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Preface

The main purpose of the present treatise is to give an account of some of the
topics in algebraic geometry which while having occupied the minds of many
mathematicians in previous generations have fallen out of fashion in modern
times. Often in the history of mathematics new ideas and techniques make the
work of previous generations of researchers obsolete, especially this applies
to the foundations of the subject and the fundamental general theoretical facts
used heavily in research. Even the greatest achievements of the past genera-
tions which can be found for example in the work of F. Severi on algebraic
cycles or in the work of O. Zariski’s in the theory of algebraic surfaces have
been greatly generalized and clarified so that they now remain only of histor-
ical interest. In contrast, the fact that a nonsingular cubic surface has 27 lines
or that a plane quartic has 28 bitangents is something that cannot be improved
upon and continues to fascinate modern geometers. One of the goals of this
present work is then to save from oblivion the work of many mathematicians
who discovered these classic tenets and many other beautiful results.

In writing this book the greatest challenge the author has faced was distilling
the material down to what should be covered. The number of concrete facts,
examples of special varieties and beautiful geometric constructions that have
accumulated during the classical period of development of algebraic geometry
is enormous and what the reader is going to find in the book is really only a
tip of the iceberg; a work that is sort of a taste sampler of classical algebraic
geometry. It avoids most of the material found in other modern books on the
subject, such as, for example, [10] where one can find many of the classical
results on algebraic curves. Instead, it tries to assemble or, in other words, to
create a compendium of material that either cannot be found, is too dispersed to
be found easily, or is simply not treated adequately by contemporary research
papers. On the other hand, while most of the material treated in the book exists
in classical treatises in algebraic geometry, their somewhat archaic terminology
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and what is by now completely forgotten background knowledge makes these
books useful to but a handful of experts in the classical literature. Lastly, one
must admit that the personal taste of the author also has much sway in the
choice of material.

The reader should be warned that the book is by no means an introduction
to algebraic geometry. Although some of the exposition can be followed with
only a minimum background in algebraic geometry, for example, based on
Shafarevich’s book [577], it often relies on current cohomological techniques,
such as those found in Hartshorne’s book [311]. The idea was to reconstruct
a result by using modern techniques but not necessarily its original proof. For
one, the ingenious geometric constructions in those proofs were often beyond
the authors abilities to follow them completely. Understandably, the price of
this was often to replace a beautiful geometric argument with a dull cohomo-
logical one. For those looking for a less demanding sample of some of the
topics covered in the book the recent beautiful book [39] may be of great use.

No attempt has been made to give a complete bibliography. To give an idea
of such an enormous task one could mention that the report on the status of
topics in algebraic geometry submitted to the National Research Council in
Washington in 1928 [582] contains more than 500 items of bibliography by
130 different authors only in the subject of planar Cremona transformations
(covered in one of the chapters of the present book.) Another example is the
bibliography on cubic surfaces compiled by J. E. Hill [326] in 1896 which
alone contains 205 titles. Meyer’s article [425] cites around 130 papers pub-
lished 1896-1928. The title search in MathSciNet reveals more than 200 papers
refereed since 1940, many of them published only in the last twenty years. How
sad it is when one considers the impossibility of saving from oblivion so many
names of researchers of the past years who have contributed so much to our
subject.

A word about exercises: some of them are easy and follow from the defi-
nitions, some of them are hard and are meant to provide additional facts not
covered in the main text. In this case we indicate the sources for the statements
and solutions.

I am very grateful to many people for their comments and corrections to
many previous versions of the manuscript. I am especially thankful to Sergey
Tikhomirov whose help in mathematical editing of the book was essential for
getting rid of many mistakes in the previous versions. For all the errors still
found in the book the author bears sole responsibility.
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1

Polarity

1.1 Polar hypersurfaces

1.1.1 The polar pairing

We will take C as the base field, although many constructions in this book
work over an arbitrary algebraically closed field.

We will usually denote byE a vector space of dimensionn + 1. Its dual
vector space will be denoted byE∨.

Let S(E) be thesymmetric algebraof E, the quotient of the tensor algebra
T (E) = ⊕d≥0E

⊗d by the two-sided ideal generated by tensors of the form
v ⊗ w − w ⊗ v, v, w ∈ E. The symmetric algebra is a graded commutative
algebra, its graded componentsSd(E) are the images ofE⊗d in the quotient.
The vector spaceSd(E) is called thed-th symmetric powerofE. Its dimension
is equal

(
d+n
n

)
. The image of a tensorv1 ⊗ · · · ⊗ vd in Sd(E) is denoted by

v1 · · · vd.
The permutation groupSd has a natural linear representation inE⊗d via

permuting the factors. The symmetrization operator⊕σ∈Sd
σ is a projection

operator onto the subspace of symmetric tensorsSd(E) = (E⊗d)Sd multi-
plied byd!. It factors throughSd(E) and defines a natural isomorphism

Sd(E)→ Sd(E).

ReplacingE by its dual spaceE∨, we obtain a natural isomorphism

pd : Sd(E∨)→ Sd(E∨). (1.1)

Under the identification of(E∨)⊗d with the space(E⊗d)∨, we will be able
to identifySd(E∨) with the space Hom(Ed,C)Sd of symmetricd-multilinear
functionsEd → C. The isomorphismpd is classically known as thetotal
polarization map.

Next we use that the quotient mapE⊗d → Sd(E) is a universal symmetric
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d-multilinear map, i.e. any linear mapE⊗d → F with values in some vector
spaceF factors through a linear mapSd(E) → F . If F = C, this gives a
natural isomorphism

(E⊗d)∨ = Sd(E∨)→ Sd(E)∨.

Composing it withpd, we get a natural isomorphism

Sd(E∨)→ Sd(E)∨. (1.2)

It can be viewed as perfect bilinear pairing, thepolar pairing

〈, 〉 : Sd(E∨)⊗ Sd(E)→ C. (1.3)

This pairing extends the natural pairing betweenE andE∨ to the symmetric
powers. Explicitly,

〈l1 · · · ld, w1 · · ·wd〉 =
∑
σ∈Sd

lσ−1(1)(w1) · · · lσ−1(d)(wd).

One can extend the total polarization isomorphism to apartial polarization
map

〈, 〉 : Sd(E∨)⊗ Sk(E)→ Sd−k(E∨), k ≤ d, (1.4)

〈l1 · · · ld, w1 · · ·wk〉 =
∑

1≤i1≤...≤ik≤n

〈li1 · · · lik , w1 · · ·wk〉
∏

j 6=i1,...,ik

lj .

In coordinates, if we choose a basis(ξ0, . . . , ξn) in E and its dual basis
t0, . . . , tn in E∨, then we can identifyS(E∨) with the polynomial algebra
C[t0, . . . , tn] andSd(E∨) with the spaceC[t0, . . . , tn]d of homogeneous poly-
nomials of degreed. Similarly, we identifySd(E) with C[ξ0, . . . , ξn]. The po-
larization isomorphism extends by linearity the pairing on monomials

〈ti00 · · · tinn , ξ
j0
0 · · · ξjnn 〉 =

{
i0! · · · in! if (i0, . . . , in) = (j0, . . . , jn),

0 otherwise.

One can give an explicit formula for pairing (1.4) in terms of differential
operators. Since〈ti, ξj〉 = δij , it is convenient to view a basis vectorξj as
the partial derivative operator∂j = ∂

∂tj
. Hence any elementψ ∈ Sk(E) =

C[ξ0, . . . , ξn]d can be viewed as a differential operator

Dψ = ψ(∂0, . . . , ∂n).

The pairing (1.4) becomes

〈ψ(ξ0, . . . , ξn), f(t0, . . . , tn)〉 = Dψ(f).
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For any monomial∂i = ∂i00 · · · ∂inn and any monomialtj = tj00 · · · tjnn , we
have

∂i(tj) =

{
j!

(j−i)!t
j−i if j− i ≥ 0,

0 otherwise.
(1.5)

Here and later we use the vector notation:

i! = i0! · · · in!,
(
k

i

)
=
k!
i!
, |i| = i0 + · · ·+ in.

The total polarizatioñf of a polynomialf is given explicitly by the following
formula:

f̃(v1, . . . , vd) = Dv1···vd
(f) = (Dv1 ◦ . . . ◦Dvd

)(f).

Takingv1 = . . . = vd = v, we get

f̃(v, . . . , v) = d!f(v) = Dvd(f) =
∑
|i|=d

(
d
i

)
ai∂if. (1.6)

Remark1.1.1 The polarization isomorphism was known in the classical liter-
ature as thesymbolic method. Supposef = ld is ad-th power of a linear form.
ThenDv(f) = dl(v)d−1 and

Dv1 ◦ . . . ◦Dvk
(f) = d(d− 1) · · · (d− k + 1)l(v1) · · · l(vk)ld−k.

In classical notation, a linear form
∑
aixi on Cn+1 is denoted byax and the

dot-product of two vectorsa, b is denoted by(ab). Symbolically, one denotes
any homogeneous form byadx and the right-hand side of the previous formula
reads asd(d− 1) · · · (d− k + 1)(ab)kad−kx .

Let us takeE = Sm(U∨) for some vector spaceU and consider the linear
spaceSd(Sm(U∨)∨). Using the polarization isomorphism, we can identify
(Sm(U∨))∨ with Sm(U). Let (ξ0, . . . , ξr) be a basis inU and(t0, . . . , tr+1)
be the dual basis inU∨. Then we can take for a basis ofSm(U) the monomials
ξj. The dual basis inSm(U∨) is formed by the monomials1i!x

i. Thus, for any
f ∈ Sm(U∨), we can write

m!f =
∑
|i|=m

(
m
i

)
aixi. (1.7)

In symbolic form,m!f = (ax)m. Consider the matrix

Ξ =


ξ
(1)
0 . . . ξ

(d)
0

...
...

...

ξ
(1)
r . . . ξ

(d)
r

 ,
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where(ξ(k)0 , . . . , ξ
(k)
r ) is a copy of a basis inU . Then the spaceSd(Sm(U))

is equal to the subspace of the polynomial algebraC[(ξ(i)j )] in d(r + 1) vari-

ablesξ(i)j of polynomials which are homogeneous of degreem in each column
of the matrix and symmetric with respect to permutations of the columns. Let
J ⊂ {1, . . . , d}with #J = r+1 and(J) be the corresponding maximal minor
of the matrixΞ. Assumer+1 dividesdm. Consider a product ofk = dm

r+1 such
minors in which each column participates exactlym times. Then a sum of such
products which is invariant with respect to permutations of columns represents
an element fromSd(Sm(U)) which has an additional property that it is invari-
ant with respect to the group SL(U) ∼= SL(r + 1,C) which acts onU by the
left multiplication with a vector(ξ0, . . . , ξr). TheFirst Fundamental Theorem
of invariant theory states that any element inSd(Sm(U))SL(U) is obtained in
this way (see [199]). We can interpret elements ofSd(Sm(U∨)∨) as polyno-
mials in coefficients ofai of a homogeneous form of degreed in r + 1 vari-
ables written in the form (1.7). We write symbolically an invariant in the form
(J1) · · · (Jk) meaning that it is obtained as sum of such products with some
coefficients. If the numberd is small, we can use letters, saya, b, c, . . . , in-
stead of numbers1, . . . , d. For example,(12)2(13)2(23)2 = (ab)2(bc)2(ac)2

represents an element inS3(S4(C2)).
In a similar way, one considers the matrix

ξ
(1)
0 . . . ξ

(d)
0 t

(1)
0 . . . t

(s)
0

...
...

...
...

...
...

ξ
(1)
r . . . ξ

(d)
r t

(1)
r . . . t

(s)
r

 .

The product ofk maximal minors such that each of the firstd columns occurs
exactlyk times and each of the lasts columns occurs exactlyp times represents
a covariant of degreep and orderk. For example,(ab)2axbx represents the
Hessian determinant

He(f) = det

(
∂2f
∂x2

1

∂2f
∂x1∂x2

∂2f
∂x2∂x1

∂2f
∂x2

2

)
of a cubic ternary formf .

Theprojective spaceof lines inE will be denoted by|E|. The space|E∨|
will be denoted byP(E) (following Grothendieck’s notation). We callP(E)
thedual projective spaceof |E|. We will often denote it by|E|∨.

A basisξ0, . . . , ξn in E defines an isomorphismE ∼= Cn+1 and identi-
fies |E| with the projective spacePn := |Cn+1|. For any non-zero vector
v ∈ E we denote by[v] the corresponding point in|E|. If E = Cn+1 and
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v = (a0, . . . , an) ∈ Cn+1 we set[v] = [a0, . . . , an]. We call [a0, . . . , an]
theprojective coordinatesof a point[a] ∈ Pn. Other common notation for the
projective coordinates of[a] is (a0 : a1 : . . . : an), or simply(a0, . . . , an), if
no confusion arises.

The projective space comes with the tautological invertible sheafO|E|(1)
whose space of global sections is identified with the dual spaceE∨. Its d-th
tensor power is denoted byO|E|(d). Its space of global sections is identified
with the symmetricd-th powerSd(E∨).

For anyf ∈ Sd(E∨), d > 0, we denote byV (f) the corresponding ef-
fective divisor from|O|E|(d)|, considered as a closed subscheme of|E|, not
necessary reduced. We callV (f) ahypersurfaceof degreed in |E| defined by
equationf = 01 A hypersurface of degree 1 is ahyperplane. By definition,
V (0) = |E| andV (1) = ∅. The projective space|Sd(E∨)| can be views as the
projective space of hypersurfaces in|E|. It is equal to the complete linear sys-
temO|E|(d)|. Using isomorphism (1.2), we may identify the projective space
|Sd(E)| of hypersurfaces of degreed in |E∨| with the dual of the projective
space|SdE∨|. A hypersurface of degreed in |E∨| is classically known as an
envelopeof classd.

The natural isomorphisms

(E∨)⊗d ∼= H0(|E|d,O|E|(1)�d), Sd(E∨) ∼= H0(|E|d,O|E|(1)�d)Sd

allow one to give the following geometric interpretation of the polarization
isomorphism. Consider the diagonal embeddingδd : |E| ↪→ |E|d. Then the
total polarization map is the inverse of the isomorphism

δ∗d : H0(|E|d,O|E|(1)�d)Sd → H0(|E|,O|E|(d)).

We viewa0∂0 + · · ·+ an∂n 6= 0 as a pointa ∈ |E| with projective coordi-
nates[a0, . . . , an].

Definition 1.1.1 LetX = V (f) be a hypersurface of degreed in |E| and
x = [v] be a point in|E|. The hypersurface

Pak(X) := V (Dvk(f))

of degreed− k is called thek-th polar hypersurfaceof the pointa with respect
to the hypersurfaceV (f) (or of the hypersurface with respect to the point).

1 This notation should not be confused with the notation of the closed subset in Zariski topology
defined by the ideal(f). It is equal toV (f)red.
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Example1.1.1 Let d = 2, i.e.

f =
n∑
i=0

αiit
2
i + 2

∑
0≤i<j≤n

αijtitj

is a quadratic form onCn+1. For anyx = [a0, . . . , an] ∈ Pn, Px(V (f)) =
V (g), where

g =
n∑
i=0

ai
∂f

∂ti
= 2

∑
0≤i<j≤n

aiαijtj , αji = αij .

The linear mapv 7→ Dv(f) is a map fromCn+1 to (Cn+1)∨ which can be
identified with thepolar bilinear formassociated tof with matrix2(αij).

Let us give another definition of the polar hypersurfacesPxk(X). Choose
two different pointsa = [a0, . . . , an] andb = [b0, . . . , bn] in Pn and consider
the line` = ab spanned by the two points as the image of the map

ϕ : P1 → Pn, [u0, u1] 7→ u0a+ u1b := [a0u0 + b0u1, . . . , anu0 + bnu1]

(a parametric equation of`). The intersectioǹ∩X is isomorphic to the positive
divisor onP1 defined by the degreed homogeneous form

ϕ∗(f) = f(u0a+ u1b) = f(a0u0 + b0u1, . . . , anu0 + bnu1).

Using the Taylor formula at(0, 0), we can write

ϕ∗(f) =
∑

k+m=d

1
k!m!

uk0u
m
1 Akm(a, b), (1.8)

where

Akm(a, b) =
∂dϕ∗(f)
∂uk0∂u

m
1

(0, 0).

Using the Chain Rule, we get

Akm(a, b) =
∑

|i|=k,|j|=m

(
k
i

)(
m
j

)
aibj∂i+jf = Dakbm(f). (1.9)

Observe the symmetry

Akm(a, b) = Amk(b, a). (1.10)

When we fixa and letb vary in Pn we obtain a hypersurfaceV (A(a, x)) of
degreed − k which is thek-th polar hypersurface ofX = V (f) with respect
to the pointa. When we fixb and varya in Pn, we obtain them-th polar
hypersurfaceV (A(x, b)) of X with respect to the pointb.
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Note that

Dakbm(f) = Dak(Dbm(f)) = Dbm(a) = Dbm(Dak(f)) = Dak(f)(b).
(1.11)

This gives the symmetry property of polars

b ∈ Pak(X)⇔ a ∈ Pbd−k(X). (1.12)

Since we are in characteristic 0, ifm ≤ d,Dam(f) cannot be zero for alla. To
see this we use theEuler formula:

df =
n∑
i=0

ti
∂f

∂ti
.

Applying this formula to the partial derivatives, we obtain

d(d− 1) . . . (d− k + 1)f =
∑
|i|=k

(
k
i

)
ti∂if (1.13)

(also called the Euler formula). It follows from this formula that, for allk ≤ d,

a ∈ Pak(X)⇔ a ∈ X (1.14)

This is known as thereciprocity theorem

Example1.1.2 Let Md be the vector space of complex square matrices of
sized with coordinatestij . We view the determinant functiondet : Md → C
as an element ofSd(M∨

d ), i.e. a polynomial of degreed in the variablestij .
LetCij = ∂ det

∂tij
. For any pointA = (aij) in Md the value ofCij atA is equal

to theij-th cofactor ofA. Applying (1.6), for anyB = (bij) ∈Md, we obtain

DAd−1B(det) = Dd−1
A (DB(det)) = Dd−1

A (
X

bijCij) = (d− 1)!
X

bijCij(A).

ThusDd−1
A (det) is a linear function

∑
tijCij onMd. The linear map

Sd−1(Mn)→M∨
d , A 7→ 1

(d− 1)!
Dd−1
A (det),

can be identified with the functionA 7→ adj(A), where adj(A) is the cofactor
matrix (classically called theadjugate matrixof A, but not the adjoint matrix
as it is often called in modern text-books).

1.1.2 First polars

Let us consider some special cases. LetX = V (f) be a hypersurface of degree
d. Obviously, any0-th polar ofX is equal toX and, by (1.12), thed-th polar
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Pad(X) is empty ifa 6∈ X. and equalsPn if a ∈ X. Now takek = 1, d − 1.
Using (1.6), we obtain

Da(f) =
n∑
i=0

ai
∂f

∂ti
,

1
(d− 1)!

Dad−1(f) =
n∑
i=0

∂f

∂ti
(a)ti.

Together with (1.12) this implies the following.

Theorem 1.1.1 For any smooth pointx ∈ X, we have

Pxd−1(X) = Tx(X).

If x is a singular point ofX, Pxd−1(X) = Pn. Moreover, for anya ∈ Pn,

X ∩ Pa(X) = {x ∈ X : a ∈ Tx(X)}.

Here and later on we denote byTx(X) the embedded tangent spaceof a
projective subvarietyX ⊂ Pn at its pointx. It is a linear subspace ofPn equal
to the projective closure of the affine Zariski tangent spaceTx(X) of X at x
(see [307], p. 181).

In classical terminology, the intersectionX ∩ Pa(X) is called theapparent
boundaryof X from the pointa. If one projectsX to Pn−1 from the pointa,
then the apparent boundary is the ramification divisor of the projection map.

The following picture makes an attempt to show what happens in the case
whenX is a conic.

UUUUUUUUUUUUUUUUUUUUUUUUUUU

iiiiiiiiiiiiiiiiiiiiiiiiiiig̀afbecd a

Pa(X)

X

Figure 1.1 Polar line of a conic

The set of first polarsPa(X) defines a linear system contained in the com-
plete linear system

∣∣OPn(d−1)
∣∣. The dimension of this linear system≤ n. We

will be freely using the language of linear systems and divisors on algebraic
varieties (see [311]).
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Proposition 1.1.2 The dimension of the linear system of first polars≤ r if
and only if, after a linear change of variables, the polynomialf becomes a
polynomial inr + 1 variables.

Proof LetX = V (f). It is obvious that the dimension of the linear system of
first polars≤ r if and only if the linear mapE → Sd−1(E∨), v 7→ Dv(f) has
kernel of dimension≥ n− r. Choosing an appropriate basis, we may assume
that the kernel is generated by vectors(1, 0, . . . , 0), etc. Now, it is obvious that
f does not depend on the variablest0, . . . , tn−r−1.

It follows from Theorem1.1.1that the first polarPa(X) of a pointa with
respect to a hypersurfaceX passes through all singular points ofX. One can
say more.

Proposition 1.1.3 Leta be a singular point ofX of multiplicitym. For each
r ≤ degX −m, Par (X) has a singular point ata of multiplicitym and the
tangent cone ofPar (X) at a coincides with the tangent coneTCa(X) ofX at
a. For any pointb 6= a, ther-th polarPbr (X) has multiplicity≥ m − r at a
and its tangent cone ata is equal to ther-th polar ofTCa(X) with respect to
b.

Proof Let us prove the first assertion. Without loss of generality, we may
assume thata = [1, 0, . . . , 0]. ThenX = V (f), where

f = td−m0 fm(t1, . . . , tn) + td−m−1
0 fm+1(t1, . . . , tn) + · · ·+ fd(t1, . . . , tn).

(1.15)
The equationfm(t1, . . . , tn) = 0 defines the tangent cone ofX at b. The
equation ofPar (X) is

∂rf

∂tr0
= r!

d−m−r∑
i=0

(
d−m−i

r

)
td−m−r−i0 fm+i(t1, . . . , tn) = 0.

It is clear that[1, 0, . . . , 0] is a singular point ofPar (X) of multiplicity m with
the tangent coneV (fm(t1, . . . , tn)).

Now we prove the second assertion. Without loss of generality, we may
assume thata = [1, 0, . . . , 0] andb = [0, 1, 0, . . . , 0]. Then the equation of
Pbr (X) is

∂rf

∂tr1
= td−m0

∂rfm
∂tr1

+ · · ·+ ∂rfd
∂tr1

= 0.

The pointa is a singular point of multiplicity≥ m − r. The tangent cone of
Pbr (X) at the pointa is equal toV (∂

rfm

∂tr1
) and this coincides with ther-th

polar of TCa(X) = V (fm) with respect tob.



10 Polarity

We leave to the reader to see what happens ifr > d−m.
Keeping the notation from the previous proposition, consider a line` through

the pointa such that it intersectsX at some pointx 6= awith multiplicity larger
than one. The closure ECa(X) of the union of such lines is called theenvelop-
ing coneof X at the pointa. If X is not a cone with vertex ata, the branch
divisor of the projectionp : X \ {a} → Pn−1 from a is equal to the projection
of the enveloping cone. Let us find the equation of the enveloping cone.

As above, we assume thata = [1, 0, . . . , 0]. LetH be the hyperplanet0 = 0.
Write ` in a parametric formua + vx for somex ∈ H. Plugging in equation
(1.15), we get

P (t) = td−mfm(x1, . . . , xn)+td−m−1fm+1(x1, . . . , xm)+· · ·+fd(x1, . . . , xn) = 0,

wheret = u/v.
We assume thatX 6= TCa(X), i.e.X is not a cone with vertex ata (oth-

erwise, by definition, ECa(X) = TCa(X)). The image of the tangent cone
under the projectionp : X \ {a} → H ∼= Pn−1 is a proper closed subset of
H. If fm(x1, . . . , xn) 6= 0, then a multiple root ofP (t) defines a line in the
enveloping cone. LetDk(A0, . . . , Ak) be the discriminant of a general poly-
nomialP = A0T

k + . . .+Ak of degreek. Recall that

A0Dk(A0, . . . , Ak) = (−1)k(k−1)/2Res(P, P ′)(A0, . . . , Ak),

where Res(P, P ′) is the resultant ofP and its derivativeP ′. It follows from
the known determinant expression of the resultant that

Dk(0, A1, . . . , Ak) = (−1)
k2−k+2

2 A2
0Dk−1(A1, . . . , Ak).

The equationP (t) = 0 has a multiple zero witht 6= 0 if and only if

Dd−m(fm(x), . . . , fd(x)) = 0.

So, we see that

ECa(X) ⊂ V (Dd−m(fm(x), . . . , fd(x))), (1.16)

ECa(X) ∩ TCa(X) ⊂ V (Dd−m−1(fm+1(x), . . . , fd(x))).

It follows from the computation of∂
rf
∂tr0

in the proof of the previous Proposition

that the hypersurfaceV (Dd−m(fm(x), . . . , fd(x))) is equal to the projection
of Pa(X) ∩X toH.

SupposeV (Dd−m−1(fm+1(x), . . . , fd(x))) and TCa(X) do not share an
irreducible component. Then

V (Dd−m(fm(x), . . . , fd(x))) \ TCa(X) ∩ V (Dd−m(fm(x), . . . , fd(x)))
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= V (Dd−m(fm(x), . . . , fd(x))) \ V (Dd−m−1(fm+1(x), . . . , fd(x))) ⊂ ECa(X),

gives the opposite inclusion of (1.16), and we get

ECa(X) = V (Dd−m(fm(x), . . . , fd(x))). (1.17)

Note that the discriminantDd−m(A0, . . . , Ak) is an invariant of the group
SL(2) in its natural representation on degreek binary forms. Taking the diago-
nal subtorus, we immediately infer that any monomialAi00 · · ·A

ik
k entering in

the discriminant polynomial satisfies

k
k∑
s=0

is = 2
k∑
s=0

sis.

It is also known that the discriminant is a homogeneous polynomial of degree
2k − 2 . Thus, we get

k(k − 1) =
k∑
s=0

sis.

In our casek = d−m, we obtain that

deg V (Dd−m(fm(x), . . . , fd(x))) =
d−m∑
s=0

(m+ s)is

= m(2d− 2m− 2) + (d−m)(d−m− 1) = (d+m)(d−m− 1).

This is the expected degree of the enveloping cone.

Example1.1.3 Assumem = d− 2, then

D2(fd−2(x), fd−1(x), fd(x)) = fd−1(x)2 − 4fd−2(x)fd(x),

D2(0, fd−1(x), fd(x)) = fd−2(x) = 0.

Supposefd−2(x) andfd−1 are coprime. Then our assumption is satisfied, and
we obtain

ECa(X) = V (fd−1(x)2 − 4fd−2(x)fd(x)).

Observe that the hypersurfacesV (fd−2(x)) andV (fd(x)) are everywhere tan-
gent to the enveloping cone. In particular, the quadric tangent cone TCa(X) is
everywhere tangent to the enveloping cone along the intersection ofV (fd−2(x))
with V (fd−1(x)).
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For any nonsingular quadricQ, the mapx 7→ Px(Q) defines a projective
isomorphism from the projective space to the dual projective space. This is a
special case of a correlation.

According to classical terminology, a projective automorphism ofPn is
called acollineation. An isomorphism from|E| to its dual spaceP(E) is called
acorrelation. A correlationc : |E| → P(E) is given by an invertible linear map
φ : E → E∨ defined uniquely up to proportionality. A correlation transforms
points in|E| to hyperplanes in|E|. A point x ∈ |E| is calledconjugateto a
pointy ∈ |E| with respect to the correlationc if y ∈ c(x). The transpose of the
inverse maptφ−1 : E∨ → E transforms hyperplanes in|E| to points in|E|. It
can be considered as a correlation between the dual spacesP(E) and|E|. It is
denoted byc∨ and is called thedual correlation. It is clear that(c∨)∨ = c. If
H is a hyperplane in|E| andx is a point inH, then pointy ∈ |E| conjugate
to x underc belongs to any hyperplaneH ′ in |E| conjugate toH underc∨.

A correlation can be considered as a line in(E ⊗ E)∨ spanned by a nonde-
generate bilinear form, or, in other words as a nonsingular correspondence of
type(1, 1) in |E| × |E|. The dual correlation is the image of the divisor under
the switch of the factors. A pair(x, y) ∈ |E| × |E| of conjugate points is just
a point on this divisor.

We can define thecomposition of correlationsc′ ◦ c∨. Collineations and
correlations form a groupΣPGL(E) isomorphic to the group of outer auto-
morphisms of PGL(E). The subgroup of collineations is of index 2.

A correlationc of order 2 in the groupΣPGL(E) is called apolarity. In
linear representative, this means thattφ = λφ for some nonzero scalarλ. After
transposing, we obtainλ = ±1. The caseλ = 1 corresponds to the (quadric)
polarity with respect to a nonsingular quadric in|E|which we discussed in this
section. The caseλ = −1 corresponds to anull-system(or null polarity) which
we will discuss in Chapters 2 and 10. In terms of bilinear forms, a correlation
is a quadric polarity (resp. null polarity) if it can be represented by a symmetric
(skew-symmetric) bilinear form.

Theorem 1.1.4 Any projective automorphism is equal to the product of two
quadric polarities.

Proof Choose a basis inE to represent the automorphism by a Jordan matrix
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J . LetJk(λ) be its block of sizek with λ at the diagonal. Let

Bk =


0 0 . . . 0 1
0 0 . . . 1 0
...

...
...

...
...

0 1 . . . 0 0
1 0 . . . 0 0

 .

Then

Ck(λ) = BkJk(λ) =


0 0 . . . 0 λ

0 0 . . . λ 1
...

...
...

...
...

0 λ . . . 0 0
λ 1 . . . 0 0

 .

Observe that the matricesBk andCk(λ) are symmetric. Thus each Jordan
block ofJ can be written as the product of symmetric matrices, henceJ is the
product of two symmetric matrices. It follows from the definition of composi-
tion in the groupΣPGL(E) that the product of the matrices representing the
bilinear forms associated to correlations coincides with the matrix representing
the projective transformation equal to the composition of the correlations.

1.1.3 Polar quadrics

A (d− 2)-polar ofX = V (f) is a quadric, called thepolar quadricof X with
respect toa = [a0, . . . , an]. It is defined by the quadratic form

q = Dad−2(f) =
∑

|i|=d−2

(
d−2
i

)
ai∂if.

Using equation (1.9), we obtain

q =
∑
|i|=2

(
2
i

)
ti∂if(a).

By (1.14), eacha ∈ X belongs to the polar quadricPad−2(X). Also, by
Theorem1.1.1,

Ta(Pad−2(X)) = Pa(Pad−2(X)) = Pad−1(X) = Ta(X). (1.18)

This shows that the polar quadric is tangent to the hypersurface at the pointa.
Consider the linè = ab through two pointsa, b. Let ϕ : P1 → Pn be
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its parametric equation, i.e. a closed embedding with the image equal to`. It
follows from (1.8) and (1.9) that

i(X, ab)a ≥ s+ 1⇐⇒ b ∈ Pad−k(X), k ≤ s. (1.19)

For s = 0, the condition means thata ∈ X. For s = 1, by Theorem 1.1.1,
this condition implies thatb, and hencè, belongs to the tangent planeTa(X).
For s = 2, this condition implies thatb ∈ Pad−2(X). Since` is tangent toX
ata, andPad−2(X) is tangent toX ata, this is equivalent to that̀ belongs to
Pad−2(X).

It follows from (1.19) thata is a singular point ofX of multiplicity ≥ s+ 1
if and only if Pad−k(X) = Pn for k ≤ s. In particular, the quadric polar
Pad−2(X) = Pn if and only if a is a singular point ofX of multiplicity ≥ 3.

Definition 1.1.2 A line is called aninflection tangenttoX at a pointa if

i(X, `)a > 2.

Proposition 1.1.5 Let ` be a line through a pointa. Then` is an inflection
tangent toX at a if and only if it is contained in the intersection ofTa(X) with
the polar quadricPad−2(X).

Note that the intersection of an irreducible quadric hypersurfaceQ = V (q)
with its tangent hyperplaneH at a pointa ∈ Q is a cone inH over the quadric
Q̄ in the imageH̄ of H in |E/[a]|.

Corollary 1.1.6 Assumen ≥ 3. For anya ∈ X, there exists an inflection
tangent line. The union of the inflection tangents containing the pointa is the
coneTa(X) ∩ Pad−2(X) in Ta(X).

Example1.1.4 Assumea is a singular point ofX. By Theorem1.1.1, this
is equivalent to thatPad−1(X) = Pn. By (1.18), the polar quadricQ is also
singular ata and therefore it must be a cone over its image under the projection
from a. The union of inflection tangents is equal toQ.

Example1.1.5 Assumea is a nonsingular point of an irreducible surfaceX
in P3. A tangent hyperplaneTa(X) cuts out inX a curveC with a singular
pointa. If a is an ordinary double point ofC, there are two inflection tangents
corresponding to the two branches ofC ata. The polar quadricQ is nonsingu-
lar ata. The tangent cone ofC at the pointa is a cone over a quadric̄Q in P1.
If Q̄ consists of two points, there are two inflection tangents corresponding to
the two branches ofC at a. If Q̄ consists of one point (corresponding to non-
reduced hypersurface inP1), then we have one branch. The latter case happens
only if Q is singular at some pointb 6= a.
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1.1.4 The Hessian hypersurface

LetQ(a) be the polar quadric ofX = V (f) with respect to some pointa ∈ Pn.
The symmetric matrix defining the corresponding quadratic form is equal to
theHessian matrixof second partial derivatives off

He(f) =
( ∂2f

∂ti∂tj

)
i,j=0,n

,

evaluated at the pointa. The quadricQ(a) is singular if and only if the deter-
minant of the matrix is equal to zero (the locus of singular points is equal to
the projectivization of the null-space of the matrix). The hypersurface

He(X) = V (det He(f))

describes the set of pointsa ∈ Pn such that the polar quadricPad−2(X) is
singular. It is called theHessian hypersurfaceof X. Its degree is equal to(d−
2)(n+ 1) unless it coincides withPn.

Proposition 1.1.7 The following is equivalent:

(i) He(X) = Pn;

(ii) there exists a nonzero polynomialg(z0, . . . , zn) such that

g(∂0f, . . . , ∂nf) ≡ 0.

Proof This is a special case of a more general result about theJacobian!determinant
(also known as thefunctional determinant) of n + 1 polynomial functions
f0, . . . , fn defined by

J(f0, . . . , fn) = det
(
(
∂fi
∂tj

)
)
.

SupposeJ(f0, . . . , fn) ≡ 0. Then the mapf : Cn+1 → Cn+1 defined by the
functionsf0, . . . , fn is degenerate at each point (i.e.dfx is of rank< n + 1
at each pointx). Thus the closure of the image is a proper closed subset of
Cn+1. Hence there is an irreducible polynomial which vanishes identically on
the image.

Conversely, assume thatg(f0, . . . , fn) ≡ 0 for some polynomialg which
we may assume to be irreducible. Then

∂g

∂ti
=

n∑
j=0

∂g

∂zj
(f0, . . . , fn)

∂fj
∂ti

= 0, i = 0, . . . , n.

Sinceg is irreducible, its set of zeros is nonsingular on a Zariski open setU .
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Thus the vector( ∂g
∂z0

(f0(x), . . . , fn(x)), . . . ,
∂g

∂zn
(f0(x), . . . , fn(x)

)
is a nontrivial solution of the system of linear equations with matrix(∂fi

∂tj
(x)),

wherex ∈ U . Therefore, the determinant of this matrix must be equal to zero.
This implies thatJ(f0, . . . , fn) = 0 onU , hence it is identically zero.

Remark1.1.2 It was claimed by O. Hesse that the vanishing of the Hessian
implies that the partial derivatives are linearly dependent. Unfortunately, his
attempted proof was wrong. The first counterexample was given by P. Gordan
and M. Noether in [280]. Consider the polynomial

f = t2t
2
0 + t3t

2
1 + t4t0t1 = 0.

Note that the partial derivatives

∂f

∂t2
= t20,

∂f

∂t3
= t21,

∂f

∂t4
= t0t1

are algebraically dependent. This implies that the Hessian is identically equal
to zero. We have

∂f

∂t0
= 2t0t2 + t4t1,

∂f

∂t1
= 2t1t3 + t4t0.

Suppose that a linear combination of the partials is equal to zero. Then

c0t
2
0 + c1t

2
1 + c2t0t1 + c3(2t0t2 + t4t1) + c4(2t1t3 + t4t0) = 0.

Collecting the terms in whicht2, t3, t4 enter, we get

2c3t0 = 0, 2c4t1 = 0, c3t1 + c4t0 = 0.

This givesc3 = c4 = 0. Since the polynomialst20, t
2
1, t0t1 are linearly inde-

pendent, we also getc0 = c1 = c2 = 0.
The known cases when the assertion of Hesse is true ared = 2 (anyn) and

n ≤ 3 (anyd) (see [280], [410], [114]).

Recall that the set of singular quadrics inPn is thediscriminant hypersur-
faceD2(n) in Pn(n+3)/2 defined by the equation

det


t00 t01 . . . t0n
t01 t11 . . . t1n
...

...
...

...
t0n t1n . . . tnn

 = 0.

By differentiating, we easily find that its singular points are defined by the
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determinants ofn×n minors of the matrix. This shows that the singular locus
of D2(n) parameterizes quadrics defined by quadratic forms of rank≤ n − 1
(or corank≥ 2). Abusing the terminology, we say that a quadric is of rankk if
the corresponding quadratic form is of this rank. Note that

dim Sing(Q) = corankQ− 1.

Assume that He(f) 6= 0. Consider the rational mapp : |E| → |S2(E∨)|
defined bya 7→ Pad−2(X). Note thatPad−2(f) = 0 impliesPad−1(f) = 0
and hence

∑n
i=0 bi∂if(a) = 0 for all b. This shows thata is a singular point

of X. Thusp is defined everywhere except maybe at singular points ofX. So
the mapp is regular ifX is nonsingular, and the preimage of the discriminant
hypersurface is equal to the Hessian ofX. The preimage of the singular locus
Sing(D2(n)) is the subset of pointsa ∈ He(f) such that Sing(Pad−2(X)) is of
positive dimension.

Here is another description of the Hessian hypersurface.

Proposition 1.1.8 The Hessian hypersurfaceHe(X) is the locus of singular
points of the first polars ofX.

Proof Let a ∈ He(X) and letb ∈ Sing(Pad−2(X)). Then

Db(Dad−2(f)) = Dad−2(Db(f)) = 0.

SinceDb(f) is of degreed − 1, this means thatTa(Pb(X)) = Pn, i.e.,a is a
singular point ofPb(X).

Conversely, ifa ∈ Sing(Pb(X)), thenDad−2(Db(f)) = Db(Dad−2(f)) =
0. This means thatb is a singular point of the polar quadric with respect toa.
Hencea ∈ He(X).

Let us find the affine equation of the Hessian hypersurface. Applying the
Euler formula (1.13), we can write

t0f0i = (d− 1)∂if − t1f1i − . . .− tnfni,

t0∂0f = df − t1∂1f − . . .− tn∂nf,

wherefij denote the second partial derivative. Multiplying the first row of
the Hessian determinant byt0 and adding to it the linear combination of the
remaining rows taken with the coefficientsti, we get the following equality:

det(He(f)) =
d− 1
t0

det


∂0f ∂1f . . . ∂nf

f10 f11 . . . f1n
...

...
...

...
fn0 fn1 . . . fnn

 .
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Repeating the same procedure but this time with the columns, we finally get

det(He(f)) =
(d− 1)2

t20
det


d
d−1f ∂1f . . . ∂nf

∂1f f11 . . . f1n
...

...
...

...
∂nf fn1 . . . fnn

 . (1.20)

Let φ(z1, . . . , zn) be the dehomogenization off with respect tot0, i.e.,

f(t0, . . . , td) = td0φ(
t1
t0
, . . . ,

tn
t0

).

We have

∂f

∂ti
= td−1

0 φi(z1, . . . , zn),
∂2f

∂ti∂tj
= td−2

0 φij(z1, . . . , zn), i, j = 1, . . . , n,

where

φi =
∂φ

∂zi
, φij =

∂2φ

∂zi∂zj
.

Plugging these expressions in (1.20), we obtain, that up to a nonzero constant
factor,

t
−(n+1)(d−2)
0 det(He(φ)) = det


d
d−1φ(z) φ1(z) . . . φn(z)
φ1(z) φ11(z) . . . φ1n(z)

...
...

...
...

φn(z) φn1(z) . . . φnn(z)

 ,

(1.21)
wherez = (z1, . . . , zn), zi = ti/t0, i = 1, . . . , n.

Remark1.1.3 If f(x, y) is a real polynomial in three variables, the value of
(1.21) at a pointv ∈ Rn with [v] ∈ V (f) multiplied by −1

f1(a)2+f2(a)2+f3(a)2
is

equal to theGauss curvatureof X(R) at the pointa (see [242]).

1.1.5 Parabolic points

Let us see where He(X) intersectsX. We assume that He(X) is a hypersurface
of degree(n + 1)(d − 2) > 0. A glance at the expression (1.21) reveals the
following fact.

Proposition 1.1.9 Each singular point ofX belongs toHe(X).
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Let us see now when a nonsingular pointa ∈ X lies in its Hessian hyper-
surface He(X).

By Corollary1.1.6, the inflection tangents inTa(X) sweep the intersection
of Ta(X) with the polar quadricPad−2(X). If a ∈ He(X), then the polar
quadric is singular at some pointb.

If n = 2, a singular quadric is the union of two lines, so this means that one
of the lines is an inflection tangent. A pointa of a plane curveX such that
there exists an inflection tangent ata is called aninflection pointof X.

If n > 2, the inflection tangents lines at a pointa ∈ X ∩ He(X) sweep
a cone over a singular quadric inPn−2 (or the wholePn−2 if the point is
singular). Such a point is called aparabolic pointof X. The closure of the set
of parabolic points is theparabolic hypersurfacein X (it could be the whole
X).

Theorem 1.1.10 LetX be a hypersurface of degreed > 2 in Pn. If n = 2,
thenHe(X) ∩X consists of inflection points ofX. In particular, each nonsin-
gular curve of degree≥ 3 has an inflection point, and the number of inflections
points is either infinite or less than or equal to3d(d − 2). If n > 2, then the
setX ∩He(X) consists of parabolic points. The parabolic hypersurface inX

is either the wholeX or a subvariety of degree(n+ 1)d(d− 2) in Pn.

Example1.1.6 LetX be a surface of degreed in P3. If a is a parabolic point of
X, thenTa(X)∩X is a singular curve whose singularity ata is of multiplicity
higher than 3 or it has only one branch. In fact, otherwiseX has at least two
distinct inflection tangent lines which cannot sweep a cone over a singular
quadric inP1. The converse is also true. For example, a nonsingular quadric
has no parabolic points, and all nonsingular points of a singular quadric are
parabolic.

A generalization of a quadratic cone is adevelopable surface. It is a special
kind of a ruled surfacewhich characterized by the condition that the tangent
plane does not change along a ruling. We will discuss these surfaces later in
Chapter 10. The Hessian surface of a developable surface contains this surface.
The residual surface of degree2d − 8 is called thepro-Hessian surface. An
example of a developable surface is the quartic surface

(t0t3−t1t2)
2−4(t21−t0t2)(t

2
2−t1t3) = −6t0t1t2t3+4t31t3+4t0t

3
2+t20t

2
3−3t21t

2
2 = 0.

It is the surface swept out by the tangent lines of a rational normal curve of
degree 3. It is also thediscriminant surfaceof a binary cubic, i.e. the surface
parameterizing binary cubicsa0u

3 +3a1u
2v+3a2uv

2 +a3v
3 with a multiple
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root. The pro-Hessian of any quartic developable surface is the surface itself
[89].

Assume now thatX is a curve. Let us see when it has infinitely many in-
flection points. Certainly, this happens whenX contains a line component;
each of its point is an inflection point. It must be also an irreducible compo-
nent of He(X). The set of inflection points is a closed subset ofX. So, ifX
has infinitely many inflection points, it must have an irreducible component
consisting of inflection points. Each such component is contained in He(X).
Conversely, each common irreducible component ofX and He(X) consists of
inflection points.

We will prove the converse in a little more general form taking care of not
necessary reduced curves.

Proposition 1.1.11 A polynomialf(t0, t1, t2) divides its Hessian polynomial
He(f) if and only if each of its multiple factors is a linear polynomial.

Proof Since each point on a non-reduced component ofXred⊂ V (f) is a sin-
gular point (i.e. all the first partials vanish), and each point on a line component
is an inflection point, we see that the condition is sufficient forX ⊂ He(f).
Suppose this happens and letR be a reduced irreducible component of the
curveX which is contained in the Hessian. Take a nonsingular point ofR and
consider an affine equation ofR with coordinates(x, y). We may assume that
OR,x is included inÔR,x ∼= K[[t]] such thatx = t, y = trε, whereε(0) = 1.
Thus the equation ofR looks like

f(x, y) = y − xr + g(x, y), (1.22)

whereg(x, y) does not contain termscy, c ∈ C. It is easy to see that(0, 0) is
an inflection point if and only ifr > 2 with the inflection tangenty = 0.

We use the affine equation of the Hessian (1.21), and obtain that the image
of

h(x, y) = det

 d
d−1f f1 f2
f1 f11 f12
f2 f21 f22


in K[[t]] is equal to

det

 0 −rtr−1 + g1 1 + g2
−rtr−1 + g1 −r(r − 1)tr−2 + g11 g12

1 + g2 g12 g22

 .

Since every monomial entering ing is divisible byy2, xy or xi, i > r, we



1.1 Polar hypersurfaces 21

see that∂g∂y is divisible byt and ∂g
∂x is divisible bytr−1. Also g11 is divisible

by tr−1. This shows that

h(x, y) = det

 0 atr−1 + . . . 1 + . . .

atr−1 + . . . −r(r − 1)tr−2 + . . . g12
1 + . . . g12 g22

 ,

where. . . denotes terms of higher degree int. We compute the determinant and
see that it is equal tor(r − 1)tr−2 + . . .. This means that its image inK[[t]]
is not equal to zero, unless the equation of the curve is equal toy = 0, i.e. the
curve is a line.

In fact, we have proved more. We say that a nonsingular point ofX is an in-
flection point oforderr−2 and denote the order by ordflxX if one can choose
an equation of the curve as in (1.22) with r ≥ 3. It follows from the previous
proof thatr− 2 is equal to the multiplicityi(X,He)x of the intersection of the
curve and its Hessian at the pointx. It is clear that ordflxX = i(`,X)x − 2,
where` is the inflection tangent line ofX atx. If X is nonsingular, we have∑

x∈X
i(X,He)x =

∑
x∈X

ordflxX = 3d(d− 2). (1.23)

1.1.6 The Steinerian hypersurface

Recall that the Hessian hypersurface of a hypersurfaceX = V (f) is the locus
of pointsa such that the polar quadricPad−2(X) is singular. TheSteinerian
hypersurfaceSt(X) of X is the locus of singular points of the polar quadrics.
Thus

St(X) =
⋃

a∈He(X)

Sing(Pad−2(X)). (1.24)

The proof of Proposition1.1.8shows that it can be equivalently defined as

St(X) = {a ∈ Pn : Pa(X) is singular}. (1.25)

We also have

He(X) =
⋃

a∈St(X)

Sing(Pa(X)). (1.26)

A point b = [b0, . . . , bn] ∈ St(X) satisfies the equation

He(f)(a) ·

b0...
bn

 = 0, (1.27)
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wherea ∈ He(X). This equation defines a subvariety

HS(X) ⊂ Pn × Pn (1.28)

given byn + 1 equations of bidegree(d − 2, 1). When the Steinerian map
is defined, it is just its graph. The projection to the second factor is a closed
subscheme ofPn with support at St(X). This gives a scheme-theoretical defi-
nition of the Steinerian hypersurface which we will accept from now on. It also
makes clear why St(X) is a hypersurface, not obvious from the definition. The
expected dimension of the image of the second projection isn− 1.

The following argument confirms our expectation. It is known (see, for ex-
ample, [264]) that the locus of singular hypersurfaces of degreed in |E| is a
hypersurface

Dd(n) ⊂ |Sd(E∨)|

of degree(n + 1)(d − 1)n defined by thediscriminantof a general degreed
homogeneous polynomial inn + 1 variables (thediscriminant hypersurface).
Let L be the projective subspace of|Sd−1(E∨)| which consists of first polars
of X. Assume that no polarPa(X) is equal toPn. Then

St(X) ∼= L ∩ Dn(d− 1).

So, unlessL is contained inDn(d − 1), we get a hypersurface. Moreover, we
obtain

deg(St(X)) = (n+ 1)(d− 2)n. (1.29)

Assume that the quadricPad−2(X) is of corank 1. Then it has a unique
singular pointb with the coordinates[b0, . . . , bn] proportional to any column
or a row of the adjugate matrix adj(He(f)) evaluated at the pointa. Thus,
St(X) coincides with the image of the Hessian hypersurface under the rational
map

st : He(X) 99K St(X), a 7→ Sing(Pad−2(X)),

given by polynomials of degreen(d − 2). We call it theSteinerian map. Of
course, it is not defined when all polar quadrics are of corank> 1. Also, if
the first polar hypersurfacePa(X) has an isolated singular point for a general
pointa, we get a rational map

st−1 : St(X) 99K He(X), a 7→ Sing(Pa(X)).

These maps are obviously inverse to each other. It is a difficult question to
determine the sets of indeterminacy points for both maps.
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Proposition 1.1.12 LetX be a reduced hypersurface. The Steinerian hyper-
surface ofX coincides withPn if X has a singular point of multiplicity≥ 3.
The converse is true if we additionally assume thatX has only isolated singu-
lar points.

Proof Assume thatX has a triple point. We may harmlessly assume that the
point isp = [1, 0, . . . , 0]. Write the equation ofX in the form

f = tk0gd−k(t1, . . . , tn)+ tk−1
0 gd−k+1(t1, . . . , tn)+ · · ·+gd(t1, . . . , tn) = 0,

(1.30)
where the subscript indicates the degree of the polynomial. Since the multi-
plicity of p is greater than or equal to3, we must haved− k ≥ 3. Then a first
polarPa(X) has the equation

a0

k∑
i=0

(k − i)tk−1−i
0 gd−k+i +

n∑
s=1

as

k∑
i=0

tk−i0

∂gd−k+i
∂ts

= 0. (1.31)

It is clear that the pointp is a singular point ofPa(X) of multiplicity ≥ d −
k − 1 ≥ 2.

Conversely, assume that all polars are singular. By Bertini’s Theorem (see
[307], Theorem 17.16), the singular locus of a general polar is contained in
the base locus of the linear system of polars. The latter is equal to the singular
locus ofX. By assumption, it consists of isolated points, hence we can find
a singular point ofX at which a general polar has a singular point. We may
assume that the singular point isp = [1, 0, . . . , 0] and (1.30) is the equation of
X. Then the first polarPa(X) is given by equation (1.31). The largest power of
t0 in this expression is at mostk. The degree of the equation isd− 1. Thus the
pointp is a singular point ofPa(X) if and only if k ≤ d− 3, or, equivalently,
if p is at least triple point ofX.

Example1.1.7 The assumption on the singular locus is essential. First, it is
easy to check thatX = V (f2), whereV (f) is a nonsingular hypersurface has
no points of multiplicity≥ 3 and its Steinerian coincides withPn. An example
of a reduced hypersurfaceX with the same property is a surface of degree 6 in
P3 given by the equation

(
3∑
i=0

t3i )
2 + (

3∑
i=0

t2i )
3 = 0.

Its singular locus is the curveV (
∑3
i=0 t

3
i )∩ V (

∑3
i=0 t

2
i ). Each of its points is
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a double point onX. Easy calculation shows that

Pa(X) = V
(
(

3∑
i=0

t3i )
3∑
i=0

ait
2
i + (

3∑
i=0

t2i )
2

3∑
i=0

aiti
)
.

and

V (
3∑
i=0

t3i ) ∩ V (
3∑
i=0

t2i ) ∩ V (
3∑
i=0

ait
2
i ) ⊂ Sing(Pa(X)).

By Proposition1.1.3, Sing(X) is contained in St(X). Since the same is true
for He(X), we obtain the following.

Proposition 1.1.13 The intersectionHe(X) ∩ St(X) contains the singular
locus ofX.

One can assign one more variety to a hypersurfaceX = V (f). This is the
Cayleyan variety. It is defined as the image Cay(X) of the rational map

HS(X) 99K G1(Pn), (a, b) 7→ ab,

whereGr(Pn) denotes the Grassmannian ofr-dimensional subspaces inPn.
In the sequel we will also use the notationG(r + 1, E) = Gr(|E|) for the
variety of linearr + 1-dimensional subspaces of a linear spaceE. The map
is not defined at the intersection of the diagonal with HS(X). We know that
HS(a, a) = 0 means thatPad−1(X) = 0, and the latter means thata is a singu-
lar point ofX. Thus the map is a regular map for a nonsingular hypersurface
X.

Note that in the casen = 2, the Cayleyan variety is a plane curve in the dual
plane, theCayleyan curveof X.

Proposition 1.1.14 LetX be a general hypersurface of degreed ≥ 3. Then

deg Cay(X) =

{∑n
i=1(d− 2)i

(
n+1
i

)(
n−1
i−1

)
if d > 3,

1
2

∑n
i=1

(
n+1
i

)(
n−1
i−1

)
if d = 3,

where the degree is considered with respect to the Plücker embedding of the
GrassmannianG1(Pn).

Proof Since St(X) 6= Pn, the correspondence HS(X) is a complete inter-
section ofn + 1 hypersurfaces inPn × Pn of bidegree(d − 2, 1). Since
a ∈ Sing(Pa(X)) implies thata ∈ Sing(X), the intersection of HS(X) with
the diagonal is empty. Consider the regular map

r : HS(X)→ G1(Pn), (a, b) 7→ ab. (1.32)

It is given by the linear system of divisors of type(1, 1) onPn × Pn restricted
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to HS(X). The genericity assumption implies that this map is of degree 1 onto
the image ifd > 3 and of degree 2 ifd = 3 (in this case the map factors
through the involution ofPn × Pn that switches the factors).

It is known that the set of lines intersecting a codimension 2 linear sub-
spaceΛ is a hyperplane section of the GrassmannianG1(Pn) in its Plücker
embedding. WritePn = |E| andΛ = |L|. Letω = v1 ∧ . . . ∧ vn−1 for some
basis(v1, . . . , vn−1) of L. The locus of pairs of points(a, b) = ([w1], [w2]) in
Pn×Pn such that the lineab intersectsΛ is given by the equationw1∧w2∧ω =
0. This is a hypersurface of bidegree(1, 1) in Pn×Pn. This shows that the map
(1.32) is given by a linear system of divisors of type(1, 1). Its degree (or twice
of the degree) is equal to the intersection((d− 2)h1 + h2)n+1(h1 + h2)n−1,
whereh1, h2 are the natural generators ofH2(Pn × Pn,Z). We have

((d− 2)h1 + h2)n+1(h1 + h2)n−1 =

(n+1∑
i=0

(
n+1
i

)
(d− 2)ihi1h

n+1−i
2

)(n−1∑
j=0

(
n−1
j

)
hn−1−j

1 hj2
)

=
n∑
i=1

(d− 2)i
(
n+1
i

)(
n−1
i−1

)
.

For example, ifn = 2, d > 3, we obtain a classical result

deg Cay(X) = 3(d− 2) + 3(d− 2)2 = 3(d− 2)(d− 1),

anddeg Cay(X) = 3 if d = 3.

Remark1.1.4 The homogeneous forms defining the Hessian and Steinerian
hypersurfaces ofV (f) are examples ofcovariantsof f . We already discussed
them in the casen = 1. The form defining the Cayleyan of a plane curve is an
example of acontravariantof f .

1.1.7 The Jacobian hypersurface

In the previous sections we discussed some natural varieties attached to the lin-
ear system of first polars of a hypersurface. We can extend these constructions
to arbitraryn-dimensional linear systems of hypersurfaces inPn = |E|. We
assume that the linear system has no fixed components, i.e. its general member
is an irreducible hypersurface of some degreed. LetL ⊂ Sd(E∨) be a linear
subspace of dimensionn + 1 and |L| be the corresponding linear system of
hypersurfaces of degreed. Note that, in the case of linear system of polars of a
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hypersurfaceX of degreed+1, the linear subspaceL can be canonically iden-
tified withE and the inclusion|E| ⊂ |Sd(E∨)| corresponds to the polarization
mapa 7→ Pa(X).

Let Dd(n) ⊂ |Sd(E∨)| be the discriminant hypersurface. The intersection

D(|L|) = |L| ∩ Dd(n)

is called thediscriminant hypersurfaceof |L|. We assume that it is not equal
to Pn, i.e. not all members of|L| are singular. Let

D̃(|L|) = {(x,D) ∈ Pn × |L| : x ∈ Sing(D)}

with two projectionsp : D̃→ D(|L|) andq : D̃→ |L|. We define theJacobian
hypersurfaceof |L| as

Jac(|L|) = q(D̃(|L|)).

It parameterizes singular points of singular members of|L|. Again, it may
coincide with the wholePn. In the case of polar linear systems, the discrim-
inant hypersurface is equal to the Steinerian hypersurface, and the Jacobian
hypersurface is equal to the Hessian hypersurface.

TheSteinerian hypersurfaceSt(|L|) is defined as the locus of pointsx ∈ Pn
such that there existsa ∈ Pn such thatx ∈ ∩D∈|L|Pan−1(D). SincedimL =
n+1, the intersection is empty, unless there existsD such thatPan−1(D) = 0.
ThusPan(D) = 0 anda ∈ Sing(D), hencea ∈ Jac(|L|) andD ∈ D(|L|).
Conversely, ifa ∈ Jac(|L|), then∩D∈|L|Pan−1(D) 6= ∅ and it is contained in
St(|L|). By duality (1.12),

x ∈
⋂

D∈|L|

Pan−1(D)⇔ a ∈
⋂

D∈|L|

Px(D).

Thus the Jacobian hypersurface is equal to the locus of points which belong to
the intersection of the first polars of divisors in|L| with respect to some point
x ∈ St(X). Let

HS(|L|) = {(a, b) ∈ He(|L|)× St(|L|) : a ∈
⋂

D∈|L|

Pb(D)}

= {(a, b) ∈ He(|L|)× St(|L|) : b ∈
⋂

D∈|L|

Pad−1(D)}.

It is clear that HS(|L|) ⊂ Pn×Pn is a complete intersection ofn+1 divisors
of type(d− 1, 1). In particular,

ωHS(|L|) ∼= pr∗1(OPn((d− 2)(n+ 1))). (1.33)

One expects that, for a general pointx ∈ St(|L|), there exists a uniquea ∈
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Jac(|L|) and a uniqueD ∈ D(|L|) as above. In this case, the correspondence
HS(|L|) defines a birational isomorphism between the Jacobian and Steinerian
hypersurface. Also, it is clear that He(|L|) = St(|L|) if d = 2.

Assume that|L| has no base points. Then HS(|L|) does not intersect the
diagonal ofPn × Pn. This defines a map

HS(|L|)→ G1(Pn), (a, b) 7→ ab.

Its image Cay(|L|) is called theCayleyan varietyof |L|.
A line ` ∈ Cay(|L|) is called aReye lineof |L|. It follows from the defini-

tions that a Reye line is characterized by the property that it contains a point
such that there is a hyperplane in|L| of hypersurfaces tangent to` at this point.
For example, ifd = 2 this is equivalent to the property that` is contained is a
linear subsystem of|L| of codimension 2 (instead of expected codimension 3).

The proof of Proposition1.1.14applies to our more general situation to
give the degree of Cay(|L|) for a generaln-dimensional linear system|L| of
hypersurfaces of degreed.

deg Cay(X) =

{∑n
i=1(d− 1)i

(
n+1
i

)(
n−1
i−1

)
if d > 2,

1
2

∑n
i=1

(
n+1
i

)(
n−1
i−1

)
if d = 2.

(1.34)

Let f = (f0, . . . , fn) be a basis ofL. Choose coordinates inPn to iden-
tify Sd(E∨) with the polynomial ringC[t0, . . . , tn]. A well-known fact from
the complex analysis asserts that Jac(|L|) is given by the determinant of the
Jacobian matrix

J(f) =


∂0f0 ∂1f0 . . . ∂nf0
∂0f1 ∂1f1 . . . ∂nf1

...
...

...
...

∂0fn ∂1fn . . . ∂nfn

 .

In particular, we expect that

deg Jac(|L|) = (n+ 1)(d− 1).

If a ∈ Jac(|L|), then a non-zero vector in the null-space ofJ(f) defines a point
x such thatPx(f0)(a) = . . . = Px(fn)(a) = 0. Equivalently,

Pan−1(f0)(x) = . . . = Pan−1(fn)(x) = 0.

