis equal to zero if
and only if T(X 1) = Tr(BA~!) = 0. Thusg is of order 3 if and only if
Tr(AB~ 1Y) =Tr(BA™1) = 0. 0O
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Remark2.3.3 Itisimmediate that any set of mutually apolar conics is linearly
independent. Thus the largest number of mutually apolar conics is equal to 6.
The first example of a set of 6 mutually apolar conics was given by F. Gerbardi
[266] The following is a set of mutually apolar conics given by P. Gordan

[283:

2+ et? + 23 = 0,
to + 2t +et3 =0,

r2(t2 4+ 12 4+ 13) + rV3(toty + tota + tita) = 0,
r?(t§ + 13 + 13) + rv/3(—toty — tota + t1ts) =0,
r? (65 + 11 +t3) + rV/3(—tot1 + tota — tita) =0,
P2t 4+ 11+ 13) + rV3(tot1 — totas — tita) =0,

wheren = e2™/3 = %. These six quadrics play an important role

in the theory of invariants of thealentiner groupz, the subgroup of PG4)
isomorphic to the alternating grofs. All such subgroups are conjugate in
PGL(4) and one can choose one that acts in such way that the six mutually
apolar conics given by the above equations are permuted. The Gradmits

a central extensiot¥ with the center of ordes which lift the action ofG to a
linear action inC3. The groupG is acomplex reflection groum C3 with the
algebra of invariants generated by three polynomials of degrees 6, 12 and 30.
The invariant of degree 6 is the sum of cubes of the 6 mutually apolar quadratic
forms. The invariant of degree 12 is their product. The invariant of degree 30
is also expressed in terms of the 6 quadratic forms but in a more complicated
way (see 267, [283). We refer to p73 for further discussion of mutually
apolar conics.

Consider the set of polar triangles@finscribed inS. We know that this set
is either empty or of dimension 1. We consider each triangle as a set of its 3
vertices, i.e. as an effective divisor of degree 3%n

Proposition 2.3.12 The closureX of the set of self-polar triangles with re-
spect toC' which are inscribed irf, if not empty, is @3, i.e. a linear pencil of
divisors of degree 3.

Proof First we use that two self-polar triangles with respectCtand in-
scribed inS which share a common vertex must coincide. In fact, the polar
line of the vertex must interseét at the vertices of the triangle. Then the as-
sertion is proved using the argument from the proof of Proposi&ignt [

Note that a generali contains 4 singular divisors corresponding to ramifi-
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cation points of the corresponding m&bp — P!. In our case these divisors
correspond to 4 intersection points@fand.S.
Another example of a poristic statement is the following.

Theorem 2.3.13 LetT and7” be two different triangles. The following as-
sertions are equivalent:

(i) there exists a coni§ containing the vertices of the two triangles;
(ii) there exists a coni& touching the sides of the two triangles;
(iii) there exists a coni€ with polar trianglesT” and7T”.

Moreover, when one of the conditions is satisfied, there is an infinite number
of triangles inscribed ir5, circumscribed around:, and all of these triangles
are polar triangles ofC.

Proof (iii) < (ii) According to Propositionl.3.4 a conicC admitsT as a
polar triangle if the conics in the dual plane containing the sides of the triangle
are all apolar ta”. If T andT” are polar triangles of’, then the two nets of
conics passing through the sides of the first and the second triangle intersect
in the 4-dimensional space of apolar conics. The common conic is the conic
3 from (ii). Conversely, if¥ exists, the two nets contain a common conic and
hence are contained in a 4-dimensional space of conics in the dual plane. The
apolar conic is the coni€ from (jii).

(iif) < (i) This follows from the previous argument applying Proposition
2.1.3

Let us prove the last assertion. Suppose one of the conditions of the Theorem
is satisfied. Then we have the coni€sS, ¥ with the asserted properties with
respect to the two triangleés, T’. By Proposition2.3.12 the set of self-polar
triangles with respect t6' inscribed inS is agi. By Propositior2.2.4 the set
of triangles inscribed it and circumscribing: is also agi. Two gi’s with 2
common divisors coincide. O

Recall from Theoren2.3.8that the condition that two coni&s andS touch
each other is

27TAZA? — 1800'AA’ +4A0"% +4A'0° — 0'?0% = 0. (2.21)

The variety of pairs of touching conics is a hypersurface of bide(fg®
in P> x P2, In particular, conics touching a given conic is a hypersurface of
degree 6 in the space of conics. This fact is used for the solution of the famous
Apollonius problemin enumerative geometry:find the number of nonsingular
conics touching five fixed general conics (s2&3, Example 9.1.9).
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Remark2.3.4 Choose a coordinate system such that V (t3 + ¢ + ¢3).
Then the condition tha$' is Poncelet related t6' with respect to triangles is
easily seen to be equal to

¢ —cie3 =0,
where
det(A —tI3) = (=) + c1(—t)* + ca(—t) + c3

is the characteristic polynomial of a symmetric matdxdefining .S. This is
a quartic hypersurface in the space of conics. The polynomijatls, c3 gen-
erate the algebra of invariants of the group($Oacting on the spac¥ =
S2((C3)V). If we use the decompositidn = H, & Cq, whereg = 3 +t% +13
and H, is the space of harmonic quadratic polynomials with respeet, to
then the first invariant corresponds to the projection® Cq — Cgq. Let
vy : P! — P2 be the Veronese map with image equaltoThen the pull-back
map

v* V= HO(P?, Op2(2)) — H°(P', Op1(4))

defines an isomorphism of the representainof SO(3) with the represen-
tation S*((C?)v) of SL(2). Under this isomorphism, the invariants andc;
correspond to the invarianfsand7" on the space of binary quartics from Ex-
amplel.5.2 In particular, the fact that a harmonic conic is Poncelet related
to C is equivalent to that the corresponding binary quartic admits an apolar
binary quadric. Also, the discriminant invariant of degree 6 of binary quartics
corresponds to the condition that a harmonic conic touches

2.3.4 The Salmon conic

One call also look focovariantsor contravariantsof a pair of conics, that is,
rational mapgOpz(2)| x |Op2(2)| -+ [Op2(d)| or |Op2(2)] % [Op2(2)[ --»
|Op2(d)|Y which are defined geometrically, i.e. not depending on a choice of
projective coordinates.
Recall the definition of theross ratioof four distinct ordered pointg; =
[a;, b;] onP?
(p1 — p2)(p3 — pa)

R(p1p2;p3p4) = (pl — p3)(p2 — p4)a (222)

where

a; b

Di 7pj = det (a] b]) = aibj — ajbl-.

It is immediately checked that the cross ratio does not take the vlleso.
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It does not depend on the choice of projective coordinates. It is also invariant
under a permutation of the four points equal to the product of two commuting
transpositions. The permutatidh2) changesk to —R/(1 — R) and the per-
mutation(23) changesk to 1/R. Thus there are at most 6 possible cross ratios
for an ordered set of 4 points

1 1 R R-1
Bopl-R 1-R"R-1" R

R?

The number of distinct cross ratios may be reduced to three or two. The first
case happens if and only if one of them is equal-o(the other ones will be
2 and1/2). The unordered set of four points in this case is callédm=monic
quadruple The second case happens wiigsatisfiesR?> 4+ R+1 = 0,i.e. R is
one of two cubic roots of 1 not equal to 1. In this case we leauganharmonic
guadruple

If we identify the projective space of binary forms of degree 2 with the pro-
jective plane, the relatior2(3) can be viewed as a symmetric hypersurfate
of bidegree(1, 1) in P2 x P2, In particular, it makes sense to speak about har-
monically conjugate pairs of maybe coinciding points. We immediately check
that a double point is harmonically conjugate to a pair of points if and only if
it coincides with one of the roots of this form.

We can extend the definition of the cross ratio to any set of points no three
of which coincide by considering the cross ratios as the point

R = [(p1 — p2)(p3 — pa), (p1 — p3)(p2 — pa)] € P". (2.23)

It is easy to see that two points coincide if and onlRif= [0, 1], [1, 1], [1, 0].
This corresponds t& = 0, 1, co.

Two pairs of points{p;,p2} and{q¢:,q=} are harmonically conjugate in
sense of definition.3) if and only if R(p1qg1;g2p2) = —1. To check this,
we may assume that , p, are roots off = at3 + 28tot1 + vt andqy, go are
roots ofg = a/t3 + 23'tot1 + +'t3, where, for simplicity, we may assume that
a, o’ # 0 so that, in affine coordinates, the roatg of the first equations sat-
isfy v +y = —28/«, xy = v/« and similarly the roots of the second equation
2,y satisfyax’ +y' = 20"/, 2’y =+'/a’. Then

(x—2")(y' —y)

@)@ —y)

R(zz';y'y) =
if and only if
(x=2)y —y)+ (@ -y )" —y) = (z+y)(a' +y) - 2zy — 22"y

_48 2y 2 ey aly 266
oo/

0.

/
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So we see that the two pairs of roots form a harmonic quadruple if and only
(2.3 holds.

The expressiony’ + o’y — 264" is an invariant of a paiff, g) of binary
quadratic forms. It is equal to the coefficient &br the discriminant off + tg.
It is analogous to the invarian@® and®©’ for a pair of conics.

The Salmon coni@ssociated to a pair of coni€sandC’ is defined to be
the locusS(C, C") of pointsx in P? such that the pairs of the tangents through
z to C and toC’ are harmonically conjugate. Note that it makes sense even
whenz lies on one of the conics. In this case one considers the corresponding
tangent as the double tangent.

Let A be a square symmetrdcx 3-matrix. The entries of the adjugate matrix
adj(A) are quadratic forms in the entries.4f By polarization, we obtain

adj(\A + M\ B) = Adadj(A) + Ao iadj(A, B) + Afadj(B),
where(A, B) — adj(A4, B) is a bilinear function of4 and B.

Theorem 2.3.14 LetC = V(q),C’ = V(¢'), whereq and¢’ are quadratic
forms defined by symmetric matricds= (a;;) and B = (b;;). Then the
Salmon coni&(C, C”) is defined by the matriadj(adj(A), adj(B)).

Proof By duality, the pencil of lines through a poiat = [z, x1, z2] CcOr-
responds to the liné, = V(zgug + z1u1 + z2uz) in the dual plane with
dual coordinates., uq, us. Without loss of generality, we may assume that
xe = —1. Let CV,C"V be the dual conics defined by the matriceq ddlj=
(A;j),adjB) = (B;;). The intersection of the lin&, with C'V is equal to two
pOintS [U(], U1, ToUo + xlul] such that

(Ago + Ao2wo + Aead)ud + (A11 + A2z + Agox?)ui

+2(Agoxoty + Ao2z1 + Ar220 + Ao1)uour = 0.

ReplacingA with B, we get the similar formula for the intersection/dvith
C’V. The intersection pointBig, u1, Toug + x1u1] correspond to the tangent
lines toC andC’ passing through the point By (2.3), they are harmonically
conjugate if and only if

(Aoo + Aoawo + Az2a3)(Bi1 + Biaay + Baow})
+(Boo + Bozxo + Baoxd)(A11 + Arpxy + Agox?)

—2(Agozot1 +Agox1 +Ar2x0+ Ao ) (Baawox1 + Boaz1 + Biazo+Bo1) = 0.
This gives the equation of the Salmon cofig”, C’):
(A22B11 + A11Ba2 — 2A12312)$(2) + (Ao B2z + A22Boo — 2A02Boz)$%
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+(A00311+A11300—2A01301)$2+2(A02312+A12302—A22302—A02322)$0$1
+2(Ao2B11 + A11Bo2 — A12Bo1 — Ao1 Bi2)xoxs
+2(AooBi12 + A12Boo — Ao2Bo1 — Ao1Bo2)z122 = 0.

Itis easy to see that the symmetric matrix defining this quadratic form is equal
to adjadj(A4), adj(B)). O

Let S(C,C") = V(s). Consider the pencil generated B andC’". In
matrix notation, it is equal to the pencil of matrices (atlj + tadjB). The
dual conics of this pencil form a quadratic family of conics defined by the
matrices adjadj(A) + tadjB)) = |A|A + tS + t?| B| B, whereS is the ma-
trix defining the Salmon conic. Its members are tangent to the quartic curve
V(s? — 4|A||Blqq’). Since the members of the linear pencil pass through the
four pointsCY N C"V, all members of the quadratic family are tangent to the
four common tangents @ andC’. Thus

V(s* — 4|A||Blqq") = V (I1l2l3l4), (2.24)

whereV (I;) are the common tangents. This implies the following remarkable
property of the Salmon conic.

Theorem 2.3.15 LetC andC’ be two conics such that the dual conics inter-
sect at four distinct points representing the four common tangeritsaofd S.
Then the eight tangency points lie on the Salmon conic associated veitiu
C'.

Here is another proof of the Theorem which does not @s®4. Let z be a
point where the Salmon conic meéts Then the tangent liné throughzx to
C represents a double line in the harmonic pencil formed by the four tangents
throughz to C' andS. As we remarked before, the conjugate pair of lines must
contain/. Thus/ is a common tangent t6' and.S and hencer is one of the
eight tangency points. Conversely, the argument is reversible and shows that
every tangency point lies on the Salmon conic.

The Salmon conic represents a covariant of pairs of conics. A similar con-
struction gives a contravariant conic in the dual plane, calle&#imon enve-
lope conicS’(C, C”). It parameterizes lines which intersect the dual cofilcs
andC’ at two pairs of harmonically conjugate points. We leave to the reader to
show that its equation is equal to

(ageb11 + a11b22 — 26112512)“(2) + (aoobaz + a22boo — 2002502)1&

+(aoob11 + a11boo — 2a01b01)u§ +2(ap2b12 + a12bo2 — az2bo2 — ag2baz)ugus
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+2(ao2b11 + ai1boz — a12bo1 — ag1bi2)ugus

+2(agobiz + a12boo — ap2bor — ap1bo2)uius = 0.

If we write S'(C,C") = V(s'), we find, as above, that (s> — ¢V¢'V) is
equal to the union of 4 lines corresponding to intersection points ofC".
This implies that the Salmon envelope conic passes through the eight points
corresponding to the eight tangentsvindC” at the intersection points.

The equation of the Salmon conic is greatly simplified if we simultaneously
diagonalize the quadriesandq’ definingC andC’. Assumeg = 3 + % +
t2,q¢' = at3 + bt? + ct3. Then the equation &(C, C’) becomes

a(b+ c)t2 +b(c+ a)t? + c(a +b)t3 =0,
and the equation &' (C, C') becomes
(b4 )ud + (c + a)u? + (a +b)u3 = 0.

By passing to the dual conic, we see that the dual c®ffi€, C’)V is different
from S(C, C’). Its equation is

(a+c)(a+b)t2 + (a+b)(b+ )t + (a+b)(b+ o)t = 0.

It can be expressed as a linear combination of the equatiori 6f and
S(C,C)

(atc)(a+b)t2+(a+b)(b+c)ti+(a+b) (b+c)ts = (ab+betac)(ta+t1+13)

+(a+b+c)(atd + bt + ctd) — (a(b+ c)t2 + b(c+ a)t? + c(a + b)t3).

Remark2.3.5 The full system of covariants, and contravariants of a pair of
conics is known (see2B€], p. 286. ) The curve€’, C’,S'(C, C’) and the Jaco-
bian of C, C’, andS(C, C’) generate the algebra of covariants over the ring of
invariants. The envelopes, C’"V,S'(C, C’) and the Jacobia®V,C"V, and
S'(C, ") generate the algebra of contravariants.

indexcontravariant!of a pair of conics

Exercises

2.1Let E be a vector space of even dimension= 2k over a fieldK of character-
istic 0 and (e1, ..., e,) be a basis inE. Letw = -, . aije; Ae; € A*EY and
A = (as5)1<i<j<n be the skew-symmetric matrix defined by the coefficienjs Let

AN(w) =wA - Aw=akle; A---Ae, for somea € F. The element is called the
pfaffianof A and is denoted by PA).
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(i) Show that

PiA) =D eS) [] au:

ses (4,4)€S
whereS is a set of pairgi1, ji),. .., (ix, jx) such thatl < i; < js < 2k,s =
...k, {i1,.. . 0k, J1, .-, gk} = {1,...,n}, S is the set of such setS,
e(S) = 1if the permutation(i1, ji, ..., ik, jk) IS even and-1 otherwise.

(i) Compute PfA) whenn = 2,4, 6.
(iii) Show that, for any invertible matri«',

Pi(*C'- A-C) = det(C)Pf(A).
(iv) Using (iii) prove that
det(A) = Pf(A)*.
(iv) Show that

n

PI(A4) = > (1) 'P(A4y)ass,

=1

whereA;; is the matrix of order — 2 obtained by deleting theth andj-th rows
and columns ofA.

(v) Let B be a skew-symmetric matrix of odd ordgt — 1 and B; be the matrix
of order2k — 2 obtained fromB by deleting the-th row andi-th column. Show
that the vecto(Pf(B:1), ..., (—1)""'Pf(B;), ..., Pf(Ba,_1)) is a solution of the
equationB - z = 0.

(vi) Show that the rank of a skew-symmetric matdxof any ordern is equal to
the largestn such that there exist < ... < i, such that the matri¥;, . ;,,

obtained fromA by deletingi;-th rows and columng, = 1, ..., m, has nonzero
pfaffian .

2.22 LetV = 1»(PP?) be a Veronese surface BY, considered as the space of conics in
P,

(i) LetA be a plane iP® andx be the net of conics if¥? cut out by hyperplanes
containingA. Show thatA is a trisecant plane if and only if the set of base points
of Ma consists of> 3 points (counting with multiplicities). Conversely, a net of
conics through 3 points defines a unique trisecant plane.

(i) Show that the nets of conics with 2 base points, one of them is infinitely near,
forms an irreducible divisor in the variety of trisecant planes.

(iii) Using (ii), show that the anticanonical divisor of degenerate triangles is irre-
ducible.

(iv) Show that the trisecant planes intersecting the Veronese plane at one point (cor-
responding to net of conics with one base point of multiplicity 3) define a smooth
rational curve in the boundary of the variety of self-polar triangles. Show that this
curve is equal to the set of singular points of the boundary.

2.3LetU c (P?)® be the subset of the symmetric productPSfparameterizing the
sets of three distinct points. For each et U let Lz be the linear system of conics
containingZ. Consider the mag : U — G2(P®), Z +— Lz C |Op2(2)|.

(i) Consider the divisoD in U parameterizing sets of 3 distinct collinear points.
Show thatf (D) is a closed subvariety @ (P°®) isomorphic taP?.
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(ii) 0Show that the may extends to the Hilbert schent@?)! of 0-cyclesZ with
h?(Oz) =3.

(iii) Show that the closur® of 7—*(D) in the Hilbert scheme is isomorphic to a
P3-bundle oveiP? and the restriction of to D is the projection map to its base.

(iv) Define the mag : P — |Op2(2)| which assigns to a point in the fibpe ! (Z)
the corresponding conic in the net of conics thouglshow that the fibre of over
a nonsingular coni€' is isomorphic to the Fano variety of self-polar triangles of
the dual conia”".

(v) LetP® = f~'(D2(2)) be the preimage of the hypersurface of singular conics.

Describe the fibres of the projectiops P* — (P?)l andf : P* — Da(2).
2.41dentify P! with its image under a Veronese map: P! — P2,

(i) Show that any involution dP* (i.e. an automorphism of order 2) coincides with
the involution of the Veronese conic obtained by projection from a point not lying
on the conic (called the center of the involution).

(i) Show that two involutions oP* without common fixed points commute if and
only if the two pairs of fixed points are harmonically conjugate.

(iii) Show that the product of three involutions is an involution if their centers are
collinear (J. Valles). The converse is known for any number of involutions.

2.5Prove that two unordered paifs, b}, {c, d} of points inP! are harmonically con-
jugate if and only if there is an involution &' with fixed pointsa, b that switches:
andd.

2.6 Prove the followingHesse’s Theorenif two pairs of opposite vertices of a quadri-
lateral are each conjugate for a conic, then the third pair is also conjugate. Such a
quadrilateral is called Blesse quadrilateralShow that four lines form a polar quadri-
lateral for a conic if and only if it is a Hesse quadrilateral.

2.7 A tetrad of pointsp, p2, ps3, p4 in the plane is calledelf-conjugatevith respect to
a nonsingular conic if no three points are collinear and the pole of eachpgigdies
on the opposite Sidgxp;.

(i) Given two conjugate triangles, show that the vertices of one of the triangles to-
gether with the center of perspectivity form a self-conjugate tetrad.

(i) Show that the four lines with poles equaktp, ps, ps, p4 form a polar quadrilat-
eral of the conic and any nondegenerate polar quadrilateral is obtained in this way
from a self-conjugate tetrad.

(i) Show that any polar triangle of a conic can be extended to a polar quadrilateral.

2.8Extend Darboux’s Theorem to the case of two tangent conics.

2.9 Show that the secant lines of a Veronese cuRvein P™ are parameterized by the
surface in the Grassmanni&h (P™) isomorphic toP?. Show that the embedding of
P2 into the Grassmannian is given by the Schwarzenberger bundle.

2.10Let U be a 2-dimensional vector space. Use the construction of curves of degree
n — 1 Poncelet related to a conic to exhibit an isomorphism of linear representations
A (S"U) andS™ 1 (S2U) of SL(U).

2.11 Assume that the pencil of sections of the Schwarzenberger bdhdiehas no

base points. Show that the Poncelet curve associated to the pencil is nonsingular at a
pointz defined by a sectios from the pencil if and only if the scheme of zerggs)

is reduced.
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2.12Find a geometric interpretation of vanishing of the invarigmt®’ from (2.16) in
the case whety' or S is a singular conic.

2.13Let p1, p2, p3, pa be four distinct points on a nonsingular coldic Show that the
triangle with the verticesl = p1ps N p2pa, B = pip2 N p3pa andC' = pipa N paps
is a self-conjugate triangle with respectdo

2.14 Show that two pairda, b}, {c, d} of points inP! are harmonically conjugate if
and only if the cross ratifuc; bd] is equal to—1.

2.15Let (a, b, c,d) be a quadrangle i®?, andp, ¢ be the intersection points of two
pairs of opposite sidesb, cd andbc, ad. Letp’, ¢’ be the intersection points of the line
pq with the diagonalge andbd. Show that the pairg, ¢) and(p’, ¢') are harmonically
conjugate .

2.16Show that the pair of points on a diagonal of a complete quadrilateral defined by its
sides is harmonically conjugate to the pair of points defined by intersection with other
two diagonals.

2.17Show that a general net of conics admits a common polar quadrang8&Show
that four general conics admit a uniqgue common polar quadrangle.

2.19Find the condition on a pair of conics expressing that the associate Salmon conic
is degenerate.

2.20 Show that the triangle formed by any three tangents to two general conics is in
perspective with any three of common points.

2.21Show that the set dfn + 2 vertices of two self-pola¢n + 1)-hedra of a quadric
in P™ impose one less condition on quadrics. In particular, two self-polar triangles lie
on a conic, two self-polar tetrahedra are the base points of a net of quadrics.

2.22 A hexad of points inP? is called self-conjugate with respect to a nonsingular
quadric if no four are on the plane and the pole of each plane spanned by three points
lies on the plane spanned by the remaining three points.. Show that the quadric admits a
nondegenerate polar hexahedron whose planes are polar planes of points in the hexad.
Conversely, any nondegenerate polar hexahedron of the quadric is obtained in this way
from a self-conjugate tetrad.

2.23 Show that the variety of sums of 5 powers of a nonsingular quadric surface is
isomorphic to the variety of self-conjugate pentads of poini&’®in

2.24Consider 60 Pascal lines associated with a hexad of points on a conic. Prove the
following properties of the lines.

(i) There are 20 points at which three of Pascal lines intersect, calleStéieer
points

(ii) The 20 Steiner points lie on 15 lines, each containing 4 of the point®(traker
lines).

(iii) There are 60 points each contained in thraekér lines (théKirkman point3.

2.25Prove the following generalization of Pascal's Theorem. Consider the twelve in-
tersection points of a nonsingular quadric surférevith 6 edges of a tetrahedrdh

with verticespi, p2, ps, p4. For each vertey; choose one of the 12 points on each edge
pip; and consider the plank; spanned by these three points. Show that the four lines

in which each of these four planes meats the opposite face of the tetrahedron are rulings
of a quadric. This gives 32 quadrics associated to the(ffai)) [104], p. 400, R1], v.

3, Ex. 15, p4Q, p. 362.

2.26Let Oy, ..., 04 be the invariants of a pair of quadric surfaces.
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(i) Show that the 5 produc®,, 0,04, 0,03, ©20,, 020, generate the algebra
of invariants of bidegree@n, n) with m = n.

(ii) Show that the GIT-quotient of ordered pairs of quadrics by the grou@)SL
is isomorphic to the hypersurface of degree 6 in the weighted projective space
P(1,2,2,3,3) given by the equation t3 — tsty = 0.

(i Show that the GIT-quotient has a singular line and its general point corresponds
to the orbit of the pailt/ (3" ¢2), V((t2 — t3) + a(t3 — t3)).

Historical Notes

There is a great number of books dealing with the analytic geometry of conics.
The most comprehensive source for the history of the subject is Coolidge’s
book [141]. Many facts and results about real conics treated in a synthetic way
can be found in text-books in projective geometry. Coxeter's small bbo§ [

is one of the best.

The theory of polarity for conics goes back to Poncelé&]. Polar trian-
gles and tetrahedra of a conic and a quadric surface were already studied by
P. Serret$7€. In particular, he introduced the notion of a self-conjugate tri-
angles, quadrangles and pentagons. They were later intensively studied by T.
Reye p04, [509 and R. Sturm §01], B. 3. The subject of their study was
called thePolarraum i.e. a pair consisting of a projective space together with
a nonsingular quadric.

Pascal’'s Theorem was discovered by B. Pascal in 1639 when he was 16 years
old [472 but not published until 1779477. It was independently rediscovered
by C. MacLaurin in 1720414]. A large number of results about the geometry
and combinatorics of sixty Pascal lines assigned to 6 points on a conic have
been discovered by J. Steiner, J. Kirkman, A. Cayley, G. Salmon, L. Cremona
and others. A good survey of these results can be found in Note 1 in Baker's
book [21], v.2, and Notes in Salmon’s book37]. We will return to this in
Chapter 9.

Poncelet’s Closure Theorem which is the second part of Darboux’s Theorem
2.2.2was first discoverd by J. Poncelet himsdl®f]. We refer to the excellent
account of the history of the Poncelet related conic§1p [A good elementary
discussion of Poncelet’s Theorem and its applications can be found in Flato’s
book [243. Other elementary and non-elementary treatments of the Poncelet
properties and their generalizations can be foun@8j, [27], [130, [137],

[293, [294.

The relationship between Poncelet curves and vector bundles is discussed in
[628, [450, [629, [633. The Schwarzenberger bundles were introduced in
[554. We followed the definition given in195. The papers438§ and [329,
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[330 discuss the compactification of the variety of conjugate triangles. The
latter two papers of N. Hitchin also discuss an interesting connection with
Painleve equations.

The notion of the apolarity of conics is due to T. Re®T. However,

J. RosanesH24] used this notion before under the name conjugate conics.
In the same paper he also studied the representation of a conic as a sum of
four squares of linear forms. The conditich&) for conjugate conics was first
discovered by O. Hesse iB82(. He also proved that this property is poristic.
The condition for Poncelet relation given in terms of invariants of a pair of
conics (Theoren2.3.1Q was first discovered by A. Cayley 9, [84].

The theory of invariants of two conics and two quadric surfaces was first
developed by G. Salmon (se&3]7], [539, vol. 1). The complete system of
invariants, covariants and contravariants of a pair of conics was given by J.
Grace and A. YoungZ86]. P. Gordan has given a complete system of 580
invariants, covariants and contravariants of a pair of quadric surf@8%% [
Later H.W. Turnbull was able to reduce it to 123 elemeb(]. In series of
papers of J. Todd one can find further simplifications and more geometric in-
terpretations of the system of combinants of two quadric surf&&8,[625.

A good expositions of the theory of invariants can be found in Sommerville’s
and Todd’s booksg84], [626]. The latter book contains many examples and
exercises some of which were borrowed here.

Chasles’ Theoremnd.3.3about the covariant quadric was proven by him in
[98] and reproved later by N. Ferre2d9 . A special case was known earlier to
Bobillier [46] Chasles’ generalization of Pascal’'s Theorem to quadric surfaces
can be found in104). Baker’s book R1], v. 3, gives a good exposition of polar
properties of quadric surfaces.

The proof of Theoren2.3.15is due to J. Coolidgel4]], Chapter VI,53.

The result was known to G. von Stau@8[/] ((see [L41]], p. 66) and can be also
found in Salmon’s book on conic§37, p. 345. Although Salmon writes in
the footnote on p. 345 that “| believe that | was the first to direct the attention
to the importance of this conic in the theory of two conics”, this conic was
already known to Ph. La Hiré8p2 (see [L41], p. 44). In Sommerville’s book
[583, Salmon conic goes under the nahr@@monic conic-locusf two conics.



3
Plane cubics

3.1 Equations
3.1.1 Elliptic curves

There are many excellent expositions of the theory of elliptic curves from their
many aspects: analytical, algebraic and arithmetical (a short survey can be
found in Hartshorne’s bool3[L1], Chapter IV). We will be brief here.

Let X be a nonsingular projective curve of genus 1. By Riemann-Roch, for
any divisorD of degreel > 1, we havedim H°(X,Ox (D)) = d. If d > 2,
the complete linear systefiD| defines an isomorphis?X — C, whereC
is a curve of degred in P?~! (calledelliptic normal curveof degreed). If
d = 2, the map is of degree 2 onf®'. The divisor classes of degréeare
parameterized by the Jacobian variety(Jarisomorphic toX . Fixing a point
xo on X, the group law on J4&) transfers to a group law ol by assigning
to a divisor clas® of degred) the divisor clas® + xq of degree 1 represented
by a unique point oX. The group law becomes

rBy==zE€|r+y—rto- (3.1)

The translation automorphisms &f act transitively on the set PieX) of
divisor classes of degreé This implies that two elliptic normal curves are
isomorphic if and only if they are projectively equivalent. In the cdse 2,
this implies that two curves are isomorphic if and only if the two sets of four
branch points of the double cover are projectively equivalent.

In this Chapter we will be mainly interested in the case- 3. The image
of X is a nonsingular plane cubic curve. There are two known normal forms
for its equation. The first one is thweierstrass fornand the second one is the
Hesse formWe will deal with the Hesse form in the next subsection. Let us
start with the Weierstrass form.

By Theoreml1.1.8 C' = V(f) has an inflection poinp,. Without loss of
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generality, we may assume that = [0, 0, 1] and the inflection tangent line

at this point has the equatiag = 0. The projection fronyp, is the double
coverC — P!. It has ramification branch points, the intersection points of
C with the first polar. There are four tangent lines@ocontainingpy. One

of them isV (¢y). The first polarV(g—t’;) of the pointpy is a singular conic
which intersectg” at the tangency points of the four tangents, we immediately
obtain that it consists of the lifé(¢,) and a lineV/ (t2 + at; + btg) not passing
through the poinp,. Changing the coordinates, we may assume that the line
is equal toV/ (¢2). Now the equation of' takes the form

tots + ot} + Btity + ity + 5ty = 0,

wherea # 0. Replacingt; with ¢ + %to, and scaling the coordinates, we
may assume that = 1 andg = 0. This gives us th&Veierstrass equatioof a
nonsingular cubic:

tots + 5 + atyty + bt =0 (3.2)

Itis easy to see that is nonsingular if and only if the polynomiaf + ax + b
has no multiple roots, or, equivalently, its discrimindnt= 4o + 2732 is not
equal to zero.

Two Weierstrass equations define isomorphic elliptic curves if and only if
there exists a projective transformation transforming one equation to another.
It is easy to see that it happens if and onlydf, 3’) = (\3a, \%(3) for some
nonzero constarX. This can be expressed in terms of #i®solute invariant

3
ok e — 33
J 403 + 2782 (33)
Two elliptic curves are isomorphic if and only if their absolute invariants are

equal!

The projectionty, t1,t2] — [to,t1] exhibitsC as a double cover df'. Its
ramification points are the intersection pointso&nd its polar conid’ (¢otz).
The cover has four branch poinits AJ, [0, 1], whereX® + a\ + b = 0. The
corresponding point§l, A, 0], and[0,0, 1] on C are the ramification points.
If we choosepy, = [0,0, 1] to be the zero point in the group law @n then
2p ~ 2p, for any ramification poinp implies thatp is a 2-torsion point. Any
2-torsion point is obtained in this way.

It follows from the above computation that any nonsingular plane cubic

V (f) is projectively isomorphic to the plane culdit3ty + 3 + at 3 + bt3).
The functionsS : f — a/27,T : f — 4b can be extended to th&ronhold

1 The coefficientl 728 = 2633 is needed to make this work in characterigiand3, otherwise
7 would not be defined for example when= 1, b = 0 in characteristic 2.
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invariants S and 7" of degrees 4 and 6 of a ternary cubic form. The explicit
expressions of andT' in terms of the coefficients of are rather long and can
be found in many places (e.d.99, [538).

Fixing an order on the set of branch points, and replacing them by a projec-
tively equivalent set, we may assume that the cubic polynaniial az + b is
equal to—z(z — 1)(x — A). This gives an affine equation 6f

yv?=x(z —1)(z — ),

called theLegendre equation.

The number\ is equal to the cross ratiB(q: g2; g3q4) of the four ordered
branch points(q1, ¢2,43,94) = (0, A, 1,00). The absolute invarian3(3) is
expressed in terms ofto give the following formula:

(A2 =X+1)3

- o8
I=ETen e

(3.4)
Remark3.1.1 For any binary formg(ty,¢;) of degree4 without multiple
zeros, the equation

t5 +g(to, t1) =0 (3.5)

defines an elliptic curvé in the weighted projective plar¥1, 1, 2). The four
zeros ofg are the branch points of the projectigh — P! to the first two co-
ordinates. So, every elliptic curve can be given by such an equation. The coef-
ficientsa, b in the Weierstrass equation are expressed in terms of the invariants
S andT of binary quartics from Exampl&.5.2 We haven = —45,b = —4T.

In particular.

B 275(g)3
S(g)% —27T(9)*

Definition 3.1.1 A nonsingular plane cubi®’ ( f) with Weierstrass equation
(3.2) is calledharmonic (resp.equianharmonicif b6 = 0 (resp.a = 0).

We leave to the reader to prove the following.

Theorem 3.1.1 LetC = V(f) be a nonsingular plane cubic andbe any
point onC'. The following conditions are equivalent.

(i) Cis aharmonic (resp. equianharmonic cubic).

(i) The absolute invariant = 1728 (resp.j = 0).

(iii) The set of cross ratios of four roots of the polynonigts + at¢2 +
bty) is equal to{—1,2, 1} (resp. consists of two primitive cube roots of
-1).
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(iv) The group of automorphisms 6f leaving the point invariant is a
cyclic group of order 4 (resp. 6).

Note thatC' is a harmonic cubic if and only if the invariafit of degree 3
on the space of binary quartic form.82 vanishes on the binary formin
equation 8.5). A quartic binary form on whicH’ vanishes is calledlaarmonic
binary quartic We know that a binary form is harmonic if and only if admits
an apolar binary quadratic form. One can check that this form is nondegenerate
if and only if g has no multiple zeros. In this case it can be written as a sum of
two powers of linear formg' + /3. This exhibits an obvious symmetry of order
4. Changing coordinates we can reduce the forej tet{ = (t2+t3)(t3 —t3).

The pairs of zeros of the factors are harmonically conjugate pairs of points.
This explains the name harmonic cubic.

Theorens.1.1gives a geometric interpretation for vanishing of the quadratic
invariantS (1.82 on the space of binary quartics. It vanishes if and only if there
exists a projective transformation of order 3 leaving the zeros of a binary forms
invariant.

Another useful model of an elliptic curve is an elliptic normal quartic curve
C in P3. There are two types of nondegenerate quartic curve®’ invhich
differ by the dimension of the linear system of quadrics containing the curve.
In terminology of classical algebraic geometry, a space quartic curve is of the
first speciedf the dimension is equal to 1, quartics of tkecond specieare
those which lie on a unique quadric. Elliptic curves are nonsingular quartics
of the first species. The proof is rather standard (see, for exan30ig).[By
Proposition8.6.1from Chapter 8, we can writ€' as the intersection of two
simultaneously diagonalized quadrics

3 3
Qi =V 1), Q=V( at).
i=0 1=0
The pencilA\@; + Q2 contains exactly four singular members corresponding
to the parameterf-a;, 1],i = 0,1,2,3. The curveC is isomorphic to the
double cover ofP! branched over these four points. This can be seen in many
ways. We will present later one of them, a special case of Weil's Theorem on
intersection of two quadrics (same proof can be found in Harris’s b80H,[
Proposition 22.38). Changing a basis in the pencil of quadrics contafrjng
we can reduce the equations@fto the form

R+t =2+ M2 =0. (3.6)

The absolute invariant df' is expressed via formul&(4).
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3.1.2 The Hesse equation

Classical geometers rarely used Weierstrass equations. They prélesses
canonical equationsf cubic curves:

ts 4+ 13 +t5 + 6atotits = 0. (3.7)

Let us see that any nonsingular cubic can be reduced to this form by a linear
change of variables.

Since any tangent line at an inflection point intersects the curve with mul-
tiplicity 3, applying (L.23, we obtain that the curve has exactly 9 inflection
points. Using the group law on an elliptic cubic curve with an inflection point
o as the zero, we can interpret any inflection point as a 3-torsion point. This
of course agrees with the fact the gra¥p3] of 3-torsion points on an elliptic
curve X is isomorphic taZ/37Z)2.

Let H be a subgroup of order 3 of. Since the sum of elements of this
group add up to 0, we see that the corresponding 3 inflection ppints:
satisfyp + ¢ + r ~ 3o. It is easy to see that the rational function ©rwith
the divisorp + ¢ + r — 30 can be obtained as the restriction of the rational
function m(¢g, t1,t2)/lo(to, t1, t2), whereV(m) defines the line containing
the pointg, ¢, » andV (ly) is the tangent td’ at the poinb. There are 3 cosets
with respect to each subgroup. Since the sum of elements in each coset is
again equal to zero, we get 12 lines, each containing three inflection points.
Conversely, if a line contains three inflection points, the sum of these points
is zero, and it is easy to see that the three points forms a coset with respect
to some subgroup!. Each element ofZ/3Z)3 is contained in 4 cosets (it is
enough to check this for the zero element).

A triangle containing the inflection points is called enflection triangle
There are four inflection triangles and the union of their sides is the set of 12
lines from above. The configuration of 12 lines and 9 points, each line contains
3 points, and each point lies on four lines is the famdesse arrangement of
lines(123,94).

Consider the polar conic of an inflection point. It splits into the union of the
tangent line at the point and another line, calledithemonic polar lineof the
inflection point.

Lemma 3.1.2 Letx be a point on a nonsingular cubi. Any line/ passing
throughz intersectsC' at pointsy, z which are harmonically conjugate to the
pair z,w, wherew is the intersection point of the line and the conic polar
P.(C).
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We will prove this property later in a more general case whies a curve
of degreed andz is its point of multiplicity (d — 2) (see RemarR?).

Proposition 3.1.3 Let a,b, ¢ be three collinear inflection points. The har-
monic polar lines of three inflection points on a lihatersect at the opposite
vertex of the inflection triangle containirfg

Proof LetA be the inflection triangle with sidecontaining the points, b, c.
Consider the three line& througha which join a with one of the inflection
point z; on the side ofA. Let z; be the other inflection point ofy (lying on

the other side). By the previous Lemma, the harmonic polar line intersects each
¢; at a pointy; such that the cross ratiB(ay;; t;z;) is constant. This implies

that the harmonic polar line is the line in the pencil of lines through the vertex
which together with the two sides and the line passing thraugiake the
same cross ratio in the pencil. Since the same is true for harmonic polar lines
of the pointsh andc, we get the assertion. O

It follows from the previous Proposition that the nine harmonic polar lines
intersect by three at 12 edges of the inflection triangles, and each vertex be-
longs to 4 lines. This defines tltzial Hesse arrangement of lin€8,, 123).

It is combinatorially isomorphic to the arrangement of lines in the dual plane
which is defined from the Hesse line arrangement via duality.

Now it is easy to reduce a nonsingular cubic cuéve= V (f) to the Hesse
canonical form. Choose coordinates such that one of the inflection triangles is
the coordinate triangle. Letbe one of its vertices, say= [1, 0, 0], andx be
an inflection point on the opposite liné(ty). ThenP,(C) is the union of the
tangent toC' atx and the harmonic polar af. Since the latter passes through
¢, we haveP:,(C') = P,,2(C) = 0. Thus the polar lineg®,2 (C') intersects the
line V(to) at three points. This can happen onlyAf:(C) = V(to). Hence
V(g%g:) = V(to) and f has no terms3t, , t3t,. We can write

[ = aty + bt} + ct3 + dtotits.
SinceC is nonsingular, it is immediately checked that the coefficients c
are not equal to zero. After scaling the coordinates, we arrive at the Hesse
canonical form.