This shows that St(|L|) is equal to the projectivization of the union of the null-
spaces Null(Jac(f(a))), a ∈ Cn+1. Also, a nonzero vector in the null space of
the transpose matrixtJ(f) defines a hypersurface inD(|L|) with singularity at
the pointa.
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Let Jac(|L|)0 be the open subset of points where the corank of the jacobian
matrix is equal to 1. We assume that it is a dense subset of Jac(|L|). Then,
taking the right and the left kernels of the Jacobian matrix, defines two maps

Jac(|L|)0 → D(|L|), Jac(|L|)0 → St(|L|).

Explicitly, the maps are defined by the nonzero rows (resp. columns) of the
adjugate matrix adj(He(f)).

Let φ|L| : Pn 99K |L∨| be the rational map defined by the linear system|L|.
Under some assumptions of generality which we do not want to spell out, one
can identify Jac(|L|) with the ramification divisor of the map andD(|L|) with
the dual hypersurface of the branch divisor.

Let us now define a new variety attached to an-dimensional linear system
in Pn. Consider the inclusion mapL ↪→ Sd(E∨) and let

L ↪→ Sd(E)∨, f 7→ f̃ ,

be the restriction of the total polarization map (1.2) toL. Now we can consider
|L| as an-dimensional linear system̃|L| on |E|d of divisors of type(1, . . . , 1).
Let

PB(|L|) =
⋂

D∈f|L|
D ⊂ |E|d

be the base scheme of̃|L|. We call it thepolar base locusof |L|. It is equal to
the complete intersection ofn+ 1 effective divisors of type(1, . . . , 1). By the
adjunction formula,

ωPB(|L|) ∼= OPB(|L|).

If smooth, PB(|L|) is aCalabi-Yau varietyof dimension(d− 1)n− 1.
For anyf ∈ L, letN(f) be the set of pointsx = ([v(1)], . . . , [v(d)]) ∈ |E|d

such that

f̃(v(1), . . . , v(j−1), v, v(j+1), . . . , v(d)) = 0

for everyj = 1, . . . , d andv ∈ E. Since

f̃(v(1), . . . , v(j−1), v, v(j+1), . . . , v(d)) = Dv(1)···v(j−1)v(j+1)···v(d)(Dv(f)),

This can be also expressed in the form

∂̃jf(v(1), . . . , v(j−1), v(j+1), . . . , v(d)) = 0, j = 0, . . . , n. (1.35)

Choose coordinatesu0, . . . , un in L and coordinatest0, . . . , tn in E. Let f̃ be
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the image of a basisf of L in (E∨)d. Then PB(|L|) is a subvariety of(Pn)d
given by a system ofd multilinear equations

f̃0(t(1), . . . , t(d)) = . . . = f̃n(t(1), . . . , t(d)) = 0,

wheret(j) = (t(j)0 , . . . , t
(j)
n ), j = 1, . . . , d. For anyλ = (λ0, . . . , λn), set

f̃λ =
∑n
i=0 λif̃i.

Proposition 1.1.15 The following is equivalent:

(i) x ∈ PB(|L|) is a singular point,

(ii) x ∈ N(f̃λ) for someλ 6= 0.

Proof The variety PB(|L|) is smooth at a pointx if and only if the rank of
thed(n+ 1)× (n+ 1)-size matrix

(akij) =
( ∂f̃k
∂t

(j)
i

(x)
)
i,k=0,...,n,j=1,...,d

is equal ton + 1. Let f̃u = u0f̃0 + · · · + unf̃n, whereu0, . . . , un are un-
knowns. Then the nullspace of the matrix is equal to the space of solutions
u = (λ0, . . . , λn) of the system of linear equations

∂f̃u
∂u0

(x) = . . . =
∂f̃u
∂un

(x) =
∂f̃u

∂t
(j)
i

(x) = 0. (1.36)

For a fixedλ, in terminology of [264], p. 445, the system has a solutionx in
|E|d if f̃λ =

∑
λif̃i is adegenerate multilinear form. By Proposition 1.1 from

Chapter 14 of loc.cit.,̃fλ is degenerate if and only ifN(f̃λ) is non-empty. This
proves the assertion.

For any non-empty subsetI of {1, . . . , d}, let ∆I be the subset of points
x ∈ |E|d with equal projections toi-th factors withi ∈ I. Let∆k be the union
of ∆I with #I = k. The set∆d is denoted by∆ (the small diagonal).

Observe that PB(|L|) = HS(|L|) if d = 2 and PB(|L|) ∩∆d−1 consists of
d copies isomorphic to HS(|L|) if d > 2.

Definition 1.1.3 A n-dimensional linear system|L| ⊂ |Sd(E∨)| is called
regularif PB(|L|) is smooth at each point of∆d−1.

Proposition 1.1.16 Assume|L| is regular. Then

(i) |L| has no base points,

(ii) D̃(|L|) is smooth.
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Proof (i) Assume thatx = ([v0], . . . , [v0]) ∈ PB(|L|) ∩∆. Consider the lin-
ear mapL → E defined by evaluating̃f at a point(v0, . . . , v0, v, v0, . . . , v0),
wherev ∈ E. This map factors through a linear mapL → E/[v0], and hence
has a nonzerof in its kernel. This implies thatx ∈ N(f), and hencex is a
singular point of PB(|L|).

(ii) In coordinates, the varietỹD(|L|) is a subvariety of type(1, d − 1) of
Pn × Pn given by the equations

n∑
k=0

uk
∂fk
∂t0

= . . . =
n∑
k=0

uk
∂fk
∂tn

= 0.

The tangent space at a point([λ], [a]) is given by the system ofn + 1 linear
equations in2n+ 2 variables(X0, . . . , Xn, Y0, . . . , Yn)

n∑
k=0

∂fk
∂ti

(a)Xk +
n∑
j=0

∂2fλ
∂ti∂tj

(a)Yj = 0, i = 0, . . . , n, (1.37)

where fλ =
∑n
k=0 λkfk. Suppose([λ], [a]) is a singular point. Then the

equations are linearly dependent. Thus there exists a nonzero vectorv =
(α0, . . . , αn) such that

n∑
i=0

αi
∂fk
∂ti

(a) = Dv(fk)(a) = f̃k(a, . . . , a, v) = 0, k = 0, . . . , n

and
n∑
i

αi
∂2fλ
∂ti∂tj

(a) = Dv(
∂fλ
∂tj

)(a) = Dad−2v(
∂fλ
∂tj

) = 0, j = 0, . . . , n,

wherefλ =
∑
λkfk. The first equation implies thatx = ([a], . . . , [a], [v])

belongs to PB(|L|). Sincea ∈ Sing(fλ), we haveDad−1(∂fλ

∂tj
) = 0, j =

0, . . . , n. By (1.35), this and the second equation now imply thatx ∈ N(fλ).
By Proposition1.1.15, PB(|L|) is singular atx, contradicting the assumption.

Corollary 1.1.17 Suppose|L| is regular. Then the projection

q : D̃(|L|)→ D(|L|)

is a resolution of singularities.

Consider the projectionp : D̃(|L|) → Jac(|L|), (D,x) 7→ x. Its fibres are
linear spaces of divisors in|L| singular at the point[a]. Conversely, suppose
D(|L|) contains a linear subspace, in particular, a line. Then, by Bertini’s The-
orem all singular divisors parameterized by the line have a common singular
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point. This implies that the morphismp has positive dimensional fibres. This
simple observation gives the following.

Proposition 1.1.18 SupposeD(|L|) does not contain lines. TheñD(|L|) is
smooth if and only ifJac(|L|) is smooth. Moreover,HS(|L|) ∼= St(|L|) ∼=
Jac(|L|).

Remark1.1.5 We will prove later in Example1.2.1that the tangent space of
the discriminant hypersurfaceDd(n) at a point corresponding to a hypersurface
X = V (f) with only one ordinary double pointx is naturally isomorphic to
the linear space of homogeneous forms of degreed vanishing at the pointx
moduloCf . This implies thatD(|L|) is nonsingular at a point corresponding to
a hypersurface with one ordinary double point unless this point is a base point
of |L|. If |L| has no base points, the singular points ofD(|L|) are of two sorts:
either they correspond to divisors with worse singularities than one ordinary
double point, or the linear space|L| is tangent toDd(n) at its nonsingular
point.

Consider the natural action of the symmetric groupSd on (Pn)d. It leaves
PB(|L|) invarian. The quotient variety

Rey(|L|) = PB(|L|)/Sd

is called theReye varietyof |L|. If d > 2 andn > 1, the Reye variety is
singular.

Example1.1.8 Assumed = 2. Then PB(|L|) = HS(|L|) and Jac(|L|) =
St(|L|). Moreover, Rey(|L|) ∼= Cay(|L|). We have

deg Jac(|L|) = deg D(|L|) = n+ 1, deg Cay(|L|) =
n∑
i=1

(
n+1
i

)(
n−1
i−1

)
.

The linear system is regular if and only if PB(|L|) is smooth. This coincides
with the notion of regularity of a web of quadrics inP3 discussed in [146].

A Reye line` is contained in a codimension 2 subspaceΛ(`) of |L|, and
is characterized by this condition. The linear subsystemΛ(`) of dimension
n− 2 contains̀ in its base locus. The residual component is a curve of degree
2n−1 − 1 which intersects̀ at two points. The points are the two ramification
points of the pencilQ ∩ `,Q ∈ |L|. The two singular points of the base locus
of Λ(`) define two singular points of the intersectionΛ(λ) ∩ D(|L|). Thus
Λ(`) is a codimension 2 subspace of|L| which is tangent to the determinantal
hypersurface at two points.

If |L| is regular andn = 3, PB(|L|) is a K3 surface, and its quotient Rey(|L|)
is an Enriques surface. The Cayley variety is a congruence (i.e. a surface) of
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lines inG1(P3) of order 7 and class 3 (this means that there are 7 Reye lines
through a general point inP3 and there 3 Reye lines in a general plane). The
Reye lines are bitangents of the quartic surfaceD(|L|). The quartic surface has
10 nodes and is calledCayley quartic symmetroid. We refer for the details to
[146]. TheReye congruenceof lines is also discussed in [295].

1.2 The dual hypersurface

1.2.1 The polar map

Let X = V (f) for somef ∈ Sd(E∨). We assume that it is not a cone. The
polarisation map

E → Sd−1(E∨), v 7→ Dv(f),

allows us to identify|E| with ann-dimensional linear system of hypersurfaces
of degreed− 1. This linear system defines a rational map

pX : |E| 99K P(E)

. It follows from (1.12) that the map is given by assigning to a pointa the linear
polarPad−1(X). We call the mapp thepolar mapdefined by the hypersurface
X. In coordinates, the polar map is given by

[t0, . . . , tn] 7→
[ ∂f
∂t0

, . . . ,
∂f

∂tn

]
.

Recall that a hyperplaneHa = V (
∑
aiξi) in the dual projective space(Pn)∨

is the pointa = [a0, . . . , an] ∈ Pn. The preimage of the hyperplaneHa under
pX is the polarPa(f) = V (

∑
ai
∂f
∂ti

).
If X is nonsingular, the polar map is a regular map given by polynomials of

degreed − 1. Since it is a composition of the Veronese map and a projection,
it is a finite map of degree(d− 1)n.

Proposition 1.2.1 AssumeX is nonsingular. The ramification divisor of the
polar map is equal toHe(X).

Proof Note that, for any finite mapφ : X → Y of nonsingular varieties, the
ramification divisor Ram(φ) is defined locally by the determinant of the linear
map of locally free sheavesφ∗(Ω1

Y ) → Ω1
X . The image of Ram(φ) in Y is

called thebranch divisor. Both of the divisors may be nonreduced. We have
theHurwitz formula

KX = φ∗(KY ) + Ram(φ). (1.38)
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The mapφ is étale outside Ram(φ), i.e., for any pointx ∈ X the homomor-
phism of local ringOY,φ(x) → OX,x defines an isomorphism of their formal
completions. In particular, the preimageφ−1(Z) of a nonsingular subvariety
Z ⊂ Y is nonsingular outside the support of Ram(φ). Applying this to the
polar map we see that the singular points ofPa(X) = p−1

X (Ha) are contained
in the ramification locus Ram(pX) of the polar map. On the other hand, we
know that the set of singular points of first polars is the Hessian He(X). This
shows that He(X) ⊂ Ram(pX). Applying the Hurwitz formula for the canon-
ical sheaf

KPn = p∗X(K(Pn)∨) + Ram(pX).

we obtain thatdeg(Ram(pX)) = (n+ 1)(d− 2) = deg(He(X)). This shows
that He(X) = Ram(pX).

What is the branch divisor? One can show that the preimage of a hyperplane
Ha in P(E) corresponding to a pointa ∈ |E| is singular if and only if its in-
tersection with the branch divisor is not transversal. This means that the dual
hypersurface of the branch divisor is the Steinerian hypersurface. Equivalently,
the branch divisor is the dual of the Steinerian hypersurface. hy does not in-
tersect tran tangent to the branch locus of the map. The preimage ofHa is the
polar hypersurfacePa(X). Thus the set of hyperplanes tangent to the branch
divisor is equal to the Steinerian St(X).

1.2.2 Dual varieties

Recall that thedual varietyX∨ of a subvarietyX in Pn = |E| is the closure
in the dual projective space(Pn)∨ = |E∨| of the locus of hyperplanes inPn
which are tangent toX at some nonsingular point ofX.

The dual variety of a hypersurfaceX = V (f) is the image ofX under the
rational map given by the first polars. In fact, the point[∂0f(x), . . . , ∂nf(x)]
in (Pn)∨ is the hyperplaneV (

∑n
i=0 ∂if(x)ti) in Pn which is tangent toX at

the pointx.
The following result is called theReflexivity theorem. One can find its proof

in many modern text-books (e.g. [264], [307], [611], [661]).

Theorem 1.2.2(Reflexivity Theorem)

(X∨)∨ = X.

It follows from any proof in loc. cit. that, for any nonsingular pointy ∈ X∨

and any nonsingular pointx ∈ X,

Tx(X) ⊂ Hy ⇔ Ty(X∨) ⊂ Hx.
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Here we continue to identify a pointa in |E| with a hyperplaneHa in P(E).
The set of all hyperplanes in(Pn)∨ containing the linear subspaceTy(X∨) is
the dual linear space ofTy(X∨) in Pn. Thus the fibre of theduality map(or
Gauss map)

γ : Xns→ X∨, x 7→ Tx(X), (1.39)

over a nonsingular pointy ∈ X∨ is an open subset of the projective subspace
in Pn equal to the dual of the tangent spaceTy(X∨). Here and laterXns de-
notes the set of nonsingular points of a varietyX. In particular, ifX∨ is a
hypersurface, the dual space ofTy(X∨) must be a point, and hence the mapγ
is birational.

Let us apply this to the case whenX is a nonsingular hypersurface. The
polar map is a finite map, hence the dual of a nonsingular hypersurface is a
hypersurface. The duality map is a birational morphism

pX |X : X → X∨.

The degree of the dual hypersurfaceX∨ (if it is a hypersurface) is called
the classof X. For example, the class of any plane curve of degree> 1 is
well-defined.

Example1.2.1 Let Dd(n) be the discriminant hypersurface in|Sd(E∨)|. We
would like to describe explicitly the tangent hyperplane ofDd(n) at its nonsin-
gular point. Let

D̃d(n) = {(X,x) ∈ |OPn(d)| × Pn : x ∈ Sing(X)}.

Let us see that̃Dd(n) is nonsingular and the projection to the first factor

π : D̃d(n)→ Dd(n) (1.40)

is a resolution of singularities. In particular,π is an isomorphism over the open
setDd(n)ns of nonsingular points ofDd(n).

The fact thatD̃d(n) is nonsingular follows easily from considering the pro-
jection toPn. For any pointx ∈ Pn the fibre of the projection is the projective
space of hypersurfaces which have a singular point atx (this amounts ton+ 1
linear conditions on the coefficients). Thus̃Dd(n) is a projective bundle over
Pn and hence is nonsingular.

Let us see whereπ is an isomorphism. LetAi, |i| = d, be the projective
coordinates in

∣∣OPn(d)
∣∣ = |Sd(E∨)| corresponding to the coefficients of a

hypersurface of degreed and lett0, . . . , tn be projective coordinates inPn.
ThenD̃d(n) is given byn+1 bihomogeneous equations of bidegree(1, d−1):
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∑
|i|=d

isAiti−es = 0, s = 0, . . . , n, (1.41)

Herees is thes-th unit vector inZn+1.
A point (X, [v0]) = (V (f), [v0]) ∈ |OPn(d)| × Pn belongs toD̃d(n) if

and only if, replacingAi with the coefficient off at ti and ti with the i-th
coefficient ofv0, we get the identities.

We identify the tangent space of|Sd(E∨)|×|E| at a point(X, [v0]) with the
spaceSd(E∨)/Cf ⊕E/Cv0. In coordinates, a vector in the tangent space is a
pair (g, [v]), whereg =

∑
|i|=d ait

i, v = (x0, . . . , xn) are considered modulo
pairs(λf, µv0). Differentiating equations (1.41), we see that the tangent space
is defined by the(n+ 1)×

(
n+d
d

)
-matrix0BB@

. . . i0x
i−e0 . . .

P
|i|=d i0i0Aix

i−e0−e0 . . .
P

|i|=d i0inAix
i−e0−en

...
...

...
...

...
...

. . . inxi−en . . .
P

|i|=d ini0Aix
i−en−e0 . . .

P
|i|=d ininAix

i−en−en ,

1CCA
wherexi−es = 0 if i − es is not a non-negative vector. It is easy to interpret

solutions of these equations as pairs(g, v) from above such that

∇(g)(v0) + He(f)(v0) · v = 0. (1.42)

Since [v0] is a singular point ofV (f), ∇(f)([v0]) = 0. Also He(f)(v0) ·
v0 = 0, as follows from Theorem1.1.10. This confirms that pairs(λf, µv0) are
always solutions. The tangent mapdπ at the point(V (f), [v0]) is given by the
projection(g, v) 7→ g, where(g, v) is a solution of (1.42). Its kernel consists
of the pairs(λf, v) modulo pairs(λf, µv0). For such pairs the equations (1.42)
give

He(f)(v0) · v = 0. (1.43)

We may assume thatv0 = (1, 0, . . . , 0). Since[v0] is a singular point ofV (f),
we can writef = td−2

0 f2(t1, . . . , tn) + . . .. Computing the Hessian matrix at
the pointv0 we see that it is equal to

0 . . . . . . 0
0 a11 . . . a1n

...
...

...
...

0 an1 . . . ann

 , (1.44)

wheref2(t1, . . . , tn) =
∑

0≤i,j≤n aijtitj . Thus a solution of (1.43), not pro-
portional tov0 exists if and only ifdet He(f2) = 0. By definition, this means
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that the singular point ofX atx is not an ordinary double point. Thus we ob-
tain that the projection map (1.40) is an isomorphism over the open subset of
Dd(n) representing hypersurfaces with an isolated ordinary singularity.

We can also find the description of the tangent space ofDd(n) at its point
X = V (f) representing a hypersurface with a unique ordinary singular point
x. It follows from calculation of the Hessian matrix in (1.44), that its corank at
the ordinary singular point is equal to 1. Since the matrix is symmetric, the dot-
product of a vector in its nullspace is orthogonal to the column of the matrix.
We know that He(f)(v0) · v0 = 0. Thus the dot-product∇(g)(v0) · v0 is equal
to zero. By Euler’s formula, we obtaing(v0) = 0. The converse is also true.
This proves that

T (Dd(n))X = {g ∈ Sd(E∨)/Cf : g(x) = 0}. (1.45)

Now we are ready to compute the dual variety ofDd(n). The condition
g(b) = 0, where Sing(X) = {b} is equivalent toDbd(f) = 0. Thus the tangent
hyperplane, considered as a point in the dual space|Sd(E)| = |(Sd(E∨))∨|
corresponds to the envelopebd = (

∑n
s=0 bs∂i)

d. The set of such envelopes is
the Veronese varietyVnd , the image of|E| under the Veronese mapvd : |E| →
|Sd(E)|. Thus

Dd(n)∨ ∼= νd(Pn), (1.46)

Of course, it is predictable. Recall that the Veronese variety is embedded
naturally in|OPn(d)|∨. Its hyperplane section can be identified with a hyper-
surface of degreed in Pn. A tangent hyperplane is a hypersurface with a sin-
gular point, i.e. a point inDd(n). Thus the dual ofVnd is isomorphic toDd(n),
and hence, by duality, the dual ofDd(n) is isomorphic toVnd .

Example1.2.2 LetQ = V (q) be a nonsingular quadric inPn. LetA = (aij)
be a symmetric matrix definingq. The tangent hyperplane ofQ at a point
[x] ∈ Pn is the hyperplane

t0

n∑
j=0

a0jxj + · · ·+ tn

n∑
j=0

anjxj = 0.

Thus the vector of coordinatesy = (y0, . . . , yn) of the tangent hyperplane is
equal to the vectorA · x. SinceA is invertible, we can writex = A−1 · y. We
have

0 = x ·A · x = (y ·A−1) ·A · (A−1 · y) = y ·A−1 · y = 0.

Here we treatx or y as a row-matrix or as a column-matrix in order the matrix
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multiplication makes sense. SinceA−1 = det(A)−1adj(A), we obtain that the
dual variety ofQ is also a quadric given by the adjugate matrix adj(A).

The description of the tangent space of the discriminant hypersurface from
Example1.2.1has the following nice application (see also Remark1.1.5).

Proposition 1.2.3 LetX be a hypersurface of degreed in Pn. Supposea is
a nonsingular point of the Steinerian hypersurfaceSt(X). ThenSing(Pa(X))
consists of an ordinary singular pointb and

Ta(St(X)) = Pbd−1(X).

1.2.3 Pl̈ucker formulas

LetX = V (f) be a nonsingular irreducible hypersurface which is not a cone.
Fix n− 1 general pointsa1, . . . , an−1 in Pn. Consider the intersection

X ∩ Pa1(X) ∩ . . . ∩ Pan−1(X) = {b ∈ Pn : a1, . . . , an−1 ∈ Tb(X)}.

The set of hyperplanes through a general set ofn−1 points is a line in the dual
space. This shows that

degX∨ = #X ∩ Pa1(X) ∩ . . . Pan−1(X) = d(d− 1)n−1. (1.47)

The computation does not apply to singularX since all polarsPa(X) pass
through singular points ofX. In the case whenX has only isolated singular-
ities, the intersection ofn − 1 polars withX contains singular points which
correspond to hyperplanes which we excluded from the definition of the dual
hypersurface. So we get the following formula

deg(X∨) = d(d− 1)n−1−
∑

x∈Sing(X)

i(X,Pa1(X), . . . , Pan−1(X))x. (1.48)

To state an explicit formula we need some definition. Letφ = (φ1, . . . , φk)
be a set of polynomials inC[z1, . . . , zn]. We assume that the holomorphic map
Cn → Ck defined by these polynomials has an isolated critical point at the
origin. LetJ(φ) be the jacobian matrix. The idealJ (φ) in the ring of formal
power seriesC[[z1, . . . , zn]] generated by the maximal minors of the Jacobian
matrix is called theJacobian idealof φ. The number

µ(φ) = dim C[[z1, . . . , zn]]/J (φ)

is called theMilnor numberof φ. Passing to affine coordinates, this definition
easily extends to the definition of the Milnor numberµ(X,x) of an isolated
singularity of a complete intersection subvarietyX in Pn.
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We will need the following result of L̂e Dũng Tŕang [400], Theorem 3.7.1.

Lemma 1.2.4 LetZ be a complete intersection inCn defined by polynomials
φ1, . . . , φk with isolated singularity at the origin. LetZ1 = V (φ1, . . . , φk−1).
Then

µ(φ1, . . . , φk−1) + µ(φ1, . . . , φk−1, φk)

= dim C[[z1, . . . , zn]]/(φ1, . . . , φk−1,J (φ1, . . . , φk)).

Now we can state and prove thePlücker-Teissier formulafor a hypersurface
with isolated singularities:

Theorem 1.2.5 LetX be a hypersurface inPn of degreed. SupposeX has
only isolated singularities. For any pointx ∈ Sing(X), let

e(X,x) = µ(X,x) + µ(H ∩X,x),

whereH is a general hyperplane section ofX containingx. Then

degX∨ = d(d− 1)n−1 −
∑

x∈Sing(X)

e(X,x).

.

Proof We have to show thate(X,x) = i(X,Pa1(X), . . . , Pan−1(X))x. We
may assume thatx = [1, 0, . . . , 0] and choose affine coordinates withzi =
ti/t0. Let f(t0, . . . , tn) = td0g(z1, . . . , zn). Easy calculations employing the
Chain Rule, give the formula for the dehomogenized partial derivatives

x−d0

∂f

∂t0
= dg +

∑ ∂g

∂zi
zi,

x−d0

∂f

∂ti
=

∂g

∂zi
, i = 1, . . . , n.

Let H = V (h) be a general hyperplane spanned byn − 1 general points
a1, . . . , an−1, andh : Cn → C be the projection defined by the linear function
h =

∑
αizi. Let

F : Cn → C2, z = (z1, . . . , zn) 7→ (g(z), h(z)).

Consider the Jacobian determinant of the two functions(f, h)

J(g, h) =

(
∂g
∂z1

. . . ∂g
∂zn

α1 . . . αn

)
.



1.2 The dual hypersurface 39

The ideal(g, J(g, h)) defines the set of critical points of the restriction of the
mapF toX \ V (t0). We have

(g, J(g, h)) = (g, αi
∂g

∂zj
− αj

∂g

∂zi
)1≤i<j≤n,

The points(0, . . . , 0, αj , 0, . . . , 0,−αi, 0, . . . , 0) span the hyperplaneH. We
may assume that these points are our pointsa1, . . . , an−1. So, we see that
(g, J(g, h)) coincides with the ideal in the completion of local ringOPn,x gen-
erated byf and the polarsPai

(f). By definition of the index of intersection,
we have

i(X,Pa1(X), . . . , Pan−1(X))x = µ(g, h).

It remains to apply Lemma1.2.4, whereZ = V (g) andZ1 = V (g) ∩ V (h).

Example1.2.3 An isolated singular pointx of a hypersurfaceX in Pn is
called anAk-singularity(or a singular point of typeAk) if the formal comple-
tion ofOX,x is isomorphic toC[z1, . . . , zn]]/(zk+1

1 +z2
2 + . . .+z2

n). If k = 1,
it is an ordinary quadratic singularity (or anode), if k = 2, it is anordinary
cusp. We get

µ(X,x) = k, µ(X ∩H,x) = 1.

This gives the Pl̈ucker formula for hypersurfaces withs singularities of type
Ak1 , . . . , Aks

degX∨ = d(d− 1)n−1 − (k1 + 1)− . . .− (ks + 1). (1.49)

In particularly, whenX is a plane curveC with δ nodes andκ ordinary cusps,
we get a familiarPlücker formula

degC∨ = d(d− 1)− 2δ − 3κ. (1.50)

Note that, in case of plane curves,µ(H ∩X,x) is always equal to multxX−1,
where multxX is the multiplicity ofX atx. This gives the Pl̈ucker formula for
plane curves with arbitrary singularities

degC∨ = d(d− 1)−
∑

x∈Sing(X)

(µ(X,x) + multxX − 1). (1.51)

Note that the dual curveC∨ of a nonsingular curveC of degreed > 2 is
always singular. This follows from the formula for the genus of a nonsingular
plane curve and the fact thatC andC∨ are birationally isomorphic. The po-
lar mapC → C∨ is equal to the normalization map. A singular point ofC∨
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corresponds to a line which is either tangent toC at several points, or is an in-
flection tangent. We skip a local computation which shows that a line which is
an inflection tangent at one point with ordfl= 1 (anhonest inflection tangent)
gives an ordinary cusp ofC∨ and a line which is tangent at two points which
are not inflection points (honest bitangent) gives a node. Thus we obtain that
the numbeřδ of nodes ofC∨ is equal to the number of honest bitangents of
C and the numbeřκ of ordinary cusps ofC∨ is equal to the number of honest
inflection tangents toC∨.

Assume thatC is nonsingular andC∨ has no other singular points except
ordinary nodes and cusps. We know that the number of inflection points is
equal to3d(d− 2). Applying Pl̈ucker formula (1.50) toC∨, we get that

δ̌ =
1
2
(
d(d−1)(d(d−1)−1)−d−9d(d−2)

)
=

1
2
d(d−2)(d2−9). (1.52)

This is the (expected) number of bitangents of a nonsingular plane curve. For
example, we expect that a nonsingular plane quartic has 28 bitangents.

We refer for discussions of Plücker formulas to many modern text-books
(e.g. [241], [253], [295], [264]). A proof of Plücker-Teissiere formula can be
found in [607]. A generalization of the Plücker-Teissier formula to complete
intersections in projective space was given by S. Kleiman [372]

1.3 Polar s-hedra

1.3.1 Apolar schemes

We continue to useE to denote a complex vector space of dimensionn + 1.
Consider the polarization pairing (1.2)

Sd(E∨)× Sk(E)→ Sd−k(E∨), (f, ψ) 7→ Dψ(f).

Definition 1.3.1 ψ ∈ Sk(E) is calledapolarto f ∈ Sd(E∨) if Dψ(f) = 0.
We extend this definition to hypersurfaces in the obvious way.

Lemma 1.3.1 For anyψ ∈ Sk(E), ψ′ ∈ Sm(E) andf ∈ Sd(E∨),

Dψ′(Dψ(f)) = Dψψ′(f).

Proof By linearity and induction on the degree, it suffices to verify the asser-
tions in the case whenψ = ∂i andψ′ = ∂j . In this case they are obvious.

Corollary 1.3.2 Let f ∈ Sd(E∨). Let APk(f) be the subspace ofSk(E)
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spanned by forms of degreek apolar tof . Then

AP(f) =
∞⊕
k=0

APk(f)

is a homogeneous ideal in the symmetric algebraS(E).

Definition 1.3.2 The quotient ring

Af = S(E)/AP(f)

is called theapolar ringof f .

The ringAf inherits the grading ofS(E). Since any polynomialψ ∈ Sr(E)
with r > d is apolar tof , we see thatAf is annihilated by the idealmd+1

+ =
(∂0, . . . , ∂n)d+1. ThusAf is an Artinian graded local algebra overC. Since
the pairing betweenSd(E) andSd(E∨) has values inS0(E∨) = C, we see
that APd(f) is of codimension1 in Sd(E). Thus(Af )d is a vector space of di-
mension1 overC and coincides with thesocleof Af , i.e. the ideal of elements
of Af annihilated by its maximal ideal.

Note that the latter property characterizes Gorenstein graded local Artinian
rings, see [228], [347].

Proposition 1.3.3(F. S. Macaulay) The correspondencef 7→ Af is a bijec-
tion between|Sd(E∨)| and graded Artinian quotient algebrasS(E)/J with
one-dimensional socle.

Proof Let us show how to reconstructCf from S(E)/J . The multiplication
of d vectors inE composed with the projection toSd(E)/Jd defines a linear
mapSd(E) → Sd(E)/Jd ∼= C. Choosing a basis(S(E)/J)d, we obtain a
linear functionf onSd(E). It corresponds to an element ofSd(E∨).

Recall that any closed non-empty subschemeZ ⊂ Pn is defined by a unique
saturated homogeneous idealIZ in C[t0, . . . , tn]. Its locus of zeros in the affine
spaceAn+1 is the affine coneCZ of Z isomorphic to Spec(C[t0, . . . , tn]/IZ).

Definition 1.3.3 Letf ∈ Sd(E∨). A subschemeZ ⊂ |E∨| = P(E) is called
apolar tof if its homogeneous idealIZ is contained in AP(f), or, equivalently,
Spec(Af ) is a closed subscheme of the affine coneCZ of Z.

This definition agrees with the definition of an apolar homogeneous formψ.
A homogeneous formψ ∈ Sk(E) is apolar tof if and only if the hypersurface
V (ψ) is apolar toV (f).
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Consider the natural pairing

(Af )k × (Af )d−k → (Af )d ∼= C (1.53)

defined by multiplication of polynomials. It is well defined because of Lemma
1.3.1. The left kernel of this pairing consists ofψ ∈ Sk(E) mod AP(f) ∩
Sk(E) such thatDψψ′(f) = 0 for all ψ′ ∈ Sd−k(E). By Lemma1.3.1,
Dψψ′(f) = Dψ′(Dψ(f)) = 0 for all ψ′ ∈ Sd−k(E). This impliesDψ(f) =
0. Thusψ ∈ AP(f) and hence is zero inAf . This shows that the pairing (1.53)
is a perfect pairing. This is one of the nice features of a Gorenstein Artinian
algebra (see [228], 21.2).

It follows that the Hilbert polynomial

HAf
(t) =

d∑
i=0

dim(Af )iti = adt
d + · · ·+ a0

is a reciprocal monic polynomial, i.e.ai = ad−i, ad = 1. It is an important
invariant of a homogeneous formf .

Example1.3.1 Let f = ld be thed-th power of a linear forml ∈ E∨. For any
ψ ∈ Sk(E) = (Sk(E)∨)∨ we have

Dψ(ld) = d(d− 1) . . . (d− k + 1)ld−kψ(l) = d!l[d−k]ψ(l),

where we set

l[i] =

{
1
i! l
i if k ≤ d,

0 otherwise.

Here we viewψ ∈ Sd(E) as a homogeneous form onE∨. In coordinates,l =∑n
i=0 aiti, ψ = ψ(∂0, . . . , ∂n) andψ(l) = d!ψ(a0, . . . , an). Thus we see that

APk(f), k ≤ d, consists of polynomials of degreek vanishing atl. Assume,
for simplicity, thatl = t0. The idealAP (td0) is generated by∂1, . . . , ∂n, ∂

d+1
0 .

The Hilbert polynomial is equal to1 + t+ · · ·+ td.

1.3.2 Sums of powers

For any pointa ∈ |E∨| we continue to denote byHa the corresponding hyper-
plane in|E|.

Supposef ∈ Sd(E∨) is equal to a sum of powers of nonzero linear forms

f = ld1 + · · ·+ lds . (1.54)



1.3 Polar s-hedra 43

This implies that for anyψ ∈ Sk(E),

Dψ(f) = Dψ(
s∑
i=1

ldi ) =
s∑
i=1

ψ(li)l
[d−k]
i . (1.55)

In particular, takingd = k, we obtain that

〈ld1 , . . . , lds〉⊥Sd(E) = {ψ ∈ Sd(E) : ψ(li) = 0, i = 1, . . . , s} = (IZ)d,

whereZ is the closed reduced subscheme of points{[l1], . . . , [ls]} ⊂ |E∨|
corresponding to the linear formsli, andIZ denotes its homogeneous ideal.

This implies that the codimension of the linear span〈ld1 , . . . , lds〉 in Sd(E∨)
is equal to the dimension of(IZ)d, hence the formsld1 , . . . , l

d
s are linearly in-

dependent if and only if the points[l1], . . . , [ls] impose independent conditions
on hypersurfaces of degreed in P(E) = |E∨|.

Supposef ∈ 〈ld1 , . . . , lds〉, then(IZ)d ⊂ APd(f). Conversely, if this is true,
we have

f ∈ APd(f)⊥ ⊂ (IZ)⊥d = 〈ld1 , . . . , lds〉.

If we additionally assume that(IZ′)d 6⊂ APd(f) for any proper subsetZ ′ of
Z, we obtain, after replacing the formsl′is by proportional ones, that

f = ld1 + · · ·+ lds .

Definition 1.3.4 Apolars-hedronoff is a set of hyperplanesHi = V (li), i =
1, . . . , s, in |E| such that

f = ld1 + · · ·+ lds ,

and, considered as points[li] in P(E), the hyperplanesHi impose independent
conditions in the linear system|OP(E)(d)|. A polars-hedron is callednonde-
generateif the hyperplanesV (li) are in general linear position (i.e. non + 1
hyperplanes intersect).

Note that this definition does not depend on the choice of linear forms defin-
ing the hyperplanes. Also it does not depend on the choice of the equation
defining the hypersurfaceV (f). We ca also view a polars-hedron as an un-
ordered set of points in the dual space. In the casen = 2, it is often called a
polar s-gon, although this terminology is somewhat confusing since a polygon
comes with an order of its set of vertices.. Also in dimension 2 we cam employ
the terminology ofs-laterals.

The following propositions follow from the above discussion.

Proposition 1.3.4 Let f ∈ Sd(E∨). ThenZ = {[l1], . . . , [ls]} is a polar
s-hedron off if and only if the following properties are satisfied
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(i) IZ(d) ⊂ APd(f);
(ii) IZ′(d) 6⊂ APd(f) for any proper subsetZ ′ ofZ.

Proposition 1.3.5 A setZ = {[l1], . . . , [ls]} is a polar s-hedron off ∈
Sd(E∨) if and only ifZ, considered as a closed subscheme of|E∨|, is apolar
to f but no proper subscheme ofZ is apolar tof .

1.3.3 Generalized polar s-hedra

Proposition1.3.5allows one to generalize the definition of a polar s-hedron.
A polar s-hedron can be viewed as a reduced closed subschemeZ of P(E) =
|E|∨ consisting ofs points. Obviously,

h0(OZ) = dimH0(P(E),OZ) = s.

More generally, we may consider non-reduced closed subschemesZ of P(E)
of dimension0 satisfyingh0(OZ) = s. The set of such subschemes is pa-
rameterized by a projective algebraic variety Hilbs(P(E)) called thepunctual
Hilbert schemeof P(E) of 0-cycles of lengths.

Any Z ∈ Hilbs(P(E)) defines the subspace

IZ(d) = P(H0(P(E), IZ(d)) ⊂ H0(P(E),OP(E)(d)) = Sd(E).

The exact sequence

0→ H0(P(E), IZ(d))→ H0(P(E),OP(E)(d))→ H0(P(E),OZ) (1.56)

→ H1(P(E), IZ(d))→ 0

shows that the dimension of the subspace

〈Z〉d = P(H0(P(E), IZ(d))⊥) ⊂ |Sd(E∨)| (1.57)

is equal toh0(OZ) − h1(IZ(d)) − 1 = s − 1 − h1(IZ(d)). If Z is reduced
and consists of pointsp1, . . . , ps, then〈Z〉d = 〈vd(p1), . . . , vd(ps)〉, where
vd : P(E)→ P(Sd(E)) is the Veronese map. Hence,dim〈Z〉d = s− 1 if the
pointsvd(p1), . . . , vd(ps) are linearly independent. We say thatZ is linearly
d-independentif dim〈Z〉d = s− 1.

Definition 1.3.5 A generalizeds-hedronof f ∈ Sd(E∨) is a linearly d-
independent subschemeZ ∈ Hilbs(P(E)) which is apolar tof .

Recall thatZ is apolar tof if, for eachk ≥ 0,

IZ(k) = H0(P(E), IZ(k)) ⊂ APk(f). (1.58)
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According to this definition, a polar s-hedron is a reduced generalized s-hedron.
The following is a generalization of Proposition1.3.4.

Proposition 1.3.6 A linearlyd-independent subschemeZ ∈ Hilbs(P(E)) is
a generalized polars-hedron off ∈ Sd(E∨) if and only if

IZ(d) ⊂ APd(f).

Proof We have to show that the inclusion in the assertion impliesIZ(d) ⊂
APk(f) for anyk ≤ d. For anyψ′ ∈ Sd−k(E) and anyψ ∈ IZ(k), the product
ψψ′ belongs toIZ(k). ThusDψψ′(f) = 0. By the duality,Dψ(f) = 0, i.e.
ψ ∈ APk(f).

Example1.3.2 Let Z ∈ Hilbs(P(E)) be the union ofk fat pointspk, i.e. at
eachpi ∈ Z the idealIZ,pi is equal to themi-th power of the maximal ideal.
Obviously,

s =
k∑
i=1

(
n+mi−1
mi−1

)
.

Then the linear system|IZ(d)| consists of hypersurfaces of degreed with
pointspi of multiplicity ≥ mi. One can show (see [347], Theorem 5.3) that
Z is apolar tof if and only if

f = ld−m1+1
1 g1 + . . .+ ld−mk+1

k gk,

wherepi = V (li) andgi is a homogeneous polynomial of degreemi − 1 or
the zero polynomial.

Remark1.3.1 It is not known whether the set of generalizeds-hedra off is
a closed subset of Hilbs(P(E)). It is known to be true fors ≤ d + 1 since
in this casedim IZ(d) = t := dimSd(E) − s for all Z ∈ Hilbs(P(E)) (see
[347], p.48). This defines a regular map of Hilbs(P(E)) to the Grassmannian
Gt−1(|Sd(E)|) and the set of generalizeds-hedra equal to the preimage of a
closed subset consisting of subspaces contained in APd(f). Also we see that
h1(IZ(d)) = 0, henceZ is always linearlyd-independent.

1.3.4 Secant varieties and sums of powers

Consider theVeronese mapof degreed

νd : |E| → |Sd(E)|, [v] 7→ [vd],

defined by the complete linear system|SdE∨|. The image of this map is the
Veronese varietyVnd of dimensionn and degreedn. It is isomorphic toPn. By
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choosing a monomial basisti in the linear space of homogeneous polynomials
of degreed we obtain that the Veronese variety is isomorphic to the subvariety

of P
(
n+d
d

)
−1 given by equations

Ai ·Aj −AkAm = 0, i + j = k + m,

whereAi are dual coordinates in the space of polynomials of degreed. The
image ofPn under the map defined by a choice of a basis of the complete
linear system of hypersurfaces of degreed is called an-dimensional Veronese
variety of degreedn.

One can combine the Veronese mapping and the Segre mapping to define
a Segre-Veronese varietyVn1,...,nk

(d1, . . . , dk). It is equal to the image of the
mapPn1 ×· · ·×Pnk defined by the complete linear system|OPn1 (d1)� · · ·�
OPnk (dk)|.

The notion of a polars-hedron acquires a simple geometric interpretation
in terms of the secant varieties of the Veronese varietyVnd . If a set of points
[l1], . . . , [ls] in |E| is a polars-hedron off , then [f ] ∈ 〈[ld1 ], . . . , [lds ]〉, and
hence[f ] belongs to the(s− 1)-secant subspace ofVnd . Conversely, a general
point in this subspace admits a polar s-hedron. Recall that for any irreducible
nondegenerate projective varietyX ⊂ PN of dimensionr its t-secant variety
Sect(X) is defined to be the Zariski closure of the set of points inPN which
lie in the linear span of dimensiont of some set oft + 1 linearly independent
points inX.

The counting constants easily gives

dim Sect(X) ≤ min(r(t+ 1) + t,N).

The subvarietyX ⊂ PN is calledt-defectiveif the inequality is strict. An
example of a1-defective variety is a Veronese surface inP5.

A fundamental result about secant varieties is the following Lemma whose
modern proof can be found in [661], Chapter II, and in [165]

Lemma 1.3.7(A. Terracini) Let p1, . . . , pt+1 be generalt + 1 points inX
andp be a general point in their span. Then

Tp(Sect(X)) = Tp1(X), . . . ,Tpt+1(X).

The inclusion part

Tp1(X), . . . ,Tpt+1(X) ⊂ Tp(Sect(X))

is easy to prove. We assume for simplicity thatt = 1. Then Sec1(X) contains
the coneC(p1, X) which is swept out by the linesp1q, q ∈ X. Therefore,
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Tp(C(p1, X)) ⊂ Tp(Sec1(X)). However, it is easy to see thatTp(C(p1, X))
containsTp1(X).

Corollary 1.3.8 Sect(X) 6= PN if and only if, for anyt + 1 general points
of X, there exists a hyperplane section ofX singular at these points. In par-
ticular, if N ≤ r(t + 1) + t, the varietyX is t-defective if and only if for any
t + 1 general points ofX there exists a hyperplane section ofX singular at
these points.

Example1.3.3 Let X = Vnd ⊂ P
(
d+n
n

)
−1 be a Veronese variety. Assume

n(t + 1) + t >
(
d+n
n

)
− 1. A hyperplane section ofX is isomorphic to a

hypersurface of degreed in Pn. Thus Sect(Vnd ) 6= |Sd(E∨)| if and only if, for
anyt+ 1 general points inPn, there exists a hypersurface of degreed singular
at these points.

Consider a Veronese curveV1
d ⊂ Pd. Assume2t+ 1 ≥ d. Sinced < 2t+ 2,

there are no homogeneous forms of degreed which havet+ 1 multiple roots.
Thus the Veronese curveRd = vd(P1) ⊂ Pd is not t-degenerate fort ≥
(d− 1)/2.

Taken = 2 andd = 2. For any two points inP2 there exists a conic singular
at these points, namely the double line through the points. This explains why a
Veronese surfaceV 2

2 is 1-defective.
Another example isV2

4 ⊂ P14 and t = 4. The expected dimension of
Sec4(X) is equal to14. For any 5 points inP2 there exists a conic passing
through these points. Taking it with multiplicity 2, we obtain a quartic which
is singular at these points. This shows thatV2

4 is 4-defective.

The following Corollary of Terracini’s Lemma is called theFirst Main Theo-
rem on apolarityin [226]. The authors gave an algebraic proof of this Theorem
without using Terracini’s Lemma.

Corollary 1.3.9 A general homogeneous form inSd(E∨) admits a polar
s-hedron if and only if there exist linear formsl1, . . . , ls ∈ E∨ such that,
for any nonzeroψ ∈ Sd(E), the idealAP (ψ) ⊂ S(E∨) does not contain
{ld−1

1 , . . . , ld−1
s }.

Proof A general form inSd(E∨) admits a polar s-hedron if and only if the
secant variety Secs−1(Vnd ) is equal to the whole space. This means that the
span of the tangent spaces at some pointsqi = V (ldi ), i = 1, . . . , s, is equal to
the whole space. By Terracini’s Lemma, this is equivalent to that the tangent
spaces of the Veronese variety at the pointsqi are not contained in a hyper-
plane defined by someψ ∈ Sd(E) = Sd(E∨)∨. It remains to use that the
tangent space of the Veronese variety atqi is equal to the projective space of



48 Polarity

all homogeneous formsld−1
i l, l ∈ E∨ \ {0} (see Exercises). Thus, for any

nonzeroψ ∈ Sd(E), it is impossible thatPld−1
i l(ψ) = 0 for all l and for all

i. But Pld−1
i l(ψ) = 0 for all l if and only if Pld−1

i
(ψ) = 0. This proves the

assertion.

The following fundamental result is due to J. Alexander and A. Hirschowitz
[5]. A simplified proof can be found in [55] or [97].

Theorem 1.3.10 If d > 2, the Veronese varietyVnd is t-defective if and only
if

(n, d, t) = (2, 4, 4), (3, 4, 8), (4, 3, 6), (4, 4, 13).

In all these cases the secant varietySect(Vnd ) is a hypersurface. The Veronese
varietyVn2 is t-defective only if1 ≤ t ≤ n. Its t-secant variety is of dimension
n(t+ 1)− 1

2 (t− 2)(t+ 1)− 1.

For the sufficiency of the condition, only the case(4, 3, 6) is not trivial. It
asserts that for7 general points inP3 there exists a cubic hypersurface which
is singular at these points. To see this, we use a well-known fact that anyn+3
general points inPn lie on a Veronese curve of degreen (see, for example,
[307], Theorem 1.18). So, we find such a curveR through 7 general points in
P4 and consider the 1-secant variety Sec1(R). It is a cubic hypersurface given
by the catalecticant invariant of a binary quartic form. It contains the curveR

as it singular locus.
Other cases are easy. We have seen already the first two cases. The third

case follows from the existence of a quadric through 9 general points inP3.
The square of its equation defines a quartic with 9 points. The last case is
similar. For any 14 general points there exists a quadric inP4 containing these
points. In the case of quadrics we use that the variety of quadrics of corankr

is of codimensionr(r + 1)/2 in the variety of all quadrics.
Obviously, if dim Secs−1(Vnd ) < dim |SdE∨)| =

(
n+d
n

)
− 1, a general

form f ∈ Sd(E∨) cannot be written as a sum ofs powers of linear forms.
Sincedim Secs−1(Vnd ) ≤ min{(n+1)s−1,

(
n+d
n

)
−1}, the minimal number

s(n, d) of powers needed to writef as a sum of powers of linear forms satisfies

s(n, d) ≥
⌈ 1
n+ 1

(
n+ d

n

)⌉
. (1.59)

If Vnd is not (s − 1)-defective, then the equality holds. Applying Theorem
1.3.10, we obtain the following.
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Corollary 1.3.11

s(n, d) =
⌈ 1
n+ 1

(
n+ d

n

)⌉
unless(n, d) = (n, 2), (2, 4), (3, 4), (4, 3), (4, 4). In these exceptional cases
s(n, d) = n+ 1, 6, 10, 8, 15 instead of expecteddn−1

2 e, 5, 9, 8, 14.

Remark1.3.2 If d > 2, in all the exceptional cases listed in the previous
corollary, s(n, d) is larger by one than the expected number. The variety of
forms of degreed which can be written as the sum of the expected number of
powers of linear forms is a hypersurface in|OPn(d)|. In the case(n, d, t) =
(2, 4, 5), the hypersurface is of degree 6 and is given by the catalecticant matrix
which we will discuss later in this chapter. The curves parameterized by this
hypersurface are Clebsch quartics which we will discuss in Chapter 6. The
case(n, d) = (4, 3) was studied only recently in [462]. The hypersurface is
of degree 15. In the other two cases, the equation expresses that the second
partials of the quartic are linearly dependent (see [265], pp. 58-59.)

One can also consider the problem of a representation of several forms
f1, . . . , fk ∈ Sd(E∨) as a sum of powers of the same set (up to proportional-
ity) of linear formsl1, . . . , ls. This means that the forms share a common polar
s-hedron. For example, a well-known result from linear algebra states that two
general quadratic formsq1, q2 in k variables can be simultaneously diagonal-
ized. In our terminilogy this means that they have a common polar k-hedron.
More precisely, this is possible if thedet(q1 +λq2) hasn+1 distinct roots (we
will discuss this later in Chapter 8 while studying del Pezzo surfaces of degree
4).

Suppose

fj =
s∑
i=1

a
(j)
i ldi , j = 1, . . . , k. (1.60)

We view this as an elementφ ∈ U∨ ⊗ Sd(E∨), whereU = Ck. The mapφ
is the sum ofs linear mapsφ of rank 1 with the images spanned byldi . So, we
can view eachφ as a vector inU∨ ⊗ Sd(E∨) equal to the image of a vector in
U∨⊗E∨ embedded inU∨⊗E∨ byu⊗ l 7→ u⊗ ld. Now, everything becomes
clear. We consider the Segre-Veronese embedding

|U∨| × |E∨| ↪→ |U∨| × |Sd(E∨)| ↪→ |U∨ ⊗ Sd(E∨)|

defined by the linear system of divisors of type(1, d) and view[φ] as a point
in the projective space|U∨⊗Sd(E∨)| which lies on the(s−1)-secant variety
of Vk−1,n(1, d).
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For any linear mapφ ∈ Hom(U, Sd(E∨)), consider the linear map

Tφ : Hom(U,E)→ Hom(
2∧
U, Sd−1(E∨)),

defined by

Tφ(α) : u ∧ v 7→ Dα(u)(φ(v))−Dα(v)(φ(u)).

We call this map theToeplitz map. Suppose thatφ is of rank 1 with the image
spanned byld, thenTφ is of rank equal todim

∧2
U − 1 = (k− 2)(k+ 1)/2.

If we choose a basisu1, . . . , uk in U and coordinatest0, . . . , tn in E, then the
image is spanned byld−1(aiui− ajuj), wherel =

∑
aiti. This shows that, if

φ belongs to Secs−1(|U∨| × |E∨|),

rankTφ ≤ s(k − 2)(k + 1)/2. (1.61)

The expected dimension of Secs−1(|U∨| × |E∨|) is equal tos(k + n)− 1.
Thus, we expect that Secs−1(|U∨| × |E∨|) coincides with|U∨ ⊗ Sd(E∨)|
when

s ≥
⌈ k

k + n

(
n+ d

n

)⌉
. (1.62)

If this happens, we obtain that a general set ofk forms admits a common polar
s-hedron. Of course, as in the casek = 1, there could be exceptions if the
secant variety is(s− 1)-defective.

Example1.3.4 Assumed = 2 andk = 3. In this case the matrix ofTφ is
a square matrix of size3 × (n + 1). Let us identify the spacesU∨ and

∧2
U

by means of the volume formu1 ∧ u2 ∧ u3 ∈
∧3

U ∼= C. Also identify
φ(ui) ∈ S2(E∨) with a square symmetric matrixAi of size3(n + 1). Then,
an easy computation shows that one can represent the linear mapTφ by the
skew-symmetric matrix  0 A1 A2

−A1 0 A3

−A2 −A3 0

 . (1.63)

Now condition (1.61) for

s =
⌈k(n+d

n

)
k + n

⌉
=
⌈3(n+ 2)(n+ 1)

2(n+ 3)

⌉
=


1
2 (3n+ 2) if n is even,
1
2 (3n+ 1) if n is odd≥ 3,

3 if n = 1
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becomes equivalent to the condition

Λ = Pf

 0 A1 A2

−A1 0 A3

−A2 −A3 0

 = 0. (1.64)

It is known that the trisecant!line Secs−1(|U | × |E|) of the Segre-Veronese
variety is a hypersurface ifn ≥ 3 is odd and the whole space ifn is even (see
[597], Lemma 4.4). It implies that, in the odd case, the hypersurface is equal
to V (Λ). Its degree is equal to3(n + 1)/2. Of course, in the even case, the
pfaffian vanishes identically.

In the casen = 3, the pfaffianΛ was introduced by E. Toeplitz [613]. It
is an invariant of the net2 of quadrics inP3 that vanishes on the nets with
common polar pentahedron. Following [272], we callΛ theToeplitz invariant.
Let us write its generatorsf1, f2, f3 in the form (1.60) with n = 3 ands =
1
2 (3n + 1) = 5. Since the four linear formsli are linearly dependent, we can
normalize them by assuming thatl1 + . . .+ l5 = 0 and assume thatl1, . . . , l5
span a 4-dimensional subspace. Consider a cubic form

F =
1
3

5∑
i=1

l3i ,

and find three vectorsvi in C4 such that

(l1(vj), . . . , l5(vj)) = (a(j)
1 , . . . , a

(j)
5 ), j = 1, 2, 3.

Now we check thatfj = Dvj
(F ) for j = 1, 2, 3. This shows that the net

spanned byf1, f2, f3 is a net of polar quadrics of the cubicF . Conversely, we
will see later that any general cubic form in 4 variables admits a polar pentahe-
dron. Thus any net of polars of a general cubic surface admits a common polar
pentahedron. So, the Toeplitz invariant vanishes on a general net of quadrics in
P3 if and only if the net is realized as a net of polar quadrics of a cubic.

Remark1.3.3 Let (n, d, k, s) denote the numbers such that we have the strict
inequality in (1.62). We call such4-tuples exceptional. Examples of excep-
tional 4-tuples are(n, 2, 3, 1

2 (3n + 1)) with oddn ≥ 2. The secant hypersur-
faces in these cases are given by the Toeplitz invariantΛ. The case(3, 2, 3, 5)
was first discovered by G. Darboux [168].3 It has been rediscovered and ex-
tended to any oddn by G. Ottaviani [461]. There are other two known ex-
amples. The case(2, 3, 2, 5) was discovered by F. London [406]. The secant

2 We employ classical terminology calling a 1-dimensional (resp. 2-dimensional, resp.
3-dimensional) linear system apencil(resp. anet, resp. aweb).

3 Darboux also wrongly claimed that the case(3, 2, 4, 6) is exceptional, the mistake was
pointed out by Terracini [608] without proof, a proof is in [67].
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variety is a hypersurface given by the determinant of order6 of the linear map
Tφ (see Exercise 1.30). The examples(3, 2, 5, 6) and(5, 2, 3, 8) were discov-
ered recently by E. Carlini and J. Chipalkatti [67]. The secant hypersurface in
the second case is a hypersurface of degree 18 given by the determinant ofTφ.
There are no exceptional 4-tuples(n, 2, 2, s) [67] and no exceptional 4-tuples
(n, d, k, s) for largen (with some explicit bound)[1]. We refer to [106], where
the varieties of common polar s-hedra are studied.

Remark1.3.4 Assume that one of the matricesA1, A2, A3 in (1.63) is invert-
ible, say let it beA2. ThenI 0 0

0 I −A1A
−1
2

0 0 I

 0 A1 A2

−A1 0 A3

−A2 −A3 0

I 0 0
0 I 0
0 −A−1

2 A1 I



=

 0 0 A2

0 B A3

−A2 −A3 0

 ,

where

B = A1A
−1
2 A3 −A3A

−1
2 A1.

This shows that

rank

 0 A1 A2

−A1 0 A3

−A2 −A3 0

 = rankB + 2n+ 2.

The condition that rankB ≤ 2 is known in the theory of vector bundles over
the projective plane asBarth’s conditionon the net of quadrics inPn. It does
not depend on the choice of a basis of the net of quadrics spanned by the
quadrics with matricesA1, A2, A3. Under Barth’s condition, the discriminant
curvedet(z0A1+z1A2+2A3) = 0 of singular quadrics in the net is aDarboux
curveof degreen+ 1 (see [24]).

1.3.5 The Waring problems

The well-known Waring problem in number theory asks about the smallest
numbers(d) such that each natural number can be written as a sum ofs(d) d-
th powers of natural numbers. It also asks in how many ways it can be done. Its
polynomial analog asks about the smallest numbers(n, d) such that a general
homogeneous polynomial of degreed in n + 1 variables can be written as a
sum ofs d-th powers of linear forms. Corollary (1.3.11) solves this problem.

Other versions of the Waring problem ask the following questions:
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d n s # reference

2s-1 1 s 1 J. Sylvester [602]

5 2 7 1 D. Hilbert [325], H. Richmond [512],
F. Palatini [467]

7 2 12 5 A. Dixon and T. Stuart[186],
K. Ranestad and F.-O. Schreyer [496]

8 2 15 16 K. Ranestad and F.-O. Schreyer [496]

3 3 5 1 J. Sylvester [602]

• (W1) Given a homogeneous formsf ∈ Sd(E∨), study thevariety of
sums of powersVSP(f, s)o, i.e. the subvariety ofP(E)(s) which con-
sists of polars-hedra off or, more general, the subvariety VSP(f, s) of
Hilbs(P(E)) parameterizing generalized polar s-hedra off .

• (W2) Givens, find the equations of the closure PS(s, d;n) in Sd(E∨) of
the locus of homogeneous forms of degreed which can be written as a
sum ofs powers of linear forms.

We can also ask similar questions for several forms inSd(E∨).
Note that PS(s, d;n) is the affine cone over the secant variety Secs−1(Vnd ).

In the language of secant varieties, the variety VSP(f, s)o is the set of linearly
independent sets ofs pointsp1, . . . , ps in Vnd such that[f ] ∈ 〈p1, . . . , ps〉 and
does not belong to the span of the proper subset of the set of these points. The
variety VSP(f, s) is the set of linearly independentZ ∈ Hilbs(P(E)) such that
[f ] ∈ 〈Z〉. Note that we have a natural map

VSP(f, s)→ G(s, Sd(E)), Z 7→ 〈Z〉d,

whereG(s, Sd(E)) = Gs−1(|Sd(E)|) is the Grassmannian ofs-dimensional
subspaces ofSd(E). This map is not injective in general.

Also note that for a general formf , the variety VSP(f, s) is equal to the
closure of VSP(f, s)o in the Hilbert scheme Hilbs(P(E)) (see [347], 7.2).
It is not true for an arbitrary formf . One can also embed VSP(f ; s)o in
P(Sd(E)) by assigning to{l1, . . . , ls} the productl1 · · · ls. Thus we can com-
pactify VSP(f, s)o by taking its closure inP(Sd(E)). In general, this closure
is not isomorphic to VSP(f, s).

Remark1.3.5 If (d, n) is not one of the exceptional cases from Corollary
1.3.11and

(
n+d
d

)
= (n+1)s for some integers, then a general form of degree

d admits only finitely many polars-hedra. How many? The known cases are
given in the following table.



54 Polarity

It seems that among these are the only cases when the number of polar s-
hedra of a general form is equal to 1. The evidence for this can be found in
papers of M. Mella [420], [421], where it is proven that there are no new cases
whenn = 2, d ≥ 5 andn ≥ 3 andn divides

(
n+d
n−1

)
.