It is easy to check by taking partials, that the condition that the curve given
by the Hesse canonical form is nonsingular is

14+ 8a3 #0. (3.8)

By reducing the Hesse equation to a Weierstrass forms one can express the
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Aronhold invariantss, T and the absolute invariagtn terms of the parameter
ain (3.7):

S=a-at (3.9
T=1-200—8a°, (3.10)
. 64(a —a?)?
= A1
(1+8a3)3 (3.11)

3.1.3 The Hesse pencil

Since the cubi€ and its four inflection triangles pass through the same set of
9 points, the inflection points @f, they belong to a pencil of cubic curves. This
pencil is called thedesse pencillt is spanned by and one of the inflection
triangles, say the coordinate triangle. Thus the Hesse pencil is defined by the
equation

A(tg + 1} +13) + ptotata = 0. (3.12)
Its base points are

[071771}7 [071776]’ [0517762]5

[1,0,—1], [1,0,—€%], [1,0,—€],

[1,71,0}, [177@0]7 [1a76270]a (313)
wheree = ¢2™/3_ They are the nine inflection points of any nonsingular mem-

ber of the pencil. The singular members of the pencil correspond to the values
of the parameters

(A, p) = (0,1), (1,-3), (1,-3¢), (1,—3¢2).

The last three values correspond to the three valuesfof which the Hesse
equation defines a singular curve.

Any triple of lines containing the nine base points belongs to the pencil and
forms its singular member. Here they are:

Vto), V(t1), V(t2),
V(to +t1 +ta2), V(to + ety + €%ty), V(to + €2ty + eta), (3.14)
Vito + ety +t2), V(to + €2ty + €%ty), V(tg +t1 + eta),
V(to + €2ty +ta), V(to + ety + eta), V(o +t1 + €*ta).
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We leave to a suspicious reader to check that

(to +t1 + t2)(to + et1 + €%ta)(to + €1 + eta) = to + 5 + 3 — Stotita,
(to + ety +to)(to + €2ty + €2ta)(to + t1 + ety) = t3 + 13 4+ t5 — Betotyta,

(to + €2ty + to)(to + ety + eta)(to + t1 + €2t) = to + 13 4+ t5 — 3Lt ts.

The 12 lines 8.14) and 9 inflection points3.13 form the Hesse configuration
corresponding to any nonsingular member of the pencil.

Choos€[0, 1, —1] to be the zero point in the group law @i Then we can
define an isomorphism of groups: (Z/3Z)?> — X|[3] by sending[1, 0] to
[0,1,—¢€], [0,1] to [1,0,—1]. The points of the first row in3.13) is the sub-
groupH generated by([1, 0]). The points of the second row is the cosefbf
containings([0, 1]).

Remark3.1.2 Note that, varyingy in P* \ {—3, —%, —%, oo}, we obtain a
family of elliptic curvesX,, defined by the equatior3(7) with a fixed isomor-
phisme,, : (Z/3Z)?> — X,[3]. After blowing up the 9 base points, we obtain
a rational surfacé(3) together with a morphism

f:5(3) — P! (3.15)

defined by the rational map? — — P!, [to, t1, to] — [tot1te, td+13 +13]. The
fibre of f over a point(a, b) € P? is isomorphic to the member of the Hesse
pencil corresponding to\, ) = (—b, a). It is known that 8.15 is amodular
family of elliptic curves with level 3, i.e. the universal object for the fine moduli
space of pair§$ X, ¢), whereX is an elliptic curve and : (Z/37)* — X|[3]is

an isomorphism of groups. There is a canonical isomorpliisre Y, where

Y is the modular curve of level 3, i.e. a nonsingular compactification of the
quotient of the upper half-plari€ = {a + bi € C : b > 0} by the group

I'(3)={A= (Z Z) €SL(2,Z): A=1I; mod 3}

which acts onH by Mobius transformations — %. The boundary of
H/T'(3) in Y consists of 4 points (the cusps). They correspond to the singular
members of the Hesse pencil.

3.1.4 The Hesse group

The Hesse groups;6 is the group of projective transformations which pre-
serve the Hesse pencil of cubic curves. First, we see the obvious symmetries
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generated by the transformations

7t [to, t1, ta] = [to, est1, €xtal,

o : [to, t1,t2] = [ta,to, t1].

They define a projective representation of the gréfB7Z)2.

If we fix the group law by taking the origin to 16, 1, —1], thenr induces
on each nonsingular fibre the translation automorphism by the fipiht—e]
ando is the translation by the poift, 0, —1].

Theorem 3.1.4 The Hesse grou@s;¢ is a group of order 216 isomorphic to
the semi-direct product

(Z./37)* x SL(2,F3),

where the action dL(2, F5) on(Z/37Z)? is the natural linear representation.

Proof Letg € Gaig. It transforms a member of the Hesse pencil to another
member. This defines a homomorphigip s — Aut(P!). An element of the
kernel K leaves each member of the pencil invariant. In particular, it leaves
invariant the curvé/(tot1t2). The group of automorphisms of this curve is
generated by homothetigg), t1,t2] — [to, at1, bt2] and permutation of co-
ordinates. Suppose induces a homothety. Since it also leaves invariant the
curveV (t3 + t3 + t3), we must havd = «* = b*. To leave invariant a gen-
eral member we also need thet = b* = be. This implies thaty belongs to
the subgroup generated by the transformatiodn even permutation of co-
ordinates belongs to a subgroup generated by the transformatitime odd
permutatiorsy : [to, t1,t2] — [to, 2, t1] acts on the group di-torsion points

of each nonsingular fibre as the negation automorphism —z. Thus we see
that

K = (Z/3Z)? x {00).

Now let I be the image of the grou@s;6 in Aut(P!). It acts by permuting
the four singular members of the pencil and thus leaves the set of zeros of the
binary form

A = (813 + t3)to

invariant. It follows from the invariant theory that this implies tifatis a sub-
group of2,. We claim thatd = 21,. Consider the projective transformations
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given by the matrices

1 1 1 ¢ ¢
or=|1 e €|, oa=|e? e &2
1 &2 ¢ g2 2 ¢

The transformationsy, o1, 02 generate a subgroup isomorphic to the quater-
nion groupQs with center generated k. The transformation

03 : [to, t1,t2] = [eto, t2, 1]

satisfiess; = oyp. It acts by sending a curv@,, from (3.7) to C.,,. It is easy

to see that the transformations, o2, 03, 7 generate the group isomorphic to
SL(2,F3). Its center i o) and the quotient by the center is isomorphi€ltp

In other words, this group is the binary tetrahedral group. Note that the whole
group can be generated by transformatiens og, o1 . O

Recall that a linear operater € GL(FE) of a complex vector spacE of
dimensionn + 1 is called acomplex reflectioiif it is of finite order and the
rank ofc —idg is equal to 1. The kernel ef — idg is a hyperplane i, called
thereflection hyperplanef o. It is invariant with respect te- and its stabilizer
subgroup is a cyclic group. Bomplex reflection groufs a finite subgroug~
of GL(FE) generated by complex reflections. One can choose a unitary inner
product onE such that any complex reflectienfrom E can be written in the
form

Sy =+ (n—1)(z,v)v,

whereuw is a vector of norm 1 perpendicular to the reflection hyperplpef
o, andn is a non-trivial root of unity of order equal to the orderaof
Recall the basic facts about complex reflection groups (see, for example,

[588):

e The algebra of invariant§(E)“ = Clto,...,t,]¢ is freely generated by
n + 1 invariant polynomialsfo, . . ., f,, (geometrically,F/G = C"*1).

e The product of degrees of the polynomialsfy, . . ., f,, is equal to the order
of G.

e The number of complex reflections @i is equal toy _(d; — 1).

All complex reflections group were classified by G. Shephard and J. Todd
[578. There are five conjugacy classes of complex reflection subgroups of
GL(3,C). Among them is the grouf’ isomorphic to a central extension of
degree 3 of the Hesse group. It is generated by complex reflectignef or-

der 3, where the reflection ling,, is one of the 12 lines3(14) in P? andv is

the unit normal vectofa, b, ¢) of the lineV (aty + bty + ct2). Note that each
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reflections,, ,, leaves invariant the hyperplanes with normal vector orthogonal
to v. For examples(; ¢,),c leaves invariant the lin& (to). This implies that
each of the 12 complex reflections leaves the Hesse pencil invariant. Thus the
image ofG in PGL(3, C) is contained in the Hesse group. It follows from the
classification of complex reflection groups (or could be checked directly, see
[586]) that it is equal to the Hesse group and the subgroup of scalar matrices
from G is a cyclic group of order 3.

Each of the 12 reflection lines defines two complex reflections. This gives 24
complex reflections iid=. This number coincides with the number of elements
of order 3 in the Hesse group and so there are ho more complex reflections in
G. Letd; < ds < d3 be the degrees of the invariants generating the algebra
of invariants ofG. We haved; + dy + d3 = 27,d;d2ds = 648. This easily
givesd; = 6,dy = 9,d3 = 12. There are obvious reducible curves of degree
9 and 12 inP? invariant with respect t6:. The curve of degree 9 is the union
of the polar harmonic lines. Each line intersects a nonsingular member of the
pencil at nontrivial 2-torsion points with respect to the group law defined by
the corresponding inflection point. The equation of the union of 9 harmonic
polar lines is

fo = (t5 —1)(t5 — 13)(t] — 13) = 0. (3.16)
The curve of degree 12 is the union of the 12 ling@4 §. Its equation is
fia = totita 273155 — (3 + 3 +13)3] = 0. (3.17)

A polynomial defining an invariant curve isralative invariantof G (it is an
invariant with respect to the grou’ = G N SL(3, C)). One checks that the
polynomial fy is indeed an invariant, but the polynomi&k is only a relative
invariant. So, there exists another curve of degree 12 whose equation defines
an invariant of degree 12. What is this curve? Recall that the Hesse group
acts on the base of the Hesse pencil via the action of the tetrahedron group
4. It has 3 special orbits with stabilizers of order 2,3 and 3. The first orbit
consists of 6 points such that the fibres over these points are harmonic cubics.
The second orbit consists of 4 points such that the fibres over these points are
equianharmonic cubics. The third orbit consists of 4 points corresponding to
singular members of the pencil. It is not difficult to check that the product of
the equations of the equianharmonic cubics defines an invariant of degree 12.
Its equation is

fro = (3 + 13 ) [(t3 + 13 +13)% + 216t343¢3] = 0. (3.18)
An invariant of degree 6 is

fo =T+ +15) —6(t3 + 15 +3)%. (3.19)
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The product of the equations defining 6 harmonic cubics is an invariant of
degree 18

fis = (tg + 13 +13)5 — 540836363 (13 + 3 + 13)3 — 5832t5t515 = 0. (3.20)

3.2 Polars of a plane cubic

3.2.1 The Hessian of a cubic hypersurface

Let X = V(f) be a cubic hypersurface i&*. We know that the Hessian
He(X) is the locus of points: € P™ such that the polar quadrig, (X) is
singular. Also we know that, for any € He(X),

Sing(P.(X)) = {b € P? : Dy(D,(f)) = 0}.
SinceP,(P,(X)) = P,(Py(X)) we obtain thab € He(X).

Theorem 3.2.1 The HessiarfHe(X) of a cubic hypersurfac& contains the
SteinerianSt(X). If He(X) # P, then

He(X) = St(X).

For the last assertion one only needs to compare the degrees of the hyper-
surfaces. They are equal o+ 3.
In particular, the rational map, if defined,

sty 1 StX) — He(X),a — Sing(P, (X)) (3.21)

is a birational automorphism of the Hessian hypersurface. We have noticed this
already in Chapter 1.

Proposition 3.2.2 AssumeX has only isolated singularities. Théte(X) =
P" if and only if X is a cone over a cubic hypersurface®fi—!.

Proof LetW = {(a,b) € P* x P" : P, ;,2(X) = 0}. For eactu € P", the
fibre of the first projection over the pointis equal to the first polaP, (X).

For anyb € P, the fibre of the second projection over the pdins equal

to the second polaP,:(X) = V(3> 9;f(b)t;). LetU = P™ \ Sing(X). For
any b € U, the fibre of the second projection is a hyperplan@in This
shows thap, ' (U) is nonsingular. The restriction of the first projectionlfo

is a morphism of nonsingular varieties. The general fibre of this morphism is
a regular scheme over the general poinPdf Since we are in characteristic

0, it is a smooth scheme. Thus there exists an open siiiset P™ such
thatp, ' (W) N U is nonsingular. If HEX') = 0, all polar quadricsP, (X) are
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singular, and a general polar must have singularities insigg bfSing( X)).
This means thap, (p; '(Sing(X))) = P". For anyz € Sing(X), all polar
guadrics contain: and either all of them are singular ator there exists an
open subsel/, C P™ such that all quadric®,(X) are nonsingular at for

a € U,. Suppose that, for any € Sing(X), there exists a polar quadric which
is nonsingular at. Since the number of isolated singular points is finite, there
will be an open set of poinis € P" such that the fibre; ! (a) is nonsingular in
py (Sing(X)). This is a contradiction. Thus, there exists a poirt Sing(X)
such that all polar quadrics are singularcaflhis implies that is a common
solution of the systems of linear equations(ifig(a) - X = 0,a € P™. Thus
the first partials off; are linearly dependent. Now we apply Propositioh.2
to obtain thatX is a cone. O

Remark3.2.1 The example of a cubic hypersurfacefiifrom Remarkl.1.2
shows that the assumption on singular pointsXo€annot be weakened. The
singular locus of the cubic hypersurface is the planpe t; = 0.

3.2.2 The Hessian of a plane cubic

Consider a plane cubi€ = V() with equation in the Hesse canonical form
(3.7). The partials of, f are

2+ 2atyty, 3+ 2atoty, 13+ 2atot;. (3.22)
Thus the Hessian af' has the following equation:

t() OLtQ Oétl
He(C) = |aty 1 ato| = (1+2a®)totity — (13 + 13 +13). (3.23)
Oétl Oéto tg
In particular, the Hessian of the member of the Hesse pencil corresponding to
the parametef), 1) = (1,6a), « # 0, is equal to

1+ 203
£t 1 — 5 totita =0, a#0, (3.24)

or, if (\, ) = (1,0) or (0, 1), then the Hessian is equal ¥(tgt;t2).

Lemma 3.2.3 LetC be a nonsingular cubic in a Hesse’s canonical form. The
following assertions are equivalent:

(i) dimSing(P,(C)) > 0;

(i) a € SingHe(C));

(i) He(C) is the union of three nonconcurrent lines;
(iv) C isisomorphic to the Fermat cubié(t3 + 3 + t3);
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(v) He(C) is a singular cubic;
(vi) C'is an equianharmonic cubic;
(vii) a(a®—1)=0.

Proof Use the Hesse equation for a cubic and for its Hessian. We see that
He(C) is singular if and only if eithery = 0 or 1 + 8(—%)3 = 0. Ob-
viously,a = 1 is a solution of the second equation. Other solutions-ar&

This corresponds to HE'), whereC is of the formV/ (3 +t5 +¢3), or is given

by the equation

313 5 + 6e'tot ity = (€'t + ety +12)% + (to + €'ty + 12)3

+(to +t1 + €'12)% = 0,
wherei = 1,2, or

3+ 15+ 15 + 6totita = (to +t1 +t2)® + (to + ety + €*ta)?

+(to + €%ty + ety)® = 0.

This computation proves the equivalence of (iii), (iv), (v), and (vii).
Assume (i) holds. Then the rank of the Hessian matrix is equal to 1. It is easy
to see that the first two rows are proportional if and onlg(f® — 1) = 0.
Thus (i) is equivalent to (vii), and hence to (iii), (iv), (v) and (vii). The paint
is one of the three intersection points of the lines such that the cubic is equal to
the sum of the cubes of linear forms defining these lines. Direct computation
shows that (i) holds. Thus (i) implies (ii).
Assume (i) holds. Again the previous computations showdtiaf — 1) =
0 and the Hessian curve is the union of three lines. Now (i) is directly verified.
The equivalence of (iv) and (vi) follows from Theorei.1since the trans-
formation[to, t1,t2] — [t1,t0, €2™/3t,] generates a cyclic group of order 6 of
automorphisms of” leaving the poinfl, —1, 0] fixed. O

Corollary 3.2.4 Assume thal' = V(f) is not projectively isomorphic to
the Fermat cubic. Then the Hessian cubic is nonsingular, and theanap
Sing(P,(C)) is an involution onC' without fixed points.

Proof The only unproved assertion is that the involution does not have fixed
points. A fixed pointa has the property thab,(D,(f)) = Da2(f) = 0. It
follows from Theoreni.1.1that this implies that € Sing(C). O

Remark3.2.2 Consider the Hesse pencil of cubics with parameférs) =
(Ck(), 6041)

C(ao,a) = V(ao(tg + t? + t%) + 60&1t0t1t2).
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Taking the Hessian of each curve from the pencil we get the pencil
H(ag,a) = Voot + 15 + 13 + 6 totits).
The mapC(q,a) — H(ay,a) defines a regular map
h:P' =P oo, cu] = [to, t1] = [~aoa?, o + 23] (3.25)

This map is of degre®. For a general value of the inhomogeneous parameter
A = t1/tp, the preimage consists of three points with inhomogeneous coordi-
natea = «; /g satisfyfing the cubic equation

6 0 —2a% +1=0. (3.26)

We know that the pointgyg, ;] = [0, 1], [1, —%], 1, -3, —é] correspond
to singular members of thepencil. These are the branch points of the ap
Over each branch point we have two points in the preimage. The points

(o, 1) = [1,0],[1,1], 1, €], [1, €]

are the ramification points corresponding to equianharmonic cubics. A non-
ramication point in the preimage corresponds to a singular member.

Let O, = C(1,q). If we fix a group law on a, = He(C,), we will be
able to identify the involution described in CorollaBy2.4 with the transla-
tion automorphism by a non-trivial 2-torsion poip{see Exercises). Given a
nonsingular cubic curvél together with a fixed-point-free involution there
exists a unique nonsingular cubig, such thatd = H, and the involution
7 is the involution described in the corollary. Thus the 3 roots of the equation
(3.26 can be identified with 3 non-trivial torsion points dfi,. We refer to
Exercises for a reconstruction 6f, from the pair(H,, 7).

Recall that the Cayleyan curve of a plane cubidgs the locus of line$q
in the dual plane such that € He(C') andb is the singular point of?, (C).
Each such line intersects H&) at three points, b, c. The following gives the
geometric meaning of the third intersection point.

Proposition 3.2.5 Letc be the third intersection point of a linee Cay(C')
andHe(C'). Then! is a component of the pold?;(C) whose singular point is
c. The pointd is the intersection point of the tangentstté(C') at the points:
andb.

Proof From the general theory of linear system of quadrics, applied to the net
of polar conics of”, we know that is a Reye line, i.e. it is contained in some
polar conicP,;(C) (see subsectioh.1.7). The pointd must belong to HE)

and its singular point belongs to?. Thusc is the third intersection point af

with C.
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It remains to prove the last assertion. Chose a group law on the cuf® He
by fixing an inflection point as the zero point. We know that the Steinerian
involution is defined by the translatian— x & n, wheren is a fixed 2-torsion
point. Thusb = a & 7. It follows from the definition of the group law on a
nonsingular cubic that the tangerits(He(C)) andT,(He(C)) intersect at a
point d on HEC). We haved @ 2a = 0, henced = —2a. Sincea, b, ¢ lie
on a line, we get = —a — b in the group law. After subtracting, we get
d —c = b—a = n. Thus the pointsc andc is an orbit of the Steinerian
involution. This shows that is the singular point of?;(C). By Proposition
1.2.3 P,;(C) contains the points, b. Thusab is a component of;(C). [

It follows from the above Proposition that the Cayleyan curve of a nonsin-
gular cubicC' parameterizes the line components of singular polar conics of
C. ltis also isomorphic to the quotient of (&) by the Steinerian involution
from Corollary3.2.4 Since this involution does not have fixed points, the quo-
tient map HéC') — Cay(C) is an unramified cover of degree 2. In particular,
Cay(C) is a nonsingular curve of genus 1.

Let us find the equation of the Cayleyan curve. A lingelongs to CafX)
if and only if the restriction of the linear system of polar conics)ofto ¢
is of dimension 1. This translates into the condition that the restriction of the
partials of X to ¢ is a linearly dependent set of three binary forms. So, write
¢ in the parametric form as the image of the nfdp— P? given by[u, v] —

[apu + bov, a1u + byv, asu + byv]. The condition of the linear dependence is
given by

a2 +2aaras  2agbg + 2a(arby + azby)  bE + 2abiby
det | a? + 2aapas  2a1by + 2a(agbs + asby)  b? + 2abgbe | = 0.
a% + 204&0(11 20,2()2 + 20[((10[)1 + albo) b% + 20[b0b1

The coordinates of in the dual plane are
[U07U1,U2] = [a1b2 — agby, a2by — agbz, agby — a1bo]~

Computing the determinant, we find that the equation of(Ggyin the coor-
dinatesug, u1, us IS

ud + Ui 4 us + 60’ uguqug = 0, (3.27)

wherea’ = (1 — 4a3)/6a. Note that this agrees with the degree of the Cay-
leyan curve found in Propositioh1.14 Using the formula3.9) for the abso-

lute invariant of the curve, this can be translated into an explicit relationship
between the absolute invariant of an elliptic cuveand the isogenous ellip-

tic curve C/(r.), wherer, is the translation automorphism by a non-trivial
2-torsion pointe.
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3.2.3 The dual curve

Write the equation of a general line in the fotm = wugty + uit; and plug
in equation 8.7). The corresponding cubic equation has a multiple root if and
only if the line is a tangent. We have

(uoto + uit1)® +t3 + 13 4 6atoty (uoto + uity)

= (up + 1)tg + (ui + 1) + (3udug + 6aug)tit; + (3uou? + 6auy )tet? = 0.

The condition that there is a multiple root is that the discriminant of the homo-
geneous cubic form ify, ¢; is equal to zero. Using the formul&.81) for the
discriminant of a cubic form, after plugging in, we obtain

(Bugui+60m0)? (Buout +6aur )’ +18(3ugur +6auo) (3uout +6au ) (ug+1)(ui+1)
—4(uf + 1) (Buous + 60u1)® — 4(u? + 1) (Burug + 60mo)® — 27(uf +1)*(u? +1)°

=27+ 864u3u‘;’a3 + 648ugufo¢ — 648a2u0u;1 — 648a2u8u1 + 648a2u0u1

+12960  udu? — 27u$ — 27ud + 54uiu’ — 864uta® — 864uda’® — 54ud —54ud = 0.
It remains to homogenize the equation and divide(b®7) to obtain the
equation of the dual curve

ud +ub 4+ u§ — (2 4+ 320%) (uu? + udud + udu?)

—2402uguiug (uh + ul +u3) — (24 + 48a ) uduui = 0. (3.28)

According to the Ricker formula {.50), the dual curve of a nonsingular plane
cubic has 9 cusps. They correspond to the inflection tangents of the original
curve. The inflection points are given i.0{2. Computing the equations of
the tangents, we find the following singular points of the dual curve:

[-2m,1,1], [1,—2a, 1], [1,1,—2a], [-2ae,£2,1], [-2ae, 1,£7)],

[€2, —2ae, 1], [1, —2ae,€?], [1,€2, —2as], [€%, 1, —20].

The tangent of” at an inflection point. is a component of the polar conic
P,(C), hence connectsto the singular point of the polar conic. This implies
that the tangent line belongs to the Cayleyan curve(Cayhence the Cay-
leyan curve contains the singular points of the dual cubic. The pencil of plane
curves of degree 6 spanned by the dual cdbicand the Cayleyan cubic taken
with multiplicity 2 is an example of aRlalphen pencibf index 2 of curves of
degree 6 with 9 double base points (see Exercises to Chapter 7).



144 Plane cubics

3.2.4 Polar s-gons

Since, for any three general pointsi, there exists a plane cubic singular at
these points (the union of three lines), a general ternary cubic form does not
admit polar triangles. Of course this is easy to see by counting constants.

By Lemma3.2.3 a nonsingular cubic admits a polar triangle if and only if it
is an equianharmonic cubic. Its polar triangle is unique. Its sides are the three
first polars ofC' which are double lines.

Proposition 3.2.6 A plane cubic admits a polar triangle if and only if either
it is a Fermat cubic or it is equal to the union of three distinct concurrent lines.

Proof Suppose&” = V (I3 + I3 + [3). Without loss of generality, we may as-
sume that; is not proportional td,. Thus, after a linear change of coordinates,

C =Vt +t3+13).1f (to, 1, t2) does not depend an, the curveC is the

union of three distinct concurrent lines. Otherwise, we can change coordinates
to assume thdt= ¢, and get a Fermat cubic. O

By counting constants, a general cubic admip®kar quadranglelt is clear
that a polar quadranglgl4], . . ., [l4]} is nondegenerate if and only if the linear
system of conics in the dual plane through the pdiitss an irreducible pencil
(i.e. alinear system of dimension 1 whose general member is irreducible). This
allows us to define aondegenerate generalized polar quadrangie” as a
generalized quadrangle of C' such tha{Zz(2)| is an irreducible pencil.

Let g(to,t1) be a binary form of degree 3. Its polar 3-hedron is the divisor
of zeros of its apolar form of degree 3. Thus

VSP(g,3) = |AP;(g)[” = P2, (3.29)

This implies that any ternary cubic forf= t3 + g(to, 1) admits degenerate
polar quadrangles.

Also, if C = V(g(to,t1)) is the union of three concurrent lines then any
four distinct nonzero linear formg, l5, 13,1, form a degenerate quadrangle
of C'. In fact, using the Van der Monde determinant, we obtain that the cubes
13,13,13,13 form a basis in the space of binary cubic forms. So the variety
of sums of 4 powers of' is isomorphic to the variety of 4 distinct points in
P'. Its closure VSRC, 4) in the Hilbert scheme Hil(P?) is isomorphic to
(]Pyl)(él) o~ e,

Lemma 3.2.7 C admits a degenerate polar quadrangle if and only if it is one
of the following curves:

(i) an equianharmonic cubic;
(i) a cuspidal cubic;
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(i) the union of three concurrent lines (not necessary distinct).
Proof We only have to prove the converse. Suppose
f=B+B+15+1,

wherely, I3, l3 vanish at a common poimtwhich we identify with a vector in
E. We have
1

3Da(f) = l(a)lf + 1a(a)l3 + 1)l + la(a)lf = la(a)l].

This shows that the first pold?, (V' (f)) is either the wholé? or the double
line 2¢ = V(13). In the first caseC is the union of three concurrent lines.
Assume that the second case occurs. We can choose coordinates such that
[0,0,1] and? = V' (t2). Write

[ = gots + g1ts + gata + fa,

whereg;, are homogeneous forms of degteia variables, t;. ThenD,(f) =
Do f = 3t3g0 + 2t291 + go. This can be proportional t& only if g; = g, =
0,90 # 0. ThusV (f) = V(got3 + g3(to,t1)). If g3 has no multiple linear fac-
tors, we get an equianharmonic cubicgdfhas a linear factor with multiplicity
2, we get a cuspidal cubic. Finally, f§ is a cube of a linear form, we reduce
the latter to the fornt$ and get three concurrent lines.

O

Remark3.2.3 We know that all equianharmonic cubics are projectively equiv-
alent to the Fermat cubic. The orbit of the Fermat cubie; + ¢3 + ¢3) is
somorphic to the homogeneous space B$LG, whereG = (Z/37)? x &3.

Its closure in|S3(EY)| is a hypersurfacé’ and consists of curves listed in the
assertion of the previous Lemma and also reducible cubics equal to the unions
of irreducible conics with its tangent lines. The explicit equation of the hyper-
surfacerF’ is given by theAronhold invariantS of degree 4 in the coefficients of

the cubic equation. A nice expression for the invarigimh terms of a pfaffian

of a skew-symmetric matrix was given by G. Ottaviad6f].

Lemma 3.2.8 The following properties are equivalent:

(i) AP.(f) #{0};
(i) dimAPy(f) > 2;
(iii) V(f) is equal to the union of three concurrent lines.

Proof By the apolarity duality,
(Af)1 x (Af)2 — (Af)s = C,
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we have

Thusdim APy (f) = 3 + dim AP, (f). This proves the equivalence of (i) and
(ii). By definition, AP, (f) # {0} if and only if D,,(f) = 0 for some nonzero
linear operato) = > a,0;. After alinear change of variables, we may assume
thaty = 9y, and therdy(f) = 0 if and only if C does not depend af, i.e.C

is the union of three concurrent lines. O

Lemma 3.2.9 LetZ be a generalized polar quadrangle ¢f Then|Z(2)|

is a pencil of conics ifE"| contained in the linear systefPs(f)|. If Z is
nondegenerate, then the pencil has no fixed component. Conversgiyydeat
0-dimensional cycle of length 4 i|. Assume thalZ,(2)| is an irreducible
pencil contained iNAPy(f)|. ThenZ is a nondegenerate generalized polar
guadrangle off.

Proof The first assertion follows from the definition of nondegeneracy and
Proposition1.3.6 Let us prove the converse. LBt(\q; + 11g2) be the pencil
of conics|Z(2)|. Since AR f) is an ideal, the linear systemof cubics of the
form V(q1l1 + g2l2), wherely, l5 are linear forms, is contained [APs(f)].
Obviously, it is contained ifiZz(3)|. Since|Zz(2)| has no fixed part we may
choosey; andg, with no common factors. Then the m&y ¢ EY — I;(3)
defined by(l1,12) — qil1 + g¢o2l2 is injective, hencelim L = 5. Assume
dim |Zz(3)| > 6. Choose three points in general position on an irreducible
memberC' of |Zz(2)| and three non-collinear points outside Then find a
cubic K from |Zz(3)| which passes through these points. THeérintersects
C with total multiplicity 4 + 3 = 7, hence containg’. The other compo-
nent of K must be a line passing through three non-collinear points. This
contradiction shows thatim |Z7(3)| = 5 and we havel. = |Zz(3)|. Thus
|Z~(3)| C |AP3(f)| and, by Propositior.3.6 Z is a generalized polar quad-
rangle ofC.

O

Note that not any point in Hill{IP?) can be realized as a generalized quad-
rangle of a ternary cubic. Each point in the Hilbert scheme i) is the
union of subschemes supported at one point. Let us recall analytic classifica-
tion closed of subschem@§(7) of lengthh < 4 supported at one point (see
[56)).
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o h=41=(z,y"), (2%, 9%), (2% zy,y").

The subschemes of length 4 which cannot be realized as the base scheme
of a pencil of conics, are those which contain a subscheme analytically iso-
morphic to one of the following schemés§(z, y3), V (z,y*), V (22, 2y, y?),
orV(z?, zy, y°).

Theorem 3.2.10 Assume tha€ is neither an equianharmonic cubic, nor a
cuspidal cubic, nor the union of three concurrent lines. Then

VSP(f,4) = [AP,(f)" = P*.

If C'is nonsingular, the complement&f= VSP(f, 4) \ VSP(f,4)° is a curve

of degree 6 isomorphic to the dual of a nonsingular cubic curv€.if a nodal
cubic, thenA is the union of a quartic curve isomorphic to the dual quartic of
C and two lines. I is the union of a nonsingular conic and a line intersecting
it transversally,A is the union of a conic and two lines.df is the union of a
conic and its tangent line, thefs = VSP(f, 4).

Proof We will start with the case whe@' is nonsingular. We know that its
equation can be reduced to the Hesse canonical f8rfh The space of apolar
quadratic forms is spanned lbyugu; — u3, auius — u, augus — ui. Itis
equal to the net of polar conics of the cu@€in the dual plane given by the
equation

ud +ud +ud — 6auguiuz =0, aa® —1) #0. (3.30)

The net|APy(f)| is base point-free. Its discriminant curve is a nonsingular
cubic, the Hessian curve of the curé. The generalized quadrangles are pa-
rameterized by the dual curve H&')V. All pencils are irreducible, so there are
no degenerate generalized quadrangles. Generalized quadrangles correspond
to tangent lines of the discriminant cubic. So,

VSP(f,4) = |AP2(f)]", (3:31)

and VSRf,4) \ VSP(f,4)° = He(C")".

Next, assume that = V (t3t, + t3 + t3to) is an irreducible nodal cubic.

The space of apolar quadratic forms is spannedy; uz, 93 —u?+3ugus.
The net|AP;(f)| is base point-free. Its discriminant curve is an irreducible
nodal cubicD. So, all pencils are irreducible, and.81) holds. Generalized
guadrangles are parameterized by the union of the dual quartic £hand
the pencil of lines through the double point.

Next, assume that’ = V (t3 + tot1t2) is the union of an irreducible conic
and a line which intersects the conic transversally.
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The space of apolar quadratic forms is spanned¥y.3, 6u;us — uZ. The
net|AP;(f)| is base point-free. It is easy to see that its discriminant curve is
the union of a conic and a line intersecting the conic transversally. The line
component defines the pencil generated/y) andV (u3). It has no fixed
part but its members are singular. So, all generalized quadrangles are nonde-
generate and3(31) holds. The locus of generalized quadrangles consists of a
conic and two lines.

Next, assume that' (f) = V(tot1t2) is the union of three non-concurrent
lines.

The netAP,(f)| of apolar conics is generated by(u32), V (u?), V (u3). Itis
is base-point-free. The discriminant curve is the union of three non-concurrent
lines representing pencils of singular conics which have no fixed component.
Thus any pencil not containing a singular point of the discriminant curve de-
fines a nondegenerate polar quadrangle. A pencil containing a singular point
defines a nondegenerate generalized polar quadrangle. Agai ifolds and
VSP(f,4) \ VSP(f,4)° consists of three nonconcurrent lines.

Finally, letC' = V (to(tot1 + t3)) be the union of an irreducible conic and
its tangent line. We check that APf) is spanned byu?, ujus, u3 — ugu;.
The discriminant curve is a triple line. It corresponds to the pe¢iu? +
uuyug) of singular conics with the fixed componénitu, ). There are no polar
guadrangles. Consider the subscheéfma degree 4 in the affine open sgt #
0 defined by the ideal supported at the pdiht0, 0] with ideal at this point
generated by(u; /ug)?, uyuz/u3, and (uz/ug)?. The linear systemZz(3)|
is of dimension 5 and consists of cubics of the fovtugu; (au; + bus) +
g3(u1,u2)). One easily computes APf). It is generated by the polynomial
upu — uu; and all monomials excepiu; andugu3. We see thalZz(3)| C
|APs(f)]. ThusZ is a degenerate generalized polar quadrangle afid 3.31)
holds.

O

Remark3.2.4 We know already the variety VS, 4) in the case wheid

is the union of concurrent lines. In the remaining cases which have been ex-
cluded, the variety VS§, 4) is a reducible surface. Its description is too in-
volved to discuss it here. For example,(fis an equianharmonic cubic, it
consists of four irreducible components. Three components are isomorphic to
IP2. They are disjoint and each contains an open dense subset parametrizing
degenerate polar quadrangles. The fourth component contains an open subset
of base schemes of irreducible pencils of apolar conics. It is isomorphic to the
blow-up of |AP, | at three points corresponding to reducible pencils. Each of
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the first three components intersects the fourth component along one of the
three exceptional curves.

3.3 Projective generation of cubic curves

3.3.1 Projective generation

Suppose we have: differentr-dimensional linear systemg;| of hypersur-
faces of degreeg; in P™. Choose projective isomorphisms P — |L;| and
consider the variety

Z={(\z)eP xP":zecdp(N)N...Ndm(N)}. (3.32)

The expected dimension of a general fibre of the first projectipn gr— P”
is equal ton — m. Assume

e Z isirreducible of dimension + n — m
o the second projection pr Z — P™ is of finite degre€; on its imageX .

Under these assumptionk, is an irreducible subvariety of dimension-n —
m.

Proposition 3.3.1
deg X = s,.(d1,...,dn)/k.

wheres,. is ther-th elementary symmetric functionsim variables.

Proof It is immediate thatZ is a complete intersection 8" x P™ of m
divisors of type(1, d;). LetII be a general linear subspaceFif of codimen-
sionn — m + r. We use the intersection theory fro@6{3. Let h; andh, be
the natural generators @f2?(P" x P",Z) equal to the preimages of the co-
homology classes;, hy of a hyperplane i andP™, respectively. We have
(pry)«([Z]) = k[X]. By the projection formula,

(pry)«([2]) = (pry)« (] [ (ha + djha)) = (pry)- Zsj di,....dy)RIRT)

j=1

Intersecting witmgl*m”, we obtain thak deg X = s,.(d1,...,dnm).
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Since through a general point i* passes a unique member of a pencil,
k=1ifr=1.

The following example isSteiner’'s constructioof rational normal curves
of degreen in P*. We have used it already in the case of conics referring for
the details to295.

Example3.3.1 Letr = 1,m =nandd; = ... =d, = 1. Letpy,...,p,

be linearly independent points " and letP; be the pencil of hyperplanes
passing through the codimension 2 subspace spanned by all points gxcept
Choose a linear isomorphisg : P! — P; such that the common hyperplane
H spanned by all the points corresponds to different paramgter®!.

Let H;(A) = ¢;(\). A line contained in the intersectioH;(A) N ... N
H, (\) meetsH, and henced meets eaclHi;(\). If H is different from each
H;()), this implies that the base loci of the penci’s meet. However this
contradicts the assumption that the pointgre linearly independent. i =
H,(\) for somei, thenH N H; () is equal to the base locus Y. Thus the
intersectio (A)N...NH, (X\) consists of the poin;. This shows that, under
the first projection pr: Z — P!, the incidence variety3(32) is isomorphic to
P! . In particular, all the assumptions on the pengijsire satisfied witlt = 1.
Thus the image of in P™ is a rational curvek,, of degreen. If ¢;(\) = H,
then the previous argument shows that R,,. Thus all pointgy, ..., p, lie
on R,. Since all rational curves of degreein P" are projectively equivalent,
we obtain that any such curve can be projectively generated jpgncils of
hyperplanes.

More generally, leP, ..., P, ben pencils of hyperplanes. Since a projec-
tive isomorphismy; : P* — P; is uniquely determined by the images of three
different points, we may assume tha{\) = V(\ol; + A\ym;) for some lin-
ear formd;, m;. Then the intersection of the hyperplarggA) N...N ¢, (\)
consists of one point if and only if the systemyofinear equations with + 1
unknowns

Xoli +Aimi =...= Xol, + A\ym,, =0
has a one-dimensional space of solutions. Under some genericity assumption
on the choice of the pencils, we may always assume it. This shows that the

rational curveR,, is projectively generated by the pencils, and its equations
are expressed by the condition that

rank(lo Lo ... l”><1.

mo M1 ... My

Observe that the maximal minors of the matrix define quadri@*iof rank
<A4.
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Example3.3.2 Take two pencilsP; of planes inP? through skew lineg;.
Choose alinear isomorphisn: P! — P;. Then the union of the lineg; (A\)N
$2()) is equal to a quadric surface#¥ containing the lineg;, ¢5.

3.3.2 Projective generation of a plane cubic

We consider a special case of the previous construction whete2, r = 1
andm = 2. By Lemma3.3.], X is a curve of degreé, + d». Assume that the
base locus of the pencit; consists ofi? distinct points and the two base loci
have no points in common. It is clear that the union of the base loci is the set
of d? + d2 points onX.

Take a pencil of line$; and a pencil of conic®,. We obtain a cubic curve
C containing the base point of the pencil of lines and 4 base points of the pencil
of conics. The penciP, cuts out onC' a g3. We will use the following.

Lemma 3.3.2 For any g3 on an irreducible reduced plane cubic curve, the
lines spanned by the divisor frog intersect at one point on the curve.

Proof The standard exact sequence
0 — Op2(—2) — Op2(1) —» O¢c(1) = 0

gives an isomorphisnt/® (P2, Op2 (1)) = H°(C,Oc(1)). It shows that the
pencil g is cut out by a pencil of lines. Its base point is the point whose exis-
tence is asserted in the Lemma. O

The point of intersection of lines spanned by the divisors frogy avas
called by Sylvester theoresidual poinof C' (see p38, p. 134).

Let C' be a nonsingular plane cubic. Pick up four points@mo three of
them lying on a line. Consider the pencil of conics through these pointg. Let
be the coresidual point of thg on C defined by the pencil. Then the pencil
of lines throughy and the pencil of conics projectively generéate

Note that the first projection pr: Z — P! is a degree 2 cover defined by
the g3 cut out by the pencil of conics. It has 4 branch points corresponding to
lines ¢, (\) which touch the conigs ().

There is another way to projectively generate a cubic curve. This time we
take three nets of lines with fixed isomorphismsto P2. Explicitly, if A =
Mo A1, do] € P2 andg;(A) = V(e + alt; + alt,), Whel’ea;i) are

linear forms in\g, A1, A2, thenC' is given by the equation
aél) agn ag)
det aé2) agz) a(22) =0.

aéS) agi’)) aéS)
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This is an example of a determinantal equation of a plane curve which we will
study in detail in the next Chapter.

3.4 Invariant theory of plane cubics

3.4.1 Mixed concomitants

It allows one to relate the invariant theory of homogeneous forms in1
variables to the invariant theory of homogeneous forms yariables. LetF,
as usual, denote a complex vector space of dimensienl. Recall that the
main object of study in the invariant theory isvaxed combinantan element
® of the tensor product

r k s
®Smi (SH(EY)Y @ ®sz' (EY)® ®Sqi (E)

which is invariant with respect to the natural linear representation ¢£$L
on the tensor product. We will be dealing here only with the cases when
1,k,s < 1.1f k = s = 0, ® is aninvariantof degreen; on the spac&?(E").
If £ =1,s =0, then® is acovariantof degreen and ordep. If k = 0,s =1,
then® is acontravariantof degreem and classg). If K = s = 1, then® is a
mixed concomitarmf degreemn, orderp and clasg.

Choosing a basisy, . .. ,u, in E, and the dual basis, .. .,t, in EV, one
can write an invarian® € S™(S4(EV))Y = S™(S(E)) as a homogeneous
polynomial of degreen in coefficients of a general polynomial of degrée
in ug, ...,u, which are expressed as monomials of degtée ug, ..., u,.
Via polarization, we can consider it as a multihomogeneous function of degree
(d,...,d)on(E*)™. Symbolically it is written as a product ofs sequences
(i1 ...1,) of numbers from{1, ..., m} such that each number appedtsnes.
The relation

(n+ Dw=md

must hold. In particular, there are no invariants if- 1 does not dividend.
The numberw is called theweightof the invariant. When we apply a linear
transformation, it is multiplied by the-th power of the determinant.