An explicit description of positive-dimensional varieties of sums of pow-
ers VSP(f, s) is known only in a few cases(d, n, s). We will discuss the
cases(d, n, s) = (2s− 1, 1, s), (3, 3, 5) later. For other cases see papers [349]
((d, n, s) = (3, 5, 10)), [441], ((d, n, s) = (6, 2, 10)), [194] ((d, n, s) = (3, 2, 4))
and [496] ((d, n, s) = (3, 4, 8), (2, 3, 4), (6, 2, 10)),

1.4 Dual homogeneous forms

1.4.1 Catalecticant matrices

Let f ∈ Sd(E∨). Consider the linear map (theapolarity map)

apkf : SkE → Sd−k(E∨), ψ 7→ Dψ(f). (1.65)

Its kernel is the space APk(f) of forms of degreek which are apolar tof .
Assume thatf =

∑s
i=1 l

d
i for someli ∈ E∨. It follows from (1.55) that

apkf (S
k(E)) ⊂ 〈ld−k1 , . . . , ld−ks 〉,

and hence

rank(apkf ) ≤ s. (1.66)

If we choose a basis inE and a basis inE∨, then apkf is given by a matrix of

size
(
k+n
k

)
×
(
n+d−k
d−k

)
whose entries are linear forms in coefficients off .

Choose a basisξ0, . . . , ξn inE and the dual basist0, . . . , tn inE∨. Consider
a monomial lexicographically ordered basis inSk(E) (resp. inSd−k(E∨)).
The matrix of apkf with respect to these bases is called thek-th catalecticant
matrix of f and is denoted by Catk(f). Its entriescuv are parameterized by
pairs(u,v) ∈ Nn+1 × Nn+1 with |u| = d− k and|v| = k. If we write

f =
∑
|i|=d

(
d

i

)
aiti,

then

cuv = au+v.

This follows easily from formula (1.5).
Consideringai as independent variablesti, we obtain the definition of a

general catalecticant matrix Catk(d, n).
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Example1.4.1 Let n = 1. Write f =
∑d
i=0

(
d
i

)
ait

d−i
0 ti1. Then

Catk(f) =


a0 a1 . . . ak
a1 a2 . . . ak+1

...
...

...
...

ad−k ak+1 . . . ad

 .

A square matrix of this type is called acirculant matrix, or aHankel matrix. It
follows from (1.66) thatf ∈ PS(s, d; 1) implies that all(s+1)×(s+1) minors
of Catk(f) are equal to zero. Thus we obtain that Secs−1(V1

d) is contained in
the subvariety ofPd defined by(s+ 1)× (s+ 1)-minors of the matrices

Catk(d, 1) =


t0 t1 . . . tk
t1 t2 . . . tk+1

...
...

...
...

td−k td−k+1 . . . td

 .

For example, ifs = 1, we obtain that the Veronese curveV1
d ⊂ Pd satisfies

the equationstitj − tktl = 0, wherei + j = k + l. It is well-known that
these equations generate the homogeneous ideal of the Veronese curve (see,
for example,[307]).

Assumed = 2k. Then the Hankel matrix is a square matrix of sizek+1. Its
determinant vanishes if and only iff admits a nonzero apolar form of degree
k. The set of suchf ’s is a hypersurface in the space of binary forms of degree
2k. It contains the Zariski open subset of forms which can be written as a sum
of k powers of linear forms (see section1.5.1).

For example, takek = 2. Then the equation

det

a0 a1 a2

a1 a2 a3

a2 a3 a4

 = 0 (1.67)

describes binary quartics

f = a0t
4
0 + 4a1t

3
0t1 + 6a2t

2
0t

2
1 + 4a3t0t

3
1 + a4t

4
1

which lie in the Zariski closure of the locus of quartics represented in the form
(α0t0 + β0t1)4 + (α1t0 + β1t1)4. Note that a quartic of this form has simple
roots unless it has a root of multiplicity 4. Thus any binary quartic with simple
roots satisfying equation (1.67) can be represented as a sum of two powers of
linear forms.

The determinant (1.67) is an invariant of a binary quartic. The cubic hyper-
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surface inP4 defined by equation (1.67) is equal to the 1-secant variety of a
rational normal curveR4 in P4.

Note that

dim APi(f) = dim Ker(apif ) =
(
n+i
i

)
− rank Cati(f).

Therefore,

dim(Af )i = rank Cati(f),

and

HAf
(t) =

d∑
i=0

rank Cati(f)ti. (1.68)

Since the ranks of apif and its transpose are the same, we obtain

rank Cati(f) = rank Catd−i(f)

confirming thatHAf
(t) is a reciprocal monic polynomial.

Supposed = 2k is even. Then the coefficient attk in HAf
(t) is equal to the

rank of Catk(f). The matrix Catk(f) is a square matrix of size
(
n+k
k

)
. One can

show that for a generalf , this matrix is invertible. A polynomialf is calledde-
generateif det(Catk(f)) = 0. It is callednondegenerateotherwise. Thus, the
set of degenerate polynomials is a hypersurface (catalecticant hypersurface)
given by the equation

det(Catk(2k, n)) = 0. (1.69)

The polynomialdet(Catk(2k, n)) in variablesti, |i| = d, is called thecatalec-
ticant determinant.

Example1.4.2 Let d = 2. It is easy to see that the catalecticant polynomial is
the discriminant polynomial. Thus a quadratic form is degenerate if and only if
it is degenerate in the usual sense. The Hilbert polynomial of a quadratic form
f is

HAf
(t) = 1 + rt+ t2,

wherer is the rank of the quadratic form.

Example1.4.3 Supposef = td0 + · · ·+ tds , s ≤ n. Thenti0, . . . , t
i
s are linearly

independent for anyi, and hence rank Cati(f) = s for 0 < i < d. This shows
that

HAf
(t) = 1 + s(t+ · · ·+ td−1) + td.
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LetP be the set of reciprocal monic polynomials of degreed. One can strat-
ify the spaceSd(E∨) by setting, for anyp ∈ P,

Sd(E∨)p = {f ∈ Sd(E∨) : HAf
= p}.

If f ∈ PS(s, d;n) we know that

rank Catk(f) ≤ h(s, d, n)k = min(s,
(
n+k
n

)
,
(
n+d−k
n

)
).

One can show that, for a general enoughf , the equality holds (see [347], p.13).
Thus there is a Zariski open subset of PS(s, d;n) which is contained in the
strataSd(E∨)p, wherep =

∑d
i=0 h(s, d, n)iti.

1.4.2 Dual homogeneous forms

In Chapter 1 we introduced the notion of a dual quadric. IfQ = V (q), whereq
is a nondegenerate quadratic form, then the dual varietyQ∨ is a quadric defined
by the quadratic formq∨ whose matrix is the adjugate matrix ofq. Using the
notion of the catalecticant matrix, for any homogeneous form of even degree
f ∈ S2k(E∨), in a similar fashion one can define the dual homogeneous form
f∨ ∈ S2k(E).

Consider the pairing

Ωf : Sk(E)× Sk(E)→ C, (1.70)

defined by

Ωf (ψ1, ψ2) = apkf (ψ1)(ψ2) = Dψ2(apkf (ψ1)) = Dψ1ψ2(f),

where we identify the spacesSk(E∨) andSk(E)∨. The pairing can be consid-
ered as a symmetric bilinear form onSk(E). Its matrix with respect to a mono-
mial basis inSk(E) and its dual monomial basis inSk(E∨) is the catalecticant
matrix Catk(f).

Let us identifyΩf with the associated quadratic form onSk(E) (the restric-
tion of Ωf to the diagonal). This defines a linear map

Ω : S2k(E∨)→ S2(Sk(E)∨), f 7→ Ωf .

There is also a natural left inverse map ofΩ

P : S2(Sk(E)∨)→ S2k(E∨)

defined by multiplicationSk(E∨)×Sk(E∨)→ S2k(E∨). All these maps are
GL(E)-equivariant and realize the linear representationS2k(E∨) as a direct
summand in the representationS2(Sk(E∨)).
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Definition 1.4.1 Assume thatf ∈ S2k(E∨) is nondegenerate. The dual
quadratic formΩ∨f of Ωf is called thedual homogeneous formof f . We will
identify it with the polar bilinest form onSkV .

Remark1.4.1 Note that, contrary to the assertion of Theorem 2.3 in [200],
Ω∨f is not equal, in general, toΩf∨ for somef∨ ∈ S2k(V ). We thank Bart van
den Dries for pointing out that the adjugate matrix of the catelecticant matrix
is not, in general, a catalecticant matrix as was wrongly asserted in the proof.

Recall that the locus of zeros of a quadratic fromq ∈ S2(E∨) consists of
vectorsv ∈ E such that the value of the polarized bilinear formbq : E → E∨

at v vanishes atv. Dually, the set of zeros ofq∨ ∈ S2(E) consists of linear
functionsl ∈ E∨ such that the value ofbq∨ : E∨ → E at l is equal to zero. The
same is true for the dual formΩ∨f . Its locus of zeros consists of linear formsl
such thatΩ−1

f (lk) ∈ Sk(E) vanishes onl. The degreek homogeneous form

Ω−1
f (lk) is classically known as theanti-polar of l (with respect tof ).

Definition 1.4.2 Two linear formsl,m ∈ E∨ are calledconjugatewith re-
spect to a nondegenerate formf ∈ S2k(E∨) if

Ω∨f (lk,mk) = 0.

Proposition 1.4.1 Supposef is given by(1.54), where the powerslki are
linearly independent inSk(E∨). Then each pairli, lj is conjugate with respect
to f .

Proof Since the powerslki are linearly independent, we may include them
in a basis ofSk(E∨). Choose the dual basis inSk(E). Then the catalecticant
matrix off has the upper corner matrix of sizes equal to the diagonal matrix.
Its adjugate matrix has the same property. This implies thatlki , l

j
i , i 6= j, are

conjugate with respect toΩ∨f .

1.4.3 The Waring rank of a homogeneous form

Since any quadratic formq can be reduced to a sum of squares, one can define
its rank as the smallest numberr such that

q = l21 + · · ·+ l2r

for somel1, . . . , lr ∈ E∨.

Definition 1.4.3 Letf ∈ SdE∨. Its Waring rank wrk(f) is the smallest num-
ber r such that

f = ld1 + · · ·+ ldr (1.71)
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for some linear formsl1, . . . , lr ∈ E∨.

The next result follows immediately from the proof of Proposition1.4.1.

Proposition 1.4.2 Let Ωf be the quadratic form onSk(E) associated to
f ∈ S2k(E∨). Then the Waring rank off is greater than or equal to the rank
of Ωf .

Let f be a nondegenerate form of even degree2k. By Corollary1.3.11,

wrk(f) = s(2k, n) ≥
⌈ 1
n+ 1

(
n+ d

d

)⌉
,

with strict inequality only in the following cases

• d = 2,wrk(f) = rankΩf = n+ 1;
• n = 2, d = 4,wrk(f) = rankΩf = 6;
• n = 3, d = 4,wrk(f) = rankΩf = 10;
• n = 4, d = 4,wrk(f) = rankΩf = 15.

In all non-exceptional cases,

wrk(f) ≥ 1
n+ 1

(
n+ 2k
n

)
=
(
n+ k

n

)
(n+ 2k) · · · (n+ k)
2k · · · (k + 1)(n+ 1)

≥ rankΩf .

In most cases, we have strict inequality.

1.4.4 Mukai’s skew-symmetric form

Let ω ∈
∧2

E be a skew-symmetric bilinear form onE∨. It admits a unique
extension to a Poisson bracket{, }ω on S(E∨) which restricts to a skew-
symmetric bilinear form

{, }ω : Sk+1(E∨)× Sk+1(E∨)→ S2k(E∨). (1.72)

Recall that aPoisson bracketon a commutative algebraA is a skew-symmetric
bilinear mapA × A → A, (a, b) 7→ {a, b} such that its left and right partial
mapsA→ A are derivations.

Let f ∈ S2k(E∨) be a nondegenerate form andΩ∨f ∈ S2(Sk(E)) be its

dual form. For eachω as above, defineσω,f ∈
∧2

Sk+1(E) by

σω,f (g, h) = Ω∨f ({g, h}ω).

Theorem 1.4.3 Let f be a nondegenerate form inS2k(E∨) of Waring rank
N = rank Ωf =

(
n+k
n

)
. For anyZ = {[`1], . . . , [`N ]} ∈ VSP(f,N)o, let

〈Z〉k+1 be the linear span of the powerslk+1
i in Sk+1(E∨). Then
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(i) 〈Z〉k+1 is isotropic with respect to each formσω,f ;

(ii) apk−1
f (Sk−1E) ⊂ 〈Z〉k+1;

(iii) apk−1
f (Sk−1E) is contained in the radical of eachσω,f .

Proof To prove the first assertion it is enough to check that, for alli, j, one
hasσω,f (lk+1

i , lk+1
j ) = 0. We have

σω,f (lk+1
i , lk+1

j ) = Ω∨f ({lk+1
i , lk+1

j }ω) = Ω∨f (lki , l
k
j )ω(li, lj).

Since`ki are linearly independent, by Proposition1.4.1, Ω∨f (lki , l
k
j ) = 0. This

checks the first assertion.
For anyψ ∈ Sk−1(E),

Dψ(f) = Dψ(
N∑
i=1

l2ki ) =
N∑
i=1

Dψ(l2ki ) = (2k)!
(k+1)!

N∑
i=1

Dψ(lk−1
i )lk+1

i .

This shows that apk−1
f (Sk−1(E)) is contained in〈Z〉k+1. It remains to check

thatσω,f (Dψ(f), g) = 0 for anyψ ∈ Sk−1(E), g ∈ Sk+1(E∨), ω ∈
∧2

E.
Choose coordinatest0, . . . , tn in E∨ and the dual coordinatesξ0, . . . , ξn in E.
The space

∧2
E is spanned by the formsωij = ξi ∧ ξj . We have

{Dψ(f), g}ωij = Dξi(Dψ(f))Dξj (g)−Dξj (Dψ(f))Dξi(g)

= Dξiψ(f)Dξj
(g)−Dξjψ(f)Dξi

(g) = Dψξi
(f)Dξj

(g)−Dψξj
(f)Dξi

(g).

For anyg, h ∈ Sk(E∨),

Ω∨f (g, h) = 〈Ω−1
f (g), h〉.

Thus

σωij ,f (Dψ(f), g) = Ω∨f (Dψξi(f), Dξj (g))− Ω∨f (Dψξj (f), Dξi(g))

= 〈ψξi, Dξj
(g)〉−〈ψξj , Dξi

(g)〉 = Dψ(Dξiξj
(g)−Dξjξi

(g)) = Dψ(0) = 0.

Since apk−1
f (E) is contained in the radical ofσω,f , we have the induced

skew-symmetric form onSk+1(E∨)/apk−1
f (E). By Lemma1.3.1,

Sk+1(E∨)/apk−1
f (E) = APk+1(f)∨.

If no confusion arises we denote the induced form byσω,f and call it the
Mukai’s skew-form.
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One can also consider the collection of the Mulai skew-formsσω,f as a
linear map

σf :
2∧
E →

2∧
APk+1(f), ω 7→ σω,f ,

or, its transpose

tσf :
2∧

APk+1(f)∨ →
2∧
E∨. (1.73)

Let Z = {[l1], . . . , [ls]} ∈ VSP(f, s)o be a polars-hedron of a nonde-
generate formf ∈ S2k(E∨) and, as before, let〈Z〉k+1 be the linear span of
(k + 1)-th powers of the linear formsli. Let

L(Z) = 〈Z〉k+1/apk−1
f (Sk−1(E)). (1.74)

It is a subspace ofSk+1(E∨)/apk−1
f (Sk−1(E)) which we identify with the

dual space APk+1(f)∨ of APk+1(f).
Now observe that〈Z〉⊥k+1 is equal toIZ(k + 1), where we identifyZ with

the reduced closed subscheme of the dual projective spaceP(E). This allows
one to extend the definition ofL(Z) to any generalized polars-hedronZ ∈
VSP(f ; s):

L(Z) = IZ(k + 1)⊥/apk−1
f (Sk−1(E)) ⊂ Sk+1(E∨)/apk−1

f (Sk−1(E)).

Proposition 1.4.4 Letf be a nondegenerate homogeneous form of degree2k
of Waring rank equal toNk =

(
n+k
k

)
. LetZ,Z ′ ∈ VSP(f,Nk). Then

L(Z) = L(Z ′)⇐⇒ Z = Z ′.

Proof It is enough to show that

IZ(k + 1) = IZ′(k + 1) =⇒ Z = Z ′.

SupposeZ 6= Z ′. Choose a subschemeZ0 of Z of lengthNk − 1 which
is not a subscheme ofZ ′. Sincedim IZ0(k) ≥ dimSk(E∨) − h0(OZ) =(
n+k
k

)
− Nk + 1 = 1, we can find a nonzeroψ ∈ IZ0(k). The sheafIZ/IZ0

is concentrated at one pointx and is annihilated by the maximal idealmx.
ThusmxIZ0 ⊂ IZ . Let ξ ∈ E be a linear form onE∨ vanishing atx but
not vanishing at any proper closed subscheme ofZ ′. This implies thatξψ ∈
IZ(k + 1) = IZ′(k + 1) and henceψ ∈ IZ′(k) ⊂ APk(f) contradicting the
nondegeneracy off .
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Lemma 1.4.5 Let f ∈ S2k(E∨) be a nondegenerate form of Waring rank
Nk =

(
k+n
n

)
. For anyZ ∈ VSP(f,Nk)o,

dimL(Z) =
(
n+k−1
n−1

)
.

Proof Counting constants, we see that

dim〈Z〉k+1 ≥ dimSk+1(E)−Nk,

hence

dimL(Z) = dim〈Z〉⊥k+1−dim apk−1
f (Sk−1(E)) ≤ Nk−

(
n+k−1
n

)
=
(
n+k−1
n−1

)
.

We have to consider the exceptional cases where wrk(f) = rankΩf . The as-
sertion is obvious in the casek = 1. The spaceL(Z) is of expected dimension
unlessl21, . . . , l

2
n+1 are linearly dependent. This implies thatf is a quadratic

form of rank less thann+ 1, contradicting the assumption.
Assumen = 2, k = 2 anddimL(Z) > 3, or, equivalently,dim〈Z〉3 > 4.

Since AP2(f) = {0}, there are no conics passing throughZ. In particular,
no four points are collinear. LetC be a conic through the points[l1], . . . , [l5]
and letx1, x2 be two additional points onC such that each irreducible com-
ponent ofC contains at least four points. Sincedim〈Z〉3 > 4, we can find
a 2-dimensional linear system of cubics through[l1], . . . , [l5], x1, x2. By Be-
zout’s Theorem,C belongs to the fixed part of the linear system. The residual
part is a 2-dimensional linear system of lines through[l6], an obvious contra-
diction.

Similar arguments check the assertion in the casesn = 2, k = 3, 4. In the
remaining casen = 3, k = 2, we argue as follows. We haveN2 = 10. Assume
L(Z) < 6, or, equivalently,dim〈Z〉3 > 10. Since AP2(f) = {0}, no 4 lines
are collinear (otherwise we pass a quadric through 3 points on the line and the
remaining 6 points, it will contain all ten points). Choose three non-collinear
points p1, p2, p3 among the ten points and two general points on each line
pi, pj and one general point in the plane containing the three points. Then we
can find a 3-dimensional linear system of cubics in|〈Z〉3| passing through the
additional 7 points. It contains the plane throughp1, p2, p3. The residual linear
system consists of quadrics through the remaining 7 points inZ. Since no four
lines are collinear, it is easy to see that the dimension of the linear system
of quadrics through 7 points is of dimension 2. This contradiction proves the
assertion.

Corollary 1.4.6 Let f ∈ S2k(E∨) be a nondegenerate form of Waring rank
Nk =

(
n+k
n

)
. Let VSP(f,Nk)o be the variety of polar polyhedra off . Then
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the mapZ 7→ L(Z) is an injective map

VSP(f,Nk)o → G(
(
n+k−1
n−1

)
,APk+1(f)∨).

Its image is contained in the subvariety of subspaces isotropic with respect to
all Mukai’s skew formsσω,f onAPk+1(f)∨.

Example1.4.4 Assumen = 2. Then wrk(f) = rank Ωf =
(
k+2
2

)
if and

only if k = 1, 2, 3, 4. In these cases the Corollary applies. We will consider the
casesk = 1 andk = 2 later. If k = 3, we obtain that VSP(f, 10)o embeds in
G(4, 9). Its closure is a K3 surface [441], [496]. If k = 4, VSP(f, 15)o embeds
in G(5, 15). It consists of 16 points [496].

1.4.5 Harmonic polynomials

Let q ∈ S2(E∨) be a nondegenerate quadratic form onE. For convenience of
notation, we identifyq with the apolarity map ap1q : E → E∨. By the universal
property of the symmetric power, the isomorphismq : E → E∨ extends to a
linear isomorphismSk(q) : Sk(E) → Sk(E∨) which defines a symmetric
nondegenerate pairing

( , )k : Sk(E)× Sk(E)→ C. (1.75)

It is easy to check that, for anyξ ∈ Sk(E) andv ∈ E,

(ξ, vk) = k!ξ(lkv),

wherelv ∈ E∨ is the linear function ap1q(v).
Let us compare the pairing1.75with the pairingΩqk from (1.70). Choose

a basisη0, . . . , ηn in E and the dual basist0, . . . , tn in E∨ such thatq =
1
2 (
∑
t2i ) so thatq(ηi) = ti. Then

Sk(q)(ηi) = ti.

However,

apkqk(ηi) = k!ti + qg,

for someg ∈ Sk−2(E∨). Thus

(Sk(q)− 1
k!

apkqk)(Sk(E)) ⊂ qSk−2(E∨)⊥.

Let

Hkq (E) = (qSk−2(E∨))⊥ ⊂ Sk(E)
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be the subspace ofq-harmonic symmetric tensors. In more convenient lan-
guage, exchanging the roles ofE andE∨, and replacingq with the dual form
q∨ ∈ S2(E), we have

Hkq (E∨) = Ker(Dq∨ : Sk(E∨)→ Sk−2(E∨)).

In the previous choice of coordinates, the operatorDq∨ is theLaplace opera-

tor 1
2

∑
∂2

∂t2i
. Restricting apkqk to the subspaceHkq (E), we obtain a nondegen-

erate symmetric pairing

Hkq (E)×Hkq (E)→ C

which coincides with the restriction of1k!Ωqk to the same subspace. Changing
E toE∨, we also obtain a symmetric nondegenerate pairing

Hkq (E∨)×Hkq (E∨)→ C

which can be defined either by the restriction of the pairing (1.75) or by the
quadratic form1

k!Ω(q∨)k . Note that all these pairings are equivariant with re-
spect to the orthogonal group O(E, q), i.e. can be considered as pairings of the
linear representations of O(E, q). We have the direct sum decomposition of
linear representations

Sk(E) = Hkq (E)⊕ q∨Sk−2(E). (1.76)

The summandq∨Sk−2(E) coincides with apk−1
q∨ (Sk−2(E)). The linear repre-

sentationHkq (E) is an irreducible representation of O(E, q) (see [278]).
Next let us see that, in the case whenf is a power of a nondegenerate

quadratic polynomial, the Mukai form coincides, up to a scalar multiple, with
the skew form on the space of harmonic polynomials studied by N. Hitchin in
[330] and [331].

The Lie algebrao(E, q) of the orthogonal group O(E, q) is equal to the Lie
subalgebra of the Lie algebragl(E) of endomorphisms ofE which consists of
operatorsA : E → E such that the compositionA ◦ q−1 : E∨ → E → E

is equal to the negative of its transpose. This defines a linear isomorphism of
vector spaces

2∧
E∨ → o(E, q), ω 7→ ω̃ = q−1 ◦ ω : E → E∨ → E.

Now, takingω ∈
∧2

E∨, and identifyingSk+1(E∨)/apk−1
qk (Sk−1(E)) with

Hk+1
q (E∨), we obtain the Mukai pairing

σω,qk : Hk+1
q (E∨)×Hk+1

q (E∨)→ C

on the space of harmonick + 1-forms onE.
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Proposition 1.4.7 For anyg, h ∈ Hk+1
q (E∨) and anyω ∈

∧2
E∨,

σω,qk(g, h) =
(k + 1)2

k!
(ω̃ · g, h)k+1,

where(, )k+1 : Sk+1(E∨)×Sk+1(E∨)→ C is the symmetric pairing defined
bySk+1(q−1).

Proof It is known that the spaceHk+1
q (E∨) is spanned by the formsq(v)k+1,

wherev is an isotropic vector forq, i.e. [v] ∈ V (q) (see [278], Proposition
5.2.6). So, it is suffices to check the assertion wheng = q(v)k+1 andh =
q(w)k+1 for some isotropic vectorsv, w ∈ E. Choose a basis(ξ0, . . . , ξn) in
E and the dual basist0, . . . , tn in E∨ as in the beginning of this subsection.
An elementu ∈ o(E, q) can be written in the form

∑
aijti

∂
∂tj

for some skew-

symmetric matrix(aij). We identify(aij) with the skew 2-formω ∈
∧2

E. We
can also writeg = (α · t)k+1 andh = (β · t)k+1, where we use the dot-product
notation for the sums

∑
αiti. We have

(u·g, h)k+1 = (k+1)!
`X

aijti
∂

∂tj
(α·t)k+1´

(β) = (k+1)!(k+1)(α·β)kω(α·t, β·t).

The computations from the proof of Theorem1.4.3, show that

σω,qk(g, h) = Ω∨qk((α · t)k, (β · t)k)ω(α · t, β · t).

It is easy to see thatΩ∨qk coincides withΩ(q∨)k on the subspace of harmonic
polynomials. We have

Ω(q∨)k

(
(α · t)k, (β · t)k

)
= D(α·t)k( 1

2

∑
ξ2i )

k((β · t)k)

= k!Dα·ξ)k(β · t)k) = (k!)2(α · β)k.

This checks the assertion.

Computing the catalecticant matrix ofqk we find thatqk is a nondegenerate
form of degree2k. Applying Corollary1.4.6, we obtain that in the cases listed
in Corollary1.3.11, there is an injective map

VSP(qk,
(
n+k
n

)
)→ G(

(
n+k−1
n−1

)
,Hk+1

q (E∨)). (1.77)

Its image is contained in the subvariety of subspaces isotropic with respect to
the skew-symmetric forms(g, h) 7→ (u · g, k)k+1, u ∈ o(E, q).

The following Proposition gives a basis in the space of harmonic polynomi-
als (see [428]). We assume that(E, q) = (Cn+1, 1

2

∑
t2i ).
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Proposition 1.4.8 For any set of non-negative integers(b0, . . . , bn) such that
bi ≤ 1 and

∑
bi = k, let

Hk
b0,...,bn

=
∑

(−1)[a0/2]
k![a0/2]!∏n

i=0 ai!
∏n
i=1(

bi−ai

2 )!

n∏
i=0

tai
i ,

where the summation is taken over the set of all sequences of non-negative
integers(a0, . . . , an) such that

• ai ≡ bi mod 2, i = 0, . . . , n,
•
∑n
i=0 ai = k,

• ai ≤ bi, i = 1, . . . , n.

Then the polynomialsHk
b0,...,bn

form a basis of the spaceHkq (Cn+1).

For any polynomialf ∈ C[t0, . . . , tn] one can find the projectionHf to
the subspace of harmonic polynomials. The following formula is taken from
[641].

Hf = f−
[k/2]∑
s=1

(−1)s+1 qs∆sf

2ss!(n− 3 + 2k)(n− 5 + 2k) · · · (n− 2s− 1 + 2k)
,

(1.78)
where∆ =

∑
∂2

∂t2i
is the Laplace operator.

Example1.4.5 Let n = 2 so thatdimE = 3. The space of harmonic poly-
nomialsHkq (E∨) is of dimension

(
k+2
2

)
−
(
k
2

)
= 2k + 1. Since the dimen-

sion is odd, the skew formσω,qk is degenerate. It follows from Proposition
1.4.7that its radical is equal to the subspace of harmonic polynomialsg such
that ω̃ · g = 0 (recall thatω̃ denotes the element ofo(E, q) corresponding to
ω ∈

∧2
E). In coordinates, a vectoru = (u0, u1, u2) ∈ C3 corresponds to the

skew-symmetric matrix  0 u0 u1

−u0 0 u2

−u1 −u2 0


representing an endomorphism ofE, or an element of

∧2
E. The Lie bracket

is the cross-product of vectors. The action of a vectoru on f ∈ C[t0, t1, t2] is
given by

u · f =
2∑

i,j,k=0

εijktiuj
∂f

∂tk
,

whereεi,j,k = 0 is totally skew-symmetic with values equal to0, 1,−1.
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For anyv ∈ E, let us consider the linear formlv = q(v) ∈ E∨. We know
thatq(v)k ∈ Hkq (E∨) if [v] ∈ V (q). If [v] 6∈ V (q), then we can consider the
projectionfv of (lv)k toH(E∨). By (1.78), we get

fv = lkv +
[k/2]∑
s=1

(−1)s
k(k − 1) · · · (k − 2s+ 1)

2ss!(2k − 1) · · · (2k − 2s+ 1)
q(v)sqslk−2s

v . (1.79)

We have

u · lv = lu×v.

Sincef 7→ u · f is a derivation of Sym(E∨) andu · q = 0, we obtain

u ·fv = lu×v
`
klk−1
v +

[k/2]X
s=1

(−1)s
k(k − 1) · · · (k − 2s + 1)(k − 2s)q(v)slk−2s−2

v

2ss!(2k − 1) · · · (2k − 2s + 1)

´
.

(1.80)

This implies that the harmonic polynomialfu satisfiesu · fu = 0 and hence
belongs to the radical of the skew formσu,qk . The Lie algebraso(3) is iso-
morphic to the Lie algebrasl(2) and its irreducible representation on the space
of degreek harmonic polynomials is isomorphic to the representation ofsl(2)
on the space of binary forms of degree2k. It is easy to see that the space of
binary forms invariant under a non-zero element ofsl(2) is one-dimensional.
This implies that the harmonic polynomialfu spans the radical ofσu,qk on
Hkq (E∨).

Let f ∈ Hk(E∨) be a non-zero harmonic polynomial of degreek. The
orthogonal complementf⊥ of f with respect to( , )k : Hkq (E∨)×Hkq (E∨)→
C is of dimension2k. The restriction of the skew-symmetric formσu,qk to f⊥

is degenerate if and only iffu ∈ f⊥, i.e. (fu, f)k = (lku, f) = f(u) = 0.
Here we used that the decomposition (1.76) is an orthogonal decomposition
with respect to( , )k. Let Pf be the pfaffian of the skew formσu,qk on f⊥. It
is equal to zero if and only if the form is degenerate. By the above, it occurs if
and only iff(u) = 0. Comparing the degrees, this gives

V (f) = V (Pf).

So, every harmonic polynomial can be expressed in a canonical way as a pfaf-
fian of a skew-symmetric matrix with entries linear forms, a result due to N.
Hitchin [332].
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1.5 First examples

1.5.1 Binary forms

Let U be a 2-dimensional linear space andf ∈ Sd(U∨) \ {0}. The hypersur-
faceX = V (f) can be identified with a positive divisor div(f) =

∑
mixi

of degreed on |U | ∼= P1. Since
∧2

U ∼= C, we have a natural isomorphism
U → U∨ of linear representations of SL(U). It defines a natural isomorphism
between the projective line|U | and its dual projective lineP(U). In coordi-
nates, a pointa = [a0, a1] is mapped to the hyperplaneV (a1t0 − a0t1) whose
zero set is equal to the pointa. If X is reduced (i.e.f has no multiple roots),
then, under the identification of|U | andP(U), X coincides with its dualX∨.
In general,X∨ consists of simple roots off . Note that this is consistent with
the Pl̈uckeri-Teissier formula. The degrees of the Hessian and the Steinerian
coincide, although they are different ifd > 3. Assume thatX is reduced. The
partial derivatives off define the polar mapg : |U | → |U | of degreed − 1.
The ramification divisor He(X) consists of2d − 2 points and it is mapped
bijectively onto the branch divisor St(X).

Example1.5.1 We leave the cased = 2 to the reader. Consider the case
d = 3. In coordinates

f = a0t
3
0 + 3a1t

2
0t1 + 3a2t0t

2
1 + a3t

3
1.

All invariants are powers of thediscriminant invariant

∆ = a2
0a

2
3 + 4a0a

3
2 + 4a3

1a3 − 6a0a1a2a3 − 3a2
1a

2
2. (1.81)

whose symbolic expression is(12)2(13)(24)(34)2 (see [631], p. 244).

H = (a0a2 − a2
1)t

2
0 + (a0a3 − a1a2)t0t1 + (a1a3 − a2

2)t
2
1.

Its symbolic expression is(ab)axby. There is also a cubic covariant

J = J(f,H) = det


t30 3t20t1 3t0t21 t31
a2 −2a1 a0 0
a3 −a2 −a1 a0

0 −a3 −2a2 a1


with symbolic expression(ab)2(ac)2bxc2x. The covariantsf,H andJ form a
complete system of covariants, i.e. generate the module of covariants over the
algebra of invariants.

Example1.5.2 Consider the cased = 4. In coordinates,

f = a0t
4
0 + 4a1t

3
0t1 + 6a2t

2
0t

2
1 + 4a3t0t

3
1 + a4t

4
1.
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There are two basic invariantsS andT on the space of quartic binary forms.
Their symbolic expression areS = (12)4 andT = (12)2(13)2(23)2. Explic-
itly,

S = a0a4 − 4a1a3 + 3a2
2, (1.82)

T = a0a2a4 + 2a1a2a3 − a0a
2
3 − a2

1a4 − a3
2.

Note thatT coincides with the determinant of the catalecticant matrix off .
Each invariant is a polynomial inS andT . For example, the discriminant in-
variant is equal to

∆ = S3 − 27T 2.

The Hessian He(X) = V (H) and the SteinerianS(X) = V (K) are both of
degree 4. We have

H = (a0a2 − a2
1)t

4
0 + 2(a0a3 − a1a2)t30t1 + (a0a4 + 2a1a3 − 3a2

2)t
2
0t

2
1

+2(a1a4 − a2a3)t0t31 + (a2a4 − a2
3)t

4
1.

and

K = ∆((a0t0+a1t1)x
3+3(a1t0+a2t1)x

2y+3(a2t0+a3t1)xy2+(a3t0+a4t1)y
3).

Observe that the coefficients ofH (resp.K) are of degree 2 (resp. 4) in
coefficients off . There is also a covariantJ = J(f,H) of degree6 and
the module of covariants is generated byf,H, J over C[S, T ]. In particular,
K = αTf + βSH, for some constantsα andβ. By takingf in the form

f = t40 + 6mt20t
2
1 + t41, (1.83)

and comparing the coefficients we find

2K = −3Tf + 2SH. (1.84)

Under identification|U | = P(U), a generalizedk-hedronZ of f ∈ Sd(U∨)
is the zero divisor of a formg ∈ Sk(U) which is apolar tof . Since

H1(|E|, IZ(d)) ∼= H1(P1,OP1(d− k)) = 0, k ≥ d+ 1,

anyZ is automatically linearly independent. Identifying a point[g] ∈ |Sk(U)|
with the zero divisor div(g), we obtain

Theorem 1.5.1 Assumen = 1. Then

VSP(f ; k) = |APk(f)|.
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Note that the kernel of the map

Sk(U)→ Sd−k(U∨), ψ 7→ Dψ(f)

is of dimension≥ dimSk(U)−dimSd−k(U∨) = k+1−(d−k+1) = 2k−d.
ThusDψ(f) = 0 for some nonzeroψ ∈ Sk(U), whenever2k > d. This shows
thatf has always generalized polark-hedron fork > d/2. If d is even, a binary
form has an apolard/2-form if and only ifdet Catd/2(f) = 0. This is a divisor
in the space of all binaryd-forms.

Example1.5.3 Taked = 3. Assume thatf admits a polar 2-hedron . Then

f = (a1t0 + b1t1)3 + (a2t0 + b2t1)3.

It is clear thatf has 3 distinct roots. Thus, iff = (a1t0 + b1t1)2(a2t0 + b2t1)
has a double root, it does not admit a polar2-hedron. However, it admits a
generalized2-hedron defined by the divisor2p, wherep = (b1,−a1). In the
secant variety interpretation, we know that any point in|S3(E∨)| either lies
on a unique secant or on a unique tangent line of the rational cubic curve. The
space AP2(f) is always one-dimensional. It is generated either by a binary
quadric(−b1ξ0 + a1ξ1)(−b2ξ0 + a2ξ1), or by(−b1ξ0 + a1ξ1)2.

Thus VSP(f, 2)o consists of one point or empty but VSP(f, 2) always con-
sists of one point. This example shows that VSP(f, 2) 6= VSP(f, 2)

o
in gen-

eral.

1.5.2 Quadrics

It follows from Example1.3.3that Sect(Vn2 ) 6= |S2(E∨)| if and only if there
exists a quadric witht+1 singular points in general position. Since the singular
locus of a quadricV (q) is a linear subspace of dimension equal to corank(q)−
1, we obtain that Secn(Vn2 ) = |S2(E∨)|, hence any general quadratic form can
be written as a sum ofn+1 squares of linear formsl0, . . . , ln. Of course, linear
algebra gives more. Any quadratic form of rankn+1 can be reduced to sum of
squares of the coordinate functions. Assume thatq = t20+· · ·+t2n. Suppose we
also haveq = l20 + · · · + l2n. Then the linear transformationti 7→ li preserves
q and hence is an orthogonal transformation. Since polar polyhedra ofq and
λq are the same, we see that the projective orthogonal group PO(n + 1) acts
transitively on the set VSP(f, n+1)o of polar(n+1)-hedra ofq. The stabilizer
groupG of the coordinate polar polyhedron is generated by permutations of
coordinates and diagonal orthogonal matrices. It is isomorphic to the semi-
direct product2n o Sn+1 (the Weyl group of root systems of typesBn, Dn),
where we use the notation2n for the 2-elementary abelian group(Z/2Z)n.
Thus we obtain
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Theorem 1.5.2 Let q be a quadratic form inn + 1 variables of rankn + 1.
Then

VSP(q, n+ 1)o ∼= PO(n+ 1)/2n o Sn+1.

The dimension ofVSP(q, n+ 1)o is equal to1
2n(n+ 1).

Example1.5.4 Taken = 1. Using the Veronese mapν2 : P1 → P2, we
consider a nonsingular quadricQ = V (q) as a pointp in P2 not lying on the
conicC = V (t0t2 − t21). A polar 2-gon ofq is a pair of distinct pointsp1, p2

on C such thatp ∈ 〈p1, p2〉. The set of polar2-gons can be identified with
the pencil of lines throughp with the two tangent lines toC deleted. Thus
W (q, 2)o = P1 \ {0,∞} = C∗. There are two generalized 2-gons2p0 and
2p∞ defined by the tangent lines. Each of them gives the representation ofq as
l1l2, whereV (li) are the tangents. We have VSP(f, 2) = VSP(f, 2)

o ∼= P1.

Let q ∈ S2(E∨) be a nondegenerate quadratic form. We have an injective
map (1.77)

VSP(q, n+ 1)o → G(n,H2
q(E)) ∼= G(n,

(
n+2

2

)
− 1). (1.85)

Its image is contained in the subvarietyG(n,H2
q(E))σ of subspaces isotropic

with respect to the Mukai skew forms.
Recall that the Grassmann varietyG(m,W ) of linearm-dimensional sub-

spaces of a linear spaceW of dimensionN carries the natural rankn vector
bundleS, theuniversal subbundle. Its fibre over a pointL ∈ G(m,W ) is equal
to L. It is a subbundle of the trivial bundleWG(m,W ) associated to the vector
spaceW . We have a natural exact sequence

0→ S →WG(m,W ) → Q→ 0,

whereQ is theuniversal quotient bundle, whose fibre overL is equal toW/L.
By restriction, we can view the Mukai formσq :

∧2
E →

∧2H2
q(E

∨) as a

section of the vector bundle
∧2 S∨ ⊗

∧2
E∨. The image of VSP(q, n + 1) is

contained in the zero locus of a section of this bundle defined byσq. Since the
rank of the vector bundle is equal to

(
n
2

)(
n+1

2

)
, we expect that the dimension

of its zero locus is equal to

dimG(n,
(
n+2

2

)
− 1)−

(
n

2

)(
n+ 1

2

)
= n(

(
n+2

2

)
− 1−n)−

(
n

2

)(
n+ 1

2

)
.

Unfortunately, this number is≤ 0 for n > 2, so the expected dimension is
wrong. However, whenn = 2, we obtain that the expected dimension is equal
to3 = dim VSP(q, 3). We can viewσω,q as a hyperplane in the Plücker embed-
ding ofG(2,H2

q(E)) ∼= G(2, 5). So, VSP(q, 3) embeds into the intersection
of 3 hyperplane sections ofG(2, 5).
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Theorem 1.5.3 Letq be a nondegenerate quadratic form on a 3-dimensional
vector spaceE. Then the image ofVSP(q, 3) in G(2,H2

q(E)), embedded in
the Pl̈ucker space, is a smooth irreducible 3-fold equal to the intersection of
G(2,H2

q(E)) with a linear space of codimension 3.

Proof We havedimH2
q(E) = 5, soG(2,H2

q(E)) ∼= G(2, 5) is of dimension

6. Hyperplanes in the Plücker space are elements of the space|
∧2H2

q(E)∨|.
Note that the functionssq,ω are linearly independent. In fact, a basisξ0, ξ1, ξ2
in E gives a basisω01 = ξ0 ∧ ξ1, ω02 = ξ0 ∧ ξ2, ω12 = ξ1 ∧ ξ2 in

∧2
E.

Thus the space of sectionssq,ω is spanned by 3 sectionss01, s02, s12 corre-
sponding to the formsωij . Without loss of generality, we may assume that
q = t20 + t21 + t22. If we takea = t0t1 + t22, b = −t20 + t21 + t22, we see
that s01(a, b) 6= 0, s12(a, b) = 0, s02(a, b) = 0. Thus a linear dependence
between the functionssij implies the linear dependence between two func-
tions. It is easy to see that no two functions are proportional. So our 3 func-
tions sij , 0 ≤ i < j ≤ 2 span a 3-dimensional subspace of

∧2H2
q(E

∨)
and hence define a codimension 3 projective subspaceL in the Pl̈ucker space
|
∧2H2

q(E)|. The image of VSP(q, 3) under the map (1.85) is contained in the
intersectionG(2, E) ∩ L. This is a 3-dimensional subvariety ofG(2,H2

q(E)),
and hence containsµ(VSP(q, 3)) as an irreducible component. We skip an ar-
gument, based on counting constants, which proves that the subspaceL be-
longs to an open Zariski subset of codimension 3 subspaces of

∧2H2
q(E)

for which the intersectionL ∩ G(2,H2
q(E)) is smooth and irreducible (see

[200]).

It follows from the adjunction formula and the known degree ofG(2, 5) that
the closure of VSP(q, 3)o in G(2,H2

q(E)) is a smooth Fano variety of degree
5. We will discuss it again in the next chapter.

Remark1.5.1 One can also consider the varieties VSP(q, s) for s > n + 1.
For example, we have

t20 − t22 = 1
2 (t0 + t1)2 + 1

2 (t0 − t1)2 − 1
2 (t1 + t2)2 − 1

2 (t21 − t2)2,
t20 + t21 + t22 = (t0 + t2)2 + (t0 + t1)2 + (t1 + t2)2 − (t0 + t1 + t2)2.

This shows that VSP(q, n + 2),VSP(q, n + 3) are not empty for any nonde-
generate quadricQ in Pn, n ≥ 2.
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Exercises

1.1 SupposeX is a plane curve andx ∈ X is its ordinary double point. Show that
the pair consisting of the tangent line ofPa(X) at x and the lineax is harmonically
conjugate (see section2.1.2) to the pair of tangents to the branches ofX at x in the
pencil of lines throughx. If x is an ordinary cusp, then show that the polar line of
Pa(X) atx is equal to the cuspidal tangent ofX atx.

1.2 Show that a line contained in a hypersurfaceX belongs to all polars ofX with
respect to any point on this line.

1.3 Find the multiplicity of the intersection of a plane curveC with its Hessian at an
ordinary double point and at an ordinary cusp ofC. Show that the Hessian has a triple
point at the cusp.

1.4 Suppose a hypersurfaceX in Pn has a singular pointx of multiplicity m > 1.
Prove that He(X) has this point as a point of multiplicity≥ (n + 1)m− 2n.

1.5 Suppose a hyperplane is tangent to a hypersurfaceX along a closed subvarietyY
of codimension 1. Show thatY is contained in He(X).

1.6 Supposef is the product ofd distinct linear formsli(t0, . . . , tn). Let A be the
matrix of size(n+1)×d whosei-th column is formed by the coefficients ofli (defined,
of course up to proportionality). Let∆I be the maximal minor ofA corresponding to a
subsetI of [1, . . . , d] andfI be the product of linear formsli, i 6∈ I. Show that

He(f) = (−1)n(d− 1)fn−1
X
I

∆2
If

2
I .

([437], p. 660).

1.7 Find an example of a reduced hypersurface whose Hessian surface is nowhere re-
duced.

1.8Show that the locus of the points on the plane where the first polars of a plane curve
X are tangent to each other is the Hessian ofX and the set of common tangents is the
Cayleyan curve .

1.9 Show that each inflection tangent of a plane curveX, considered as a point in the
dual plane, lies on the Cayleyan ofX.

1.10Show that the class of the Steinerian St(X) of a plane curveX of degreed is equal
to 3(d− 1)(d− 2) but its dual is not equal to Cay(X).

1.11Let Dm,n ⊂ Pmn−1 be the image in the projective space of the variety ofm× n
matrices of rank≤ min{m, n} − 1. Show that the variety

D̃m,n = {(A, x) ∈ Pmn−1 × Pn : A · x = 0}

is a resolution of singularities ofDm,n. Find the dual variety ofDm,n. 1.12Find the

dual variety of the Segre varietys(Pn × Pn) ⊂ Pn
2+2n.

1.13Let X be the union ofk nonsingular conics in general position. Show thatX∨ is
also the union ofk nonsingular conics in general position.

1.14LetX has onlyδ ordinary nodes andκ ordinary cusps as singularities. Assume that
the dual curveX∨ has also only̌δ ordinary nodes anďκ ordinary cusps as singularities.
Find δ̌ andκ̌ in terms ofd, δ, κ.

1.15Give an example of a self-dual (i.e.X∨ ∼= X) plane curve of degree> 2.
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1.16Show that the Jacobian of a net of plane curves has a double point at each simple
base point unless the net contains a curve with a triple point at the base point [235].

1.17Let |L| be a generaln-dimensional linear system of quadrics inPn and|L|⊥ be
the(

`
n+2

2

´
− n − 2)-dimensional subspace of apolar quadric in the dual space. Show

that the variety of reducible quadrics in|L|⊥ is isomorphic to the Reye variety of|L|
and has the same degree.

1.18Show that the embedded tangent space of the Veronese varietyVnd at a point repre-
sented by the formld is equal to the projectivization of the linear space of homogeneous
polynomials of degreed of the formld−1m.

1.19Using the following steps, show thatV4
3 is6-defective by proving that for 7 general

pointspi in P4 there is a cubic hypersurface with singular points at thepi’s.

(i) Show that there exists a Veronese curveR4 of degree 4 through the seven points.
(ii) Show that the secant variety ofR4 is a cubic hypersurface which is singular

alongR4.

1.20Let q be a nondegenerate quadratic form inn+1 variables. Show that VSP(q, n+
1)o embedded inG(n, E) is contained in the linear subspace of codimensionn.

1.21 Compute the catalecticant matrix Cat2(f), wheref is a homogeneous form of
degree 4 in 3 variables.

1.22Let f ∈ S2k(E∨) andΩf be the corresponding quadratic form onSk(E). Show
that the quadricV (Ωf ) in |Sk(E)| is characterized by the following two properties:

• Its preimage under the Veronese mapνk : |E| → |Sk(E)| is equal toV (f);
• Ωf is apolar to any quadric in|Sk(E∨)| which contains the image of the Veronese

map|E∨| = P(E) → |Sk(E∨)| = |P(Sk(E))|.

1.23Let Ck be the locus in|S2k(E∨)| of hypersurfacesV (f) such thatdet Catk(f) =
0. Show thatCk is a rational variety. [Hint: Consider the rational mapCk 99K |E|)
which assigns toV (f) the point defined by the subspace APk(f) and study its fibres].

1.24Give an example of a polar 4-gon of the cubict0t1t2 = 0.

1.25Find all binary forms of degreed for which VSP(f, 2)o = ∅.

1.26Let f be a form of degreed in n + 1 variables. Show that VSP(f,
`
n+d
d

´
)o is an

irreducible variety of dimensionn
`
n+d
d

´
.

1.27Describe the variety VSP(f, 4), wheref is a nondegenerate quadratic form in 3
variables.

1.28 Show that a smooth pointy of a hypersurfaceX belongs to the intersection of
the polar hypersurfacesPx(X) andPx2(X) if and only if the line connectingx andy
intersectsX at the pointy with multiplicity ≥ 3.

1.29Show that the vertices of two polar tetrahedra of a nonsingular quadric inP3 are
base points of a net of quadrics. Conversely, the set of 8 base points of a general net of
quadrics can be divided in any way into two sets, each of two sets is the set of vertices
of a polar tetrahedron of the same quadric[584].

1.30Suppose two cubic plane curvesV (f) andV (g) admit a common polar pentagon.
Show that the determinant of the6× 6-matrix [Cat1(f)Cat1(g)] vanishes [246].
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Historical Notes

Although some aspects of the theory of polarity for conics were known to
mathematicians of Ancient Greece, the theory originates in projective geom-
etry, in the works of G. Desargues, G. Monge and J. Poncelet. For Desargues
the polar of a conic was a generalization of the diameter of a circle (when
the pole is taken at infinity). He referred to a polar line as a“transversale de
l’ordonnance”. According to the historical accounts found in [235], vol. II, and
[148], p. 60, the name “polaire” was introduced by J. Gergonne. Apparently,
the polars of curves of higher degree appear first in the works of E. Bobilier
[46] and, then with introduction of projective coordinates, in the works of J.
Plücker [488]. They were the first to realize the duality property of polars: if
a pointx belongs to thes-th polar of a pointy with respect to a curve of de-
greed, theny belongs to the(d − s)-th polar ofx with respect to the same
curve. Many properties of polar curves were stated in a purely geometric way
by J. Steiner [590], as was customary for him, with no proofs. Good historical
accounts can be found in [41] and [473], p.279.

The Hessian and the Steinerian curves with their relations to the theory of
polars were first studied by J. Steiner [590] who called themconjugate Kern-
curven. The current name for the Hessian curve was coined by J. Sylvester
[603] in honor of O. Hesse who was the first to study the Hessian of a ternary
cubic [317] under the nameder Determianteof the form. The current name
of the Steinerian curve goes back to G. Salmon [538] and L. Cremona [156].
The Cayleyan curve was introduced by A. Cayley in [75] who called it the
pippiana. The current name was proposed by L. Cremona. Most of the popular
classical text-books in analytic geometry contain an exposition of the polarity
theory (e.g. [125], [235], [538]).

The theory of dual varieties, generalization of Plücker formulae to arbitrary
dimension is still a popular subject of modern algebraic geometry. It is well-
documented in modern literature and for this reason this topic is barely touched
here.

The theory of apolarity was a very popular topic of classical algebraic ge-
ometry. It originates from the works of Rosanes [523] who called apolar forms
of the same degreeconjugate formsand Reye [505]. who introduced the term
“apolar”. The condition of polarityDψ(f) = 0 was viewed as vanishing of the
simultaneous bilinear invariant of a formf of degreed and a formψ of class
d. It was called theharmonizant.. We refer for survey of classical results to
[473] and to a modern exposition of some of these results to [200] which we
followed here.

The Waring problem for homogeneous forms originates from a more gen-
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eral problem of finding a canonical form for a homogeneous form. Sylvester’s
result about reducing a cubic form in four variables to the sum of 5 powers
of linear forms is one of the earliest examples of solution of the Waring prob-
lem. We will discuss this later in the book. F. Palatini was the first who recog-
nized the problem as a problem about the secant variety of the Veronese variety
[465], [466] and as a problem of the existence of envelopes with a given num-
ber of singular points (in less general form the relationship was found earlier
by J. E. Campbell [63]). The Alexander-Hirschowitz Theorem was claimed by
J. Bronowski in 1933, but citing C. Ciliberto [114], he had only a plausibility
argument. The casen = 2 was first established by F. Palatini [466] and the
casen = 3 was solved by A. Terracini [609]. Terracini was the first to rec-
ognize the exceptional case of cubic hypersurfaces inP4 [608]. The original
proof of Terracini’s Lemma can be found in [610]. We also refer to [265] for
a good modern survey of the problem. A good historical account and in depth
theory of the Waring problems and the varieties associated to it can be found
in the book of A. Iarrobino and V. Kanev [347].

The fact that a general plane quintic admits a unique polar 7-gon was first
mentioned by D. Hilbert in his letter to C. Hermite [325]. The proofs were
given later by Palatini [468] and H. Richmond [512],

In earlier editions of his book [539] G. Salmon mistakenly applied counting
constants to assert that three general quadrics inP3 admit a common polar pen-
tahedron. G. Darboux [168] was the fist to show that the counting of constants
is wrong. W. Frahm [246] proved that the net of quadrics generated by three
quadrics with a common polar pentahedron must be a net of polars of a cubic
surface and also has the property that its discriminant curve is a Lüroth quar-
tic, a plane quartic which admits an inscribed pentagon. In [613] E.Toeplitz
(the father of Otto Toeplitz) introduced the invariantΛ of three quadric sur-
faces whose vanishing is necessary and sufficient for the existence of a com-
mon polar pentahedron. The fact that two general plane cubics do not admit a
common polar pentagon was first discovered by F. London [406]. The Waring
Problem continues to attract attention of contemporary mathematicians. Some
references to the modern literature can found in this chapter.
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Conics and quadric surfaces

2.1 Self-polar triangles

2.1.1 Veronese quartic surfaces

Let P2 = |E| and|S2(E∨)| ∼= P5 be the space of conics inP2. Recall, for this
special case, the geometry of theVeronese quartic surfaceV2

2, the image of the
Veronese map

v2 : |E∨| → |S2(E∨)|, [l] 7→ [l2].

If we view S2(E∨) as the dual space ofS2(E), then the Veronese surface pa-
rameterizes hyperplanesHl in S2(E) of conics passing through the point[l] in
the dual plane|E∨|. The Veronese mapv2 is given by the complete linear sys-
tem |O|E∨|(2)| = |S2(E)|. Thus the preimage of a hyperplane in|S2(E∨)| is
a conic in the plane|E∨|. The conic is singular if and only if the hyperplane is
tangent to the Veronese surface. There are two possibilities, either the singular
conicC is the union of two distinct lines (a line-pair), or it is equal to a double
line. In the first case the hyperplane is tangent to the surface at a single point.
The point is the image of the singular point[l] of the conic. In the second case,
the hyperplane is tangent to the Veronese surface along a curveR equal to the
image of the lineCred under the restriction of the Veronese map. It follows
that the curveR is a conic cut out on the Veronese surface by a plane. We see
in this way that thedual variety of the Veronese surfaceis isomorphic to the
discriminant cubic hypersurfaceD2(2) parameterizing singular conics.

The tangent plane to the Veronese surface at a point[l]2 is the intersection
of hyperplanes which cut out a conic in|E∨| with singular point[l]. The plane
of conics in|E| apolar to such conics is the plane of reducible conics with one
component equal to the lineV (l).

Since any quadratic form of rank 2 inE can be written as a sum of quadratic
forms of rank 1, the secant variety Sec1(V2

2) coincides withD2(2). Also, it
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coincides with thetangential varietyTan(V2
2), the union of tangent planes

Tx(V2
2), x ∈ V2

2. It is singular along the Veronese surface.
Choosing a basis inE we can identify the spaceS2(E∨) with the space of

symmetric3 × 3-matrices. The Veronese surfaceV2
2 in |S2(E∨)| is identified

with matrices of rank 1. Its equations are given by2 × 2-minors. The variety
of matrices of rank≤ 2 is the cubic hypersurface whose equation is given by
the determinant.

Let us look at a possible projection ofV2
2 to P4. It is given by a linear sub-

system|V | of |S2(E)|. LetK be the apolar conic to all conics from|V |. It is
a pointo in the dual space|S2(E∨)| equal to the center of the projection. The
conicK could be nonsingular, a line-pair, or a double line. In the first two cases
o 6∈ V2

2. The image of the projection is a quartic surface inP4, called apro-
jected Veronese surface. If K is nonsingular,o does not lie on Sec1(V2

2), hence
the projected Veronese surface is a nonsingular quartic surface inP4 = P(V ).
If K is a line-pair, theno lies on a tangent plane ofV2

2 at some point[l2]. Hence
it lies on the plane spanning a conic contained inV2

2. The restriction of the pro-
jection map to this conic is of degree 2, and its image is a double line on the
projected Veronese surface. Two ramification points are mapped to twopinch
pointsof the surface. Finally,o could be onV2

2. The image of the projection is
a cubic surfaceS in P4. All conics onV2

2 containingo are projected to lines on
S. So,S is a nonsingular cubic scroll inP4 isomorphic to the blow-up ofV2

2,
hence ofP2, at one point. In our future notation for rational normal scrolls (see
8.1.1), it is the scrollS1,4.

Let us now projectV2
2 further toP3. This time, the linear system|V | defining

the projection is of dimension 3. Its apolar linear system is a pencil, a line
` in |S2(E∨)|. Suppose the apolar pencil does not intersectV2

2. In this case
the pencil of conics does not contain a double line, hence contains exactly
three line-pairs. The three line-pairs correspond to the intersection of` with
the cubic hypersurface Sec1(V2

2). As we saw in above, this implies that the
imageS of the projection is a quartic surface with three double lines. These
lines are concurrent. In fact, a pencil of plane sections ofS containing one of
the lines has residual conics singular at the points of intersection with the other
two lines. Since the surface is irreducible, this implies that the other two lines
intersect the first one. Changing the order of the lines, we obtain that each pair
of lines intersect. This is possible only if they are concurrent (otherwise they
are coplanar, and plane containing the lines intersect the quartic surface along
a cubic taken with multiplicity 2).

The projection of a Veronese surface from a line not intersectingV2
2 is called

aSteiner quartic. Choose coordinatest0, t1, t2, t3 such that the equations of the
singular lines aret1 = t2 = 0, t1 = t3 = 0 andt2 = t3 = 0. Then the equation
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of a Steiner surface can be reduced to the formt0t1t2t3 + g4 = 0. By taking
the partial derivatives at the point[1, 0, 0, 0] and general points of the singular
lines, we find thatg4 is a linear combination of the monomialt21t

2
2, t

2
1t

2
3, t

2
2t

2
3.

Finally, by scaling the coordinates, we reduce the equation to the form

t0t1t2t3 + t21t
2
2 + t21t

2
3 + t22t

2
3 = 0. (2.1)

An explicit birational map fromP2 onto the surface is given by

[y0, y1, y2] 7→ [(−y0+y1+y2)2, (y0−y1+y2)2, (y0+y1−y2)2, (y0+y1+y2)2].

Next, we assume that the center of the projection is line` intersectingV2
2.

In this case the image of the projection is a cubic scroll, the projection of
the rational normal scrollS1,4 to P3. There are two possibilities, the pencil
of conics defined bỳ has two singular members, or one singular member, a
double line. This gives two possible cubic scrolls. We will give their equations
in the next Chapter.

ReplacingE with |E∨| we can define the Veronese surface in|S2(E)|, the
image of the plane|E| under the map given by the complete linear system of
conics. We leave to the reader to “dualize” the statements from above.

2.1.2 Polar lines

LetC be a nonsingular conic. For any pointa ∈ P2, the first polarPa(C) is a
line, thepolar line of a. For any line` there exists a unique pointa such that
Pa(C) = l. The pointa is called thepoleof `. The pointa considered as a line
in the dual plane is the polar line of the point` with respect to the dual conic
Č.

Borrowing terminology from the Euclidean geometry, we call three non-
collinear lines inP2 a triangle. The lines themselves will be called thesides
of the triangle. The three intersection points of pairs of sides are called the
verticesof the triangle.

A set of three non-collinear lines̀1, `2, `3 is called aself-polar trianglewith
respect toC if each`i is the polar line ofC with respect to the opposite vertex.
It is easy to see that it suffices that only two sides are polar to the opposite
vertices.

Proposition 2.1.1 Three lines̀ i = V (li) form a self-polar triangle for a
conicC = V (q) if and only if they form a polar triangle ofC.

Proof Let `i ∩ `j = [vij ]. If q = l21 + l22 + l23, thenDvij
(q) = 2lk, where

k 6= i, j. Thus a polar triangle ofC is a self-conjugate triangle. Conversely,
if V (Dvij

(q)) = `k, thenDvikvij
(q) = Dvjkvij

(q) = 0. This shows that
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the conicC is apolar to the linear system of conics spanned by the reducible
conics`i + `j . It coincides with the linear system of conics through the three
points`1, `2, `3 in the dual plane. Applying Proposition1.3.5, we obtain that
the self-conjugate triangle is a polar triangle.

Of course, we can prove the converse by computation. Let

2q = a00t
2
0 + a11t

2
1 + a22t

2
2 + 2a01t0t1 + 2a02t0t2 + 2a12t1t2 = 0.

Choose projective coordinates inP2 such that̀ i = V (ti). Then

P[1,0,0](X) = `1 = V (
∂q

∂t0
) = V (a00t0 + a01t1 + a02t2), (2.2)

P[0,1,0](X) = `2 = V (
∂q

∂t1
) = V (a11t1 + a01t0 + a12t2),

P[0,0,1](X) = `2 = V (
∂q

∂t2
) = V (a22t2 + a02t0 + a12t1)

implies thatq = 1
2 (t20 + t21 + t22).

Remark2.1.1 Similarly one can define a self-polar(n + 1)-hedron of a
quadric inPn and prove that it coincides with its polar(n + 1)-hedron. The
proof of the existence of such(n+1)-hedron was the classical equivalent of the
theorem from linear algebra about reduction of a quadratic form to principal
axes.

Let Q = V (q) andQ′ = V (q′) be two quadrics in a projective spaceP1.
We say thatQ andQ′ areharmonically conjugateif the dual quadric ofQ is
apolar toQ′. In other words, ifDq∨(q′) = 0. In coordinates, if

q = αt20 + 2βt0t1 + γt21, q′ = α′t20 + 2β′t0t1 + γ′t21.

thenq∨ = γη2
0 − 2βη0η1 + αη2

1 , and the condition becomes

−2ββ′ + αγ′ + α′γ = 0. (2.3)

It shows that the relation is symmetric (one can extend it to quadrics in higher-
dimensional spaces but it will not be symmetric).

Of course, a quadric inP1 can be identified with a set of two points inP1, or
one point with multiplicity 2. This leads to the classical definition ofharmoni-
cally conjugate{a, b} and{c, d} in P1.We will see later many other equivalent
definitions of this relation.

Let P1 = |U |, wheredimU = 2. Sincedim
∧2

U = 1, we can identify|E|
with P(E). Explicitly, a point with coordinates[a, b] is identified with a point
[−b, a] in the dual coordinates. Under this identification, the dual quadricq∨
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vanishes at the zeros ofq. Thus, (2.3) is equivalent to the polarity condition

Dcd(q) = Dab(q′) = 0, (2.4)

whereV (q) = {a, b}, V (q′) = {c, d}.

Proposition 2.1.2 Let `1, `2, `3 be a triangle with verticesa = `1 ∩ `2, b =
`1 ∩ `3 andc = `2 ∩ `3. Then the triangle is a self-polar triangle of a conicC
if and only ifa ∈ Pb(C) ∩ Pc(C) and the pairs of pointsC ∩ `3 and(b, c) are
harmonically conjugate.

Proof Consider the pairC ∩ `3 as a quadricq in `3. We havec ∈ Pb(C), thus
Dbc(q) = 0. Restricting tò 3 and using (2.4), we see that the pairsb, c and
C ∩ `3 are harmonically conjugate. Conversely, ifDbc(q) = 0, the polar line
Pb(C) containsa and intersects̀3 at c, hence coincides withac. Similarly,
Pc(C) = ab.

Any triangle inP2 defines the dual triangle in the dual plane(P2)∨. Its sides
are the pencils of lines with the base point of one of the vertices.

Corollary 2.1.3 The dual of a self-polar triangle of a conicC is a self-polar
triangle of the dual coničC.

2.1.3 The variety of self-polar triangles

Here, by more elementary methods, we will discuss a compactification of the
variety VSP(q, 3) of polar triangles of a nondegenerate quadratic form in three
variables.

LetC be a nonsingular conic. The group of projective transformations ofP2

leavingC invariant is isomorphic to the projective complex orthogonal group

PO(3) = O(3)/(±I3) ∼= SO(3).

It is also isomorphic to the group PSL(2) via the Veronese map

ν2 : P1 → P2, [t0, t1] 7→ [t20, t0t1, t
2
1].

Obviously, PO3 acts transitively on the set of self-polar triangles ofC. We may
assume thatC = V (

∑
t2i ). The stabilizer subgroup of the self-polar triangle

defined by the coordinate lines is equal to the subgroup generated by permu-
tation matrices and orthogonal diagonal matrices. It is easy to see that it is
isomorphic to the semi-direct product(Z/2Z)2 o S3

∼= S4. Thus we obtain
the following.
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Theorem 2.1.4 The set of self-polar triangles of a nonsingular conic has a
structure of a homogeneous space SO3/Γ, whereΓ is a finite subgroup iso-
morphic toS4.

A natural compactification of the variety of self-conjugate triangles of a non-
degenerate conicq is the variety VSP(q, 3) which we discussed in the previous
chapter. In Corollary1.5.3, we have shown that it is isomorphic to the intersec-
tion of the GrassmannianG(3, 5) with a linear subspace of codimension 3. Let
us see this construction in another way, independent of the theory developed
in the previous chapter.

Let V2
2 be a Veronese surface inP5. We viewP5 as the projective space of

conics inP2 andV2
2 as its subvariety of double lines. A trisecant plane ofV is

spanned by three linearly independent double lines. A conicC ∈ P5 belongs
to this trisecant if and only if the corresponding three lines form a self-polar
triangle ofC. Thus the set of self-polar triangles ofC can be identified with the
set of trisecant planes of the Veronese surface which containC. The latter will
also includedegenerate self-polar trianglescorresponding to the case when
the trisecant plane is tangent to the Veronese surface at some point. Projecting
fromC to P4 we will identify the set of self-polar triangles (maybe degenerate)
with the set of trisecant lines of the projected Veronese surfaceV4. This is a
closed subvariety of the Grassmann varietyG1(P4) of lines inP4.

LetE be a linear space of odd dimension2k+1 and letG(2, E) := G1(|E|)
be the Grassmannian of lines in|E|. Consider its Pl̈ucker embedding

∧2 :
G(2, E) ↪→ G1(

∧2
E) = |

∧2
E|. Any nonzeroω ∈ (

∧2
E)∨ =

∧2
E∨

defines a hyperplaneHω in |
∧2

E|. Considerω as a linear mapαω : E → E∨

defined byαω(v)(w) = ω(v, w). The mapαω is skew-symmetric in the sense
that its transpose map coincides with−αω. Thus its determinant is equal to
zero, and Ker(αω) 6= {0}. Let v0 be a nonzero element of the kernel. Then for
anyv ∈ E we haveω(v0, v) = αω(v)(v0) = 0. This shows thatω vanishes
on all decomposable 2-vectorsv0 ∧ v. This implies that the intersection of
the hyperplaneHω with G(2, E) contains all lines which intersect the linear
subspaceSω = |Ker(αω)| ⊂ |E| which we call thepoleof the hyperplaneHω.

Now recall the following result from linear algebra (see Exercise 2.1). Let
A be a skew-symmetric matrix of odd size2k + 1. Its principal submatrices
Ai of size2k (obtained by deleting thei-th row and thei-th column) are skew-
symmetric matrices of even size. Let Pfi be the pfaffians ofAi (i.e.det(Ai) =
Pf2i ). Assume that rank(A) = 2k, or, equivalently, not all Pfi vanish. Then the
system of linear equationsA ·x = 0 has one-dimensional null-space generated
by the vector(a1, . . . , a2k+1), whereai = (−1)i+1Pfi.

Let us go back to Grassmannians. Suppose we have ans + 1-dimensional
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subspaceW in
∧2

E∨ spanned byω0, . . . , ωs. Suppose that, for anyω ∈ W ,
we have rankαω = 2k, or, equivalently, the poleSω ofHω is a point. It follows
from the theory of determinant varieties that the subvariety

{Cω ∈ |
2∧
E∨| : corankαω ≥ i}

is of codimension
(
i
2

)
in |
∧2

E∨| (see [308], [380]). Thus, ifs < 4, a general
W will satisfy the assumption. Consider a regular mapΦ : |W | → |E| defined
by ω 7→ Cω. If we takeω = t0ω0 + · · · + tsωs so thatt = (t0, . . . , ts) are
projective coordinate functions in|W |, we obtain thatΦ is given by2k + 1
principal pfaffians of the matrixAt definingω.

We shall apply the preceding to the case whendimE = 5. Take a general
3-dimensional subspaceW of

∧2
E∨. The mapΦ : |W | → |E| ∼= P4 is

defined by homogeneous polynomials of degree 2. Its image is a projected
Veronese surfaceS. Any trisecant line ofS passes through 3 points onS which
are the poles of elementsw1, w2, w3 from W . These elements are linearly
independent, otherwise their poles lie on the conic image of a line underΦ. But
no trisecant line can be contained in a conic plane section ofS. We consider
ω ∈ W as a hyperplane in the Plücker space|

∧2
E|. Thus, any trisecant line

is contained in all hyperplanes defined byW . Now, we are ready to prove the
following.

Theorem 2.1.5 LetX̄ be the closure inG1(P4) of the locus of trisecant lines
of a projected Veronese surface. ThenX̄ is equal to the intersection ofG1(P4)
with three linearly independent hyperplanes. In particular,X̄ is a Fano 3-fold
of degree 5 with canonical sheafωX̄ ∼= OX̄(−2).

Proof As we observed in above, the locus of poles of a general 3-dimensional
linear spaceW of hyperplanes in the Plücker space is a projected Veronese
surfaceV and its trisecant variety is contained inY = ∩w∈WHw ∩ G1(P4).
So, its closureX̄ is also contained inY . On the other hand, we know that̄X
is irreducible and 3-dimensional (it contains an open subset isomorphic to a
homogeneous spaceX = SO(3)/S4). By Bertini’s Theorem the intersection
of G1(P4) with a general linear space of codimension 3 is an irreducible 3-
dimensional variety. This proves thatY = X̄. By another Bertini’s Theorem,
Y is smooth. The rest is the standard computation of the canonical class of the
Grassmann variety and the adjunction formula. It is known that the canonical
class of the GrassmannianG = Gm(Pn) ofm-dimensional subspaces ofPn is
equal to

KG = OG(−n− 1). (2.5)
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By the adjunction formula, the canonical class ofX̄ = G1(P4)∩H1∩H2∩H3

is equal toOX̄(−2).

Corollary 2.1.6 The homogeneous spaceX = SO(3)/S4 admits a smooth
compactificationX̄ isomorphic to the intersection ofG1(P4), embedded via
Plücker inP9, with a linear subspace of codimension 3. The boundaryX̄ \X
is an anticanonical divisor cut out by a hypersurface of degree 2.

Proof The only unproven assertion is one about the boundary. To check this,
we use that the 3-dimensional groupG = SL(2) acts transitively on a 3-
dimensional varietyX minus the boundary. For any pointx ∈ X, consider
the mapµx : G→ X, g 7→ g · x. Its fibre over the pointx is the isotropy sub-
groupGx of x. The differential of this map defines a linear mapg = Te(G)→
Tx(X). When we letx vary inX, we get a map of vector bundles

φ : gX = g×X → T (X).

Now take the determinant of this map

3∧
φ =

3∧
g×X →

3∧
T (X) = K∨

X ,

whereKX is the canonical line bundle ofX. The left-hand side is the trivial
line bundle overX. The map

∧3
φ defines a section of the anticanonical line

bundle. The zeros of this section are the points where the differential of the map
µx is not injective, i.e., wheredimGx > 0. But this is exactly the boundary
of X. In fact, the boundary consists of orbits of dimension smaller than 3,
hence the isotropy of each such orbit is of positive dimension. This shows that
the boundary is contained in our anticanonical divisor. Obviously, the latter
is contained in the boundary. Thus we see that the boundary is equal to the
intersection ofG1(P4) with a quadric hypersurface.

Remark2.1.2 There is another construction of the variety VSP(q, 3) due to
S. Mukai and H. Umemura [438]. Let V6 be the space of homogeneous binary
formsf(t0, t1) of degree 6. The group SL(2) has a natural linear representation
in V6 via linear change of variables. Letf = t0t1(t40 − t41). The zeros of this
polynomials are the vertices of a regular octahedron inscribed inS2 = P1(C).
The stabilizer subgroup off in SL(2) is isomorphic to the binary octahedron
groupΓ ∼= S4. Consider the projective linear representation of SL(2) in |V6| ∼=
P5. In the loc. cit. it is proven that the closurēX of this orbit in|V6| is smooth
andB = X̄ \ X is the union of the orbits of[t50t1] and [t60]. The first orbit
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is of dimension 2. Its isotropy subgroup is isomorphic to the multiplicative
groupC∗. The second orbit is one-dimensional and is contained in the closure
of the first one. The isotropy subgroup is isomorphic to the subgroup of upper
triangular matrices. One can also show thatB is equal to the image ofP1×P1

under a SL(2)-equivariant map given by a linear system of curves of bidegree
(5, 1). ThusB is of degree 10, hence is cut out by a quadric. The image of the
second orbit is a smooth rational curve inB and is equal to the singular locus
of B. The fact that the two varieties are isomorphic follows from the theory
of Fano 3-folds. It can be shown that there is a unique Fano threefoldV with
Pic(V ) = Z 1

2KV andK3
V = 40. We will discuss this variety in a later chapter.

2.1.4 Conjugate triangles

LetC = V (f) be a nonsingular conic. Given a triangle with sides`1, `2, `3, the
poles of the sides are the vertices of the triangle which is called theconjugate
triangle. Its sides are the polar lines of the vertices of the original triangle. It
is clear that this defines a duality in the set of triangles. Clearly, a triangle is
self-conjugateif and only if it is a self-polar triangle.

The following is an example of conjugate triangles. Let`1, `2, `3 be three
tangents toC at the pointsp1, p2, p3, respectively. They form a triangle which
can be viewed as acircumscribed triangle. It follows from Theorem1.1.1that
the conjugate triangle has verticesp1, p2, p3. It can be viewed as aninscribed
triangle. The lines`′1 = p2p3, `

′
2 = p1p3, `

′
1 = p1p2 are polar lines with

respect to the verticesq1, q2, q3 of the circumscribed triangle (see the picture).
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Figure 2.1 Special conjugate triangles

In general, let a sidèi of a triangle∆ intersect the conicC at pi andp′i.
Then the vertices of the conjugate triangle are the intersection points of the
tangent ofC at the pointspi, p′i.

Two lines inP2 are calledconjugatewith respect toC if the pole of one of
the lines belongs to the other line. It is a reflexive relation on the set of lines.
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Obviously, two triangles are conjugate if and only if each of the sides of the
first triangle is conjugate to a side of the second triangle.

Recall the basic notion of projective geometry, theperspectivity. Two tri-
angles are calledperspectivefrom a line (resp. from a point) if there exists a
bijection between their sets of sides (resp. vertices) such that the intersection
points of the corresponding sides (resp. the lines joining the corresponding
points) lie on the same line (resp. intersect at one point). The line is called the
line of perspectivityor perspectrix, and the point is called thecenter of per-
spectivityor perspector. TheDesargues Theoremasserts that the properties of
being perspective from a line or from a point are equivalent.

Theorem 2.1.7(M. Chasles) Two conjugate triangles with no common vertex
are perspective.

Proof Chose coordinates such that the sides`1, `2, `3 of the first triangle are
t0 = 0, t1 = 0, t2 = 0, respectively. Then the vertices of the first triangle
`2 ∩ `3 = p1 = [1, 0, 0], `1 ∩ `3 = p2 = [0, 1, 0] and`1 ∩ `3 = p3 = [0, 0, 1].
Let

A =

a b c

b d e

c e f

 (2.6)

be the symmetric matrix defining the conic. Then the lines polar`′i of the point
pi is given by the equationsαt0 + βt1 + γt2 = 0, where(α, β, γ) is thei-th
column ofA. The vertices we havè1 ∩ `′1 = (0, c,−b), `2 ∩ `′2 = (e, 0,−b)
and`3 ∩ `′3 = (e,−c,−0). The condition that the points are on a line is the
vanishing of the determinant

det

0 c −b
e 0 −b
e −c 0

 .

Computing the determinant, we verify that it indeed vanishes.

Now let us consider the following problem. Given two triangles{`1, `2, `3}
and{`′1, `′2, `′3} without common sides, find a conicC such that the triangles
are conjugate to each other with respect toC.

Sincedim
∧3

E = 1, we can define a natural isomorphism|
∧2

E∨| → |E|.
Explicitly, it sends the line[l∧ l′] to the intersection point[l]∩ [l′]. Suppose the
two triangles are conjugate with respect to a conicC. Let |E| → |E∨| be the
isomorphism defined by the conic. The composition|

∧2
E∨| → |E| → |E∨|

must send̀ i ∧ `j to `′k. Let `i = [li], `′i = [l′i]. Choose coordinatest0, t1, t2 in
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E and letX,Y be the3×3-matrices withj-row equal to coordinates of`i and
`′i, respectively. Of course, these matrices are defined by the triangles only up
to scaling the columns. It is clear that thek-column of the inverse matrixX−1

can be taken for the coordinates of the point`i ∩ `j (herei 6= j 6= k). Now we
are looking for a symmetric matrixA such thatAX−1 = tY . The converse is
also true. If we find such a matrix, the rows ofX andY would represent two
conjugate triangles with respect to the conic defined by the matrixA. Fix some
coordinates of the sides of the two triangles to fix the matricesX,Y . Then we
are looking for a diagonal invertible matrixD such that

QA = tY DX is a symmetric matrix. (2.7)

There are three linear conditionsaij = aji for a matrixA = (aij) to be
symmetric. So we have three equations and we also have three unknowns, the
entries of the matrixD. The condition for the existence of a solution must be
given in terms of a determinant whose entries depend on the coordinates of the
sides of the triangles. We identifyli andl′i with vectors inC3 and use the dot-
product inC3 to get the following three equations with unknownsλ1, λ2, λ3

λ1l1 · l′2 − λ2l2 · l′1 = 0

λ1l1 · l′3 − λ3l3 · l′1 = 0

λ2l2 · l′3 − λ3l3 · l′2 = 0.

The matrix of the coefficients of the system of linear equations is equal to

M =

l1 · l′2 −l2 · l′1 0
l1 · l′3 0 −l3 · l′1

0 l2 · l′3 −l3 · l′2

 .

The necessary condition is that

detM = (l3 · l′1)(l1 · l′2)(l2 · l′3)− (l2 · l′1)(l1 · l′3)(l3 · l′2) = 0. (2.8)

We also need a solution with nonzero coordinates. It is easy to check (for
example, by taking coordinates whereX or Y is the identity matrix), that the
existence of a solution with a zero coordinate implies that the triangles have a
common vertex. This contradicts our assumption.

Note that condition (2.7) is invariant with respect the action of GL(E) since
anyG ∈ GL(E) transformsX,Y to GX,GY , and hence transformsA to
tGAG which is still symmetric. Takingl1 = t0, l2 = t1, l3 = t2, we easily
check that condition (2.8) is equivalent to the condition that the two triangles
with sides defined byl1, l2, l3 and l′1, l

′
2, l

′
3 are perspective from a line. Thus

we obtain the following.
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Corollary 2.1.8 Two triangles with no common side are conjugate triangles
with respect to some conic if and only if they are perspective triangles.

Taking the inverse of the matrixA from (2.7), we obtain thatX−1D−1tB−1

is symmetric. It is easy to see that thej-th column ofX−1 can be taken for the
coordinates of the side of the triangle opposite the vertex defined by thej-th
column ofX. This shows that the dual triangles are conjugate with respect to
the dual quadric defined by the matrixA−1. This proves Desargues’ Theorem,
we used before.

Theorem 2.1.9(G. Desargues) Two triangles are perspective from a point if
and only if they are perspective from a line.

LetC be a nonsingular conic ando be a point in the plane but not inC. The
projection fromo defines an involutionτo onC with two fixed points equal to
the setPo(C) ∩ C. This involution can be extended to the whole plane such
that o and the polar linePo is its set of fixed points. To show this, we may
assumeC is the conicV (t0t2 − t21), image of the Veronese mapν2 : P1 →
C, [u0, u1] 7→ [u2

0, u0u1, u
2
1]. We identify a pointx = [x0, x1, x2] in the plane

with a symmetric matrix

X =
(
x0 x1

x1 x2

)
so that the conic is given by the equationdetX = 0. Consider the action of
G ∈ SL(2) on P2 which sendsX to tGXG. This defines an isomorphism
from PSL(2) to the subgroup of PGL(3) leaving the conicC invariant. In this
way, any automorphism ofC extends to a projective transformation of the
plane leavingC invariant. Any nontrivial element of finite order in PGL(3)
is represented by a diagonalizable matrix, and hence its set of fixed points
consists of either a line plus a point, or 3 isolated points. The first case occurs
when there are two equal eigenvalues, the second one when all eigenvalues are
distinct. In particular, an involution belongs to the first case. It follows from the
definition of the involutionτ that the two intersection points ofPo(C) with C
are fixed under the extended involutionτ̃ . So, the pointo, being the intersection
of the tangents toC at these points, is fixed. Thus the set of fixed points of the
extended involutioñτ is equal to the union of the linePo(C) and the pointo.

As an application, we get a proof of the following Pascal’s Theorem from
projective geometry.

Theorem 2.1.10 Letp1, . . . , p6 be the set of vertices of a hexagon inscribed
in a nonsingular conicC. Then the intersection points of the opposite sides
pipi+1 ∩ pi+3pi+4, wherei is taken modulo3, are collinear.
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Proof A projective transformation ofP1 is uniquely determined by the im-
ages of three distinct points. Consider the transformation of the conicC (iden-
tified with P1 by a Veronese map) which transformspi to pi+3, i = 1, 2, 3.
This transformation extends to a projective transformationτ of the whole plane
leavingC invariant. Under this transformation, the pairs of the opposite sides
pipi+3 are left invariant, thus their intersection point is fixed. A projective
transformation with three fixed points on a line, fixes the line pointwise. So, all
three intersection points lie on a line.

The line joining the intersection points of opposite sides of a hexagon is
called thePascal line. Changing the order of the points, we get 60 Pascal lines
associated with 6 points on a conic.

One can see that the triangle∆1 with sidesp1p2, p1p6, p2p3 and the triangle
∆2 with sidesp4p5, p3p4, p5p6 are in perspective from the Pascal line. Hence
they are perspective from the pole of the Pascal line with respect to the conic.
Note that not all vertices of the triangles are on the conic.

Dually, we obtainBrianchon’s Theorem.

Theorem 2.1.11 Let p1, . . . , p6 be the set of vertices of a hexagon whose
sides touch a nonsingular conicC. Then the diagonalspipi+3, i = 1, 2, 3
intersect at one point.

We leave to the reader to find two perspective triangles in this situation.
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Figure 2.2 Pascal’s Theorem

We view a triangle as a point in(P2)3. Thus the set of ordered pairs of conju-
gate triangles is an open subset of the hypersurface in(P2)3 × (P2)3 = (P2)6

defined by equation (2.8). The equation is multi-linear and is invariant with
respect to the projective group PGL(3) acting diagonally, with respect to the
cyclic group of order 3 acting diagonally on the product(P2)3 × (P2)3, and
with respect to the switch of the factors in the product(P2)3 × (P2)3. It is
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known from the invariant theory that the determinant of the matrixM , consid-
ered as a section of the sheafH0((P2)6,O�6

P2 ) must be a linear combination
of the products of the maximal minors(ijk) of the matrix whose columns are
the six vectorsl1, l′1, l2, l

′
2, l3, l

′
3 such that each columns occurs in the prod-

uct once. We use thatdetM = 0 expresses the condition that the intersection
points`i ∩ `′i are collinear.

Fix a basis inΛ3(E) to define a natural isomorphism

2∧
(

2∧
E)→ E, (v1 ∧ v2, w1 ∧w2) 7→ (v1 ∧ v2 ∧w1)w2− (v1 ∧ v2 ∧w2)w1.

This corresponds to the familiar identity for the vector product of 3-vectors

(v1 × v2)× (w1 ∧ w2) = (v1 × v2 × w1)w2 − (v1 × v2 × w2)w1.

If we apply this formula toE∨ instead ofE, we obtain that the line spanned by
the points̀ 1∩`′1 and`2∩`′2 has equationdet(l1, l′1, l2)l

′
2−det(l1, l′1, l

′
2)l2 = 0.

The condition that this line also passes through the intersection point`3 ∩ `′3 is

det(l3, l′3,det(l1, l′1, l2)l
′
2 − det(l1, l′1, l

′
2)l2)

= det(l1, l′1, l2) det(l3, l′3, l
′
2)− det(l1, l′1, l

′
2) det(l3, l′3, l2) = 0.

This shows that the determinant in (2.8) can be written in symbolic form as

(12, 34, 56) := (123)(456)− (124)(356). (2.9)

Remark2.1.3 Let X = (P2)[3] be the Hilbert scheme ofP2 of 0-cycles of
degree 3. It is a minimal resolution of singularities of the 3d symmetric product
of P2. Consider the open subset ofX formed by unordered sets of 3 non-
collinear points. We may view a point ofU as a triangle. Thus any nonsingular
conicC defines an automorphismgC of U of order 2. Its set of fixed points is
equal to the variety of self-polar triangles ofC. The automorphism ofU can
be viewed as a birational automorphism ofX.

One can also give a moduli-theoretical interpretation of the 3-dimensional
GIT-quotient of the varietyX modulo the subgroup of Aut(P2) leaving the
conicC invariant. Consider the intersection of the sides of the triangle with
verticesa, b, c. They define three pairs of points on the conic. Assume that
the six points are distinct. The double cover of the conic branched over six
distinct points is a hyperelliptic curveB of genus 2. The three pairs define
3 torsion divisor classes which generate a maximal isotropic subspace in the
group of 2-torsion points in the Jacobian variety of the curveB (see Chapter 5).
This gives a point in the moduli space of principally polarized abelian surfaces
together with a choice of a maximal isotropic subspace of 2-torsion points. It
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is isomorphic to the quotient of the Siegel spaceH2 modulo the groupΓ0(2)

of matrices

(
A B

C D

)
∈ Sp(4,Z) such thatC ≡ 0 mod 2.

2.2 Poncelet relation

2.2.1 Darboux’s Theorem

LetC be a conic, and letT = {`1, `2, `3} be a circumscribed triangle. A conic
C ′ which hasT as an inscribed triangle is called thePoncelet related conic.
Since passing through a point impose one condition, we have∞2 Poncelet
related conics corresponding to a fixed triangleT . Varying T , we expect to
get∞5 conics, so that any conic is Poncelet related toC with respect to some
triangle. But surprisingly this is wrong! Darboux’s Theorem asserts that there
is a pencil of divisorsp1 + p2 + p3 such that the trianglesT with sides tangent
toC at the pointsp1, p2, p3 define the same Poncelet related conic.

We shall prove it here. In fact, we shall prove a more general result, in which
triangles are replaced withn-polygons. Ann-polygonP in P2 is an ordered
set ofn ≥ 3 points(p1, . . . , pn) in P2 such that no three pointspi, pi+1, pi+2

are collinear. The pointspi are theverticesof P , the linespi, pi+1 are called
thesidesof P (herepn+1 = p1). The number ofn-gons with the same set of
vertices is equal ton!/2n = (n− 1)!/2.

We say thatP circumscribes a nonsingular conicC if each side is tangent
toC. Given any ordered set(q1, . . . , qn) of n points onC, let `i be the tangent
lines toC at the pointsqi. Then they are the sides of then-gonP with vertices
pi = `i ∩ `i+1, i = 1, . . . , n (`n+1 = `1). Then-gonP circumscribesC.
This gives a one-to-one correspondence betweenn-gons circumscribingC and
ordered sets ofn points onC.

Let P = (p1, . . . , pn) be an-gon that circumscribes a nonsingular conicC.
A conic S is calledPonceletn-related to C with respect toP if all points pi
lie onC.

Let us start with any two conicsC andS. We choose a pointp1 on S and
a tangent̀ 1 to C passing throughp1. It intersectsS at another pointp2. We
repeat this construction. If the process stops aftern steps (i.e. we are not getting
new pointspi), we get an inscribedn-gon inS which circumscribesC. In this
caseS is Poncelet related toC. TheDarboux Theoremwhich we will prove
later says that, if the process stops, we can construct infinitely manyn-gons
with this property starting from an arbitrary point onS.
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Consider the following correspondence onC × S:

R = {(x, y) ∈ C × S : xy is tangent toC atx}.

Since, for anyx ∈ C the tangent toC atx intersectsS at two points, and, for
anyy ∈ S there are two tangents toC passing throughy, so we get thatE is
of bidegree(2, 2). This means if we identifyC,S with P1, thenR is a curve of
bidegree(2, 2). As is well-knownR is a curve of arithmetic genus 1.

Lemma 2.2.1 The curveR is nonsingular if and only if the conicsC and
S intersect at four distinct points. In this case,R is isomorphic to the double
cover ofC (or S) ramified over the four intersection points.

Proof Consider the projection mapπS : R → S. This is a map of degree 2.
A branch pointy ∈ S is a point such that there only one tangent toC passing
throughy. Obviously, this is possible only ify ∈ C. It is easy to see thatR is
nonsingular if and only if the double coverπS : R→ S ∼= P1 has four branch
points. This proves the assertion.

Note that, ifR is nonsingular, the second projection mapπC : R → C

must also have 4 branch points. A pointx ∈ C is a branch point if and only
if the tangent ofC atx is tangent toS. So we obtain that two conics intersect
transversally if and only if there are four different common tangents.

Take a point(x[0], y[0]) ∈ R and let(x[1], y[1]) ∈ R be defined as follows:
y[1] is the second point onS on the tangent tox[0], x[1] is the point onC
different fromx[0] at which a line throughy[1] is tangent toC. This defines a
mapτC,S : R → R. This map has no fixed points onR and hence, if we fix a
group law onR, is a translation mapta with respect to a pointa. Obviously, we
get ann-gon if and only ifta is of ordern, i.e. the order ofa in the group law
is n. As soon as this happens we can use the automorphism for constructing
n-gons starting from an arbitrary point(x[0], y[0]). This is Darboux’s Theorem
which we have mentioned in above.

Theorem 2.2.2(G. Darboux) LetC andS be two nondegenerate conics in-
tersecting transversally. ThenC andS are Ponceletn-related if and only if the
automorphismτC,S of the associated elliptic curveR is of ordern. If C and
S are Ponceletn related, then starting from any pointx ∈ C and any point
y ∈ S there exists ann-gon with a vertex aty and one side tangent toC at y
which circumscribesC and inscribed inS.

In order to check explicitly whether two conics are Poncelet related one
needs to recognize when the automorphismτC,S is of finite order. Let us
choose projective coordinates such thatC is the Veronese conict0t2− t21 = 0,
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the image ofP1 under the map[t0, t1] 7→ [t20, t0t1, t
2
2]. By using a projective

transformation leavingC invariant we may assume that the four intersection
pointsp1, p2, p3, p4 of C andS are the images of the points0, 1,∞, a. Then
R is isomorphic to the elliptic curve given by the affine equation

y2 = x(x− 1)(x− a).

The conicS belongs to the pencil of conics with base pointsp1, . . . , p4:

(t0t2 − t21) + λt1(at0 − (1 + a)t1 + t2) = 0.

We choose the zero point in the group law onR to be the point(x[0], y[0]) =
(p4, p4) ∈ C×S. Then the automorphismτC,S sends this point to(x[1], y[1]),
where

y[1] = (λa, λ(1 + a) + 1, 0), x[1] = ((a+ 1)2λ2, 2a(1 + a)λ, 4a2).

Thusx[1] is the image of the point(1, 2a
(a+1)λ ) ∈ P1 under the Veronese map.

The pointy[1] corresponds to one of the two roots of the equation

y2 =
2a

(a+ 1)λ
(

2a
(a+ 1)λ

− 1)(
2a

(a+ 1)λ
− a).

So we need a criterion characterizing points(x,±
√
x(x− 1)(x− a)) of fi-

nite order. Note that different choice of the sign corresponds to the involution
x 7→ −x of the elliptic curve. So, the order of the points corresponding to two
different choices of the sign are the same. We have the following result of A.
Cayley.

Theorem 2.2.3(A. Cayley) LetR be an elliptic curve with affine equation

y2 = g(x),

whereg(x) is a cubic polynomial with three distinct nonzero roots. Lety =∑∞
i=0 cix

i be the formal powers Taylor expansion ofy in terms of the local
parameterx at the pointp = (0,

√
g(0)). Thenp is of ordern ≥ 3 if and only
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if ∣∣∣∣∣∣∣∣∣
c2 c3 . . . ck+1

c3 c4 . . . ck+2

...
...

...
...

ck+1 ck+2 . . . c2k

∣∣∣∣∣∣∣∣∣ = 0, n = 2k + 1,

∣∣∣∣∣∣∣∣∣
c3 c4 . . . ck+1

c4 c5 . . . ck+2

...
...

...
...

ck+1 ck+2 . . . c2k−1

∣∣∣∣∣∣∣∣∣ = 0, n = 2k.

Proof Let ∞ be the point at infinity of the affine curvey2 − g(x) = 0.
The rational functionx (resp.y) has pole of order 2 (resp. 3) at∞. If n =
2k + 1, the rational functions1, x, . . . , xk, y, xy, . . . , xk−1y form a basis of
the linear spaceH0(C,OC(n∞)). If n = 2k, the same is true for the functions
1, x, . . . , xk, y, xy, . . . , xk−2y. A point p = (0, c0) is an-torsion point if and
only if there is a linear combination of these functions which vanishes at this
point with ordern. Sincex is a local parameter at the pointp, we can expand
y in a formal power seriesy =

∑∞
k=0 ckx

k. Let us assumen = 2k + 1, the
other case is treated similarly. We need to find some numbers(a0, . . . , a2k)
such that, after plugging in the formal power series,

a0 + a1x+ . . .+ akx
k + ak+1y + . . .+ ak−1

2k

is divisible byx2k+1. This gives a system ofn linear equations

ai + ak+1ci + . . .+ ak+1+ic0 = 0, i = 0, . . . , k,

a2kc2+i + a2k−1c3+i + . . .+ ak+1ck+1+i = 0, i = 0, . . . , k − 1.

The firstk+1 equations allow us to eliminatea0, . . . , ak. The lastk equations
have a solution for(ak+1, . . . , a2k) if and only if the first determinant in the
assertion of the Theorem vanishes.

To apply the Proposition we have to take

α =
2a

(a+ 1)λ
, β = 1 +

2a
(a+ 1)λ

, γ = a+
2a

(a+ 1)λ
.

Let us consider the varietyPn of pairs of conics(C,S) such thatS is Pon-
celetn-related toC. We assume thatC andS intersect transversally. We al-
ready know thatPn is a hypersurface inP5 × P5. Obviously,Pn is invariant
with respect to the diagonal action of the group SL(3) (acting on the space of
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conics). Thus the equation ofPn is an invariant of a pair of conics. This in-
variant was computed by F. Gerbardi [268]. It is of bidegree( 1

4T (n), 1
2T (n)),

whereT (n) is equal to the number of elements of ordern in the abelian group
(Z/nZ)2.

Let us look at the quotient ofPn by PSL(3). Consider the rational map
β : P5 × P5 → (P2)(4) which assigns to(C,S) the point setC ∩ S. The
fibre of β over a subsetB of 4 points in general linear position is isomor-
phic to an open subset ofP1 × P1, whereP1 is the pencil of conics with
base pointB. Since we can always transform suchB to the set of points
{[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]}, the group PSL(3) acts transitively on the
open subset of such 4-point sets. Its stabilizer is isomorphic to the permutation
groupS4 generated by the following matrices:0 −1 0

1 0 0
0 0 1

 ,

1 0 0
0 0 −1
0 1 0

 ,

1 0 −1
0 −1 −1
0 0 −1

 .

The orbit spacePn/PSL(3) is isomorphic to a curve in an open subset of
P1 × P1/S4, whereS4 acts diagonally. By considering one of the projection
maps, we obtain thatPn/PSL(3) is an open subset of a cover ofP1 of degree
N equal to the number of Ponceletn-related conics in a given pencil of conics
with 4 distinct base points with respect to a fixed conic from the pencil. This
number was computed by F. Gerbardi [268] and is equal to12T (n). A modern
account of Gerbardi’s result is given in [26]. A smooth compactification of
Pn/PSL(3) is the modular curveX0(n) which parameterizes the isomorphism
classes of the pairs(R, e), whereR is an elliptic curve ande is a point of order
n in R.

Proposition 2.2.4 Let C andS be two nonsingular conics. Consider each
n-gon inscribed inC as a subset of its vertices, and also as a positive divisor
of degreen onC. The closure of the set ofn-gons inscribed inC and circum-
scribingS is either empty, or ag1

n, i.e. a linear pencil of divisors of degree
n.

Proof First observe that two polygons inscribed inC and circumscribingS
which share a common vertex must coincide. In fact, the two sides passing
through the vertex in each polygon must be the two tangents ofS passing
through the vertex. They intersectC at another two common vertices. Contin-
uing in this way, we see that the two polygons have the same set of vertices.
Now consider the Veronese embeddingvn of C ∼= P1 in Pn. An effective
divisor of degreen is a plane section of the Veronese curveV1

n = νn(P1).
Thus the set of effective divisors of degreen onC can be identified with the
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dual projective space(Pn)∨. A hyperplane in(Pn)∨ is the set of hyperplanes
in Pn which pass through a fixed point inPn. The degree of an irreducible
curveX ⊂ (Pn)∨ of divisors is equal to the cardinality of the set of divisors
containing a fixed general point ofV1

n. In our case it is equal to 1.

2.2.2 Poncelet curves and vector bundles

Let C andS be two Ponceletn-related conics in the planeP2 = |E|. Recall
that this means that there existn pointsp1, . . . , pn onC such that the tangent
lines`i = Tpi

(C) meet onS. One can drop the condition thatS is a conic. We
say that a plane curveS of degreen − 1 is Poncelet relatedto the conicC if
there existn points as above such that the tangents toC at these points meet
onS.

We shall prove an analog of Darboux’s Theorem for Poncelet related curves
of degree larger than 2. First, we have to remind some constructions in the
theory of vector bundles over the projective plane.

Let P1 = |U | for some vector spaceU of dimension 2 andP2 = |V | for
some vector spaceV of dimension 3. A closed embeddingν : P1 ↪→ P2 has
the image isomorphic to a nonsingular conic, a Veronese curve. This defines
an isomorphism

E∨ = H0(|E|,O|E|(1)) ∼= H0(|U |,O|U |(2)) = S2(U∨).

Its transpose defines an isomorphismE ∼= S2(U). This gives a bijective corre-
spondence between nonsingular conics and linear isomorphismsE → S2(U).
Also, sincedim

∧2
U = 1, a choice of a basis in

∧2
U defines a linear isomor-

phismU ∼= U∨. This gives an isomorphism of projective spaces|U | ∼= |U |∨
which does not depend on a choice of a basis in

∧2
U . Thus a choice of a

nonsingular conic in|E| defines also an isomorphism|E∨| → |S2(U)| which
must be given by a nonsingular conic in|E∨|. This is of course the dual conic.

Fix an isomorphismP2 ∼= |S2(U)| defined by a choice of a conicC in P2.
Consider the multiplication mapS2(U) ⊗ Sn−2(U) → Sn(U). It defines a
rank 2 vector bundleSn,C onP2 whose fibre at the pointx = [q] ∈ |S2(U)| is
equal to the quotient spaceSn(U)/qSn−2(U). One easily sees that it admits a
resolution of the form

0→ Sn−2(U)(−1)→ Sn(U)→ Sn,C → 0, (2.10)

where we identify a vector spaceV with the vector bundleπ∗V , whereπ is the
structure map to the point. The vector bundleSn,C is called theSchwarzen-
berger vector bundleassociated to the conicC. Its dual bundle has the fibre
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over a pointx = [q] equal to the linear space

(Sn(U)/qSn−2(U)∨) = {f ∈ Sn(U∨) : Dq(f) = 0}. (2.11)

Embedding|U∨| in |Sn(U∨)| by means of the Veronese map, we will identify
the divisor of zeros ofq with a divisorV (q) of degree 2 on the Veronese curve
Rn ⊂ |Sn(U∨)|, or, equivalently, with a 1-secant ofRn. A hyperplane con-
taining this divisor is equal toV (qg) for someg ∈ Sn−2(U). Thus the linear
space (2.11) can be identified with the projective span ofV (q). In other words,
the fibres of the dual projective bundleS∨n,C are equal to the secants of the
Veronese curveRn.

It follows from (2.10) that the vector bundleSn,C has the first Chern class
of degreen − 1 and the second Chern class is equal ton(n − 1)/2. Thus we
expect that a general section ofSn,C hasn(n − 1)/2 zeros. We identify the
space of sections ofSn,C with the vector spaceSn(U). A point [s] ∈ |Sn(U)|
can be viewed as a hyperplaneHs in |Sn(U∨)|. Its zeros are the secants ofRn
contained inHs. SinceHs intersectsRn atn pointsp1, . . . , pn, any 1-secant
pipj is a 1-secant contained inHs. The number of such 1-secants is equal to
n(n− 1)/2.

Recall that we can identify the conic with|U | by means of the Veronese
mapν2 : |U | → |S2(U)|. Similarly, the dual conicC∨ is identified with|U∨|.
By using the Veronese mapνn : |U∨| → |Sn(U∨)|, we can identifyC∨

with Rn. Now a point onRn is a tangent line on the original conicC, hence
n pointsp1, . . . , pn from above are the sides̀i of an n-gon circumscribing
C. A secantpipj from above is a point inP2 equal to the intersection point
qij = `i ∩ `j . And then(n− 1)/2 pointsqij represent the zeros of a sections
of the Schwarzenberger bundleSn,C .

For any two linearly independent sectionss1, s2, their determinants1 ∧ s2
is a section of

∧2 Sn,C and hence its divisor of zeros belongs to the linear
system|OP2(n−1)|. When we consider the pencil〈s1, s2〉 spanned by the two
sections, the determinant of each members = λs1 + µs2 has the zeros on the
same curveV (s1 ∧ s2) of degreem− 1.

Let us summarize this discussion by stating and proving the following gen-
eralization of Darboux’s Theorem.

Theorem 2.2.5 LetC be a nonsingular conic inP2 andSn,C be the asso-
ciated Scwarzenberger rank 2 vector bundle overP2. Thenn-gons circum-
scribingC are parameterized by|H0(Sn,C)|. The vertices of the polygonΠs

defined by a sections correspond to the subschemeZ(s) of zeros of the section
s. A curve of degreen−1 passing through the vertices corresponds to a pencil
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of a sections ofSn,C containings and is equal to the determinant of a basis of
the pencil.

Proof A sections with the subscheme of zerosZ(s) with ideal sheafIZ(s)

defines the exact sequence

0→ OP2
s→ Sn,C → IZ(n− 1)→ 0.

A section ofIZ(n−1) is a plane curve of degreen−1 passing throughZ(s).
The image of a sectiont of Sn,C in H0(IZ(n − 1)) is the discriminant curve
s ∧ t. Any curve defined by an element fromH0(IZ(n − 1)) passes through
the vertices of then-gonΠs and is uniquely determined by a pencil of sections
containings.

One can explicitly write the equation of a Poncelet curve as follows. First
we choose a basisξ0, ξ1 of the spaceU and the basis(ξd0 , ξ

d−1
0 ξ1, . . . , ξ

d
1) of

the spaceSd(U). The dual basis inSn(U∨) is (
(
d
i

)
td−i0 ti1)0≤i≤d. Now the

coordinates in the plane|S2(U)| aret20, 2t0t1, t
2
2, so a point in the plane is a

binary conicQ = aξ20 + 2bξ0ξ1 + cξ21 . For a fixedx = [Q] ∈ |S2(U)|, the
matrix of the multiplication mapSn−2(U)→ Sn(U), G 7→ QG is

K(x) =



a

2b a

c 2b
...

c
...

...
...

... a

... 2b
c


.

A section ofSn,C is given byf =
∑n
i=0 ciξ

n−i
0 ξi1 ∈ Sn(U). Its zeros is the

set of pointsx such that the vectorc of the coefficients belongs to the column
subspace of the matrixK(x). Now we varyf in a pencil of binary forms
whose coefficient vectorc belongs to the nullspace of some matrixA of size
(n − 1) × (n + 1) and rankn − 1. The determinant of this pencil of sections
is the curve in the plane defined by the degreen − 1 polynomial equation in
x = [a, b, c]

det
(
K(x) ·A

)
= 0.

Note that the conicC in our choice of coordinates isV (t21 − t0t2).
Remark2.2.1 Recall that a section ofSn,C defines an-gon in the plane
|S2(U)| corresponding to the hyperplane sectionHs ∩ Rn. Its vertices is the
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scheme of zerosZ(s) of the sections. Let π : X(s) → P2 be the blow-up of
Z(s). For a generals, the linear system of Poncelet curves throughZ(s) em-
beds the surfaceX(s) in |Sn(U∨)|with the image equal toHs∩Sec1(Rn). The
exceptional curves of the blow-up are mapped onto the secants ofRn which are
contained inHs. These are the secantspipj , whereHs ∩ Rn = {p1, . . . , pn}.
The linear system defining the embedding is the proper transform of the lin-
ear system of curves of degreen − 1 passing through12n(n − 1) points of
Z(s). This implies that the embedded surfaceX(s) has the degree equal to
(n− 1)2− 1

2n(n− 1) = 1
2 (n− 1)(n− 2). This is also the degree of the secant

variety Sec1(Rn). For example, taken = 4 to get that the secant variety of
R4 is a cubic hypersurface inP4 whose hyperplane sections are cubic surfaces
isomorphic to the blow-up of the six vertices of a complete quadrilateral.

2.2.3 Complex circles

Fix two points in the plane and consider the linear system of conics passing
through the two points. It maps the plane toP3 with the image equal to a
nonsingular quadricQ = V (q). Thus we may identify each conic from the
linear system with a hyperplane inP3, or using the polarity defined byQ, with
a point. When the two points are the points[0, 1,±i] in the real projective plane
with the line at infinityt0 = 0, a real conic becomes a circle, and we obtain that
the geometry of circles can be translated into the orthogonal geometry of real
3-dimensional projective space. In coordinates, the rational mapP2 99K P3 is
given by

[t0, t1, t2] 7→ [x0, x1, x2, x3] = [t21 + t22, t0t1, t0t2, t
2
0].

Its image is the quadric

Q = V (x0x3 − x2
1 − x2

2).

Explicitly, a point[v] = [α0, α1, α2, α3] ∈ P3 defines thecomplex circle

S(v) : α0(t21 + t22)− 2t0(α1t1 + α2t2) + α3t
2
0 = 0. (2.12)

By definition, its center is the pointc = [α0, α1, α2], its radius squareR2 is
defined by the formula

α2
0R

2 = α2
1 + α2

2 − α0α3 = q(α). (2.13)

Let us express the property that two circles are tangent to each other. It
applies to complex circles as well.
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Proposition 2.2.6 Let [v], [w] be two points inP3, andS(v), S(w) be two
complex circles corresponding to planes inP3 which are polar to the points
with respect to the quadricQ = V (q). Then the two circles touch each other if
and only if

(v, v)(w,w)− (v, w)2 = 0, (2.14)

where(v, w) denotes the bilinear form associated to the quadratic formq.

Proof Let ` = V (λv+µw) be the line spanned by the points[v] and[w]. Via
polarity, it corresponds to a pencil of planes inP3. The preimages of two planes
are tangent if and only if the pencil contains a plane tangent to the quadricQ.
Dually this means that the linèis tangent toQ. This is equivalent to that the
binary form

q(λv + µw) = λ2(v, v) + 2(v, w)λµ+ µ2(w,w)

has a double root. Of course, this happens if and only if (2.14) holds.

Note that relation (2.14) is of degree 2 inv andw. If we identify the space
of circles withP3, this implies that the pairs of touching complex circles is a
hypersurface inP3×P3 of bidegree(2, 2). It is easy to see that the diagonal of
P3 × P3 is the double locus of the hypersurface.

Fix two complex irreducible circlesS = S(v) andS′ = S(w) and consider
the varietyR of complex circlesS(x) touchingS andS′. It is equal to the
quartic curve, the intersection of two quadratic conesQS andQS′ of conics
touchingS andS′,

(v, v)(x, x)− (v, x)2 = (w,w)(x, x)− (w, x)2 = 0

Since the singular points of these cones[v] and[w] satisfy these equations, the
quartic curve has two singular points. In fact, it is the union of two conics given
by the equations √

(v, v)(w, x)±
√

(w,w)(v, x) = 0.

The two conics intersect at the points[x] such that(x, x) = 0 and(v, x) =
(v, w) = 0. The first condition means that[x] is thenull-circle, i.e.α2

0R
2 = 0

in (2.13). It is the union of two lines connecting one if the two intersection
points ofS andS′ outside the line at infinityt0 = 0 with the two intersection
points at infinity. In the case whenS andS′ touch each other the whole pencil
generated byS andS′ becomes a component of the quartic curve entering with
multiplicity 2. So, the two conesQS andQS′ touch each other along the line
spanned byS andS′.
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Theorem 2.2.7(J. Steiner) Suppose, afterm steps,Sm is equal toS1. Then,
starting from arbitrary conicS′1 touchingS andS′, we get a sequence of concis
S′1, . . . , S

′
m = S′1 tangent toS andS′ with S′k tangent toS′k−1.

Proof LetR be one of the conic components of the variety of complex circles
touchingS andS′. Let

X = {(S1, S2) ∈ R×R : S1touchesS2}.

It is a curve of bidegree(4, 4) onR×R ∼= P1×P1. The fibre of its projection
to the first factor over a point represented by a conicS1 consists of 3 points.
One them is at the diagonal and enters with multiplicity 2. This implies that
X consists of the diagonal taken with multiplicity 2 and the residual curveF

of bidegree(2, 2). The fibre of the first projectionX → R overS1 consists
of complex circles which touchS andS1 and also touchS′ andS1. It consists
of the intersection of two quartic curves, each has a double line as component.
The double lines are represented by the pencil generated byS andS1 and
the pencil generated byS′ andS1. The only way when the fibre consists of
one point is whenS1 is one of the two null-lines touchingS andS′ at their
intersection point not at infinity. In this case the quadricQS1 of circles touching
S1 is the double plane of circles passing through the singular point ofS1. Thus
we see that the residual curveF has only two branch points for each of the two
projectionsX → R. Since its arithmetic genus is equal to 1, it must consist
of two irreducible curves of bidegree(1, 1) intersecting at two pointsa, b. If
we fix one of the componentsF1, then the map(S1, S2) 7→ (S2, S3) is the
automorphism ofF1 \ {a, b} ∼= C∗. The sequenceS1, S2, S3, . . . terminates if
and only if this automorphism is of finite orderm. As soon as it is, we can start
from anyS1 and obtain a finite sequence(S1, . . . , Sm = S1).

Remark2.2.2 We followed the proof from [26]. WhenS andS′ are concen-
tric real circles, the assertion is evident. The general case of real conics can be
reduced to this case (see [243], [546]). Poncelet’s and Steiner’s Theorems are
examples of aporismwhich can be loosely stated as follows. If one can find
one object satisfying a certain special property then there are infinitely many
such objects. There are some other poristic statements for complex circles:
Emch’ Theorem and thezig-zag theoremdiscussed in [26].
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2.3 Quadric surfaces

2.3.1 Polar properties of quadrics

Many of the polar properties of conics admit extension to nonsingular quadrics
in higher-dimensionalPn. For example, aself-polar(n+ 1)-hedronis defined
as a collection ofn + 1 ordered hyperplanesV (li) in general linear position
such that the pole of each planeV (li) is equal to the intersection point of the
remaining hyperplanes. Similarly to the case of conics, one proves that a self-
polar(n+ 1)-hedron is the same as a polar(n+ 1)-hedron of the quadric.

The definition of the conjugate(n+1)-hedra is straightforward extension of
the definition of conjugate triangles. We say that two simplexesΣ andΣ′ are
mutually polarwith respect to a quadricQ if the poles of the facets ofT ′ are
vertices ofT . This implies that the images ofk-dimensional faces ofT under
the polarity defined byQ are the opposite(n − k)-dimensional facets ofΣ′.
The condition (2.7) extends to any dimension. However, it does not translate to
a single equation on the coefficients of the linear forms defining the polyhedra.
This time we have a system ofn(n+1)/2 linear equations withn+1 unknowns
and the condition becomes the rank condition.

We adopt the terminology of convex geometry to call the set ofn + 1 lin-
early independent hyperplanes asimplex. The intersection of a subset ofk hy-
perplanes will be called a(n− k)-dimensionalface. If k = n, this is avertex,
if k = n− 1, this is anedge, if n = 0 this is afacet.

The notion of perspectivity of triangles extends to quadrics of any dimen-
sion. We say that two simplexes areperspectivefrom a pointo if there is a
bijection between the sets of vertices such that the lines joining the corre-
sponding vertices pass through the pointo. We say that the two simplexes are
perspective from a hyperplane if this hyperplane contains the intersections of
corresponding facets. We have also an extension of Desargues’ Theorem.

Theorem 2.3.1(G. Desargues) Two simplexes are perspective from a point
if and only if they are perspective from a hyperplane.

Proof Without loss of generality, we may assume that the first simplexΣ is
the coordinate simplex with verticespi = [ei] and it is perspective from the
point o = [e] = [1, . . . , 1]. Let qi = [vi] be the vertices of the second simplex
Σ2. Then we havevi = e + λiei for some scalarsλi. After subtracting, we
obtainvi−vj = λiei−λjej . Thus any two edgespipj andqiqj meet at a point
rij which lies on the hyperplaneH = V (

∑n
i=0

1
λi
ti). Since the intersection

of the facet ofΣ1 opposite to the pointpk with the facet ofΣ2 opposite to the
point qk contains all pointsrij with i, j 6= k, and they span the intersection,
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we get that the two simplexes are perspective fromH. The converse assertion
follows by duality.

Remark2.3.1 As remarked [574], p.252, the previous assertion is a true space
generalization of the classical Desargues’s Theorem. Other generalization ap-
plies to two space triangles and asserts that the perspectivity from a point im-
plies that the intersection points of the corresponding sides (which automati-
cally intersect) are collinear.

Let bq : E → E∨ be an isomorphism defined by a nonsingular quadric
Q = V (q). For any linear subspaceL ofE, the subspacebq(L)⊥ ofE is called
polar of L with respect toQ. It is clear that the dimensions of a subspace and
its polar subspace add up to the dimension of|E|. Two subspacesΛ andΛ′ of
the same dimension are calledconjugateif the polar subspace ofΛ intersects
Λ′.

These classical definitions can be rephrased in terms of standard definitions
of multi-linear algebra. LetΛ (resp.Λ′) be spanned by[v1], . . . , [vk] (resp.
[w1], . . . , [wk]). For any two vectorsv, w ∈ E, let (v, w)q denote the value of
the polar bilinear formbq of q on (v, w)q.

Lemma 2.3.2 Λ andΛ′ are conjugate with respect toQ if and only if

det


(v1, w1)q (v2, w1)q . . . (vk, w1)q
(v1, w2)q (v2, w2)q . . . (vk, w2)q

...
...

...
...

(v1, wk)q (v2, wk)q . . . (vk, wk)q

 = 0.

Proof Let bq : E → E∨ be the linear isomorphism defined by the polar
bilinear form of q. The linear funtionsbq(v1), . . . , bq(vk) form a basis of a
k-dimensional subspaceL of E∨ whose dualL⊥ is a (n − k)-dimensional
subspace ofE. It is easy to see that the spans ofv1, . . . , vk andw1, . . . , wk
have a common nonzero vector if and only ifL⊥ intersects nontrivially the lat-
ter span. The condition for this is that, under the natural identification

∧k(E∨)
and

∧k(E)∨, we have

bq(v1) ∧ . . . ∧ bq(vk)(w1 ∧ . . . ∧ wk) = det((vi, wj)q) = 0.

It follows from the Lemma that the relation to be conjugate is symmetric.

From now on, until the end of this section, we assume thatn = 3.
A tetrahedron inP3 with conjugate opposite edges is calledself-conjugate.
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It is clear that a polar tetrahedron ofQ is self-conjugate, but the converse is not
true.

Let T be a tetrahedron with verticesp1 = [v1], . . . , p4 = [v4]. Suppose
that two pairs of opposite edges are conjugate with respect to some quadric
Q. ThenT is self-conjugate (see [601], B. III, p. 135, or [584], 7.381). The
proof is immediate. Suppose the two conjugate pairs of edges are (p1p2, p3p4)
and(p1p3, p2p4). For brevity, let us denote(vi, vj)q by (ij). Then(13)(24)−
(14)(23) = 0, and(12)(34)−(14)(23) = 0 imply, after subtraction,(13)(24)−
(12)(34) = 0. This means that the remaining pair(p1p3, p2p3) is conjugate.

We know that two conjugate triangles are perspective. In the case of quadrics
we have a weaker property expressed on the following Chasles’ Theorem.

Theorem 2.3.3 [M. Chasles] LetT andT ′ be two mutually polar tetrahedra
with respect to a quadricQ. Suppose no two opposite edges ofT are conjugate.
Then the lines joining the corresponding vertices belong to the same ruling of
lines of some nonsingular quadricQ′.

Proof Let p1, p2, p3, p4 be the vertices ofT andq1, q2, q3, q4 be the vertices
of T ′. In the following{i, j, k, l} = {1, 2, 3, 4}. By definition,ql is pole of the
plane spanned bypi, pj , pk and the matching between the vertices ispi 7→ qi.
Suppose the edgepipj is not conjugate to the opposite edgepkpl. This means
that it does not intersect the edgeqiqj . This implies that the linespiqi andpjqj
do not intersect. By symmetry of the conjugacy relation, we also obtain that the
linespkqk andplql do not intersect. Together this implies that we may assume
that the first three lines̀i = piqi are not coplanar.

Without loss of generality, we may assume that the first tetrahedronT is
the coordinate tetrahedron. LetA = (aij) be a symmetric matrix defining the
quadricQ and letC = adj(A) = (cij) be the adjugate matrix defining the
dual quadric. The coordinates of facets ofT are columns ofA = (aij). The
coordinates of the intersection point of three facets defined by three columns
Ai, Aj , Ak of A are equal to the columnCm of C, wherem 6= i, j, k. Thus
a general point on the line generated by the point[1, 0, 0, 0] has coordinates
[λ, µc12, c13, c14], and similar for other three lines. Recall that by Steiner’s
construction (see [295], p. 528) one can generate a nonsingular quadric by two
projectively equivalent pencils of planes through two skew lines. The quadric
is the union of the intersection of the corresponding planes. Apply this con-
struction to the pencil of planes through the first two lines. They projectively
matched by the condition that the corresponding planes in the pencils contain
the same point[c31, c32, λ, c41] on the third line. The two planes from each
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pencil are defined by the equations

det


t0 t1 t2 t3
1 0 0 0

λc11 c12 c13 c14
c31 c32 λ c34


= t1c13c34 + t2(c14c32 − c12c34)− t3c13c32 + λ(t3c12 − t1c14) = 0,

det


t0 t1 t2 t3
0 1 0 0
c21 c22 c23 c24
c31 c32 λ c34


= t0c23c34 + t2(c24c31 − c21c34)− t3c23c31 + λ(t3c21 − t1c24) = 0,

Eliminatingλ, we find the equation of the quadric

(c12c34 − c24c13)(c23t0t3 + c14t1t2) + (c13c24 − c14c23)(c12t2t3 + c34t0t1)

+(c14c23 − c12c34)(c13t1t3 + c24t0t2) = 0.

By definition the quadric contains the first three lines. It is immediately checked
that a general point[c41, c42, c43, λ] on the fourth line lies on the quadric.

The following result follows from the beginning of the proof.

Proposition 2.3.4 Let T andT ′ be two mutually polar tetrahedra. Assume
that T (and henceT ′) is self-conjugate. ThenT and T ′ are in perspective
from the intersection points of the lines joining the corresponding vertices and
perspective from the polar plane of this point.

One can think that the covariant quadricQ′ constructed in the proof of
Chasles’ Theorem2.3.3 degenerates to a quadratic cone. Counting parame-
ters, it is easy to see that the pairs of perspective tetrahedra depend on the
same number 19 of parameters as pairs of tetrahedra mutually polar with re-
spect to some quadric. It is claimed in [21], v. 3, p.45 that any two perspective
tetrahedra are, in fact, mutually polar with respect to some quadric. Note that
the polarity condition imposes three conditions, and the self-conjugacy con-
dition imposes two additional conditions. This agrees with counting constants
(5 = 24− 19).

One can apply the previous construction to the problem of writing a quadratic
form q as a sum of 5 squares of lines forms. Suppose we have two self-
conjugate tetrahedraT and T ′ with respect to a quadricQ which are also
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mutually polar with respect toQ. By Proposition2.3.4, they are in perspec-
tive. Choose coordinates such thatT is the coordinate tetrahedron and let
A = (aij)0≤i,j≤3 be a symmetric matrix definingQ. We know that the equa-
tions of facetsHi of T ′ areV (

∑3
j=0 aijtj). SinceT is self-conjugate, the

intersection linesH0 ∩H1 meet the coordinate linest0 = t1 = 0. This means
that the equationsa20t2 + a30t3 = 0 anda21t2 + a31t3 = 0 have a nonzero
solution, i.e.a20a31 = a21a30. Similarly, we get thata10a32 = a30a12 and
a01a32 = a02a31. Using the symmetry of the matrix, this implies that all the
six products are equal. Hencea03a13/a12 = a23a03/a02 = a03a13/a01 are all
equal to some numberα. Then the equation of the quadrics can be written as a
sum of five squares

3∑
i=0

aiit
2
i + 2

∑
0≤i<j≤3

aijtitj

=
2∑
i=0

(aii − αai3)t2i + (a33 − α)t23 + α−1(
2∑
i=0

ai3ti + αt3)2 = 0.