A covariant® € S™(S4(EVY))Y @ SP(EY) can be written as a polynomial
of degreem in coefficients of a general polynomial of degréand of degree
pin coordinates,, . . ., t,. Via polarization, it can be considered as a multiho-
mogeneous function of degréd, . .., d,p) on (EV)™ x E. Symbolically, it
can be written as a product efexpressionsj . . . j,,) andp expressionsi),
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where each number frof, ..., m} appears! times. We must have
(n+1)w + pn = md.

A contravariantb € S™(S%(EY))"®5%(E) can be written as a polynomial
of degreem in coefficients of a general polynomial of degréand of degree
qinug,...,uy. Via polarization, it can be considered as a multihomogeneous
function of degre€d, ..., d, q) on (EY)™ x EY. Symbolically, it can be writ-
ten as a product af expressionsj . . . j,) andg expressionsi; . . . iy, ). We
have

(n+ 1w + gn = md.

A mixed concomitan® € S™(SY(EY))Y®SP(EY)®S7(E) can be written
as a polynomial of degree in coefficients of a general polynomial of degree
d, of degreep in ¢, ..., t,, and of degree in uy, . .., u,. Via polarization, it
can be considered as a multi-homogeneous function of dédree , d, p, q)
on(EY)™ x E x EV. Symbolically, it can be written as a productiofexpres-
sions(jo, . .., jn), p €XPressiongi), andq expressiongii, ..., i,)s, Where
each number frorg1, ..., m} appearsl times. We have

(n+ Dw+ (a+ b)n = md.

Note that instead of numbeis. .., m classics often employeoh letters
a,b,c,....

For example, we have met already the Aronhold invariérasid T of de-
grees 4 and 6 of a ternary cubic form. Their symbolic expressions are

S = (123)(124)(134)(234) = (abc)(abd)(acd)(bed),
T = (123)(124)(135)(256)(456)* = (abc)(abd)(ace)(bef)(def)?.

3.4.2 Clebsch’s transfer principle

It allows one to relate invariants of polynomialsirvariables to contravariants
and covariants of polynomials im+ 1 variables.

Start from an invarian® of degreem on the spac&?((C™)V) of homoge-
neous polynomials of degreg We will “transfer it” to a contravarian® on
the space of polynomials of degréén »n + 1 variables. First we fix a volume
form w on E. A basis in a hyperplan& C FE defines a linear isomorphism
C™ — U. We call a basis admissible if the pull-back of the volume form un-
der this linear map is equal to the standard volume fefm ... A e,,. For
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any« € EV, choose an admissible bagis?,...,v%) in Ker(a). For any
(I1,...,lm) € (EV)™, we obtainn vectors inC™, the columns of the matrix
L (vf) In (v7)
A =
Li(vy) I (0)

The value of® on this set of vectors can be expressed as a linear combination
of the product of maximal minonsA;|, where each column occudgimes. It

is easy to see that each mindy, , isequaltothevaluedf, A...Al; €

A" EY onuvl AN vi' under the canonical pairing

/n\EVx/n\E—MC.

Our choice of a volume from of allows us to identify\" E with EV. Thus
any minor can be considered as multilinear function( &)™ x E and its
value does not depend on the choice of an admissible basis (a X&ymbol-
ically, (1 . ..,) becomes the bracket expression. . . i, ),. This shows that
the invariant®, by restricting to the subspaces Key, defines a contravariant
® on SU(EV) of degreem and clasg = md/n.

Example3.4.1 Let ® be the discriminant of a quadratic formrinvariables. It

is an invariant of degres. = n on the space of quadratic forms. Its symbolic
notation is(12...n)2. Its transfer tP" is a contravarian® of degreen and
classq = 2n/n = 2. Its symbolic notation i§12...7)2. Considered as map
® : S?EY — S?E, the value of®(q) onu € EV is the discriminant of the
quadratic form obtained from restriction gfto Ker(u). It is equal to zero if
and only if the hyperplan® () is tangent to the quadrig (¢). ThusV (®(q))

is the dual quadrié’(¢)".

Example3.4.2 Consider the quadratic invariaBt on the space of binary
forms of even degreé = 2k with symbolic expressiori12)*. We write a
general binary fornf € S¢(U) of degreed symbolically,

f = (&oto + &1t1)*" = (noto + mt1)*,

where(&o, £1) and(no, 71 ) two copies of a basis il and(ty, ¢1) its dual basis.
Then the coefficients of are equal td{)a;, wherea; = ¢J¢* ™7 = nin?" .

ThusS is equal to

2k

(€om — &) = Z(*l)j (Qf) (€om)? (€1mo)?F 7

j=0
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2k

= > W CIEE ) mng" )

=0

2k

- Z(_l) (;l ajagk—j = 2(zk: Majask—; + 3 (Qkk)ak).

Jj=0 Jj=0

We have already encountered this invariant in the dase3 (see subsection
1.5.9).

The transfer of is the contravariant of degree 2 and cldssith symbolic
expressionabu)?. For example, whed = 4, its value on a quartic ternary
form f is a quartic form in the dual space which vanishes on lines which cut
onV (f) in a harmonic set of 4 points. The transfeof the invariant of degree
3 on the space of quartic binary forms defines a contravariant of ¢ldss
value on a quartic ternary form is a ternary form of degree 6 in the dual space
which vanishes on the set of lines which cut ouligf) an equianharmonic
set of 4 points.

One can also define Clebsch’s transfer of covariants of degraed order
p, keeping the factors, in the symbolic expression. The result of the transfer
is a mixed concomitant of degree, orderp and classnd/n.

3.4.3 Invariants of plane cubics

Since this material is somewhat outside of the topic of the book, we state some
of the facts without proof, referring to classical sources for the invariant theory
(e.g. 129, t. 2, [538).

We know that the ring of invariants of ternary cubic forms is generated by
the Aronhold invariant§ andT. Let us look for covariants and contravariants.
As we know from subsectioh.5.1, any invariant of binary form of degree 3 is
a power of the discriminant invariant of order 4, and the algebra of covariants
is generated over the ring of invariants by the identical covatiantf — f,
the Hessian covariari of order 2 with symbolic expressiofub)a,b,, and
the covariantl = Jad f, H) of degree 3 and order 6 with symbolic expression
(ab)?(ca)b,c2. Clebsch’s transfer of the discriminant is a contravariamf
degreet and class$. Its symbolic expression igibu)?(cdu)? (acu)(bdu). Its
value on a general ternary cubic form is the form defining the dual cubic curve.
Clebsch'’s transfer dfl is a mixed concomitartd of degree2, order 2 and class
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2. Its symbolic expression i@bu)?a,b,. Explicitly, up to a constant factor,

fOO fOl f02 Uo

flO fll f12 Uy
© = det , 3.33
¢ f20 f21 f22 U2 ( )

Uug U1 U 0

wheref;; = %.

The equationd(f,z,u) = 0, for fixed z, is the equation of the dual of
the polar conicP,(V (f)). The equatior®(f,z,u) = 0, for fixed v, is the
equation of the locus of points such that the first polaP, (V' (f)) is tangent
to the lineV (u). It is called thepoloconicof the lineV (u). Other description
of the poloconic can be found in Exercises.

The Clebsch’s transfer of is a mixed concomitan® of degree3, or-
der 3 and class 3. Its symbolic expressionidsu)?(cau)c2b,.. The equation
Q(f,z,u) = 0, for fixedw, is the equation of the cubic curve such that second
polars of P,.(V(f)) of its points intersect («) at a point conjugate to with
respect to the poloconic &f (). A similar contravariant is defined by the con-
dition that it vanishes on the set of pairs «) such that the liné (u) belongs
to the Salmon envelope conic of the polarscofith respect to the curve and
its Hessian curve.

An obvious covariant of degree 3 and order 3 is the Hessian determinant
H = det He(f). Its symbolic expression ig&bc)?a,b..c,.. Another covarian
is defined by the condition that it vanishes on the locus of paisisch that the
Salmon conic of the polar of with respect to the curve and its Hessian curve
passes through. It is of degree8 and order6. Its equation is the following
bordered determinant

foo for foz ho
fio fu fiz M

fao for fa2 ha
hg hi hy O

wheref;; = affaf;j chi = 25 (see BO],[129), t. 2, p. 313). The algebra of
covariants is generated ty; H, G and theBrioschi covarian{58]. J(f,H, G)

whose value on the cubi8(/) is equal to

(1+80”) (] — 3)(3 — 1) (£ — 11)-

Comparing this formula with3.16), we find that it vanishes on the union of 9
harmonic polars of the curve. The square of the Hermite covariant is a polyno-
mial in U, H, G.

The Cayleyan of a plane cubic defines a contravaRasftdegree 3 and class
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3. Its symbolic expression i&bc)(abu)(acu)(beu). Its value on the curve in
the Hesse form is given irB(27). There is also a contravariaf} of degree

5 and class 3. In analogy with the form of the word Hessian, A. Cayley gave
them the names thRippian and theQuippian[81]. If C = V(f) is given in

the Hesse form3.7), then

Q(f) = V((1 = 10a®) (ud + u? + u3) — 60°(5 + 40> )uguius).
The full formula can be found in Cayley’s pap&f]. He also gives the formula
H(6aP + bQ) = (8Sa® + 3Ta*b — 24S%ab* — TS*H*)Q.

According to A. ClebschQ( f) vanishes on the locus of lines whose poloconics
with respect to the Cayleyan 6f are apolar to their poloconics with respect to
C'. Also, according to W. Milne and D. TayloP( f) is the locus of lines which
intersectC' at three points which, considered as lines in the dual plane, define
a reducible cubic apolar to the Hessiand{see §29). This is similar to the
property of the Pippian which vanishes on the set of lines which intesett
three point which define a reducible cubic in the dual plane apolar to the curve
itself. The algebra of contravariants is generatedbly, Q and theHermite
contravariant[316. Its value on the cubic in the Hesse form is equal to

(1 +80”) (uf — u3) (u3 — ug) (ug — uf).

It vanishes on the union of 9 lines corresponding to the inflection points of the
curve. The square of the Hermite contravariant is a polynomigél ih Q.

Exercises

3.1Find the Hessian form of a nonsingular cubic given by the Weierstrass equation.

3.2Let H = He(C) be the Hessian cubic of a nonsingular plane cubic carwehich
is not an equianharmonic cubic. Let H — H be the Steinerian automorphism &f
which assigns ta € H the unique singular point a?, (C').

() Let H = {(a,0) € H x (P*)" : £ C Pa(C)}. Show that the projectiop; :
H — H is an unramified double cover.
(i) Show thatH = H/(r).

3.3LetC = V(f) C P? be a nonsingular cubic.

(i) Show that the set of second polarstdfvith respect to points on a fixed lirfds
dual conic of the poloconic af' with respect td.

(i) Show thatK (¢) is equal to the set of poles dfwith respect to polar conics
P,(C), wherezx € ¢.

(iii) What happens to the coni€(¢) when the line/ is tangent ta_'?

(iv) Show that the set of linessuch that (¢) is tangent tc is the dual curve of.



158

Plane cubics

(v) Letl = V(aoto + a1t1 + aztz2). Show thatk (¢) can be given by the equation

0 ao al az
aw &L o2 f o f
ot3 dtoOty At oty
g(a,t) = det 22§ o2y o2r | =0.
a1 Bat, a2 t1 0ty
as 2 oy 9%
Bty dtg Ot 0ty ot3

(vi) Show that the dual curve™ of C can be given by the equation (tisehkfli

equation
0 2 60 2 51 2 52
9%g(&:t) 97g(&:t) 9%g(&:t)
det 50 2;% (5) g;t(éatl (5) 85)6%2 (5)
€ 9%g(&:t) 9%g(&:t) 97g(&:t)
& atglato () gt% ©) atglatg (3
9%g(&,t) 9%g(&,1) d%g(,t)
& TEE() FuEN() Luen g

3.4LetC C P*! be an elliptic curve embedded by the linear syst€da: (dpo)|,
wherepy is a point inC. Assumed = p is prime.

(i) Show that the image of amytorsion point is an osculating point 6f, i.e., a point
such that there exists a hyperplane ¢anulating hyperplanevhich intersects the
curve only at this point.

(i) Show that there is a bijective correspondence between the sets of cdg&ts B>
with respect to subgroups of orderand hyperplanes iB*~! which cut out inC
the set ofp osculating points.

(iif) Show that the set gi-torsion points and the set of osculating hyperplanes define
a(p2.1,p(p+1),)-configuration ofp* points ancp(p + 1) hyperplanes (i.e. each
point is contained ip + 1 hyperplanes and each hyperplane contaipsints).

(iv) Find a projective representation of the groi@ypZ)* in PP~ such that each
osculating hyperplane is invariant with respect to some cyclic subgroup of prder
of (Z/pZ)>.

3.5A point on a nonsingular cubic is calledeaxtactic poinif there exists an irreducible
conic intersecting the cubic at this point with multiplicity 6. Show that there are 27
sextactic points.

3.6 The pencil of lines through a point on a nonsingular cubic curveontains four
tangent lines. Show that the twelve contact points of three pencils with collinear base
points onC lie on 16 lines forming a configuratiofi2s, 163) (theHesse-Salmon con-
figuration).

3.7Show that the cross ratio of the four tangent lines of a nonsingular plane cubic curve
which pass through a point on the curve does not depend on the point.

3.8 Prove that the second polar of a nonsingular cébiwith respect to the point on

the Hessian HE”') is equal to the tangent lirfE, (He(C')).

3.9Leta, b be two points on the Hessian curve(d8 forming an orbit with the respect

to the Steinerian involution. Show that the lin& is tangent to Cal’) at some point

d. Let ¢ be the third intersection point of K€') with the lineab. Show that the pairs
(a,b) and(c, d) are harmonically conjugate.

3.10 Show that from each point on the HEC') one can pass three tangent lines to
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Cay(C). Let b be the singular point of,(C). Show that the set of the three tangent
lines consists of the lineb and the components of the reducible polar cdnj¢C).

3.11LetC = V(3 )<icj<r<a @ijktitjtr). Show that the Cayleyan curve Gay) can
be given by the equation

aooo  aocor  aooz & 0 O
a0 a1 a2 0 &0
aze0 a221  aze 0 0 &
2a120 2a121 2a122 0 & &
2a200 2a201 2a202 62 0 51
2a010 2a011 2a012 &1 & O

det

[125, p. 245.

3.12 Show that any general net of conics is equal to the net of polars of some cu-
bic curve. Show that the curve parameterizing the irreducible components of singular
members of the net coincides with the Cayleyan curve of the cubic (it is called the
Hermite curveof the net.

3.13 Show that the group of projective transformations leaving a nonsingular plane
cubic invariant is a finite group of order 18, 36 or 54. Determine these groups.

3.14Find all ternary cubic€” such that VSRC, 4)° = ().

3.15Show that a plane cubic curve belongs to the closure of the Fermat locus if and
only if it admits a first polar equal to a double line or the whole space.

3.16Show that any plane cubic curve can be projectively generated by a pencil of lines
and a pencil of conics.

3.17Given a nonsingular coni&” and a nonsingular cubi€, show that the set of points
z such thatP, (C') is inscribed in a self-polar triangle @€ is a conic.

3.18A complete quadrilateral is inscribed in a nonsingular plane cubic. Show that the
tangent lines at the two opposite vertices intersect at a point on the curve. Also, show
that the three points obtained in this way from the three pairs of opposite vertices are
collinear.

3.19Let o be a point in the plane outside of a nonsingular plane cthi€onsider

the six tangents t@' from the pointe. Show that there exists a conic passing through
the six points orC' which lie on the tangents but not equal to the tangency points. It is
called thesatellite conicof C' [15€]. Show that this conic is tangent to the polar conic
P, (C) at the points where it intersects the polar lifg (C).

3.20Show that two general plane cubic curvgsandC> admit a common polar pen-
tagon if and only if the panes of apolar conjéd, (C1 )| and|APz(C>)| intersect.

3.21Let C be a nonsingular cubic anl be its apolar cubic in the dual plane. Prove
that, for any point orC, there exists a conic passing through this point such that the
remaining 5 intersection points witti form a polar pentagon ok [545.

3.22Let p, q be two distinct points on a nonsingular plane cubic curve. Starting from an
arbitrary pointp, find the third intersection poin; of the lineppy with C, then define

p2 as the third intersection point of the limg; with C, and continue in this way to
define a sequence of points, g1, p2, q2, - - -, gk, Pk+1 ON C. Show thatpy41 = p; if

and only ifp — ¢ is ak-torsion point in the group law o defined by a choice of some
inflection point as the zero point. The obtained polydgn, ¢1, . .., gk, p1) is called

the Steiner polygoiinscribed inC'.

3.23Show that the polar conif, (C') of a pointz on a nonsingular plane cubic curve
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C cut out onC the divisor2z + a + b+ ¢ + d such that the intersection points N cd,
ac N bd andad NbclieonC.

3.24Show that any intersection point of a nonsingular cubiand its Hessian curve is
a sextactic point on the latter.

3.25Fix three pairs(p;, ¢;) of points in the plane in general position. Show that the
closure of the locus of points such that the 3 pairs of liné;, zg; are members of a
g3 in the pencil of lines through is a plane cubic.

3.26Fix three point1, p2, ps in the plane and three linés, ¢2, ¢5 in general po-
sition. Show that the set of poinissuch that the intersection points@h; with ¢; are
collinear is a plane cubic curv@g9.

Historical Notes

The theory of plane cubic curves originates from the works of I. New4od][

and his student C. MacLaurid15. Newton was the first who classified real
cubic curves and he also introduced the Weierstrass equation. Much later K.
Weierstrass showed that the equation can be parameterized by elliptic func-
tions, the Weierstrass functiogpgz) andgp(z)’. The parameterization of a cu-

bic curve by elliptic functions was widely used for defining a group law on
the cubic. We refer tog41] for the history of the group law on a cubic curve.
Many geometric results on cubic curves follow simply from the group law and
were first discovered without using it. For example, the fact that the line join-
ing two inflection points contains the third inflection point was discovered by
MacLaurin much earlier before the group law was discovered. The book of
Clebsch and Lindemani 25 contains many applications of the group law to
the geometry of cubic curves.

The Hesse pencil was introduced and studied by O. H&4s&[[318. The
pencil was also known as tteyzygetic pencilsee [L25). It was widely used
as a canonical form for a nonsingular cubic curve. More facts about the Hesse
pencils and its connection to other constructions in modern algebraic geometry
can be found in14].

The Cayleyan curve first appeared in Cayley’s pap8f. [The Schéfli equa-
tion of the dual curve from Exercises was given by L. &flhin [542. Its
modern proof can be found i2¢4].

The polar polygons of a plane cubics were first studied by F. Londof] [
Thus London proves that the set of polar 4-gons of a general cubic curve are
base points of apolar pencils of conics in the dual plane. A modern treatment
of some of these results is given Y4 (see also$03 for related results). A
beautiful paper of G. Halpher8Q3 discusses the geometry of torsion points
on plane cubic curves.
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Poloconics of a cubic curve are studied extensively indgeis book 211].
The term belongs to L. Cremona#6| (conic polar in Salmon’s terminology).
0. Schlessinger proved iB45 that any polar pentagon of a nonsingular cubic
curve can be inscribed in an apolar cubic curve.

The projective generation of a cubic curve by a pencil and a pencil of conics
was first given by M. Chasles. Other geometric ways to generate a plane cubic
are discussed in Dage’s book 211]. Steiner polygons inscribed in a plane
cubic were introduced by J. Steiner 8F. His claim that their existence is
an example of a porism was given without proof. The proof was later supplied
by A. Clebsch 118,.

The invariant$ andT of a cubic ternary form were first introduced by Aron-
hold [11]. G. Salmon gave the explicit formulas for them BBB. The basic
covariants and contravariants of plane cubics were given by A. Ca80kyHe
also introduced 34 basic concomitan®§][ They were later studied in detail
by A. Clebsch and P. GordatZ2. The fact that they generate the algebra of
concomitants was first proved by P. Gord@8(@ and S. Gundelfinger30D(.

A simple proof for the completeness of the set of basic covariants was given
by L. Dickson [L83. One can find an exposition on the theory of invariants of
ternary cubics in classical books on the invariant the@8#], [233.

Cremona’s papeflpq is a fundamental source of the rich geometry of plane
curves, and in particular, cubic curves. Other good sources for the classical
geometry of cubic curves are books by Clebsch and LindemE&2, [t. 2, by
H. Durége R11], by G. Salmon 538, by H. White [655 and by H. Schroter

[549.



4
Determinantal equations

4.1 Plane curves

4.1.1 The problem

Let us consider the following problem. Lé{to,...,t,) be a homogeneous
polynomial of degred, find ad x d matrix A = (l;;(t)) with linear forms as
its entries such that

We say that two determinantal representations defined by matrice$’ are
equivalentif there exists two invertible matrices X,Y with constant entries such
that A’ = X AY. One may ask to describe the set of equivalence classes of
determinantal representatuions.

First, let us reinterpret this problem geometrically and coordinate-free. Let
E be a vector space of dimensien+ 1 and letU, V' be vector spaces of
dimensiond. A square matrix of sizé x d corresponds to a linear map’ —

V, or an element o/ ® V. A matrix with linear forms corresponds to an
elementofEY @ U@ V,oralinearmap’ : E - U ®V.

We shall assume that the map is injective (otherwise the hypersurface
V(f) is a cone, so we can solve our problem by induction on the number of
variables). Let

¢:|E|l—=|UV] (4.2)

be the regular map of the associated projective spacesDket |U ® V|

be thedeterminantal hypersurfagearameterizing non-invertible linear maps
UY — V. If we choose bases ifi, V, thenD; is given by the determinant of
a square matrix (whose entries will be coordinate# ity V). The preimage
of D, in |E| is a hypersurface of degrele Our problem is to construct such a
map¢ in order that a given hypersurface is obtained in this way.
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Note that the singular locuB5"™ of D, corresponds to matrices of corank

> 2. Itis easy to see that its codimension|ii ® V| is equal to4. If the
image of|E| intersectsD3"%, thens~(D,) will be a singular hypersurface.
So, a nonsingular hypersurfat& f) of dimension> 3 cannot be given by

a determinantal equation. However, tit still could be true for the hypersurface

V(f*).

4.1.2 Plane curves

Let us first consider the case of nonsingular plane cuéves V(f) c P2
Assume thaC' has a determinantal equation. As we have explained earlier, the
image of the map does not interse@®3". Thus, for anyr € C, the corank of

the matrix¢(z) is equal to 1 (here we consider a matrix up to proportionality
since we are in the projective space). The null-space of this matrix is a one-
dimensional subspace &f", i.e., a point inP(U). This defines a regular map

[:C —PU), xw— |Ker(éd(x))]-

Now lett¢(x) : VV — U be the transpose map. In coordinates, it corresponds
to the transpose matrix. Its null-space is isomorphic tédfm))- and is also
one-dimensional. So we have another regular map

t:C—=P(V), z— |Ker(‘o(z))].
Let
L= [*O]P’(U)(l)7 M= V*O]P’(V)(l)'

These are invertible sheaves on the cufv&Ve can identifyl/ with H°(C, £)
andV with H°(C, M) (see Lemmat.1.2below). Consider the composition
of regular maps

v S PU) x P(V) 22 P(U @ V), (4.3)
wheres, is the Segre map. It follows from the definition of the Segre map,
that the tensor)(z) is equal tol(z) ® t(z). It can be viewed as a linear map
U — VV. In coordinates, the matrix of this map is the product of the column
vector defined by(z) and the row vector defined Byz). Itis a rank 1 matrix
equal to the adjugate matrix of the mateix= ¢(z) (up to proportionality).
Consider the rational map

Adj: |[URV|- —-PUV) (4.4)

defined by taking the adjugate matrix. Recall that the adjugate matrix should
be considered as a linear maf;f’_l Uy — /\d_1 V' and we can identify
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UY @ VY| with |\ U @ A! V|. Although Adj is not well-defined on
vector spaces, it is well-defined, as a rational map, on the projective spaces
(see Exampld.1.2. Let ¥ = Adj o ¢, theny is equal to the restriction of to

C. Since Adj is defined by polynomials of degrée 1 (after we choose bases

in U, V), we have

U Opwev)(1) = Ojp/(d —1).
This gives
V*Opwgvy(1) = Og|(d—1) ® Oc = O¢(d - 1).
On the other hand, we get
V*Opwgvy(1) = (s20 (1,1)" Opwevy (1)
= (L) (s50pwav) (1) = (L) (P Opw) (1) @ P3Op(v) (1))

= "Op(u)(1) ® " Op(v) (1) = L& M.

Herep, : P(U) x P(V) — |U|, p2 : P(U) x P(V)) — P(V) are the projection
maps. Comparing the two isomorphisms, we obtain

Lemma4.1.1
L&MOc(d—1). (4.5)

Remark4.1.1 It follows from Examplel.1.2that the rational map4(4) is

given by the polars of the determinantal hypersurface. In faet,# (¢;;) is a
matrix with independent variables as entries, tﬁ%% M;;, whereM;;

is theij-th cofactor of the matrixd. The map Adj is a birational map smce
Adj(A) = A~ det(A) and the mapd — A~! is obviously invertible. So, the
determinantal equation is an example of a homogeneous polynomial such that
the corresponding polar map is a birational map. Such a polynomial is called a
homaloidal polynomia(see [L97]).

Lemma4.1.2 Letg = 1(d—1)(d — 2) be the genus of the cur¢e. Then
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Proof Let us first prove (iii). A nonzero section &f°(C, £(—1)) is a section
of £ which defines a hyperplane B(U) which intersect$(C') along a divisor
[(D), whereD is a divisor onC' cut out by a line. Since all such divisof$
are linear equivalent, we see that for any linte divisor((£ N C') is cut out
by a hyperplane if?(U). Choose such that it intersect§' atd distinct points
x1,...,24. Choose bases i andV. The image of(¢) in |[U®V| = P(Maty)
is a pencil of matrices\A + pB. We know that there aré distinct values
of (A, 1) such that the corresponding matrix is of corank 1. Without loss of
generality, we may assume thatand B are invertible matrices. So we haive
distinct)\; such that the matri¥l + \; B is singular. Let.’ span KefA+ \; B).
The corresponding points [A(U) are equal to the point$t;). We claim that
the vectorsu!, ..., u? are linearly independent vectorsIU ). The proof is
by induction ond. Assumea;u! + - - - 4+ aqu® = 0. ThenAu’ + \;Bu’ = 0
foreachi =1,...,d, gives

d d d
0= A(Z aiui) = ZaiAui = — Zai)\iBui.
i=1 i=1 i=1
We also have
d d
0= B(Z aiui) = ZaiBui.
i=1 i=1

Multiplying the second equality b, and adding it to the first one, we obtain

d—1 d—1
ai(Aa — M) Bu' = B(>_ a;(Ag — \i)u') = 0.

1 i=1

%

SinceB is invertible, this gives

d—1 '
Zai()\i — )\d)u’ =0.
i=1

By induction, the vectors!, ..., u%"! are linearly independent. Since #
g, We obtaina; = ... = ag_; = 0. Sinceu? # 0, we also getiy = 0.
Sinceu!, ..., u% are linearly independent, the poirits;) spanP(U). Hence

no hyperplane contains these points. This proves #C, £(—1)) = 0.
Similarly, we prove that7°(C, M(—1)) = 0. Applying Lemma4.1.1, we get

L(-1) @ M(-1) 2 Oc(d-3) =wc, (4.6)
wherew( is the canonical sheaf aii. By duality,

HY(C,M(-1)) =2 H™(C,£L(-1)), i =0,1.
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This proves (iii). Let us prove (i) and (ii). Lét be a section 0® (1) with
subscheme of zeros equal #b. The multiplication byh defines an exact se-
qguence

0—-L(-1)>L—>L®Og —0.

After passing to cohomology and applying (iii), we obtdift (C, L) = 0.
ReplacingC with M and repeating the argument, we obtain tHatC, M) =
0. This checks (iv).

We know thatdim H°(C, £) > dimU = d. Applying Riemann-Roch, we
obtain

deg(£) = dim H(C, L) +g—1>d+g— 1.
Similarly, we get
deg(M) >d+g—1.
Adding up, and applying Lemn& 1.1, we obtain
d(d—1) =degOc(d—1) = deg(L) + deg(M) > 2d +29g -2 =d(d—-1).

Thus all the inequalities above are the equalities, and we get assertions (i) and
(ii).
O

Now we would like to prove the converse. L&andM be invertible sheaves
on C satisfying @.5) and properties from the previous Lemma hold. It follows
from property (iv) and the Riemann-Roch Theorem that

dimU =dimV =d.

Letl: C — P(U),t: C — P(V) be the maps given by the complete linear
systemg.| and|M|. We definey : C' — P(U ® V) to be the composition of
(f,t) and the Segre mag. It follows from property 4.5) that the map) is the
restriction of the map

U |E| - PU®V)

given by a linear system of plane curves of degiee 1. We can view this
map as a tensor i~ (EY) ® UY ® V. In coordinates, itis d x d matrix
A(t) with entries from the space of homogeneous polynomials of delree
Since¥|c = ¥, for any pointz € C, we have rankd(z) = 1. Let M be a
2 x 2 submatrix ofA(t). Sincedet M (x) = 0 for € C, we havef | det M.
Consider & x 3 submatrixN of A(t). We havelet adj( V) = det(N)?. Since
the entries of adjV) are determinants df x 2 submatrices, we see th#t |
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det(N)?. SinceC is irreducible, this immediately implies thgt | det(V).
Continuing in this way, we obtain thgt'—2 divides all cofactors of the matrix
A. ThusB = f?~dadj(A) is a matrix with entries in5V. It defines a linear
mapFE — U ® V and corresponding regular map of projective spaces

¢:|E|—=|UV]

whose composition with the map AdjU® V| — P(U®V') coincides with¥.
Since rankB = rank adjA), and rankA(x) = 1, we getthat ranlB(z) = d—
1foranyz € C. So, ifdet B is not identically zero, we obtain th&t(det(B))
is a hypersurface of degrekvanishing onC, hencedet(B) = A f for some
A € C*. This shows thaC' = V (det(B)). To see thatlet(B) # 0, we have
to use property (iii) of Lemmad.1.2 Reversing the proof of this property, we
see that for a general linein |E| the images of the points; € ¢ N C in
P(U) x P(V) are the pointgu’, v*) such that the:"’s spanP(U) and thev’’s
spanP(V). The images of the:;’s in P(U ® V) under the mapl span a
subspacd of dimensiond — 1. If we choose coordinates so that the poixits
andv® are defined by the unit vecto(s, . .., 1,...,0), thenL corresponds to
the space of diagonal matrices. The image of thedinader¥ is a Veronese
curve of degreel — 1 in L. A general point¥(x),x € ¢, on this curve does
not belong to any hyperplane inspanned byl — 1 pointsz;’s, thus it can be
written as a linear combination of the poinkg¢;) with nonzero coefficients.
This represents a matrix of rank This shows thatlet A(x) # 0 and hence
det(B(z)) # 0.

To sum up, we have proved the following theorem.

Theorem 4.1.3 LetC c P? be a nonsingular plane curve of degréeLet
Pic(C)9~! be the Picard variety of isomorphism classes of invertible sheaves
on C of degreeg — 1. Let©® c Pic?”!(C) be the subset parameterizing in-
vertible sheavest with H°(C, F) # {0}. LetL, € Pic~*(C) \ ©, and
Mo = we ® Lyt ThenU = H(C, Lo(1)) andV = HO(C, My (1)) have
dimension/ and there is a unique regular map: P2 — |[U®V/| such thaC'is
equal to the preimage of the determinantal hypersurfageThe composition
of the restriction ofs to C' and the mapAd;j : [U® V| — P(U®V) is equal to
the composition of the majp t) : C — P(U) x P(V) and the Segre map. The
mapsl : C — P(U) andr : C — P(V) are given by the complete linear sys-
tems|Ly(1)| and |M(1)| and coincide with the maps — |Ker(¢(x))| and

x — |Ker(*¢(x))|, respectively. Conversely, given a map P? — |U @ V|
such thatC' = ¢—'(Dy), there exists a uniqué€, € Pic/~*(C) such that
U = HC,Ly(1)), V = H(C,wc(1) ® L;*) and the mapp is defined by
L as above.
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Remark4.1.2 Let X be the set ofl x d matricesA with entries inEY such
that f = det A. The groupG = GL(d) x GL(d) acts on the set by

(01,02) - A=01 ~Ao02_1.
It follows from the Theorem that the orbit spa&g G is equal to Pi¢~'(C) \
O.
We mapLy — Mg = we ® 551 is an involution on Pi¢! \ ©. It corre-
sponds to the involution o defined by taking the transpose of the matrix.

4.1.3 The symmetric case

Let us assume that the determinant representation of a plane irreducible curve
C of degreed is given by a pair of equal invertible sheavés= M. It follows
from Lemmast.1.1and4.1.2that

o L®22=20c(d—1);
e deg(£) = 1d(d —1);

o H(C,L(~1)) = {0}.
Recall that the canonical sheaf is isomorphic taO¢(d — 3). Thus
L(—1)%2 =2 e, 4.7)

Definition 4.1.1 Let X be a curve with a canonical invertible sheaf (e.g.

a nonsingular curve, or a curve on a nonsingular surface). An invertible sheaf
6 whose tensor square is isomorphicutg is called atheta characteristiA
theta characteristic is calledven(resp.odd) if dim H°(X,\) is even (resp.
odd).

Using this definition, we can expres& 1) by saying that
L£=20(1),

wheref is an even theta characteristic (becatiE&C, ) = {0}). Of course,
the latter condition is stronger. An even theta characteristic with no nonzero
global sections (resp. with nonzero global sections) is calladraeffective
theta characteristigresp.effective theta characteris)ic

Rewriting the previous subsection under the assumptiondhat M, we
obtain thatU = V. The mapd = ¢ are given by the linear system§| and
define a magl,l) : C — P(U) x P(U). Its composition with the Segre map
P(U) x P(U) — P(U ® U) and the projection t&(S?(U")) defines a map

Y C —P(S*(UY)) = |S?U|.
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In coordinates, the map is given by

() = 1(x) - (),

wherel(z) is the column of projective coordinates of the pdiat). It is clear
that the image of the map is contained in the variety of rank 1 quadrics in
|UY]. It follows from the proof of Theorem.1.3that there exists a linear map
¢ : P? — |S?(UVY)| such that its composition with the rational map defined
by taking the adjugate matrix is equal, after restrictiorCtoto the map).
The image ofy is a netlV of quadrics in|U|. The imagep(C) is the locus of
singular quadrics inV. For each point: € C, we denote the corresponding
quadric by@,.. The regular mapis defined by assigning to a poiate C' the
singular point of the quadri@... The imageX of C'in |U] is a curve of degree
equal todeg £ = d(d —1).

Proposition 4.1.4 The restriction map
r: H(|U], Op(2)) — H(X, 0x(2))
is bijective. Under the isomorphism
H°(X,0x(2)) = H°(C,£%*) = H°(C,0c(d - 1)),

the space of quadrics ifUU] is identified with the space of plane curves of
degreed — 1. The net of quadric#/ is identified with the linear system of first
polars of the curve.

Proof Reversing the proof of property (iii) from Lemm&l.2 shows that
the image ofC' under the map) : C — P(U ® V) spans the space. In our
case, this implies that the image@funder the mag’ — |S?(UV)| spans the
space of quadrics in the dual space. If the imag€' af P(U') were contained

in a quadric@, then@ would be apolar to all quadrics in the dual space, a
contradiction. Thus the restriction mayis injective. Since the spaces have the
same dimension, it must be surjective.

The composition of the majp: P? — |O\v1(2)], 7 — Q, and the isomor-
phism|Oy(2)| = |Op2(d — 1)| is a maps : P? — |Op2(d — 1)|. A similar
maps’ is given by the first polars — P, (C). We have to show that the two
maps coincide. Recall th&,(C) N C = {c € C : 2 € T.(C)}. In the next
Lemma we will show that the quadri€g,, > € T.(C), form the line in vV
of quadrics passing through the singular pointfequal tor(c). This shows
that the quadri@,(, cuts out inl(C) the divisort(P,(C) N C). Thus the
curvess(z) ands’(x) of degreed — 1 cut out the same divisor oft, hence
they coincide. O



170 Determinantal equations

Lemma 4.1.5 LetW < S%UV) be a linear subspace, andV | be the
locus of singular hypersurfaces. Assumes |W|° is a nonsingular point of

|W 3. Then the corresponding hypersurface has a unique ordinary double point
y and the embedded tangent spdtg(|WV|°) is equal to the hyperplane of
hypersurfaces containing

Proof AssumeW = S(VV). Then|W|® coincides with the discriminant
hypersurfaceD,(|U]) of singular degreel hypersurfaces inU|. If W] is a
proper subspace, th¢W[* = [W[ND4(|U|). Sincex € |[W|*is a nonsingular
point and the intersection is transversal(|IW %) = T, (D4 (|U|) N |W|. This
proves the assertion.

O

We see that a paifC, ), whereC is a plane irreducible curve arlis
a non-effective even theta characteristic@rdefines a neN of quadrics in
|H?(C,6(1))V| such thatC = NS. Conversely, leN be a net of quadrics in
P?=1 = |V|. It is known that the singular locus of the discriminant hypersur-
faceD,(d — 1) of quadrics inP?~! is of codimension 2. Thus a general net
N intersectd,(d — 1) transversally along a nonsingular cui@/eof degreed.
This gives a representation 6fas a symmetric determinant and hence defines
an invertible sheaf and a non-effective even theta characterigti€his gives
a dominant rational map of varieties of dimensi@f + 3d — 16)/2

G(3,S8*(UY))/PGLU)— — |Op=2(d)|/PGL(3). (4.8)

The degree of this map is equal to the number of non-effective even theta char-
acteristics on a general curve of degreeWe will see in the next chapter
that the number of even theta characteristics is equ2d t6(29 + 1), where

g = (d —1)(d — 2)/2 is the genus of the curve. A curvg of odd degree

d = 2k+3 has a unigue vanishing even theta characteristic eqaH@ (k)

with h°(6) = (k + 1)(k + 2)/2. A general curve of even degree does not have
vanishing even theta characteristics.

4.1.4 Contact curves
Let
Ly):C—PU)xP(V)CPURYV)

be the embedding @ given by the determinant representation. By restriction,
it defines a linear map

r LI M = [U[x V] = [Lo M| = [Oc(d—1)|, (D1, D2) — (D1, Da),
(4.9)
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where(D;, D5) is the unique curve of degreé— 1 that cuts out the divisor
D + D, onC. Consider the variety

F ={(z,D1,D3) € P> x |U| x |V|: 2 € (Dy, Ds)}.

It is a hypersurface if?? x |U| x |V| of type (d — 1,1,1). Choose a basis
(ug,...,uq—1) in U and a basigvy, . .., vq—1) in V. They will serve as pro-
jective coordinates ii?(U) andP(V). Let A = (I;;) define the determinantal
representation of’.

Proposition 4.1.6 The incidence variety" is given by the equation

111 . lld (%)
121 [P lgd (5%
det [ © : | =0. (4.10)
lav - lag  ug—1
Ug ce. Ug—1 0

Proof Thebordered determinaf.10 os equal to- ) A;;u;v;, whereA;;

is the (ij)-entry of the adjugate matrix ad}). For anyz € C, the rank of the
adjugate matrix adjd(x)) is equal to 1. Thus the above equation defines a bi-
linear form of rank 1 in the spadé’ @ V'V of bilinear forms ori/ x V. We can
write it in the form (3" a;v;)(>_ bju;), wherel(z) = [ag, ..., aq—1],t(x) =

[bo, - - ., ba—1]. The hyperplan& (3> a;v;) (resp.V (> b;u,)) in |U| (resp|V])
defines a divisoD, € |L£]| (resp.|M]) such thate € (D;, D5). This checks
the assertion. O

Next we use the following determinant identity which is due to O. Hesse
[321].

Lemma4.1.7 LetA = (a;;) be a square matrix of size Let

aiq a2 oo A1k U1l

a1 a22 oo Aok U2
D(A;u,v) :=

a1 Qg2 ... Qg Uk

V1 Vg ... Uk 0

Then
D(A;u,u)D(A;v,v) — D(A;u,v)D(A,v,u) = Pdet(A), (4.11)

whereP = P(ai1,...,akk; U1, - - ., Uk; V1, ..., V%) iS @ polynomial of degree
k in variablesa;; and of degree 2 in variables; andv;.
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Proof ConsiderD(A;w,v) as abilinear function im, v satisfyingD (A4; u, v)
= D(tA; v, u) We haveD(A; Uu, ’U) = — Z Aijuivj, WhereAij is the (’L])-
entry of ad[ 4). This gives

D(A7 Uu, U)D(Aa v, ’U) - D(Aa u, U)D(Aa v, u)

= (Z Aijuiuj)(z Ajjvivg) — (Z Aij“ivj)(z Ajiuivy)

= Zuaubvcvd(AabAdc - AacAdb)~

Observe thatd,, Aq. — AqcAap is equal to & x 2-minor of adj A). Thus,

if det A = 0, all these minors are equal to zero, and the left-hand side in
(4.11) is equal to zero. This shows thdét A, considered as a polynomial

in variablesa;;, divides the left-hand side o#(11). Comparing the degrees
of the expression in the variables;, u;, v;, we get the assertion about the
polynomial P. O

Let us see a geometric meaning of the previous Lemma. The dyre
V(D(A;u,u)) intersects the curvé’ = V(det A) atd(d — 1) points which
can be written as a sum of two divisafs, € |£| and D!, € | M| cut out by
the curveV (D(A;u,v)) andV (D(A4; v,u)), where[v] € P(V). Similarly, the
curveT, = V(D(A;v,v)) intersects the curvé’ = V(det A) atd(d — 1)
points which can be written as a sum of two divisars € |£| andD;, € | M|
cut out by the curvd” (D (A4; u,v)) andV (D(A4;v,u)), where[u] € P(U).

Now let us specialize assuming that we are in the case when the matrix
symmetric. The/ = V, and @.11) becomes

D(A;u,v)? — D(A;u,u)D(A;v,v) = Pdet A. (4.12)

This time the curvd’,, = V(D(A;u,w)) cuts outinC the divisor2D,,, where

D, € ||, i.e. it touchesC' at d(d — 1)/2 points. The curve/ (D(A; u,v)
cuts out inC' the divisorD,, + D,,, where2D,, is cut out by the curvd’,, =
V(D(A;v,v)). We obtain that a choice of a symmetric determinantal rep-
resentationC’ = V(det A) defines an algebraic system obntact curves
T, [u] € P(U). By definition, a contact curve of an irreducible plane curve
C'is a curvel such that

Oc(T) = L*?

for some invertible sheaf on C with R°(L£) > 0. Up to a projective trans-
formation of U, the number of such families of contact curves is equal to the
number of non-effective even theta characteristics on the cuirve

Note that any contact curvé of C' belongs to one of the these— 1-
dimensional algebraic systems. In fact, it cuts out a divi3@uch that D €
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|Oc(d — 1)|. Then = O¢(D)(—1) is a theta characteristic. i’ (C, 0) # 0,
then D must contain a divisor of degrekcut out by a linel. Since a line
intersect<” atd — 1 points, we get a contradiction. This shows thé& a non-
vanishing theta characteristic. Next, we find a symmetric determinantal repre-
sentation ofC' corresponding t@ and a curve/(D(A; u,u)) which cuts out

the same divisoD in C'. Since the degrees of the cunEBaindV (D (A4; u, u))

are less than the degree@f they must coincide.

The algebraic systems of contact cur¥égD(A4; u,w)) are not linear sys-
tems of curves, they depend quadratically on the paramefeesP(U). This
implies that a general point in the plane is contained in a subfamily of the sys-
tem isomorphic to a quadric iB(U), not a hyperplane as it would be in the
case of linear systems. The universal family of an algebraic system of contact
curves is a hypersurfacE in |E| x P(U) of type (d — 1, 2). Itis given by the
equation

Z Aij(to, t1, t2)uiu; = 0,

where(4;;) is the adjugate matrix afl. Its projection toP(E) is aquadric
bundlewith discriminant curve given by equatietet adj(4) = |A|?~!. The
reduced curve is equal 10. The projection of7 to P(U) is a fibration in
curves of degreé — 1.

One can also see the contact curves as follows.[{let [&, ..., 1]
be a point inUV| and He = V(3" &;t;) be the corresponding hyperplane in
|U|. The restriction of the net of quadrics defineddbyo H, defines a net of
quadricsN (¢) in H, parameterized by the plade The discriminant curve of
this net of quadrics is a contact curve®@fIn fact, a quadri@),|H in N (§) is
singular if and only if the hyperplane is tangentg. Or, by duality, the point
[¢] belongs to the dual quadr@) = V(D(A(z);&,€)). This is the equation
of the contact curve corresponding to the paramgter

Consider the bordered determinant identityl@). It is clear thatP is sym-
metric inu, v and vanishes fot, = v. This implies thatP can be expressed
as a polynomial of degree 2 iniRiker coordinates of lines iR~ = |0(1)|.
ThusP = 0 represents a family ajuadratic line complexesf lines inP?—!
parameterized by points in the plane.

Proposition 4.1.8 Let¢ : |E| — |S?(U)Y| be the net of quadrics ifU|
defined by the theta characteristic For anyz € |E| the quadratic line com-
plex V(U (u,v;z)) consists of lines iUY| such that the dual subspace of
codimension 2 inU| is tangent to the quadri@Q, = ¢(x).

Proof Note that the dual assertion is that the line is tangent to the dual quadric
Q. The equation of the dual quadric is given B\ A(z); u,u) = 0. A line
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spanned by the point] = [, ..., &—1] and[n] = [no,...,n4—1] is tangent

to this quadric if and only if the restriction of this quadric to the line is given
by a singular binary form in coordinates on the line. The discriminant of this
quadratic form isD(A(x); &, €)D(A(z);n,n) — D(A(z); €,m)?. We assume
that the point: is a general point in the plane, in particular, it does not belong
to C. Thus this expression vanishes if and onlyif¢, ) = 0. O

4.1.5 First examples

Taked = 2. Then there is only one isomorphism classfoWith deg £ = 1.
Sincedeg £(—1) = —1, h°(C,L(-1)) = 0, s0L = M, andC admits a
unique equivalence class of determinantal representations which can be chosen
to be symmetric. For example, @ = V (tot; — t3), we can choose

t
4 (o to .
to 11

We haveP(U) = P!, andt = [ mapsC isomorphically toP!. There is only
one family of contact curves of degréelt is the system of tangents . It is
parameterized by the conic in the dual plane, the dual coni¢. dtus, there
is a natural identification of the dual plane wit(S2U ).

Taked = 3. Then Pi¢"*(C) = Pic’(C) and® = Pic’(C) \ {O¢}. Thus
the equivalence classes of determinantal representations are parameterized by
the curve itself minus one point. There are three systems of contact conics.
Let T be a contact conic cutting out a divis®fp; + ps + p3). If we fix a
group law onC' defined by an inflection point, then the pointg; add up to a
nonzero 2-torsion poirk. We havep, + p2 + ps ~ 20 + €. This implies that
L = Oc(20 + €). The contact conic which cuts out the divistiRo + ¢) is
equal to the union of the inflection tangent lineoaind the tangent line at
(which passes througf). We know that each nonsingular curve can be written
as the Hessian curve in three essentially different ways. This gives the three
ways to writeC' as a symmetric determinant and also write explicitly the three
algebraic systems of contact conics.

Let (£, M) define a determinantal representatiorCofLet [ : C — P(U)
be the reembedding af' in P(U) given by the linear systerfC|. For any
Dy € |M]|, there existsD € |L£| such thatD, + D is cut out by a conic.
Thus we can identify the linear systeji| with the linear system of conics
through Dy. This linear system defines a birational map P? --» P(U)
with indeterminacy points iDy. The mapl : C — P(U) coincides with the
restriction ofs to C.
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Consider the map
(Lr): C — P(U) x P(V) = P? x P2

Proposition 4.1.9 The image ofl, t) is a complete intersection of three hy-
perplane sections in the Segre embedding of the product.

Proof Consider the restriction mag.Q)
UxV =H(PU) x P(V), Op) (1) W Op(v) (1)) — H(X,0x(1)),

where X is the image ofC in P(U ® V') under the composition of the map
(I,t) and the Segre map. Here we identify the spabl@$C, L @ M) and
H°(X,0x(1)). Since the map49) is surjective, and its target space is of
dimensiort, the kernel is of dimension 3. So the imafjeof C in P(U) xP(V)

is contained in the complete intersection of three hypersurfaces of type

By adjunction formula, the intersection is a cur¥ of arithmetic genus 1.
Choose coordinatesig, u1,u2) in UV and coordinategvg, v1,v2) in V to be
able to write the three hypersurfaces by equations

Z agﬁ)uwj =0, k=1,23.
0<i,j<2

The projection ofX to the first factor is equal to the locus of poifis, w1, us]
such that the system

2 2
Za uvj—z Z:a(k)uz =0, k=123,
1,5=0 j=0 i=0

has a nontrivial solutioffvg, v1, v2). The condition for this is

2

Z azo wp Y a; U Z ‘%2 Usq
1=0
2

det Z aio up Y ag)ui Z al2 u; | =0. (4.13)

150 (3)

Z azo wp Y ;) U Z a12 Usq
1=0

This checks that the projection &f to the factof(U) is a cubic curve, same
as the projection o . Repeating the argument, replacing the first factor with
the second one, we obtain that the projectionsXéfand X to each factor
coincide. This implies thak = X". O

Recall that a determinantal representatiorCois defined by a linear map
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¢ : E — U ® V. Let us show that its image is the kernel of the restric-
tion map. We identify its target spadé® (X, Ox (1)) with H°(C, O¢(d —

1)) = HY(P?,Op2(d — 1)). In coordinates, the map is defined by[z] —

> aij(z)u; @ vy, whereC' = V(det(a;;)). The restriction map is defined by
the mapu; ® v; — A;;, whereA;; is a(ij)-cofactor of the adjugate matrix of
(ai;) and the bar means the restrictionfo The composition is given by

X — Z ajquZ'j = det(a,;j) restricted taC.

Since the restriction of the determinaniids zero, we see thdi can be iden-
tified with the linear system of hyperplane section®0f’) x P(V') defining
the curve(l, v)(C).

Note that the determinand (13 gives a determinantal representation of the
plane cubia” reembedded in the plane by the linear sysi€mlt is given by
alinear mag/¥Y — EY ® V obtained from the tenser€ EY ® U ® V which
defines the linearmap: £ - U ® V.

4.1.6 The moduli space

Let us consider the moduli space of pa(rs, A), whereC' is a nonsingular
plane curve of degreé and A is a matrix of linear forms such that =
V(det A). To make everything coordinate-free and match our previous no-
tations, we lefP? = |E| and considerd as alinearmap : £ — U ®V =
Hom(UVY, V). Our equivalence relation on such pairs is defined by the nat-
ural action of the group GIJ) x GL(V) onU ® V. The composition of

with the determinant maf @V — Hom(A® UV, A% V) = C is an element of
S4(EV). It corresponds to the determinant of the mattixUnder the action of
(9,h) € GL(U) x GL(V), itis multiplied bydet g det h, and hence represents

a projective invariant of the action. Consideas an elementaf @ U @ V,

and let

det: EY @ U @ V/GL(U) x GL(V) — |S?E|

be the map of the set of orbits defined by taking the determinant. We consider
this map as a map of sets since there is a serious issue here whether the orbit
space exists as an algebraic variety. However, we are interested only in the
restriction of the determinant map on the open supB&t® U © V)° defining
nonsingular determinantal curves. One can show that the quotient of this subset
is an algebraic variety.

We know that the fibre of the majet over a nonsingular cunv@ is bijective
to Pid~'(C) \ ©. Let

X — |SYEY)|
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be the universal family of nonsingular plane curves of degrénd genug).
It defines a family

o Picht — [SUEY)

whose fibre over a curv€ is isomorphic to Pi¢~ (C). Itis the relative Picard
scheme ofr. It comes with a diviso such that its intersection with—!(C')

is equal to the diviso®. It follows from the previous sections that there is an
isomorphism of algebraic varieties

(EY @U@ V)°/GL(U) x GL(V) = Picy '\ T.

This shows that the relative Picard schefie " is a unirational variety. An
easy computation shows that its dimension is equafte 1.

Itis a very difficult question to decide whether the var'ré’b';cg’l is rational.
It is obviously rational ifd = 2. It is known that it is rational forl = 3 and
d = 4[245. Let us sketch a beautiful proof of the rationality in the cdse 3
due to M. Van den BergttBY|.

Theorem 4.1.10 Assumel = 3. ThenPic) is a rational variety.

Proof A point of Pic’ is a pair(C, £), whereC'is a nonsingular plane cubic
and £ is the isomorphism class of an invertible sheaf of degree 0.Lée
a divisor of degree 0 such thé-(D) = L. Choose a lin¢ and letH =
{NC =py+p2+ps. Letp, + D ~ q;,t = 1,2,3, whereg; is a point. Since
Pi — i ~ pj — qj, We havep; + ¢; ~ p; + ¢;. This shows that the line®;, ¢;)
and(p;, ¢;) intersect at the same poing; on C. Since,p; + q; + ri; ~ H, it

is immediately checked that

p1+D2+ D3+ q1+ g2+ g3+ 112+ o3+ 113 ~ 3H.

This easily implies that there is a cubic curve which intersétts the nine
points. Together witlC' they generate a pencil of cubics with the nine points
as the set of its base points. LEt= /3 x (P?)?/&3, whereG; acts by

o : ((p1,p2,P3), (41,42, 43)) = ((Po(1)s Po(2)s Po(3))s (Qo(1)> Qo (2)5 4o (3))) -

The variety X is easily seen to be rational. The projection/tg&; = P3
defines a birational isomorphism between the produdd®éind (P?)3. For
eachz = (P,Q) € X, letc(z) be the pencil of cubics through the points
P1, P2, 3, ¢1, G2, g3 and the points;; = (p;, ¢;), where(ij) = (12, (23), (13).
Consider the sdt/’ of pairs(z,C), C € ¢(x). The projection(u, C') — u has
fibres isomorphic t@!. Thus the field of rational functions oK’ is isomor-
phic to the field of rational functions on a conic over the fi&ldX ). But this
conic has a rational point. It is defined by fixing a pointfihand choosing a
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member of the pencil passing through this point. Thus the conic is isomorphic
to P! and K (X’) is a purely trancendental extension§{ X). Now we de-

fine a birational map fronPic} to X’. Each(C, £) defines a point o/’ by
ordering the set N C, then definingyy, g2, g3 as above. The member of the
corresponding pencil through’s, ¢;'s andr;;’s is the curveC. Conversely,

a point(z,C) € X' defines a poin{C, £) in Pic). We defineL to be the
invertible sheaf corresponding to the diviger+ g2 + ¢s. It is easy that these
map are inverse to each other. O

Remark4.1.3 If we choose a basis in each spageU, V, then a mapp :
E — Hom(U,V) is determined by three matrices = ¢(e;). Our moduli
space becomes the space of triplels, A5, A3) of d x d matrices up to the
action of the groupsZ = GL(d) x GL(d) simultaneously by left and right
multiplication

(01,02) - (A1, Az, A3) = (014105 ", 014205 01 Azoy ).

Consider an open subset of mapsuch thatA; is an invertible matrix. Tak-

ing (o1,02) = (1,A1‘1), we may assume that; = I, is the identity matrix.
The stabilizer subgroup dfl,, Az, As) is the subgroup ofcq, 02) such that
o102 = 1. Thus our orbit space is equal to the orbit space of pairs of matri-
ces(A, B) up to simultaneous conjugation. The rationality of this space is a
notoriously very difficult problem.

4.2 Determinantal equations for hypersurfaces

4.2.1 Determinantal varieties

Let Mat,, , = C™** pe the space of complex x k matrices with natural
basise;; and coordinates;;. The coordinate ring[C™*™] is isomorphic to
the polynomial ringC[(t;;)] in mk variables. For any vector spacésV of
dimensionsk, m, respectively, a choice of a basis;) in U and a basigv;)
in V identifiesU ® V' with Mat,, ,, by sendingu; ® v; to e;;. An element
o € U ® V can be viewed as a linear map’ — V, or as a bilinear form
onUY ® VV. Under the natural isomorphisth® V — V ® U, the mapo
changes to the transpose niap

We denote by N (o) (resp."N (o)) the left (resp. the right) kernel aof
considered as a bilinear map. These are subspadé$ ahdV", respectively.
Equivalently,! N (o) = Ker(s) (resp."N (o) = Ker(to) = o(U)1) if o is
considered as a linear map. For aniy the rangd < r < min{m, k}, we set

UV),:={ceU®V:ranko <r}
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and denote byU ® V|, its image in the projective spad& ® V|. Under
the isomorphisn/ @ V' — V @ W, the variety(V @ U),,_,. The varieties
|U ® V|, are closed subvarieties of the projective spdéex V|, called the
determinant varietiesUnder isomorphismU @ V| = |[C™*k| = Pmk-1
the variety|U ® V|, becomes isomorphic to the closed subvarietPof —*
defined by(r + 1) x (r + 1) minors of am x k matrix with entries;;.

Let G(r, V) be the Grassmann variety ofdimensional linear subspaces of
V and let

Ua V], ={(éL)e|UaV|xGrV):éU)C L}

The projection taG(r, V) exhibits|(7€§>/v|r as a projective vector bundle of

relative dimensiorkr and implies thaﬂlﬁe?T/\r is a smooth variety of di-
mensionmk — (m — k)(k — r). The projection tqU ® V|, is a proper map
which is an isomorphism ovét/ @ V|, \ |U ® V|,_;. It defines a resolution
of singularities

o: |[j‘(§/‘/|7 = |U®V],.

It identifies the tangent spa@®,(|U ® V) at a pointo] € |U ® V|, with
the projective space of maps: UY — V such thatr(Ker(o)) C o(U"). If
we viewo as a bilinear form o/¥ @ V'V, then the tangent space consists of
bilinear formsr € U ® V such that (u* ® v*) = 0 for all u* € !N (o), v* €
"N(o).

Here are some known properties of the determinantal varieties (ke [
Chapter I1,85).

Theorem 4.2.1 LetMat,, ;(r) C C™** m < n, be the subvariety of matri-
ces of rank< r < m. Then

e Mat,, ,(r) is an irreducible Cohen Macaulay variety of codimensfen—
r)(k —r);

e SingMat,, x(r)) = Mat,, x(r — 1);

o the multiplicity ofMat,,, 1 (r) at a pointA of ranks < r is equal to

m—r—1

multsMat,, »(r) = ] (

Jj=0

(n— s+ )yl
r—s+)n—r+j5)

in particular,
o the degree oMat,, 1 (r) is equal to

m—r—1

deg Mat,, (r) = multyMat,, x(r) = ] (

Jj=0

(n+ )iy
r+ i)l (n—r+H
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Let¢ : E — U ® V be an injective linear map arid] : |E| — |U ® V| be
the corresponding closed embedding morphism. Let

Dy(¢) =16 (U V],) = |(E)N U@ Vs
We say that : E — U ® V is proper, if
codimD,.(¢) = codimU ® V|, = (m —r)(k — ).

In particular, this implies thabD,.(¢) is a Cohen-Macaulay variety of dimen-
sionn — (m —r)(k — r) in |E|. We also say that is transversaif

SinglUV|,) =|U®V|.—1, r<min{m,k}.

Using the description of the tangent spacélo® V|, at its nonsingular point,
we obtain

Proposition 4.2.2 Assumep is proper. A pointfz] € D,(¢) \ D,_1(¢) is
nonsingular if and only if

dim{y € E : ¢(y)(Ker(¢(z)) @ Ker(*¢p(z)) =0} =n+1—(m —7r)(k—r).

For example, suppose = m = dandr = d — 1. Let [z] € Dg_1(¢) \
Dy _2(¢). Then Kefo(z)) and Kek*¢p(x)) are one-dimensional subspaces.
Let u*,v* be their respective generators. Thehis a nonsingular point on
D,_+1(¢) if and only if the tensor* ® v* is not contained in the kernel of the
mapi¢: UV @ VY — EV.

For any vector spacg we denote by the trivial vector bundleg’ @ Opn
onP" with a fixed isomorphism fron#' to its space of global sections. Since

Hom(U"(-1),V) = H'(P",U(1),V) = E¥ @ U ®YV,

a linear mapp : £ — U ® V defines a homomorphism of vector bundles
UY(—1) — V. For any pointx] € P", the fibre(U" (—1))(x) is canonically
identified withU'¥ @ Cx and the map of fibre§ ¥ (—1)(x) — V(z) is the map
u® x> ¢x)(u).

Assume thatt > m and ¢(x) is of maximal rank for a general point
[x] € P". Since a locally free sheaf has no nontrivial torsion subsheaves,
the homomorphisni/¥(—1) — V(1) is injective, and we obtain an exact
sequence

0-UY(-1) 2V = F—o. (4.14)

Recall that thefibre F(x) of a sheafF over a pointz is the vector space
F./m,F, over the residue field, /m, of x. A sheaf over a reduced scheme
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is locally free of rank- if and only if all its fibres are vector spaces of dimension
r. Passing to the fibres of the sheaves in the exact sequence, we obtain

dim F(z) = m — rank¢(x). (4.15)

In particular, ifk > m, thenF is locally free of rankn — k outsideD,,,_1 (¢)
of rankm — k. It has singularities o,,,_2(¢).

Assumem = k. Let X denote the set-theoretical support Supp of F
and X denote the scheme-theoretical suppotFalefined by the determinant
of ¢. It is known that the annihilator ideal At) of the sheafF is equal to
(Fitty (F) : Fitty(F)), where Fitt(F) denote theitting idealsof F generated
by k — ¢ x k — ¢ minors of the matrix defining [228, p. 511. We will often
considerF as a coherent sheaf df;. Note thatX = (X)eq, @and, in general,
X £ X,.

Letr = max{s : Dy(¢) # Dr(o)}. AssumeX = X,. It follows from
(4.19 that Freq is locally free onX outsideD,. For example, when the matrix
of ¢ is skew-symmetric, we expect th&leq is of rank 2 outsideDy,_5 (o).

Remarkd.2.1 The homomorphism : UY — V of vector bundles is a special
case of a homomorphism of vector bundles on a vadétyhe rank degener-
acy loci of such homomorphisms are studied in detail in Fulton’s ba6K [

Remarld.2.2 Inview of classical geometry, determinantal varieties represent
a special case of a of a variety. Let us elaborate. Aet (a;;) be am x

k matrix, wherea;; are linear forms in variableg, ..., t,. Consider each
entry as a hyperplane ii*. Assume that the linear forms;, . . . , an,; in each

j-th column are linearly independent. LBt be their common zeros. These
are projective subspacestt of codimensionm. A linear form>"" | u;a;;
defines a hyperplané/;(u) containingB;. Varying u, ..., um,, wWe obtain

a (n — m)-dimensional subspace of hyperplanes contaidgin classical
language this is thstar | B; | of hyperplanes (a pencilif. = 2, a netifm = 3,

a web ifm = 4 of hyperplanes). It can be considered as a projective subspace
of dimensionm — 1 in the dual spacéP™)". Now, the matrix defines stars

[B;[ with uniform coordinatesu, . .., u,,). In classical languagé, collinear
m — 1-dimensional subspaces of the dual space.
Consider the subvariety @

X={xeP":2e€ Hi(u)N...N Hg(u), for someu € C™}.

Itis clear that
X = {z € P" : rankA(z) < m}.

If & < m, we haveX = P", so we assume that < k. If not, we replaced
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with its transpose matrix. In this way we obtain a proper subvaretof P, a
hypersurface, ifn = k, with linear determinantal representatidh= det A.
For anyz € X let

IN(@@):={ueC™:x € Hy(u)N...N Hy(u)}.
Then the subvarietX,. of X
X, ={re X :dm'N(@@)>m—-r}, r<m-—1,
is the determinantal subvariety Bf* given by the condition rank(z) < r.
We have a regular map
X\ Xy =P 2 |'N(2)).
The image is the subvariety Bf*~! given by
rank L(uq, ..., um) < n,

m a(s)

whereL is thek x (n + 1) matrix with js-th entry equal to>_;~, a;;

k < n, the map is dominant, and it = n, it is birational.

4.2.2 Arithmetically Cohen-Macaulay sheaves
Let F be a coherent sheaf @t and

T.(F) =P H (P, F(k)).
k=0
Itis a graded module over the graded ring

S =T.(Opn) = P HO(P", Op- (k) = Clto, .. ., tn].
k=0

We say thatF is anarithmetically Cohen-Macaulay shegACM sheaffor
brevity) if M = T'.(F) is a graded Cohen-Macaulay module oerRecall
that this means that every localization bf is a Cohen-Macaulay module
i.e. its depth is equal to its dimension. Let us identifyy with the coherent
sheaf on Sped. The associated sheaf on ProjS is isomorphic taF. Let
U = SpecS \ mg, wheremy = (to,...,t,) is the irrelevant maximal ideal
of the graded ringS. Since the projectiod/ — Proj S = P™ is a smooth
morphism, the localizations df/ at every maximal ideal different from are
Cohen-Macaulay modules if and only if

e F, is a Cohen-Macaulay module ov@- ,, for all z € P™.
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The condition that the localization dff = I'.(F) atm, is Cohen-Macaulay
is satisfied if and only if the local cohomology;, (M) vanish for alli with
0 < i < dimM. We haveH (U, M) = @z H (P, M(k)). The exact
sequence of local cohomology gives an exact sequence

0— H2(M)— M — H°(U M) — HL(M) — 0,
and isomorphisms
HIFY (M) = HY(U,M), i>0.

In the caseM = T'.(F), the mapM — HO(U, M) = I',(M) is an isomor-
phism, hence?? (M) = H} (M) = 0. Since the canonical homomorphism
I'.(F) — F is bijective, the condition#/: (M) = 0,7 > 1, become equiva-
lent to the conditions

o Hi(P", F(k)) =0, 1<i< dimSupgF), ke Z.

Finally, let us remind that for any finitely generated modifeover a regular
Noetherian local ring? of dimensionn, we have

depthM =n — pd M,

where pd denotes the projective dimensiordbfthe minimal length of a pro-
jective resolution of\/.

We apply this to the sheaf from exact sequencd (14), where we assume
thatk = m.

Exact sequencet(14) gives us that pdF,, = 1 for all z € X = SupgF).
This implies that depttF,, = n—1forall x € X. In particular,X is hypersur-
face inP"™ and the stalks af, are Cohen-Macaulay modules ov@f- .. The
scheme-theoretical suppoxt, of F is a hypersurface of degree= k£ = m.

A Cohen-Macaulay sheaf of rank 1 is defined by a Weil divisotgmot
necessary a Cartier divisor. Recall the definitions. Kdbe a noetherian inte-
gral scheme of dimensior 1 and X (") be its set of points of codimension
1 (i.e. pointsz € X with dimOx , = 1). We assume thaX is regular
in codimension 1, i.e. all local rings of points froM(") are regular. In this
case we can defind/eil divisorson X as elements of the free abelian group
WDIiv(X) = zX" and also define linear equivalence of Weil divisors and the
group Cl(X) of linear equivalence classes of Weil divisors (se&1], Chap.
2,86).

We identify a pointz € X with its closureF in X. We call it anirre-
ducible divisor Any irreducible reduced closed subschemef codimension
1is an irreducible divisor, the closure of its generic point.
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For any Weil divisorD let Ox (D) be the sheaf whose section on an open
affine subsel/ consists of functions from the quotient fied@(O(U)) such
that di ®) + D > 0.

It follows from the definition thatD x (D) is torsion free and, for any open
subsetj : U — X which contains all points of codimension 1, the canonical
homomorphism of sheaves

Ox (D) — j«j"Ox (D) (4.16)

is an isomorphism. These two conditions charactesflexive sheavesn any
normal integral schem&. It follows from the theory of local cohomology that
the latter condition is equivalent to the condition that for any poiat X with
dim Ox , > 2 the depth of th&)x ,-moduleF, is greater than or equal to
2. By equivalent definition, a reflexive sheéfis a coherent sheaf such that
the canonical homomorphistA — (FV)V is an isomorphism. The sheaves
Ox (D) are reflexive sheaves of rank 1. Conversely, a reflexive shedfank
1 on a normal integral scheme is isomorphictg (D) for some Weil divisor
D. In fact, we restrictF to some open subsgt U — X with complement of
codimensior> 2 such thatj* F is locally free of rank 1. Thus it corresponds
to a Cartier divisor orii/. Taking the closure of the corresponding Weil divisor
in X, we get a Weil divisoD on X and it is clear tha¥ = j,.j*F = Ox (D).
In particular, we see that any reflexive sheaf of rank 1 on a regular scheme is
invertible. It is not true for reflexive sheaves of rankl. They are locally free
outside of a closed subset of codimensions.

Reflexive sheaves of rank 1 form a group with respect to the operation

L-G=((LxG)V), LTt=CL".
For any reflexive sheaf and an integen we set
£ = (o)),
One checks that
Ox(D+D')=0x(D)-Ox(D")

and the mapD — Ox (D) defines an isomorphism from the gro@i(X) to
the group of isomorphism classes of reflexive sheaves of rank 1.

Next, we look at the exact sequence of cohomology 40t4). Using that
H(P", Opn(j)) = 0fori #0,nand allj € Z,

H' (P, F(k)) =0, 1<i<n—1=dimSupgF), kcZ.
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Thus F satisfies the two conditions from above to be an aCM sheaf. For the
future use, observe also that

V= HYP", V)= H(P", F). (4.17)
Applying the functorHome,. (—, Opr(—1)) to (4.14), we obtain an exact
sequence

0—>Kv—>g—>g—>0’

where
g = Ea:t}gw (F,Opn(-1)). (4.18)

The sheafj plays the role ofF when we interchange the roles@fandV'. In
the following we use some standard facts from the Grothendieck-Serre Duality
(see R97). We have

Exty,, (F,Opn(—1)) = Homo, (F,Exty,, (Ox,, Opn(—1)))
=~ Homoy, (F,Extp,, (Ox,,wpn))(n) = Homoy, (F,wx,)(n)

=~ Homo, (F,Ox, (d—n—1))(n) = F'(d-1),
whereF" = Homo,_(F,Ox,). Thus @.18 becomes
G = Homoy (F,wx,)(n) = FY(d—-1). (4.19)

This agrees with the theory from the previous subsection.
SupposeF is of rank 1 andX is a normal variety. ThetF = Ox (D) for
some Weil divisorD, and

G = Ox(-D)(d - 1).

We have seen how a determinantal representation of a hypersurf&€e in
leads to an aCM sheaf dfi*. Now let us see the reverse construction. JFet
be an aCM sheaf o™ supported on a hypersurfage SinceM = T'.(F) is
a Cohen-Macaulay module ov8r= I',(Op~) of depthn — 1, its projective
dimension is equal to 1. Since any graded projective module over the polyno-
mial ring is isomorphic to the direct sum of free modules of rank 1, we obtain
a resolution

m

0— @S[—bi] — @S[—ai] —TW(F)—0,

=1



186 Determinantal equations

for some sequences of integées) and(b;). Passing to the associated sheaves
on the projective space, it gives a projective resolutiofof

0 — @ O]Pm(_bi) i) @ O[Pn (_az) — f — 0 (420)
=1

i=1

The homomaorphism of sheaveds given by a square matrit of sizem. Its
ij-th entry is a polynomial of degrdg — a,. The supportX of F is equal to
V' (det A)req- The degree o = V' (det A) is equal to

d = (bl +--- 4+ bm) - (al + -+ am)~ (421)

We assume that the resolution is minimal, be.< a; for all 4, j. This can

be always achieved by dropping the isomorphic summands in the first and the
second module. The case we considered before is a special casévidian

aCM sheaf for which

ag=...=ap =0, by=...=b, =-1. (4.22)
In this cased is a matrix of linear forms and = m.

Proposition 4.2.3 Let F be an aCM sheaf off”™ supported on a reduced
hypersurfaceX and let(4.20) be its projective resolution. Thed.22) holds if
and only if
H(P", F(-1)) =0, H" '(P",F(1-n)) = H(P",G(-1)) =0.
(4.23)

Proof By duality,
H™Y(P", F(1 —n)) = H" X, F(1 - n))

=~ HY(X, Homo, (F(1 —n),wx)) = H(X,G(-1)) = 0.

Taking global sections in the exact sequent@@, we immediately get that
all a; are non-positive. Taking higher conomology cohomology, we obtain

H" Y (P, F(1—n)) = @@ H"(P",Opr (~b; + 1 — n))
i=1

m

= @D H(B", Opn (b — 2)) = 0.

i=1

Sinceb; < a; <0, this implies that alb; = —1. O
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Let 7 be an aCM sheaf defining a linear determinantal representation of a
normal hypersurfac&’. We assume that rank = 1. We have a rational map

v X s P(U), x— |Ker(g(z))|-

The map is defined on the complement of the openXSetthere F is locally
free. We know thatF = O x (D) for some effective Weil divisoD. The sheaf
FV = Ox(—D) is an ideal sheaf oX. Letb : X — X be the blow-up of
the ideal sheaf/;. It resolves the mapin the sense that there exists a regular
map

t: X —PU)

such that = t o 7! (as rational maps). We will explain this in more detail in
Chapter 7.

4.2.3 Symmetric and skew-symmetric aCM sheaves

Let F be an aCM sheaf o™ whose scheme-theoretical support is a hypersur-
face X, of degreed. Suppose we have a homomorphism of coherent sheaves
onX,

a:F — FY(N) (4.24)

for some integefV. Passing to duals, we get a homomorphisiy)¥ (—N) —
FV. After twisting byr, we get a homomorphisii#")" — F(N). Compos-
ing it with the natural homomorphisth — (FV)V, we get a homomorphism

ta: F— FY(N)

which we call theransposeof a.

We call the pai( F, «) as above a-symmetric sheaif « is an isomorphism
and’a = ea, wheree = +1. We say it is symmetric it = 1 and skew-
symmetric otherwise.

We refer for the proof of the following result t&$9] or [37], Theorem B.

Theorem 4.2.4 Let(F, ) be ane-symmetric aCM sheaf. Assume that =
X. Then it admits a resolution of the forf#.20, where

(al,...,am):(b1+N—d,...,bm+N—d),

and the map is defined by a symmetric matrixif= 1 and a skew-symmetric
matrix ife = —1.
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Corollary 4.2.5 SupposéF, «) is a symmetric sheaf witN = d— 1 satisfy-
ing the vanishing conditions fro(d.23. ThenF admits a projective resolution

0-UY(-1) B U~ F =0,

whereU = H°(P", F) and ¢ is defined by a symmetric matrix with linear
entries.

Note that the isomorphism defines an isomorphism : 7 — G and
an isomorphisn¥ = H°(P*, F) — U = H°(P",G). Suppose: is even.
Twisting the isomorphisn# — G = Homo, (F,wx,)(n) by —in, we
obtain an isomorphism

F(—3n) — Homo,, (F(—n),wx.).

Definition 4.2.1 A rank 1 torsion-free coherent sheabn a reduced variety
Y with canonical sheafsy is called atheta characteristid there exists an
isomorphism

a:f — Home, (0,wy).

Note that in the case when a theta characteristis an invertible sheaf, we
obtain

£®2 = Wy
which agrees with our previous definition of a theta characteristic on a nonsin-
gular curve. IfX is a normal variety, and is a reflexive sheaf (e.g. a Cohen-
Macaulay sheaf), we know thét>= Ox (D) for some Weil divisorD. Thenf
must satisfyO x (2D) = wx. In particular, ifwx is an invertible sheafD is a
Q-Cartier divisor.

Sincea andt« differ by an automorphism df, and any automorphism of a
rank 1 torsion-free sheaf is defined by a nonzero scalar multiplication, we can
always choose an isomorphisidefining a structure of a symmetric sheaf on
6.

Let X be a reduced hypersurface of degdeim P" andf be a theta char-
acteristic onX. Assumen = 2k is even. ThenF = 0(k) satisfiesF (k) =
F(k)¥(d—1) and hence has a structure of a symmetric sheaf Nith d — 1.
Assume also thaf, considered as a coherent sheafldn is an aCM sheaf.
Applying Corollary4.2.5, we obtain thatF admits a resolution

d

d
0— @O]pn(—ai — 1) @ O]pm(—ai) — F —=0.
i=1

i=1
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From (.19, we obtain thaty = FV(d — 1) = F. The vanishing conditions
from Propositio.2.3translate into one condition:

H(X,0(k—1)) =0. (4.25)

If n = 2, this matches the condition thétis a non-effective theta charac-
teristic. If this condition is satisfied, we obtain a representationXoés a
determinant with linear entries. The number of isomorphism classes of such
representations is equal to the number of theta characteristi&ssatisfying
condition @.25

4.2.4 Singular plane curves

Assumen = 2, and letC be a reduced irreducible curve of degredet F be

a coherent torsion-free sheaf 6h Sincedim C = 1, F is a Cohen-Macaulay
sheaf. Also, the cohomological condition for an aCM sheaf are vacuous, hence
F is an aCM sheaf. In general, a Cohen-Macaulay moddl@ver a local
Noetherian ringk admits a dualizing?-moduleD, and

depthM + max{q : Ext},(M, D) # 0} = dim R
(see R28). In our case, the global dualizing sheaf is
wo = wp2(C) = Oc(d - 3),
the previous equality implies th&u:tf, (F,wc) =0, ¢ >0,and
F — D(F) = Homo, (F,wc) = F @ we

is the duality, i.eF — D(D(F)) is an isomorphism.
If F satisfies the conditions from Propositiér2.3

HY(C,F(-1)) = H(C,D(F)(-1)) =0, (4.26)

we obtain a determinantal representaton= V(det A) with linear entries
(4.14. For a general point on C, the corank of the matrid(x) is equal to
the rank of 7. We shall assume that

rank F = 1.

In this caseF is isomorphic to a subsheaf of the constant sheaf of rational
functions onC. It follows from the resolution ofF that

X(F(-1)) =0, x(F)=d.
Thus
deg F(—1) := x(F(=1)) + pa(C) — 1 = pa(C) — 1.
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Also,
deg F =deg D(F) =d+po(C) —1=d(d—1)/2.

Supposer is a singular point ofC. Then either rank(z) < d — 1, or the
image of the mag : P2 — |U x V|4_; is tangent tdU x V|, at a point
() & |U x V|q—2. The sheafF is not invertible atz only in the former case.

It is known that the isomorphism classes of rank 1 torsion-free sheaves of
fixed degreel on an irreducible reduced algebraic cu@eadmit a moduli
space which is a projective variety that contains an irreducible component
which compactifies the generalized Jacobian variety (@&cof C' (see B],
[499). In the case of plane curves (and, B2, only in this case), the mod-
uli space is irreducible. Its dimension is equaptdC'). We denote the moduli
space byﬁél((]).

Let us describe in more detail rank 1 torsion free shedves C.

Letp : C — C be the normalization morphism. Its main invariant is the
conductor ideat, the annihilator ideal of the sheafOs. Obviously, it can be
considered as an ideal sheaf(hequal top~!(¢) (the image ofp*(¢) in On
under the multiplication map, or, equivalentpy,(c)/torsion). For anyc € C,
¢, is the conductor ideal of the normalizatiéof the ringR = O¢ . equal to

Hy_m O@’y. Let
5, = lengthR/R.

Since, in our caseR is a Gorenstein local ring, we have
dime R/c, = 2dim¢ R/c, = 26

(see p79, Chapter 4, n.11).

SupposeR is isomorphic to the localization @ [u, v]]/(f(u,v)) at the ori-
gin. One can comput&,, using the followinglung-Milnor formula(see B6Q,
[430, §10).

dege, =dime R/Jp + 1y — 1, (4.27)
whereJ; is the ideal generated by partial derivativeg pandr,, is the number
of analytic branches af’ at the pointz.

Let F be the cokernel of the canonical injection of sheafles— p..(O¢).
Applying cohomology to the exact sequence

0— O¢ — p.0Oz —F —0, (4.28)
we obtain thegenus formula

X(p+(0c)) = x(0g) = x(Oc) + > _ b (4.29)
zeC
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Consider the sheaf of algebrédsd(F) = Homoe (F,F). SinceEnd(F)
embeds int&nd(F,), wheren is a generic point of’, and the latter is isomor-
phic to the field of rational functions ofi, we see thaEnd(F) is a coherent
Oc¢-algebra. It is finitely generated as®-module, and hence it is finite and
birational overC. We setC’ = SpecEnd(F) and let

r=ar:C —=C

be the canonical projection. The normalization n@ap— C factors through
the mapn. For this reasony is called thepartial normalizationof C'. Note
thatC’ = C' if F is an invertible sheaf. The algebfad(F) acts naturally on
F equipping it with a structure of &..-module which we denote h¥’. We
have

FnF.

Recall that for any finite morphisih: X — Y of Noetherian schemes there is
a functorf' from the category o)y -modules to the category & x-modules
defined by

f'M = Homo, (f.Ox, M),

considered as & x-module. The functoy' is the right adjoint of the functor
f« (recall thatf* is the left adjoint functor off.,), i.e.

fHomoy (N, f'M) = Home,, (f.N, M), (4.30)
as bi-functors inM, V. If X andY” admit dualizing sheaves, we also have
floy 2wy

(see B11], Chapter lll, Exercises 6.10 and 7.2).
Applying this to our mapr : ¢’ — C, and taking\V' = Q¢+, we obtain

FrnF.

It is known that any torsion-free sheavdsand3 on C’ a morphismr,..A —
w8 is m,Oc.-linear (see, for example3f], Lemma 3.1). This implies that
the natural homomorphism

Home/ (A, B) = Home: (.. A, m..B) (4.31)

is bijective. This gives

For anyF’ € Eéi((]’)),
X(F) =d +x(C")
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(in fact, this equality is the definition of the degreesf, see #45)
d=degm.F = x(m.F') — x(Oc)

= X(F") = x(0c) = d" + x(Ocr) — x(Ocr).

Definition 4.2.2 The collection o®¢ ,-modulesF,, z € Sing(C'), is called
thelocal typeof F ([483). The global invariantis the isomorphism class of
Endoc (.7:)

It follows from Lemma 1.7 in 483 that the global type ofF determines
the isomorphism class of, up to tensoring with an invertible sheaf. Also it is
proven in the same Lemma that the global type depends only on the collection
of local types.

Lemma 4.2.6 The global types of and D(F) are isomorphic, and
' D(F) = D(n'F).

Proof The first assertion follows from the fact that the dualizing functor is
an equivalence of the categories. Takifi) = w¢ in (4.30 , we obtain that
7.(D(7' F)) = D(F). The second assertion follows fromh.81). O

In fact, by Lemma 3.1 from3g], the map
T ECd/(C') — Eg(C)
is a closed embedding of projective varieties.
It follows from the duality thaty (F) = —x(D(F)). Thus the functotF —

D(F) defines an involutioDc on Jaé*“’ ™! (¢") and an involutionD¢

on— ﬁé)“(c)*l(C). By Lemma4.2.6 the morphismr, commutes with the
involutions.