Here we assume thatA is general enough. The center of perspective of the two
tetrahedra is the pole of the planeV (a03t0 + a13t1 + a23t2 + αt3).

The pentad of points consisting of the vertices of a self-conjugate tetrahe-
dron with regard to a quadricQ and the center of the perspectivityo of the
tetrahedron and its polar tetrahedron form aself-conjugate pentad(and penta-
hedron in the dual space). This means that the pole of each plane spanned by
three vertices lies on the opposite edge. As follows from above, the pentad of
points defined by a self-conjugate tetrahedron defines a polar polyhedron ofQ

consisting of the polar planes of the pentad.

Proposition 2.3.5 LetHi = V (li), i = 1 . . . , 5, form a nondegenerate polar
pentahedron of a quadricQ = V (q). Letp1, . . . , p5 be the poles of the planes
V (li) with respect toQ. Then the pentadp1, . . . , p5 is self-conjugate and is a
polar polyhedron of the dual quadric.

Proof Let xi be the pole ofHi with respect toQ. Then the pole of the plane
spanned byxi, xj , xk is the pointxijk = Hi ∩ Hj ∩ Hk. We may assume
that q =

∑4
i=0 l

2
i . ThenPxijk

(Q) belongs to the pencilP generated by the
remaining two planesHr,Hs. When we vary a point along the edgexrxs the
polar plane of the point belongs to the pencilP. For one of the points, the polar
plane will be equal to the planePxijk

(Q), hence this points coincide withxijk.
By definition, the pentad is self-conjugate.

The second assertion can be checked by straightforward computation. Since
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the polar pentahedron is nondegenerate, we can choose coordinates such that
the polar pentahedron ofQ is equal to equal to the union of the coordinate
tetrahedron and the planeV (

∑
ti). We can write

2q =
3∑
i=0

λit
2
i + (

3∑
i=0

ti)2

for some non-zero scalarsλi. For anyv = (a0, a1, a2, a3) ∈ C4, we have

Dv(q) =
3∑
i=0

(a+ λiai)ti

wherea =
∑3
i=0 ai. Letξi = a+λiai be considered as coordinates in the dual

space. We can expressai in terms ofξi by solving a system of linear equations
with matrix 

λ0 1 1 1
1 λ1 1 1
1 1 λ2 1
1 1 1 λ3

 .

Write aj = Lj(ξ0, . . . , ξ3) =
∑3
j=0 cijξj , where(cij) is the inverse matrix.

Let v∗j = (c0j , c1j , c2j , c3j). The dual quadric consists of points(ξ0, ξ1, ξ2, ξ3)
such thatq(a0, a1, a2, a3) = 0. This gives the equation of the dual quadric

Q∨ = V (
3∑
i=0

λiLi(ξ0, ξ1, ξ2, ξ3)2 +
( 3∑
i=0

Li(ξ0, ξ1, ξ2, ξ3)
)2).

So, we see that the dual quadric has the polar polyhedron defined by the planes
V (Li), V (

∑
Li). We have

Dv∗j
(q) =

3∑
i=0

(λiai + a)cijti = tj , j = 0, 1, 2, 3,

henceDP
v∗j

(q) =
∑
tj . This checks that the points of the pentad are poles of

the planes of the polar pentahedron ofQ.

Remark2.3.2 Let Π1, . . . ,ΠN be sets ofm-hedra inPn, n > 1, with no
common elements. Suppose that these polyhedra considered as hypersurfaces
in Pn of degreem (the unions of their hyperplanes) belong to the same pencil.
It is easy to see that this is equivalent to that the first twom-hedraΠ1,Π2 are
perspective from each hyperplane ofΠ3, . . . ,Πk. The open problem:

What is the maximal possible number N(n,m) of such polyhedra?
By taking a general hyperplane, we getN(n,m) ≤ N(2,m). It is known
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that N(2,m) ≥ 3 andN(2, 2), N(2, 3) = 4. It was proven by J. Stipins
[596] (see also [660]) thatN(2,m) ≤ 4 for all m and it is conjectured that
N(2,m) = 3 for m 6= 3.

In the next chapter we will consider the casen = 2,m = 3, N = 4. In
the casen = 3,m = 4, N = 3, the three tetrahedra are calleddesmic. The
configuration of the 12 planes forming three desmic tetrahedra has a beautiful
geometry. A general member of the pencil generated by three desmic tetra-
hedra is adesmic quartic surface. It has 12 singular points and represents a
special embedding of a Kummer surface of the product of two isomorphic el-
liptic curves. We refer to [341] for some modern treatment of desmic quartic
surfaces. We will encounter them later in Chapter 9.

2.3.2 Invariants of a pair of quadrics

LetQ1 = V (f) andQ2 = V (g) be two quadrics inPn (not necessary nonsin-
gular). Consider the pencilV (t0f + t1g) of quadrics spanned byC andS. The
zeros of the discriminant equationD = discr(t0f + t1g) = 0 correspond to
singular quadrics in the pencil. In coordinates, iff, g are defined by symmetric
matricesA = (aij), B = (bij), respectively, thenD = det(t0A + t1B) is
a homogeneous polynomial of degree≤ n + 1. Choosing different system of
coordinates replacesA,B byQTAQ,QTBQ, whereQ is an invertible matrix.
This replacesD with det(Q)2D. Thus the coefficients ofD are invariants on
the space of pairs of quadratic forms onCn+1 with respect to the action of the
group SL(n + 1). To computeD explicitly, we use the following formula for
the determinant of the sum of twom×m matricesX + Y :

det(X + Y ) =
∑

1≤i1<...<ik≤n

∆i1,...,ik , (2.15)

where∆i1,...,ik is the determinant of the matrix obtained fromX by replac-
ing the columnsXi1 , . . . , Xik with the columnsYi1 , . . . , Yik . Applying this
formula to our case, we get

D = Θ0t
n+1
0 +

n∑
i=1

Θit
n+1−i
0 ti + Θn+1t

n+1
n (2.16)

whereΘ0 = detA,Θn+1 = detB, and

Θk =
∑

1≤i1<...<ik≤n+1

det(A1 . . . Bj1 . . . Bjk . . . An+1),

whereA = [A1 . . . An+1], B = [B1 . . . Bn+1]. We immediately recognize the
geometric meanings of vanishing of the first and the last coefficients ofD. The



2.3 Quadric surfaces 109

coefficientΘ0 (resp.Θn+1) vanishes if and only ifQ1 (resp.Q2) is a singular
conic.

Proposition 2.3.6 Let Q1 andQ2 be two general quadrics. The following
conditions are equivalent.

(i) Θ1 = 0;

(ii) Q2 is apolar to the dual quadricQ∨1 ;

(iii) Q1 admits a polar simplex with vertices onQ2.

Proof First note that

Θ1 = Tr(Badj(A)). (2.17)

Now adj(A) is the matrix definingQ∨1 and the equivalence of (i) and (ii) be-
comes clear.

SinceΘi are invariants of(Q1, Q2), we may assume thatQ1 = V (
∑n
i=0 t

2
i ).

Suppose (iii) holds. Since the orthogonal group ofC acts transitively on the
set of polar simplexes ofQ1, we may assume that the coordinate simplex is
inscribed inQ2. Then the points[1, 0, . . . , 0], . . . , [0, . . . , 0, 1],must be onQ2.
Hence

Q2 = V (
∑

0≤i<k≤n

aijtitj),

and the condition(i) is verified.
Now suppose (i) holds. Choose coordinates such thatQ1 = V (αit2i ). Start

from any point onQ2 but not onQ1, and choose a projective transformation
that leavesQ1 invariant and sends the point to the pointp1 = [1, 0, . . . , 0]. The
quadricQ2 transforms to a quadric with equation in which the coefficient at
x2

0 is equal to 0. The polar line ofp1 with respect toQ1 is V (
∑n
i=1 αiti). It

intersectsQ2 along a quadric of dimensionn − 2 in the hyperplanet0 = 0.
Using a transformation leavingV (t0) andQ1 invariant, we transformQ′2 to
another quadric such that the pointp2 = [0, 1, 0, . . . , 0] belongs toV (t0)∩Q′2.
This implies that the coefficients of the equation ofQ′2 at t20 andt21 are equal
to zero. Continuing in this way, we may assume that the equation ofQ2 is of
the formannt2n+

∑n
0≤i<j≤n aijtitj = 0. The trace condition isannα−1

n = 0.
It implies thatann = 0 and hence the pointpn+1 = [0, . . . , 0, 1] is onQ2.
The triangle with vertices[1, 0, . . . , 0], . . . , [0, . . . , 0, 1] is a polar simplex of
Q1 which is inscribed inQ2.

Observe that, ifQ1 = V (
∑
t2i ), the trace condition means that the conicQ2

is defined by a harmonic polynomial with respect to the Laplace operator.
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Definition 2.3.1 A quadricQ1 is calledapolarto a quadricQ2 if one of the
equivalent conditions in Proposition2.3.6holds. IfQ1 is apolar toQ2 and
vice versa, the quadrics are calledmutually apolar.

The geometric interpretation of other invariantsΘi is less clear. First note
that a quadratic formq on a vector spaceE defines a quadratic formΛkq on
the space

∧k
E. Its polar bilinear form is the map

∧k
bq :

∧k
E →

∧k
E∨ =

(
∧k

E)∨, wherebq : E → E∨ is the polar bilinear form ofq. Explicitly, the
polar bilinear form

∧k
bq is defined by the formula

(v1 ∧ . . . ∧ vk, w1 ∧ . . . ∧ wk) = det(bq(vi, wj))

which we used already in Lemma2.3.2.
If A is the symmetric matrix definingq, then the matrix defining

∧k
q is

denoted byA(k) and is called thek-th compound matrixof A. If we index the
rows and the columns ofA(k) by increasing sequenceJ = (j1, . . . , jk) ⊂
{1, . . . , n + 1}, then the entryA(k)

J,J′ of A(k) is equal to the(J, J ′)-minor

AJ,J′ of A. Replacing eachA(k)
J,J′ with the minorAJ′,J taken with the sign

(−1)ε(J,J
′), we obtain the definition of theadjugatek-th compound matrix

adj(k)(A) (not to be confused with adj(A(k))). The Laplace formula for the
determinant gives

A(k)adj(k)(A) = det(A)I.

If A is invertible, thenA(k) is invertible and(A(k))−1 = 1
detAadj(A(k)).

We leave to the reader to check the following fact.

Proposition 2.3.7 Let Q1 = V (q), Q2 = V (q′) be defined by symmetric
matricesA,B and letA(k) andB(k) be theirk-th compound matrices. Then

Θk(A,B) = Tr(A(n+1−k)adj(B(k))).

Example2.3.1 Let n = 3. Then there is only one new invariant to interpret.
This is Θ2 = Tr(A(2)adj(B(2). The compound matricesA(2) andB(2) are
6 × 6 symmetric matrices whose entries are2 × 2-minors ofA andB taken
with an appropriate sign. LetA = (aij). The equation of the quadric defined
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byA(2) is given by thebordered determinant

det



a00 a01 a02 a03 ξ0 η0
a10 a11 a12 a13 ξ1 η1
a20 a21 a22 a23 ξ2 η2
a30 a31 a32 a33 ξ3 η3
ξ0 ξ1 ξ2 ξ3 0 0
η0 η1 η2 η3 0 0


= 0. (2.18)

The equation is called theline-equationor complex equationof the quadric
Q defined by the matrixA. If we take the minorsξiηj − ξjηi as Pl̈ucker co-
ordinates in|

∧2 C4|, the line equation parameterizes lines inP3 which are
tangent to the quadricQ. This can be immediately checked by considering a
parametric equation of a lineλ(ξ0, ξ1, ξ2, ξ3)+µ(η0, η1, η2, η3), inserting it in
the equation of the quadric and finding the condition when the corresponding
quadratic form inλ, µ has a double root. In matrix notation, the condition is
(ξAξ)(ηAη)− (ξAη)2 = 0 which can be easily seen rewritten in the form the
vanishing of the bordered determinant. The intersection of the quadric defined
by the matrixA(2) with the Klein quadric defining the Grassmannian of lines
in P3 is an example of aquadratic line complex. We will discuss this and other
quadratic line complexes in the last Chapter of the book.

TakeQ = V (
∑
t2i ). Then the bordered determinant becomes equal to

(
3∑
i=0

ξ2i )(
3∑
i=0

ηi)− (
3∑
i=0

ξiηi)2 =
∑

0≤i<j≤3

(ξiηj − ξjηi)2 =
∑

0≤i<j≤3

p2
ij ,

wherepij are the Pl̈ucker coordinates. We have

Θ2(A,B) = Tr(B2) =
∑

0≤i<j≤3

(bijbji − biibjj).

The coordinate lineti = tj = 0 touches the quadricQ2 whenbijbji−biibjj =
0. ThusΘ2 vanishes when a polar tetrahedron ofQ1 has its edges touchingQ2.

It is clear that the invariantsΘk are bihomogeneous of degree(k, n+ 1− i)
in coefficients ofA andB. We can consider them as invariants of the group
SL(n+1) acting on the product of two copies of the space of square symmetric
matrices of sizen + 1. One can prove that then + 1 invariantsΘi form a
complete system of polynomial invariants of two symmetric matrices. This
means that the polynomialsΘi generate the algebra of invariant polynomials
(see [631], p. 304).

One can use the invariantsΘi to express different mutual geometric proper-
ties of two quadrics. We refer to [584] for many examples. We give only one
example.
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Theorem 2.3.8 Two quadrics touch each other if and only if

J = D(Θ0, . . . ,Θn+1) = 0,

whereD is the discriminant of a binary form of degreen+ 1.

Proof This follows from the description of the tangent space of the discrimi-
nant hypersurface of quadratic forms. The line defining the pencil of quadrics
generated by the two quadrics does not intersect the discriminant hypersurface
transversally if and only if one of quadrics in the pencil is of corank≥ 2, or one
of the quadrics has a singular point at the base locus of the pencil (see (1.45)).
In the case of pencils the first condition implies the second one. Thus the con-
dition for tangency is that one of the roots of the equationdet(t0A+ t1B) = 0
is a multiple root.

The invariantJ is called thetact-invariantof two quadrics.1 Note that two
quadrics touch each other if and only if their intersection has a singular point.

Corollary 2.3.9 The degree of the hypersurface of quadrics inPn touching a
given nonsingular quadric is equal ton(n+ 1).

Proof This follows from the known property of the discriminant of a binary
form

∑d
i=0 ait

d−i
0 ti1. If we assign the degree(d − i, i) to each coefficientai,

then the total degree of the discriminant is equal tod(d − 1). This can be
checked, for example, by computing the discriminant of the forma0t

d
0 + adt

d
1

which is equal toddad−1
0 ad−1

d (see [264], p. 406). In our case, eachΘk has
bidegree(n + 1 − k, k), and we get that the total bidegree is equal to(n(n +
1), n(n+ 1)). Fixing one of the quadrics, we obtain the asserted degree of the
hypersurface.

2.3.3 Invariants of a pair of conics

In this case we have four invariantsΘ0,Θ1,Θ2,Θ3 which are traditionallyd
enoted by∆,Θ,Θ′,∆′, respectively.

The polynomials

(R0, R1, R2, R3) = (ΘΘ′,∆∆′,Θ′3∆,Θ3∆′)

are bi-homogeneneous of degrees(3, 3), (3, 3), (6, 6), (6, 6). They define a
rational mapP5 × P5 99K P(1, 1, 2, 2). We have the obvious relationR3

0R1 −
R2R3 = 0. After dehomogenization, we obtain rational functions

X = R1/R
2
0, Y = R2/R0, Z = R3/R

2
0

1 The terminology is due to A. Cayley, taction = tangency.
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such thatX = Y Z. The rational functions

Y = Θ′∆/Θ2, Z = Θ∆′/Θ′2

generate the field of rational invariants of pairs of conics (see [583], p. 280).
The polynomialsR0, R1, R2, R3 generate the algebra of bihomogeneous in-
variants onP5 × P5 with respect to the diagonal action of SL(4) and the GIT-
quotient is isomorphic to the rational surfaceV (t30t1 − t2t3) in the weighted
projective spaceP(1, 1, 2, 2). The surface is a normal surface with one singular
point [0, 1, 0, 0] of typeA2. The singular point corresponds to a unique orbit
of a pair of nonsingular conics(C,S) such thatC∨ is apolar toS andS∨ is
apolar toC. It is represented by the pair

t20 + t21 + t22 = 0, t20 + εt21 + ε2t22 = 0,

whereε = e2πi/3. The stabilizer subgroup of this orbit is a cyclic group of
order 3 generated by a cyclic permutation of the coordinates.

Recall that the GIT-quotient parameterizes minimal orbits of semi-stable
points. In our case, all semi-stable points are stable, and unstable points cor-
responds to a pairs of conics, one of which has a singular point on the other
conic.

Using the invariants∆,Θ,Θ′,∆′, one can express the condition that the two
conics are Poncelet related.

Theorem 2.3.10 LetC andS be two nonsingular conics. A triangle inscribed
in C and circumscribingS exists if and only if

Θ′2 − 4Θ∆′ = 0.

Proof Suppose there is a triangle inscribed inC and circumscribingS. Ap-
plying a linear transformation, we may assume that the vertices of the triangle
are the points[1, 0, 0], [0, 1, 0] and[0, 0, 1] andC = V (t0t1 + t0t2 + t1t− 2).
Let S = V (g), where

g = at20 + bt21 + ct22 + 2dt0t1 + 2et0t2 + 2ft1t2. (2.19)

The triangle circumscribesS when the points[1, 0, 0], [0, 1, 0], [0, 0, 1] lie on
the dual coničS. This implies that the diagonal entriesbc−f2, ac−e2, ab−d2

of the matrix adj(B) are equal to zero. Therefore, we may assume that

g = α2t20 + β2t21 + γ2t22 − 2αβt0t1 − 2αγt0t2 − 2βγt1t2. (2.20)
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We get

Θ′ = Tr
(0 1 1

1 0 1
1 1 0

 ·
 0 2αβγ2 2αγβ2

2αβγ2 0 2βγα2

2αγβ2 2βγα2 0

) = 4αβγ(α+β+ γ),

Θ = Tr
( α2 −αβ −αγ
−αβ β2 −βγ
−αγ −βγ γ2

−1 1 1
1 −1 1
1 1 −1

) = −(α+ β + γ)2,

∆′ = −4(αβγ)2.

This checks thatΘ′2 − 4Θ∆′ = 0.
Let us prove the sufficiency of the condition. Take a tangent line`1 to S

intersectingC at two pointsx, y and consider tangent lines`2, `3 to S passing
throughx andy, respectively. The triangle with sides`1, `2, `3 circumscribes
S and has two vertices onC. Choose the coordinates such that this triangle
is the coordinate triangle. Then, we may assume thatC = V (at20 + 2t0t1 +
2t1t2 +2t0t2) andS = V (g), whereg is as in (2.20). ComputingΘ′2− 4Θ∆′

we find that it is equal to zero if and only ifa = 0. Thus the coordinate triangle
is inscribed inC.

Darboux’s Theorem is another example of a poristic statement. with respect
to the property of the existence of a polygon inscribed in one conic and cir-
cumscribing the other conic. Another example of a poristic statement is one of
the equivalent properties of a pair of conics from Proposition2.3.6: Given two
nonsingular conicsC andS, there exists a polar triangle ofC inscribed inS,
or, in other words,C is apolar toS.

Recall from Theorem1.1.4that any projective automorphism ofPn = |E|
is a composition of two polaritiesφ, ψ : |E| → |E∨|.

Proposition 2.3.11 Let C and S be two different nonsingular conics and
g ∈ Aut(P2) be the composition of the two polarities defined by the conics.
Theng is of order 3 if and only ifC andS are mutually apolar.

Proof LetA,B be symmetric3× 3 matrices corresponding toC andS. The
conicsC andS are mutually apolar if and only if Tr(AB−1) = Tr(BA−1)
= 0. The projective transformationg is given by the matrixX = AB−1.
This transformation is of order3 if and only if the characteristic polynomial
|X − λI3| of the matrixX has zero coefficients atλ, λ2. Since Tr(X) = 0,
the coefficient atλ2 is equal to zero. The coefficient atλ is equal to zero if
and only if Tr(X−1) = Tr(BA−1) = 0. Thusg is of order 3 if and only if
Tr(AB−1) = Tr(BA−1) = 0.
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Remark2.3.3 It is immediate that any set of mutually apolar conics is linearly
independent. Thus the largest number of mutually apolar conics is equal to 6.
The first example of a set of 6 mutually apolar conics was given by F. Gerbardi
[266] The following is a set of mutually apolar conics given by P. Gordan
[283]:

t20 + εt21 + ε2t22 = 0,

t20 + ε2t21 + εt22 = 0,

r2(t20 + t21 + t22) + r
√

3(t0t1 + t0t2 + t1t2) = 0,

r2(t20 + t21 + t22) + r
√

3(−t0t1 − t0t2 + t1t2) = 0,

r2(t20 + t21 + t22) + r
√

3(−t0t1 + t0t2 − t1t2) = 0,

r2(t20 + t21 + t22) + r
√

3(t0t1 − t0t2 − t1t2) = 0,

whereη = e2πi/3, r = −
√

3+
√
−5

4 . These six quadrics play an important role
in the theory of invariants of theValentiner groupG, the subgroup of PGL(4)
isomorphic to the alternating groupA6. All such subgroups are conjugate in
PGL(4) and one can choose one that acts in such way that the six mutually
apolar conics given by the above equations are permuted. The groupG admits
a central extensioñG with the center of order6 which lift the action ofG to a
linear action inC3. The groupG̃ is acomplex reflection groupin C3 with the
algebra of invariants generated by three polynomials of degrees 6, 12 and 30.
The invariant of degree 6 is the sum of cubes of the 6 mutually apolar quadratic
forms. The invariant of degree 12 is their product. The invariant of degree 30
is also expressed in terms of the 6 quadratic forms but in a more complicated
way (see [267], [283]). We refer to [273] for further discussion of mutually
apolar conics.

Consider the set of polar triangles ofC inscribed inS. We know that this set
is either empty or of dimension≥ 1. We consider each triangle as a set of its 3
vertices, i.e. as an effective divisor of degree 3 onS.

Proposition 2.3.12 The closureX of the set of self-polar triangles with re-
spect toC which are inscribed inS, if not empty, is ag1

3 , i.e. a linear pencil of
divisors of degree 3.

Proof First we use that two self-polar triangles with respect toC and in-
scribed inS which share a common vertex must coincide. In fact, the polar
line of the vertex must intersectS at the vertices of the triangle. Then the as-
sertion is proved using the argument from the proof of Proposition2.2.4.

Note that a generalg1
3 contains 4 singular divisors corresponding to ramifi-
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cation points of the corresponding mapP1 → P1. In our case these divisors
correspond to 4 intersection points ofC andS.

Another example of a poristic statement is the following.

Theorem 2.3.13 Let T andT ′ be two different triangles. The following as-
sertions are equivalent:

(i) there exists a conicS containing the vertices of the two triangles;

(ii) there exists a conicΣ touching the sides of the two triangles;

(iii) there exists a conicC with polar trianglesT andT ′.

Moreover, when one of the conditions is satisfied, there is an infinite number
of triangles inscribed inS, circumscribed aroundΣ, and all of these triangles
are polar triangles ofC.

Proof (iii)⇔ (ii) According to Proposition1.3.4, a conicC admitsT as a
polar triangle if the conics in the dual plane containing the sides of the triangle
are all apolar toC. If T andT ′ are polar triangles ofC, then the two nets of
conics passing through the sides of the first and the second triangle intersect
in the 4-dimensional space of apolar conics. The common conic is the conic
Σ from (ii). Conversely, ifΣ exists, the two nets contain a common conic and
hence are contained in a 4-dimensional space of conics in the dual plane. The
apolar conic is the conicC from (iii).

(iii)⇔ (i) This follows from the previous argument applying Proposition
2.1.3.

Let us prove the last assertion. Suppose one of the conditions of the Theorem
is satisfied. Then we have the conicsC,S,Σ with the asserted properties with
respect to the two trianglesT, T ′. By Proposition2.3.12, the set of self-polar
triangles with respect toC inscribed inS is ag1

3 . By Proposition2.2.4, the set
of triangles inscribed inS and circumscribingΣ is also ag1

3 . Two g1
3 ’s with 2

common divisors coincide.

Recall from Theorem2.3.8that the condition that two conicsC andS touch
each other is

27∆2∆′2 − 18ΘΘ′∆∆′ + 4∆Θ′3 + 4∆′Θ3 −Θ′2Θ2 = 0. (2.21)

The variety of pairs of touching conics is a hypersurface of bidegree(6, 6)
in P5 × P5. In particular, conics touching a given conic is a hypersurface of
degree 6 in the space of conics. This fact is used for the solution of the famous
Apollonius problemin enumerative geometry:find the number of nonsingular
conics touching five fixed general conics (see [253], Example 9.1.9).
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Remark2.3.4 Choose a coordinate system such thatC = V (t20 + t21 + t22).
Then the condition thatS is Poncelet related toC with respect to triangles is
easily seen to be equal to

c22 − c1c3 = 0,

where

det(A− tI3) = (−t)3 + c1(−t)2 + c2(−t) + c3

is the characteristic polynomial of a symmetric matrixA definingS. This is
a quartic hypersurface in the space of conics. The polynomialsc1, c2, c3 gen-
erate the algebra of invariants of the group SO(3) acting on the spaceV =
S2((C3)∨). If we use the decompositionV = Hq⊕Cq, whereq = t20 +t21 +t22
andHq is the space of harmonic quadratic polynomials with respect toq,
then the first invariant corresponds to the projectionHq ⊕ Cq → Cq. Let
ν2 : P1 → P2 be the Veronese map with image equal toC. Then the pull-back
map

ν∗ : V = H0(P2,OP2(2))→ H0(P1,OP1(4))

defines an isomorphism of the representationHq of SO(3) with the represen-
tationS4((C2)∨) of SL(2). Under this isomorphism, the invariantsc2 andc3
correspond to the invariantsS andT on the space of binary quartics from Ex-
ample1.5.2. In particular, the fact that a harmonic conic is Poncelet related
to C is equivalent to that the corresponding binary quartic admits an apolar
binary quadric. Also, the discriminant invariant of degree 6 of binary quartics
corresponds to the condition that a harmonic conic touchesC.

2.3.4 The Salmon conic

One call also look forcovariantsor contravariantsof a pair of conics, that is,
rational maps|OP2(2)| × |OP2(2)| 99K |OP2(d)| or |OP2(2)| × |OP2(2)| 99K
|OP2(d)|∨ which are defined geometrically, i.e. not depending on a choice of
projective coordinates.

Recall the definition of thecross ratioof four distinct ordered pointspi =
[ai, bi] onP1

R(p1p2; p3p4) =
(p1 − p2)(p3 − p4)
(p1 − p3)(p2 − p4)

, (2.22)

where

pi − pj = det
(
ai bi
aj bj

)
= aibj − ajbi.

It is immediately checked that the cross ratio does not take the values0, 1,∞.
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It does not depend on the choice of projective coordinates. It is also invariant
under a permutation of the four points equal to the product of two commuting
transpositions. The permutation(12) changesR to−R/(1 − R) and the per-
mutation(23) changesR to 1/R. Thus there are at most 6 possible cross ratios
for an ordered set of 4 points

R,
1
R
, 1−R, 1

1−R
,

R

R− 1
,
R− 1
R

.

The number of distinct cross ratios may be reduced to three or two. The first
case happens if and only if one of them is equal to−1 (the other ones will be
2 and1/2). The unordered set of four points in this case is called aharmonic
quadruple. The second case happens whenR satisfiesR2+R+1 = 0, i.e.R is
one of two cubic roots of 1 not equal to 1. In this case we haveequianharmonic
quadruple.

If we identify the projective space of binary forms of degree 2 with the pro-
jective plane, the relation (2.3) can be viewed as a symmetric hypersurfaceH

of bidegree(1, 1) in P2 × P2. In particular, it makes sense to speak about har-
monically conjugate pairs of maybe coinciding points. We immediately check
that a double point is harmonically conjugate to a pair of points if and only if
it coincides with one of the roots of this form.

We can extend the definition of the cross ratio to any set of points no three
of which coincide by considering the cross ratios as the point

R = [(p1 − p2)(p3 − p4), (p1 − p3)(p2 − p4)] ∈ P1. (2.23)

It is easy to see that two points coincide if and only ifR = [0, 1], [1, 1], [1, 0].
This corresponds toR = 0, 1,∞.

Two pairs of points{p1, p2} and {q1, q2} are harmonically conjugate in
sense of definition (2.3) if and only if R(p1q1; q2p2) = −1. To check this,
we may assume thatp1, p2 are roots off = αt20 + 2βt0t1 + γt21 andq1, q2 are
roots ofg = α′t20 + 2β′t0t1 + γ′t21, where, for simplicity, we may assume that
α, α′ 6= 0 so that, in affine coordinates, the rootsx, y of the first equations sat-
isfy x+y = −2β/α, xy = γ/α and similarly the roots of the second equation
x′, y′ satisfyx′ + y′ = −2β′/α′, x′y′ = γ′/α′. Then

R(xx′; y′y) =
(x− x′)(y′ − y)
(x− y′)(x′ − y)

= −1

if and only if

(x− x′)(y′ − y) + (x− y′)(x′ − y) = (x+ y)(x′ + y′)− 2xy − 2x′y

=
4ββ′

αα′
− 2γ

α
− 2γ′

α′
= −2

αγ′ + α′γ − 2ββ′

αα′
= 0.
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So we see that the two pairs of roots form a harmonic quadruple if and only
(2.3) holds.

The expressionαγ′ + α′γ − 2ββ′′ is an invariant of a pair(f, g) of binary
quadratic forms. It is equal to the coefficient att for the discriminant off + tg.
It is analogous to the invariantsΘ andΘ′ for a pair of conics.

TheSalmon conicassociated to a pair of conicsC andC ′ is defined to be
the locusS(C,C ′) of pointsx in P2 such that the pairs of the tangents through
x to C and toC ′ are harmonically conjugate. Note that it makes sense even
whenx lies on one of the conics. In this case one considers the corresponding
tangent as the double tangent.

LetA be a square symmetric3×3-matrix. The entries of the adjugate matrix
adj(A) are quadratic forms in the entries ofA. By polarization, we obtain

adj(λ0A+ λ1B) = λ2
0adj(A) + λ0λ1adj(A,B) + λ2

1adj(B),

where(A,B)→ adj(A,B) is a bilinear function ofA andB.

Theorem 2.3.14 LetC = V (q), C ′ = V (q′), whereq andq′ are quadratic
forms defined by symmetric matricesA = (aij) andB = (bij). Then the
Salmon conicS(C,C ′) is defined by the matrixadj(adj(A),adj(B)).

Proof By duality, the pencil of lines through a pointx = [x0, x1, x2] cor-
responds to the linèx = V (x0u0 + x1u1 + x2u2) in the dual plane with
dual coordinatesu0, u1, u2. Without loss of generality, we may assume that
x2 = −1. Let C∨, C ′∨ be the dual conics defined by the matrices adj(A) =
(Aij),adj(B) = (Bij). The intersection of the linèx with C∨ is equal to two
points[u0, u1, x0u0 + x1u1] such that

(A00 +A02x0 +A22x
2
0)u

2
0 + (A11 +A12x1 +A22x

2
1)u

2
1

+2(A22x0t1 +A02x1 +A12x0 +A01)u0u1 = 0.

ReplacingA with B, we get the similar formula for the intersection of` with
C ′∨. The intersection points[u0, u1, x0u0 + x1u1] correspond to the tangent
lines toC andC ′ passing through the pointx. By (2.3), they are harmonically
conjugate if and only if

(A00 +A02x0 +A22x
2
0)(B11 +B12x1 +B22x

2
1)

+(B00 +B02x0 +B22x
2
0)(A11 +A12x1 +A22x

2
1)

−2(A22x0t1+A02x1+A12x0+A01)(B22x0x1+B02x1+B12x0+B01) = 0.

This gives the equation of the Salmon conicS(C,C ′):

(A22B11 + A11B22 − 2A12B12)x
2
0 + (A00B22 + A22B00 − 2A02B02)x

2
1
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+(A00B11+A11B00−2A01B01)x
2+2(A02B12+A12B02−A22B02−A02B22)x0x1

+2(A02B11 + A11B02 −A12B01 −A01B12)x0x2

+2(A00B12 + A12B00 −A02B01 −A01B02)x1x2 = 0.

It is easy to see that the symmetric matrix defining this quadratic form is equal
to adj(adj(A),adj(B)).

Let S(C,C ′) = V (s). Consider the pencil generated byC∨ andC ′∨. In
matrix notation, it is equal to the pencil of matrices adj(A) + tadj(B). The
dual conics of this pencil form a quadratic family of conics defined by the
matrices adj(adj(A) + tadj(B)) = |A|A + tS + t2|B|B, whereS is the ma-
trix defining the Salmon conic. Its members are tangent to the quartic curve
V (s2 − 4|A||B|qq′). Since the members of the linear pencil pass through the
four pointsC∨ ∩ C ′∨, all members of the quadratic family are tangent to the
four common tangents ofC andC ′. Thus

V (s2 − 4|A||B|qq′) = V (l1l2l3l4), (2.24)

whereV (li) are the common tangents. This implies the following remarkable
property of the Salmon conic.

Theorem 2.3.15 LetC andC ′ be two conics such that the dual conics inter-
sect at four distinct points representing the four common tangents ofC andS.
Then the eight tangency points lie on the Salmon conic associated withC and
C ′.

Here is another proof of the Theorem which does not use (2.24). Let x be a
point where the Salmon conic meetsC. Then the tangent linè throughx to
C represents a double line in the harmonic pencil formed by the four tangents
throughx toC andS. As we remarked before, the conjugate pair of lines must
contain`. Thus` is a common tangent toC andS and hencex is one of the
eight tangency points. Conversely, the argument is reversible and shows that
every tangency point lies on the Salmon conic.

The Salmon conic represents a covariant of pairs of conics. A similar con-
struction gives a contravariant conic in the dual plane, called theSalmon enve-
lope conicS′(C,C ′). It parameterizes lines which intersect the dual conicsC

andC ′ at two pairs of harmonically conjugate points. We leave to the reader to
show that its equation is equal to

(a22b11 + a11b22 − 2a12b12)u2
0 + (a00b22 + a22b00 − 2a02b02)u2

1

+(a00b11 +a11b00−2a01b01)u2
2 +2(a02b12 +a12b02−a22b02−a02b22)u0u1
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+2(a02b11 + a11b02 − a12b01 − a01b12)u0u2

+2(a00b12 + a12b00 − a02b01 − a01b02)u1u2 = 0.

If we write S′(C,C ′) = V (s′), we find, as above, thatV (s′2 − q∨q′∨) is
equal to the union of 4 lines corresponding to intersection points ofC ∩ C ′.
This implies that the Salmon envelope conic passes through the eight points
corresponding to the eight tangents ofC andC ′ at the intersection points.

The equation of the Salmon conic is greatly simplified if we simultaneously
diagonalize the quadricsq andq′ definingC andC ′. Assumeq = t20 + t21 +
t22, q

′ = at20 + bt21 + ct22. Then the equation ofS(C,C ′) becomes

a(b+ c)t20 + b(c+ a)t21 + c(a+ b)t22 = 0,

and the equation ofS′(C,C ′) becomes

(b+ c)u2
0 + (c+ a)u2

1 + (a+ b)u2
2 = 0.

By passing to the dual conic, we see that the dual conicS′(C,C ′)∨ is different
from S(C,C ′). Its equation is

(a+ c)(a+ b)t20 + (a+ b)(b+ c)t21 + (a+ b)(b+ c)t22 = 0.

It can be expressed as a linear combination of the equations ofC,C ′ and
S(C,C ′)

(a+c)(a+b)t20+(a+b)(b+c)t21+(a+b)(b+c)t22 = (ab+bc+ac)(t20+t21+t22)

+(a+ b+ c)(at20 + bt21 + ct22)− (a(b+ c)t20 + b(c+ a)t21 + c(a+ b)t22).

Remark2.3.5 The full system of covariants, and contravariants of a pair of
conics is known (see [286], p. 286. ) The curvesC,C ′,S′(C,C ′) and the Jaco-
bian ofC,C ′, andS(C,C ′) generate the algebra of covariants over the ring of
invariants. The envelopesC∨, C ′∨,S′(C,C ′) and the JacobianC∨, C ′∨, and
S′(C,C ′) generate the algebra of contravariants.

indexcontravariant!of a pair of conics

Exercises

2.1 Let E be a vector space of even dimensionn = 2k over a fieldK of character-
istic 0 and (e1, . . . , en) be a basis inE. Let ω =

P
i<j aijei ∧ ej ∈

V2 E∨ and
A = (aij)1≤i≤j≤n be the skew-symmetric matrix defined by the coefficientsaij . LetVk(ω) = ω ∧ · · · ∧ω = ak!e1 ∧ · · · ∧ en for somea ∈ F . The elementa is called the
pfaffianof A and is denoted by Pf(A).



122 Conics and quadric surfaces

(i) Show that

Pf(A) =
X
S∈S

ε(S)
Y

(i,j)∈S

aij ,

whereS is a set of pairs(i1, j1), . . . , (ik, jk) such that1 ≤ is < js ≤ 2k, s =
1, . . . , k, {i1, . . . , ik, j1, . . . , jk} = {1, . . . , n}, S is the set of such setsS,
ε(S) = 1 if the permutation(i1, j1, . . . , ik, jk) is even and−1 otherwise.

(ii) Compute Pf(A) whenn = 2, 4, 6.
(iii) Show that, for any invertible matrixC,

Pf(tC ·A · C) = det(C)Pf(A).

(iv) Using (iii) prove that

det(A) = Pf(A)2.

(iv) Show that

Pf(A) =

nX
i=1

(−1)i+j−1Pf(Aij)aij ,

whereAij is the matrix of ordern− 2 obtained by deleting thei-th andj-th rows
and columns ofA.

(v) Let B be a skew-symmetric matrix of odd order2k − 1 andBi be the matrix
of order2k − 2 obtained fromB by deleting thei-th row andi-th column. Show
that the vector(Pf(B1), . . . , (−1)i+1Pf(Bi), . . . , Pf(B2k−1)) is a solution of the
equationB · x = 0.

(vi) Show that the rank of a skew-symmetric matrixA of any ordern is equal to
the largestm such that there existi1 < . . . < im such that the matrixAi1...im

obtained fromA by deletingij-th rows and columns,j = 1, . . . , m, has nonzero
pfaffian .

2.2 Let V = ν2(P2) be a Veronese surface inP5, considered as the space of conics in
P2.

(i) Let Λ be a plane inP5 andNΛ be the net of conics inP2 cut out by hyperplanes
containingΛ. Show thatΛ is a trisecant plane if and only if the set of base points
of NΛ consists of≥ 3 points (counting with multiplicities). Conversely, a net of
conics through 3 points defines a unique trisecant plane.

(ii) Show that the nets of conics with 2 base points, one of them is infinitely near,
forms an irreducible divisor in the variety of trisecant planes.

(iii) Using (ii), show that the anticanonical divisor of degenerate triangles is irre-
ducible.

(iv) Show that the trisecant planes intersecting the Veronese plane at one point (cor-
responding to net of conics with one base point of multiplicity 3) define a smooth
rational curve in the boundary of the variety of self-polar triangles. Show that this
curve is equal to the set of singular points of the boundary.

2.3 Let U ⊂ (P2)(3) be the subset of the symmetric product ofP2 parameterizing the
sets of three distinct points. For each setZ ∈ U let LZ be the linear system of conics
containingZ. Consider the mapf : U → G2(P5), Z 7→ LZ ⊂ |OP2(2)|.

(i) Consider the divisorD in U parameterizing sets of 3 distinct collinear points.
Show thatf(D) is a closed subvariety ofG2(P5) isomorphic toP2.
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(ii) Show that the mapf extends to the Hilbert scheme(P2)[3] of 0-cyclesZ with
h0(OZ) = 3.

(iii) Show that the closurēD of π−1(D) in the Hilbert scheme is isomorphic to a
P3-bundle overP2 and the restriction off to D̄ is the projection map to its base.

(iv) Define the map̃f : P → |OP2(2)| which assigns to a point in the fibrep−1(Z)

the corresponding conic in the net of conics thoughZ. Show that the fibre of̃f over
a nonsingular conicC is isomorphic to the Fano variety of self-polar triangles of
the dual conicC∨.

(v) Let Ps = f̃−1(D2(2)) be the preimage of the hypersurface of singular conics.
Describe the fibres of the projectionsp : Ps → (P2)[3] andf̃ : Ps → D2(2).

2.4 Identify P1 with its image under a Veronese mapν2 : P1 → P2.

(i) Show that any involution ofP1 (i.e. an automorphism of order 2) coincides with
the involution of the Veronese conic obtained by projection from a point not lying
on the conic (called the center of the involution).

(ii) Show that two involutions ofP1 without common fixed points commute if and
only if the two pairs of fixed points are harmonically conjugate.

(iii) Show that the product of three involutions is an involution if their centers are
collinear (J. Valles). The converse is known for any number of involutions.

2.5Prove that two unordered pairs{a, b}, {c, d} of points inP1 are harmonically con-
jugate if and only if there is an involution ofP1 with fixed pointsa, b that switchesc
andd.

2.6Prove the followingHesse’s Theorem. If two pairs of opposite vertices of a quadri-
lateral are each conjugate for a conic, then the third pair is also conjugate. Such a
quadrilateral is called aHesse quadrilateral. Show that four lines form a polar quadri-
lateral for a conic if and only if it is a Hesse quadrilateral.

2.7A tetrad of pointsp1, p2, p3, p4 in the plane is calledself-conjugatewith respect to
a nonsingular conic if no three points are collinear and the pole of each sidepipj lies
on the opposite sidepkpl.

(i) Given two conjugate triangles, show that the vertices of one of the triangles to-
gether with the center of perspectivity form a self-conjugate tetrad.

(ii) Show that the four lines with poles equal top1, p2, p3, p4 form a polar quadrilat-
eral of the conic and any nondegenerate polar quadrilateral is obtained in this way
from a self-conjugate tetrad.

(iii) Show that any polar triangle of a conic can be extended to a polar quadrilateral.

2.8Extend Darboux’s Theorem to the case of two tangent conics.

2.9Show that the secant lines of a Veronese curveRm in Pm are parameterized by the
surface in the GrassmannianG1(Pm) isomorphic toP2. Show that the embedding of
P2 into the Grassmannian is given by the Schwarzenberger bundle.

2.10Let U be a 2-dimensional vector space. Use the construction of curves of degree
n − 1 Poncelet related to a conic to exhibit an isomorphism of linear representationsV2(SnU) andSn−1(S2U) of SL(U).

2.11 Assume that the pencil of sections of the Schwarzenberger bundleSn,C has no
base points. Show that the Poncelet curve associated to the pencil is nonsingular at a
point x defined by a sections from the pencil if and only if the scheme of zerosZ(s)
is reduced.
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2.12Find a geometric interpretation of vanishing of the invariantsΘ, Θ′ from (2.16) in
the case whenC or S is a singular conic.

2.13Let p1, p2, p3, p4 be four distinct points on a nonsingular conicC. Show that the
triangle with the verticesA = p1p3 ∩ p2p4, B = p1p2 ∩ p3p4 andC = p1p4 ∩ p2p3

is a self-conjugate triangle with respect toC.

2.14Show that two pairs{a, b}, {c, d} of points inP1 are harmonically conjugate if
and only if the cross ratio[ac; bd] is equal to−1.

2.15Let (a, b, c, d) be a quadrangle inP2, andp, q be the intersection points of two
pairs of opposite sidesab, cd andbc, ad. Let p′, q′ be the intersection points of the line
pq with the diagonalsac andbd. Show that the pairs(p, q) and(p′, q′) are harmonically
conjugate .

2.16Show that the pair of points on a diagonal of a complete quadrilateral defined by its
sides is harmonically conjugate to the pair of points defined by intersection with other
two diagonals.

2.17Show that a general net of conics admits a common polar quadrangle.2.18Show

that four general conics admit a unique common polar quadrangle.

2.19Find the condition on a pair of conics expressing that the associate Salmon conic
is degenerate.

2.20 Show that the triangle formed by any three tangents to two general conics is in
perspective with any three of common points.

2.21Show that the set of2n + 2 vertices of two self-polar(n + 1)-hedra of a quadric
in Pn impose one less condition on quadrics. In particular, two self-polar triangles lie
on a conic, two self-polar tetrahedra are the base points of a net of quadrics.

2.22 A hexad of points inP3 is called self-conjugate with respect to a nonsingular
quadric if no four are on the plane and the pole of each plane spanned by three points
lies on the plane spanned by the remaining three points.. Show that the quadric admits a
nondegenerate polar hexahedron whose planes are polar planes of points in the hexad.
Conversely, any nondegenerate polar hexahedron of the quadric is obtained in this way
from a self-conjugate tetrad.

2.23 Show that the variety of sums of 5 powers of a nonsingular quadric surface is
isomorphic to the variety of self-conjugate pentads of points inP3.

2.24Consider 60 Pascal lines associated with a hexad of points on a conic. Prove the
following properties of the lines.

(i) There are 20 points at which three of Pascal lines intersect, called theSteiner
points.

(ii) The 20 Steiner points lie on 15 lines, each containing 4 of the points (thePlücker
lines).

(iii) There are 60 points each contained in three Plücker lines (theKirkman points).

2.25Prove the following generalization of Pascal’s Theorem. Consider the twelve in-
tersection points of a nonsingular quadric surfaceQ with 6 edges of a tetrahedronT
with verticesp1, p2, p3, p4. For each vertexpi choose one of the 12 points on each edge
pipj and consider the planeΛi spanned by these three points. Show that the four lines
in which each of these four planes meats the opposite face of the tetrahedron are rulings
of a quadric. This gives 32 quadrics associated to the pair(T, Q) [104], p. 400, [21], v.
3, Ex. 15, [540], p. 362.

2.26Let Θ0, . . . , Θ4 be the invariants of a pair of quadric surfaces.
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(i) Show that the 5 productsΘ2, Θ0Θ4, Θ1Θ3, Θ
2
1Θ4, Θ

2
3Θ0 generate the algebra

of invariants of bidegrees(m, n) with m = n.
(ii) Show that the GIT-quotient of ordered pairs of quadrics by the group SL(4)

is isomorphic to the hypersurface of degree 6 in the weighted projective space
P(1, 2, 2, 3, 3) given by the equationt1t22 − t3t4 = 0.

(iii Show that the GIT-quotient has a singular line and its general point corresponds
to the orbit of the pairV (

P
t2i ), V ((t20 − t21) + a(t22 − t23)).

Historical Notes

There is a great number of books dealing with the analytic geometry of conics.
The most comprehensive source for the history of the subject is Coolidge’s
book [141]. Many facts and results about real conics treated in a synthetic way
can be found in text-books in projective geometry. Coxeter’s small book [148]
is one of the best.

The theory of polarity for conics goes back to Poncelet [494]. Polar trian-
gles and tetrahedra of a conic and a quadric surface were already studied by
P. Serret [576]. In particular, he introduced the notion of a self-conjugate tri-
angles, quadrangles and pentagons. They were later intensively studied by T.
Reye [504], [509] and R. Sturm [601], B. 3. The subject of their study was
called thePolarraum, i.e. a pair consisting of a projective space together with
a nonsingular quadric.

Pascal’s Theorem was discovered by B. Pascal in 1639 when he was 16 years
old [472] but not published until 1779 [472]. It was independently rediscovered
by C. MacLaurin in 1720 [414]. A large number of results about the geometry
and combinatorics of sixty Pascal lines assigned to 6 points on a conic have
been discovered by J. Steiner, J. Kirkman, A. Cayley, G. Salmon, L. Cremona
and others. A good survey of these results can be found in Note 1 in Baker’s
book [21], v.2, and Notes in Salmon’s book [537]. We will return to this in
Chapter 9.

Poncelet’s Closure Theorem which is the second part of Darboux’s Theorem
2.2.2was first discoverd by J. Poncelet himself [494]. We refer to the excellent
account of the history of the Poncelet related conics to [51]. A good elementary
discussion of Poncelet’s Theorem and its applications can be found in Flato’s
book [243]. Other elementary and non-elementary treatments of the Poncelet
properties and their generalizations can be found in [26], [27], [130], [132],
[293], [294].

The relationship between Poncelet curves and vector bundles is discussed in
[628], [450], [629], [633]. The Schwarzenberger bundles were introduced in
[554]. We followed the definition given in [195]. The papers [438] and [329],
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[330] discuss the compactification of the variety of conjugate triangles. The
latter two papers of N. Hitchin also discuss an interesting connection with
Painleve equations.

The notion of the apolarity of conics is due to T. Reye [507]. However,
J. Rosanes [524] used this notion before under the name conjugate conics.
In the same paper he also studied the representation of a conic as a sum of
four squares of linear forms. The condition (2.8) for conjugate conics was first
discovered by O. Hesse in [320]. He also proved that this property is poristic.
The condition for Poncelet relation given in terms of invariants of a pair of
conics (Theorem2.3.10) was first discovered by A. Cayley [79], [84].

The theory of invariants of two conics and two quadric surfaces was first
developed by G. Salmon (see [537], [539], vol. 1). The complete system of
invariants, covariants and contravariants of a pair of conics was given by J.
Grace and A. Young [286]. P. Gordan has given a complete system of 580
invariants, covariants and contravariants of a pair of quadric surfaces [282].
Later H.W. Turnbull was able to reduce it to 123 elements [630]. In series of
papers of J. Todd one can find further simplifications and more geometric in-
terpretations of the system of combinants of two quadric surfaces [624], [625].
A good expositions of the theory of invariants can be found in Sommerville’s
and Todd’s books [584], [626]. The latter book contains many examples and
exercises some of which were borrowed here.

Chasles’ Theorem2.3.3about the covariant quadric was proven by him in
[98] and reproved later by N. Ferrers[239] . A special case was known earlier to
Bobillier [46] Chasles’ generalization of Pascal’s Theorem to quadric surfaces
can be found in [104]. Baker’s book [21], v. 3, gives a good exposition of polar
properties of quadric surfaces.

The proof of Theorem2.3.15is due to J. Coolidge [141], Chapter VI,§3.
The result was known to G. von Staudt [587] ((see [141], p. 66) and can be also
found in Salmon’s book on conics [537], p. 345. Although Salmon writes in
the footnote on p. 345 that “I believe that I was the first to direct the attention
to the importance of this conic in the theory of two conics”, this conic was
already known to Ph. La Hire [392] (see [141], p. 44 ). In Sommerville’s book
[583], Salmon conic goes under the nameharmonic conic-locusof two conics.
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Plane cubics

3.1 Equations

3.1.1 Elliptic curves

There are many excellent expositions of the theory of elliptic curves from their
many aspects: analytical, algebraic and arithmetical (a short survey can be
found in Hartshorne’s book [311], Chapter IV). We will be brief here.

LetX be a nonsingular projective curve of genus 1. By Riemann-Roch, for
any divisorD of degreed ≥ 1, we havedimH0(X,OX(D)) = d. If d > 2,
the complete linear system|D| defines an isomorphismX → C, whereC
is a curve of degreed in Pd−1 (calledelliptic normal curveof degreed). If
d = 2, the map is of degree 2 ontoP1. The divisor classes of degree0 are
parameterized by the Jacobian variety Jac(X) isomorphic toX. Fixing a point
x0 onX, the group law on Jac(X) transfers to a group law onX by assigning
to a divisor classd of degree0 the divisor classd + x0 of degree 1 represented
by a unique point onX. The group law becomes

x⊕ y = z ∈ |x+ y − t0|. (3.1)

The translation automorphisms ofX act transitively on the set Picd(X) of
divisor classes of degreed. This implies that two elliptic normal curves are
isomorphic if and only if they are projectively equivalent. In the cased = 2,
this implies that two curves are isomorphic if and only if the two sets of four
branch points of the double cover are projectively equivalent.

In this Chapter we will be mainly interested in the cased = 3. The image
of X is a nonsingular plane cubic curve. There are two known normal forms
for its equation. The first one is theWeierstrass formand the second one is the
Hesse form. We will deal with the Hesse form in the next subsection. Let us
start with the Weierstrass form.

By Theorem1.1.8, C = V (f) has an inflection pointp0. Without loss of
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generality, we may assume thatp0 = [0, 0, 1] and the inflection tangent line
at this point has the equationt0 = 0. The projection fromp0 is the double
coverC → P1. It has ramification branch points, the intersection points of
C with the first polar. There are four tangent lines toC containingp0. One
of them isV (t0). The first polarV ( ∂f∂t2 ) of the pointp0 is a singular conic
which intersectsC at the tangency points of the four tangents, we immediately
obtain that it consists of the lineV (t0) and a lineV (t2 +at1 +bt0) not passing
through the pointp0. Changing the coordinates, we may assume that the line
is equal toV (t2). Now the equation ofC takes the form

t0t
2
2 + αt31 + βt21t0 + γt1t

2
0 + δt30 = 0,

whereα 6= 0. Replacingt1 with t1 + β
3α t0, and scaling the coordinates, we

may assume thatα = 1 andβ = 0. This gives us theWeierstrass equationof a
nonsingular cubic:

t0t
2
2 + t31 + at1t

2
0 + bt30 = 0 (3.2)

It is easy to see thatC is nonsingular if and only if the polynomialx3 +ax+ b

has no multiple roots, or, equivalently, its discriminant∆ = 4α3 +27β2 is not
equal to zero.

Two Weierstrass equations define isomorphic elliptic curves if and only if
there exists a projective transformation transforming one equation to another.
It is easy to see that it happens if and only if(α′, β′) = (λ3α, λ2β) for some
nonzero constantλ. This can be expressed in terms of theabsolute invariant

j = 2633 a3

4α3 + 27b2
. (3.3)

Two elliptic curves are isomorphic if and only if their absolute invariants are
equal.1

The projection[t0, t1, t2] 7→ [t0, t1] exhibitsC as a double cover ofP1. Its
ramification points are the intersection points ofC and its polar conicV (t0t2).
The cover has four branch points[1, λ], [0, 1], whereλ3 + aλ + b = 0. The
corresponding points[1, λ, 0], and [0, 0, 1] on C are the ramification points.
If we choosep0 = [0, 0, 1] to be the zero point in the group law onC, then
2p ∼ 2p0 for any ramification pointp implies thatp is a 2-torsion point. Any
2-torsion point is obtained in this way.

It follows from the above computation that any nonsingular plane cubic
V (f) is projectively isomorphic to the plane cubicV (t22t0 + t31 +at1t

2
0 + bt30).

The functionsS : f 7→ a/27, T : f 7→ 4b can be extended to theAronhold

1 The coefficient1728 = 2633 is needed to make this work in characteristic2 and3, otherwise
j would not be defined for example whena = 1, b = 0 in characteristic 2.
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invariantsS andT of degrees 4 and 6 of a ternary cubic form. The explicit
expressions ofS andT in terms of the coefficients off are rather long and can
be found in many places (e.g. [199], [538]).

Fixing an order on the set of branch points, and replacing them by a projec-
tively equivalent set, we may assume that the cubic polynomialx3 + ax+ b is
equal to−x(x− 1)(x− λ). This gives an affine equation ofC

y2 = x(x− 1)(x− λ),

called theLegendre equation.
The numberλ is equal to the cross ratioR(q1q2; q3q4) of the four ordered

branch points(q1, q2, q3, q4) = (0, λ, 1,∞). The absolute invariant (3.3) is
expressed in terms ofλ to give the following formula:

j = 28 (λ2 − λ+ 1)3

λ2(λ− 1)2
. (3.4)

Remark3.1.1 For any binary formg(t0, t1) of degree4 without multiple
zeros, the equation

t22 + g(t0, t1) = 0 (3.5)

defines an elliptic curveX in the weighted projective planeP(1, 1, 2). The four
zeros ofg are the branch points of the projectionX → P1 to the first two co-
ordinates. So, every elliptic curve can be given by such an equation. The coef-
ficientsa, b in the Weierstrass equation are expressed in terms of the invariants
S andT of binary quartics from Example1.5.2. We havea = −4S, b = −4T .
In particular.

j =
27S(g)3

S(g)3 − 27T (g)2
.

Definition 3.1.1 A nonsingular plane cubicV (f) with Weierstrass equation
(3.2) is calledharmonic (resp.equianharmonic) if b = 0 (resp.a = 0).

We leave to the reader to prove the following.

Theorem 3.1.1 LetC = V (f) be a nonsingular plane cubic andc be any
point onC. The following conditions are equivalent.

(i) C is a harmonic (resp. equianharmonic cubic).

(ii) The absolute invariantj = 1728 (resp.j = 0).

(iii) The set of cross ratios of four roots of the polynomialt0(t31 + at1t
2
0 +

bt30) is equal to{−1, 2, 1
2} (resp. consists of two primitive cube roots of

−1).
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(iv) The group of automorphisms ofC leaving the pointc invariant is a
cyclic group of order 4 (resp. 6).

Note thatC is a harmonic cubic if and only if the invariantT of degree 3
on the space of binary quartic forms (1.82) vanishes on the binary formg in
equation (3.5). A quartic binary form on whichT vanishes is called aharmonic
binary quartic. We know that a binary formg is harmonic if and only if admits
an apolar binary quadratic form. One can check that this form is nondegenerate
if and only if g has no multiple zeros. In this case it can be written as a sum of
two powers of linear formsl41 + l42. This exhibits an obvious symmetry of order
4. Changing coordinates we can reduce the form tot40−t41 = (t20+t21)(t

2
0−t21).

The pairs of zeros of the factors are harmonically conjugate pairs of points.
This explains the name harmonic cubic.

Theorem3.1.1gives a geometric interpretation for vanishing of the quadratic
invariantS (1.82) on the space of binary quartics. It vanishes if and only if there
exists a projective transformation of order 3 leaving the zeros of a binary forms
invariant.

Another useful model of an elliptic curve is an elliptic normal quartic curve
C in P3. There are two types of nondegenerate quartic curves inP3 which
differ by the dimension of the linear system of quadrics containing the curve.
In terminology of classical algebraic geometry, a space quartic curve is of the
first speciesif the dimension is equal to 1, quartics of thesecond speciesare
those which lie on a unique quadric. Elliptic curves are nonsingular quartics
of the first species. The proof is rather standard (see, for example, [307]). By
Proposition8.6.1from Chapter 8, we can writeC as the intersection of two
simultaneously diagonalized quadrics

Q1 = V (
3∑
i=0

t2i ), Q2 = V (
3∑
i=0

ait
2
i ).

The pencilλQ1 + µQ2 contains exactly four singular members corresponding
to the parameters[−ai, 1], i = 0, 1, 2, 3. The curveC is isomorphic to the
double cover ofP1 branched over these four points. This can be seen in many
ways. We will present later one of them, a special case of Weil’s Theorem on
intersection of two quadrics (same proof can be found in Harris’s book [307],
Proposition 22.38). Changing a basis in the pencil of quadrics containingC,
we can reduce the equations ofC to the form

t20 + t21 + t22 = t21 + λt22 + t23 = 0. (3.6)

The absolute invariant ofE is expressed via formula (3.4).
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3.1.2 The Hesse equation

Classical geometers rarely used Weierstrass equations. They preferredHesse’s
canonical equationsof cubic curves:

t30 + t31 + t32 + 6αt0t1t2 = 0. (3.7)

Let us see that any nonsingular cubic can be reduced to this form by a linear
change of variables.

Since any tangent line at an inflection point intersects the curve with mul-
tiplicity 3, applying (1.23), we obtain that the curve has exactly 9 inflection
points. Using the group law on an elliptic cubic curve with an inflection point
o as the zero, we can interpret any inflection point as a 3-torsion point. This
of course agrees with the fact the groupX[3] of 3-torsion points on an elliptic
curveX is isomorphic to(Z/3Z)2.

Let H be a subgroup of order 3 ofX. Since the sum of elements of this
group add up to 0, we see that the corresponding 3 inflection pointsp, q, r

satisfyp + q + r ∼ 3o. It is easy to see that the rational function onC with
the divisorp + q + r − 3o can be obtained as the restriction of the rational
functionm(t0, t1, t2)/l0(t0, t1, t2), whereV (m) defines the line containing
the pointsp, q, r andV (l0) is the tangent toC at the pointo. There are 3 cosets
with respect to each subgroupH. Since the sum of elements in each coset is
again equal to zero, we get 12 lines, each containing three inflection points.
Conversely, if a line contains three inflection points, the sum of these points
is zero, and it is easy to see that the three points forms a coset with respect
to some subgroupH. Each element of(Z/3Z)3 is contained in 4 cosets (it is
enough to check this for the zero element).