Let us describe the isomorphism classes of the local typés. dfet 7 =
p~}(F) = p*(F)/torsion. This is an invertible sheaf ¢i The canonical map
F — p.(p*F) defines the exact sequence

0—F—pF—T—0, (4.32)

whereT is a torsion sheaf whose support is contained in the set of singular
points ofC.
The immediate corollary of this is the following.

Lemma 4.2.7 Foranyz € C,
dim¢ F(x) = mult,C,
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whereF (z) denotes the fibre of the sheBfandmult, C denotes the multiplic-
ity of the pointz onC.

Proof Since the cokernel of — p,F is a torsion sheaf, we have
dime F(z) = dime F(z) = dime p.(Og) (z). (4.33)

It is clear that the dimension of the fibre of a coherent sheaf is equal to the
dimension of the fibre over the closed point of the formal completigh,oL et
R (resp.R) denote the formal completion 61 . (resp. its normalization). We
know thatk = [], ., R,, whereR, = C[[t]]. Let(u, v) be local parameters in
R generating the maximal ideml of R. One can choose the latter isomorphism
in such a way that the composition of the map— R with the projection map
R — R; is given by

(uav) = (t;m’ Z ajtj)v

Jj=m;

wherem; is the multiplicity of the analytic branch of the cur¢ecorrespond-
ing to the pointy overz. It follows that

dime R/m = dimg [ [ C[[#)]/(t™) = > m; = mult,C.
=1 =1
Thus the last dimension id(33 is equal to the multiplicity, and we are done.
O

Corollary 4.2.8 SupposeF satisfieg4.26), and hence defines a linear deter-
minantal representatiod = V' (det A). Then

d —rank A(xz) = mult,C.

We denote by, (F) the length ofZ,.. The lengthi, (F) of 7, is the local
invariant of theO¢ ,-moduleF, (see R97)). Let M be arank 1 torsion-free
module overR = O¢, and M = M ® Ritorsion. LetQ be the fraction
field of R. SinceM ®r Q = @, one can find a fractional ideal isomorphic
to M. It is known that the isomorphism class df can be represented by a
fractional ideal/ with local invarianty(M) = dim M /M contained ink and
containing the ideal( R), wherec(M) is the conductor ideal ak. This implies
that local types ofF atz with §,,(F) = ¢ are parameterized by the fixed locus
of the groupR* acting on the Grassmann varie®(s, R/c,) = G(6,26) (see
[292, Remark 1.4,499, Theorem 2.3 (d)). The dimension of the fixed locus
is equal tod,.. Thus local types with fixed local invariantare parameterized
by a projective variety of dimensian



194 Determinantal equations

Example4.2.1 Let C’ is the proper transform of’ under the blow-up of a

singular pointz € C of multiplicity m... Since it lies on a nonsingular surface,

C"is a Gorenstein curve. The projection ¢/ — C'is a partial normalization.
mge—1

LetF = m.Ocs. Thenm{;%, contains the conductar, andc¢(F,) = mg? ",
henced,. (F) = m, — 1 (see B99, p. 219).

Let F define a linear determinantal representatior: V' (det A). We know
that D(F) defines the linear representation corresponding to the transpose ma-
trix *A. The case whetF = D(F) corresponds to the symmetric matrix
We assume that rank = 1, i.e. F is a theta characteristiton C.

By duality, the degree of a theta characterttics equal top,(C) — 1 and
x(8) = 0. We know that each theta characteristiés isomorphic tor.¢’,
wheref’ is a theta characteristic on the partial normalizatiod@adefined by
6. Since, locally&nd(¢’) = Oc¢», we obtain that’ is an invertible sheaf on
c’.

Let Ja¢ X )[2] denote the 2-torsion subgroup of the group(Jacof isomor-
phism classes of invertible sheaves on a cutve/ia tensor product it acts on
the set TCh4IC) of theta characteristics afi. The pull-back map* defines
an exact sequence

0 — G — Ja¢C) — JadC) — 0. (4.34)

The group Ja@) is the group of points on the Jacobian variety@f an
abelian variety of dimension equal to the genusf C. The groupG =
OF/Og has a structure of a commutative group, isomorphic to the product of
additive and multiplicative groups @. Its dimension is equal t6 = ) _ 0,.

It follows from the exact sequence that

Jad0)[2] = (Z./27)%9?, (4.35)

wherek is equal to the dimension of the multiplicative part@f It is easy to
see that

b=#p ' (SINgC)) — #SINgC) = > (ry —1). (4.36)
Lemma 4.2.9 LetF andF’ be two rank 1 torsion-free sheaves 6rof the

same global type defined by the partial normalization C’ — C. Then
m*F @ L = F' for some invertible sheat if and only if7* £ = Oc..

Proposition 4.2.10 The groupJagC)[2] acts transitively on the set of theta
characteristics with fixed global type. The order of the stabilizer subgroup of
a theta characteristi@d is equal to the order of the-torsion subgroup of the
kernel ofr* : JaqC) — JadC").
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Proof Let 0,6’ € TChalC) with the isomorphic global type. Since two
sheaves with isomorphic global type differ by an invertible sheaf, we have
0" = 0 ® L for some invertible sheaf. This implies

L= Que =20 L ' Que =0 L1 =0 L.

By Lemma 2.1 from 36], 7*F = n*F ® L for someL € JagC) if and only
if 7*£ = Oc¢r. This givest*£? = O¢ and hencer*(£) € JadC’)[2]. It
follows from exact sequencd.@4) (whereC is replaced withC”) that Ja¢C”)
is a divisible group, hence the homomorphigin: JadC)[2] — Ja¢C’)[2]
is surjective. This implies that there existd € Ja¢(C')[2] such thatt* (L ®
M) = Ocr. Thus, we obtain

OIMEOIRLRIM =24.

This proves the first assertion. The second assertion follows from the loc. cit.
Lemma. O

Corollary 4.2.11 The number of theta characteristics of global type defined
by a partial normalizationr : ¢’ — C is equal t0229+t2=Y" wheret/ =

#7-1(Sing(C)) — #SingC).

Recall that a theta characterisficlefines a symmetric determinantal repre-
sentation of” if and only if it satisfiesh®(#) = 0. So, we would like to know
how many such theta characteritics. A weaker condition is/thét) is even.
In this case the theta characteristic is cakgdn the remaining ones are called
odd The complete answer on the number of even theta characteristics on a
plane curve” is not known. In the case whéne JagC'), the answer, in terms
of some local invariants of singularities, can be found3aq (see also4071]
for a topological description of the local invariants). The complete answer is
known in the case whefi hassimple(or ADE) singularities.

Definition 4.2.3 A singular pointz € C is called asimple singularityif its
local ring formally isomorphic to the local ring of the singularity at the origin
of one of the following plane affine curves

ak:quLka =0, k>1,

dp 2?2y +y" =0 k>4

eg a3 +yt =0,

er 2’ +xy® =0,

eg a3 415 = 0.

According to P91], a simple singularity is characterized by the property that
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there are only finitely many isomorphism classes of indecomposable torsion-
free modules over its local ring. This implies that the set TQBais finite if
C'is a plane curve with only simple singularities.

The number of even theta characteristics on an irreducible reduced plane
curveC with only simple singularities is given in the following Theorem due
to [483.

Theorem 4.2.12 The number of invertible even theta characteristicgois

229+k=1 if O has anAy,1, Dasyo, OF E7 singularity,
229tk=1(29 1 1) if C has no singularities as above, and has an even number

of typesAgsio, Ags+3, Agsta, Das+3, Dssya, Dgsts, E,
229tk=1(29 1 1) otherwise

The number of non-invertible even theta characteristics on a curve with sim-
ple singularities depends on their known local types. An algorithm to compute
them is given in483.

Example4.2.2 Let C be a plane irreducible cubic curve. Suppose it has an
ordinary node. This is a simple singularity of tyde. We have Ja&) = C*

and Ja¢C)[2] = Z/2Z. The only partial normalization is the normalization
map. There is one invertible theta characterigtiovith 1°(0;) = 0 and one
non-invertible theta characteristie = p.Ox(—1) with R°(6;) = 0. It is iso-
morphic to the conductor ideal sheaf 6h Thus there are two isomorphism
classes of symmetric determinant representation§’fdiVithout loss of gen-
erality we may assume thét = V (tot3 + t3 + tot3). The theta characteristic

0, defines the symmetric determinantal representation

0 tg tl
tota + 13 +tott =det [ty —to—t; 0
t 0 —to

Observe that the rank(x) = 2 for all pointsz € C. The theta characteristic
0, defines the symmetric determinantal representation

—ty 0 —t
tots +1t3 ftoti =det | 0t —ty
—t1 —ty —t;

The rank ofA(z) is equal tol for the singular point: = [1, 0, 0] and equals 2
for other points orC.
Assume now tha€ is a cuspidal cubic with equatioi(¢yt3 + t3). There
are no invertible theta characteristics and there is only one non-invertible. It is
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isomorphic to the conductor ideal sheaf @nlt defines the symmetric linear
determinantal representation

0 —ty —t
tot2 +t3 =det | =t —t; 0 |.

-t 0 =t

Remark4.2.3 We restricted ourselves with irreducible curves. The case of
reducible nodal curves was studied 7.

4.2.5 Linear determinantal representations of surfaces

Let S be a normal surface of degréen P3. We are looking for an an aCM
sheafF onP? with scheme-theoretical support equaktonNe also require that
Fis of rank 1 and satisfies the additional assumptbg3

HO(P?, F(—1)) = H*(P?, F(-2)) = 0. (4.37)

Every suchF will define a linear determinantal representatipn= det A
defined by the resolutiod(14) of F such that rankd(x) = d— 1 for a general
point onsS.

Since exact sequencé.{4) implies thatF is generated by its global sec-
tions, we see thaf = Og(C) for some effective Weil diviso€'. By taking a
general section af and applying Bertini’s Theorem, we may assume that
is an integral curve, nonsingular outside of Sifiy

Recall that, as an aCM shedf, satisfies the cohomological condition

HY(P®, F(j)) =0, j € Z. (4.38)

Let s be a nonzero section @ whose zero subscheme is an integral curve such
thatF = Og(C). The dual of the mas > £ defines an exact sequence

0— FY(j) = Os(j) = Oc(j) — 0. (4.39)
By Serre’s Dulaity,
HY(S,FY(j)) 2 H (S, F(—j) ®@ws) 2 H'(S,F(d— 4 —j)) = 0.
Applying cohomology, we obtain that the restriction map
HO(8,05(5)) — H(C, Oc(3)) (4.40)

is surjective for all; € Z. Recall that, by definition, this means thatis
projectively normalin P3. Conversely, ifC' is projectively normal, we obtain

(4.39.
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Before we state the next Theorem we have to remind some facts about the
intersection theory on a normal singular surface (déd)).

Leto : S’ — S be a resolution of singularities which we always assume to
be minimal. Let€ = ), _; E; be its reduced exceptional locus. For any curve
C on S we denote by —1(C) the proper transform af’ and define

0*(0) =7 NC) + Y miE,
i€l
wheren; are rational numbers uniquely determined by the system of linear
equations

0=0"(C)-E;=-7""(C)-E;j+ Y miE; - E;=0,j€l.
i€l
Now we define the intersection numhk@r C’ of two curvesS by
C-C"=0*C)- " (C").

This can be extended by linearity to all Weil divisors 8nlt coincides with
the usual intersection on the subgroup of Cartier divisors. Also it depends only
on the equivalence classes of the divisors.

Recall thatS admits a dualizing sheafs. It is a reflexive sheaf of rank 1,
hence determines the linear equivalence class of a Weyl devisors denoted by
K (the canonical clasof S). It is a Cartier divisor class if and only § is
Gorenstein (as it will be in our case wh#ris a hypersurface). We have

Kg = 0'*(K5) + A,

whereA = 3., a; R; is thediscrepancy divisorThe rational numbers; are
uniquely determined from linear equations

Ko -Rj=> a;Ri-Rj, jel.
iel
For any reduced irreducible cur¢éon S define

Ag(C) == =L(0*(C) =) +i07 - A3,

whered = h?(p*Os/Oc) is our familiar invariant of the normalization ¢f.
The following results can be found iA4].

Proposition 4.2.13 For any reduced curvé€’ on .S and a Weil divisorD let
Oc¢(D) be the cokernel of the natural injective mély (D — C') — O(D)
extending the similar map ofi \ Sing(.S). Then

(i) C — Ag(C) extends to a homomorphisWDiv(S)/Div(S) — Q
which is independent of a resolution;
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(i) x(Oc(D)) =x(0c)+C - D —245(C);
(i) —2x(Oc) =C?+C - Kg — 245(C).

Example4.2.3 Assume thatS has only ordinary double points. Then a min-
imal resolutions : S’ — S has the properties th&k = 0 and€ = Ry +
...+ Ry, wherek is the number of singular points and eaghis a smooth
rational curves withR; - Kg» = 0 (see more about this in Chapter 8). Let
o~ 1(C) - E; = m;. Then easy computations show that

Now we are ready to state and to prove the following theorem.

Theorem 4.2.14 Let F be an aCM sheaf of rank 1. Theh defines a lin-
ear determinantal representation 6fif and only if 7 = Og(C) for some
projectively normal integral curvé’ with

degC = Ld(d— 1), pa(C) = é(d —9)(d—3)(2d + 1).

Proof SupposeF defines a linear determinantal representatio§.ofhen it
is @ aCM sheaf isomorphic ©s(C') for some integral projectively normal
curveC, and satisfies conditiond.37), (4.38).

We have

X(F(=1)) = B(F(=1)) + W1 (F(-1)) + h*(F(-1)).

By (4.37) and @.39, the right-hand side is equal t¢(F(—1)). Let H be a
general plane section ¢f and

be the tautological exact sequence defining the ideal shedf dknsoring it
by F(—1), we obtain an exact sequence

0— F(=2) = F(—1) — F(-1) ® Oy — 0.
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It shows that the conditioh?(F(—2)) = 0 from (4.37) impliesh?(F(—1)) =
0, hence

X(F(-1)) =0. (4.42)
Similar computation shows that
X(F(—=2)) =0. (4.43)

Tensoring exact sequencé.41) by Os(C — H), we obtain an exact se-
guence

0— F(-2) - F(-1) - Oyg(C - H) — 0.
Applying the Riemann-Roch Theorem to the sh®af(C — H) on H, we get
deg Oy (C — H)) =degC —d = x(Ou(C — H)) — x(On)
= X(F(=1)) =x(F(=2)) = x(On) = —x(On).
This gives
degC=d—x(Op)=d—1+3(d—1)(d—2) = 3d(d - 1),

as asserted.
Applying Propositiord.2.13(ii), we get,

x(Oc)=—-C-C+C-H+x(Oc(C—H))+2As(C)

=degC' — C? + x(Oc(C — H)) +245(C).
By Propositiord.2.13(iii),
C?*=—-C-Ks—2x(0c)+2A45(C) = —(d—4) deg C —2x(0Oc)+245(0),
hence

—x(Oc) = (d —3)deg C + x(Oc(C — H)).
The exact sequence

0— Os(—H)— O0s(C—H)— Oc(C—H)—0
gives
X(Oc(C = H)) = x(F(=1)) = x(Os(-1)) = =x(Os(-1)).

Easy computations of the cohomology of projective space gives

«Os(-1) = ).
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Combining all together, we obtain

pal(C) =1 X(00) =1+ Ydld ~ 1)(d ~3) ~ zd(d ~ 1)(d ~2)

- é(d _9)(d—3)(2d+1),

as asserted. We leave to the reader to reverse the arguments and prove the
converse. O

Example4.2.4 We will study the case of cubic surfaces in more detail in
Chapter 9. Let us consider the case of quartic surfaces. Assume firsf that
is nonsingular. ThetF = Og(C), whereC'is a projectively normal smooth
curve of degre& and genus3. The projective normality is equivalent to the
condition thaiC' is not hyperelliptic (Exercise 4.10). We also haéOx (C))

= 4. According to Noether's Theorem, the Picard group of a general surface of
degree> 4 is generated by a plane section. Since a plane section of a quartic
surface is of degree 4, we see that a general quartic surface does not admit
a determinantal equation. The condition tBatcontains a curve&' as above
imposes one algebraic condition on the coefficients of a quartic surface (one
condition on the moduli of quartic surfaces).

Suppose now tha® contains such a curve. By (18, the transpose deter-
minantal representatiof = det ‘A is defined by the sheal =~ FV(3) =
Os(3H — C), whereH is a plane section of. We have two maps: S —

P3 v : S — P defined by the complete linear systeig and [3H — C|.
SinceC? = —C - K5 —2x(O¢) = 4, the images are quartic surfaces. We will
see later, in Chapter 7, that the two images are related by a Cremona transfor-
mation from|UY| = |C|Y to |VV| = |3H — C|".

We will find examples with singular surfacgin the next subsection.

4.2.6 Symmetroid surfaces

These are surfaces i which admit a linear determinantal representation
S = V(det A) with symmetric matrixA. The name was coined by A. Cayley.

According to our theory the determinantal representation is given by an aCM
sheafF satisfying

F2FV(d-1). (4.44)
For example, ifS'is a smooth surface of degrégwe haveF =~ Og(C') and we
must haveC ~ (d — 1)H — C, whereH is a plane section. Thus, numerically,
C = (d—1)H, and we obtairC? = 1d(d—1)?,C-Kg = 1d(d—1)(d—4),
andp,(C) = 1+ 2d(d — 1)(d — 3). It is easy to see that it disagrees with



202 Determinantal equations

the formula forp, (C') for anyd > 1. A more obvious reason why a smooth
surface cannot be a symmetroid is the following. The codimension of the locus
of quadrics inP¢ of corank> 2 is equal to3. Thus each three-dimensional
linear system of quadrics intersects this locus, and hence at somerpoift
we must have rani(z) < d — 2. Since our sheaF is an invertible sheaf, this
is impossible.

So we have to look for singular surfaces. Let us state the known analogue of
Theorenmd.2.1in the symmetric case.

The proof of the following Theorem can be found BOB or [359)).

Theorem 4.2.15 LetSym,, be the space of symmetric matrices of sizand
Sym,, (r) be the subvariety of matrices of rarkr < m. Then

e Sym_(r) is an irreducible Cohen-Macaulay subvariety of codimension

im—r)(m—r+1).

e Sing(Sym,, (r)) = Sym,, (r — 1).
n+i+m—r
o degSingSym,,(r)) = [osi<m—r-1 ((27’111))

(2

For example, we find that

degQ2(2) =4, degQa-1(2) = (d—;}— 1)- (4.45)

Thus, we expect that a general cubic symmetroid has 4 singular points, a gen-
eral quartic symmetroid has 10 singular points, and a general quintic sym-
metroid has 20 singular points.

Note that a symmetroid surface of degreis the Jacobian hypersurface of
the web of quadric$V” defined by the image of map: P? — Qu_; defined
by the determinantal representation. We identifyf with a web of quadrics
in P(U). The surfaceS is the discriminant hypersurfade(|E|) of W. The
left kernel mapl : S --» P4~ given by|Os(C)| mapsS onto the Jacobian
surface Ja@E|) in P(U). |E| is a regular web of quadrics [F| intersects the
discriminant hypersurface of quadricsIMU) transversally. In this case we
have the expected number of singular pointsSoand all of them are ordinary
nodes. The surfacé admits a minimal resolution : S := D(|E|) — S. The
mapl = [o o', wherel : S — Jad|E|). The map is given by the linear
system/o—!(C)|. The Jacobian surface is a smooth surface of degree equal to
o 1(0O)2.

Proposition 4.2.16 Let S’ be the Jacobian surface ¢F/|, the image ofS
under the right kernel map. Assume thatF)| is a regular web of quadrics.
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ThenPic(S’) contains two divisor classeg h such thath? = d,n* = (%),
and
k

=1
whereR; are exceptional curves of the resolutien S — S.

Proof We identify S” with the resolutionS by means of the map We take
h = 0*(O)g|(1)) andn to bet*(Os(1)). We follow the proof of Proposition
4.1.4to show that, under the restrictig@p)(2)| — [Os/(2)], the web of
quadrics|E| in |Op(1)(2)| is identified with the linear system of polars 8f
This is a sublinear system |@s((d — 1)|. Its preimage inS is contained in
the linear systeni(d — 1)h — Zle R;|. It is clear thath? = d. It follows
from Propositiord.2.15 thatdn?® = (d — 1)2d — 2(*%"). This easily gives the
asserted value of?. O

Corollary 4.2.17
deg 8" =n* = (g)
Using the adjunction formula, we find

2pa(n)—2=ng+n - Ke =n*+3d(d—1)(d—4) = (5) + 3d(d—1)(d—4)

= éd(d —1)(2d - 7).

This agrees with the formula for, (C') in Theorem4.2.14

It follows from the Proposition that the theta characterisgtidefining the
symmetric determinantal representationSois isomorphic toOs(C), where
C = 0.(D)for D € |n|. We haveDs(C)®? =2 Og(d — 1) outside of SingS).
This givesd!? = Og(d — 1).
Remarkd.2.4 Supposel is odd. Let

§=3d-1h-n=> R

If dis even, we let
k
§i=3dh—n=h+> R
=1
So, the set of nodes is even in the former case and weakly even in the latter case
(see in [f2]). The standard construction gives a double covef’ofamified
only over nodes if the set is even and over the union of nodes and a member of
|h] if the set is weakly even.
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The bordered determinant formuld.10 for the family of contact curves
extends to the case of surfaces. It definggla 1)-dimensional family of
contact surfaces of degrde- 1. The proper transform of a contact curveSh
belongs to the linear system|.

Example4.2.5 We will consider the casé = 3 later. Assumel = 4 and
the determinantal representation is transversalSileas the expected number
10 of nodes. LetS’” be its minimal resolution. The linear systepconsists
of curves of genus 3 and degree 6. It mafissomorphically onto a quartic
surface inP?, the Jacobian surface of the web of quadrics defined by the de-
terminantal representation. The family of contact surfaces is a 3-dimensional
family of cubic surfaces passing through the node§ ahd touching the sur-
face along some curve of genus 3 and degree 6 passing through the nodes. The
double cover corresponding to the divisor classa regular surface of general
type withp, = 1 andc? = 2.

Consider the linear systej2h — R;| on S’. Since(h — R;1)? = 2, it defines
adegree 2 map onf®’. Since(2h—R;)-R; = 0,4 > 10, the curvesk;, i # 1,
are blown down to points. The curve is mapped to a coni&” on the plane.
One can show that the branch curve of the cover is the union of two cubic
curves and the coni&’ is tangent to both of the curves at each intersection
point. Conversely, the double cover of the plane branch along the union of two
cubics which both everywhere tangent to a nonsingular conic, is isomorphic to
a quartic symmetroid (se&4€]) We refer to Chapter 1 where we discussed the
Reye varieties associatedrtedimensional linear systems of quadric&if. In
the case of the quartic symmetroid parameterizing singular quadrics in a web
of quadrics inP3, the Reye variety is an Enriques surface.

Assumed = 5 and S has expected number 20 of nodes. The linear system
n consists of curves of genus 11 and degree 10. It nf#psomorphically
onto a surface of degree 10It, the Jacobian surface of the web of quadrics
defined by the determinantal representation. The family of contact surfaces
is a 4-dimensional family of quartic surfaces passing through the nodgs of
and touching the surface along some curve of genus 11 and degree 10 passing
through the nodes. The double couErof S branched over the nodes is a
regular surface of general type with = 4 andc¢? = 10. It is easy to see
that the canonical linear system oéhis the preimage of the canonical linear
system onS. This gives an example of a surface of general type such that the
canonical linear system maps the surface onto a canonically embedded normal
surface, a counter-example to Babbage’s conjecture {&e [



EXERCISES 205
Exercises

4.1 Find explicitly all equivalence classes of linear determinantal representations of a
nodal or a cuspidal cubic.

4.2 Show that a general binary form admits a unique equivalence class of symmetric
determinantal representations.

4.3 The following problems lead to a symmetric determinantal expression of a plane
rational curve 387].

(i) Show, that, for any two degree binary formsp(uo, u1) and g(uo,u1), there
exists a unique x d symmetric matrixB(p, ¢) = (b;;) whose entries are bilinear
functions of the coefficients of andq such that
p(uo, u1)q(vo, v1) —q(uo, ur)p(vo, v1) = (uovr —wrvo) Y _ biyugu’ Tvjvi 7.

(i) Show that the determinant &f(p, q) (thebezoutianof p, ¢) vanishes if and only
if the two binary forms have a common zero.

(i) Letpo, p1, p2 be three binary forms of degrdavithout common zeros and be
the image of the maﬁl — PQ, [uo, ul} — [po(uo,ul),pl (Uo, ul),pg(uo, 'LL1)}.
Show thatC' is given by the equatiorf (to, t1,t2) = |B(top1 — tipo,topz —
tapo)| = 0.

(iv) Prove thatf = [toB(p1,p2) — t1B(to, t2) — t2B(to, t1)| and any symmetric
determinantal equation @f is equivalent to this.

4.4 Let C = V(f) be a nonsingular plane cubig;, p2, ps be three non-collinear
points. Let(Aq, A1, A2) define a quadratic Cremona transformation with fundamental
pointsp1, p2, ps. Let ¢1, g2, g3 be another set of three points such that the six points
D1, D2, P3,q1,q2, g3 are cut out by a conic. LgtBo, B1, B2) define a quadratic Cre-
mona transformation with fundamental poigts ¢z, ¢s. Show that

A()Bo A()Bl AOBQ
F3detadj| A1Bo Ai1B1 Ai1B»
AQBO AgBl A2B2

is a determinantal equation 6f.

4.5Find determinantal equations for a nonsingular quadric surfaB.in

4.6Let E C Maty be alinear subspace of dimension 3 of the spacé>ofd matrices.
Show that the locus of points € P¢~! such that there existd4 € E such thatdz = 0

is defined by(g) equations of degre® In particular, for any determinantal equation of
a curveC, the images of” under the maps : P2 — P?~! andl : P> — P! are
defined by such a system of equations.

4.7 Show that the variety of nets of quadricghifi whose discriminant curve is singular
is reducible.

4.8Let C = V(det A) be a linear determinantal representation of a plane cGrve
of degreed defiined by a rank 1 torsion-free sheafof global typer : ¢/ — C.
Show that the rational map: C — P4~* = — |N(A(z))| extends to a regular map
C’ — pil,

4.9Let C be a non-hyperelliptic curve of genus 3 and degreeB’in

(i) Show that the homogeneous ideak®in P? is generated by four cubic polyno-

mials fo, f1, f2, f3.
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(ii) Show that the equation of any quartic surface contaidingan be written in the
form " I; fi = 0, wherel; are linear forms.

(iii) Show that(fo, f1, f2, f3) define a birational mag from P* to P*. The image
of any quartic containing’ is another quartic surface.

(iv) Show that the mayf is the right kernel map for the determinantal representation
of the quartic defined by the curée.

4.10Show that a curve of degree 6 and genus Biris projectively normal if and only
if it is not hyperelliptic.

4.11 Let C be a nonsingular plane curve of degréeand £, € Pic? ' (C) with
h°(Lo) # 0. Show that the image af' under the map given by the complete linear
systemLy(1) is a singular curve.

4.12 Let 6 be a theta characteristic on a nonsingular plane curve of debweith
h°(9) = 1. Show that the corresponding aCM sheaffindefines an equation o'
expressed as the determinant of a symmeéttie 1) x (d — 1) matrix (a;;(t)), where
ai;(t) are of degreéd for 1 < 4, j < d — 3, a1,(t) are of degree 2, ant;_14—1(t) is
of degree 337].

4.13Let S = V(det A) be alinear determinantal representation of a nonsingular quar-
tic surface inP3. Show that the fous x 3 minors of the matrixB obtained fromA by
deleting one row define the equations of a projectively normal curve of degree 6 and
genus 3 lying orb.

4.14Show that any quartic surfaces containing a line and a rational normal cubic not
intersecting the line admits a determinantal representation.

4.15Show that the Hessian hypersurface of a general cubic hypersurfatésinyper-
surface of degree 5 whose singular locus is a curve of degree 20. Show that its general
hyperplane section is a quintic symmetroid surface.

4.16Let C be a curve of degred/(d) = d(d — 1)/2 and arithmetic genu&/(d) =
1(d —2)(d — 3)(2d + 1) on a smooth surface of degrdén P>. Show that the linear
system|Os(—C)(d)| consists of curves of degre¥(d + 1) and arithmetic genus
G(d+1).

4.17Let S be a general symmetroid quintic surfacePihand|L| be the linear system

of projectively normal curves of degree 10 and genus 11 which defines a symmetric
linear determinantal representationsfind letS’ be the image of under the rational
map® : P® — P? = |O¢|Y. Let W be the web of quadrics defining the linear
representation of. Consider the rational map : P* --» P* defined by sending

a pointz € P* to the intersection of polar hyperplan&s (Q),Q € W. Prove the
following assertions (se&p1].

(i) The fundamental locus af (whereT is not defined) is equal t8'.

(i) The image of a general hyperplakkis a quartic hypersurfac& ;.

(iii) The intersection of two such quartiésy and X i/ is equal to the union of the
surfaceS’ and a surfacé” of degree 6.

(iv) Each 4-secant line af' contained inH (there are 20 of them) is blown down
underT to 20 nodes ofX 5.

4.18Letp1, ..., ps be five points inP?® in general linear position. Prove the following
assertions (se®p3J).

(i) Show that one can choose a paijg on the linep;p; such that the linepigsz,
D2G45, D3G5, Paqiz, P5qzs form a closed space pentagon.
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(if) Show that the union of 5 lings;p; and 5 lines defined in (i) is a curve of arith-
metic genus 11.

(i) Show that the linear system of quartic surfaces containing the 10 linesPiaps
to a quartic hypersurface iB* with 45 nodes (th@urhardt quartic threefolj

4.19Show that the equivalence classes of determinantal representations of plane curve
C of degree2k with quadratic forms as entries correspond to aCM sheavés satis-

fying h°(F(—1)) = 0andF(—id — 2)¥ = F(—3(d — 2)).

4.20 Show that the union ofl different hyperplanes ifP™ always admits a unique
equivalence class of symmetric linear determinant representations.

Historical Notes

Apparently, O. Hesse was the first who stated clearly the problem of represen-
tation of the equation of a hypersurface as a symmetric determinant of linear
forms [321]. He was able to do it for plane curves of order32f. He also
showed that it can be done in 36 different ways corresponding 36 families of
contact cubics. For cubic curves the representation follows from the fact that
any cubic curve can be written in three ways as the Hessian curve. This fact
was also proven by Hess817], p. 89. The fact that a general plane curve of
degreed can be defined by the determinant of a symmetric d matrix with
entries homogeneous linear forms was first proved by A. Dig&3][ Dixon’s

result was reproved later by Grac@8p. Modern expositions of Dixon'’s the-

ory were given by A. Beauville33] and A. Tyurin [616, [617).

The first definition of non-invertible theta characteristics on a singular curve
was given by W. Barth. It was studied for nodal planes curves by A. Beauville
[33] and F. Catanesé&’fl], and for arbitrary singular curves of degrge4, by
C.T.C. Wall [646.

It was proved by L. Dickson1[87 that any plane curve can be written as
the determinant of not necessarily symmetric matrix with linear homogeneous
forms as its entries. The relationship between linear determinantal represen-
tations of an irreducible plane curve of degréand line bundles of degree
d(d — 1)/2 was first established irlLfi(. This was later elaborated by V. Vin-
nikov [647. A deep connection between linear determinantal representations
of real curves and the theory of colligations for pairs of commuting operators
in a Hilbert space was discovered by M. 3iif [404] and his school (sedp3).

The theory of linear determinantal representation for cubic surfaces was de-
veloped by L. Cremonalb9. Dickson proves in182 that a general homoge-
neous form of degreé > 2 in r variables cannot be represented as a linear de-
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terminant unless = 3 orr = 4,d < 3. The fact that a determinantal represen-
tations of quartic surfaces is possible only if the surface contains a projectively
normal curve of genus 3 and degree 6 goes back to F. S858r However, it

was A. Coble who was the first to understand the reason: by Noether’s theorem,
the Picard group of a general surface of degrekis generated by a plane sec-
tion [133, p. 39. The case of quartic surfaces was studied in detail in a series
of papers of T. Room32(. Quartic symmetroid surfaces were first studied by

A. Cayley P4]. They appear frequently in algebraic geometry. Coble’s paper
[131] (in a disguised form) the group of birational automorphisms of such sur-
faces. There is a close relationship between quartic symmetroids and Enriques
surfaces (se€ljg. M. Arin and D. Mumford [L7] used quartic symmetroids

in their celebrated constriction of counter-examples to theth Problem. A
modern theory of symmetroid surfaces can be found in papers of A. Beauville
[37] and F. Catanesé&f).

We refer to B7] for a comprehensive survey of modern theory of determi-
nantal representations of hypersurfaces based on the theory of aCM sheaves.
One can find numerous special examples of determinantal representations in
this paper. We followed his exposition in many places.

In classical algebraic geometry, a determinantal representation was consid-
ered as a special case of a projective generation of subvarieties in a projective
space. It seems that the geometric theory of determinantal varieties started from
the work of H. Grassmann in 185890, where he considers the projective
generation of a cubic surface by three collinear nets of planes. Grassmann’'s
construction was greatly generalized in a series of papers of T. B&ge [n
the last paper of the series he studies curves of degree 10 and genus 11 which
lead to linear determinantal representation of quintic surfaces.

Algebraic theory of determinantal varieties started from the work of F.S.
Macaulay f13, where the fact that the loci of rank » square matrices are
Cohen-Macaulay varieties can be found. The classical account of the theory of
determinantal varieties is T. Room’s monograpB]. A modern treatment of
determinantal varieties can be found in modern bodkg [253, [295. The
book of W. Bruns and U. VetteB[)] gives a rather complete account of the re-
cent development of the algebraic theory of determinantal ideals. The formula
for the dimensions and the degrees of determinantal varieties in general case
of m x n matrices and also symmetric matrices goes back to C. SB€ [
and Giambelli P69.
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Theta characteristics

5.1 Odd and even theta characteristics

5.1.1 First definitions and examples

We have already dealt with theta characteristics on a plane curves in the previ-
ous Chapter. Here we will study theta characteristics on any nonsingular pro-
jective curve in more details.

It follows from the definition that two theta characteristics, considered as
divisor classes of degreg— 1, differ by a 2-torsion divisor class. Since the
2-torsion subgroup J&€')[2] is isomorphic to(Z/27)%9, there are2?9 theta
characteristics. However, in general, there is no canonical identification be-
tween the set TCh&f') of theta characteristics ofi and the set J4€')[2].

One can say only that TCh@r) is an affine space over the vector space of
JadC)[2] = F2Y.

There is one more structure on TCH@) besides being an affine space over
Jaq(C)[2]. Recall that the subgroup of 2-torsion points(d&y2] is equipped
with a natural symmetric bilinear form ovék,, called theWeil pairing It is
defined as follows (seel(], Appendix B). Lete, ¢’ be two 2-torsion divi-
sor classes. Choose their representatie®’ with disjoint supports. Write
div(¢) = 2D,div(¢’) = 2D’ for some rational function® and ¢’. Then
if(%g = +1. Here, for any rational functiop defined at points;, (3>, z;) =
L, #(x;). Now we set

ey {1 it o(D")/¢/ (D) = —1,

0 otherwise

Note that the Weil pairing is a symplectic form, i.e. satisfies) = 0. One
can show that it is a nondegenerate symplectic form &44)[
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For anyd € TChar(C'), define the function
g9 : JadC)[2] — Fo, € — hO(I + €) + K2 (V).
The proof of the following Theorem can be found k0], p. 290).

Theorem 5.1.1(Riemann-Mumford Relation) The functionyy is a quadratic
form onJag(C')[2] whose associated symmetric bilinear form is equal to the
Weil pairing.

Later we shall see that there are two types of quadratic forms associated to
a fixed nondegenerate symplectic form: even and odd. They agree with our
definition of an even and odd theta characteristic. The number of even (odd)
theta characteristics is equal2e! (29 + 1) (2971(29 — 1)).

An odd theta characteristit is obviously effective, i.eh®(9) > 0. If C'is
a canonical curve, then divisdp € || satisfies the property thatD is cut
out by a hyperplanél in the spaceK |V, whereC' is embedded. Such a hy-
perplane is called eontact hyperplandt follows from above that a canonical
curve either hag9~1(29 —1) contact hyperplanes or infinitely many. The latter
case happens if and only if there exists a theta charactefistith 2° () > 1.

Such a theta characteristic is callehishing theta characteristié&\n example

of a vanishing odd theta characteristic is the divisor class of a line section of a
plane quintic curve. An example of a vanishing even theta characteristic is the
uniquegi on a canonical curve of genus 4 lying on a singular quadric.

The geometric interpretation of an even theta characteristic is more subtle.
In the previous Chapter we related theta characteristics, both even and odd,
to determinantal representations of plane curves. The only known geometrical
construction related to space curves which | know is the Scorza construction
of a quartic hypersurface associated to a canonical curve and a non-effective
theta characteristic. We will discuss this construction in sedién

5.1.2 Quadratic forms over a field of characteristic 2

Recall that a quadratic form on a vector sp&tever a fieldK is a mapq :
V — K such tha(av) = a%q(v) for anya € K and anyv € V and the map

by : VxV =K, (v,w)—qv+w)—q)—qw)

is bilinear (it is called theoolar bilinear form). We haveb, (v, v) = 2q(v) for
anyv € V. In particular,q can be reconstructed froty if char(K) # 2. In
the case when chd) = 2, we getb,(v,v) = 0, henceb, is a symplectic
bilinear form. Two quadratic formg, ¢’ have the same polar bilinear form if
and only ifq — ¢’ = [, wherel(v + w) = I(v) + l(w), l(av) = a®l(v) for any
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v,w € V,a € K. If Kis a finite field of characteristic 2/1 is a linear form on
V', and we obtain

by = by <= q=q + (5.1)

for a unique linear fornf : V" — K.

Letes,..., e, be abasis i andA = (a;;) = (by(ei, e;)) be the matrix
of the bilinear formb,. It is a symmetric matrix with zeros on the diagonal if
cha(K) = 2. It follows from the definition that

(J(Z zie;) = Z‘T?(I(ei) + Z Ty
i=1 i=1 1<i<j<n

Therank of a quadratic form is the rank of the matrik of the polar bilinear
form. A quadratic form is calledondegeneratd the rank is equal telim V.
In coordinate-free way this is the rank of the linear map— V'V defined by
bq. The kernel of this map is called thadical of b,. The restriction of to the
radical is identically zero. The quadratic forarises from a nondegenerate
guadratic form on the quotient space. In the following we assumegtligt
nondegenerate.

A subspacd. of V is calledsingularif ¢|L = 0. Each singular subspace is
anisotropic subspacwith respect td,, i.e.,b,(v, w) = 0 for anyv,w € E.
The converse is true only if ch@) # 2.

Assume chdiK) = 2. Sinceb, is a nondegenerate symplectic fonmn= 2k,
and there exists a basis, - - - , e,, in V such that the matrix df, is equal to

0r I
Ji = . 5.2
. ( o Ok) (5.2)
We call such a basisstandard symplectic basib this basis
n n k
9D wier) =Y wiqlen) + Y wiwiph.
i=1 i=1 i=1
Assume, additionally, tha* = K*2, i.e., each element iK is a square (e.g.

K is a finite or algebraically closed field). Then, we can further reditoethe
form

2k n k
Q(Z Tie;) = (Z a;zi)? + Z TiTiths (5.3)
=1 =1 =1
whereq(e;) = o, i = 1,...,n. This makes§.1) more explicit. Fix a non-

degenerate symplectic forfp) : V x V' — K. Each linear function o is
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given by/(v) = (v, n) for a uniquen € V. By (5.1), two quadratic formg, ¢’
with polar bilinear form equal tg, ) satisfy

q(v) = ¢'(v) + (v, )

for a uniquen € V. Choose a standard symplectic basis. The quadratic form
defined by

2k k
QO(E Tie;) = E TiTiqk
I=1 =1

has the polar bilinear form equal to the standard symplectic form. Any other
form with the same polar bilinear form is defined by

q(v) = qo(v) + (v, nq)?,

where

2k
Ng = Z Valeiei.

From now onK = Fy, the field of two elements. In this cagé = a for any
a € Fy. Formula 6.1) shows that the s&p(1) of quadratic forms associated to
the standard symplectic form is an affine space &vaith additiong+1,q €
Q(V),n € V, defined by

(g +n)(v) =q(v) + (v,n) = qv+n) +q(n). (5.4)
The number
Arf(q) = ZQ(ei)Q(€i+k) (5.5)

is called theArf invariant of ¢. One can show that it is independent of the
choice of a standard symplectic basis (2], Proposition 1.11). A quadratic
form ¢ € Q(V) is calledeven(resp.odd) if Arf (¢) = 0 (resp. Arfg) = 1).

If we choose a standard symplectic basis fgrand writeq in the form
qo + 14, then we obtain

k
Arf(q) = Zaiai-i-k = qo(1q) = a(nq)- (5.6)
i=1

In particular, if¢’ = g +v = qo + 14 + v,

Art(q') + Arf(q) = qo(ng +v) + qo(ng) = qo(v) + (v,1g) = q(v). (5.7)



5.2 Hyperelliptic curves 213

It follows from (5.6) that the number of even (resp. odd) quadratic forms is
equal to the cardinality of the sgf *(0) (resp.¢; ' (1)). We have

lag 1 (0)] = 257128 +1), gg '(1)] =21 (2F - 1). (5.8)

This is easy to prove by using induction bn
Let SpV') be the group of linear automorphisms of the symplectic space
If we choose a standard symplectic basis then

SV 2 Sp(2k, Fy) = {X € GL(2k)(Fy) : X - Ji - X = Ji.}.
It is easy to see by induction dnthat
ISp(2k, F)| = 2% (228 — 1)(22F=2 — 1) ... (22 — 1). (5.9)

The group SpV') has 2 orbits inQ(V), the set of even and the set of odd
guadratic forms. An even quadratic form is equivalent to the fgsrand an
odd quadratic form is equivalent to the form

q1 = qo t+ er + ek,

where(eq, .. ., ea;) is the standard symplectic basis. Explicitly,

2k k
Q1(Z xie;) = Z LTy + T4 23

=1 =1
The stabilizer subgroup $p)" (resp. SPV')~) of an even quadratic form
(resp. an odd quadratic form) is a subgroup of I8pof index 2+~1(2% +
1) (resp.2k=1(2F — 1)). If V = F2* with the symplectic form defined by
the matrixJ, then SPV)* (resp. SpV') ™) is denoted by @k, F5)™ (resp.
O(Qk‘,Fg)_)

5.2 Hyperelliptic curves

5.2.1 Equations of hyperelliptic curves

Let us first describe explicitly theta characteristics on hyperelliptic curves. Re-
call that a hyperelliptic curve of genysis a nonsingular projective cun&

of genusg > 1 admitting a degree 2 map: C — P'. By Hurwitz’s formula,
there are2g + 2 branch point®, ..., pag+2 in PL. Let fogo(to, t1) be a bi-
nary form of degre@g + 2 whose zeros are the branch points. The equation of
C'in the weighted projective plari®g1,1,g9 + 1) is

t5 + fagia(to,t1) = 0. (5.10)
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Recall that a weighted projective spagy) = P(qo, - - -, ¢») is defined as the
quotient ofC™*1 \ {0}/C*, whereC* acts by

t: (20,5 20] — [t%20,. .., t 2],
A more general definition dP(q) which works ovelZ is
P(q) = ProjZ[Ty, . .., Ty],

where the grading is defined by settidep 7; = ¢;. Hereq = (qo, - . ., q,) are
integers> 1. We refer to 191] or [345 for the theory of weighted projective
spaces and their subvarieties. Note that a hypersurfaBédhis defined by

a homogeneous polynomial where the unknowns are homogeneous of degree
¢;- Thus equationy.10 defines a hypersurface of degiae+ 2. Although, in
generalP(q) is a singular variety, it admits a canonical sheaf

we(q) = Or(q)(—al);

where|q| = ¢o+: - - +¢. Here the Serre sheaves are understood in the sense of
theory of projective spectrums of graded algebras. There is also the adjunction
formula for a hypersurfac& C P(q) of degreed

wx = Ox(d —|ql). (5.11)
In the case of a hyperelliptic curve, we have
we = 0c(g —1).

The morphismp : C — P! corresponds to the projectidty, t1, 2] — [to, t1]
and we obtain that

we =@ Op1(g —1).

The weighted projective spad¥1, 1,g + 1) is isomorphic to the projective
cone inP9+2 over the Veronese curve,.;(P') c P9t!. The hyperelliptic
curve is isomorphic to the intersection of this cone and a quadric hypersurface
in P9+ not passing through the vertex of the cone. The projection from the
vertex to the Veronese curve is the double caverC — P'. The canonical
linear system K| mapsC to P9 with the image equal to the Veronese curve
Ugfl(IPl).

5.2.2 2-torsion points on a hyperelliptic curve

Let ci,...,cog+2 be the ramification points of the map We assume that
©(c;) = p;. Obviously,2¢; — 2¢; ~ 0, hence the divisor class of — ¢; is of
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order 2 in Pi¢C). Also, for any subsei of the setB, = {1, ...,2g + 2}, we
have

ay = ZCZ' — #Ing+2 = Z(Cl — 02g+2) € PlC(C)[Q}

el i€l
Now observe that
ap, = Y ¢ — (29 +2)cagp2 = div(g) ~ 0, (5.12)
i€B,
where¢ = to/(bto — at1)?™" andpe,+2 = (a,b) (we consider the fraction
modulo equationg.10 definingC). Thus
¢ —c¢j~ 2+ Z ek — (29 + 2)cagqa ~ B\ {i,j}-
keBg\{j}

Adding to«; the zero divisokgg2 — c24+2, We can always assume thats
is even. Also adding the principal divisaiz, , we obtain thaty; = o, where
I denotesB, \ I.

LetF.? =~ F29"2 pe theF,-vector space of function8, — F», or, equiva-
lently, subsets of3,. The sum is defined by the symmetric sum of subsets

I+J=IUJ\(INJ).

The subsets of even cardinality form a hyperplane. It contains the siilesds

B, as a subspace of dimension 1. It denote the quotient space. Elements

of E, are represented by subsets of even cardinality up to the complementary
set pifid mapsin terminology of A. Cayley). We have

E, =F5,
hence the correspondente- a; defines an isomorphism
E, = Pic(C)[2]. (5.13)
Note thatE, carries a natural symmetric bilinear form
e:Egx Ey —TFy, e(l,J)=#INJ mod 2. (5.14)

This form is symplectic (i.ee(I,I) = 0 for any I) and nondegenerate. The
subsets

A;={2i—1,2i}, B;={2i,2i+1}, i=1,...,q, (5.15)

form a standard symplectic basis.
Under isomorphism5.13), this bilinear form corresponds to the Weil pair-
ing on 2-torsion points of the Jacobian variety(of
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Remark5.2.1 The symmetric grou,,,2 acts onk, via its action onB,
and preserves the symplectic formThis defines a homomorphism

Sg - 629+2 — S[ng,]FQ)

If g =1, SP2,Fs) = &3, and the homomorphissy has the kernel isomor-
phic to the grougZ/27)2. If g = 2, the homomorphism, is an isomorphism.
If g > 2, the homomorphism, is injective but not surjective.

5.2.3 Theta characteristics on a hyperelliptic curve

For any subse€f’ of B, set

Ur = Z ¢i+(9—1—#Tcog2) = ar + (g — 1)cagta.
€T

We have
207 ~ 2ar + (29 — 2)cag42 ~ (29 — 2)cag42.
It follows from the proof of the Hurwitz formula that
Ko =¢"(Kp)+ Y ¢
i€B,
Choose a representative Bf: equal to—2p,,+2 and use$.12) to obtain
Ko ~ (29 — 2)cag4a.

This shows that}; is a theta characteristic. Again adding and subtracting
Cog+2 We may assume thagtT = g + 1 mod 2. SinceT andT define the
same theta characteristic, we will consider the subsets up to taking the com-
plementary set. We obtain a s@f which has a natural structure of an affine
space oveF, the addition is defined by

7+ ar = Vryg.

Thus all theta characteristics are uniquely represented by the divisor classes
dr, whereT' € Q.

An example of an affine space ovér= Fgg is the space of quadratic forms
q : F3¥ — F, whose associated symmetric bilinear farcoincides with the
standard symplectic form defined by.2). We identify V" with its dualV" by
means oby and sety + 1 = ¢ + [* foranyl € VV.

For anyl’ € )4, we define the quadratic forgy on £, by

qr(I) = 3(#(T +1) - #T) = #T NI+ 341 = 141 +e(I,T) mod 2.
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We have (all equalities are modulo 2)
qr(I +J)+qr(I) + qr(J)

=1HUT+ N+ #+#)+e(I+ JT)+e(I,T)+e(J,T)=#INJ.

Thus each theta characteristic can be identified with an element of the space
Q4 = Q(E,) of quadratic forms otE, with polar forme.
Also notice that

(qr + ar)(J) = qr(J) + e, J) = 5] + e(T, J) + (1, J)

=1#J+e(T+1,J)=qri1(J).

Lemma5.2.1 Letd¥r be atheta characteristic on a hyperelliptic curgeof
genusg identified with a quadratic form o#,. Then the following properties
are equivalent:

() #T =g+ 1 mod 4;
(i) R°(W7r) =0 mod 2;
(iii) gr is even.

Proof Without loss of generality, we may assume thpaj, . is the point
(0,1) at infinity in P1. Then the field of rational functions afi is generated
by the functiong; = t5/to andx = t1 /to. We have

Ir =Y ci+(9—1=#T)eagra ~ (9= 1+ #T)eagrz — Y i
€T €T
Any function ¢ from the spacd.(dr) = {¢ : div(¢) + 9 > 0} has a unique
pole atcy,4o Of order < 2g + 1. Since the functiory has a pole of order
2g + 1 atcog+2, We see thap = ¢*(p(z)), wherep(z) is a polynomial of
degree< 3(g — 1+ #T) in . ThusL(Jr) is isomorphic to the linear space
of polynomialsp(z) of degree< i (g — 1 + #T) with zeros aip;, i € T. The
dimension of this space is equal%@gﬁ 1—#T). This proves the equivalence
of (i) and (ii).
Let
U={1,3,...,2g+1} C By (5.16)

be the subset of odd numbersit. If we take the standard symplectic basis
in £, defined in §.19), then we obtain thajy = ¢ is the standard quadratic
form associated to the standard symplectic basis. It follows f&@6) that ¢

is an even quadratic form if and onlyT = U + I, whereqy(I) = 0. Let

I consists oft even numbers angodd numbers. Thegy (I) = #U NI +
1#I =m+ 2(k+m) =0 mod 2. Thus#T = #(U + S) = #U + #I —
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24UNS = (g+1)+ (k+m) —2m =g+ 1+k—m. Thenm + 4 (k +m)
is even, henc8m + k =0 mod 4. This implies thak — m =0 mod 4 and
#T = g+ 1 mod 4. Conversely, if#T = g +1 mod 4, thenk —m =0
mod 4 andqy (I) = 0. This proves the assertion. O

5.2.4 Families of curves with odd or even theta characteristic

Let X — S be a smooth projective morphism whose fifg over a points €
S'is a curve of genug > 0 over the residue fielé(s) of s. LetPick, s — S
be therelative Picard schemef X’/S. It represents the sheaf &tale topol-
ogy on S associated to the functor on the categorySechemes defined by
assigning to &-schemel” the group Pié(X x g T') of isomorphism classes
of invertible sheaves oX x g T of relative degree: over T' modulo tensor
product with invertible sheaves coming frdf The S-schemePicy, ;g — S
is a smooth projective scheme overlts fibre over a point € S is isomor-
phic to the Picard varietPicl, /., over the fieldx(s). The relative Picard
scheme comes with a universal invertible stiéain X' x s Picy 5 (locally in
étale topology). For any point € Pic’y 4 over a points € S, the restriction
of U to the fibre of the second projection owvgis an invertible sheal, on
X ®p(s) k(y) representing a point in Pi¢X, ® x(y)) defined byy.

For any integern, raising a relative invertible sheaf into-th power defines
a morphism

[m] : Pick )¢ — Pick)s.

Takingn = 2g — 2 andm = 2, the preimage of the section defined by the
relative canonical classy, s is a closed subscheme Bﬁcf{/g. It defines a
finite cover

TCx/s — S

of degree2?9. The pull-back of/ to TCx /s defines an invertible sheaf
overP = X xXg TCx/s satisfying 7®2 = wp/TC,, s+ BY @ theorem of
Mumford [447), the parity of a theta characteristic is preserved in an algebraic
family, thus the functior? Cx,s — Z/2Z defined byy — dim HY(U,,T,)
mod 2 is constant on each connected componeft@f; ;5. Let 7 3}’/5 (resp.
7C%5) be the closed subset 8C v s, where this function takes the valoe
(resp. 1). The projectioCS/, g — S (resp.7C%7s — S) is a finite cover of
degree2d—1(29 + 1) (resp.2971(29 — 1)).
It follows from above that C x5 has at least two connected components.
Now takeS = |Op2(d)|™ to be the space of nonsingular plane curgés
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of degreel and X — |Op2(d)|™ be the universal family of curves defined by
{(z,C) : z € C'}. We set

TCy=TCxys, TCY*" = TCY)5".

The proof of the following Proposition can be found 84].

Proposition 5.2.2 If d is even ord = 3, 7Cq4 consists of two irreducible
componentsT C® and 7C%%. If d = 1 mod 4, then7C¢’ is irreducible

but 7¢5™ has two irreducible components, one of which is the section of
TCyq — |Op2(d)| defined byOp: ((d — 3)/2). If d = 3 mod 4, thenT 5%

is irreducible but7CS’ has two irreducible components, one of which is the
section of7C; — |Op2(d)| defined byOp: ((d — 3)/2).

Let 7CY be the open subset GfCS’ corresponding to the paif€’, ) with
R°(9¥) = 0. It follows from the theory of symmetric determinantal represen-
tations of plane curves thatCY/PGL(3) is an irreducible variety covered by
an open subset of a Grassmannian. Since the algebraic grou3 PiGlcon-
nected and acts freely on a Zariski open subsé&t@}, we obtain thaZ CY is
irreducible. It follows from the previous Proposition that

TCH=7CY ifd#3 mod 4. (5.17)

Note that there exist coarse moduli spaeg” and/\/lgdd of curves of genus
g together with an even (odd) theta characteristic. We refef.4d] [for the
proof of irreducibility of these varieties and for construction of a certain com-
pactifications of these spaces.

5.3 Theta functions

5.3.1 Jacobian variety

Recall the classical definition of the Jacobian variety of a nonsingular pro-
jective curveC of genusg over C. We consideiC' as a compact oriented 2-
dimensional manifold of genus We view the linear spacB?(C, K) as the
space of holomorphic 1-forms @r. By integration over 1-dimensional cycles,
we get a homomorphism @&-modules

L HY(CLZ) — HO(C, Ko, L(y)w):/w.
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The image of this map is a lattice of rank2g in H°(C, K¢)V. The quotient
by this lattice
JadC) = H°(C,K¢)Y /A
is a complexg-dimensional torus. It is called thiacobian varietyof C'.
Recall that the cap product
n: H1(07Z) X Hl(C’, Z) — Hg(C,Z) =7

defines a nondegenerate symplectic form on gralypC, Z) = 729 with a
nondegenerate symplectic form. ke, . . ., oy, 51, . . ., B, be a standard sym-
plectic basis. We choose a basis . . . ,w, of holomorphic 1-differentials on
C such that

Let
Tij = / Wws.
The complex matrix = (7;;) is called theperiod matrix The basis, . . . ,wq

identifies H°(C, K¢) with CY and the period matrix identifies the lattide
with the latticeA, = [r 1,]Z29, where[r I,] denotes the block-matrix of size
g X 2g. The period matrix- = R(7) + +/—13(7) satisfies

tr=7, S(r)>0.

As is well-known (seeZ99)) this implies that Ja@”) is a projective algebraic
group, i.e. an abelian variety. It is isomorphic to the Picard scrﬁm%/(c.

We consider any divisab = > n,x onC as a 0-cycle od'. The divisors of
degred) are boundaries, i.d2 = 0+ for somel-chaing. By integrating oves
we get a linear function oW °(C, K¢) whose coset moduld = +(H;(C, Z))
does not depend on the choice®fThis defines a homomorphism of groups
p : DiV’(C) — JadC). The Abel-Jacobi Theorerasserts thap is zero on
principal divisors (Abel’s part), and surjective (Jacobi’s part). This defines an
isomorphism of abelian groups

a: Pid’(C) — JadC) (5.19)
which is called theAbel-Jacobi mapFor any positive integet let Pic!(C)

denote the set of divisor classes of degie@he group Pi&(C) acts simply
transitively on Pi€(C') via addition of divisors. There is a canonical map

ug : C'9 — Picd(C), D — [D],
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where we identify the symmetric product with the set of effective divisors of
degreed. One can show that F"i(:C) can be equipped with a structure of a
projective algebraic variety (isomorphic to the Picard schéri'n%/c) such
that the mapu, is @ morphism of algebraic varieties. Its fibres are projective
spaces, the complete linear systems corresponding to the divisor classes of
degreed. The action of Pi¢(C) = JadC) on Pi¢’(C) is an algebraic action
equipping Pié(C) with a structure of a torsor over the Jacobian variety.

Let

W;_y ={[D] € PicZ"1(C) : k(D) > r +1}.

In particular,IWy_, was denoted b in Theorem4.1.3 where we showed
that the invertible sheave, € Pic?~*(C) defining a determinantal equation
of a plane curve of genugbelong to the set Pic*(C) \ Wgo,l. The funda-
mental property of the loci;_, is given by the followingRiemann-Kempf
Theorem

Theorem 5.3.1
Wi i ={x¢ W;)_l : multngO_l >r+1}.
Heremult, denote the multiplicity of a hypersurface at the paint

In particular, we get
W, | =SingWw;_,).

From now on we will identify Pi&(C') with the set of points on the Jacobian
variety Ja¢C') by means of the Abel-Jacobi map. For any theta characteristic
9 the subset

© =W, , -9 cJagC)
is a hypersurface in J&C). It has the property that
W©)=1, [-1]"(©) =6, (5.20)

where[m] is the multiplication by an integern. in the group variety J4¢).
Conversely, any divisor on Jg€) satisfying these properties is equal/@_1
translated by a theta characteristic. This follows from the fact that a divisor
on an abelian varietyl satisfyingh’(D) = 1 defines a bijective mag —
Pic”(A) by sending a point € A to the divisort: D — D, wheret,, is the
translation mam — a + x in the group variety, and PI¢A) is the group of
divisor classes algebraically equivalent to zero. This fact implies that any two
divisors satisfying propertie (20 differ by translation by a 2-torsion point.

We call a divisor satisfyingX.20 a symmetric theta divisorAn abelian
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variety that contains such a divisor is callegh@ncipally polarized abelian
variety.

Let© = W, — 6 be a symmetric theta divisor on Jat). Applying The-
orem5.3.1we obtain that, for any 2-torsion poiate Ja¢C'), we have

mult.® = KO(¥ + e). (5.21)

In particular,e € © if and only if 8 + € is an effective theta characteristic.
According tod, the symmetric theta divisors are divided into two groups: even
and odd theta divisors.

5.3.2 Theta functions

The preimage of under the quotient map J&c&) = H°(C,K¢)*/A is a
hypersurface in the complex linear space= H°(C, K¢)* equal to the zero
set of some holomorphic functiah: V' — C. This function¢ is not invariant
with respect to translations hy. However, it has the property that, for any
v € V and anyy € A,

P(v+7) = ey (v)$(v), (5.22)

wheree,, is an invertible holomorphic function oi. A holomorphic function

¢ satisfying 6.22) is called atheta functiorwith theta factor{e., }. The set of
zeros of¢ does not change if we replagewith ¢a, wherea is an invertible
holomorphic function ori”. The functione., (v) will change into the function
ey (v) = e (v)p(v +v)d~*(v). One can show that, after choosing an appro-
priatea, one may assume that

¢ (v) = exp(2mi(a, (v) + b)),

wherea, is a linear function and,, is a constant (seetfiq, Chapter 151).
We will assume that such a choice has been made.

It turns out that the theta function corresponding to a symmetric theta divisor
O from (5.20 can be given in coordinates defined by a choice of a normalized
basis 6.18 by the following expression

0ln](z;7) = Z expm‘[(r—i—%e)-T-(r—i—%e)—i—?(z—i—%n)-(r—&—%e)], (5.23)
reZ9

wheree,nn € {0,1}9 considered as a column or a raw vector fréth The
function defined by this expression is callethata function with characteris-
tic. The theta factoe, (z1, .. ., z4) for such a function is given by the expres-
sion

ey(z) =exp—mi(m-7-m—2z-m—e€-n+mn-m),



5.3 Theta functions 223
where we writey = 7 - m + n for somem, n € Z9. One can check that
0[n](—2;7) = exp(mie - )0 5] (z; 7). (5.24)

This shows that/ [;] (—z;7) is an odd (resp. even) function if and only if
€-n = 1 (resp. 0). In particulard [ ] (0;7) = 0 if the function is odd. It
follows from (5.21) thatf [;,] (0;7) = 0 if 6 is an odd theta characteristic or
an effective even theta characteristic.

Takinge, n = 0, we obtain theRiemann!theta function

0(z;7) = Z expmi(r-7-r+2z-1).
rez9
All other theta functions with characteristic are obtained fréfm; 7) by a
translate

0(n](z;7) :eXpﬂi(e-n+e~T~e)9(z—|—%T-n—&—%en’).

In this way points orC¢ of the form%T e+ %77 are identified with elements
of the 2-torsion groug A/A of JadC). The theta divisor corresponding to the
Riemann theta function is equal I/U;J_l translated by a certain theta charac-
teristicx called theRiemann constanOf course, there is no any distinguished
theta characteristic, the definition efdepends on the choice of a symplectic
basis inH,(C, Z).

The multiplicity m of a point on a theta divisop = Wgo_1 — 9 is equal
to the multiplicity of the corresponding theta function defined by vanishing
partial derivatives up to orden — 1. Thus the quadratic form defined Byan
be redefined in terms of the corresponding theta function as

q19(%7' €+ %77/) = multy6 [;1;} (z,7) +multyd [ ;] (z, 7).
It follows from (5.24) that this number is equal to
en+n-n+n-n. (5.25)
A choice of a symplectic basis ii; (C, Z) defines a standard symplectic basis
in Hy(C,Fy) = £A/A = JadC)[2]. Thus we can identify 2-torsion points
37 - € + 31’ with vectors(e’, i) € F2Y. The quadratic form corresponding
to the Riemann theta function is the standard one

! /

w((en')=¢€-n"

The quadratic form corresponding @d ;] (z; 7) is given by 6.25. The Arf
invariant of this quadratic form is equal to

Arf(gg) = €-m.
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5.3.3 Hyperelliptic curves again

In this case we can compute the Riemann constant explicitly. Recall that we
identify 2-torsion points with subsets of even cardinality of the Bgt =
{1,...,2g + 2} which we can identify with the set of ramification or branch
points. Let us define a standard symplectic basis tny choosing the 1-cycle

«; to be the path which goes from; 1 to ¢5; along one sheet of the Riemann
surfaceC and returns t@,; _; along the other sheet. Similarly, we define the
1-cycleg; by choosing the points,; andes; 1. Choosey holomorphic forms

w; normalized by the conditiorb(18). Let 7 be the corresponding period ma-
trix. Notice that each holomorphit-form changes sign when we switch the
sheets. This gives

C24 C2g+2 C2g+42
1. — 1 R - - )
5(5%]_2/%—/ ‘*’J—/ Wi / Wi
a; C2i—1 C2i—1 €24
C2g+2 C2g+42 C2g+42
z/ wj +/ wj — 2/ wj.
C2i—1 C24 C24

i i

C2g+2 C2g+2
2(/ wl,...,/ wg) = 0.(2022‘ _202g+2) :0,

Cc24 C24

Since

we obtain

1
t(coi—1 + c2i — 2c2942) = 5€; mod A,

where, as usuak; denotes the-th unit vector. Let4;, B; be defined as in
(5.195. We obtain that

a(aq,) = Le; mod A,.
Similarly, we find that
a(ap,) = 37-e; mod A,.

Now we can match the s€}, with the set of theta functions with characteris-
tics. Recall that the séf = {1,3,...,2g + 1} plays the role of the standard
guadratic form. We have

qu(4;)) =qu(B;) =0, i=1,...,9.

Comparing it with 6.25, we see that the theta functiah ;] (z; 7) corre-
sponding taJy must coincide with the functiofi(z; 7). This shows that

LgZ_g}ﬂ (ﬁU) = leggio (19U - k02g+2) =0.
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Thus the Riemann constamtcorresponds to the theta characteristic This
allows one to match theta characteristics with theta functions with theta char-
acteristics.

Write any subsef of £, in the form

g g
I=> eAi+ Y mBi
i=1 i=1
wheree = (e1,...,¢5), 7= (m,...,n,) are binary vectors. Then
Yuyr < 0[] (z;7).
In particular,
Yysr € TCha(C)® <= ¢-n=0 mod 2.

Example5.3.1 We give the list of theta characteristics for small genus. We
also list 2-torsion points at which the corresponding theta function vanishes.

g=1
3 even “thetas”:

7912:9[(1)] (Q12),
Vi3 =0[3] (aa3),

V1a = 0[9]  (oua).
1 odd theta

Do =01[1] (cp).

g=2

10 even thetas:
Y123 = 0[] (a2, o3, a3, qus, aug, ise),
Y124 = 0[09] (o2, o4, 14, 35, (36, Qis6),
o5 = 09  (an2, ass, @15, 34, (36, Qag),
thos = 0[11]  (an2, a16, @26, 34, i35, Q)
Vaga = 0[§7] (23, a3a, a2a, 015, ais6, 116,

Vogs = 0 [0] (a3, o5, i35, 14, 16, Qag),
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Vaze = 0[85] (a3, cvag, v36, 14, a5, (15),
Vou5 = 0 [(1)(1)] (0424, 25, 13, 45, 16, 0436),
Voa6 = 0[09] (26, @24, 13, i35, g, 15),

Vase = 0[99] (a6, 25, 13, 14, i34, i56).

6 odd thetas
% 29[8%} (Oém,01270413,0414,0415,0416),
Yo =031 (ag, 12, ass, a24, azs, asg),
I3 =0[1]  (ag, a3, ass, ags, s, a36),
Ve =0[13] (ap, 04, @24, a3, a5, 0g),
U5 =0[17] (g, ais, ass, aus, aos, ase),
Y6 =0[%] (ap,a16, 26, 36, a6, Oi56)-

g=3

36 even thetasy, ¥,
28 odd theta®,;.

g=+4
136 even thetas;, J;;xim
120 odd thetad, .

5.4 Odd theta characteristics

5.4.1 Syzygetic triads

We have already remarked that effective theta characteristics on a canonical
curveC C P91 correspond to hyperplanes everywhere tangeot.té/e call
thembitangent hyperplanegot to be confused with hyperplanes tangent at
> 2 points).

An odd theta characteristic is effective and determines a bitangent hyper-
plane, a unique one if it is non-vanishing. In this section we will study the
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configuration of bitangent hyperplanes to a canonical curve. Let us note here
that a general canonical curve is determined uniquely by the configuration of
its bitangent hyperplane§§].

From now on we fix a nondegenerate symplectic sp&te) of dimension
2g overF,. Let Q(V) be the affine space of quadratic forms with associated
symmetric bilinear form equal te. The Arf invariant divides) (V) into the
union of two set€) (V) andQ(V')_, of even or odd quadratic forms. Recall
that Q(V')_ is interpreted as the set of odd theta characteristics When
Pic(C) andw is the Weil pairing. For any € Q(V) andv € V, we have

q(v) = Arf(q + v) + Arf(q).

Thus the function Arf is a symplectic analog of the functidt(y) mod 2
for theta characteristics.

The setV = V][ Q(V) is equipped with a structure of A/2Z-graded
vector space oveF,. It combines the addition ol (the 0-th graded piece)
and the structure of an affine space@(V’) (the 1-th graded piece) by setting
q + ¢ = v, whereq’ = ¢ + v. One can also extend the symplectic formién
to V by setting

w(g,qd) =qlqg+4q), w(gv)=w,q)=q@).

Definition 5.4.1 A setof three elemenis, g2, ¢3 in Q(V) is called asyzygetic
triad (resp.azygetic triadlif

Arf(q1) + Arf(ge) + Arf(g3) + Arf(g1 + g2 + g3) = 0 (resp. = 1).

A subset ot > 3 elements irQ (V) is called anazygetic setf any subset of
three elements is azygetic.

Note that a syzygetic triad defines a set of four quadri€g(iii) that add up
to zero. Such a set is calledsgizygetic tetradObviously, any subset of three
elements in a syzygetic tetrad is a syzygetic triad.

Another observation is that three elementg)ifl”)_ form an azygetic triad
if their sum is an element i@ (V).

For any odd theta characteristicany divisorD,, € || is of degreey — 1.
The condition that four odd theta characteristitsform a syzygetic tetrad
means that the sum of divisof3y, are cut out by a quadric i*9~!. The
converse is true i€ does not have vanishing even theta characteristic.

Let us now compute the number of syzygetic tetrads.

Lemmab5.4.1 Letq, g2, g3 be asetof three elemenst@iV). The following
properties are equivalent:
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() q1,492, g3 is a syzygetic triad;
(i) q1(g2 + q3) = Arf(ga) + Arf(gs);
(i) w(g1 + 2,1 +g3) = 0.

Proof The equivalence of (i) and (ii) follows immediately from the identity

q1(q2 + q3) = Arf(q1) + Arf(q1 + ¢2 + g3).

We have
wlgn +q2,q1 +a3) = (@ + a3) + @2(q1 + q3)
= Arf(q1) + Arf(gz) + Arf(q2) + Arf(q1 + ¢2 + g3).
This shows the equivalence of (ii) and (iii). O

Proposition 5.4.2 Letgi,q2 € Q(V)_. The number of ways in which the
pair can be extended to a syzygetic triad of odd theta characteristics is equal
t02(2971 +1)(2972 - 1).

Proof Assume that, g2, g3 is a syzygetic triad i) (V) _. By the previous
lemma,gi (g2 + g3) = 0. Also, we haveys (g2 + g3) = Arf(gs) +Arf(g2) = 0.
Thusg; andg, vanish atvy = ¢2 + ¢3. Conversely, assume € V satisfies
q1(v) = q2(v) = 0andv # ¢ + g2 SO thatgs = ¢2 + v # q1,q2. We
have Arf(gs) = Arf(q2) + q2(v) = 1, henceqs € Q(V)—. Sinceq; (v) =
q1(g2 + ¢3) = 0, by the previous Lemmay, ¢2, g3 is a syzygetic triad.

Thus the number of the ways in which we can extend), to a syzygetic
triad ¢1, ¢2, g3 is equal to the cardinality of the set

Z = QIl(O) N q51(0) \ {07U0}7

wherevy = ¢1 + ¢1. It follows from (5.6) thatv € Z satisfiesw(v,vy) =
g2(v) + ¢1(v) = 0. Thus anyv € Z is a representative of a nonzero element
in W = v /vy = F39"2 on whichg, andgs, vanish. It is clear thag, andg,
induce the same quadratic forgron V. It is an odd quadratic form. Indeed,
we can choose a symplectic basislinby taking as a first vector the vector
vp. Then computing the Arf invariant af, we see that it is equal to the Arf
invariant of the quadratic form. Thus we get

#HZ =2(#QW)_—-1) = 2(2972(2971 —1)—1)= 2(2971 + 1)(2972 ~1).
O

Corollary 5.4.3 Lett, be the the number of syzygetic tetrads of odd theta
characteristics on a nonsingular curve of gennughen

1
ty = 529—3(229 —1)(2%972 - 1)(2972 - 1).
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Proof LetI be the set of triple$q:, g2, T'), whereq;, g2 € Q(V)_ andT is

a syzygetic tetrad containing, g2. We count#1 in two ways by projecting
I to the setP of unordered pairs of distinct elemer®gV") _ and to the set of
syzygetic tetrads. Since each tetrad contéipsirs from the seP, and each
pair can be extended {29! + 1)(29-2 — 1) ways to a syzygetic tetrad, we
get

#T= (29 + 1292 = (> ) =6,

This gives
1
ty = §29—3(22-‘7 —1)(22972 —1)(2972 —1).
O

LetV be a vector space with a symplectic or symmetric bilinear form. Recall
that a linear subspadeis called isotropic if the restriction of the bilinear form
to L is identically zero.

Corollary 5.4.4 Let {q1, 42, q3,94} be a syzygetic tetrad i)(V)_. Then
P ={q1 + q,...,q4 + g} is an isotropic 2-dimensional subspace(i, w)
which does not depend on the choiceof

Proof It follows from Lemmab.4.1(iii) that P is an isotropic subspace. The
equalityq; + - -- + g4 = 0 gives
ax+a =g+ g, (5.26)

where{i, j, k,1} = {1,2,3,4}. This shows that the subspafeof V" formed
by the vectorsgy; + ¢;,j = 1,...,4, is independent on the choice ©fOne of
its bases is the s€t + g4, g2 + q4)- O

5.4.2 Steiner complexes

Let P be the set of unordered pairs of distinct element3(# ) _. The addition
map inQ(V)_ x Q(V) — V defines a map

s: P —V\{0}.
Definition 5.4.2 The union of pairs from the same fibre!(v) of the maps

is called aSteiner compext is denoted by:(v).

It follows from (5.26) that any two pairs from a syzygetic tetrad belong to
the same Steiner complex. Conversely{let, ¢} }, {q2, ¢4} be two pairs from
¥(v). We have(q: + ¢;) + (g2 + ¢3) = v + v = 0, showing that the tetrad
(q1,45, 42, 4%) is Syzygetic.
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Proposition 5.4.5 There are229 —1 Steiner complexes. Each Steiner complex
consists 0971(29-1 — 1) elements paired by translation— ¢ + v. An odd
quadratic formg belongs to a Steiner compl&Xv) if and only if¢(v) = 0.

Proof Since229 — 1 = #(V \ {0}), it suffices to show that the map:
P — V'\ {0} is surjective. The symplectic group 8pw) acts transitively on
V'\ {0} and onP, and the map is obviously equivariant. Thus its image is a
non-emptyG-invariant subset o \ {0}. It must coincide with the whole set.
By (5.7), we haveg(v) = Arf(qg + v) + Arf(q). If ¢ € X(v), theng + v €
Q(V)_, hence Arfqg + v) = Arf(q) = 1 and we gety(v) = 0. Conversely, if
q(v) = 0andq € X(v), we getq + v € Q(V)_ and hence; € X(v). This
proves the last assertion. O

Lemma5.4.6 LetX(v),X(v") be two Steiner complexes. Then

29712972 — 1) ifw(v,v’) =0,

#2(v) N3() = {2-‘1—2(25—1 —1) ifw(v,v) #0.

Proof Letq € X(v)NX(v'). Then we havg + ¢ = v, g+ ¢” = o' for some
¢ € 3(v),q" € £(v'). This implies that

q(v) = q(v') = 0. (5.27)

Conversely, if these equalities hold, thes v, g +v" € Q(V)_, q,¢" € E(v),
andg, ¢’ € X(v"). Thus we have reduced our problem to linear algebra. We
want to show that the number of elementgjfi/)_ which vanish at 2 nonzero
vectorsv,v’ € V is equal to29-1(2972 — 1) or 29-2(29-! — 1) depending

on whethew(v,v") = 0 or 1. Letq be one such quadratic form. Suppose we
have anothey’ with this property. Writeg” = ¢ + vy for somevy. We have
q(vg) = 0 sinceq’ is odd and

w(vg,v) = w(vg,v’) = 0.

Let L be the plane spanned byv’. Assumeuv(v, v’') = 1, then we can include
v, v’ in a standard symplectic basis. Computing the Arf invariant, we find that
the restriction of; to L+ is an odd quadratic form. Thus it hag=2(29-1 — 1)
zeros. Each zero gives us a solution fgr Assumew(v,v’) = 0. ThenL
is a singular plane fog sinceq(v) = ¢(v') = ¢(v +v") = 0. Consider
W = LY/L = F27~*. The formq has29-3(29-2 — 1) zeros inW. Any
representativeyy of these zeros defines the quadratic faym vy vanishing
at v,v’. Any quadratic form we are looking for is obtained in this way. The
number of such representatives is equalto' (292 — 1).

O
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Definition 5.4.3 Two Steiner complexév) andX(v’) are calledsyzygetic
(resp.azygeti¢ if w(v,v") = 0)(resp.w(v,v’) = 1).

Theorem 5.4.7 The union of three mutually syzygetic Steiner complEXes,
Y(v")andX(v 4+ v') is equal toQ (V) —.

Proof Since
wv+v,v) =wlv+2,0") =0,

we obtain that the Steiner compl&Xv + v’) is syzygetic toX(v) andX(v').
Suppose; € E(v) N XB(v'). Theng(v + v') = q(v) + q(v') + w(v,v") = 0.
This implies that2(v) N X(v") C ¥(v+v’) and henc&(v), X(v'), X(v+ ')
share the same set®f~1(29-2 — 1) elements. This gives

#E(W) UBE)UB(w+0) =6-2972(2971 = 1) = 22971 (2972 - 1)

—2971(29 — 1) = #Q(V)_.
O

Definition 5.4.4 A set of three mutually syzygetic Steiner complexes is called
a syzygetic triacdof Steiner complexes. A set of three Steiner complexes corre-
sponding to vectors forming a non-isotropic plane is caléeygetic triadof
Steiner complexes.

LetX(v;),7 = 1,2, 3 be a azygetic triad of Steiner complexes. Then
#3(v1) NS (vg) = 2972(2971 —1).

Each se®(v1) \ (X(v1) N X(v2)) andX(wv2) \ (X(v1) N X(vz)) consists of
2972(29~1 — 1) elements. The union of these sets forms the Steiner com-
plex 3X(v3). The number of azygetic triads of Steiner complexes is equal to
£22972(2%9 — 1) (= the number of non-isotropic planes). We leave the proofs
to the reader.

Let S4(V') denote the set of syzygetic tetrads. By Corolla.4 eachl” €
S84(V') defines an isotropic planBr in V. Let Isg; (V') denote the set of-
dimensional isotropic subspaceslin

Proposition 5.4.8 LetS, (V) be the set of syzygetic tetrads. For each tetrad
T let Pr, denote the corresponding isotropic plane. The map

S4(V) — 1s0x(V), T+~ Pr,

is surjective. The fibre over a plariE consists 0f29-3(29-2 — 1) tetrads
forming a partition of the intersection of the Steiner complexés), where
v e P\{0}.
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Proof The surjectivity of this map is proved along the same lines as we
proved Propositios.4.5 We use the fact that the symplectic grougBpo)

acts transitively on the set of isotropic subspaces of the same dimension. Let
T ={q,---,q4} € Sa(V). By definition, Pr \ {0} = {¢1 + ¢2,¢1 + g3, 01 +

q4}. Suppose we have another tetf&d= {qi, ..., ¢;} with Pr = Pr.. Sup-
poseT NT" # (. Without loss of generality, we may assume thiat= q;.

Then, after reindexing, we get + ¢; = ¢1 + ¢, hencey; = ¢; andT = T".

Thus the tetrad¥” with Pr = P are disjoint. Obviously, any € T belongs

to the intersection of the Steiner complex&®), v € P\ {0}. It remains to
apply Lemmab.4.6 0

A closer look at the proof of Lemm&a.4.6shows that the fibre oveP can
be identified with the sef)(P+/P)_.

Combining Propositiorb.4.8 with the computation of the numbey, of
syzygetic tetrads, we obtain the number of isotropic planés.in

#Is0y (V) = 2(229 —1)(22972% —1). (5.28)

Let Isoy(v) be the set of isotropic planes containing a nonzero vectoil.
The set Isg(v) is naturally identified with nonzero elements in the symplectic
space(vt/v,w’), wherew' is defined by the restriction af to v-. We can
transfer the symplectic form’ to Iso;(v). We obtainw’(P, Q) = 0 if and
only if P + @ is an isotropic 3-subspace.

Let us consider the se,(V,v) = a~!(Isoy(v)). It consists of syzygetic
tetrads that are invariant with respect to the translation. by particular, each
tetrad fromS,(V, v) is contained inX(v). We can identify the sef4(V,v)
with the set of cardinality 2 subsets Bfv)/(v).

There is a natural pairing afyy(V, v) defined by

(T, Ty = L#TNT' mod 2. (5.29)
Proposition 5.4.9 ForanyT, T’ € S,(V,v),
w’(PT, PT/) = <T, T/>.

Proof LetX = {{T,7T'} C Sa(V) : o (T) # a,(T")}, Y = {{P,P'} C
Isoy(v) }. We have a natural ma, : X — Y induced bya,,. The pairingw’
defines a functio : Y — 5. The corresponding partition af consists of
two orbits of the stabilizer grou@ = Sp(V,w), onY . Supposd Ty, 71>} and
{Ty{, T4} are mapped to the same sub&&t P’}. Without loss of generality,
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we may assume th&t , T} are mapped té@. Thus
(T + Ty, To + T7) = (T1, To) + (11, T3) + (T0, T7) + (T2, Ty

= <T1;T2> + <T1/7T2/>'

This shows that the functioR — [ defined by the pairingx(29 is constant
on fibres ofa,. Thus it defines a map’ : Y — 5. Both functions are in-
variant with respect to the grou@. This immediately implies that their two
level sets either coincide or are switched. Howeygiso,(v) = 22972 — 1
and hence the cardinality of is equal to(229=2 — 1)(229-3 — 1). Since this
number is odd, the two orbits are of different cardinalities. Since the dpyap
is G-equinvariant, the level must coincide. O

5.4.3 Fundamental sets

Suppose we have an ordered Seff 2g + 1 vectors(uy, . . . , uzg+1) satisfying
w(us,uj) = 1 unlessi = j. It defines a standard symplectic basis by setting

Vi = U+ U2 F UK, Vigg = UL+ F U2t U, t=1,...,0.

Conversely, we can solve theg’s from thew;’s uniquely to reconstruct the set
S from a standard symplectic basis.

Definition 5.4.5 A set of2g + 1 vectors(u, ..., ugg+1) With w(u;, u;) =1
unlessi = j is called anormallsystenin (V,w).

We have established a bijective correspondence between normal systems
and standard symplectic bases.

Recall that a symplectic forma defines a nondegenerate null-systen¥in
i.e. abijective linearmayp : V. — V'V such thatf (v)(v) = Oforallv € V. Fix
abasis(es, ..., ezq) in V and the dual basig, . .., t24) in V¥ and consider
vectorsu; = e + -+ egg —€;,0 =1,...,2g andugg1 = €1 + - - + eaq.
Then there exists a unique null-systém— V'V that sends; to ¢; andusg41
t0tog+1 = t1 + - - +tag. The vectors.y, . .., ugqe11 form a normal system in
the corresponding symplectic space.