A triangle containing the inflection points is called aninflection triangle.
There are four inflection triangles and the union of their sides is the set of 12
lines from above. The configuration of 12 lines and 9 points, each line contains
3 points, and each point lies on four lines is the famousHesse arrangement of
lines(123, 94).

Consider the polar conic of an inflection point. It splits into the union of the
tangent line at the point and another line, called theharmonic polar lineof the
inflection point.

Lemma 3.1.2 Letx be a point on a nonsingular cubicC. Any line` passing
throughx intersectsC at pointsy, z which are harmonically conjugate to the
pair x,w, wherew is the intersection point of the line and the conic polar
Px(C).
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We will prove this property later in a more general case whenC is a curve
of degreed andx is its point of multiplicity(d− 2) (see Remark??).

Proposition 3.1.3 Let a, b, c be three collinear inflection points. The har-
monic polar lines of three inflection points on a line` intersect at the opposite
vertex of the inflection triangle containing̀.

Proof Let ∆ be the inflection triangle with sidècontaining the pointsa, b, c.
Consider the three lines̀i througha which join a with one of the inflection
point xi on the side of∆. Let zi be the other inflection point oǹi (lying on
the other side). By the previous Lemma, the harmonic polar line intersects each
`i at a pointyi such that the cross ratioR(ayi; tizi) is constant. This implies
that the harmonic polar line is the line in the pencil of lines through the vertex
which together with the two sides and the line passing througha make the
same cross ratio in the pencil. Since the same is true for harmonic polar lines
of the pointsb andc, we get the assertion.

It follows from the previous Proposition that the nine harmonic polar lines
intersect by three at 12 edges of the inflection triangles, and each vertex be-
longs to 4 lines. This defines thedual Hesse arrangement of lines(94, 123).
It is combinatorially isomorphic to the arrangement of lines in the dual plane
which is defined from the Hesse line arrangement via duality.

Now it is easy to reduce a nonsingular cubic curveC = V (f) to the Hesse
canonical form. Choose coordinates such that one of the inflection triangles is
the coordinate triangle. Letq be one of its vertices, sayq = [1, 0, 0], andx be
an inflection point on the opposite lineV (t0). ThenPx(C) is the union of the
tangent toC atx and the harmonic polar ofx. Since the latter passes through
q, we havePq2x(C) = Pxq2(C) = 0. Thus the polar linePq2(C) intersects the
line V (t0) at three points. This can happen only ifPq2(C) = V (t0). Hence

V (∂
2f
∂t20

) = V (t0) andf has no termst20t1, t
2
0t2. We can write

f = at30 + bt31 + ct22 + dt0t1t2.

SinceC is nonsingular, it is immediately checked that the coefficientsa, b, c

are not equal to zero. After scaling the coordinates, we arrive at the Hesse
canonical form.

It is easy to check by taking partials, that the condition that the curve given
by the Hesse canonical form is nonsingular is

1 + 8α3 6= 0. (3.8)

By reducing the Hesse equation to a Weierstrass forms one can express the
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Aronhold invariantsS,T and the absolute invariantj in terms of the parameter
α in (3.7):

S = α− α4, (3.9)

T = 1− 20α3 − 8α6, (3.10)

j =
64(α− α4)3

(1 + 8α3)3
. (3.11)

3.1.3 The Hesse pencil

Since the cubicC and its four inflection triangles pass through the same set of
9 points, the inflection points ofC, they belong to a pencil of cubic curves. This
pencil is called theHesse pencil. It is spanned byC and one of the inflection
triangles, say the coordinate triangle. Thus the Hesse pencil is defined by the
equation

λ(t30 + t31 + t32) + µt0t1t2 = 0. (3.12)

Its base points are

[0, 1,−1], [0, 1,−ε], [0, 1,−ε2],
[1, 0,−1], [1, 0,−ε2], [1, 0,−ε],
[1,−1, 0], [1,−ε, 0], [1,−ε2, 0], (3.13)

whereε = e2πi/3. They are the nine inflection points of any nonsingular mem-
ber of the pencil. The singular members of the pencil correspond to the values
of the parameters

(λ, µ) = (0, 1), (1,−3), (1,−3ε), (1,−3ε2).

The last three values correspond to the three values ofα for which the Hesse
equation defines a singular curve.

Any triple of lines containing the nine base points belongs to the pencil and
forms its singular member. Here they are:

V (t0), V (t1), V (t2),

V (t0 + t1 + t2), V (t0 + εt1 + ε2t2), V (t0 + ε2t1 + εt2), (3.14)

V (t0 + εt1 + t2), V (t0 + ε2t1 + ε2t2), V (t0 + t1 + εt2),

V (t0 + ε2t1 + t2), V (t0 + εt1 + εt2), V (t0 + t1 + ε2t2).



134 Plane cubics

We leave to a suspicious reader to check that

(t0 + t1 + t2)(t0 + εt1 + ε2t2)(t0 + ε2t1 + εt2) = t30 + t31 + t32 − 3t0t1t2,

(t0 + εt1 + t2)(t0 + ε2t1 + ε2t2)(t0 + t1 + εt2) = t30 + t31 + t32 − 3εt0t1t2,

(t0 + ε2t1 + t2)(t0 + εt1 + εt2)(t0 + t1 + ε2t2) = t30 + t31 + t32 − 3ε2t0t1t2.

The 12 lines (3.14) and 9 inflection points (3.13) form the Hesse configuration
corresponding to any nonsingular member of the pencil.

Choose[0, 1,−1] to be the zero point in the group law onC. Then we can
define an isomorphism of groupsφ : (Z/3Z)2 → X[3] by sending[1, 0] to
[0, 1,−ε], [0, 1] to [1, 0,−1]. The points of the first row in (3.13) is the sub-
groupH generated byφ([1, 0]). The points of the second row is the coset ofH

containingφ([0, 1]).

Remark3.1.2 Note that, varyingα in P1 \ {− 1
2 ,−

ε
2 ,−

ε2

2 ,∞}, we obtain a
family of elliptic curvesXα defined by the equation (3.7) with a fixed isomor-
phismφα : (Z/3Z)2 → Xα[3]. After blowing up the 9 base points, we obtain
a rational surfaceS(3) together with a morphism

f : S(3)→ P1 (3.15)

defined by the rational mapP2− → P1, [t0, t1, t2] 7→ [t0t1t2, t30 +t31 +t32]. The
fibre of f over a point(a, b) ∈ P2 is isomorphic to the member of the Hesse
pencil corresponding to(λ, µ) = (−b, a). It is known that (3.15) is amodular
familyof elliptic curves with level 3, i.e. the universal object for the fine moduli
space of pairs(X,φ), whereX is an elliptic curve andφ : (Z/3Z)2 → X[3] is
an isomorphism of groups. There is a canonical isomorphismP1 ∼= Y , where
Y is the modular curve of level 3, i.e. a nonsingular compactification of the
quotient of the upper half-planeH = {a+ bi ∈ C : b > 0} by the group

Γ(3) = {A =
(
a b

c d

)
∈ SL(2,Z) : A ≡ I3 mod 3}

which acts onH by Möbius transformationsz 7→ az+b
cz+d . The boundary of

H/Γ(3) in Y consists of 4 points (the cusps). They correspond to the singular
members of the Hesse pencil.

3.1.4 The Hesse group

The Hesse groupG216 is the group of projective transformations which pre-
serve the Hesse pencil of cubic curves. First, we see the obvious symmetries
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generated by the transformations

τ : [t0, t1, t2] 7→ [t0, ε3t1, ε23t2],

σ : [t0, t1, t2] 7→ [t2, t0, t1].

They define a projective representation of the group(Z/3Z)2.
If we fix the group law by taking the origin to be[0, 1,−1], thenτ induces

on each nonsingular fibre the translation automorphism by the point[0, 1,−ε]
andσ is the translation by the point[1, 0,−1].

Theorem 3.1.4 The Hesse groupG216 is a group of order 216 isomorphic to
the semi-direct product

(Z/3Z)2 o SL(2,F3),

where the action ofSL(2,F3) on(Z/3Z)2 is the natural linear representation.

Proof Let g ∈ G216. It transforms a member of the Hesse pencil to another
member. This defines a homomorphismG216 → Aut(P1). An element of the
kernelK leaves each member of the pencil invariant. In particular, it leaves
invariant the curveV (t0t1t2). The group of automorphisms of this curve is
generated by homotheties[t0, t1, t2] 7→ [t0, at1, bt2] and permutation of co-
ordinates. Supposeσ induces a homothety. Since it also leaves invariant the
curveV (t30 + t31 + t32), we must have1 = a3 = b3. To leave invariant a gen-
eral member we also need thata3 = b3 = bc. This implies thatg belongs to
the subgroup generated by the transformationσ. An even permutation of co-
ordinates belongs to a subgroup generated by the transformationτ . The odd
permutationσ0 : [t0, t1, t2] 7→ [t0, t2, t1] acts on the group of3-torsion points
of each nonsingular fibre as the negation automorphismx 7→ −x. Thus we see
that

K ∼= (Z/3Z)2 o 〈σ0〉.

Now let I be the image of the groupG216 in Aut(P1). It acts by permuting
the four singular members of the pencil and thus leaves the set of zeros of the
binary form

∆ = (8t31 + t30)t0

invariant. It follows from the invariant theory that this implies thatH is a sub-
group ofA4. We claim thatH = A4. Consider the projective transformations



136 Plane cubics

given by the matrices

σ1 =

1 1 1
1 ε ε2

1 ε2 ε

 , σ2 =

 1 ε ε

ε2 ε ε2

ε2 ε2 ε

 .

The transformationsσ0, σ1, σ2 generate a subgroup isomorphic to the quater-
nion groupQ8 with center generated byσ0. The transformation

σ3 : [t0, t1, t2] 7→ [εt0, t2, t1]

satisfiesσ3
3 = σ0. It acts by sending a curveCα from (3.7) to Cεα. It is easy

to see that the transformationsσ1, σ2, σ3, τ generate the group isomorphic to
SL(2,F3). Its center is(σ0) and the quotient by the center is isomorphic toA4.
In other words, this group is the binary tetrahedral group. Note that the whole
group can be generated by transformationsσ, τ, σ0, σ1.

Recall that a linear operatorσ ∈ GL(E) of a complex vector spaceE of
dimensionn + 1 is called acomplex reflectionif it is of finite order and the
rank ofσ− idE is equal to 1. The kernel ofσ− idE is a hyperplane inE, called
thereflection hyperplaneof σ. It is invariant with respect toσ and its stabilizer
subgroup is a cyclic group. Acomplex reflection groupis a finite subgroupG
of GL(E) generated by complex reflections. One can choose a unitary inner
product onE such that any complex reflectionσ fromE can be written in the
form

sv,η : x 7→ x+ (η − 1)(x, v)v,

wherev is a vector of norm 1 perpendicular to the reflection hyperplaneHv of
σ, andη is a non-trivial root of unity of order equal to the order ofσ.

Recall the basic facts about complex reflection groups (see, for example,
[586]):

• The algebra of invariantsS(E)G ∼= C[t0, . . . , tn]G is freely generated by
n+ 1 invariant polynomialsf0, . . . , fn (geometrically,E/G ∼= Cn+1).
• The product of degreesdi of the polynomialsf0, . . . , fn is equal to the order

of G.
• The number of complex reflections inG is equal to

∑
(di − 1).

All complex reflections group were classified by G. Shephard and J. Todd
[578]. There are five conjugacy classes of complex reflection subgroups of
GL(3,C). Among them is the groupG isomorphic to a central extension of
degree 3 of the Hesse group. It is generated by complex reflectionssv,η of or-
der 3, where the reflection lineHv is one of the 12 lines (3.14) in P2 andv is
the unit normal vector(a, b, c) of the lineV (at0 + bt1 + ct2). Note that each
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reflectionsv,η leaves invariant the hyperplanes with normal vector orthogonal
to v. For example,s(1,0,0),ε leaves invariant the lineV (t0). This implies that
each of the 12 complex reflections leaves the Hesse pencil invariant. Thus the
image ofG in PGL(3,C) is contained in the Hesse group. It follows from the
classification of complex reflection groups (or could be checked directly, see
[586]) that it is equal to the Hesse group and the subgroup of scalar matrices
fromG is a cyclic group of order 3.

Each of the 12 reflection lines defines two complex reflections. This gives 24
complex reflections inG. This number coincides with the number of elements
of order 3 in the Hesse group and so there are no more complex reflections in
G. Let d1 ≤ d2 ≤ d3 be the degrees of the invariants generating the algebra
of invariants ofG. We haved1 + d2 + d3 = 27, d1d2d3 = 648. This easily
givesd1 = 6, d2 = 9, d3 = 12. There are obvious reducible curves of degree
9 and 12 inP2 invariant with respect toG. The curve of degree 9 is the union
of the polar harmonic lines. Each line intersects a nonsingular member of the
pencil at nontrivial 2-torsion points with respect to the group law defined by
the corresponding inflection point. The equation of the union of 9 harmonic
polar lines is

f9 = (t30 − t31)(t30 − t32)(t31 − t32) = 0. (3.16)

The curve of degree 12 is the union of the 12 lines (3.14). Its equation is

f12 = t0t1t2[27t30t
3
1t

3
2 − (t30 + t31 + t32)

3] = 0. (3.17)

A polynomial defining an invariant curve is arelative invariantof G (it is an
invariant with respect to the groupG′ = G ∩ SL(3,C)). One checks that the
polynomialf9 is indeed an invariant, but the polynomialf12 is only a relative
invariant. So, there exists another curve of degree 12 whose equation defines
an invariant of degree 12. What is this curve? Recall that the Hesse group
acts on the base of the Hesse pencil via the action of the tetrahedron group
A4. It has 3 special orbits with stabilizers of order 2,3 and 3. The first orbit
consists of 6 points such that the fibres over these points are harmonic cubics.
The second orbit consists of 4 points such that the fibres over these points are
equianharmonic cubics. The third orbit consists of 4 points corresponding to
singular members of the pencil. It is not difficult to check that the product of
the equations of the equianharmonic cubics defines an invariant of degree 12.
Its equation is

f ′12 = (t30 + t31 + t32)[(t
3
0 + t31 + t32)

3 + 216t30t
3
1t

3
2] = 0. (3.18)

An invariant of degree 6 is

f6 = 7(t60 + t61 + t62)− 6(t30 + t32 + t33)
2. (3.19)
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The product of the equations defining 6 harmonic cubics is an invariant of
degree 18

f18 = (t30 + t31 + t32)
6 − 540t30t

3
1t

3
2(t

3
0 + t31 + t32)

3 − 5832t60t
6
1t

6
2 = 0. (3.20)

3.2 Polars of a plane cubic

3.2.1 The Hessian of a cubic hypersurface

Let X = V (f) be a cubic hypersurface inPn. We know that the Hessian
He(X) is the locus of pointsa ∈ Pn such that the polar quadricPa(X) is
singular. Also we know that, for anya ∈ He(X),

Sing(Pa(X)) = {b ∈ P2 : Db(Da(f)) = 0}.

SincePb(Pa(X)) = Pa(Pb(X)) we obtain thatb ∈ He(X).

Theorem 3.2.1 The HessianHe(X) of a cubic hypersurfaceX contains the
SteinerianSt(X). If He(X) 6= Pn, then

He(X) = St(X).

For the last assertion one only needs to compare the degrees of the hyper-
surfaces. They are equal ton+ 3.

In particular, the rational map, if defined,

st−1
X : St(X)→ He(X), a 7→ Sing(Pa(X)) (3.21)

is a birational automorphism of the Hessian hypersurface. We have noticed this
already in Chapter 1.

Proposition 3.2.2 AssumeX has only isolated singularities. ThenHe(X) =
Pn if and only ifX is a cone over a cubic hypersurface inPn−1.

Proof LetW = {(a, b) ∈ Pn × Pn : Pa,b2(X) = 0}. For eacha ∈ Pn, the
fibre of the first projection over the pointa is equal to the first polarPa(X).
For anyb ∈ Pn, the fibre of the second projection over the pointb is equal
to the second polarPb2(X) = V (

∑
∂if(b)ti). Let U = Pn \ Sing(X). For

any b ∈ U , the fibre of the second projection is a hyperplane inPn. This
shows thatp−1

2 (U) is nonsingular. The restriction of the first projection toU
is a morphism of nonsingular varieties. The general fibre of this morphism is
a regular scheme over the general point ofPn. Since we are in characteristic
0, it is a smooth scheme. Thus there exists an open subsetW ⊂ Pn such
thatp−1

1 (W ) ∩ U is nonsingular. If He(X) = 0, all polar quadricsPa(X) are



3.2 Polars of a plane cubic 139

singular, and a general polar must have singularities inside ofp−1
2 (Sing(X)).

This means thatp1(p−1
2 (Sing(X))) = Pn. For anyx ∈ Sing(X), all polar

quadrics containx and either all of them are singular atx or there exists an
open subsetUx ⊂ Pn such that all quadricsPa(X) are nonsingular atx for
a ∈ Ux. Suppose that, for anyx ∈ Sing(X), there exists a polar quadric which
is nonsingular atx. Since the number of isolated singular points is finite, there
will be an open set of pointsa ∈ Pn such that the fibrep−1

1 (a) is nonsingular in
p−1
2 (Sing(X)). This is a contradiction. Thus, there exists a pointc ∈ Sing(X)

such that all polar quadrics are singular atx. This implies thatc is a common
solution of the systems of linear equations He(f3)(a) ·X = 0, a ∈ Pn. Thus
the first partials off3 are linearly dependent. Now we apply Proposition1.1.2
to obtain thatX is a cone.

Remark3.2.1 The example of a cubic hypersurface inP4 from Remark1.1.2
shows that the assumption on singular points ofX cannot be weakened. The
singular locus of the cubic hypersurface is the planet0 = t1 = 0.

3.2.2 The Hessian of a plane cubic

Consider a plane cubicC = V (f) with equation in the Hesse canonical form
(3.7). The partials of13f are

t20 + 2αt1t2, t21 + 2αt0t2, t22 + 2αt0t1. (3.22)

Thus the Hessian ofC has the following equation:

He(C) =

∣∣∣∣∣∣
t0 αt2 αt1
αt2 t1 αt0
αt1 αt0 t2

∣∣∣∣∣∣ = (1 + 2α3)t0t1t2 − α2(t30 + t31 + t32). (3.23)

In particular, the Hessian of the member of the Hesse pencil corresponding to
the parameter(λ, µ) = (1, 6α), α 6= 0, is equal to

t30 + t31 + t32 −
1 + 2α3

α2
t0t1t2 = 0, α 6= 0, (3.24)

or, if (λ, µ) = (1, 0) or (0, 1), then the Hessian is equal toV (t0t1t2).

Lemma 3.2.3 LetC be a nonsingular cubic in a Hesse’s canonical form. The
following assertions are equivalent:

(i) dim Sing(Pa(C)) > 0;
(ii) a ∈ Sing(He(C));
(iii) He(C) is the union of three nonconcurrent lines;
(iv) C is isomorphic to the Fermat cubicV (t30 + t31 + t31);
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(v) He(C) is a singular cubic;
(vi) C is an equianharmonic cubic;
(vii) α(α3 − 1) = 0.

Proof Use the Hesse equation for a cubic and for its Hessian. We see that
He(C) is singular if and only if eitherα = 0 or 1 + 8(− 1+2α3

6α2 )3 = 0. Ob-
viously,α = 1 is a solution of the second equation. Other solutions areε, ε2.
This corresponds to He(C), whereC is of the formV (t30 + t31 + t31), or is given
by the equation

t30 + t31 + t32 + 6εit0t1t2 = (εit0 + εt1 + t2)3 + (t0 + εit1 + t2)3

+(t0 + t1 + εit2)3 = 0,

wherei = 1, 2, or

t30 + t31 + t32 + 6t0t1t2 = (t0 + t1 + t2)3 + (t0 + εt1 + ε2t2)3

+(t0 + ε2t1 + εt2)3 = 0.

This computation proves the equivalence of (iii), (iv), (v), and (vii).
Assume (i) holds. Then the rank of the Hessian matrix is equal to 1. It is easy

to see that the first two rows are proportional if and only ifα(α3 − 1) = 0.
Thus (i) is equivalent to (vii), and hence to (iii), (iv), (v) and (vii). The pointa

is one of the three intersection points of the lines such that the cubic is equal to
the sum of the cubes of linear forms defining these lines. Direct computation
shows that (ii) holds. Thus (i) implies (ii).

Assume (ii) holds. Again the previous computations show thatα(α3− 1) =
0 and the Hessian curve is the union of three lines. Now (i) is directly verified.

The equivalence of (iv) and (vi) follows from Theorem3.1.1since the trans-
formation[t0, t1, t2]→ [t1, t0, e2πi/3t2] generates a cyclic group of order 6 of
automorphisms ofC leaving the point[1,−1, 0] fixed.

Corollary 3.2.4 Assume thatC = V (f) is not projectively isomorphic to
the Fermat cubic. Then the Hessian cubic is nonsingular, and the mapa 7→
Sing(Pa(C)) is an involution onC without fixed points.

Proof The only unproved assertion is that the involution does not have fixed
points. A fixed pointa has the property thatDa(Da(f)) = Da2(f) = 0. It
follows from Theorem1.1.1that this implies thata ∈ Sing(C).

Remark3.2.2 Consider the Hesse pencil of cubics with parameters(λ, µ) =
(α0, 6α1)

C(α0,α) = V (α0(t30 + t31 + t32) + 6α1t0t1t2).
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Taking the Hessian of each curve from the pencil we get the pencil

H(α0,α) = V (α0t
3
0 + t31 + t32 + 6α1t0t1t2).

The mapC(α0,α) → H(α0,α) defines a regular map

h : P1 → P1, [α0, α1] 7→ [t0, t1] = [−α0α
2
1, α

3
0 + 2α3

1]. (3.25)

This map is of degree3. For a general value of the inhomogeneous parameter
λ = t1/t0, the preimage consists of three points with inhomogeneous coordi-
nateα = α1/α0 satisfyfing the cubic equation

6λα3 − 2α2 + 1 = 0. (3.26)

We know that the points[α0, α1] = [0, 1], [1,− 1
2 ], [1,− ε

2 ], [1,− ε
2

2 ] correspond
to singular members of theλ-pencil. These are the branch points of the maph.
Over each branch point we have two points in the preimage. The points

(α0, α1) = [1, 0], [1, 1], [1, ε], [1, ε2]

are the ramification points corresponding to equianharmonic cubics. A non-
ramication point in the preimage corresponds to a singular member.

Let Cα = C(1,α). If we fix a group law on aHα = He(Cα), we will be
able to identify the involution described in Corollary3.2.4with the transla-
tion automorphism by a non-trivial 2-torsion pointη (see Exercises). Given a
nonsingular cubic curveH together with a fixed-point-free involutionτ , there
exists a unique nonsingular cubicCα such thatH = Hα and the involution
τ is the involution described in the corollary. Thus the 3 roots of the equation
(3.26) can be identified with 3 non-trivial torsion points onHα. We refer to
Exercises for a reconstruction ofCα from the pair(Hα, η).

Recall that the Cayleyan curve of a plane cubicC is the locus of linespq
in the dual plane such thata ∈ He(C) andb is the singular point ofPa(C).
Each such line intersects He(C) at three pointsa, b, c. The following gives the
geometric meaning of the third intersection point.

Proposition 3.2.5 Let c be the third intersection point of a linè∈ Cay(C)
andHe(C). Then` is a component of the polarPd(C) whose singular point is
c. The pointd is the intersection point of the tangents ofHe(C) at the pointsa
andb.

Proof From the general theory of linear system of quadrics, applied to the net
of polar conics ofC, we know that̀ is a Reye line, i.e. it is contained in some
polar conicPd(C) (see subsection1.1.7). The pointd must belong to He(C)
and its singular pointc belongs tò . Thusc is the third intersection point of̀
with C.



142 Plane cubics

It remains to prove the last assertion. Chose a group law on the curve He(C)
by fixing an inflection point as the zero point. We know that the Steinerian
involution is defined by the translationx 7→ x⊕ η, whereη is a fixed 2-torsion
point. Thusb = a ⊕ η. It follows from the definition of the group law on a
nonsingular cubic that the tangentsTa(He(C)) andTb(He(C)) intersect at a
point d on He(C). We haved ⊕ 2a = 0, henced = −2a. Sincea, b, c lie
on a line, we getc = −a − b in the group law. After subtracting, we get
d − c = b − a = η. Thus the pointsx and c is an orbit of the Steinerian
involution. This shows thatc is the singular point ofPd(C). By Proposition
1.2.3, Pd(C) contains the pointsa, b. Thusab is a component ofPd(C).

It follows from the above Proposition that the Cayleyan curve of a nonsin-
gular cubicC parameterizes the line components of singular polar conics of
C. It is also isomorphic to the quotient of He(C) by the Steinerian involution
from Corollary3.2.4. Since this involution does not have fixed points, the quo-
tient map He(C) → Cay(C) is an unramified cover of degree 2. In particular,
Cay(C) is a nonsingular curve of genus 1.

Let us find the equation of the Cayleyan curve. A line` belongs to Cay(X)
if and only if the restriction of the linear system of polar conics ofX to `
is of dimension 1. This translates into the condition that the restriction of the
partials ofX to ` is a linearly dependent set of three binary forms. So, write
` in the parametric form as the image of the mapP1 → P2 given by[u, v] 7→
[a0u + b0v, a1u + b1v, a2u + b2v]. The condition of the linear dependence is
given by

det

a2
0 + 2αa1a2 2a0b0 + 2α(a1b2 + a2b1) b20 + 2αb1b2
a2
1 + 2αa0a2 2a1b1 + 2α(a0b2 + a2b0) b21 + 2αb0b2
a2
2 + 2αa0a1 2a2b2 + 2α(a0b1 + a1b0) b22 + 2αb0b1

 = 0.

The coordinates of̀ in the dual plane are

[u0, u1, u2] = [a1b2 − a2b1, a2b0 − a0b2, a0b1 − a1b0].

Computing the determinant, we find that the equation of Cay(X) in the coor-
dinatesu0, u1, u2 is

u3
0 + u3

1 + u3
2 + 6α′u0u1u2 = 0, (3.27)

whereα′ = (1 − 4α3)/6α. Note that this agrees with the degree of the Cay-
leyan curve found in Proposition1.1.14. Using the formula (3.9) for the abso-
lute invariant of the curve, this can be translated into an explicit relationship
between the absolute invariant of an elliptic curveC and the isogenous ellip-
tic curveC/(τe), whereτe is the translation automorphism by a non-trivial
2-torsion pointe.
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3.2.3 The dual curve

Write the equation of a general line in the formt2 = u0t0 + u1t1 and plug
in equation (3.7). The corresponding cubic equation has a multiple root if and
only if the line is a tangent. We have

(u0t0 + u1t1)3 + t30 + t31 + 6αt0t1(u0t0 + u1t1)

= (u3
0 +1)t30 +(u3

1 +1)t31 +(3u2
0u1 +6αu0)t20t1 +(3u0u

2
1 +6αu1)t0t21 = 0.

The condition that there is a multiple root is that the discriminant of the homo-
geneous cubic form int0, t1 is equal to zero. Using the formula (1.81) for the
discriminant of a cubic form, after plugging in, we obtain

(3u2
0u1+6αu0)

2(3u0u
2
1+6αu1)

2+18(3u2
0u1+6αu0)(3u0u

2
1+6αu1)(u

3
0+1)(u3

1+1)

−4(u3
0 + 1)(3u0u

2
1 + 6αu1)

3− 4(u3
1 + 1)(3u1u

2
0 + 6αu0)

3− 27(u3
0 + 1)2(u3

1 + 1)2

= −27 + 864u3
0u

3
1α

3 + 648u2
0u

2
1α− 648α2u0u

4
1 − 648α2u4

0u1 + 648α2u0u1

+1296α4u2
0u

2
1−27u6

1−27u6
0 +54u3

0u
3
1−864u3

1α
3−864u3

0α
3−54u3

1−54u3
0 = 0.

It remains to homogenize the equation and divide by(−27) to obtain the
equation of the dual curve

u6
0 + u6

1 + u6
2 − (2 + 32α3)(u3

0u
3
1 + u3

0u
3
2 + u3

2u
3
1)

−24α2u0u1u2(u3
0 + u3

1 + u3
2)− (24α+ 48α4)u2

0u
2
1u

2
2 = 0. (3.28)

According to the Pl̈ucker formula (1.50), the dual curve of a nonsingular plane
cubic has 9 cusps. They correspond to the inflection tangents of the original
curve. The inflection points are given in (3.12). Computing the equations of
the tangents, we find the following singular points of the dual curve:

[−2m, 1, 1], [1,−2α, 1], [1, 1,−2α], [−2αε, ε2, 1], [−2αε, 1, ε2],

[ε2,−2αε, 1], [1,−2αε, ε2], [1, ε2,−2αε], [ε2, 1,−2α].

The tangent ofC at an inflection pointa is a component of the polar conic
Pa(C), hence connectsa to the singular point of the polar conic. This implies
that the tangent line belongs to the Cayleyan curve Cay(C), hence the Cay-
leyan curve contains the singular points of the dual cubic. The pencil of plane
curves of degree 6 spanned by the dual cubicC∨ and the Cayleyan cubic taken
with multiplicity 2 is an example of anHalphen pencilof index 2 of curves of
degree 6 with 9 double base points (see Exercises to Chapter 7).
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3.2.4 Polar s-gons

Since, for any three general points inP2, there exists a plane cubic singular at
these points (the union of three lines), a general ternary cubic form does not
admit polar triangles. Of course this is easy to see by counting constants.

By Lemma3.2.3, a nonsingular cubic admits a polar triangle if and only if it
is an equianharmonic cubic. Its polar triangle is unique. Its sides are the three
first polars ofC which are double lines.

Proposition 3.2.6 A plane cubic admits a polar triangle if and only if either
it is a Fermat cubic or it is equal to the union of three distinct concurrent lines.

Proof SupposeC = V (l31 + l32 + l33). Without loss of generality, we may as-
sume thatl1 is not proportional tol2. Thus, after a linear change of coordinates,
C = V (t30 + t31 + l3). If l(t0, t1, t2) does not depend ont2, the curveC is the
union of three distinct concurrent lines. Otherwise, we can change coordinates
to assume thatl = t2 and get a Fermat cubic.

By counting constants, a general cubic admits apolar quadrangle. It is clear
that a polar quadrangle{[l1], . . . , [l4]} is nondegenerate if and only if the linear
system of conics in the dual plane through the points[li] is an irreducible pencil
(i.e. a linear system of dimension 1 whose general member is irreducible). This
allows us to define anondegenerate generalized polar quadrangleof C as a
generalized quadrangleZ of C such that|IZ(2)| is an irreducible pencil.

Let g(t0, t1) be a binary form of degree 3. Its polar 3-hedron is the divisor
of zeros of its apolar form of degree 3. Thus

VSP(g, 3) ∼= |AP3(g)|∨ ∼= P2. (3.29)

This implies that any ternary cubic formf = t32 + g(t0, t1) admits degenerate
polar quadrangles.

Also, if C = V (g(t0, t1)) is the union of three concurrent lines then any
four distinct nonzero linear formsl1, l2, l3, l4 form a degenerate quadrangle
of C. In fact, using the Van der Monde determinant, we obtain that the cubes
l31, l

3
2, l

3
3, l

3
4 form a basis in the space of binary cubic forms. So the variety

of sums of 4 powers ofC is isomorphic to the variety of 4 distinct points in
P1. Its closure VSP(C, 4) in the Hilbert scheme Hilb4(P2) is isomorphic to
(P1)(4) ∼= P4.

Lemma 3.2.7 C admits a degenerate polar quadrangle if and only if it is one
of the following curves:

(i) an equianharmonic cubic;
(ii) a cuspidal cubic;
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(iii) the union of three concurrent lines (not necessary distinct).

Proof We only have to prove the converse. Suppose

f = l31 + l32 + l33 + l34,

wherel1, l2, l3 vanish at a common pointa which we identify with a vector in
E. We have

1
3
Da(f) = l1(a)l21 + l2(a)l22 + l3(a)l23 + l4(a)l24 = l4(a)l24.

This shows that the first polarPa(V (f)) is either the wholeP2 or the double
line 2` = V (l24). In the first caseC is the union of three concurrent lines.
Assume that the second case occurs. We can choose coordinates such thata =
[0, 0, 1] and` = V (t2). Write

f = g0t
3
2 + g1t

2
2 + g2t2 + f3,

wheregk are homogeneous forms of degreek in variablest0, t1. ThenDa(f) =
∂2f = 3t22g0 + 2t2g1 + g2. This can be proportional tot22 only if g1 = g2 =
0, g0 6= 0. ThusV (f) = V (g0t32 + g3(t0, t1)). If g3 has no multiple linear fac-
tors, we get an equianharmonic cubic. Ifg3 has a linear factor with multiplicity
2, we get a cuspidal cubic. Finally, iff3 is a cube of a linear form, we reduce
the latter to the formt31 and get three concurrent lines.

Remark3.2.3 We know that all equianharmonic cubics are projectively equiv-
alent to the Fermat cubic. The orbit of the Fermat cubicV (t30 + t31 + t32) is
somorphic to the homogeneous space PSL(3)/G, whereG = (Z/3Z)2 o S3.
Its closure in|S3(E∨)| is a hypersurfaceF and consists of curves listed in the
assertion of the previous Lemma and also reducible cubics equal to the unions
of irreducible conics with its tangent lines. The explicit equation of the hyper-
surfaceF is given by theAronhold invariantS of degree 4 in the coefficients of
the cubic equation. A nice expression for the invariantS in terms of a pfaffian
of a skew-symmetric matrix was given by G. Ottaviani [462].

Lemma 3.2.8 The following properties are equivalent:

(i) AP1(f) 6= {0};
(ii) dim AP2(f) > 2;
(iii) V (f) is equal to the union of three concurrent lines.

Proof By the apolarity duality,

(Af )1 × (Af )2 → (Af )3 ∼= C,
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we have

dim(Af )1 = 3− dim AP1(f) = dim(Af )2 = 6− dim AP2(f).

Thusdim AP2(f) = 3 + dim AP1(f). This proves the equivalence of (i) and
(ii). By definition, AP1(f) 6= {0} if and only ifDψ(f) = 0 for some nonzero
linear operatorψ =

∑
ai∂i. After a linear change of variables, we may assume

thatψ = ∂0, and then∂0(f) = 0 if and only ifC does not depend ont0, i.e.C
is the union of three concurrent lines.

Lemma 3.2.9 LetZ be a generalized polar quadrangle off . Then|IZ(2)|
is a pencil of conics in|E∨| contained in the linear system|AP2(f)|. If Z is
nondegenerate, then the pencil has no fixed component. Conversely, letZ be a
0-dimensional cycle of length 4 in|E|. Assume that|IZ(2)| is an irreducible
pencil contained in|AP2(f)|. ThenZ is a nondegenerate generalized polar
quadrangle off .

Proof The first assertion follows from the definition of nondegeneracy and
Proposition1.3.6. Let us prove the converse. LetV (λq1 + µq2) be the pencil
of conics|IZ(2)|. Since AP(f) is an ideal, the linear systemL of cubics of the
form V (q1l1 + q2l2), wherel1, l2 are linear forms, is contained in|AP3(f)|.
Obviously, it is contained in|IZ(3)|. Since|IZ(2)| has no fixed part we may
chooseq1 andq2 with no common factors. Then the mapE∨ ⊕ E∨ → IZ(3)
defined by(l1, l2) → q1l1 + q2l2 is injective, hencedimL = 5. Assume
dim |IZ(3)| ≥ 6. Choose three points in general position on an irreducible
memberC of |IZ(2)| and three non-collinear points outsideC. Then find a
cubicK from |IZ(3)| which passes through these points. ThenK intersects
C with total multiplicity 4 + 3 = 7, hence containsC. The other compo-
nent ofK must be a line passing through three non-collinear points. This
contradiction shows thatdim |IZ(3)| = 5 and we haveL = |IZ(3)|. Thus
|IZ(3)| ⊂ |AP3(f)| and, by Proposition1.3.6, Z is a generalized polar quad-
rangle ofC.

Note that not any point in Hilb4(P2) can be realized as a generalized quad-
rangle of a ternary cubic. Each point in the Hilbert scheme Hilb4(P2) is the
union of subschemes supported at one point. Let us recall analytic classifica-
tion closed of subschemesV (I) of lengthh ≤ 4 supported at one point (see
[56]).

• h = 1: I = (x, y);
• h = 2: I = (x, y2);
• h = 3: I = (x, y3), (x2, xy, y2);
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• h = 4: I = (x, y4), (x2, y2), (x2, xy, y3).

The subschemesZ of length 4 which cannot be realized as the base scheme
of a pencil of conics, are those which contain a subscheme analytically iso-
morphic to one of the following schemesV (x, y3), V (x, y4), V (x2, xy, y2),
or V (x2, xy, y3).

Theorem 3.2.10 Assume thatC is neither an equianharmonic cubic, nor a
cuspidal cubic, nor the union of three concurrent lines. Then

VSP(f, 4) ∼= |AP2(f)|∨ ∼= P2.

If C is nonsingular, the complement of∆ = VSP(f, 4) \VSP(f, 4)o is a curve
of degree 6 isomorphic to the dual of a nonsingular cubic curve. IfC is a nodal
cubic, then∆ is the union of a quartic curve isomorphic to the dual quartic of
C and two lines. IfC is the union of a nonsingular conic and a line intersecting
it transversally,∆ is the union of a conic and two lines. IfC is the union of a
conic and its tangent line, then∆ = VSP(f, 4).

Proof We will start with the case whenC is nonsingular. We know that its
equation can be reduced to the Hesse canonical form (3.7). The space of apolar
quadratic forms is spanned byαu0u1 − u2

2, αu1u2 − u2
0, αu0u2 − u2

1. It is
equal to the net of polar conics of the curveC ′ in the dual plane given by the
equation

u3
0 + u3

1 + u3
2 − 6αu0u1u2 = 0, α(α3 − 1) 6= 0. (3.30)

The net|AP2(f)| is base point-free. Its discriminant curve is a nonsingular
cubic, the Hessian curve of the curveC ′. The generalized quadrangles are pa-
rameterized by the dual curve He(C ′)∨. All pencils are irreducible, so there are
no degenerate generalized quadrangles. Generalized quadrangles correspond
to tangent lines of the discriminant cubic. So,

VSP(f, 4) = |AP2(f)|∨, (3.31)

and VSP(f, 4) \ VSP(f, 4)o = He(C ′)∨.
Next, assume thatC = V (t22t0 + t31 + t21t0) is an irreducible nodal cubic.
The space of apolar quadratic forms is spanned byu2

0, u1u2, ∂
2
2−u2

1+3u0u2.
The net|AP2(f)| is base point-free. Its discriminant curve is an irreducible
nodal cubicD. So, all pencils are irreducible, and (3.31) holds. Generalized
quadrangles are parameterized by the union of the dual quartic curveD∨ and
the pencil of lines through the double point.

Next, assume thatC = V (t30 + t0t1t2) is the union of an irreducible conic
and a line which intersects the conic transversally.
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The space of apolar quadratic forms is spanned byu2
1, u

2
2, 6u1u2 − u2

0. The
net |AP2(f)| is base point-free. It is easy to see that its discriminant curve is
the union of a conic and a line intersecting the conic transversally. The line
component defines the pencil generated byV (u2

1) andV (u2
2). It has no fixed

part but its members are singular. So, all generalized quadrangles are nonde-
generate and (3.31) holds. The locus of generalized quadrangles consists of a
conic and two lines.

Next, assume thatV (f) = V (t0t1t2) is the union of three non-concurrent
lines.

The net|AP2(f)| of apolar conics is generated byV (u2
0), V (u2

1), V (u2
2). It is

is base-point-free. The discriminant curve is the union of three non-concurrent
lines representing pencils of singular conics which have no fixed component.
Thus any pencil not containing a singular point of the discriminant curve de-
fines a nondegenerate polar quadrangle. A pencil containing a singular point
defines a nondegenerate generalized polar quadrangle. Again (3.31) holds and
VSP(f, 4) \ VSP(f, 4)o consists of three nonconcurrent lines.

Finally, letC = V (t0(t0t1 + t22)) be the union of an irreducible conic and
its tangent line. We check that AP2(f) is spanned byu2

1, u1u2, u
2
2 − u0u1.

The discriminant curve is a triple line. It corresponds to the pencilV (λu2
1 +

µu1u2) of singular conics with the fixed componentV (u1). There are no polar
quadrangles. Consider the subschemeZ of degree 4 in the affine open setu0 6=
0 defined by the ideal supported at the point[1, 0, 0] with ideal at this point
generated by(u1/u0)2, u1u2/u

2
0, and (u2/u0)2. The linear system|IZ(3)|

is of dimension 5 and consists of cubics of the formV (u0u1(au1 + bu2) +
g3(u1, u2)). One easily computes AP3(f). It is generated by the polynomial
u0u

2
2−u2

0u1 and all monomials exceptu2
0u1 andu0u

2
2. We see that|IZ(3)| ⊂

|AP3(f)|. ThusZ is a degenerate generalized polar quadrangle ofC and (3.31)
holds.

Remark3.2.4 We know already the variety VSP(f, 4) in the case whenC
is the union of concurrent lines. In the remaining cases which have been ex-
cluded, the variety VSP(f, 4) is a reducible surface. Its description is too in-
volved to discuss it here. For example, ifC is an equianharmonic cubic, it
consists of four irreducible components. Three components are isomorphic to
P2. They are disjoint and each contains an open dense subset parametrizing
degenerate polar quadrangles. The fourth component contains an open subset
of base schemes of irreducible pencils of apolar conics. It is isomorphic to the
blow-up of |AP2|∨ at three points corresponding to reducible pencils. Each of
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the first three components intersects the fourth component along one of the
three exceptional curves.

3.3 Projective generation of cubic curves

3.3.1 Projective generation

Suppose we havem different r-dimensional linear systems|Li| of hypersur-
faces of degreesdi in Pn. Choose projective isomorphismsφ : Pr → |Li| and
consider the variety

Z = {(λ, x) ∈ Pr × Pn : x ∈ φ1(λ) ∩ . . . ∩ φm(λ)}. (3.32)

The expected dimension of a general fibre of the first projection pr1 : Z → Pr
is equal ton−m. Assume

• Z is irreducible of dimensionr + n−m;
• the second projection pr2 : Z → Pn is of finite degreek on its imageX.

Under these assumptions,X is an irreducible subvariety of dimensionr+n−
m.

Proposition 3.3.1

degX = sr(d1, . . . , dm)/k.

wheresr is ther-th elementary symmetric function inm variables.

Proof It is immediate thatZ is a complete intersection inPr × Pn of m
divisors of type(1, di). Let Π be a general linear subspace inPn of codimen-
sionn −m + r. We use the intersection theory from [253]. Let h̄1 andh̄2 be
the natural generators ofH2(Pr × Pn,Z) equal to the preimages of the co-
homology classesh1, h2 of a hyperplane inPr andPn, respectively. We have
(pr2)∗([Z]) = k[X]. By the projection formula,

(pr2)∗([Z]) = (pr2)∗(
m∏
j=1

(h̄1 +dj h̄2)) = (pr2)∗(
m∑
j=1

sj(d1, . . . , dm)h̄j1h̄
m−j
2 )

=
m∑
j=1

sj(d1, . . . , dm)hm−j2 (pr2)∗(h̄
j
1) = sr(d1, . . . , dm)hm−r2 .

Intersecting withhn−m+r
2 , we obtain thatk degX = sr(d1, . . . , dm).
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Since through a general point inPn passes a unique member of a pencil,
k = 1 if r = 1.

The following example isSteiner’s constructionof rational normal curves
of degreen in Pn. We have used it already in the case of conics referring for
the details to [295].

Example3.3.1 Let r = 1,m = n andd1 = . . . = dn = 1. Let p1, . . . , pn
be linearly independent points inPn and letPi be the pencil of hyperplanes
passing through the codimension 2 subspace spanned by all points exceptpi.
Choose a linear isomorphismφi : P1 → Pi such that the common hyperplane
H spanned by all the points corresponds to different parametersλ ∈ P1.

Let Hi(λ) = φi(λ). A line contained in the intersectionH1(λ) ∩ . . . ∩
Hn(λ) meetsH, and henceH meets eachHi(λ). If H is different from each
Hi(λ), this implies that the base loci of the pencilsPi meet. However this
contradicts the assumption that the pointspi are linearly independent. IfH =
Hi(λ) for somei, thenH ∩Hj(λ) is equal to the base locus ofPj . Thus the
intersectionH1(λ)∩. . .∩Hn(λ) consists of the pointpi. This shows that, under
the first projection pr1 : Z → P1, the incidence variety (3.32) is isomorphic to
P1 . In particular, all the assumptions on the pencilsPi are satisfied withk = 1.
Thus the image ofZ in Pn is a rational curveRn of degreen. If φi(λ) = H,
then the previous argument shows thatpi ∈ Rn. Thus all pointsp1, . . . , pn lie
onRn. Since all rational curves of degreen in Pn are projectively equivalent,
we obtain that any such curve can be projectively generated byn pencils of
hyperplanes.

More generally, letP1, . . . ,Pn ben pencils of hyperplanes. Since a projec-
tive isomorphismφi : P1 → Pi is uniquely determined by the images of three
different points, we may assume thatφi(λ) = V (λ0li + λ1mi) for some lin-
ear formsli,mi. Then the intersection of the hyperplanesφ1(λ)∩ . . .∩ φn(λ)
consists of one point if and only if the system ofn linear equations withn+ 1
unknowns

λ0l1 + λ1m1 = . . . = λ0ln + λ1mn = 0

has a one-dimensional space of solutions. Under some genericity assumption
on the choice of the pencils, we may always assume it. This shows that the
rational curveRn is projectively generated by the pencils, and its equations
are expressed by the condition that

rank

(
l0 l1 . . . ln
m0 m1 . . . mn

)
≤ 1.

Observe that the maximal minors of the matrix define quadrics inPn of rank
≤ 4.
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Example3.3.2 Take two pencilsPi of planes inP3 through skew lines̀ i.
Choose a linear isomorphismφ : P1 → Pi. Then the union of the linesφ1(λ)∩
φ2(λ) is equal to a quadric surface inP3 containing the lines̀1, `2.

3.3.2 Projective generation of a plane cubic

We consider a special case of the previous construction wheren = 2, r = 1
andm = 2. By Lemma3.3.1,X is a curve of degreed1 + d2. Assume that the
base locus of the pencilPi consists ofd2

i distinct points and the two base loci
have no points in common. It is clear that the union of the base loci is the set
of d2

1 + d2
2 points onX.

Take a pencil of linesP1 and a pencil of conicsP2. We obtain a cubic curve
C containing the base point of the pencil of lines and 4 base points of the pencil
of conics. The pencilP2 cuts out onC ag1

2 . We will use the following.

Lemma 3.3.2 For anyg1
2 on an irreducible reduced plane cubic curve, the

lines spanned by the divisor fromg1
2 intersect at one point on the curve.

Proof The standard exact sequence

0→ OP2(−2)→ OP2(1)→ OC(1)→ 0

gives an isomorphismH0(P2,OP2(1)) ∼= H0(C,OC(1)). It shows that the
pencilg1

2 is cut out by a pencil of lines. Its base point is the point whose exis-
tence is asserted in the Lemma.

The point of intersection of lines spanned by the divisors from ag1
2 was

called by Sylvester thecoresidual pointof C (see [538], p. 134).
Let C be a nonsingular plane cubic. Pick up four points onC no three of

them lying on a line. Consider the pencil of conics through these points. Letq

be the coresidual point of theg1
2 onC defined by the pencil. Then the pencil

of lines throughq and the pencil of conics projectively generateC.
Note that the first projection pr1 : Z → P1 is a degree 2 cover defined by

theg1
2 cut out by the pencil of conics. It has 4 branch points corresponding to

linesφ1(λ) which touch the conicφ2(λ).
There is another way to projectively generate a cubic curve. This time we

take three nets of lines with fixed isomorphismsφi to P2. Explicitly, if λ =
[λ0, λ1, λ2] ∈ P2 andφi(λ) = V (a(i)

0 t0 + a
(i)
1 t1 + a

(i)
2 t2), wherea(i)

j are
linear forms inλ0, λ1, λ2, thenC is given by the equation

det

a
(1)
0 a

(1)
1 a

(1)
2

a
(2)
0 a

(2)
1 a

(2)
2

a
(3)
0 a

(3)
1 a

(3)
2

 = 0.
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This is an example of a determinantal equation of a plane curve which we will
study in detail in the next Chapter.

3.4 Invariant theory of plane cubics

3.4.1 Mixed concomitants

It allows one to relate the invariant theory of homogeneous forms inn + 1
variables to the invariant theory of homogeneous forms inn variables. LetE,
as usual, denote a complex vector space of dimensionn + 1. Recall that the
main object of study in the invariant theory is amixed combinant, an element
Φ of the tensor product

r⊗
i=1

Smi(Sdi(E∨))∨ ⊗
k⊗
i=1

Spi(E∨)⊗
s⊗
i=1

Sqi(E)

which is invariant with respect to the natural linear representation of SL(E)
on the tensor product. We will be dealing here only with the cases whenr =
1, k, s ≤ 1. If k = s = 0, Φ is aninvariantof degreem1 on the spaceSd(E∨).
If k = 1, s = 0, thenΦ is acovariantof degreem and orderp. If k = 0, s = 1,
thenΦ is acontravariantof degreem and classq. If k = s = 1, thenΦ is a
mixed concomitantof degreem, orderp and classq.

Choosing a basisu0, . . . , un in E, and the dual basist0, . . . , tn in E∨, one
can write an invariantΦ ∈ Sm(Sd(E∨))∨ = Sm(Sd(E)) as a homogeneous
polynomial of degreem in coefficients of a general polynomial of degreed
in u0, . . . , un which are expressed as monomials of degreed in u0, . . . , un.
Via polarization, we can consider it as a multihomogeneous function of degree
(d, . . . , d) on (E∗)m. Symbolically, it is written as a product ofw sequences
(i1 . . . in) of numbers from{1, . . . ,m} such that each number appearsd times.
The relation

(n+ 1)w = md

must hold. In particular, there are no invariants ifn + 1 does not dividemd.
The numberw is called theweightof the invariant. When we apply a linear

transformation, it is multiplied by thew-th power of the determinant.
A covariantΦ ∈ Sm(Sd(E∨))∨ ⊗ Sp(E∨) can be written as a polynomial

of degreem in coefficients of a general polynomial of degreed and of degree
p in coordinatest0, . . . , tn. Via polarization, it can be considered as a multiho-
mogeneous function of degree(d, . . . , d, p) on (E∨)m × E. Symbolically, it
can be written as a product ofw expressions(j0 . . . jn) andp expressions(i)x,



3.4 Invariant theory of plane cubics 153

where each number from{1, . . . ,m} appearsd times. We must have

(n+ 1)w + pn = md.

A contravariantΦ ∈ Sm(Sd(E∨))∨⊗Sq(E) can be written as a polynomial
of degreem in coefficients of a general polynomial of degreed and of degree
q in u0, . . . , un. Via polarization, it can be considered as a multihomogeneous
function of degree(d, . . . , d, q) on (E∨)m×E∨. Symbolically, it can be writ-
ten as a product ofw expressions(j0 . . . jn) andq expressions(i1 . . . in)u. We
have

(n+ 1)w + qn = md.

A mixed concomitantΦ ∈ Sm(Sd(E∨))∨⊗Sp(E∨)⊗Sq(E) can be written
as a polynomial of degreem in coefficients of a general polynomial of degree
d, of degreep in t0, . . . , tn, and of degreeq in u0, . . . , un. Via polarization, it
can be considered as a multi-homogeneous function of degree(d, . . . , d, p, q)
on(E∨)m×E×E∨. Symbolically, it can be written as a product ofw expres-
sions(j0, . . . , jn), p expressions(i)x andq expressions(i1, . . . , in)ξ, where
each number from{1, . . . ,m} appearsd times. We have

(n+ 1)w + (a+ b)n = md.

Note that instead of numbers1, . . . ,m classics often employedm letters
a, b, c, . . ..

For example, we have met already the Aronhold invariantsS andT of de-
grees 4 and 6 of a ternary cubic form. Their symbolic expressions are

S = (123)(124)(134)(234) = (abc)(abd)(acd)(bcd),

T = (123)(124)(135)(256)(456)2 = (abc)(abd)(ace)(bef)(def)2.

3.4.2 Clebsch’s transfer principle

It allows one to relate invariants of polynomials inn variables to contravariants
and covariants of polynomials inn+ 1 variables.

Start from an invariantΦ of degreem on the spaceSd((Cn)∨) of homoge-
neous polynomials of degreed. We will “transfer it” to a contravariant̃Φ on
the space of polynomials of degreed in n+ 1 variables. First we fix a volume
form ω onE. A basis in a hyperplaneU ⊂ E defines a linear isomorphism
Cn → U . We call a basis admissible if the pull-back of the volume form un-
der this linear map is equal to the standard volume forme1 ∧ . . . ∧ en. For
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any α ∈ E∨, choose an admissible basis(vα1 , . . . , v
α
n) in Ker(α). For any

(l1, . . . , lm) ∈ (E∨)m, we obtainn vectors inCn, the columns of the matrix

A =

l1(v
α
1 ) . . . lm(vα1 )

...
...

...
l1(vαn) . . . lm(vαn)

 .

The value ofΦ on this set of vectors can be expressed as a linear combination
of the product of maximal minors|AI |, where each column occursd times. It
is easy to see that each minorAi1...in is equal to the value ofli1 ∧ . . . ∧ lin ∈∧n

E∨ onvui1 ∧ . . . ∧ v
u
in

under the canonical pairing

n∧
E∨ ×

n∧
E → C.

Our choice of a volume from onE allows us to identify
∧n

E with E∨. Thus
any minor can be considered as multilinear function on(E∨)m × E∨ and its
value does not depend on the choice of an admissible basis in Ker(u). Symbol-
ically, (i1 . . . in) becomes the bracket expression(i1 . . . in)u. This shows that
the invariantΦ, by restricting to the subspaces Ker(α), defines a contravariant
Φ̃ onSd(E∨) of degreem and classq = md/n.

Example3.4.1 Let Φ be the discriminant of a quadratic form inn variables. It
is an invariant of degreem = n on the space of quadratic forms. Its symbolic
notation is(12 . . . n)2. Its transfer toPn is a contravariant̃Φ of degreen and
classq = 2n/n = 2. Its symbolic notation is(12 . . . n)2u. Considered as map
Φ̃ : S2E∨ → S2E, the value ofΦ̃(q) on u ∈ E∨ is the discriminant of the
quadratic form obtained from restriction ofq to Ker(u). It is equal to zero if
and only if the hyperplaneV (u) is tangent to the quadricV (q). ThusV (Φ̃(q))
is the dual quadricV (q)∨.

Example3.4.2 Consider the quadratic invariantS on the space of binary
forms of even degreed = 2k with symbolic expression(12)2k. We write a
general binary formf ∈ Sd(U) of degreed symbolically,

f = (ξ0t0 + ξ1t1)2k = (η0t0 + η1t1)2k,

where(ξ0, ξ1) and(η0, η1) two copies of a basis inU and(t0, t1) its dual basis.
Then the coefficients off are equal to

(
d
j

)
aj , whereaj = ξj0ξ

2k−j
1 = ηj0η

2k−j
1 .

ThusS is equal to

(ξ0η1 − ξ1η0)2k =
2k∑
j=0

(−1)j
(
2k
j

)
(ξ0η1)j(ξ1η0)2k−j
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=
2k∑
j=0

(−1)j
(
2k
j

)
(ξj0ξ

2k−j
1 )(η1η

2k−j
0 )

=
2k∑
j=0

(−1)j
(
d
j

)
aja2k−j = 2

( k∑
j=0

(−1)j
(
2k
j

)
aja2k−j + 1

2

(
2k
k

)
a2
k

)
.

We have already encountered this invariant in the cased = 3 (see subsection
1.5.1).

The transfer ofS is the contravariant of degree 2 and classd with symbolic
expression(abu)d. For example, whend = 4, its value on a quartic ternary
form f is a quartic form in the dual space which vanishes on lines which cut
onV (f) in a harmonic set of 4 points. The transferT of the invariant of degree
3 on the space of quartic binary forms defines a contravariant of class6. Its
value on a quartic ternary form is a ternary form of degree 6 in the dual space
which vanishes on the set of lines which cut out inV (f) an equianharmonic
set of 4 points.

One can also define Clebsch’s transfer of covariants of degreem and order
p, keeping the factorsix in the symbolic expression. The result of the transfer
is a mixed concomitant of degreem, orderp and classmd/n.

3.4.3 Invariants of plane cubics

Since this material is somewhat outside of the topic of the book, we state some
of the facts without proof, referring to classical sources for the invariant theory
(e.g. [125], t. 2, [538]).

We know that the ring of invariants of ternary cubic forms is generated by
the Aronhold invariantsS andT. Let us look for covariants and contravariants.
As we know from subsection1.5.1, any invariant of binary form of degree 3 is
a power of the discriminant invariant of order 4, and the algebra of covariants
is generated over the ring of invariants by the identical covariantU : f 7→ f ,
the Hessian covariantH of order 2 with symbolic expression(ab)axbx, and
the covariantJ = Jac(f,H) of degree 3 and order 6 with symbolic expression
(ab)2(ca)bxc2x. Clebsch’s transfer of the discriminant is a contravariantF of
degree4 and class6. Its symbolic expression is(abu)2(cdu)2(acu)(bdu). Its
value on a general ternary cubic form is the form defining the dual cubic curve.
Clebsch’s transfer ofH is a mixed concomitantΘ of degree2, order 2 and class
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2. Its symbolic expression is(abu)2axbx. Explicitly, up to a constant factor,

Θ = det


f00 f01 f02 u0

f10 f11 f12 u1

f20 f21 f22 u2

u0 u1 u2 0

 , (3.33)

wherefij = ∂2f
∂ti∂tj

.
The equationΘ(f, x, u) = 0, for fixed x, is the equation of the dual of

the polar conicPx(V (f)). The equationΘ(f, x, u) = 0, for fixed u, is the
equation of the locus of pointsx such that the first polarPx(V (f)) is tangent
to the lineV (u). It is called thepoloconicof the lineV (u). Other description
of the poloconic can be found in Exercises.

The Clebsch’s transfer ofJ is a mixed concomitantQ of degree3, or-
der 3 and class 3. Its symbolic expression is(abu)2(cau)c2xbx. The equation
Q(f, x, u) = 0, for fixedu, is the equation of the cubic curve such that second
polars ofPx(V (f)) of its points intersectV (u) at a point conjugate tox with
respect to the poloconic ofV (u). A similar contravariant is defined by the con-
dition that it vanishes on the set of pairs(x, u) such that the lineV (u) belongs
to the Salmon envelope conic of the polars ofx with respect to the curve and
its Hessian curve.

An obvious covariant of degree 3 and order 3 is the Hessian determinant
H = det He(f). Its symbolic expression is(abc)2axbxcx. Another covariantG
is defined by the condition that it vanishes on the locus of pointsx such that the
Salmon conic of the polar ofx with respect to the curve and its Hessian curve
passes throughx. It is of degree8 and order6. Its equation is the following
bordered determinant 

f00 f01 f02 h0

f10 f11 f12 h1

f20 f21 f22 h2

h0 h1 h2 0

 ,

wherefij = ∂2f
∂ti∂tj

, hi = ∂H(f)
∂ti

(see [80],[125], t. 2, p. 313). The algebra of
covariants is generated byU,H,G and theBrioschi covariant[58]. J(f,H,G)
whose value on the cubic (3.7) is equal to

(1 + 8α3)(t31 − t32)(t32 − t30)(t30 − t31).

Comparing this formula with (3.16), we find that it vanishes on the union of 9
harmonic polars of the curve. The square of the Hermite covariant is a polyno-
mial in U,H,G.

The Cayleyan of a plane cubic defines a contravariantP of degree 3 and class
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3. Its symbolic expression is(abc)(abu)(acu)(bcu). Its value on the curve in
the Hesse form is given in (3.27). There is also a contravariantQ of degree
5 and class 3. In analogy with the form of the word Hessian, A. Cayley gave
them the names thePippianand theQuippian[81]. If C = V (f) is given in
the Hesse form (3.7), then

Q(f) = V ((1− 10α3)(u2
0 + u3

1 + u3
2)− 6α2(5 + 4α3)u0u1u2).

The full formula can be found in Cayley’s paper [80]. He also gives the formula

H(6aP + bQ) = (8Sa2 + 3Ta2b− 24S2ab2 − TS2b3)Q.

According to A. Clebsch,Q(f) vanishes on the locus of lines whose poloconics
with respect to the Cayleyan ofC are apolar to their poloconics with respect to
C. Also, according to W. Milne and D. Taylor ,P(f) is the locus of lines which
intersectC at three points which, considered as lines in the dual plane, define
a reducible cubic apolar to the Hessian ofC (see [429]). This is similar to the
property of the Pippian which vanishes on the set of lines which intersectC at
three point which define a reducible cubic in the dual plane apolar to the curve
itself. The algebra of contravariants is generated byF,P,Q and theHermite
contravariant[316]. Its value on the cubic in the Hesse form is equal to

(1 + 8α3)(u3
1 − u3

2)(u
3
2 − u3

0)(u
3
0 − u3

1).

It vanishes on the union of 9 lines corresponding to the inflection points of the
curve. The square of the Hermite contravariant is a polynomial inF,P,Q.

Exercises

3.1Find the Hessian form of a nonsingular cubic given by the Weierstrass equation.

3.2Let H = He(C) be the Hessian cubic of a nonsingular plane cubic curveC which
is not an equianharmonic cubic. Letτ : H → H be the Steinerian automorphism ofH
which assigns toa ∈ H the unique singular point ofPa(C).

(i) Let H̃ = {(a, `) ∈ H × (P2)∨ : ` ⊂ Pa(C)}. Show that the projectionp1 :

H̃ → H is an unramified double cover.
(ii) Show thatH̃ ∼= H/〈τ〉.

3.3Let C = V (f) ⊂ P2 be a nonsingular cubic.

(i) Show that the set of second polars ofC with respect to points on a fixed linèis
dual conic of the poloconic ofC with respect tò .

(ii) Show thatK(`) is equal to the set of poles of` with respect to polar conics
Px(C), wherex ∈ `.

(iii) What happens to the conicK(`) when the linè is tangent toC?
(iv) Show that the set of lines̀such thatK(`) is tangent tò is the dual curve ofC.
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(v) Let ` = V (a0t0 + a1t1 + a2t2). Show thatK(`) can be given by the equation

g(a, t) = det

0BBBB@
0 a0 a1 a2

a0
∂2f

∂t20

∂2f
∂t0∂t1

∂2f
∂t0∂t2

a1
∂2f
∂t1∂t0

∂2f

∂t21

∂2f
∂t1∂t2

a2
∂2f
∂t2∂t0

∂2f
∂t2∂t1

∂2f

∂t22

1CCCCA = 0.

(vi) Show that the dual curveC∨ of C can be given by the equation (theSchl̈afli
equation)

det

0BBBB@
0 ξ0 ξ1 ξ2

ξ0
∂2g(ξ,t)

∂t20
(ξ) ∂2g(ξ,t)

∂t0∂t1
(ξ) ∂2g(ξ,t)

∂t0∂t2
(ξ)

ξ1
∂2g(ξ,t)
∂t1∂t0

(ξ) ∂2g(ξ,t)

∂t21
(ξ) ∂2g(ξ,t)

∂t1∂t2
(ξ)

ξ2
∂2g(ξ,t)
∂t2∂t0

(ξ) ∂2g(ξ,t)
∂t2∂t1

(ξ) ∂2g(ξ,t)

∂t22
(ξ)

1CCCCA .

3.4 Let C ⊂ Pd−1 be an elliptic curve embedded by the linear system
˛̨
OC(dp0)

˛̨
,

wherep0 is a point inC. Assumed = p is prime.

(i) Show that the image of anyp-torsion point is an osculating point ofC, i.e., a point
such that there exists a hyperplane (anosculating hyperplane) which intersects the
curve only at this point.

(ii) Show that there is a bijective correspondence between the sets of cosets of(Z/pZ)2

with respect to subgroups of orderp and hyperplanes inPp−1 which cut out inC
the set ofp osculating points.

(iii) Show that the set ofp-torsion points and the set of osculating hyperplanes define
a(p2

p+1, p(p+1)p)-configuration ofp2 points andp(p+1) hyperplanes (i.e. each
point is contained inp + 1 hyperplanes and each hyperplane containsp points).

(iv) Find a projective representation of the group(Z/pZ)2 in Pp−1 such that each
osculating hyperplane is invariant with respect to some cyclic subgroup of orderp
of (Z/pZ)2.

3.5A point on a nonsingular cubic is called asextactic pointif there exists an irreducible
conic intersecting the cubic at this point with multiplicity 6. Show that there are 27
sextactic points.

3.6 The pencil of lines through a point on a nonsingular cubic curveC contains four
tangent lines. Show that the twelve contact points of three pencils with collinear base
points onC lie on 16 lines forming a configuration(124, 163) (theHesse-Salmon con-
figuration).

3.7Show that the cross ratio of the four tangent lines of a nonsingular plane cubic curve
which pass through a point on the curve does not depend on the point.

3.8Prove that the second polar of a nonsingular cubicC with respect to the pointa on
the Hessian He(C) is equal to the tangent lineTa(He(C)).

3.9Let a, b be two points on the Hessian curve He(C) forming an orbit with the respect
to the Steinerian involution. Show that the lineab is tangent to Cay(C) at some point
d. Let c be the third intersection point of He(C) with the lineab. Show that the pairs
(a, b) and(c, d) are harmonically conjugate.

3.10 Show that from each pointa on the He(C) one can pass three tangent lines to
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Cay(C). Let b be the singular point ofPa(C). Show that the set of the three tangent
lines consists of the lineab and the components of the reducible polar conicPb(C).

3.11Let C = V (
P

0≤i≤j≤k≤2 aijktitjtk). Show that the Cayleyan curve Cay(C) can
be given by the equation

det

0BBBBB@
a000 a001 a002 ξ0 0 0
a110 a111 a112 0 ξ1 0
a220 a221 a222 0 0 ξ2

2a120 2a121 2a122 0 ξ2 ξ1

2a200 2a201 2a202 ξ2 0 ξ1

2a010 2a011 2a012 ξ1 ξ0 0

1CCCCCA = 0

[125], p. 245.

3.12 Show that any general net of conics is equal to the net of polars of some cu-
bic curve. Show that the curve parameterizing the irreducible components of singular
members of the net coincides with the Cayleyan curve of the cubic (it is called the
Hermite curveof the net.

3.13 Show that the group of projective transformations leaving a nonsingular plane
cubic invariant is a finite group of order 18, 36 or 54. Determine these groups.

3.14Find all ternary cubicsC such that VSP(C, 4)o = ∅.
3.15Show that a plane cubic curve belongs to the closure of the Fermat locus if and
only if it admits a first polar equal to a double line or the whole space.

3.16Show that any plane cubic curve can be projectively generated by a pencil of lines
and a pencil of conics.

3.17Given a nonsingular conicK and a nonsingular cubicC, show that the set of points
x such thatPx(C) is inscribed in a self-polar triangle ofK is a conic.

3.18A complete quadrilateral is inscribed in a nonsingular plane cubic. Show that the
tangent lines at the two opposite vertices intersect at a point on the curve. Also, show
that the three points obtained in this way from the three pairs of opposite vertices are
collinear.

3.19 Let o be a point in the plane outside of a nonsingular plane cubicC. Consider
the six tangents toC from the pointo. Show that there exists a conic passing through
the six points onC which lie on the tangents but not equal to the tangency points. It is
called thesatellite conicof C [156]. Show that this conic is tangent to the polar conic
Po(C) at the points where it intersects the polar linePo2(C).

3.20Show that two general plane cubic curvesC1 andC2 admit a common polar pen-
tagon if and only if the panes of apolar conics|AP2(C1)| and|AP2(C2)| intersect.

3.21Let C be a nonsingular cubic andK be its apolar cubic in the dual plane. Prove
that, for any point onC, there exists a conic passing through this point such that the
remaining 5 intersection points withC form a polar pentagon ofK [545].

3.22Let p, q be two distinct points on a nonsingular plane cubic curve. Starting from an
arbitrary pointp1 find the third intersection pointq1 of the linepp1 with C, then define
p2 as the third intersection point of the lineqq1 with C, and continue in this way to
define a sequence of pointsp1, q1, p2, q2, . . . , qk, pk+1 on C. Show thatpk+1 = p1 if
and only ifp− q is ak-torsion point in the group law onC defined by a choice of some
inflection point as the zero point. The obtained polygon(p1, q1, . . . , qk, p1) is called
theSteiner polygoninscribed inC.

3.23Show that the polar conicPx(C) of a pointx on a nonsingular plane cubic curve
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C cut out onC the divisor2x + a + b + c + d such that the intersection pointsab∩ cd,
ac ∩ bd andad ∩ bc lie onC.

3.24Show that any intersection point of a nonsingular cubicC and its Hessian curve is
a sextactic point on the latter.

3.25 Fix three pairs(pi, qi) of points in the plane in general position. Show that the
closure of the locus of pointsx such that the 3 pairs of linesxpi, xqi are members of a
g1
2 in the pencil of lines throughx is a plane cubic.

3.26Fix three pointsp1, p2, p3 in the plane and three lines̀1, `2, `3 in general po-
sition. Show that the set of pointsx such that the intersection points ofxpi with `i are
collinear is a plane cubic curve [289].

Historical Notes

The theory of plane cubic curves originates from the works of I. Newton [454]
and his student C. MacLaurin [415]. Newton was the first who classified real
cubic curves and he also introduced the Weierstrass equation. Much later K.
Weierstrass showed that the equation can be parameterized by elliptic func-
tions, the Weierstrass functions℘(z) and℘(z)′. The parameterization of a cu-
bic curve by elliptic functions was widely used for defining a group law on
the cubic. We refer to [541] for the history of the group law on a cubic curve.
Many geometric results on cubic curves follow simply from the group law and
were first discovered without using it. For example, the fact that the line join-
ing two inflection points contains the third inflection point was discovered by
MacLaurin much earlier before the group law was discovered. The book of
Clebsch and Lindemann [125] contains many applications of the group law to
the geometry of cubic curves.

The Hesse pencil was introduced and studied by O. Hesse [317],[318]. The
pencil was also known as thesyzygetic pencil(see [125]). It was widely used
as a canonical form for a nonsingular cubic curve. More facts about the Hesse
pencils and its connection to other constructions in modern algebraic geometry
can be found in [14].

The Cayleyan curve first appeared in Cayley’s paper [75]. The Schl̈afli equa-
tion of the dual curve from Exercises was given by L. Schläfli in [542]. Its
modern proof can be found in [264].

The polar polygons of a plane cubics were first studied by F. London [406]
Thus London proves that the set of polar 4-gons of a general cubic curve are
base points of apolar pencils of conics in the dual plane. A modern treatment
of some of these results is given in [194] (see also [503] for related results). A
beautiful paper of G. Halphen [303] discusses the geometry of torsion points
on plane cubic curves.
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Poloconics of a cubic curve are studied extensively in Durège’s book [211].
The term belongs to L. Cremona [156] (conic polar in Salmon’s terminology).
O. Schlessinger proved in [545] that any polar pentagon of a nonsingular cubic
curve can be inscribed in an apolar cubic curve.

The projective generation of a cubic curve by a pencil and a pencil of conics
was first given by M. Chasles. Other geometric ways to generate a plane cubic
are discussed in Durège’s book [211]. Steiner polygons inscribed in a plane
cubic were introduced by J. Steiner in [589]. His claim that their existence is
an example of a porism was given without proof. The proof was later supplied
by A. Clebsch [118].

The invariantsS andT of a cubic ternary form were first introduced by Aron-
hold [11]. G. Salmon gave the explicit formulas for them in [538]. The basic
covariants and contravariants of plane cubics were given by A. Cayley [80]. He
also introduced 34 basic concomitants [96]. They were later studied in detail
by A. Clebsch and P. Gordan [122]. The fact that they generate the algebra of
concomitants was first proved by P. Gordan [280] and S. Gundelfinger [300].
A simple proof for the completeness of the set of basic covariants was given

by L. Dickson [183]. One can find an exposition on the theory of invariants of
ternary cubics in classical books on the invariant theory [286], [233].

Cremona’s paper [156] is a fundamental source of the rich geometry of plane
curves, and in particular, cubic curves. Other good sources for the classical
geometry of cubic curves are books by Clebsch and Lindemann [125], t. 2, by
H. Durège [211], by G. Salmon [538], by H. White [655] and by H. Schroter
[549].
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Determinantal equations

4.1 Plane curves

4.1.1 The problem

Let us consider the following problem. Letf(t0, . . . , tn) be a homogeneous
polynomial of degreed, find ad × d matrixA = (lij(t)) with linear forms as
its entries such that

f(t0, . . . , tn) = det(lij(t)). (4.1)

We say that two determinantal representations defined by matricesandA′ are
equivalentif there exists two invertible matrices X,Y with constant entries such
thatA′ = XAY . One may ask to describe the set of equivalence classes of
determinantal representatuions.

First, let us reinterpret this problem geometrically and coordinate-free. Let
E be a vector space of dimensionn + 1 and letU, V be vector spaces of
dimensiond. A square matrix of sized× d corresponds to a linear mapU∨ →
V , or an element ofU ⊗ V . A matrix with linear forms corresponds to an
element ofE∨ ⊗ U ⊗ V , or a linear mapφ′ : E → U ⊗ V .

We shall assume that the mapφ′ is injective (otherwise the hypersurface
V (f) is a cone, so we can solve our problem by induction on the number of
variables). Let

φ : |E| → |U ⊗ V | (4.2)

be the regular map of the associated projective spaces. LetDd ⊂ |U ⊗ V |
be thedeterminantal hypersurfaceparameterizing non-invertible linear maps
U∨ → V . If we choose bases inU, V , thenDd is given by the determinant of
a square matrix (whose entries will be coordinates inU ⊗ V ). The preimage
of Dd in |E| is a hypersurface of degreed. Our problem is to construct such a
mapφ in order that a given hypersurface is obtained in this way.
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Note that the singular locusDsing
d of Dd corresponds to matrices of corank

≥ 2. It is easy to see that its codimension in|U ⊗ V | is equal to4. If the
image of|E| intersectsDsing

d , thenφ−1(Dd) will be a singular hypersurface.
So, a nonsingular hypersurfaceV (f) of dimension≥ 3 cannot be given by
a determinantal equation. However, tit still could be true for the hypersurface
V (fk).

4.1.2 Plane curves

Let us first consider the case of nonsingular plane curvesC = V (f) ⊂ P2.
Assume thatC has a determinantal equation. As we have explained earlier, the
image of the mapφ does not intersectDsing

d . Thus, for anyx ∈ C, the corank of
the matrixφ(x) is equal to 1 (here we consider a matrix up to proportionality
since we are in the projective space). The null-space of this matrix is a one-
dimensional subspace ofU∨, i.e., a point inP(U). This defines a regular map

l : C → P(U), x 7→ |Ker(φ(x))|.

Now let tφ(x) : V ∨ → U be the transpose map. In coordinates, it corresponds
to the transpose matrix. Its null-space is isomorphic to Im(φ(x))⊥ and is also
one-dimensional. So we have another regular map

r : C → P(V ), x 7→ |Ker(tφ(x))|.

Let

L = l∗OP(U)(1), M = r∗OP(V )(1).

These are invertible sheaves on the curveC. We can identifyU withH0(C,L)
andV with H0(C,M) (see Lemma4.1.2below). Consider the composition
of regular maps

ψ : C
(l,r)−→ P(U)× P(V ) s2−→ P(U ⊗ V ), (4.3)

wheres2 is the Segre map. It follows from the definition of the Segre map,
that the tensorψ(x) is equal tol(x) ⊗ r(x). It can be viewed as a linear map
U → V ∨. In coordinates, the matrix of this map is the product of the column
vector defined byr(x) and the row vector defined byl(x). It is a rank 1 matrix
equal to the adjugate matrix of the matrixA = φ(x) (up to proportionality).
Consider the rational map

Adj : |U ⊗ V |− → P(U ⊗ V ) (4.4)

defined by taking the adjugate matrix. Recall that the adjugate matrix should
be considered as a linear map

∧d−1
U∨ →

∧d−1
V and we can identify
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|U∨ ⊗ V ∨| with |
∧d−1

U ⊗
∧d−1

V |. Although Adj is not well-defined on
vector spaces, it is well-defined, as a rational map, on the projective spaces
(see Example1.1.2). LetΨ = Adj ◦φ, thenψ is equal to the restriction ofΨ to
C. Since Adj is defined by polynomials of degreed− 1 (after we choose bases
in U, V ), we have

Ψ∗OP(U⊗V )(1) = O|E|(d− 1).

This gives

ψ∗OP(U⊗V )(1) = O|E|(d− 1)⊗OC = OC(d− 1).

On the other hand, we get

ψ∗OP(U⊗V )(1) = (s2 ◦ (l, r))∗OP(U⊗V )(1)

= (l, r)∗
(
s∗2OP(U⊗V )(1)

)
= (l, r)∗

(
p∗1OP(U)(1)⊗ p∗2OP(V )(1)

)
= l∗OP(U)(1)⊗ r∗OP(V )(1) = L ⊗M.

Herep1 : P(U)×P(V )→ |U |, p2 : P(U)×P(V )→ P(V ) are the projection
maps. Comparing the two isomorphisms, we obtain

Lemma 4.1.1

L ⊗M ∼= OC(d− 1). (4.5)

Remark4.1.1 It follows from Example1.1.2 that the rational map (4.4) is
given by the polars of the determinantal hypersurface. In fact, ifA = (tij) is a
matrix with independent variables as entries, then∂ det(A)

∂tij
= Mij , whereMij

is the ij-th cofactor of the matrixA. The map Adj is a birational map since
Adj(A) = A−1 det(A) and the mapA→ A−1 is obviously invertible. So, the
determinantal equation is an example of a homogeneous polynomial such that
the corresponding polar map is a birational map. Such a polynomial is called a
homaloidal polynomial(see [197]).

Lemma 4.1.2 Letg = 1
2 (d− 1)(d− 2) be the genus of the curveC. Then

(i) deg(L) = deg(M) = 1
2d(d− 1) = g − 1 + d;

(ii) H0(C,L) ∼= U, H0(C,M) ∼= V ;

(iii) Hi(C,L(−1)) ∼= Hi(C,M(−1)) = {0}, i = 0, 1;
(iv) H1(C,L) = H1(C,M) = 0.
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Proof Let us first prove (iii). A nonzero section ofH0(C,L(−1)) is a section
of L which defines a hyperplane inP(U) which intersectsl(C) along a divisor
l(D), whereD is a divisor onC cut out by a line. Since all such divisorsD
are linear equivalent, we see that for any line` the divisorl(` ∩ C) is cut out
by a hyperplane inP(U). Choosè such that it intersectsC atd distinct points
x1, . . . , xd. Choose bases inU andV . The image ofφ(`) in |U⊗V | = P(Matd)
is a pencil of matricesλA + µB. We know that there ared distinct values
of (λ, µ) such that the corresponding matrix is of corank 1. Without loss of
generality, we may assume thatA andB are invertible matrices. So we haved
distinctλi such that the matrixA+λiB is singular. Letui span Ker(A+λiB).
The corresponding points inP(U) are equal to the pointsl(ti). We claim that
the vectorsu1, . . . , ud are linearly independent vectors inP(U). The proof is
by induction ond. Assumea1u

1 + · · · + adu
d = 0. ThenAui + λiBu

i = 0
for eachi = 1, . . . , d, gives

0 = A
( d∑
i=1

aiu
i
)

=
d∑
i=1

aiAu
i = −

d∑
i=1

aiλiBu
i.

We also have

0 = B
( d∑
i=1

aiu
i
)

=
d∑
i=1

aiBu
i.

Multiplying the second equality byλd and adding it to the first one, we obtain

d−1∑
i=1

ai(λd − λi)Bui = B
(d−1∑
i=1

ai(λd − λi)ui
)

= 0.

SinceB is invertible, this gives

d−1∑
i=1

ai(λi − λd)ui = 0.

By induction, the vectorsu1, . . . , ud−1 are linearly independent. Sinceλi 6=
λd, we obtaina1 = . . . = ad−1 = 0. Sinceud 6= 0, we also getad = 0.

Sinceu1, . . . , ud are linearly independent, the pointsl(xi) spanP(U). Hence
no hyperplane contains these points. This proves thatH0(C,L(−1)) = 0.
Similarly, we prove thatH0(C,M(−1)) = 0. Applying Lemma4.1.1, we get

L(−1)⊗M(−1) ∼= OC(d− 3) = ωC , (4.6)

whereωC is the canonical sheaf onC. By duality,

Hi(C,M(−1)) ∼= H1−i(C,L(−1)), i = 0, 1.
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This proves (iii). Let us prove (i) and (ii). Leth be a section ofOC(1) with
subscheme of zeros equal toH. The multiplication byh defines an exact se-
quence

0→ L(−1)→ L → L⊗OH → 0.

After passing to cohomology and applying (iii), we obtainH1(C,L) = 0.
ReplacingLwithM and repeating the argument, we obtain thatH1(C,M) =
0. This checks (iv).

We know thatdimH0(C,L) ≥ dimU = d. Applying Riemann-Roch, we
obtain

deg(L) = dimH0(C,L) + g − 1 ≥ d+ g − 1.

Similarly, we get

deg(M) ≥ d+ g − 1.

Adding up, and applying Lemma4.1.1, we obtain

d(d− 1) = degOC(d− 1) = deg(L) + deg(M) ≥ 2d+ 2g− 2 = d(d− 1).

Thus all the inequalities above are the equalities, and we get assertions (i) and
(ii).

Now we would like to prove the converse. LetL andM be invertible sheaves
onC satisfying (4.5) and properties from the previous Lemma hold. It follows
from property (iv) and the Riemann-Roch Theorem that

dimU = dimV = d.

Let l : C → P(U), r : C → P(V ) be the maps given by the complete linear
systems|L| and|M|. We defineψ : C → P(U ⊗ V ) to be the composition of
(l, r) and the Segre maps2. It follows from property (4.5) that the mapψ is the
restriction of the map

Ψ : |E| → P(U ⊗ V )

given by a linear system of plane curves of degreed − 1. We can view this
map as a tensor inSd−1(E∨)⊗ U∨ ⊗ V ∨. In coordinates, it is ad× d matrix
A(t) with entries from the space of homogeneous polynomials of degreed−1.
SinceΨ|C = ψ, for any pointx ∈ C, we have rankA(x) = 1. LetM be a
2× 2 submatrix ofA(t). SincedetM(x) = 0 for x ∈ C, we havef | detM .
Consider a3×3 submatrixN ofA(t). We havedet adj(N) = det(N)2. Since
the entries of adj(N) are determinants of2 × 2 submatrices, we see thatf3 |
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det(N)2. SinceC is irreducible, this immediately implies thatf2 | det(N).
Continuing in this way, we obtain thatfd−2 divides all cofactors of the matrix
A. ThusB = f2−dadj(A) is a matrix with entries inE∨. It defines a linear
mapE → U ⊗ V and corresponding regular map of projective spaces

φ : |E| → |U ⊗ V |

whose composition with the map Adj: |U⊗V | → P(U⊗V ) coincides withΨ.
Since rankB = rank adj(A), and rankA(x) = 1, we get that rankB(x) = d−
1 for anyx ∈ C. So, ifdetB is not identically zero, we obtain thatV (det(B))
is a hypersurface of degreed vanishing onC, hencedet(B) = λf for some
λ ∈ C∗. This shows thatC = V (det(B)). To see thatdet(B) 6= 0, we have
to use property (iii) of Lemma4.1.2. Reversing the proof of this property, we
see that for a general linèin |E| the images of the pointsxi ∈ ` ∩ C in
P(U)× P(V ) are the points(ui, vi) such that theui’s spanP(U) and thevi’s
spanP(V ). The images of thexi’s in P(U ⊗ V ) under the mapΨ span a
subspaceL of dimensiond− 1. If we choose coordinates so that the pointsui

andvi are defined by the unit vectors(0, . . . , 1, . . . , 0), thenL corresponds to
the space of diagonal matrices. The image of the line` underΨ is a Veronese
curve of degreed − 1 in L. A general pointΨ(x), x ∈ `, on this curve does
not belong to any hyperplane inL spanned byd− 1 pointsxi’s, thus it can be
written as a linear combination of the pointsΨ(ti) with nonzero coefficients.
This represents a matrix of rankd. This shows thatdetA(x) 6= 0 and hence
det(B(x)) 6= 0.

To sum up, we have proved the following theorem.

Theorem 4.1.3 LetC ⊂ P2 be a nonsingular plane curve of degreed. Let
Pic(C)g−1 be the Picard variety of isomorphism classes of invertible sheaves
onC of degreeg − 1. Let Θ ⊂ Picg−1(C) be the subset parameterizing in-
vertible sheavesF with H0(C,F) 6= {0}. Let L0 ∈ Picg−1(C) \ Θ, and
M0 = ωC ⊗ L−1

0 . ThenU = H0(C,L0(1)) andV = H0(C,M0(1)) have
dimensiond and there is a unique regular mapφ : P2 → |U⊗V | such thatC is
equal to the preimage of the determinantal hypersurfaceDd. The composition
of the restriction ofφ toC and the mapAdj : |U ⊗V | → P(U ⊗V ) is equal to
the composition of the map(l, r) : C → P(U)×P(V ) and the Segre map. The
mapsl : C → P(U) andr : C → P(V ) are given by the complete linear sys-
tems|L0(1)| and |M0(1)| and coincide with the mapsx 7→ |Ker(φ(x))| and
x 7→ |Ker(tφ(x))|, respectively. Conversely, given a mapφ : P2 → |U ⊗ V |
such thatC = φ−1(Dd), there exists a uniqueL0 ∈ Picg−1(C) such that
U ∼= H0(C,L0(1)), V ∼= H0(C,ωC(1) ⊗ L−1

0 ) and the mapφ is defined by
L as above.
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Remark4.1.2 LetX be the set ofd × d matricesA with entries inE∨ such
thatf = detA. The groupG = GL(d)×GL(d) acts on the set by

(σ1, σ2) ·A = σ1 ·A · σ−1
2 .

It follows from the Theorem that the orbit spaceX/G is equal to Picg−1(C) \
Θ.

We mapL0 7→ M0 = ωC ⊗ L−1
0 is an involution on Picg−1 \ Θ. It corre-

sponds to the involution onX defined by taking the transpose of the matrix.

4.1.3 The symmetric case

Let us assume that the determinant representation of a plane irreducible curve
C of degreed is given by a pair of equal invertible sheavesL =M. It follows
from Lemmas4.1.1and4.1.2that

• L⊗2 ∼= OC(d− 1);
• deg(L) = 1

2d(d− 1);
• H0(C,L(−1)) = {0}.

Recall that the canonical sheafωC is isomorphic toOC(d− 3). Thus

L(−1)⊗2 ∼= ωC . (4.7)

Definition 4.1.1 LetX be a curve with a canonical invertible sheafωX (e.g.
a nonsingular curve, or a curve on a nonsingular surface). An invertible sheaf
θ whose tensor square is isomorphic toωX is called atheta characteristic. A
theta characteristic is calledeven(resp.odd) if dim H0(X,N ) is even (resp.
odd).

Using this definition, we can express (4.7) by saying that

L ∼= θ(1),

whereθ is an even theta characteristic (becauseH0(C, θ) = {0}). Of course,
the latter condition is stronger. An even theta characteristic with no nonzero
global sections (resp. with nonzero global sections) is called anon-effective
theta characteristic(resp.effective theta characteristic).

Rewriting the previous subsection under the assumption thatL = M, we
obtain thatU = V . The mapsl = r are given by the linear systems|L| and
define a map(l, l) : C → P(U) × P(U). Its composition with the Segre map
P(U)× P(U)→ P(U ⊗ U) and the projection toP(S2(U∨)) defines a map

ψ : C → P(S2(U∨)) = |S2U |.
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In coordinates, the map is given by

ψ(x) = l̃(x) · t̃l(x),

wherẽl(x) is the column of projective coordinates of the pointl(x). It is clear
that the image of the mapψ is contained in the variety of rank 1 quadrics in
|U∨|. It follows from the proof of Theorem4.1.3that there exists a linear map
φ : P2 → |S2(U∨)| such that its composition with the rational map defined
by taking the adjugate matrix is equal, after restriction toC, to the mapψ.
The image ofφ is a netN of quadrics in|U |. The imageφ(C) is the locus of
singular quadrics inN . For each pointx ∈ C, we denote the corresponding
quadric byQx. The regular mapl is defined by assigning to a pointx ∈ C the
singular point of the quadricQx. The imageX of C in |U | is a curve of degree
equal todegL = 1

2d(d− 1).

Proposition 4.1.4 The restriction map

r : H0(|U |,O|U |(2))→ H0(X,OX(2))

is bijective. Under the isomorphism

H0(X,OX(2)) ∼= H0(C,L⊗2) ∼= H0(C,OC(d− 1)),

the space of quadrics in|U | is identified with the space of plane curves of
degreed− 1. The net of quadricsN is identified with the linear system of first
polars of the curveC.

Proof Reversing the proof of property (iii) from Lemma4.1.2 shows that
the image ofC under the mapψ : C → P(U ⊗ V ) spans the space. In our
case, this implies that the image ofC under the mapC → |S2(U∨)| spans the
space of quadrics in the dual space. If the image ofC in P(U) were contained
in a quadricQ, thenQ would be apolar to all quadrics in the dual space, a
contradiction. Thus the restriction mapr is injective. Since the spaces have the
same dimension, it must be surjective.

The composition of the mapi : P2 → |O|U |(2)|, x 7→ Qx, and the isomor-
phism|O|U |(2)| ∼= |OP2(d − 1)| is a maps : P2 → |OP2(d − 1)|. A similar
maps′ is given by the first polarsx 7→ Px(C). We have to show that the two
maps coincide. Recall thatPx(C) ∩ C = {c ∈ C : x ∈ Tc(C)}. In the next
Lemma we will show that the quadricsQx, x ∈ Tc(C), form the line inN
of quadrics passing through the singular point ofQc equal tor(c). This shows
that the quadricQr(x) cuts out inl(C) the divisorr(Px(C) ∩ C). Thus the
curvess(x) ands′(x) of degreed − 1 cut out the same divisor onC, hence
they coincide.
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Lemma 4.1.5 Let W ⊂ Sd(U∨) be a linear subspace, and|W |s be the
locus of singular hypersurfaces. Assumex ∈ |W |s is a nonsingular point of
|W |s. Then the corresponding hypersurface has a unique ordinary double point
y and the embedded tangent spaceTx(|W |s) is equal to the hyperplane of
hypersurfaces containingy.

Proof AssumeW = Sd(V ∨). Then |W |s coincides with the discriminant
hypersurfaceDd(|U |) of singular degreed hypersurfaces in|U |. If |W | is a
proper subspace, then|W |s = |W |∩Dd(|U |). Sincex ∈ |W |s is a nonsingular
point and the intersection is transversal,Tx(|W |s) = Tx(Dd(|U |) ∩ |W |. This
proves the assertion.

We see that a pair(C, θ), whereC is a plane irreducible curve andθ is
a non-effective even theta characteristic onC defines a netN of quadrics in
|H0(C, θ(1))∨| such thatC = Ns. Conversely, letN be a net of quadrics in
Pd−1 = |V |. It is known that the singular locus of the discriminant hypersur-
faceD2(d − 1) of quadrics inPd−1 is of codimension 2. Thus a general net
N intersectsD2(d− 1) transversally along a nonsingular curveC of degreed.
This gives a representation ofC as a symmetric determinant and hence defines
an invertible sheafL and a non-effective even theta characteristicθ. This gives
a dominant rational map of varieties of dimension(d2 + 3d− 16)/2

G(3, S2(U∨))/PGL(U)− → |OP2(d)|/PGL(3). (4.8)

The degree of this map is equal to the number of non-effective even theta char-
acteristics on a general curve of degreed. We will see in the next chapter
that the number of even theta characteristics is equal to2g−1(2g + 1), where
g = (d − 1)(d − 2)/2 is the genus of the curve. A curveC of odd degree
d = 2k+3 has a unique vanishing even theta characteristic equal toθ = OC(k)
with h0(θ) = (k+ 1)(k+ 2)/2. A general curve of even degree does not have
vanishing even theta characteristics.

4.1.4 Contact curves

Let

(l, r) : C → P(U)× P(V ) ⊂ P(U ⊗ V )

be the embedding ofC given by the determinant representation. By restriction,
it defines a linear map

r : |L|×|M| = |U |×|V | → |L⊗M| ∼= |OC(d−1)|, (D1, D2) 7→ 〈D1, D2〉,
(4.9)
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where〈D1, D2〉 is the unique curve of degreed − 1 that cuts out the divisor
D1 +D2 onC. Consider the variety

F = {(x,D1, D2) ∈ P2 × |U | × |V | : x ∈ 〈D1, D2〉}.

It is a hypersurface inP2 × |U | × |V | of type (d − 1, 1, 1). Choose a basis
(u0, . . . , ud−1) in U and a basis(v0, . . . , vd−1) in V . They will serve as pro-
jective coordinates inP(U) andP(V ). LetA = (lij) define the determinantal
representation ofC.

Proposition 4.1.6 The incidence varietyF is given by the equation

det


l11 . . . l1d u0

l21 . . . l2d u1

...
...

...
...

ld1 . . . ldd ud−1

u0 . . . ud−1 0

 = 0. (4.10)

Proof Thebordered determinant(4.10) os equal to−
∑
Aijuivj , whereAij

is the(ij)-entry of the adjugate matrix adj(A). For anyx ∈ C, the rank of the
adjugate matrix adj(A(x)) is equal to 1. Thus the above equation defines a bi-
linear form of rank 1 in the spaceU∨⊗V ∨ of bilinear forms onU×V . We can
write it in the form(

∑
aivi)(

∑
bjuj), wherel(x) = [a0, . . . , ad−1], r(x) =

[b0, . . . , bd−1]. The hyperplaneV (
∑
aivi) (resp.V (

∑
biui)) in |U | (resp.|V |)

defines a divisorD1 ∈ |L| (resp.|M|) such thatx ∈ 〈D1, D2〉. This checks
the assertion.

Next we use the following determinant identity which is due to O. Hesse
[321].

Lemma 4.1.7 LetA = (aij) be a square matrix of sizek. Let

D(A;u, v) :=

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 . . . a1k u1

a21 a22 . . . a2k u2

...
...

...
...

...
ak1 ak2 . . . akk uk
v1 v2 . . . vk 0

∣∣∣∣∣∣∣∣∣∣∣
.

Then

D(A;u, u)D(A; v, v)−D(A;u, v)D(A, v, u) = P det(A), (4.11)

whereP = P (a11, . . . , akk;u1, . . . , uk; v1, . . . , vk) is a polynomial of degree
k in variablesaij and of degree 2 in variablesui andvj .
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Proof ConsiderD(A;u, v) as a bilinear function inu, v satisfyingD(A;u, v)
= D(tA; v, u). We haveD(A;u, v) = −

∑
Aijuivj , whereAij is the(ij)-

entry of adj(A). This gives

D(A;u, u)D(A; v, v)−D(A;u, v)D(A; v, u)

= (
∑

Aijuiuj)(
∑

Aijvivj)− (
∑

Aijuivj)(
∑

Ajiuivj)

=
∑

uaubvcvd(AabAdc −AacAdb).

Observe thatAabAdc − AacAdb is equal to a2 × 2-minor of adj(A). Thus,
if detA = 0, all these minors are equal to zero, and the left-hand side in
(4.11) is equal to zero. This shows thatdetA, considered as a polynomial
in variablesaij , divides the left-hand side of (4.11). Comparing the degrees
of the expression in the variablesaij , ui, vj , we get the assertion about the
polynomialP .

Let us see a geometric meaning of the previous Lemma. The curveTu =
V (D(A;u, u)) intersects the curveC = V (detA) at d(d − 1) points which
can be written as a sum of two divisorsDv ∈ |L| andD′

v ∈ |M| cut out by
the curveV (D(A;u, v)) andV (D(A; v, u)), where[v] ∈ P(V ). Similarly, the
curveTv = V (D(A; v, v)) intersects the curveC = V (detA) at d(d − 1)
points which can be written as a sum of two divisorsDu ∈ |L| andD′

u ∈ |M|
cut out by the curveV (D(A;u, v)) andV (D(A; v, u)), where[u] ∈ P(U).

Now let us specialize assuming that we are in the case when the matrixA is
symmetric. ThenU = V , and (4.11) becomes

D(A;u, v)2 −D(A;u, u)D(A; v, v) = P detA. (4.12)

This time the curveTu = V (D(A;u, u)) cuts out inC the divisor2Dv, where
Dv ∈ |L|, i.e. it touchesC at d(d − 1)/2 points. The curveV (D(A;u, v)
cuts out inC the divisorDv + Du, where2Du is cut out by the curveTv =
V (D(A; v, v)). We obtain that a choice of a symmetric determinantal rep-
resentationC = V (detA) defines an algebraic system ofcontact curves
Tu, [u] ∈ P(U). By definition, a contact curve of an irreducible plane curve
C is a curveT such that

OC(T ) ∼= L⊗2

for some invertible sheafL onC with h0(L) > 0. Up to a projective trans-
formation ofU , the number of such families of contact curves is equal to the
number of non-effective even theta characteristics on the curveC.

Note that any contact curveT of C belongs to one of the thesed − 1-
dimensional algebraic systems. In fact, it cuts out a divisorD such that2D ∈
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|OC(d− 1)|. Thenθ = OC(D)(−1) is a theta characteristic. Ifh0(C, θ) 6= 0,
thenD must contain a divisor of degreed cut out by a line`. Since a line
intersectsC atd− 1 points, we get a contradiction. This shows thatθ is a non-
vanishing theta characteristic. Next, we find a symmetric determinantal repre-
sentation ofC corresponding toθ and a curveV (D(A;u, u)) which cuts out
the same divisorD in C. Since the degrees of the curvesT andV (D(A;u, u))
are less than the degree ofC, they must coincide.

The algebraic systems of contact curvesV (D(A;u, u)) are not linear sys-
tems of curves, they depend quadratically on the parameters[u] ∈ P(U). This
implies that a general point in the plane is contained in a subfamily of the sys-
tem isomorphic to a quadric inP(U), not a hyperplane as it would be in the
case of linear systems. The universal family of an algebraic system of contact
curves is a hypersurfaceT in |E| × P(U) of type(d− 1, 2). It is given by the
equation ∑

Aij(t0, t1, t2)uiuj = 0,

where(Aij) is the adjugate matrix ofA. Its projection toP(E) is a quadric
bundlewith discriminant curve given by equationdet adj(A) = |A|d−1. The
reduced curve is equal toC. The projection ofT to P(U) is a fibration in
curves of degreed− 1.

One can also see the contact curves as follows. Let[ξ] = [ξ0, . . . , ξd−1]
be a point in|U∨| andHξ = V (

∑
ξiti) be the corresponding hyperplane in

|U |. The restriction of the net of quadrics defined byϑ toHξ defines a net of
quadricsN(ξ) in Hξ parameterized by the planeE. The discriminant curve of
this net of quadrics is a contact curve ofC. In fact, a quadricQx|Hξ inN(ξ) is
singular if and only if the hyperplane is tangent toQx. Or, by duality, the point
[ξ] belongs to the dual quadricQ∨x = V (D(A(x); ξ, ξ)). This is the equation
of the contact curve corresponding to the parameterξ.

Consider the bordered determinant identity (4.12). It is clear thatP is sym-
metric inu, v and vanishes foru = v. This implies thatP can be expressed
as a polynomial of degree 2 in Plücker coordinates of lines inPd−1 = |θ(1)|.
ThusP = 0 represents a family ofquadratic line complexesof lines inPd−1

parameterized by points in the plane.

Proposition 4.1.8 Let φ : |E| → |S2(U)∨| be the net of quadrics in|U |
defined by the theta characteristicϑ. For anyx ∈ |E| the quadratic line com-
plex V (U(u, v;x)) consists of lines in|U∨| such that the dual subspace of
codimension 2 in|U | is tangent to the quadricQx = φ(x).

Proof Note that the dual assertion is that the line is tangent to the dual quadric
Q∨x . The equation of the dual quadric is given byD(A(x);u, u) = 0. A line
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spanned by the point[ξ] = [ξ0, . . . , ξd−1] and[η] = [η0, . . . , ηd−1] is tangent
to this quadric if and only if the restriction of this quadric to the line is given
by a singular binary form in coordinates on the line. The discriminant of this
quadratic form isD(A(x); ξ, ξ)D(A(x); η, η) − D(A(x); ξ, η)2. We assume
that the pointx is a general point in the plane, in particular, it does not belong
toC. Thus this expression vanishes if and only ifP (ξ, η) = 0.

4.1.5 First examples

Taked = 2. Then there is only one isomorphism class ofL with degL = 1.
SincedegL(−1) = −1, h0(C,L(−1)) = 0, soL ∼= M, andC admits a
unique equivalence class of determinantal representations which can be chosen
to be symmetric. For example, ifC = V (t0t1 − t22), we can choose

A =
(
t0 t2
t2 t1

)
.

We haveP(U) ∼= P1, andr = l mapsC isomorphically toP1. There is only
one family of contact curves of degree1. It is the system of tangents toC. It is
parameterized by the conic in the dual plane, the dual conic ofC. Thus, there
is a natural identification of the dual plane withP(S2U).

Taked = 3. Then Picg−1(C) = Pic0(C) andΘ = Pic0(C) \ {OC}. Thus
the equivalence classes of determinantal representations are parameterized by
the curve itself minus one point. There are three systems of contact conics.
Let T be a contact conic cutting out a divisor2(p1 + p2 + p3). If we fix a
group law onC defined by an inflection pointo, then the pointspi add up to a
nonzero 2-torsion pointε. We havep1 + p2 + p3 ∼ 2o + ε. This implies that
L ∼= OC(2o + ε). The contact conic which cuts out the divisor2(2o + ε) is
equal to the union of the inflection tangent line ato and the tangent line atε
(which passes througho). We know that each nonsingular curve can be written
as the Hessian curve in three essentially different ways. This gives the three
ways to writeC as a symmetric determinant and also write explicitly the three
algebraic systems of contact conics.

Let (L,M) define a determinantal representation ofC. Let l : C ↪→ P(U)
be the reembedding ofC in P(U) given by the linear system|L|. For any
D0 ∈ |M|, there existsD ∈ |L| such thatD0 + D is cut out by a conic.
Thus we can identify the linear system|L| with the linear system of conics
throughD0. This linear system defines a birational mapσ : P2 99K P(U)
with indeterminacy points inD0. The mapl : C → P(U) coincides with the
restriction ofσ toC.
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Consider the map

(l, r) : C → P(U)× P(V ) ∼= P2 × P2.

Proposition 4.1.9 The image of(l, r) is a complete intersection of three hy-
perplane sections in the Segre embedding of the product.

Proof Consider the restriction map (4.9)

U × V = H0(P(U)× P(V ),OP(U)(1) �OP(V )(1))→ H0(X,OX(1)),

whereX is the image ofC in P(U ⊗ V ) under the composition of the map
(l, r) and the Segre map. Here we identify the spacesH0(C,L ⊗ M) and
H0(X,OX(1)). Since the map (4.9) is surjective, and its target space is of
dimension6, the kernel is of dimension 3. So the imageX ofC in P(U)×P(V )
is contained in the complete intersection of three hypersurfaces of type(1, 1).
By adjunction formula, the intersection is a curveX ′ of arithmetic genus 1.
Choose coordinates(u0, u1, u2) in U∨ and coordinates(v0, v1, v2) in V to be
able to write the three hypersurfaces by equations∑

0≤i,j≤2

a
(k)
ij uivj = 0, k = 1, 2, 3.

The projection ofX to the first factor is equal to the locus of points[u0, u1, u2]
such that the system

2∑
i,j=0

a
(k)
ij uivj =

2∑
j=0

(
2∑
i=0

a
(k)
ij ui)vj = 0, k = 1, 2, 3,

has a nontrivial solution(v0, v1, v2). The condition for this is

det



2∑
i=0

a
(1)
i0 ui

2∑
i=0

a
(1)
i1 ui

2∑
i=0

a
(1)
i2 ui

2∑
i=0

a
(2)
i0 ui

2∑
i=0

a
(2)
i1 ui

2∑
i=0

a
(2)
i2 ui

2∑
i=0

a
(3)
i0 ui

2∑
i=0

a
(3)
i1 ui

2∑
i=0

a
(3)
i2 ui

 = 0. (4.13)

This checks that the projection ofX ′ to the factorP(U) is a cubic curve, same
as the projection ofX. Repeating the argument, replacing the first factor with
the second one, we obtain that the projections ofX ′ andX to each factor
coincide. This implies thatX = X ′.

Recall that a determinantal representation ofC is defined by a linear map
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φ : E → U ⊗ V . Let us show that its image is the kernel of the restric-
tion map. We identify its target spaceH0(X,OX(1)) with H0(C,OC(d −
1)) = H0(P2,OP2(d − 1)). In coordinates, the mapφ is defined by[x] 7→∑
aij(x)uj ⊗ vi, whereC = V (det(aij)). The restriction map is defined by

the mapui ⊗ vj 7→ Āij , whereAij is a(ij)-cofactor of the adjugate matrix of
(aij) and the bar means the restriction toC. The composition is given by

x 7→
∑

ajiAij = det(aij) restricted toC.

Since the restriction of the determinant toC is zero, we see thatE can be iden-
tified with the linear system of hyperplane sections ofP(U) × P(V ) defining
the curve(l, r)(C).

Note that the determinant (4.13) gives a determinantal representation of the
plane cubicC reembedded in the plane by the linear system|L|. It is given by
a linear mapU∨ → E∨⊗V obtained from the tensorτ ∈ E∨⊗U ⊗V which
defines the linear mapφ : E → U ⊗ V .

4.1.6 The moduli space

Let us consider the moduli space of pairs(C,A), whereC is a nonsingular
plane curve of degreed andA is a matrix of linear forms such thatC =
V (detA). To make everything coordinate-free and match our previous no-
tations, we letP2 = |E| and considerA as a linear mapφ : E → U ⊗ V =
Hom(U∨, V ). Our equivalence relation on such pairs is defined by the nat-
ural action of the group GL(U) × GL(V ) on U ⊗ V . The composition ofφ
with the determinant mapU⊗V → Hom(

∧d
U∨,

∧d
V ) ∼= C is an element of

Sd(E∨). It corresponds to the determinant of the matrixA. Under the action of
(g, h) ∈ GL(U)×GL(V ), it is multiplied bydet g deth, and hence represents
a projective invariant of the action. Considerφ as an element ofE∨ ⊗ U ⊗ V ,
and let

det : E∨ ⊗ U ⊗ V/GL(U)×GL(V )→ |SdE∨|

be the map of the set of orbits defined by taking the determinant. We consider
this map as a map of sets since there is a serious issue here whether the orbit
space exists as an algebraic variety. However, we are interested only in the
restriction of the determinant map on the open subset(E∨⊗U ⊗V )o defining
nonsingular determinantal curves. One can show that the quotient of this subset
is an algebraic variety.

We know that the fibre of the mapdet over a nonsingular curveC is bijective
to Picg−1(C) \Θ. Let

π : X → |Sd(E∨)|
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be the universal family of nonsingular plane curves of degreed (and genusg).
It defines a family

π̃ : Picg−1
d → |Sd(E∨)|

whose fibre over a curveC is isomorphic to Picg−1(C). It is the relative Picard
scheme ofπ. It comes with a divisorT such that its intersection with̃π−1(C)
is equal to the divisorΘ. It follows from the previous sections that there is an
isomorphism of algebraic varieties

(E∨ ⊗ U ⊗ V )o/GL(U)×GL(V ) ∼= Picg−1
d \ T .

This shows that the relative Picard schemePicg−1
d is a unirational variety. An

easy computation shows that its dimension is equal tod2 + 1.
It is a very difficult question to decide whether the varietyPicg−1

d is rational.
It is obviously rational ifd = 2. It is known that it is rational ford = 3 and
d = 4 [245]. Let us sketch a beautiful proof of the rationality in the cased = 3
due to M. Van den Bergh [635].

Theorem 4.1.10 Assumed = 3. ThenPic03 is a rational variety.

Proof A point ofPic0 is a pair(C,L), whereC is a nonsingular plane cubic
andL is the isomorphism class of an invertible sheaf of degree 0. LetD be
a divisor of degree 0 such thatOC(D) ∼= L. Choose a linè and letH =
` ∩ C = p1 + p2 + p3. Let pi +D ∼ qi, i = 1, 2, 3, whereqi is a point. Since
pi− qi ∼ pj − qj , we havepi+ qj ∼ pj + qi. This shows that the lines〈pi, qj〉
and〈pj , qi〉 intersect at the same pointrij onC. Since,pi + qj + rij ∼ H, it
is immediately checked that

p1 + p2 + p3 + q1 + q2 + q3 + r12 + r23 + r13 ∼ 3H.

This easily implies that there is a cubic curve which intersectsC at the nine
points. Together withC they generate a pencil of cubics with the nine points
as the set of its base points. LetX = `3 × (P2)3/S3, whereS3 acts by

σ :
(
(p1, p2, p3), (q1, q2, q3)

)
=
(
(pσ(1), pσ(2), pσ(3)), (qσ(1), qσ(2), qσ(3))

)
.

The varietyX is easily seen to be rational. The projection to`3/S3
∼= P3

defines a birational isomorphism between the product ofP3 and (P2)3. For
eachx = (P,Q) ∈ X, let c(x) be the pencil of cubics through the points
p1, p2, p3, q1, q2, q3 and the pointsrij = 〈pi, qj〉, where(ij) = (12, (23), (13).
Consider the setU ′ of pairs(x,C), C ∈ c(x). The projection(u,C) 7→ u has
fibres isomorphic toP1. Thus the field of rational functions onX ′ is isomor-
phic to the field of rational functions on a conic over the fieldK(X). But this
conic has a rational point. It is defined by fixing a point inP2 and choosing a
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member of the pencil passing through this point. Thus the conic is isomorphic
to P1 andK(X ′) is a purely trancendental extension ofK(X). Now we de-
fine a birational map fromPic03 to X ′. Each(C,L) defines a point ofU ′ by
ordering the set̀ ∩ C, then definingq1, q2, q3 as above. The member of the
corresponding pencil throughpi’s, qi’s andrij ’s is the curveC. Conversely,
a point (x,C) ∈ X ′ defines a point(C,L) in Pic03. We defineL to be the
invertible sheaf corresponding to the divisorq1 + q2 + q3. It is easy that these
map are inverse to each other.

Remark4.1.3 If we choose a basis in each spaceE,U, V , then a mapφ :
E → Hom(U, V ) is determined by three matricesAi = φ(ei). Our moduli
space becomes the space of triples(A1, A2, A3) of d × d matrices up to the
action of the groupG = GL(d) × GL(d) simultaneously by left and right
multiplication

(σ1, σ2) · (A1, A2, A3) = (σ1A1σ
−1
2 , σ1A2σ

−1
2 , σ1A3σ

−1
2 ).

Consider an open subset of mapsφ such thatA1 is an invertible matrix. Tak-
ing (σ1, σ2) = (1, A−1

1 ), we may assume thatA1 = Id is the identity matrix.
The stabilizer subgroup of(Id, A2, A3) is the subgroup of(σ1, σ2) such that
σ1σ2 = 1. Thus our orbit space is equal to the orbit space of pairs of matri-
ces(A,B) up to simultaneous conjugation. The rationality of this space is a
notoriously very difficult problem.

4.2 Determinantal equations for hypersurfaces

4.2.1 Determinantal varieties

Let Matm,k = Cm×k be the space of complexm × k matrices with natural
basiseij and coordinatestij . The coordinate ringC[Cm×n] is isomorphic to
the polynomial ringC[(tij)] in mk variables. For any vector spacesU, V of
dimensionsk,m, respectively, a choice of a basis(ui) in U and a basis(vj)
in V identifiesU ⊗ V with Matm,k by sendingui ⊗ vj to eij . An element
σ ∈ U ⊗ V can be viewed as a linear mapU∨ → V , or as a bilinear form
onU∨ ⊗ V ∨. Under the natural isomorphismU ⊗ V → V ⊗ U , the mapσ
changes to the transpose maptσ.

We denote bylN(σ) (resp.rN(σ)) the left (resp. the right) kernel ofσ
considered as a bilinear map. These are subspaces ofU∨ andV ∨, respectively.
Equivalently,lN(σ) = Ker(σ) (resp.rN(σ) = Ker(tσ) = σ(U)⊥) if σ is
considered as a linear map. For anyr in the range0 < r ≤ min{m, k}, we set

(U ⊗ V )r := {σ ∈ U ⊗ V : rankσ ≤ r}



4.2 Determinantal equations for hypersurfaces 179

and denote by|U ⊗ V |r its image in the projective space|U ⊗ V |. Under
the isomorphismU ⊗ V → V ⊗W , the variety(V ⊗ U)m−r. The varieties
|U ⊗ V |r are closed subvarieties of the projective space|U ⊗ V |, called the
determinant varieties. Under isomorphism|U ⊗ V | ∼= |Cm×k| = Pmk−1,
the variety|U ⊗ V |r becomes isomorphic to the closed subvariety ofPmk−1

defined by(r + 1)× (r + 1) minors of am× k matrix with entriestij .
LetG(r, V ) be the Grassmann variety ofr-dimensional linear subspaces of

V and let

˜|U ⊗ V |r = {(φ,L) ∈ |U ⊗ V | ×G(r, V ) : φ(U) ⊂ L}.

The projection toG(r, V ) exhibits ˜|U ⊗ V |r as a projective vector bundle of

relative dimensionkr and implies that ˜|U ⊗ V |r is a smooth variety of di-
mensionmk − (m − k)(k − r). The projection to|U ⊗ V |r is a proper map
which is an isomorphism over|U ⊗ V |r \ |U ⊗ V |r−1. It defines a resolution
of singularities

σ : ˜|U ⊗ V |r → |U ⊗ V |r.

It identifies the tangent spaceT[σ](|U ⊗ V |r) at a point[σ] ∈ |U ⊗ V |r with
the projective space of mapsτ : U∨ → V such thatτ(Ker(σ)) ⊂ σ(U∨). If
we viewσ as a bilinear form onU∨ ⊗ V ∨, then the tangent space consists of
bilinear formsτ ∈ U ⊗ V such thatτ(u∗ ⊗ v∗) = 0 for all u∗ ∈ lN(σ), v∗ ∈
rN(σ).

Here are some known properties of the determinantal varieties (see [10],
Chapter II,§5).

Theorem 4.2.1 LetMatm,k(r) ⊂ Cm×k,m ≤ n, be the subvariety of matri-
ces of rank≤ r < m. Then

• Matm,k(r) is an irreducible Cohen Macaulay variety of codimension(m−
r)(k − r);
• Sing(Matm,k(r)) = Matm,k(r − 1);
• the multiplicity ofMatm,k(r) at a pointA of ranks ≤ r is equal to

multAMatm,k(r) =
m−r−1∏
j=0

(n− s+ j)!j!
(r − s+ j)!(n− r + j)!

,

in particular,
• the degree ofMatm,k(r) is equal to

deg Matm,k(r) = mult0Matm,k(r) =
m−r−1∏
j=0

(n+ j)!j!
(r + j)!(n− r + j)!

.
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Let φ : E → U ⊗ V be an injective linear map and[φ] : |E| ↪→ |U ⊗ V | be
the corresponding closed embedding morphism. Let

Dr(φ) = |φ|−1(|U ⊗ V |r) ∼= |φ|(|E|) ∩ |U ⊗ V |r.

We say thatφ : E → U ⊗ V is proper, if

codimDr(φ) = codim|U ⊗ V |r = (m− r)(k − r).

In particular, this implies thatDr(φ) is a Cohen-Macaulay variety of dimen-
sionn− (m− r)(k − r) in |E|. We also say thatφ is transversalif

Sing(|U ⊗ V |r) = |U ⊗ V |r−1, r < min{m, k}.

Using the description of the tangent space of|U ⊗V |r at its nonsingular point,
we obtain

Proposition 4.2.2 Assumeφ is proper. A point[x] ∈ Dr(φ) \ Dr−1(φ) is
nonsingular if and only if

dim{y ∈ E : φ(y)(Ker(φ(x))⊗Ker(tφ(x)) = 0} = n+ 1− (m− r)(k− r).

For example, supposek = m = d andr = d − 1. Let [x] ∈ Dd−1(φ) \
Dd−2(φ). Then Ker(φ(x)) and Ker(tφ(x)) are one-dimensional subspaces.
Let u∗, v∗ be their respective generators. Then[x] is a nonsingular point on
Dd−1(φ) if and only if the tensoru∗ ⊗ v∗ is not contained in the kernel of the
maptφ : U∨ ⊗ V ∨ → E∨.

For any vector spaceF we denote byF the trivial vector bundlesF ⊗OPn

onPn with a fixed isomorphism fromF to its space of global sections. Since

Hom(U∨(−1), V ) ∼= H0(Pn, U(1), V ) ∼= E∨ ⊗ U ⊗ V,

a linear mapφ : E → U ⊗ V defines a homomorphism of vector bundles
U∨(−1) → V . For any point[x] ∈ Pn, the fibre(U∨(−1))(x) is canonically
identified withU∨⊗Cx and the map of fibresU∨(−1)(x)→ V (x) is the map
u⊗ x 7→ φ(x)(u).

Assume thatk ≥ m and φ(x) is of maximal rank for a general point
[x] ∈ Pn. Since a locally free sheaf has no nontrivial torsion subsheaves,
the homomorphismU∨(−1) → V (1) is injective, and we obtain an exact
sequence

0→ U∨(−1)
φ→ V → F → 0. (4.14)

Recall that thefibre F(x) of a sheafF over a pointx is the vector space
Fx/mxFx over the residue fieldOx/mx of x. A sheaf over a reduced scheme
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is locally free of rankr if and only if all its fibres are vector spaces of dimension
r. Passing to the fibres of the sheaves in the exact sequence, we obtain

dimF(x) = m− rankφ(x). (4.15)

In particular, ifk > m, thenF is locally free of rankm− k outsideDm−1(φ)
of rankm− k. It has singularities onDm−2(φ).

Assumem = k. Let X denote the set-theoretical support Supp(F) of F
andXs denote the scheme-theoretical support ofF defined by the determinant
of φ. It is known that the annihilator ideal Ann(F) of the sheafF is equal to
(Fitt1(F) : Fitt0(F)), where Fitti(F) denote theFitting idealsof F generated
by k − i × k − i minors of the matrix definingφ [228], p. 511. We will often
considerF as a coherent sheaf onXs. Note thatX = (Xs)red, and, in general,
X 6= Xs.

Let r = max{s : Ds(φ) 6= Dk(σ)}. AssumeX = Xs. It follows from
(4.15) thatFred is locally free onX outsideDs. For example, when the matrix
of φ is skew-symmetric, we expect thatFred is of rank 2 outsideDk−2(φ).

Remark4.2.1 The homomorphismφ : U∨ → V of vector bundles is a special
case of a homomorphism of vector bundles on a varietyX. The rank degener-
acy loci of such homomorphisms are studied in detail in Fulton’s book [253].

Remark4.2.2 In view of classical geometry, determinantal varieties represent
a special case of a of a variety. Let us elaborate. LetA = (aij) be am ×
k matrix, whereaij are linear forms in variablest0, . . . , tn. Consider each
entry as a hyperplane inPn. Assume that the linear formsa1j , . . . , amj in each
j-th column are linearly independent. LetBj be their common zeros. These
are projective subspaces inPn of codimensionm. A linear form

∑m
i=1 uiaij

defines a hyperplaneHj(u) containingBj . Varying u1, . . . , um, we obtain
a (n − m)-dimensional subspace of hyperplanes containingBj . In classical
language this is thestar ]Bj [ of hyperplanes (a pencil ifm = 2, a net ifm = 3,
a web ifm = 4 of hyperplanes). It can be considered as a projective subspace
of dimensionm − 1 in the dual space(Pn)∨. Now, the matrix definesk stars
[Bj [ with uniform coordinates(u1, . . . , um). In classical language,k collinear
m− 1-dimensional subspaces of the dual space.

Consider the subvariety ofPn

X = {x ∈ Pn : x ∈ H1(u) ∩ . . . ∩Hk(u), for someu ∈ Cm}.

It is clear that

X = {x ∈ Pn : rankA(x) < m}.

If k < m, we haveX = Pn, so we assume thatm ≤ k. If not, we replaceA
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with its transpose matrix. In this way we obtain a proper subvarietyX of Pn, a
hypersurface, ifm = k, with linear determinantal representationX = detA.
For anyx ∈ X let

lN(x) := {u ∈ Cm : x ∈ H1(u) ∩ . . . ∩Hk(u)}.

Then the subvarietyXr of X

Xr = {x ∈ X : dim lN(x) ≥ m− r}, r ≤ m− 1,

is the determinantal subvariety ofPn given by the condition rankA(x) ≤ r.
We have a regular map

l : X \Xm−2 → Pm−1, x 7→ |lN(x)|.