Let (uq,...,uz4+41) be a normal system. We will identify nonzero vectors
in V" with points in the projective spad®|. Denote the points corresponding
to the vectorsy; by e;o442. FOr anyi, j # 2g + 2, consider the line spanned
by €iog+2 aNdejoq42. Lete;; be the third nonzero point in this line. Now do
the same with points;; ande; with the disjoint sets of indices. Denote this
point by e;;;. Note that the residual point on the line spannedyande
is equal toe;;. Continuing in this way, we will be able to index all points
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in |V| with subsets of even cardinality (up to complementary sets) of the set
By ={1,...,2g + 2}. This notation will agree with the notation of 2-torsion
divisor classes for hyperelliptic curves of genug-or example, we have

w(pr,ps) =#INJ mod 2.

It is easy to compute the number of normal systems. It is equal to the num-
ber of standard symplectic bases(i,w). The group SfV,w) acts simply
transitively on such bases, so their number is equal to

#Sp(2g,Fo) = 297 (2% — 1)(2272 — 1) (22 — 1). (5.30)

Now we introduce the analog of a normal system for quadratic forms in

Q(V).

Definition 5.4.6 A fundamental sein Q(V) is an ordered azygetic set of
2g + 2 elements iQ(V).

The numbeRg + 2 is the largest possible cardinality of a set such that any
three elements are azygetic. This follows from the following immediate corol-
lary of Lemma5.4.1

Lemma 5.4.10 LetB = (qu,...,qr) be an azygetic set. Then the éet +
g2, -.,q1 + qx) is @ normal system in the symplectic subspace of dimension
k — 2 spanned by these vectors.

The Lemma shows that any fundamental seD{V’) defines a normal sys-
tem inV, and hence a standard symplectic basis. Conversely, starting from a
normal systenfu, . .., us4+1) and anyg € Q(V') we can define a fundamen-

tal set(qi, . .., qag+2) DY
q1 :(LQQZQ+U1a-~-aQQg+2:q4‘U2g+1-

Since elements in a fundamental system add up to zero, we get that the
elements of a fundamental set also add up to zero.

Proposition 5.4.11 There exists a fundamental set with all or all but one
guadratic forms are even or odd. The number of odd quadratic forms in such
a basis is congruent tg + 1 modulo 4.

Proof Let(u1,...,uzy+1) be anormal systemandh, ..., t2541) beits im-
age under the mapg — V'V defined byw. Consider the quadratic form

g= Yt

1<i<j<2g+1
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It is immediately checked that

qlug) = (229) =g(29—1)=g¢g mod 4.

Passing to the associated symplectic basis, we can compute the Arf invariant
of g to get

Arf(q) 1 ifg=1 mod?2
V= 0 otherwise

This implies that

if g=0,3 mod 4,

0
Arf(q +t3) = Arf(q) + q(ux) = .
otherwise

Consider the fundamental set of quadiic8q + y2, k= 1,...,2g+ 1. If g =
0 mod 4 the set consists of all even quadratic formsg £ 1 mod 4, the
quadratic formy is odd, all other quadratic forms are evenglf£ 2 mod 4,
all quadratic forms are odd. Finally,¢f= 3 mod 4, theng is even, all other
guadratic forms are odd. O

Definition 5.4.7 A fundamental set with all or all but one quadratic forms
are even or odd is called mormal!fundamental set

One can show (sed 2g, p. 271) that any normal fundamental set is ob-
tained as in the proof of the previous proposition.

Choose a normal fundamental §t, . . ., g24+2) such that all the firszg+1
quadrics are of the same type. Any quadratic fgren Q (V") can be written in

the form
Q2g+2 + Zt? =q+ Zt?,
el el

wherel is asubset ofl, 2g+1] := {1,...,2¢g+1}. We denote such a quadratic

form by g5, whereS = TU{2g+2} considered as a subsetioRg+2] modulo
the complementary set. We can and will always assume that

#S=¢g+1 mod 2.

The quadratic forngs can be characterized by the property that it vanishes on
pointsp;;, wherei € S andj € {1,...,2g + 2}.
The following properties can be checked.

Proposition 5.4.12 e ¢s + qr = €s17;

® (s + €1 = qs+1,
e gs(er) =0ifand only if#£S N T + 245 =0 mod 2;
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e gs € Q(V);ifandonly if#S =g¢g+1 mod 4.

Again we see that a choice of a fundamental set defines the notation of
guadratic forms which agrees with the notation of theta characteristics for hy-
perelliptic curves.

Since fundamental sets are in a bijective correspondence with normal sys-
tems their number is given b%.30.

5.5 Scorza correspondence

5.5.1 Correspondences on an algebraic curve

A correspondencef degreel between nonsingular curvé§ andCs is a non-
constant morphisni’ from C; to thed-th symmetric producCéd) of Cy. A
correspondence can be defined by its griphc Cy x Cs. If Z C Céd) x Cy
is the incidence variety (the projectidh — Céd) is the universal family for
the functor represented h)yéd)), thenT'r is the inverse image of under the
morphismT" x id : C; x Cy — Céd) x Cy. Set-theoretically,

I'r = {(:r,y) eCixCy:yc€ T(IE)}
We have
T(l‘) =TrnN ({LL‘} x Ca), (5.31)

where the intersection is scheme-theoretical.

One can extend the map.81) to any divisors orC; by settingT' (D) =
pi(D)NT'r. Itis clear that a principal divisor goes to a principal divisor. Taking
divisors of degree 0, we obtain a homomorphism of the Jacobian varieties

¢)T : Jac(C’l) — Ja({CQ)

The projectiol’r — (1 is a finite map of degreé SinceT' is not constant,
the projection taC, is a finite map of degred'. It defines a correspondence
Cy — C{d/) which is denoted b§"~! and is called th&verse correspondence
Its graph is equal to the image Bfunder the switch mag; x Cy — Cy x C1.

We will be dealing mostly with correspondencgs: ¢ — C(@ and will
identify T with its graphT'r. If d is the degree of” andd’ is the degree of
T—! we say thatl" is the correspondence of tyyé, d’). A correspondence
is symmetricif T = T—!. We assume thaf’ does not contain the diagonal
A of C x C. A united pointof a correspondence is a common point with the
diagonal. It comes with the multiplicity.
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A correspondencd : C — (4 hasvalencev if the divisor class of
T(x) + va does not depend on

Proposition 5.5.1 The following properties are equivalent:

(i) T has valence;
(i) the cohomology clagg] in H?(C x C,Z) is equal to

[T] = (d' + v)[{z} x C] + (d +)[C x {2}] = v[A],

wherez is any point onC';
(iii) the homomorphism is equal to homomorphisip-v] : JadC) —
JagC') of the multiplication by-v.

Proof (i) = (ii). We know that there exists a divisdp on C such that the
restrictionT + vA — p3(D) to any fibre ofp; is linearly equivalent to zero.
By the seesaw principle4fig] Chapter 2, Corollary 6)]" + vA — p3(D) ~
p;(D") for some divisoD’ on C.. This implies tha{T| = deg D'[{z} x C] +
deg D[C x {x}] — v[A]. Taking the intersections with fibres of the projections,
we find thatd’ = deg D’ — v andd = deg D — v.

(ii) = (i) Let p1, po : C'xC — C be the projections. We use the well-known
fact that the natural homomorphism of the Picard varieties

pi(PIc(C)) @ p3(Pic°(C)) — Pic’(C x C)
is an isomorphism (se&11], Chapter 3, Exercise 12.6). Fix a poing € C

and consider the divis&f + vA — (d' + v)({zo} x C) — (d+v)(C x {z0}).
By assumption, it is algebraically equivalent to zero. Thus

T+ vA ~ pi(D1) + p3(D2)

for some divisorsD;, Dy on C. Thus the divisor clas¥(z) + vz is equal to
the divisor class of the restriction pf (D) to {z} x C. Obviously, it is equal
to the divisor class oD,, hence is independent an
(i) < (iii) This follows from the definition of the homomorphismy-.
O

Note that for a general curv@ of genusg > 2
EndJag(C)) = Z

(see B87), so any correspondence has valence. An example of a correspon-
dence without valence is the graph of an automorphism of asdzof C.

Observe that the proof of the Proposition shows that for a correspondience
with valencev

T ~pi(D') + p3(D) — VA, (5.32)
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where D is the divisor class off'(xz) + va and D’ is the divisor class of
T~Y(x) + va. It follows from the Proposition that the correspondefite!
has valence.

The next result is known as tiigayley-Brill formula

Corollary 5.5.2 LetT be a correspondence of tyge, b) on a nonsingular
projective curve”' of genugy. Assume thdl” has valence equal te. Then the
number of united points @f is equal to

d+d +2vg.

This immediately follows from%.32) and the formula\ - A = 2 — 2g.

Examples.5.1 LetC be a nonsingular complete intersection of a nonsingular
quadricQ and a cubic irflP3. In other words(' is a canonical curve of genus

4 curve without vanishing even theta characteristic. For any pomtC, the
tangent planél', (@) cuts out the diviso2xz + D, + Do, where|z + D;| and

|z + Ds| are the twogs’s on C defined by the two rulings of the quadric.
Consider the corresponderifon C x C defined byl'(z) = D1+ D». Thisis

a symmetric correspondence of tyfe4) with valence2. Its 24 united points
correspond to the ramification points of the ty/gs.

For any two correspondenc&$% and7» on C one defines theomposition
of correspondencdsy considering”’ x C' x C with the projectiong;; : C' x
C x C — C x C onto two factors and setting

Ty 0Ty = (p13)« (P12(T1) Np33(T2)).
Set-theoretically
TioTh, ={(z,y) eCxC:3z€C:(x,2) € T1,(z,y) € Ta}.

Also T o Ty(x) = Ty (Tx(x)). Note that ifT; = T, ' andTy is of type(d, d')
we haveT) (T>(z)) — dz > 0. Thus the graph of} o T, containsdA. We
modify the definition of the composition by settidg)T, = T o Ty — sA,
wheres is the largest positive multiple of the diagonal componeritio$ Ts.

Proposition 5.5.3 LetT} o To = 1115 + sA. Suppose thdl; is of type
(d;,d}) and valencey;. Thenl; T is of type(dids — s, dydhy — s) and valence
—Vilo + 8.

Proof Applying Propositiorb.5.1, we can write
[T1] = (dy +v1)[{z} x O]+ (di +11)[C x {x}] — 1n1[A],

[To] = (ds + v2) [{z} x O+ (d2 + 12)[C x {z}] — v2[A].
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Easy computation with intersections gives

[T1<>T2] = (d/ld/Q —1/11/2)[{1'} X C] + (dldg —1/11/2)[0 X {IL}] + (1/11/2 —S)[A]

= (dydy — s+ v)[{z} x C) + (didy — s + v)[C x {x}] + v[A],
wherev = —1q 15 + s. This proves the assertion. O

Exampleb.5.2 In Baker's book 21, vol. 6, p. 11, the symmetric correspon-
denceT T~ is called thedirect lateral correspondencéf (r, s) is the type
of T andy is its valence, then it is easy to see tlatT = TT ! + sA, and
we obtain that the type af$T 1 is equal to(s(r — 1), s(r — 1)) and valence
s —~2. This agrees with Baker’s formula.

Here is one application of a direct lateral correspondence. Consider a corre-
spondence of valence 2 on a plane nonsingular cGreé degreed such that
T(xz) = T.(C)NC—2z. In other words{'(x) is equal to the set of the remain-
ing d — 2 intersection points of the tangentatvith C. For any pointy; € C the
inverse correspondence assigng tihe divisorP,(C) — 2y, whereP,(C) is
the first polar. A united point 6f{)T~! is one of the two points of the intersec-
tion of a bitangent with the curve. We have= d(d—1)—2,r =d—2,v = 2.
Applying the Cayley-Brill formula, we find that the numbieof bitangents is
expressed by the following formula

20 = 2(d(d—1)—2)(d—3)+(d—1)(d—2)(d(d—1) —6) = d(d—2)(d*—9).

(5.33)
As in the case of bitangents to the plane quatrtic, there exists a plane curve of
degree(d — 2)(d? — 9) (a bitangential curvewhich cuts out orC' the set of
tangency points of bitangents (sé&8§, pp. 342-357).

There are many other applications of the Cayley-Brill formula to enumera-
tive geometry. Many of them go back to Cayley and can be found in Baker's
book. Modern proofs of some of these formulas are available in the literature
and we omit them.

Recall that &-secant lineof an irreducible space cur@ c P? of degree
d is a line? such that a general plane contanihigtersecta” at d — k points
outsidel. Equivalently, the projection frorfi defines a finite mag’ — P! of
degreed — k.

The proof of the following formula can be found i895, Chapter 2§5.

Proposition 5.5.4 LetC be a general space curve of genpand degreel.
Then the number of 4-secant lines(dfs given by the following formula:

1

:E(d—Q)(d—?))Q(d—él)—%g(d2—7d+13—g). (5.34)

q
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There is a precise meaning of generality of a curve. We refer to loc. cit. or
[39§ for the explanation.
The set of trisecant lines is infinite and parameterized by a curve of degree

(d—1)(d—3)—3g

t=(d—2) -

(5.35)

(see B99g).

5.5.2 Scorza correspondence

Let C' be a nonsingular projective curve of gengs> 0 and# be a non-
effective theta-characteristic @n
Let

dy : C x C —JagC), (z,y) — [z —y] (5.36)

be the difference map. L&d = Wgo_1 — ¢ be the symmetric theta divisor
corresponding t@. Define

Ry = d;'(0).
Set-theoretically,

(Ro)red = {(z,y) € C x C: h®(x + 9 —y) > 0}.

Lemma5.5.5 Ry is asymmetric correspondence of tygeg), with valence
equal to—1 and without united points.

Proof Since® is a symmetric theta divisor, the divisdr ' (©) is invariant
with respect to the switch of the factors &f x X. This shows thatR is
symmetric.

Fix a pointzy and consider the map: ¢ — JadC) defined byi(z) =
[z — o). It is known (see43], Chapter 11, Corollary (2.2)) that

0 1(C) = (C x {to}) - d1(©) = g.

This shows thatfry is of type (g, g). Also it shows thatRy(zg) — xo + 0 €
W,—_1.Forany point: € C, we haveh’(9+z) = 1 because is non-effective.
Thus Ry () is the unique effective divisor linearly equivalenttot 9. By
definition, the valence aRy is equal to—1. Applying the Cayley-Brill formula
we obtain thatRy has no united points. O

Definition 5.5.1 The correspondenc®y is called theScorza correspon-
dence
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Example5.5.3 Assumeg = 1 and fix a point onC' equippingC with a
structure of an elliptic curve. Thehis a non-trivial 2-torsion point. The Scorza
correspondenc®y is the graph of the translation automorphism defined by

In general,Ry could be neither reduced nor irreducible correspondence.
However, for general curv& of genusg everything is as expected.

Proposition 5.5.6 Assume”' is general in the sense thBndJad¢C)) = Z.
ThenRy is reduced and irreducible.

Proof The assumption that Exdag¢C)) = Z implies that any correspon-
dence onC' x C has valence. This implies that the Scorza correspondence is
irreducible curve and reduced. In fact, it is easy to see that the valence of the
sum of two correspondences is equal to the sum of valences. Kinteas

no united points, it follows from the Cayley-Brill formula that the valence of
each part must be negative. Since the valencBofs equal to—1, we get a
contradiction. O

It follows from (5.32) that the divisor class aRky is equal to
Ry ~ pi(9) +p5(9) + A. (5.37)

SinceKexco = pi(Ke) + ps(Ke), applying the adjunction formula and
using thatA N R = () and the fact thap; (9) = p3(«¥), we easily find

WRy = 3p’{wc. (538)
In particular, the arithmetic genus &% is given by
pa(Ry) =3g(g— 1)+ 1. (5.39)

Note that the curve?y is very special, for example, it admits a fixed-point
free involution defined by the switching the factorsXfx X.

Proposition 5.5.7 Assume tha€ is not hyperelliptic. LetR be a symmetric
correspondence o6’ x C' of type(g, ¢g), without united points and some va-
lence. Then there exists a unique non-effective theta charactetistic' such
that R = Ry.

Proof It follows from the Cayley-Brill formula that the valenceof R is
equal to—1. Thus the divisor class dk(x) — = does not depend an Since
R has no united points, the divisor claBs= R(x) — z is not effective, i.e.,
h°(R(z) — x) = 0. Consider the difference maf : C x C — JadC). For
any(z,y) € R, the divisorR(z) —y ~ D + x — y is effective of degreg — 1.
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Thusd;(R) + D c W0 ;. Leto : X x X — X x X be the switch of the
factors. Then

¢(R) = di(0(R)) = [-1](dr(R)) C [-1](W;_, — D) C Wy, + D,

whereD’ = K¢ — D. SinceRNA = () andC is not hyperelliptic, the equality
dy(z,y) = dy(2',y") implies (z,y) = («/,y). Thus the difference mag is
injective onR. This gives

R= dfl(W(?—l -D) = dfl(Wo—l - D).

g

Restricting to{x} x C we see that the divisor class&sand D’ are equal.

HenceD is a theta characteristit. By assumptionp’ (R(x) — x) = h%(9) =

0, hencey is non-effective. The uniquenessdfollows from formula 6.37).
O

Letz,y € Ry. Thenthe sum of two positive divisof®y (z)—y)+(Rs (y)—
x) is linearly equivalentta: + ¥ —y + y + 9 — x = 29 = K. This defines
a map

7: Ry — |Kol, (z,y) = (Ro(z) —y) + (Ro(y) — ). (5.40)
Recall from R95, p. 360, that the theta divis@ defines th&sauss map
Gg: @0 - |KC|7

where@" is the open subset of nonsingular pointsofit assigns to a point
the tangent spack. (0©) considered as a hyperplane in

T.(JadC)) = H'(C,0¢) = H(C, 0c(K¢))".

More geometricallyg assigns taD — 1 the linear span of the divisdp in the
canonical spac ¢ |V (see [LO], p. 246). Since the intersection of hyperplane
~(z, y) with the canonical curvé' contains the divisor&(z) —y (andR(y) —

x), and they do not move, we see that

Y= Q (e] dl.
Lemma5.5.8
7 (O1kc|(1)) = Or, (Ry) = pi(Kc).

Proof The Gauss mag is given by the normal line bundt®g (©). Thus the
map- is given by the line bundle

di(06(0)) = Or, (d1(©)) = Or, (Ry).
It remains to apply formulas(37). O
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The Gauss map is a finite map of deg(ég%ff). It factors through the map
0" — 0°%/(1), where is the negation involution on J&C). The mapy also
factors through the involution oK x X. Thus the degree of the mdpy —
~v(Ry) is equal to2d(¢), whered(+}) is some numerical invariant of the theta
characteristia}. We call it theScorza invariant Let

I(9) == 7(Ry).

We considered it as a curve embeddedf|. Applying Lemma5.5.8 we
obtain

Corollary 5.5.9

glg—1)
d(0)

Remarks.5.1 LetC be a canonical curve of geng@and Ry be a Scorza cor-
respondence ofl. For anyz,y € C consider the degredy divisor D(z,y) =
Ry(z)+ Ry (y) € |Kc+x+y|. Sincel2Ke — (Ko +xz+vy)| = |Kc—x —yl,

we obtain that the linear system of quadrics throdgx, y) is of dimension

19(g + 1) — 2g = dim |Ops-1(2)| — 2g + 1. This shows that the sé?(z, y)
imposes one less condition on quadrics passing through this set. For example,
wheng = 3 we get thatD(x, y) is on a conic. Ifg = 4 it is the base set of

a net of quadrics. We refer td 92 and [23Q for projective geometry of sets
imposing one less condition on quadrics (caletf-associated séts

deg'(¥) =

5.5.3 Scorza quartic hypersurfaces

The following construction due to G. Scorza needs some generality assumption
onC.

Definition 5.5.2 A pair (C, 9) is calledScorza generaf the following prop-
erties are satisfied

(i) Ry is a connected nonsingular curve;
(i) d(¥) =1,
(i) T'(¥) is not contained in a quadric.

We will see in the next chapter that a general canonical curve of genus 3 is
Scorza general. For higher genus this was prove0g][

We continue to assume th&tis non-hyperelliptic. Consider the canonical
embedding” — |K¢|Y = P9~ and identifyC with its image (the canonical
model of C). For anyz € C, the divisor Ry(z) consists ofg pointsy;. If
all of them distinct we have hyperplanesy(z,y;) = (Ry(x) — y;), or, g
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points on the curv&(1). More generally, we have a map — C(9) defined
by the projectiorp; : Ry — C. The composition of this map with the map
79 . Ccl) — T(9)9 is aregular mag : C — I'(W)9). Let HN C =
x1 + -+ + x94—2 be a hyperplane section 6f. Adding up the images of the
pointsz; under the map we obtaing(2g — 2) points onl'(9).

Proposition 5.5.10 LetD =z + - - - 4+ 22,2 be a canonical divisor o’
AssuméC, v) is Scorza general. Then the divisors

2g—2
o(D) = Y #lx:), DelKcl,
=1
span the linear system of divisors B(J) which are cut out by quadrics.

Proof First note that the degree of the divisor is equaRiteg I'(+}). Let
(x,y) € Ry andD, , = v(x,y) = (Ry(z) —y) + (Ro(y) — x) € |Kc|.
For anyz; € Ry(x) — y, the divisory(x, z;) containsy. Similarly, for any
x; € Ry(y) — x, the divisory(y, z;) containsz. This means thap(D, )

is cut out by the quadri€),. ,, equal to the sum of two hyperplanés,, H,
corresponding to the points y € C' C |K¢|Y via the duality. The image of
|Kc| in T(19)9(29-2) spans a linear systeth (since any map of a rational
variety to Ja¢I'(¢)) is constant). Sinc€&(J) is not contained in a quadric, it
generate$K - |. This shows that all divisors il are cut out by quadrics. The
quadrics.,, span the space of quadrics|ifi | since otherwise there exists
a quadric in|K¢|¥ apolar to all quadrics), ,. This would imply that for a
fixedz € C, the divisorRy(z) lies in a hyperplane, the polar hyperplane of
the quadric with respect to the point However, becausg is non-effective,
(Ry(x)) spansPy~!. Thusdim L > g(g + 1)/2, and, since no quadrics con-
tainsT'(¢), L coincides with the linear system of divisors Bf}) cut out by
quadrics. O

Let E = H°(C,wc)Y. We can identify the space of quadrics|ii| with
P(S%(E)). Using the previous Proposition, we obtain a map| — |S?(E)|.
The restriction of this map to the cundg¥) is given by the linear system
|Or(9)(2)|. This shows that the map is given by quadratic polynomials, so
defines a linear map

a:S*EY) — S*(E).
The proof of the Proposition implies that this map is bijective.

Theorem 5.5.11 AssuméC,v) is Scorza general. Then there exists a unique
quartic hypersurfacd/(f) in |E| = P9~! such that the inverse linear map
a~!is equal to the polarization map — Dy, (f).
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Proof Considera=! : S?(E) — S?(EV) as a tensol/ € S%*(EV) ®
S%(EV) c (EY)®* viewed as a 4-multilinear map* — C. It is enough to
show thatl/ is totally symmetric. Then—! is defined by the apolarity map as-
sociated to a quartic hypersurface. Fix areduced divisgrr) = x1+- - -+x4.

Let H; be the hyperplane ihE| spanned byRy(xz) — z;. Choose a basis
(t1,...,ty) in EY such thatd; = V(¢;). It follows from the proof of Propo-
sition’5.5.10that the quadratic map(E") — P(S?(E)) assigns to the hyper-
plane H; the quadriaQ), ,, equal to the union of two hyperplanes associated
to x andx; via the duality. The corresponding linear magatisfies

g
at}) =& &), j=1,....9, (5.41)
i=1

where (&1, ...,&,) is the dual basis t¢t,...,t,), and(by,...,b,) are the
coordinates of the point. This implies that

J 1 ifj=k=m a
Uﬁ bii7 ySm) = . ,:U ; bii7 jsSm ).
(& g &i» €k m) { 0 otherwise (& g €265, Em)
This shows that/ is symmetric in the first and the third arguments when
the second argument belongs to the curyé). Since the curvd'(d) spans
P(EY), this is always true. It remains to use tliatis symmetric in the first
and the second arguments, as well as in the third and the fourth argumeents.

Definition 5.5.3 Let(C, ) be Scorza general pair consisting of a canonical
curve of genug and a non-effective theta characteristic Then the quar-
tic hypersurfacd/( f) is called theScorza quartic hypersurfaessociated to
(C,9).

We will study the Scorza quartic plane curves in the gase3. Very little is
known about Scorza hypersurfaces for general canonical curves of gehus
We do not even know whether they are nonsingular. However, it follows from
the construction that the hypersurface is given by a nondegenerate homoge-
neous form.

The Scorza correspondence has been recently extended tapayswhere
C'is a curve of genug > 1 and@ is an effective even theta characteristic
citeAzadi2, p9g.

5.5.4 Contact hyperplanes of canonical curves

Let C be a nonsingular curve of gengis> 0. Fixing a pointcy onC allows one
to define an isomorphism of algebraic varieties’Ri¢) — Ja¢C), [D] —
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[D — dco]. Composing this map with the mag : C(¥ — Pic?(C) we obtain
amap

ug(co) : O — JadgQ). (5.42)

If no confusion arises, we drog, from this notation. Fowl = 1, this map
defines an embedding

uy : C — Ja.C(C)

For the simplicity of the notation, we will identif¢’ with its image. For any

¢ € C the tangent space @i at a pointc is a one-dimensional subspace of
the tangent space of J&¢) at c. Using a translation automorphism, we can
identify this space with the tangent spaEgla¢C) at the zero point. Under
the Abel-Jacobi map, the space of holomorphforms on Ja¢C) is identified
with the space of holomorphic forms @ri. Thus we can identifyiJadC')
with the spaced’(C, K¢)V. As a result, we obtain theanonical mapf C

0:C —PHC,Ke)Y) = |Ke|Y =PIt

If C is not hyperelliptic, the canonical map is an embedding.

We continue to identifyH°(C, K¢)V with TpJadC). A symmetric odd
theta divisor©® = W _, — 1) contains the origin of J&¢"). If h°(Y) = 1,
the origin is a nonsingular point 0@, and hence defines a hyperplane in
To(Jad()), the tangent hyperplang ©. Passing to the projectivization we
have a hyperplane i ¢|V.

Proposition 5.5.12 The hyperplane inK |V defined byd is a contact hy-
perplane to the image(C') under the canonical map.

Proof Consider the difference map.g6 d; : C x C — JadC). In the case
when® is an even divisor, we proved i®.(37) that

d1(©) ~ p1(0) + p3(0) + A. (5.43)

Since two theta divisors are algebraically equivalent the same is true for an odd
theta divisor. The only difference is thét(©) contains the diagona\ as the
preimage of 0. It follows from the definition of the map(c) that

u1(co)(C)NO =d;H(O) Nprt(co) = co + Dy,

whereDy is the unique effective divisor linearly equivalentitoLetG : © —
P(TpJag(C)) be the Gauss map defined by translation of the tangent space at
a nonsingular point 0B to the origin. It follows from the proof of Torelli
Theorem L0} that the Gauss map ramifies at any point when@eetsu, (C').

So, the image of the Gauss map intersects the canonical image with multiplicity
> 2 at each point. This proves the assertion. O
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More explicitly, the equation of the contact hyperplane corresponding to
O is given by the linear term of the Taylor expansion of the theta function
6] corresponding t®. Note that the linear term is a linear function on
H°(C, K¢)V, hence can be identified with a holomorphic differential

o = 30 LA o)

i=1 9z
where(z1,. .., z,) are coordinates it/°(C, K¢)" defined by a normalized
basiswi, ...,w, of H°(C,K¢). A non-zero section 005a¢)(©) can be

viewed as a holomorphic differential of ordér To make this more precise,
i.e. describe how to get a square root of a holomorghiorm, we use the
following result (see23§, Proposition 2.2).

Proposition 5.5.13 Let © be a symmetric odd theta divisor defined by the
theta functiord [, ]. Then for allz, y € C,

0[5 (di(z —))* = he(p(x))he(p(y)E(z,y)?,
whereE(z,y) is a certain section o0¢ ¢ (A) (the prime-form).

An attentive reader should notice that the equality is not well-defined in
many ways. First, the vectagr(z) is defined only up to proportionality and the
value of a section of a line bundle is also defined only up to proportionality. To
make sense of this equality we pass to the universal cover f'Jadentified
with H°(C, K¢)V and to the universal cover of C' x C and extend the
difference map and the mapto the map of universal covers. Then the prime-
form is defined by a certain holomorphic function Grand everything makes
sense. As the equality of the corresponding line bundles, the assertion trivially
follows from (5.43.

Let
0] (di(z —y))

E(z,y)
SinceE(x,y) = —E(y,z) andd [ 5] is an odd function, we hawe ;| (z,y) =

€

t{n](y,z) foranyz,y € C x C'\ A. It satisfies

t[n] (z.9)* = he(p(z))he(p(y))- (5.44)

Note thatE/(z, y) satisfiesE (z, y) = —E(y, ), sinced [ ] is an odd function,
we havex [ ;] (z,y) =t[5] (y,z) foranyz,y € C x C'\ A.
Now let us fix a pointy = ¢y, SO we can define theot functionon C. It is
a rational function on the universal cover@fdefined by [ ;] (z, ¢o).
Thus every contact hyperplane of the canonical curve defines a root function.

t[n](z,y) =
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Suppose we have two odd theta functidts; | , 6 [f? } Then the ratio of

. . . 05 ](di(z— . .
the corresponding root functions is equal ",]( 1w co)) and its square is a
0 Z/](dl(l‘—(/’o))
rational function onC, defined uniquely up to a constant factor depending on

the choice ofy. Its divisor is equal to the differenc®) — 2. Thus we can
1

view the ratio as a section éf 2 with divisor —¢'. This section is not defined
onC but on the double cover @f corresponding to the 2-torsion poifit- 1.

If we have two pairg}, ¥, 2, ¥, of odd theta characteristics satisfyitig —

¥ =199 — 19, =€, i.e. forming a syzygetic tetrad, the product of the two ratios
is a rational function o’ with divisor 9, 495 — 9} — 9J5. Following Riemann

[516] and Weber§47], we denote this function b Z;gi . By Riemann-Roch,

hO(91 +19%) = h°(K¢ +€) = g — 1, hence any pairs(d1,97), . . ., (9g,7},)
of odd theta characteristics in a Steiner complex defilieearly independent

. 910 Gg_19" . . .
functions,/ 5=+, ...,/ %. After scaling, and getting rid of squares by
gVyg gVyg

using ©.44) we obtain a polynomial ithe, (¢(z)), ..., he, (¢(x)) vanishing
on the canonical image df.

Exampleb.5.4 Letg = 3. We take three pairs of odd theta functions and get
the equation

VO, + /020 + /D3 = 0. (5.45)
After getting rid of square roots, we obtain a quartic equatiof’ of
(Im + pq — rs)* — dlmpq = 0, (5.46)

wherel, m,p,q,rs are the linear functions in, 29, 23 defining the linear
terms of the Taylor expansion atof the odd theta functions corresponding
to three pairs in a Steiner complex. The number of possible ways to write the
equation of a plane quatrtic in this form is equab- 20 = 1260.

Remark5.5.2 For any non-zer@-torsion point, the linear systefi’c + ¢|

mapsC to P92, the map is called thBrym canonical map\Ve have seen that

the root functions, / Z;Z? belong toH°(C, K¢ + €) and can be used to define
2

the Prym canonical map. Fgr= 3, the map is a degree 4 cover®f and we
expressed the quartic equation@fs a degree 4 cover Bf .
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Exercises

5.1Let C be anirreducible plane curve of degrewith a (d — 2)-multiple point. Show
that its normalization is a hyperelliptic curve of genus= d — 2. Conversely, show
that any hyperelliptic curve of gengsadmits such a plane model.

5.2 Show that a nonsingular curve of genus 2 has a vanishing theta characteristic but a
nonsingular curve of genus 3 has a vanishing theta characteristic if and only if it is a
hyperelliptic curve.

5.3 Show that a nonsingular non-hyperelliptic curve of genus 4 has a vanishing theta
characteristic if and only if its canonical model lies on a quadratic cone.

5.4Find the number of vanishing theta characteristics on a hyperelliptic curve of genus
g.

5.5 Show that a canonical curve of genubas 10 vanishing even theta characteristics

if and only if it is isomorphic to the intersection of three simultaneously diagonalized
quadrics inP?.

5.6 Compute the number of syzygetic tetrads contained in a Steiner complex.

5.7 Show that the composition of two correspondences (defined as the composition of
the multi-valued maps defined by the correspondences) with valenees v’ is a
correspondence with valenea/v/’.

5.8Let f : X — P! be a non-constant rational function on a nonsingular projective
curve X . Consider the fibred producf x: X as a correspondence 6h x X . Show

that it has valence and compute the valence. Show that the Cayley-Brill formula is
equivalent to the Hurwitz formula.

5.9Suppose that a nonsingular projective cukyadmits a non-constant map to a curve
of genus> 0. Show that there is a correspondence’dmvithout valence.

5.10Show that any correspondence on a nonsingular plane cubic has valence unless the
cubic is harmonic or equianharmonic.

5.11Describe all symmetric correspondences of tipet) with valence 1 on a canon-
ical curve of genus 4.

5.12Let Ry be the Scorza correspondence on a carverove that a pointr, y) € Ry
is singular if and only ifz andy are ramification points of the projectiofiy — C.

Historical Notes

It is a too large task to discuss the history of theta functions. We only men-
tion that the connection between odd theta functions with characteristics and
bitangents to a quartic curves goes back to Riem&i®][ [647]. There are
numerous expositions of the theory of theta functions and Jacobian varieties
(e.g. [LQ, [126], [447)). The theory of fundamental sets of theta characteris-
tics goes back to A. @pel and J. Rosenhein. Its good exposition can be found
in Krazer's book B8g. As an abstract symplectic geometry over the field of
two elements it is presented in Coble’s bodl8§ which we followed. Some
additional material can be found i128 (see also a modern exposition in

[529).
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The theory of correspondences on an algebraic curve originates from the
Charles’ Principle of Correspondend@&03 which is the special case of the
Cayley-Brill formula in the casg = 0. However, the formula was known
and used earlier by E. de Jongres [L75, and later but before Chasles, by L.
Cremona in 156. We refer to C. Segreog§ for a careful early history of this
discovery and the polemic between Chasles and de Joreguon the priority
of this discovery.

We have already encountered with the application of Chasles’ Principles to
Poncelet polygons in Chapter 2. This application was first found by A. Cay-
ley [90]. He was also the first to extend Chasles’ Principle to higher genus
[90] although with incomplete proof. The first proof of the Cayley-Brill for-
mula was given by A. Brill 7]. The notion of valence (die Werthigeit) was
introduced by Brill. The fact that only correspondences with valence exist on
a general curve was first pointed out by A. Hurwig4p]. He also showed
the existence of correspondences without valence. A good reference to many
problems solved by the theory of correspondences is Baker’s l2dgk/pl. 6.

We refer to p82 for a fuller history of the theory of correspondences.

The number of bitangents to a plane curve was first computed bickd?l
[489, [490. The equations of bitangential curves were given by A. Cayley
[82], G. Salmon $38 and O. Dersch181]. The number of bitangents of a
plane curve is due to J. irtker 489.

The study of correspondences of tyfage g) with valence—1 was initiated
by G. Scorza%57], [558. His construction of a quartic hypersurface associ-
ated to a non-effective theta characteristic on a canonical curve of gevas
given in [659. A modern exposition of Scorza’ theory was first given194).



6
Plane Quartics

6.1 Bitangents
6.1.1 28 bitangents

A nonsingular plane quarti€' is a non-hyperelliptic genus 3 curve embedded
in P2 by its canonical linear systepi ¢ |. It has no vanishing theta character-
istics, so the only effective theta characteristics are odd ones. The number of
them is28 = 22(23 — 1). ThusC has exactly 28 contact lines which are in this
case coincide with bitangents. Each bitangent is tangefitabtwo points that
may coincide. In the latter case a bitangent is callédlaction bitangent

We can specialize the results from section 5.4 of the previous Chapter to the
caseg = 3. LetV = Pic(C)[2] = F§ with the symplectic formw defined by
the Weil pairing. The elements 6J(V)_, i.e. quadratic forms of odd type on
V., will be identified with bitangents.

The union of 4 bitangents forming a syzygetic tetrad cuts odt an effec-
tive divisor of degree 8 equal to the intersectiontdfvith some conid/(q).
There are; = 315 syzygetic tetrads which are in a bijective correspondence
with the set of isotropic planes in Ri€)[2].

Since a syzygetic tetrad of bitangents and the cdfiig) cuts out the same
divisor, we obtain the following.

Proposition 6.1.1 A choice of a syzygetic tetrad of bitangefif$l;),: =
1,...,4, puts the equation af' in the form

C = V(lilylsly + ¢?). (6.1)

Conversely, each such equation defines a syzygetic tetrad of bitangents. There
are 315 ways to writef in this form.

There are 63 Steiner complexes of bitangents. Each complex consists of 6
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pairs of bitangents;, ¢; such that the divisor class 6fn C — ¢, N C'is a fixed
nonzero 2-torsion divisor class.

Proposition 6.1.2 Let(l,m), (p, q), (r, s) be three pairs of linear forms defin-
ing three pairs of bitangents from a Steiner complex. Then, after scaling the
forms, one can write the equation ©fin the form

4mpq — (Im + pq — rs)*> =0, (6.2)
which is equivalent to the equation
Vim+/pg++rs =0 (6.3)

after getting rid of square roots. Conversely, equation of this form is defined by
three pairs of bitangents from a Steiner complex. The number of ways in which
the equation can be written in this form is equall2s0 = (3) - 63.

Proof By (6.1), we can write
C =V (impq — a®) = V(Imrs — b*)
for some quadratic forms, b. After subtracting the equations, we get
Im(pg —rs) = (a+b)(a —0).

If [ dividesa + b andm dividesa — b, then the quadrid’(a) passes through
the pointl N m. But this is impossible since no two bitangents intersect at a
point on the quartic. Thus, we obtain that divides eithera + b or a — b.
Without loss of generality, we géitn = a+ b, pg —rs = a — b, and hence =
%(lm +pg—rs). Therefore, we can define the quartic by the equationpg —

(Im + pq — rs)? = 0. Conversely, equatior6(2) defines a syzygetic tetrad
V(1),V(m),V(p),V(q). By the symmetry of equatior6(3), we obtain two
other syzygetic tetradg (1), V(m), V(r),V(s) andV (p),V(q), V(r), V(s).
Obviously, the pair$l, m), (p, q), (r, s) define the same 2-torsion divisor class,
so they belong to a Steiner hexad. O

In the previous Chapter we found this equation by using theta functions (see
(5.49).

Remark6.1.1 Consider thel-dimensional algebraic torus
T = {(21, 22, 23, 24, 25, 26) € (C*)0 : 2129 = 2324 = 2526} = (C*)™.

It acts on 6-tuples of linear form@, . ..,ls) € (C3)® = C!'® by scalar mul-
tiplication. The group? = F3 x &3 of order48 acts on the same space by
permuting two forms in each pd(t;, l;1+1),¢ = 1, 3, 5, and permuting the three
pairs. This action commutes with the actiorfiofnd defines a linear action of
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the groupl’ x G onP'7 = C!8\ {0} /C*. The GIT-quotientX = P'7/(T x G)
is a projective variety of dimension 14. A rational m&p--» |Op2(4)| which
assigns to a general orbit 6fx G the quartic curve/ (/Il + /1314 +/1516)
is a SL(3)-equivariant and of degre8-1260. | do not know whetheX /SL(3)
is a rational variety (the orbit spa¢@p2(4)|/SL(3) is known to be a rational
variety [366], [48].

We know that two Steiner complexes have either four or six common bitan-
gents, depending on whether they are syzygetic or not. Each isotropic plane
in Pic(C)[2] defines three Steiner complexes with common four bitangents.
Two azygetic Steiner complexes have 6 common bitangents. The number of
azygetic triads is equal to 336.

The projection from the intersection point of two bitangents defing$ a
with two members of the forp + 24. It is possible that more than two bitan-
gents are concurrent. However, we can prove the following.

Proposition 6.1.3 No three bitangents forming an azygetic triad can intersect
at one point.

Proof Let 4, 92,1935 be the corresponding odd theta characteristics. The 2-
torsion divisor classes; = 1J; —1; form a non-isotropic plane. Letoe a non-

zero point in the orthogonal complement. Thgn(e) + gy, (¢) + (nij,€) =0
implies thatg,, take the same value at We can always choosesuch that

this value is equal to 0. Thus the three bitangents belong to the same Steiner
complexX(e). Obviously, no two differ by, hence we can form 3 pairs from
them. These pairs can be used to define the equaignaf C. It follows from

this equation that the intersection point of the three bitangents li€3. @ut

this is impossible becaugg is nonsingular. O

Remark6.1.2 A natural question is whether the set of bitangents determines
the quartic, i.e. whether two quartics with the same set of bitangents coincide.
Surprizingly it has not been answered by the ancients. Only recently it was
proven that the answer is ye§9 (for a general curve) o€ (for any nonsin-
gular curve).

6.1.2 Aronhold sets

We know that in the case = 3 a normal fundamental set of 8 theta character-
istics contains 7 odd theta characteristics. The corresponding unordered set of
7 bitangents is called aftironhold setlt follows from (5.30) that the number
of Aronhold sets is equal t§Sp(6, F3) /7! = 288.

A choice of an ordered Aronhold set defines a unique normal fundamental
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set that contains it. The eighth theta characteristic is equal to the sum of the
characteristics from the Aronhold set. Thus an Aronhold set can be defined as
an azygetic set of seven bitangents.

A choice of an ordered Aronhold set allows one to index all 2-torsion divisor
classes (resp. odd theta characteristics) by subsets of even cardinality (resp. of
cardinality 2) of {1,...,8}, up to complementary set. Thus we have 63 2-
torsion classes,y, .54 and 28 bitangenté;; corresponding to 28 odd theta
characteristicg);;. The bitangents from the Aronhold set correspond to the
subsetg18,28,...,78).

We also know that' 4 — ¥ = €44 5. This implies, for example, that four
bitangentd 4, (5, fc, ¢p form a syzygetic tetrad ifand only d + B + C +
D =0.

Following Cayley, we denote a pair of numbers from the{det. ., 8} by
a vertical line|. If two pairs have a common number we make them intersect.
For example, we have

e Pairs of bitangents: 210 of typpand 168 of typev.
e Triads of bitangents:

1. (syzygetic) 420 of typel, 840 azygetic of typdl|;
2. (azygetic) 56 of type\, 1680 of typev |, and 280 of typel.

e Tetrads of bitangents:

1. (syzygetic) 105 azygetic of typeg|, 210 of type];

2. (asyzygetic) 560 of types/\, 280 of type\/, 1680 of type\l/, 2520 of
typevv;

3. (non syzygetic but containing a syzygetic triad) 2520 of tj{jpe, 5040
of type| LI, 3360 of type I, 840 of type/\/, 3360 of typeN\.

There are two types of Aronhold sets, \Z A. They are represented by
the setg12, 13, 14, 15,16, 17,18) and(12, 13,23, 45,46, 47, 48). The number
of the former type is 8, the number of the latter type is 280. Note that the
different types correspond to orbits of the subgroup dSP. ) isomorphic to
the permutation grous. For example, we have two orbits &g on the set
of Aronhold sets consisting of 8 and 280 elements.

Lemma 6.1.4 Three odd theta characteristicg , 92, 93 in a Steiner complex
3 (€), no two of which differ by, are azygetic.

Proof Letd, = ¥;+e,i = 1,2,3. Then{1, 9], 92,95} and{d, ¥}, I3, 9%}
are syzygetic and have two common theta characteristics. By Propdsiién
the corresponding isotropic planes do not span an isotropic 3-spaceJhihus
99,95 — ¥1) = 1, hencedy, ¥, 93 is an azygetic triad. O
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The previous Lemma suggests a way to construct an Aronhold set from a
Steiner sef(e). Choose another Steiner s8tn) azygetic to the first one.
They intersect at 6 odd theta characteristigs. . . , ¥g, no two of which dif-
fer by e. Consider the sefdy, ..., 95,9 + €,9¢ + n}. We claim that this
is an Aronhold set. By the previous Lemma all triais;, 95,4, 4,k < 5
are azygetic. Any triad};,Js + €,9 + 1,7 < 5, is azygetic too. In fact
9i((96 +€) + (J6 + 1)) = 9i(e + 1) # 0 sinced; ¢ X(e + 7). So the
assertion follows from Lemm&.4.1 We leave to the reader to check that re-
maining triads{?;, 9, 9¢ + €}, {¥;,9,, 96 + 1}, < 5, are azygetic.

Proposition 6.1.5 Any six lines in an Aronhold set are contained in a unique
Steiner complex.

We use that the symplectic group (BpF) acts transitively on the set of
Aronhold sets. So it is enough to check the assertion for one Aronhold set. Let
it correspond to the index sét2, 13, 14, 15,16, 17, 18). It is enough to check
that the first six are contained in a unique Steiner complex. By Proposition
5.4.5 itis enough to exhibit a 2-torsion divisor class such that) i (¢;;) = 0
for k = 2,3,4,5,6,7, and show its uniqueness. By Propositled.12 g
does the job.

Recall that a Steiner subset of theta characteristics on a genus 3 curve con-
sists of 12 elements. A subset of 6 elements will be calleexad

Corollary 6.1.6 Any Steiner complex contai?§ azygetic hexads. Half of
them are contained in another Steiner complex, necessarily azygetic to the first
one. Any other hexad can be extended to a unique Aronhold set.

Proof LetX(e) be a Steiner complex consisting@pairs of odd theta charac-
teristics. Consider it a&'-set, where = (Z/27)° whose elements, identified
with subsetdl of [1, 6], act by switching elements iitth pairs,; € I. Itis

clear thatG acts simply transitively on the set of azygetic sextupleE(n).

For any azygetic compleX(n), the intersectiorE(e) N X(n) is an azygetic
hexad. Note that two syzygetic complexes have only 4 bitangents in common.
The number of such hexads is equalfo— 2° = 25. Thus the set of azygetic
hexads contained in a unique Steiner complex is equal $63. But this num-

ber is equal to the numbé&r- 288 of subsets of cardinality 6 of Aronhold sets.

By the previous Proposition, all such sets are contained in a unique Steiner
complex. O

Let (ds, - . .,Y7s) be an Aronhold set. By Propositi@nl.5 the hexad)ss,
...,¥7g Is contained in a unique Steiner complEXe). Let 955 = vag +
e. By Proposition5.4.12 the only 2-torsion point;; at which all quadrics
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Bss, . . ., 78 vanish is the poingis. Thusd,gs = Ja5 + €15 = ¥12. This shows
that the bitangent defined i} coincides withd,5. Similarly, we see that the
bitangents corresponding tgs + €,7 = 3,. .., 7, coincide with the bitangents
V15

6.1.3 Riemann’s equations for bitangents

Here we show how to write equations of all bitangents knowing the equations
of an Aronhold set of bitangents.

Leté; = V(ly),...,¢; = V(I7) be an Aronhold set of bitangents 6f By
Propositions.1.3, any three lines are not concurrent. We may assume that

/= V(to),gg = V(t1),€3 = V(tg),&l = V(to +t + tQ)
and the remaining ones afe,; = V (ag;to + a1it1 + azita), i = 1,2,3.

Theorem 6.1.7 There exist linear formsg, u;, us such that, after rescaling
the linear forms,

C = V(\/t()U() +Vtu + \/t2u2).
The formsu; can be found from equations

ug +ur +ug +to +t1 +t2 =0,
uo

u u
=+ L+ 22 4 kiaoito + kianty + kyagity = 0,
ap1 a1 a21

u u u
L+ L+ 2 4 ksagato + kaanaty + kaagaty =0,
ag2 a1z a2

u u u

%+ L+ 2 4 ksagsto + ksasty + ksagsta = 0,
aps @13 a3

whereky, ko, k3 can be found from solving first linear equations:

1 1 1
ST B Gl O
o e s | (M2 =L
S S \ 1
a1 a2 az3 3
and then solving the equations

AoGo1  A1air A2021 ky -1

AoGoz  Artaiz Asag | - [ k2 | = | —1

Ao@o3  Ar1aiz  A2asos3 k3 -1

The equations of the remaining 21 bitangents are:

(1) UOZO, U1:O7 'LLQZO,
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(2) to+t1+us =0, tg+ta+uy =0, t1 +to +ug =0,
() o2 + ki(arits + agit2) =0, 1 =1,2,3,
(4) = + ki(aoito + azit2) =0, i =1,2,3,

ail
(5) 32 + ki(aoito +aiit1) =0, i =1,2,3,

(6) — M0 — 4 W4 w2 j—123,

1-kiai,a2; 1-kiaoiaz; 1-k;ao10a1i
=0,:=1,2,3.

ug Ul )
(7) aoi(1—kiaiiaz;) + ari(1—k;aoiaz:) + azi(1—k;ao1a14)

Proof By Proposition6.1.5 six bitangents in our set of seven bitangents

£y, ..., 47 are contained in a unigque Steiner complex. Throwing afyass, {3,
we find three Steiner complexes partitioned in pairs
(527 53)7 (637 52)3 (£4a 541)7 R (€7a 571)7 (64)

(&hfl)a (€17§3)7 <£4a§42)a ceey <£7a§72)a
(61752)7 (62751)3 (647543)7 ceey (677573)'

Since two Steiner complexes cannot contain more than 6 common bitangents,
the bitangentg; = V' (u,;—1) and¢;; = V(1;;) are all different and differ from
l1,...,¢7. We continue to identify bitangents with odd theta characteristics,
and the corresponding odd quadratic forms.

Now we have

by —&3 =03 =&, b3 =& =41 — &3, {1 — & =l — &

This implies that/; — & =l — &3 = U5 — &3, i.e. the pairg{y, &), (U2, &),
and(¢s, &3) belong to the same Steiner compExOne easily checks that

(0y — &1, 0y — &) = (o — &, by — &3) = (U3 — &3, 03 — &) =0,

and hence is syzygetic to the three complexés4) and therefore it does not
contain/;, i > 4.
By Proposition6.1.2and its proof, we can write, after rescaling, u1, us,

C= V(4t0t1UOU1 — qg) = V(4t0t2UOU2 — qg) = V(4t1t2U1U2 — q%), (65)
where

q1 = —toug + t1ur + tausg, (6.6)
q2 = toug — tyuy + tous,

q3 = toug + t1uy — taus.

Next, we use the first Steiner complex froé4) to do the same by using
the first three pairs. We obtain

C = V(4t1U2l4l41 — q2).
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As in the proof of Propositiong(1.2), we find that

2(toug — Uyl
@1 —q = 2M\tiug, @1 —HIZM-

A1
Hence
q1 = Mtiug + % = —toug + t1ur + taus,
and we obtain
lylgr = taug — A1 (—toug + tiug + taus) + Aftyua, (6.7)

l4l42 = t1u0 — )\Q(touo — t1U1 + t2U3) + )\thU(),

l4l43 = t0u2 — )\3(150’&0 —+ t1u1 — t2U3) + )\gtoul.
The last two equations give

14(% + l;—:) = to(—2uo + Aguy + %) + ug (Aats + ;—13).
The lines/y, ¢1, and &; belong to the third Steiner compleX.4), and by
Lemmaé6.1.4form an azygetic triad. By Propositidhl.3 they cannot be con-
current. This implies that the liné (A\qt2 + %) passes through the intersection
point of the linest; and/,4. This gives a linear dependence between the linear
functionsly = agtg + a1ty + aste, 1 = to andats + % (we can assume that
ag = a1 = as = 1 butwill do it later). This can happen only if

(6.8)

A2 = craz, SVt
3

for some constant;. Now Aoty + 3-t1 = ci(asts + art1) = c1(la — aoto),
and we can rewriteg(8) in the form

l l U
6114(%2 —+ )\ij — cluo) = tO (*61(2 —+ agcl)uo -+ ;i +

This implies that

U2
w)

lag  lus ky
R ¢ 6.9
)\2 )\3 c1ug + 1 0 ( )

k1l4 = —01(2 + Clao)’U,O + % + %, (610)
1

a2
for some constarit; . Similarly, we get

ug U
koly = —c2(2 4 coa1)ur + =242
ap a2

U U
k3l4 = 763(2 + 03a2)u2 + 71 + i
ao al
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It is easy to see that this implies that
kl = kQ = k3 = k7 Cl = —ao’ C2 — _a,17C3 — _a2.

Equations §.9) and .10 become

lag lag k
T — —t 6.11
e + . aopUo " 05 ( )
fly= 2 4 % 2 (6.12)
agp ay a2

At this point, we can scale the coordinates to assume
ag=a=a=1=—-k=1,
and obtain our first equation
to+1t1+ts+ug+u +us =0.

Replacingly; with 51,161,171 and repeating the argument, we obtain the re-
maining three equations relating, uy, us With to, t1, to.

Let us find the constants,, k-, k3 for /5, ¢g, £7. We have found 4 linear
equations relating 6 linear functiomg, t1, t2, ug, u1, us. Since three of them
form a basis in the space of linear functions, there must be one relation. We
may assume that the first equation is a linear combination of the last three with
some coefficienta, A2, A3. This leads to the system of linear equations from
the statement of the Theorem.

Finally, we have to find the equations of the 21 bitangents. The equations
(6.5 show that the line§, , &>, £5 are bitangents. The equatich11) and sim-
ilar equations

lag | ln

Al t
)\3+)\1 u + 1

lar | lao
P — _— = — t
N + N ug + to,

after adding up, give

lag lao | lug
T
" . + s o+1t1+ 12,
and then
la1
— = t t
)\1 UO“F 1+ 29
laz

— =u1 + o+ ta,
N 1ttt 12
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l
£:U2+t0+t1.
A1

This gives us three equations of type (2). Similarly, we get the expressions for
ls:, lgi, I7; which are the nine equations of types (3), (4), (5).

Let us use the Aronhold sét;, . . ., ¢7) to index bitangents by subsdtg)
of {1,...,8}. As we explained at the end of the previous section, we have

&1 =123, & =113, &3 =119,

Eak = Vpas &5k = Oks,  Eok = Uk, &S =Vnr, k=1,2,3.

The remaining bitangents atkg, J57, Y67, Y45, Y46, I47. The first three look
like 923, 913, 912, they are of type\. The second three look lik&;., Ysx, Ik,

they are of typel/. To find the equations of triples of bitangents of typewe
interchange the roles of the linés, /5, ¢35 with the lines/s, £g, £7. Our lines

will be the new lines analogous to the lings &, £5. Solving the system, we
find their equations. To find the equations of the triple of bitangents of\ype
we delete/, from the original Aronhold set, and consider the Steiner complex
containing the remaining lines as we did t14). The lines making the pairs
with 25, ¢g, ¢7 will be our lines. We find their equations in the same manner as
we found the equations f@gy, ek, &7k - ]

Remark6.1.3 The proof of the Theorem implies the following result which
can be found in299. Let (¢4, &1), be three pairs of bitangents from the same
Steiner complex. Letl,, &4) be a fourth pair of bitangents from the Steiner
complex given by pairgtq, £2), (¢2,&1) as in 6.4) (whereé, = £43). Choose
some linear formg;, m; representing;, &;. Then the equation of' can be
given by

((Lalal3) (lsmams)lima + (I lals) (malams)lams — (111214)(m1m214)l3m3)2

—4(l4l2l3)(l4m2m3)(lll4lg) (m1 l4m3)l1m1l2m2 = O,

where the brackets denote the determinants of the matrix formed by the coeffi-
cients of the linear forms. In fact, this is equati@n5), where the determinants
take care of scaling of the forms), u1, us (use thaty (I4) can be taken to be
V(ly + 13 +13) and we must keep the relatidon+ s + I3 +ug +us +us = 0).

One can also find in loc.cit paper of J. &dia the expressions foy, m; in
terms of the period matrix af’.

Remark6.1.4 We will see later in Chapter 10 that any seven lines in general
linear position can be realized as an Aronhold set for a plane quartic curve.
Another way to see it can be found 848, p. 447.
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6.2 Determinant equations of a plane quartic

6.2.1 Quadratic determinantal representations

Suppose an aCM invertible she&afon a nonsingular plane curég of degree
d = 2k defines a resolution

0-UY(-2) 2V = F—o, (6.13)

wheredim U = dim V' = k. Taking the cohomology, we obtain
HY(C,F)=V, HC,F(-1)=U, (6.14)
H(C,F(-1)) = H(C,F) =0, (6.15)

The mapyp is defined by a linear maf> — U®V'. In coordinates, it is defined
by ak x k-matrix A = (a;;) with quadratic forms as its entries. The transpose
matrix defines the resolution

0—=VY(-2) LU -G -0, (6.16)
where
G = Eaty, (F,0p2)(=2) = FY(d - 2).

If we setl = F(1—k),M = G(1 — k), thenL ® M = O¢ and conditions
(6.15 can be rephrased in terms 6f They are

HY(C,L(k—2)) = HC,L(k—1)) =0. (6.17)

Twisting exact sequencé.(L3 by Op2(1 — k), and applying Riemann-Roch,
we obtain, after easy calculation,

degL=g—1+x(£) =9 —1+k(X(Op(1 = k) = x(Op2 (=1 - k) = 0.

Conversely, given an aCM invertible sheafsatisfying 6.17), thenF =
L(k — 1) admits a resolution of the fornd(20. Taking cohomology, one can
easily show that, = ... = ap = 0,b; = ... = by = 2. This gives the
following.

Theorem 6.2.1 The equivalence classes of quadratic determinantal repre-
sentations of a nonsingular plane curgeof degreed = 2k are in a bijective
correspondence with invertible sheavgsn C' of degred) satisfying

HY(C,L(k—2)) = HC,L(k—1)) =0.

Changing£ to £~! corresponds to the transpose of the matrix defining the
determinantal representation.
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As we know, resolutions5(13 and 6.16) define the two maps
[:C—-PU), v:C—-PV),

given by the left and the right kernel of the matrix considered as a bilinear
form onU ® V. These maps are given by the linear systéths— 1)h + al,
|(k = 1)h — al, whereL = O¢(a) andO¢(1) = O (h).
Consider the map
(Ly): C —=PU) xP(V)

with the imageS. We identify the product of the projective spaces with its
image inP(U ® V') under the Segre embedding. Consider the restriction map

v:H'(P(URV), Opugvy(1) =U®V — H°(S,05(1))
=HC,L(k-1)@ M(k—1)) = H(C,Oc(2k — 2)), (6.18)

Passing to the projectivizations, and composing it with the Segreltlap x
P(V) — P(U ® V), it corresponds to the multiplication map

w:l|(k—1Dh+a| x|(k—1)h—a| — |Op2(2k —2)|, (D1, D2) — (D1, D3),

where(D1, D) is the unique curve of degréd — 2 that cuts out the divisor
D1 + D5 on C. Composing the linear map (6.18) with the linear m@ap
S?E — U @V, we get a linear map

V' S2(E) S HOP?, 0p2(2)) = S22(EY). (6.19)

A similar proof as used in the case of linear determinantal representations
shows that this map coincides with the apolarity map correspondiag to

For anyz € C, consider the tensdfz) ® t(x) as a hyperplane ifU ® V|.
It intersectqU| x |V| at the subvariety of points whose image under the map
w vanishes at. Choose a basi&i, ..., s;) in U and a basigs], ..., s}) in
V. The map¢ is given byo(z) = 3" a;js; ® s;. It follows from above that
the matrix(v(s; ® s;)) and the matrix adja,;)) coincide when restricted &t
(up to a multiplicative factor). Since its entries are polynomials of degree less
thandeg C, we see that they coincide for all This shows that the mapcan
be written by the formula

all(t) . alk(t) V1

(Z U3 S5, Zvjs;-) — —det : : : . (6.20)
akl(t) . ak}g(t) Vi
(751 N Uk 0

Under the composition of the map, the zero set of the bordered determinant
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is a curve of degrek — 2. Consider the discriminant hypersurfagg_,(2)
of curves of degred — 2 = 2k — 2. The pre-image 0D,_»(2) under the
map (6.18) is a hypersurfacé in P(U) x P(V) = P*~1 x Pk—1 given by the
bihomogeneous equation of bideg(8éd — 3)2, 3(d — 3)?). Here we use that
degDg(2) = 3(d — 1)%

Now it is time to specialize to the cade= 4. In this case, the map/| is the
map

lv] : |[Ke +a| x | Ko —al — |Op2(2)].
In coordinates, the mapis given by

(u181 + uas2, 18] + v28h) > —UVeaA11 + UoV1A12 — UIVOA21 — UTV1 A2
(6.21)
The mapg is given by

d(x) =Y ai(z)s; @ s)7,

where(s3, s3), (s1*, s4*) are the dual bases iV andVV. One can also ex-
plicitly see the kernel mapsandt:

(z) = [—a21(2), a11(2)] = [-az(x), a12(7)], (6.22)
t(z) = [~a12(7), a11(2)] = [—a(x), as (z)]. (6.23)

The intersection of the conid$(as; (t)) NV (a21(t)) lies onC, sol is given by
a pencil of conics with four base points, . .., x4 onC. The mapx is given by
another pencil of conics whose base points. . . , i, together with the base
pointszy, ..., x4 are cut out by a conic.

The hypersurfac& C P(U) x P(V) is of type(3, 3). It is a curve of arith-
metic genus 4. Its image under the Segre map is a canonical curve equal to the
intersection of a nonsingular quadric and a cubic surface. The cubic surface
is the pre-image of the determinantal cubic. It is a cubic symmetroid. We will
discuss such cubics in Chapter 8. As we explained in the previous Chapter,
a cubic symmetroid surface admits a unique double cover ramified along the
nodes. The restriction of this cover 16 is an irreducible unramified cover
r: X — X. Letr be the nontrivial 2-torsion divisor class éhcorresponding
to this cover (it is characterized by the property thatr) = 0). The linear
system|Kx + 7| mapsX to P2. The image is aNirtinger plane sextiavith
double points at the vertices of a complete quadrilateral. Conversely, we will
explain in Chapter 8 that a cubic symmetroid with 4 nodes is isomorphic to
the image of the plane under the linear system of cubics passing through the
six vertices of a complete quadrilateral. This shows that any Wirtinger sextic is
isomorphic to the intersection of a quadric and a cubic symmetroid. In this way
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we see that any general curve of genus 4 is isomorphic to the éliagsing
from a quadratic determinantal representation of a nonsingular plane quartic.
We refer for this and for more of the geometry of Wirtinger sextics7).[

The map 6.19 is just the apolarity map gp: S?(E) — S?(EV) defined
by the quarticC. It is bijective if the quarticC' is nondegenerate. Under the
composition|E| — |S?(E)| — |S%(EVY)|, the preimage of the discriminant
cubic hypersurface is the Hessian sexticof

Consider the hypersurfad® of type(1,1,2) in |U| x |V| x |E| defined by
the section 0Op (1) X Opgyy (1) X Op(g)(2) corresponding to the tensor
defining the linear map : S?E — U ® V. Itis immediate that

W = {(Dy,Ds,x) € |Kc +a| x |Kc —a| x P*: z € (Dy,D5)}. (6.24)

In coordinates, the equation Bf is given by the bordered determina6tZ0).
Consider the projections

pr,: W — P! x P! pr,: W — PL (6.25)

The fibres of py are isomorphic (under py to conics.The discriminant curve

is the curveX . The fibres of py over a point: € P? are isomorphic, under pr

to curves oriP! x P! of degree(1, 1). In the Segre embedding, they are also
conics. The discriminant curve is the cure ThusW has two structures of

a conic bundle. The two discriminant curveé§,andC, come with the natural
double cover parameterizing irreducible components of fibres. In the first case,
it corresponds to the 2-torsion divisor classnd an unramified irreducible
cover if X is a non-trivial unramified double cover. In the second case, the
cover splits (since the factors Bf x P! come with an order).

Remark6.2.1 Recall that, for any unramified double cover of nonsingular
curvesr : S — S, the Prym variety Pryiff/S) is defined to be the connected
component of the identity of J&&)/ 7*Jad.). It has a structure of a prin-
cipally polarized abelian variety (seé48). In our case, whert = X, the

Prym variety is isomorphic to the intermediate JacobiamafOn the other
hand, since the second conic structure defines the split cover of the discrim-
inant curveC, the intermediate jacobian is isomorphic to @@g Thus we
obtain an isomorphism of principally polarized abelian varieties

Prym X /X) = JadC).

This is a special case of thagonal constructionapplied to trigonal curves
(like ours X)) discovered by S. Recillag97] (see a survey of R. Donag204|

about this and more general constructions of this sort). Note that, in general,
the curveX could be singular even whefi is not. However, the Prym variety

is still defined.
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Let R, be the coarse moduli space of isomorphism classes of (i),
whereS is a nonsingular curve of gengsandS — S is its unramified double
cover. There is #rym map

Py Ry — Ag—1, (S,8)— Prym(S/S),

where A4,_; is the coarse moduli space of principally polarized abelian va-
rieties of dimensiory — 1. In our casegy = 4, the quadratic determinantal
constructions allows us to describe the fibre over the Jacobian variety of a non-
singular canonical curve of genus 3. It is isomorphic to Knenmer variety
Kum(C) = JadC)/(¢), where is the negation involution — —a.

The map, is known to be generically injective fgr> 7[249, afinite map
of degree7 for g = 6 [209, and dominant foy < 5 with fibres of dimension
3g — 3 — 1g(g — 1). We refer to p07] for the description of fibres.

The varietiesR , are known to be rationalZD3 for g = 2, [203, [366] for
g = 3,[73] for ¢ = 4) and unirational fory = 5 [35]], [639, ¢ = 6 [209,
[637 and g = 7 [639). It is known to be of general type fay > 13 and
g # 15 [237].

6.2.2 Symmetric quadratic determinants

By Theoren6.2.], the equivalence classes of symmetric quadratic determinan-
tal representations of a nonsingular plane cudraf degreel = 2k correspond
bijectively to nontrivial 2-torsion divisors € Ja¢C) such that

HY(C,0¢(e)(k —2)) = H(C, Oc(e)(k —2)) = 0.
Each sucle defines a quadratic determinantal representation

a1 oo A1k
C:=det| : = = |[=0,
ak1 ... Qg

wherea;; = a;; are homogeneous forms of degedt comes with the maps,

¢ ‘E| - |S2(UV)|7 L= (aij(x))>

[:C—PU)=P1 2 |N(Ax))|

It is given by the linear systeri{k — 1)k + €|. The map (6.18) becomes the
restriction map of quadrics iB(U) to the imageS of C under the map

v:S*(U) — H°(C,0c(2k — 2)) = H*(P?, Op>(2k — 2)).
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The mapy is the composition of the map x U — |S?(U)| given by the
complete linear system of quadrics|li| and the mapv. It factors through the
symmetric square dt/|, and defines a map

|U|® = |Op(2k — 2)|. (6.26)

Recall thaiUU|(?) is isomorphic to the secant variety of v (|U|) in |S?(U)|.
The preimageX (¢) of the determinantal hypersurfae;_»(2) of curves of
degree2k —2in |S%(U)| is a hypersurface of degrééd — 3)?. Its intersection
with |U| x |U|, embedded by Segre, is a hypersurface of bide¢Béé —
3)2,3(d—3)?). Itis invariant with respect to the switch involution |&f| x |U|
and descends to a hypersurface in the quotient. Its preimage under the Veronese
map is a hypersurfacB ¢) of degrees(d — 3) in P(U).

In coordinates, the multiplication map is given by the bordered determinant
(6.20. SinceA is symmetric, we hav® (A; u,v) = D(A4;v,u), and the bor-
dered determinantal identity (L1) gives

D(Aa uvv)z - D(Aa U,U)D(A, U7U) = |A|P(t7ua U)7

where P(t; u,v) is of degree2k — 4 in (to,t1,t2) and of bidegre€2,2) in
u,v. The curved/(D(4; u,u)) define a quadratic family of contact curves of
degree2k — 2. So, we have?? — 1 of such families, wherg is the genus of
C.

Now let us specialize to the cage= 2. The determinantal equation 6f
corresponding te must be given by a symmetric quadratic determinant

ail a2

2
= a11a22 — Ayy. (627)
a1z a2

Thus we obtain the following.
Theorem 6.2.2 An equation of a nonsingular plane quartic can be written in
the form

ar a2 _ o
- )

az as

whereay, as, a3 are homogeneous forms of degree 2. The set of equivalence
classes of such representations is in a bijective correspondence with the set of
63 nontrivial 2-torsion divisor classes Ric(C').

The bordered determinants

a1l a2 Up
. _ _ 2 2
D(A;u,u) = |ag;  age wui| = —(a11us + 2a12uous + aouy)
Ug U7 0
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defines a family otontact conic®f C'. Each conic from the family touch&s
along a divisor from K¢ + €.
Also identity @.12 between the bordered determinants becomes in our case

det <D(A; w,u) D(A;u,v)

D(A;u,v) D(A;U,v)> = |AlP(u, ), (6.28)

whereP(u, v) is a bihomogeneous polynomialinv of bidegreg(2, 2). Note
that P(u,v) is symmetric inu, v and P(u,«) = 0. This shows thaP (u, v)
can be written in the form

P(u,v) = (ugv1 — u1vo)(upvo + Buovr + uivg) + yurv1),

whereq, 3,y are some constants.

The varietyX () in |U| x |U| = P! x P! is a curve of bidegre3, 3). The
difference from the general case of quadratic determinantal representations of
C'is that the curveX (¢) is defined by a symmetric bihomogeneous form. The
symmetric productU|(?) is isomorphic to.S?(U)| = P2. The image ofX (¢)
in the plane is a curv&'(¢) of degrees. In intersects the Veronese cuivg| —
|S2(U)| at 6 points. They are the images of the hypersurfage C |U| under
the Veronese mapt| — |S?(U)|. So, we see another special property of
X (e). If itis nonsingular, it is a canonicdielliptic curveof genus 4. One can
easily compute the number of moduli of such curves. It is equal to 6 instead
9 for a general curve of genus 4. This agrees with our construction since we
have 6 moduli for pair$C, e).

It follows from the definition that the curv&'(e) parameterizes unordered
pairs Dy, Dy of divisors D € |K¢ + €| such that the coni¢D,, D-) is equal
to the union of two lines.

LetII(e) be the plane inOp:z (2)| equal to the image of the maf.p6). Itis
a net of conics ifE| = P2. It is spanned by the contact conicsto We can
take for the basis of the net the conics

V(a11) = (2D1), V(ai2) = (D1, D2), V(aze) = (2D2),

whereD, D, span| K¢ + ¢|. In particular, we see thdi(¢) is base point-free.
Its discriminant curve is equal to the curfge).

Proposition 6.2.3 The cubic curveF'(¢) is nonsingular if and only if the
linear system K¢ + €| does not contain a divisor of the forga + 2b.

Proof LetD = D2(2) C |Op2(2)| be the discriminant cubic. The plane sec-
tion II(e) N D2(2) is singular if and only iffI(¢) contains a singular point &
represented by a double line, or if it is tangenDt@t a nonsingular point. We
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proved in Examplel.2.1that the tangent hypersurface bBfat a nonsingular
point represented by a reducible cogids equal to the space of conics passing
through the singular point of Q. If L is contained in the tangent hyperplane,
then all conics fronil(e) pass throughy. But, as we saw earlier, the net of
conicslI(e) is base point free. This shows tHae) intersectd transversally
at each nonsingular point.

In particular, F'(e) is singular if and only iflI(e¢) contains a double line.
Assume that this happens. Then we get two divigersD; € |K¢ + €| such
thatD; + Dy = 2A, whereA = a; + as + ag + a4 IS cut out by a lin¢. Let
Di=p14+pa+p3s+ps, Do =q1+q2+qg3+qa. Then the equality of divisors
(not the divisor classes)

Pr+pe+p3+pa+qa+a+g3+qi=2(a1 +az+as+as)

implies that eitherD, and Dy share a point:, or Dy = 2p1 + 2ps, Dy =
2¢1+2¢2. The first case is impossible, sinldé: +¢—x| is of dimension 0. The
second case happens if and onlyfifc + €| contains a divisoD, = 2a + 2b.
The converse is also true. For each such divisor thedingefines a residual
pair of pointsc, d such thatDy = 2¢ + 2d € |K¢ + ¢| andp(D1, D) is a
double line. O

Remark6.2.2 By analyzing possible covers of a plane cubic unramified out-
side of the singular locus, one can check thét) is either nonsingular or a
nodal cubic, maybe reducible.

From now on we assume th&Ye) is a nonsingular cubic. Since it param-
eterizes singular conics in the nH{¢), it comes with a natural non-trivial
2-torsion pointn. Recall that the corresponding unramified double cover of
F(e) is naturally isomorphic to the Cayleyan curve in the dual plHite)
which parameterizes irreducible components of singular conics in the net.

Theorem 6.2.4 LetX(e) = {(¢1,4}),...,(ls, ¢;)} be a Steiner complex of
12 bitangents associated to the 2-torsion divisor clagsach pair, considered
as adivisorD; = ¢, +{} € |K¢ +¢| = |U| is mapped under the Veronese map
|U| — |S%(U)| to a pointinF(e). It belongs to the s&B(e) of six ramification
points of the coveX (¢) — F(e). The 12 bitangents, considered as points in
the dual plang.S?(UV)|, lie on the cubic curvé(e).

Proof Let (9;,9,) be a pair of odd theta characteristics corresponding to a
pair (¢;, ¢;) of bitangents fromX(¢). They define a divisoD = ¢; + 9} €

|Kc + €| such thatD is the divisor of contact points of a reducible contact
conic, i.e. the union of two bitangents. This shows that); € F(e). The

point (D, D) € |K¢ + €| x |[K¢ + €| belongs to the diagonal ift/| x |U].
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These are the ramification points of the covéfe) — F(e). They can be
identified with the branch points of the cov&l(e) — F(e). O

So, we have a configuration of 63 cubic curn/é&) in the plangS?(UV)|
(beware that this plane is different from the plaig containingC). Each
contains 12 bitangents from a Steiner complex. ££tSs, S5 be a syzygetic
(resp. azygetic) triad of Steiner complexes. They define three cubic curves

F(e), F(n), F(n+ €) which have 4 (resp. 6) points in common.

Let us see what happens in the symmetric case with the two-way conic bun-
dleW c P! x P! x P2 from (6.24) which we discussed in the previous subsec-
tion. First, its intersection with the product of the diagonabf P! x P! with
P2 defines the universal family(¢) of the contact conics. It is isomorphic to
a surface iP! x P? of bidegreg(2, 2). The projection td? is a double cover
branched along the quarti¢. As we will see laterl(e) is isomorphic to alel
Pezzo surface of degree s isomorphism class does not dependeoithe
projectionU(e) — P! is a conic bundle. It has 6 singular fibres which lie over
6 points at which the diagonal intersects the cuk#e), i.e. the ramification
points of the coveX (¢) — F'(¢). The six branch points lie on a conic, the im-
age of the diagonah in P2. We will see later that a del Pezzo surface of degree
2 has 126 conic bundle structures, they divided in 63 pairs which correspond
to nonzero 2-torsion divisor classes@n

The threefoldV is invariant with respect to the involution Bft x P! x P2
which switches the first two factors. The quotiétit = W/(.) is a hypersur-
face of bidegre€2, 2) in (P! x P1) /(1) x P2 = P2 x P2, The projection to the
first factor is a conic bundle with the discriminant cu®ée). The projection
to the second factor is not anymore a conic bundle. It is isomorphic to the pull-
back of the universal family of lineX (¢) — P? under the map of the base
P2 — P? given by the net of conicH (e).

Remarl6.2.3 One can easily describe the Prym npgp R3 — A, restricted

to the open subset of canonical curves of genus 3. A(gain) defines an el-
liptic curve F'(e) and six branch points of the covéf(e) — F(e). The six
points lie on the Veronese coni&| — |S?(U)|. The coverC — C defined

by € is a curve of genus. The Prym variety PryifC /C) is a principally polar-

ized abelian variety of dimension 2. One can show that it is isomorphic to the
Jacobian variety of the hyperelliptic curve of genus 2 which is isomorphic to
the branch cover of the Veronese conic with the branch I&us (see B96),
[397). Other description of the Prym may can be found in§3§.
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6.3 Even theta characteristics

6.3.1 Contact cubics

Recall that each even theta characterigtim a nonsingular quarti€ defines a
3-dimensional family of contact cubics. The universal family of contact cubics
is a hypersurfac#/y C |E| xP(U) = P? x P? of bidegreg(2, 3). If we choose
coordinatesty, t1,t2) in |E| and coordinates,, uy, us, usz in P(U), then the
equation of the contact family is

a11 a2 G113 Qi4  Ug
21 Q22 Q23 G214 U1
as1 aszz asz asg uz| =0, (6.29)
aq1 Q42 Q43 Q44 U3
ug U1 uz ug 0

where(a;;) is the symmetric matrix defining the ng} of quadrics defined by

9. The first projectionVy — |E| is a quadric bundle with discriminant curve
equal toC. Its fibre over a point: ¢ C'is the dual of the quadriQ, = ¢(x).

Its fibres over a point € C, is the double plane corresponding to the vertex
of the quadric cone(z). Scheme-theoretically, the discriminant hypersurface
of the quadric bundle is the curve taken with multiplicity 3.

The second projectiow; — P3 is a fibration with fibres equal to contact
cubics. Its discriminant surfadey is the preimage of the discriminant hyper-
surfaceDs3(2) of plane cubic curves ifOp: (3)| under the ma® — |Op=(3)|
given by quadrics. This implies thBt, is of degree 24 and its equation is of the
form Fg + G2, = 0, whereFy andG,, are homogeneous formsif, . . ., u3
of the degree indicated by the subscript.

Proposition 6.3.1 The discriminant surfac®, of the contact family of cu-
bics is reducible and non-reduced. It consists of the union of 8 planes and a
surface of degree 8 taken with multiplicity 2.

Proof Let Ny be the net of quadrics iB? defined byy. We know that con-

tact cubicV (D(4;¢,€)) is isomorphic to the discriminant curve of the net of
quadrics obtained by restrictinyy, to the planeH, defined by the poinf in

the dual space. The contact cubic is singular if and only if the restricted net
has either a base point or contains a conic of rank 1, i.e. a double line. The first
case occurs if and only if the plane contains one of the base point of thénet
There are 8 of them (see the next subsection). This gives 8 plane components
of Dy. The second case occurs if and only if the plane is tangent to a singular
guadric inNy along a line. It is easy to compute the degree of the surface in
(P3)V parameterizing such planes. Fix a general line P3, the quadrics in
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Ny which are tangent tbare parameterized by a conichly. The conic inter-

sects the discriminant curvé of Ny at 8 points. Thus there are 8 conedip

which are tangent té. Let ¢, be the line on the cone intersectiAgThen the

plane spanned by the linésaand¢’ is tangent to the cone. Thus we see that the
degree of the surface parameterizing planes which are tangent to some cone in
Ny is of degree 8. The assertion about the multiplicity of the surface entering
in the discriminant is proved irR[f2, Theorem 7.2. O

Let F; be a contact nodal cubic represented by a general gambne of
the 8 plane components. It is tangentt@t 6 nonsingular points. On the other
hand, if /¢ is a general point of the other componentDyf, then it is a nodal
cubic with a node af’.

We can see other singular contact cubics too. For example, 56 planes through
three base points of the penbi}, correspond to the union of three asyzygetic
bitangents. Another singular contact cubic idbiacribed triangle It is the
union of three lines such thét is tangent to the sides and also passes through
the three vertices of the triangle. It is proved #] that the number of bis-
cribed triangles in each of 36 families of contact cubics is equal to 8.

Remark6.3.1 Note that each cubic curvg' in the family of contact cu-
bics comes with a distinguished 2-torsion point defined by the divisor class
n = d — 2h, whereC N F = 2d, andh is the intersection of" with a line.

One can show that the 2-torsion point is nontrivial. The locus of zeros of the
invariant surfacé’ (G,) of degree 12 parameterizes harmonic contact cubics
F together with a nontriviak-torsion divisor class). The groupu, of com-

plex multiplications of Ja@") acts on the set df-torsion divisor classes with
two fixed points. Ify is invariant with respect tg,, then the Cayleyan curve

of the cubic is also harmonic. Thus the surfa¢@=,,) is reducible. One of

its irreducible component describes the locus of harmonic contact cubics with
harmonic Cayleyan. It is shown i3(Q1](see a modern discussion of this sur-
face in P72) that the degree of this component is equal to 4. Thus each pair
(C,v) defines a quartic surface in | K- + ¢|. It can be also described as the
locus of planesI in |K¢ + 9|¥ such that the restriction &, to IT is a net of
conics with harmonic discriminant curve and the Steinerian curve. The resid-
ual surface is of degres It belongs to the pencil of octavic surfaces generated
by V(Fs) and20.
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6.3.2 Cayley octads

Let Ny be the net of quadrics defined by the p@if ¢) andQ1, Q2, Q3 be its
basis. The base locus Nfy is the complete intersection of these quadrics. One
expects that it consists of 8 distinct points. Let us see that this is indeed true.

Proposition 6.3.2 The set of base points of the net of quadhgsconsists of
8 distinct points, no three of which are collinear, no four are coplanar.

Proof If we have less than 8 base points, then all nonsingular quadrics share
the same tangent plane at this point. This implies Myatontains a pencil of
guadrics which are all singular at this point. This pencil corresponds to a line
component of”, a contradiction.

Suppose three points are on a lihdhis includes the case when two points
coincide. This implies that is contained in all quadrics froo". Take a point
x € L. For any quadri&) € Ny, the tangent plane d@f atx contains the line
¢. Thus the tangent planes form a pencil of planes throuddinceN, is a
net, there must be a quadric which is singulag:aThus each point of is a
singular point of some quadric frohhy. However, the set of singular points of
guadrics fromNy is equal to the nonsingular sextit; the image ofC' under
the map given by the linear systgdi(1)|. This shows that no three points are
collinear.

Suppose that 4 points lie in a plafile The restriction olN to IT defines a
linear system of conics through 4 points no three of which are collinear. It is of
dimension 1. Thus, there exists a quadrid\in which containdI. However,
sinceC is nonsingular, all quadrics iNy are of corank< 1. O

Definition 6.3.1 A set of 8 distinct points if**> which is a complete intersec-
tion of 3 quadrics is called €ayley octad

From now on we assume that a Cayley octad satisfies the properties from
Theoremg.3.2
Let S be the sextic model af' defined by the linear systefk ¢« + ¥|.

Theorem 6.3.3 Letgq,...,qs be a Cayley octad. Each lingg; intersects
the sextic curves at two pointsy(p;), ¢(p;). The linep;p; is a bitangent of
C.

Proof The quadrics containing the ling; = g;g; form a pencilP in Ny.

Its base locus consists of the lidg; and a rational normal cubic curvg
which intersects the line at 2 points (they could be equal). Note that the locus
of singular quadrics in the net of quadrics containids a conic. Thus the
pencil P contains two (or one) singular quadric with singular points at the
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intersection ofR and/;;. In the netNy this pencil intersects the discriminant
curveC at two points. Suppose one of these two points is an ordinary cusp. It
is easy to check that the multiplicity of a zero of the discriminant polynomial
of the pencil of quadrics is equal to the corank of the corresponding quadric.
Since our pencil does not contain reducible quadrics, we see that this case does
not occur. Hence the pendil in Ny is a bitangent.

O

We can also see all even theta characteristics.

Theorem 6.3.4 Letqy,...,qs be the Cayley octad associat