The image is the subvariety ofPm−1 given by

rankL(u1, . . . , um) ≤ n,

whereL is thek × (n + 1) matrix with js-th entry equal to
∑m
i=1 a

(s)
ij ui. If

k ≤ n, the mapl is dominant, and ifk = n, it is birational.

4.2.2 Arithmetically Cohen-Macaulay sheaves

LetF be a coherent sheaf onPn and

Γ∗(F) =
∞⊕
k=0

H0(Pn,F(k)).

It is a graded module over the graded ring

S = Γ∗(OPn) =
∞⊕
k=0

H0(Pn,OPn(k)) ∼= C[t0, . . . , tn].

We say thatF is an arithmetically Cohen-Macaulay sheaf(aCM sheaffor
brevity) if M = Γ∗(F) is a graded Cohen-Macaulay module overS. Recall
that this means that every localization ofM is a Cohen-Macaulay module,
i.e. its depth is equal to its dimension. Let us identifyM with the coherent
sheaf on SpecA. The associated sheaf̃M on ProjS is isomorphic toF . Let
U = SpecS \ m0, wherem0 = (t0, . . . , tn) is the irrelevant maximal ideal
of the graded ringS. Since the projectionU → Proj S = Pn is a smooth
morphism, the localizations ofM at every maximal ideal different fromm are
Cohen-Macaulay modules if and only if

• Fx is a Cohen-Macaulay module overOPn,x for all x ∈ Pn.
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The condition that the localization ofM = Γ∗(F) at m0 is Cohen-Macaulay
is satisfied if and only if the local cohomologyHi

m0
(M) vanish for alli with

0 ≤ i < dimM . We haveHi(U,M) = ⊕k∈ZH
i(Pn, M̃(k)). The exact

sequence of local cohomology gives an exact sequence

0→ H0
m(M)→M → H0(U,M)→ H1

m(M)→ 0,

and isomorphisms

Hi+1
m (M) ∼= Hi(U,M), i > 0.

In the caseM = Γ∗(F), the mapM → H0(U,M) = Γ∗(M̃) is an isomor-
phism, henceH0

m(M) = H1
m(M) = 0. Since the canonical homomorphism

Γ̃∗(F) → F is bijective, the conditionsHi
m(M) = 0, i > 1, become equiva-

lent to the conditions

• Hi(Pn,F(k)) = 0, 1 ≤ i < dim Supp(F), k ∈ Z.

Finally, let us remind that for any finitely generated moduleM over a regular
Noetherian local ringR of dimensionn, we have

depthM = n− pdM,

where pd denotes the projective dimension ofM , the minimal length of a pro-
jective resolution ofM .

We apply this to the sheafF from exact sequence (4.14), where we assume
thatk = m.

Exact sequence (4.14) gives us that pdFx = 1 for all x ∈ X = Supp(F).
This implies that depthFx = n−1 for all x ∈ X. In particular,X is hypersur-
face inPn and the stalks ofFx are Cohen-Macaulay modules overOPn,x. The
scheme-theoretical supportXs of F is a hypersurface of degreed = k = m.

A Cohen-Macaulay sheaf of rank 1 is defined by a Weil divisor onX, not
necessary a Cartier divisor. Recall the definitions. LetX be a noetherian inte-
gral scheme of dimension≥ 1 andX(1) be its set of points of codimension
1 (i.e. pointsx ∈ X with dimOX,x = 1). We assume thatX is regular
in codimension 1, i.e. all local rings of points fromX(1) are regular. In this
case we can defineWeil divisorsonX as elements of the free abelian group
WDiv(X) = ZX(1)

and also define linear equivalence of Weil divisors and the
groupCl(X) of linear equivalence classes of Weil divisors (see [311], Chap.
2, §6).

We identify a pointx ∈ X(1) with its closureE in X. We call it anirre-
ducible divisor. Any irreducible reduced closed subschemeE of codimension
1 is an irreducible divisor, the closure of its generic point.
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For any Weil divisorD let OX(D) be the sheaf whose section on an open
affine subsetU consists of functions from the quotient fieldQ(O(U)) such
that div(Φ) +D ≥ 0.

It follows from the definition thatOX(D) is torsion free and, for any open
subsetj : U ↪→ X which contains all points of codimension 1, the canonical
homomorphism of sheaves

OX(D)→ j∗j
∗OX(D) (4.16)

is an isomorphism. These two conditions characterizereflexive sheaveson any
normal integral schemeX. It follows from the theory of local cohomology that
the latter condition is equivalent to the condition that for any pointx ∈ X with
dimOX,x ≥ 2 the depth of theOX,x-moduleFx is greater than or equal to
2. By equivalent definition, a reflexive sheafF is a coherent sheaf such that
the canonical homomorphismF → (F∨)∨ is an isomorphism. The sheaves
OX(D) are reflexive sheaves of rank 1. Conversely, a reflexive sheafF of rank
1 on a normal integral scheme is isomorphic toOX(D) for some Weil divisor
D. In fact, we restrictF to some open subsetj : U ↪→ X with complement of
codimension≥ 2 such thatj∗F is locally free of rank 1. Thus it corresponds
to a Cartier divisor onU . Taking the closure of the corresponding Weil divisor
inX, we get a Weil divisorD onX and it is clear thatF = j∗j

∗F ∼= OX(D).
In particular, we see that any reflexive sheaf of rank 1 on a regular scheme is
invertible. It is not true for reflexive sheaves of rank> 1. They are locally free
outside of a closed subset of codimension≥ 3.

Reflexive sheaves of rank 1 form a group with respect to the operation

L · G = ((L ⊗ G)∨)∨, L−1 = L∨.

For any reflexive sheafL and an integern we set

L[n] = ((L⊗n)∨)∨.

One checks that

OX(D +D′) = OX(D) · OX(D′)

and the mapD 7→ OX(D) defines an isomorphism from the groupCl(X) to
the group of isomorphism classes of reflexive sheaves of rank 1.

Next, we look at the exact sequence of cohomology for (4.14). Using that
Hi(Pn,OPn(j)) = 0 for i 6= 0, n and allj ∈ Z,

Hi(Pn,F(k)) = 0, 1 ≤ i < n− 1 = dim Supp(F), k ∈ Z.
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ThusF satisfies the two conditions from above to be an aCM sheaf. For the
future use, observe also that

V ∼= H0(Pn, V ) ∼= H0(Pn,F). (4.17)

Applying the functorHomOPn (−,OPn(−1)) to (4.14), we obtain an exact
sequence

0→ V ∨ → U → G → 0,

where

G = Ext1OPn (F ,OPn(−1)). (4.18)

The sheafG plays the role ofF when we interchange the roles ofU andV . In
the following we use some standard facts from the Grothendieck-Serre Duality
(see [297]). We have

Ext1OPn (F ,OPn(−1)) ∼= HomOXs
(F , Ext1OPn (OXs ,OPn(−1)))

∼= HomOXs
(F , Ext1OPn (OXs , ωPn))(n) ∼= HomOXs

(F , ωXs)(n)

∼= HomOXs
(F ,OXs

(d− n− 1))(n) ∼= F∨(d− 1),

whereF∨ = HomOXs
(F ,OXs

). Thus (4.18) becomes

G ∼= HomOXs
(F , ωXs

)(n) ∼= F∨(d− 1). (4.19)

This agrees with the theory from the previous subsection.
SupposeF is of rank 1 andX is a normal variety. ThenF ∼= OX(D) for

some Weil divisorD, and

G ∼= OX(−D)(d− 1).

We have seen how a determinantal representation of a hypersurface inPn
leads to an aCM sheaf onPn. Now let us see the reverse construction. LetF
be an aCM sheaf onPn supported on a hypersurfaceX. SinceM = Γ∗(F) is
a Cohen-Macaulay module overS = Γ∗(OPn) of depthn − 1, its projective
dimension is equal to 1. Since any graded projective module over the polyno-
mial ring is isomorphic to the direct sum of free modules of rank 1, we obtain
a resolution

0→
m⊕
i=1

S[−bi]→
m⊕
i=1

S[−ai]→ Γ∗(F)→ 0,



186 Determinantal equations

for some sequences of integers(ai) and(bi). Passing to the associated sheaves
on the projective space, it gives a projective resolution ofF :

0→
m⊕
i=1

OPn(−bi)
φ→

m⊕
i=1

OPn(−ai)→ F → 0. (4.20)

The homomorphism of sheavesφ is given by a square matrixA of sizem. Its
ij-th entry is a polynomial of degreebj − ai. The supportX of F is equal to
V (detA)red. The degree ofY = V (detA) is equal to

d = (b1 + · · ·+ bm)− (a1 + · · ·+ am). (4.21)

We assume that the resolution is minimal, i.e.bj < ai for all i, j. This can
be always achieved by dropping the isomorphic summands in the first and the
second module. The case we considered before is a special case whenF is an
aCM sheaf for which

a1 = . . . = am = 0, b1 = . . . = bm = −1. (4.22)

In this caseA is a matrix of linear forms andd = m.

Proposition 4.2.3 Let F be an aCM sheaf onPn supported on a reduced
hypersurfaceX and let(4.20) be its projective resolution. Then(4.22) holds if
and only if

H0(Pn,F(−1)) = 0, Hn−1(Pn,F(1− n)) ∼= H0(Pn,G(−1)) = 0.
(4.23)

Proof By duality,

Hn−1(Pn,F(1− n)) = Hn−1(X,F(1− n))

∼= H0(X,HomOX
(F(1− n), ωX)) ∼= H0(X,G(−1)) = 0.

Taking global sections in the exact sequence (4.20), we immediately get that
all ai are non-positive. Taking higher cohomology cohomology, we obtain

Hn−1(Pn,F(1− n)) =
m⊕
i=1

Hn(Pn,OPn(−bi + 1− n))

=
m⊕
i=1

H0(Pn,OPn(bi − 2)) = 0.

Sincebi < ai ≤ 0, this implies that allbi = −1.
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Let F be an aCM sheaf defining a linear determinantal representation of a
normal hypersurfaceX. We assume that rankF = 1. We have a rational map

r : X 99K P(U), x 7→ |Ker(φ(x))|.

The map is defined on the complement of the open setX ′ whereF is locally
free. We know thatF ∼= OX(D) for some effective Weil divisorD. The sheaf
F∨ ∼= OX(−D) is an ideal sheaf onX. Let b : X̃ → X be the blow-up of
the ideal sheafJZ . It resolves the mapr in the sense that there exists a regular
map

r̃ : X̃ → P(U)

such thatr = r̃ ◦ π−1 (as rational maps). We will explain this in more detail in
Chapter 7.

4.2.3 Symmetric and skew-symmetric aCM sheaves

LetF be an aCM sheaf onPn whose scheme-theoretical support is a hypersur-
faceXs of degreed. Suppose we have a homomorphism of coherent sheaves
onXs

α : F → F∨(N) (4.24)

for some integerN . Passing to duals, we get a homomorphism(F∨)∨(−N)→
F∨. After twisting byr, we get a homomorphism(F∨)∨ → F(N). Compos-
ing it with the natural homomorphismF → (F∨)∨, we get a homomorphism

tα : F → F∨(N)

which we call thetransposeof α.
We call the pair(F , α) as above aε-symmetric sheafif α is an isomorphism

and tα = εα, whereε = ±1. We say it is symmetric ifε = 1 and skew-
symmetric otherwise.

We refer for the proof of the following result to [69] or [37], Theorem B.

Theorem 4.2.4 Let (F , α) be anε-symmetric aCM sheaf. Assume thatXs =
X. Then it admits a resolution of the form(4.20), where

(a1, . . . , am) = (b1 +N − d, . . . , bm +N − d),

and the mapφ is defined by a symmetric matrix ifε = 1 and a skew-symmetric
matrix if ε = −1.



188 Determinantal equations

Corollary 4.2.5 Suppose(F , α) is a symmetric sheaf withN = d−1 satisfy-
ing the vanishing conditions from(4.23). ThenF admits a projective resolution

0→ U∨(−1)
φ→ U → F → 0,

whereU = H0(Pn,F) and φ is defined by a symmetric matrix with linear
entries.

Note that the isomorphismα defines an isomorphismα : F → G and
an isomorphismV = H0(Pn,F) → U = H0(Pn,G). Supposen is even.
Twisting the isomorphismF → G = HomOXs

(F , ωXs)(n) by − 1
2n, we

obtain an isomorphism

F(− 1
2n)→ HomOXs

(F(−n), ωXs
).

Definition 4.2.1 A rank 1 torsion-free coherent sheafθ on a reduced variety
Y with canonical sheafωY is called atheta characteristicif there exists an
isomorphism

α : θ → HomOY
(θ, ωY ).

Note that in the case when a theta characteristicF is an invertible sheaf, we
obtain

L⊗2 ∼= ωY

which agrees with our previous definition of a theta characteristic on a nonsin-
gular curve. IfX is a normal variety, andθ is a reflexive sheaf (e.g. a Cohen-
Macaulay sheaf), we know thatθ ∼= OX(D) for some Weil divisorD. Thenθ
must satisfyOX(2D) ∼= ωX . In particular, ifωX is an invertible sheaf,D is a
Q-Cartier divisor.

Sinceα andtα differ by an automorphism ofθ, and any automorphism of a
rank 1 torsion-free sheaf is defined by a nonzero scalar multiplication, we can
always choose an isomorphismα defining a structure of a symmetric sheaf on
θ.

Let X be a reduced hypersurface of degreed in Pn andθ be a theta char-
acteristic onX. Assumen = 2k is even. ThenF = θ(k) satisfiesF(k) ∼=
F(k)∨(d− 1) and hence has a structure of a symmetric sheaf withN = d− 1.
Assume also thatθ, considered as a coherent sheaf onPn, is an aCM sheaf.
Applying Corollary4.2.5, we obtain thatF admits a resolution

0→
d⊕
i=1

OPn(−ai − 1)
d⊕
i=1

OPn(−ai)→ F → 0.
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From (4.19), we obtain thatG ∼= F∨(d − 1) ∼= F . The vanishing conditions
from Proposition4.2.3translate into one condition:

H0(X, θ(k − 1)) = 0. (4.25)

If n = 2, this matches the condition thatθ is a non-effective theta charac-
teristic. If this condition is satisfied, we obtain a representation ofX as a
determinant with linear entries. The number of isomorphism classes of such
representations is equal to the number of theta characteristics onX satisfying
condition (4.25)

4.2.4 Singular plane curves

Assumen = 2, and letC be a reduced irreducible curve of degreed. LetF be
a coherent torsion-free sheaf onC. SincedimC = 1, F is a Cohen-Macaulay
sheaf. Also, the cohomological condition for an aCM sheaf are vacuous, hence
F is an aCM sheaf. In general, a Cohen-Macaulay moduleM over a local
Noetherian ringR admits a dualizingR-moduleD, and

depthM + max{q : ExtqR(M,D) 6= 0} = dimR

(see [228]). In our case, the global dualizing sheaf is

ωC = ωP2(C) ∼= OC(d− 3),

the previous equality implies thatExtqOC
(F , ωC) = 0, q > 0, and

F → D(F) := HomOC
(F , ωC) ∼= F∨ ⊗ ωC

is the duality, i.e.F → D(D(F)) is an isomorphism.
If F satisfies the conditions from Proposition4.2.3

H0(C,F(−1)) = H1(C,D(F)(−1)) = 0, (4.26)

we obtain a determinantal representationC = V (detA) with linear entries
(4.14). For a general pointx onC, the corank of the matrixA(x) is equal to
the rank ofF . We shall assume that

rankF = 1.

In this caseF is isomorphic to a subsheaf of the constant sheaf of rational
functions onC. It follows from the resolution ofF that

χ(F(−1)) = 0, χ(F) = d.

Thus

degF(−1) := χ(F(−1)) + pa(C)− 1 = pa(C)− 1.
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Also,

degF = degD(F) = d+ pa(C)− 1 = d(d− 1)/2.

Supposex is a singular point ofC. Then either rankA(x) < d − 1, or the
image of the mapφ : P2 → |U × V |d−1 is tangent to|U × V |d−1 at a point
φ(x) 6∈ |U ×V |d−2. The sheafF is not invertible atx only in the former case.

It is known that the isomorphism classes of rank 1 torsion-free sheaves of
fixed degreed on an irreducible reduced algebraic curveC admit a moduli
space which is a projective variety that contains an irreducible component
which compactifies the generalized Jacobian variety Jacd(C) of C (see [8],
[499]). In the case of plane curves (and, by [499], only in this case), the mod-
uli space is irreducible. Its dimension is equal topa(C). We denote the moduli

space byJac
d
(C).

Let us describe in more detail rank 1 torsion free sheavesF onC.
Let p : C̄ → C be the normalization morphism. Its main invariant is the

conductor idealc, the annihilator ideal of the sheafp∗OC̄ . Obviously, it can be
considered as an ideal sheaf in̄C equal top−1(c) (the image ofp∗(c) in OC̄
under the multiplication map, or, equivalently,p∗(c)/torsion). For anyx ∈ C,
cx is the conductor ideal of the normalization̄R of the ringR = OC,x equal to∏
y→xOC̄,y. Let

δx = lengthR̄/R.

Since, in our case,R is a Gorenstein local ring, we have

dimC R̄/cx = 2dimC R̄/cx = 2δ

(see [575], Chapter 4, n.11).
SupposeR is isomorphic to the localization ofC[u, v]]/(f(u, v)) at the ori-

gin. One can computeδx, using the followingJung-Milnor formula(see [360],
[430], §10).

deg cx = dimC R/Jf + rx − 1, (4.27)

whereJf is the ideal generated by partial derivatives off , andrx is the number
of analytic branches ofC at the pointx.

Let F be the cokernel of the canonical injection of sheavesOC → p∗(OC̄).
Applying cohomology to the exact sequence

0→ OC → p∗OC̄ → F→ 0, (4.28)

we obtain thegenus formula

χ(p∗(OC̄)) = χ(OC̄) = χ(OC) +
∑
x∈C

δx. (4.29)
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Consider the sheaf of algebrasEnd(F) = HomOC
(F ,F). SinceEnd(F)

embeds intoEnd(Fη), whereη is a generic point ofC, and the latter is isomor-
phic to the field of rational functions onC, we see thatEnd(F) is a coherent
OC-algebra. It is finitely generated as aOC-module, and hence it is finite and
birational overC. We setC ′ = SpecEnd(F) and let

π = πF : C′ → C

be the canonical projection. The normalization mapC̄ → C factors through
the mapπ. For this reason,π is called thepartial normalizationof C. Note
thatC ′ = C if F is an invertible sheaf. The algebraEnd(F) acts naturally on
F equipping it with a structure of aOC′ -module which we denote byF ′. We
have

F ∼= π∗F ′.

Recall that for any finite morphismf : X → Y of Noetherian schemes there is
a functorf ! from the category ofOY -modules to the category ofOX -modules
defined by

f !M = HomOY
(f∗OX ,M),

considered as aOX -module. The functorf ! is the right adjoint of the functor
f∗ (recall thatf∗ is the left adjoint functor off∗), i.e.

f∗HomOX
(N , f !M) ∼= HomOY

(f∗N ,M), (4.30)

as bi-functors inM,N . If X andY admit dualizing sheaves, we also have

f !ωY ∼= ωX

(see [311], Chapter III, Exercises 6.10 and 7.2).
Applying this to our mapπ : C ′ → C, and takingN = OC′ , we obtain

F ∼= π∗π
!F .

It is known that any torsion-free sheavesA andB onC ′ a morphismπ∗A →
π∗B is π∗OC′ -linear (see, for example, [36], Lemma 3.1). This implies that
the natural homomorphism

HomC′(A,B) ∼= HomC′(π∗A, π∗B) (4.31)

is bijective. This gives

F ′ ∼= π!F .

For anyF ′ ∈ Jac
d
(C ′)),

χ(F ′) = d′ + χ(C ′)
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(in fact, this equality is the definition of the degree ofF ′, see [445])

d = deg π∗F ′ = χ(π∗F ′)− χ(OC)

= χ(F ′)− χ(OC) = d′ + χ(OC′)− χ(OC′).

Definition 4.2.2 The collection ofOC,x-modulesFx, x ∈ Sing(C), is called
the local typeof F ([483]). The global invariantis the isomorphism class of
EndOC

(F).

It follows from Lemma 1.7 in [483] that the global type ofF determines
the isomorphism class ofF , up to tensoring with an invertible sheaf. Also it is
proven in the same Lemma that the global type depends only on the collection
of local types.

Lemma 4.2.6 The global types ofF andD(F) are isomorphic, and

π!D(F) ∼= D(π!F).

Proof The first assertion follows from the fact that the dualizing functor is
an equivalence of the categories. TakingM = ωC in (4.30) , we obtain that
π∗(D(π!F)) ∼= D(F). The second assertion follows from (4.31).

In fact, by Lemma 3.1 from [36], the map

π∗ : Jac
d′

(C ′)→ Jac
d
(C)

is a closed embedding of projective varieties.
It follows from the duality thatχ(F) = −χ(D(F)). Thus the functorF →

D(F) defines an involutionDC′ on Jac
pa(C′)−1

(C ′) and an involutionDC

on→ Jac
pa(C)−1

(C). By Lemma4.2.6, the morphismπ∗ commutes with the
involutions.

Let us describe the isomorphism classes of the local types ofF . Let F̃ =
p−1(F) = p∗(F)/torsion. This is an invertible sheaf on̄C. The canonical map
F → p∗(p∗F) defines the exact sequence

0→ F → p∗F̃ → T→ 0, (4.32)

whereT is a torsion sheaf whose support is contained in the set of singular
points ofC.

The immediate corollary of this is the following.

Lemma 4.2.7 For anyx ∈ C,

dimC F(x) = multxC,
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whereF(x) denotes the fibre of the sheafF andmultxC denotes the multiplic-
ity of the pointx onC.

Proof Since the cokernel ofF → p∗F̃ is a torsion sheaf, we have

dimC F(x) = dimC F̃(x) = dimC p∗(OC̄)(x). (4.33)

It is clear that the dimension of the fibre of a coherent sheaf is equal to the
dimension of the fibre over the closed point of the formal completion ofFx. Let
R (resp.R̄) denote the formal completion ofOC,x (resp. its normalization). We
know thatR̄ =

∏
y→x R̄y, whereR̄y ∼= C[[t]]. Let(u, v) be local parameters in

R generating the maximal idealm ofR. One can choose the latter isomorphism
in such a way that the composition of the mapR→ R̄ with the projection map
R̄→ R̄i is given by

(u, v) 7→ (tmi
i ,

∞∑
j=mi

ajt
j),

wheremj is the multiplicity of the analytic branch of the curveC correspond-
ing to the pointy overx. It follows that

dimC R̄/m = dimC

rx∏
i=1

C[[t]]/(tmi) =
rx∑
i=1

mi = multxC.

Thus the last dimension in (4.33) is equal to the multiplicity, and we are done.

Corollary 4.2.8 SupposeF satisfies(4.26), and hence defines a linear deter-
minantal representationC = V (detA). Then

d− rankA(x) = multxC.

We denote byδx(F) the length ofTx. The lengthδx(F) of Tx is the local
invariant of theOC,x-moduleFx (see [292]). Let M be a rank 1 torsion-free
module overR = OC,x and M̄ = M ⊗ R̄/torsion. LetQ be the fraction
field of R. SinceM ⊗R Q ∼= Q, one can find a fractional ideal isomorphic
to M . It is known that the isomorphism class ofM can be represented by a
fractional idealJ with local invariantδ(M) = dim M̄/M contained inR̄ and
containing the idealc(R), wherec(M) is the conductor ideal ofR. This implies
that local types ofF atx with δx(F) = δ are parameterized by the fixed locus
of the groupR∗ acting on the Grassmann varietyG(δ, R̄/cx) ∼= G(δ, 2δ) (see
[292], Remark 1.4, [499], Theorem 2.3 (d)). The dimension of the fixed locus
is equal toδx. Thus local types with fixed local invariantδ are parameterized
by a projective variety of dimensionδ.
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Example4.2.1 Let C ′ is the proper transform ofC under the blow-up of a
singular pointx ∈ C of multiplicity mx. Since it lies on a nonsingular surface,
C ′ is a Gorenstein curve. The projectionπ : C ′ → C is a partial normalization.
Let F = π∗OC′ . Thenmmx

C,x contains the conductorcx andc(Fx) = mmx−1
C,x ,

henceδx(F) = mx − 1 (see [499], p. 219).

LetF define a linear determinantal representationC = V (detA). We know
thatD(F) defines the linear representation corresponding to the transpose ma-
trix tA. The case whenF ∼= D(F) corresponds to the symmetric matrixA.
We assume that rankF = 1, i.e.F is a theta characteristicθ onC.

By duality, the degree of a theta characteriticθ is equal topa(C) − 1 and
χ(θ) = 0. We know that each theta characteristicθ is isomorphic toπ∗θ′,
whereθ′ is a theta characteristic on the partial normalization ofC defined by
θ. Since, locally,End(θ′) ∼= OC′ , we obtain thatθ′ is an invertible sheaf on
C ′.

Let Jac(X)[2] denote the 2-torsion subgroup of the group Jac(X) of isomor-
phism classes of invertible sheaves on a curveX. Via tensor product it acts on
the set TChar(C) of theta characteristics onC. The pull-back mapp∗ defines
an exact sequence

0→ G→ Jac(C)→ Jac(C̄)→ 0. (4.34)

The group Jac(C̄) is the group of points on the Jacobian variety ofC̄, an
abelian variety of dimension equal to the genusg of C̄. The groupG ∼=
O∗
C̄
/O∗C has a structure of a commutative group, isomorphic to the product of

additive and multiplicative groups ofC. Its dimension is equal toδ =
∑
x δx.

It follows from the exact sequence that

Jac(C)[2] ∼= (Z/2Z)2g+b, (4.35)

wherek is equal to the dimension of the multiplicative part ofG. It is easy to
see that

b = #p−1(Sing(C))−#Sing(C) =
∑
x

(rx − 1). (4.36)

Lemma 4.2.9 LetF andF ′ be two rank 1 torsion-free sheaves onC of the
same global type defined by the partial normalizationπ : C ′ → C. Then
π∗F ⊗ L ∼= F ′ for some invertible sheafL if and only ifπ∗L ∼= OC′ .

Proposition 4.2.10 The groupJac(C)[2] acts transitively on the set of theta
characteristics with fixed global type. The order of the stabilizer subgroup of
a theta characteristicθ is equal to the order of the2-torsion subgroup of the
kernel ofπ∗ : Jac(C)→ Jac(C ′).
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Proof Let θ, θ′ ∈ TChar(C) with the isomorphic global type. Since two
sheaves with isomorphic global type differ by an invertible sheaf, we have
θ′ ∼= θ ⊗ L for some invertible sheafL. This implies

θ′ ⊗ L ∼= θ′∨ ⊗ ωC ∼= θ∨ ⊗ L−1 ⊗ ωC ∼= θ ⊗ L−1 ∼= θ ⊗ L.

By Lemma 2.1 from [36], π∗F ∼= π∗F ⊗ L for someL ∈ Jac(C) if and only
if π∗L ∼= OC′ . This givesπ∗L2 ∼= OC′ and henceπ∗(L) ∈ Jac(C ′)[2]. It
follows from exact sequence (4.34) (whereC is replaced withC ′) that Jac(C ′)
is a divisible group, hence the homomorphismp∗ : Jac(C)[2] → Jac(C ′)[2]
is surjective. This implies that there existsM ∈ Jac(C)[2] such thatπ∗(L ⊗
M) ∼= OC′ . Thus, we obtain

θ′ ⊗M ∼= θ ⊗ L⊗M ∼= θ.

This proves the first assertion. The second assertion follows from the loc. cit.
Lemma.

Corollary 4.2.11 The number of theta characteristics of global type defined
by a partial normalizationπ : C ′ → C is equal to22g+b−b′ , whereb′ =
#π−1(Sing(C))−#Sing(C).

Recall that a theta characteristicθ defines a symmetric determinantal repre-
sentation ofC if and only if it satisfiesh0(θ) = 0. So, we would like to know
how many such theta characteritics. A weaker condition is thath0(θ) is even.
In this case the theta characteristic is calledeven, the remaining ones are called
odd. The complete answer on the number of even theta characteristics on a
plane curveC is not known. In the case whenθ ∈ Jac(C), the answer, in terms
of some local invariants of singularities, can be found in [306] (see also [401]
for a topological description of the local invariants). The complete answer is
known in the case whenC hassimple(or ADE) singularities.

Definition 4.2.3 A singular pointx ∈ C is called asimple singularityif its
local ring formally isomorphic to the local ring of the singularity at the origin
of one of the following plane affine curves

ak : x2 + yk+1 = 0, k ≥ 1,

dk : x2y + yk−1 = 0, k ≥ 4

e6 : x3 + y4 = 0,

e7 : x3 + xy3 = 0,

e8 : x3 + y5 = 0.

According to [291], a simple singularity is characterized by the property that
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there are only finitely many isomorphism classes of indecomposable torsion-
free modules over its local ring. This implies that the set TChar(C) is finite if
C is a plane curve with only simple singularities.

The number of even theta characteristics on an irreducible reduced plane
curveC with only simple singularities is given in the following Theorem due
to [483].

Theorem 4.2.12 The number of invertible even theta characteristics onC is

22g+k−1 if C has anA4s+1, D4s+2, or E7 singularity,

22g+k−1(2g + 1) if C has no singularities as above, and has an even number

of typesA8s+2, A8s+3, A8s+4, D8s+3, D8s+4, D8s+5, E6,

22g+k−1(2g + 1) otherwise.

The number of non-invertible even theta characteristics on a curve with sim-
ple singularities depends on their known local types. An algorithm to compute
them is given in [483].

Example4.2.2 Let C be a plane irreducible cubic curve. Suppose it has an
ordinary node. This is a simple singularity of typeA1. We have Jac(C) ∼= C∗
and Jac(C)[2] ∼= Z/2Z. The only partial normalization is the normalization
map. There is one invertible theta characteristicθ1 with h0(θ1) = 0 and one
non-invertible theta characteristicθ2 ∼= p∗OC̄(−1) with h0(θ2) = 0. It is iso-
morphic to the conductor ideal sheaf onC. Thus there are two isomorphism
classes of symmetric determinant representations forC. Without loss of gen-
erality we may assume thatC = V (t0t22 + t31 + t0t

2
1). The theta characteristic

θ1 defines the symmetric determinantal representation

t0t
2
2 + t31 + t0t

2
1 = det

 0 t2 t1
t2 −t0 − t1 0
t1 0 −t0

 .

Observe that the rankA(x) = 2 for all pointsx ∈ C. The theta characteristic
θ2 defines the symmetric determinantal representation

t0t
2
2 + t31 + t0t

2
1 = det

−t0 0 −t1
0 t1 −t2
−t1 −t2 −t1

 .

The rank ofA(x) is equal to1 for the singular pointx = [1, 0, 0] and equals 2
for other points onC.

Assume now thatC is a cuspidal cubic with equationV (t0t22 + t31). There
are no invertible theta characteristics and there is only one non-invertible. It is
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isomorphic to the conductor ideal sheaf onC. It defines the symmetric linear
determinantal representation

t0t
2
2 + t31 = det

 0 −t2 −t1
−t2 −t1 0
−t1 0 −t0

 .

Remark4.2.3 We restricted ourselves with irreducible curves. The case of
reducible nodal curves was studied in [74].

4.2.5 Linear determinantal representations of surfaces

Let S be a normal surface of degreed in P3. We are looking for an an aCM
sheafF onP3 with scheme-theoretical support equal toS. We also require that
F is of rank 1 and satisfies the additional assumption (4.23)

H0(P3,F(−1)) = H2(P3,F(−2)) = 0. (4.37)

Every suchF will define a linear determinantal representationf = detA
defined by the resolution (4.14) of F such that rankA(x) = d−1 for a general
point onS.

Since exact sequence (4.14) implies thatF is generated by its global sec-
tions, we see thatF ∼= OS(C) for some effective Weil divisorC. By taking a
general section ofF and applying Bertini’s Theorem, we may assume thatC

is an integral curve, nonsingular outside of Sing(S).
Recall that, as an aCM sheaf,F satisfies the cohomological condition

H1(P3,F(j)) = 0, j ∈ Z. (4.38)

Lets be a nonzero section ofF whose zero subscheme is an integral curve such
thatF ∼= OS(C). The dual of the mapOS

s→ L defines an exact sequence

0→ F∨(j)→ OS(j)→ OC(j)→ 0. (4.39)

By Serre’s Dulaity,

H1(S,F∨(j)) ∼= H1(S,F(−j)⊗ ωS) ∼= H1(S,F(d− 4− j)) = 0.

Applying cohomology, we obtain that the restriction map

H0(S,OS(j))→ H0(C,OC(j)) (4.40)

is surjective for allj ∈ Z. Recall that, by definition, this means thatC is
projectively normalin P3. Conversely, ifC is projectively normal, we obtain
(4.38).
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Before we state the next Theorem we have to remind some facts about the
intersection theory on a normal singular surface (see [444]).

Let σ : S′ → S be a resolution of singularities which we always assume to
be minimal. LetE =

∑
i∈I Ei be its reduced exceptional locus. For any curve

C onS we denote byσ−1(C) the proper transform ofC and define

σ∗(C) := π−1(C) +
∑
i∈I

niEi,

whereni are rational numbers uniquely determined by the system of linear
equations

0 = σ∗(C) · Ei = ·π−1(C) · Ej +
∑
i∈I

niEi · Ej = 0, j ∈ I.

Now we define the intersection numberC · C ′ of two curvesS by

C · C ′ := σ∗(C) · σ∗(C ′).

This can be extended by linearity to all Weil divisors onS. It coincides with
the usual intersection on the subgroup of Cartier divisors. Also it depends only
on the equivalence classes of the divisors.

Recall thatS admits a dualizing sheafωS . It is a reflexive sheaf of rank 1,
hence determines the linear equivalence class of a Weyl devisors denoted by
KS (thecanonical classof S). It is a Cartier divisor class if and only ifS is
Gorenstein (as it will be in our case whenS is a hypersurface). We have

KS′ = σ∗(KS) + ∆,

where∆ =
∑
i∈I aiRi is thediscrepancy divisor. The rational numbersai are

uniquely determined from linear equations

KS′ ·Rj =
∑
i∈I

aiRi ·Rj , j ∈ I.

For any reduced irreducible curveC onS define

AS(C) := − 1
2 (σ∗(C)− σ−1)2 + 1

2σ
−1 ·∆− δ,

whereδ = h0(p∗OC̄/OC) is our familiar invariant of the normalization ofC.
The following results can be found in [44].

Proposition 4.2.13 For any reduced curveC onS and a Weil divisorD let
OC(D) be the cokernel of the natural injective mapOS(D − C) → O(D)
extending the similar map onS \ Sing(S). Then

(i) C 7→ AS(C) extends to a homomorphismWDiv(S)/Div(S) → Q
which is independent of a resolution;
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(ii) χ(OC(D)) = χ(OC) + C ·D − 2AS(C);
(iii) −2χ(OC) = C2 + C ·KS − 2AS(C).

Example4.2.3 Assume thatS has only ordinary double points. Then a min-
imal resolutionσ : S′ → S has the properties that∆ = 0 andE = R1 +
. . . + Rk, wherek is the number of singular points and eachRi is a smooth
rational curves withRi · KS′ = 0 (see more about this in Chapter 8). Let
σ−1(C) · Ei = mi. Then easy computations show that

σ∗(C) = σ−1(C) + 1
2

n∑
i=1

miRi,

C2 = σ−1(C)2 + 1
2

n∑
i=1

m2
i ,

C ·KS = σ−1(C) ·KS′ ,

AS(C) =
1
4

k∑
i=1

m2
i − δ.

Now we are ready to state and to prove the following theorem.

Theorem 4.2.14 Let F be an aCM sheaf of rank 1. ThenF defines a lin-
ear determinantal representation ofS if and only ifF ∼= OS(C) for some
projectively normal integral curveC with

degC = 1
2d(d− 1), pa(C) =

1
6
(d− 2)(d− 3)(2d+ 1).

Proof SupposeF defines a linear determinantal representation ofS. Then it
is a aCM sheaf isomorphic toOS(C) for some integral projectively normal
curveC, and satisfies conditions (4.37), (4.38).

We have

χ(F(−1)) = h0(F(−1)) + h1(F(−1)) + h2(F(−1)).

By (4.37) and (4.38), the right-hand side is equal toh2(F(−1)). LetH be a
general plane section ofS and

0→ OS(−H)→ OS → OH → 0 (4.41)

be the tautological exact sequence defining the ideal sheaf ofH. Tensoring it
byF(−1), we obtain an exact sequence

0→ F(−2)→ F(−1)→ F(−1)⊗OH → 0.
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It shows that the conditionh2(F(−2)) = 0 from (4.37) impliesh2(F(−1)) =
0, hence

χ(F(−1)) = 0. (4.42)

Similar computation shows that

χ(F(−2)) = 0. (4.43)

Tensoring exact sequence (4.41) by OS(C − H), we obtain an exact se-
quence

0→ F(−2)→ F(−1)→ OH(C −H)→ 0.

Applying the Riemann-Roch Theorem to the sheafOH(C −H) onH, we get

degOH(C −H)) = degC − d = χ(OH(C −H))− χ(OH)

= χ(F(−1))− χ(F(−2))− χ(OH) = −χ(OH).

This gives

degC = d− χ(OH) = d− 1 + 1
2 (d− 1)(d− 2) = 1

2d(d− 1),

as asserted.
Applying Proposition4.2.13(ii), we get,

χ(OC) = −C · C + C ·H + χ(OC(C −H)) + 2AS(C)

= degC − C2 + χ(OC(C −H)) + 2AS(C).

By Proposition4.2.13(iii),

C2 = −C ·KS−2χ(OC)+2AS(C) = −(d−4) degC−2χ(OC)+2AS(C),

hence

−χ(OC) = (d− 3) degC + χ(OC(C −H)).

The exact sequence

0→ OS(−H)→ OS(C −H)→ OC(C −H)→ 0

gives

χ(OC(C −H)) = χ(F(−1))− χ(OS(−1)) = −χ(OS(−1)).

Easy computations of the cohomology of projective space gives

χ(OS(−1)) =
(
d

3

)
.
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Combining all together, we obtain

pa(C) = 1− χ(OC) = 1 + 1
2d(d− 1)(d− 3)− 1

6
d(d− 1)(d− 2)

=
1
6
(d− 2)(d− 3)(2d+ 1),

as asserted. We leave to the reader to reverse the arguments and prove the
converse.

Example4.2.4 We will study the case of cubic surfaces in more detail in
Chapter 9. Let us consider the case of quartic surfaces. Assume first thatS

is nonsingular. ThenF ∼= OS(C), whereC is a projectively normal smooth
curve of degree6 and genus3. The projective normality is equivalent to the
condition thatC is not hyperelliptic (Exercise 4.10). We also haveh0(OX(C))
= 4. According to Noether’s Theorem, the Picard group of a general surface of
degree≥ 4 is generated by a plane section. Since a plane section of a quartic
surface is of degree 4, we see that a general quartic surface does not admit
a determinantal equation. The condition thatX contains a curveC as above
imposes one algebraic condition on the coefficients of a quartic surface (one
condition on the moduli of quartic surfaces).

Suppose now thatS contains such a curve. By (4.18), the transpose deter-
minantal representationC = det tA is defined by the sheafG ∼= F∨(3) ∼=
OS(3H − C), whereH is a plane section ofS. We have two mapsl : S →
P3, r : S → P3 defined by the complete linear systems|C| and |3H − C|.
SinceC2 = −C ·KS − 2χ(OC) = 4, the images are quartic surfaces. We will
see later, in Chapter 7, that the two images are related by a Cremona transfor-
mation from|U∨| = |C|∨ to |V ∨| = |3H − C|∨.

We will find examples with singular surfaceS in the next subsection.

4.2.6 Symmetroid surfaces

These are surfaces inP3 which admit a linear determinantal representation
S = V (detA) with symmetric matrixA. The name was coined by A. Cayley.

According to our theory the determinantal representation is given by an aCM
sheafF satisfying

F ∼= F∨(d− 1). (4.44)

For example, ifS is a smooth surface of degreed, we haveF ∼= OS(C) and we
must haveC ∼ (d− 1)H −C, whereH is a plane section. Thus, numerically,
C = 1

2 (d−1)H, and we obtainC2 = 1
4d(d−1)2, C ·KS = 1

2d(d−1)(d−4),
andpa(C) = 1 + 3

8d(d − 1)(d − 3). It is easy to see that it disagrees with
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the formula forpa(C) for anyd > 1. A more obvious reason why a smooth
surface cannot be a symmetroid is the following. The codimension of the locus
of quadrics inPd of corank≥ 2 is equal to3. Thus each three-dimensional
linear system of quadrics intersects this locus, and hence at some pointx ∈ S
we must have rankA(x) ≤ d− 2. Since our sheafF is an invertible sheaf, this
is impossible.

So we have to look for singular surfaces. Let us state the known analogue of
Theorem4.2.1in the symmetric case.

The proof of the following Theorem can be found in [308] or [358]).

Theorem 4.2.15 LetSymm be the space of symmetric matrices of sizem and
Symm(r) be the subvariety of matrices of rank≤ r < m. Then

• Symm(r) is an irreducible Cohen-Macaulay subvariety of codimension
1
2 (m− r)(m− r + 1).

• Sing(Symm(r)) = Symm(r − 1).

• deg Sing(Symm(r)) =
∏

0≤i≤m−r−1

(
n+i+m−r

r−i
)(

2i+1
i

) .

For example, we find that

deg Q2(2) = 4, deg Qd−1(2) =
(
d+ 1

3

)
. (4.45)

Thus, we expect that a general cubic symmetroid has 4 singular points, a gen-
eral quartic symmetroid has 10 singular points, and a general quintic sym-
metroid has 20 singular points.

Note that a symmetroid surface of degreed is the Jacobian hypersurface of
the web of quadricsW defined by the image of mapφ : P3 → Qd−1 defined
by the determinantal representation. We identify|E| with a web of quadrics
in P(U). The surfaceS is the discriminant hypersurfaceD(|E|) of W . The
left kernel mapl : S 99K Pd−1 given by|OS(C)| mapsS onto the Jacobian
surface Jac(|E|) in P(U). |E| is a regular web of quadrics if|E| intersects the
discriminant hypersurface of quadrics inP(U) transversally. In this case we
have the expected number of singular points onS, and all of them are ordinary
nodes. The surfaceS admits a minimal resolutionσ : S̃ := D̃(|E|)→ S. The
map l = l̃ ◦ σ−1, wherel̃ : S̃ → Jac(|E|). The map is given by the linear
system|σ−1(C)|. The Jacobian surface is a smooth surface of degree equal to
σ−1(C)2.

Proposition 4.2.16 Let S′ be the Jacobian surface of|E|, the image ofS
under the right kernel mapr. Assume that|E| is a regular web of quadrics.
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ThenPic(S′) contains two divisor classesη, h such thath2 = d, η2 =
(
d
3

)
,

and

2η = (d− 1)h−
k∑
i=1

Ri,

whereRi are exceptional curves of the resolutionσ : S̃ → S.

Proof We identifyS′ with the resolutionS̃ by means of the map̃r. We take
h = σ∗(O|E|(1)) andη to ber̃∗(OS′(1)). We follow the proof of Proposition
4.1.4to show that, under the restriction|OP(U)(2)| → |OS′(2)|, the web of
quadrics|E| in |OP(U)(2)| is identified with the linear system of polars ofS.
This is a sublinear system in|OS((d − 1)|. Its preimage inS̃ is contained in
the linear system|(d − 1)h −

∑k
i=1Ri|. It is clear thath2 = d. It follows

from Proposition4.2.15, that4η2 = (d− 1)2d− 2
(
d+1
3

)
. This easily gives the

asserted value ofη2.

Corollary 4.2.17

degS′ = η2 =
(
d
3

)
.

Using the adjunction formula, we find

2pa(η)−2 = η2
S+η ·KS′ = η2 + 1

2d(d−1)(d−4) =
(
d
3

)
+ 1

2d(d−1)(d−4)

=
1
3
d(d− 1)(2d− 7).

This agrees with the formula forpa(C) in Theorem4.2.14.
It follows from the Proposition that the theta characteristicθ defining the

symmetric determinantal representation ofS is isomorphic toOS(C), where
C = σ∗(D) forD ∈ |η|. We haveOS(C)⊗2 ∼= OS(d−1) outside of Sing(S).
This givesθ[2] ∼= OS(d− 1).

Remark4.2.4 Supposed is odd. Let

ξ := 1
2 (d− 1)h− η =

k∑
i=1

Ri.

If d is even, we let

ξ := 1
2dh− η = h+

k∑
i=1

Ri.

So, the set of nodes is even in the former case and weakly even in the latter case
(see in [72]). The standard construction gives a double cover ofS′ ramified
only over nodes if the set is even and over the union of nodes and a member of
|h| if the set is weakly even.
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The bordered determinant formula (4.10) for the family of contact curves
extends to the case of surfaces. It defines a(d − 1)-dimensional family of
contact surfaces of degreed− 1. The proper transform of a contact curve inS′

belongs to the linear system|η|.

Example4.2.5 We will consider the cased = 3 later. Assumed = 4 and
the determinantal representation is transversal, i.e.S has the expected number
10 of nodes. LetS′ be its minimal resolution. The linear systemη consists
of curves of genus 3 and degree 6. It mapsS′ isomorphically onto a quartic
surface inP3, the Jacobian surface of the web of quadrics defined by the de-
terminantal representation. The family of contact surfaces is a 3-dimensional
family of cubic surfaces passing through the nodes ofS and touching the sur-
face along some curve of genus 3 and degree 6 passing through the nodes. The
double cover corresponding to the divisor classξ is a regular surface of general
type withpg = 1 andc21 = 2.

Consider the linear system|2h−R1| onS′. Since(h−R1)2 = 2, it defines
a degree 2 map ontoP2. Since(2h−Ri)·Rj = 0, i > 10, the curvesRi, i 6= 1,
are blown down to points. The curveR1 is mapped to a conicK on the plane.
One can show that the branch curve of the cover is the union of two cubic
curves and the conicK is tangent to both of the curves at each intersection
point. Conversely, the double cover of the plane branch along the union of two
cubics which both everywhere tangent to a nonsingular conic, is isomorphic to
a quartic symmetroid (see [146]) We refer to Chapter 1 where we discussed the
Reye varieties associated ton-dimensional linear systems of quadrics inPn. In
the case of the quartic symmetroid parameterizing singular quadrics in a web
of quadrics inP3, the Reye variety is an Enriques surface.

Assumed = 5 andS has expected number 20 of nodes. The linear system
η consists of curves of genus 11 and degree 10. It mapsS′ isomorphically
onto a surface of degree 10 inP4, the Jacobian surface of the web of quadrics
defined by the determinantal representation. The family of contact surfaces
is a 4-dimensional family of quartic surfaces passing through the nodes ofS

and touching the surface along some curve of genus 11 and degree 10 passing
through the nodes. The double coverX of S branched over the nodes is a
regular surface of general type withpg = 4 and c21 = 10. It is easy to see
that the canonical linear system onX is the preimage of the canonical linear
system onS. This gives an example of a surface of general type such that the
canonical linear system maps the surface onto a canonically embedded normal
surface, a counter-example to Babbage’s conjecture (see [72]).
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Exercises

4.1 Find explicitly all equivalence classes of linear determinantal representations of a
nodal or a cuspidal cubic.

4.2 Show that a general binary form admits a unique equivalence class of symmetric
determinantal representations.

4.3 The following problems lead to a symmetric determinantal expression of a plane
rational curve [387].

(i) Show, that, for any two degreed binary formsp(u0, u1) and q(u0, u1), there
exists a uniqued×d symmetric matrixB(p, q) = (bij) whose entries are bilinear
functions of the coefficients ofp andq such that

p(u0, u1)q(v0, v1)−q(u0, u1)p(v0, v1) = (u0v1−u1v0)
X

biju
i
0u
d−jvj0v

d−j
1 .

(ii) Show that the determinant ofB(p, q) (thebezoutiantof p, q) vanishes if and only
if the two binary forms have a common zero.

(iii) Letp0, p1, p2 be three binary forms of degreed without common zeros andC be
the image of the mapP1 → P2, [u0, u1] 7→ [p0(u0, u1), p1(u0, u1), p2(u0, u1)].
Show thatC is given by the equationf(t0, t1, t2) = |B(t0p1 − t1p0, t0p2 −
t2p0)| = 0.

(iv) Prove thatf = |t0B(p1, p2) − t1B(t0, t2) − t2B(t0, t1)| and any symmetric
determinantal equation ofC is equivalent to this.

4.4 Let C = V (f) be a nonsingular plane cubic,p1, p2, p3 be three non-collinear
points. Let(A0, A1, A2) define a quadratic Cremona transformation with fundamental
pointsp1, p2, p3. Let q1, q2, q3 be another set of three points such that the six points
p1, p2, p3, q1, q2, q3 are cut out by a conic. Let(B0, B1, B2) define a quadratic Cre-
mona transformation with fundamental pointsq1, q2, q3. Show that

F−3 det adj

0@A0B0 A0B1 A0B2

A1B0 A1B1 A1B2

A2B0 A2B1 A2B2

1A
is a determinantal equation ofC.

4.5Find determinantal equations for a nonsingular quadric surface inP3.

4.6Let E ⊂ Matd be a linear subspace of dimension 3 of the space ofd× d matrices.
Show that the locus of pointsx ∈ Pd−1 such that there existsA ∈ E such thatAx = 0
is defined bỳ d

3

´
equations of degree3. In particular, for any determinantal equation of

a curveC, the images ofC under the mapsr : P2 → Pd−1 and l : P2 → Pd−1 are
defined by such a system of equations.

4.7Show that the variety of nets of quadrics inPn whose discriminant curve is singular
is reducible.

4.8 Let C = V (det A) be a linear determinantal representation of a plane curveC
of degreed defiined by a rank 1 torsion-free sheafF of global typeπ : C′ → C.
Show that the rational mapl : C → Pd−1, x 7→ |N(A(x))| extends to a regular map
C′ → Pd−1.

4.9Let C be a non-hyperelliptic curve of genus 3 and degree 6 inP3.

(i) Show that the homogeneous ideal ofC in P3 is generated by four cubic polyno-
mialsf0, f1, f2, f3.
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(ii) Show that the equation of any quartic surface containingC can be written in the
form

P
lifi = 0, whereli are linear forms.

(iii) Show that(f0, f1, f2, f3) define a birational mapf from P3 to P3. The image
of any quartic containingC is another quartic surface.

(iv) Show that the mapf is the right kernel map for the determinantal representation
of the quartic defined by the curveC.

4.10Show that a curve of degree 6 and genus 3 inP3 is projectively normal if and only
if it is not hyperelliptic.

4.11 Let C be a nonsingular plane curve of degreed andL0 ∈ Picg−1(C) with
h0(L0) 6= 0. Show that the image ofC under the map given by the complete linear
systemL0(1) is a singular curve.

4.12 Let θ be a theta characteristic on a nonsingular plane curve of degreed with
h0(θ) = 1. Show that the corresponding aCM sheaf onP2 defines an equation ofC
expressed as the determinant of a symmetric(d− 1)× (d− 1) matrix (aij(t)), where
aij(t) are of degree1 for 1 ≤ i, j ≤ d − 3, a1j(t) are of degree 2, andad−1d−1(t) is
of degree 3 [37].

4.13Let S = V (det A) be a linear determinantal representation of a nonsingular quar-
tic surface inP3. Show that the four3× 3 minors of the matrixB obtained fromA by
deleting one row define the equations of a projectively normal curve of degree 6 and
genus 3 lying onS.

4.14Show that any quartic surfaces containing a line and a rational normal cubic not
intersecting the line admits a determinantal representation.

4.15Show that the Hessian hypersurface of a general cubic hypersurface inP4 is hyper-
surface of degree 5 whose singular locus is a curve of degree 20. Show that its general
hyperplane section is a quintic symmetroid surface.

4.16Let C be a curve of degreeN(d) = d(d − 1)/2 and arithmetic genusG(d) =
1
6
(d − 2)(d − 3)(2d + 1) on a smooth surface of degreed in P3. Show that the linear

system|OS(−C)(d)| consists of curves of degreeN(d + 1) and arithmetic genus
G(d + 1).

4.17Let S be a general symmetroid quintic surface inP3 and|L| be the linear system
of projectively normal curves of degree 10 and genus 11 which defines a symmetric
linear determinantal representation ofS and letS′ be the image ofS under the rational
map Φ : P3 → Pd = |OC |∨. Let W be the web of quadrics defining the linear
representation ofS. Consider the rational mapT : P4 99K P4 defined by sending
a pointx ∈ P4 to the intersection of polar hyperplanesPx(Q), Q ∈ W . Prove the
following assertions (see [621].

(i) The fundamental locus ofT (whereT is not defined) is equal toS′.
(ii) The image of a general hyperplaneH is a quartic hypersurfaceXH .
(iii) The intersection of two such quarticsXH andXH′ is equal to the union of the

surfaceS′ and a surfaceF of degree 6.
(iv) Each 4-secant line ofC contained inH (there are 20 of them) is blown down

underT to 20 nodes ofXH .

4.18Let p1, . . . , p5 be five points inP3 in general linear position. Prove the following
assertions (see [623]).

(i) Show that one can choose a pointqij on the linepipj such that the linesp1q34,
p2q45, p3q25, p4q12, p5q23 form a closed space pentagon.
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(ii) Show that the union of 5 linespipj and 5 lines defined in (i) is a curve of arith-
metic genus 11.

(ii) Show that the linear system of quartic surfaces containing the 10 lines mapsP3

to a quartic hypersurface inP4 with 45 nodes (theBurhardt quartic threefold).

4.19Show that the equivalence classes of determinantal representations of plane curve
C of degree2k with quadratic forms as entries correspond to aCM sheaves onC satis-
fying h0(F(−1)) = 0 andF(− 1

2
d− 2)∨ ∼= F(− 1

2
(d− 2)).

4.20 Show that the union ofd different hyperplanes inPn always admits a unique

equivalence class of symmetric linear determinant representations.

Historical Notes

Apparently, O. Hesse was the first who stated clearly the problem of represen-
tation of the equation of a hypersurface as a symmetric determinant of linear
forms [321]. He was able to do it for plane curves of order 4 [322]. He also
showed that it can be done in 36 different ways corresponding 36 families of
contact cubics. For cubic curves the representation follows from the fact that
any cubic curve can be written in three ways as the Hessian curve. This fact
was also proven by Hesse [317], p. 89. The fact that a general plane curve of
degreed can be defined by the determinant of a symmetricd × d matrix with
entries homogeneous linear forms was first proved by A. Dixon [185]. Dixon’s
result was reproved later by Grace [286]. Modern expositions of Dixon’s the-
ory were given by A. Beauville [33] and A. Tyurin [616], [617].

The first definition of non-invertible theta characteristics on a singular curve
was given by W. Barth. It was studied for nodal planes curves by A. Beauville
[33] and F. Catanese [74], and for arbitrary singular curves of degree≤ 4, by
C.T.C. Wall [646].

It was proved by L. Dickson [182] that any plane curve can be written as
the determinant of not necessarily symmetric matrix with linear homogeneous
forms as its entries. The relationship between linear determinantal represen-
tations of an irreducible plane curve of degreed and line bundles of degree
d(d− 1)/2 was first established in [140]. This was later elaborated by V. Vin-
nikov [642]. A deep connection between linear determinantal representations
of real curves and the theory of colligations for pairs of commuting operators
in a Hilbert space was discovered by M. Lifs̆ic [404] and his school (see [405]).

The theory of linear determinantal representation for cubic surfaces was de-
veloped by L. Cremona [159]. Dickson proves in [182] that a general homoge-
neous form of degreed > 2 in r variables cannot be represented as a linear de-
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terminant unlessr = 3 or r = 4, d ≤ 3. The fact that a determinantal represen-
tations of quartic surfaces is possible only if the surface contains a projectively
normal curve of genus 3 and degree 6 goes back to F. Schur [553]. However, it
was A. Coble who was the first to understand the reason: by Noether’s theorem,
the Picard group of a general surface of degree≥ 4 is generated by a plane sec-
tion [133], p. 39. The case of quartic surfaces was studied in detail in a series
of papers of T. Room [520]. Quartic symmetroid surfaces were first studied by
A. Cayley [94]. They appear frequently in algebraic geometry. Coble’s paper
[131] (in a disguised form) the group of birational automorphisms of such sur-
faces. There is a close relationship between quartic symmetroids and Enriques
surfaces (see [146]. M. Arin and D. Mumford [17] used quartic symmetroids
in their celebrated constriction of counter-examples to the Lüroth Problem. A
modern theory of symmetroid surfaces can be found in papers of A. Beauville
[37] and F. Catanese [72].

We refer to [37] for a comprehensive survey of modern theory of determi-
nantal representations of hypersurfaces based on the theory of aCM sheaves.
One can find numerous special examples of determinantal representations in
this paper. We followed his exposition in many places.

In classical algebraic geometry, a determinantal representation was consid-
ered as a special case of a projective generation of subvarieties in a projective
space. It seems that the geometric theory of determinantal varieties started from
the work of H. Grassmann in 1856 [290], where he considers the projective
generation of a cubic surface by three collinear nets of planes. Grassmann’s
construction was greatly generalized in a series of papers of T. Reye [510]. In
the last paper of the series he studies curves of degree 10 and genus 11 which
lead to linear determinantal representation of quintic surfaces.

Algebraic theory of determinantal varieties started from the work of F.S.
Macaulay [413], where the fact that the loci of rank≤ r square matrices are
Cohen-Macaulay varieties can be found. The classical account of the theory of
determinantal varieties is T. Room’s monograph [521]. A modern treatment of
determinantal varieties can be found in modern books [10], [253], [295]. The
book of W. Bruns and U. Vetter [60] gives a rather complete account of the re-
cent development of the algebraic theory of determinantal ideals. The formula
for the dimensions and the degrees of determinantal varieties in general case
of m × n matrices and also symmetric matrices goes back to C. Segre [569]
and Giambelli [269].



5

Theta characteristics

5.1 Odd and even theta characteristics

5.1.1 First definitions and examples

We have already dealt with theta characteristics on a plane curves in the previ-
ous Chapter. Here we will study theta characteristics on any nonsingular pro-
jective curve in more details.

It follows from the definition that two theta characteristics, considered as
divisor classes of degreeg − 1, differ by a 2-torsion divisor class. Since the
2-torsion subgroup Jac(C)[2] is isomorphic to(Z/2Z)2g, there are22g theta
characteristics. However, in general, there is no canonical identification be-
tween the set TChar(C) of theta characteristics onC and the set Jac(C)[2].
One can say only that TChar(C) is an affine space over the vector space of
Jac(C)[2] ∼= F2g

2 .
There is one more structure on TChar(C) besides being an affine space over

Jac(C)[2]. Recall that the subgroup of 2-torsion points Jac(C)[2] is equipped
with a natural symmetric bilinear form overF2, called theWeil pairing. It is
defined as follows (see [10], Appendix B). Letε, ε′ be two 2-torsion divi-
sor classes. Choose their representativesD,D′ with disjoint supports. Write
div(φ) = 2D,div(φ′) = 2D′ for some rational functionsφ andφ′. Then
φ(D′)
φ′(D) = ±1. Here, for any rational functionφ defined at pointsxi,φ(

∑
i xi) =∏

i φ(xi). Now we set

〈ε, ε′〉 =

{
1 if φ(D′)/φ′(D) = −1,

0 otherwise.

Note that the Weil pairing is a symplectic form, i.e. satisfies〈ε, ε〉 = 0. One
can show that it is a nondegenerate symplectic form (see [447]).
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For anyϑ ∈ TChar(C), define the function

qϑ : Jac(C)[2]→ F2, ε 7→ h0(ϑ+ ε) + h0(ϑ).

The proof of the following Theorem can be found in [10], p. 290).

Theorem 5.1.1(Riemann-Mumford Relation) The functionqϑ is a quadratic
form onJac(C)[2] whose associated symmetric bilinear form is equal to the
Weil pairing.

Later we shall see that there are two types of quadratic forms associated to
a fixed nondegenerate symplectic form: even and odd. They agree with our
definition of an even and odd theta characteristic. The number of even (odd)
theta characteristics is equal to2g−1(2g + 1) (2g−1(2g − 1)).

An odd theta characteristicϑ is obviously effective, i.e.h0(ϑ) > 0. If C is
a canonical curve, then divisorD ∈ |ϑ| satisfies the property that2D is cut
out by a hyperplaneH in the space|KC |∨, whereC is embedded. Such a hy-
perplane is called acontact hyperplane. It follows from above that a canonical
curve either has2g−1(2g−1) contact hyperplanes or infinitely many. The latter
case happens if and only if there exists a theta characteristicϑ with h0(ϑ) > 1.
Such a theta characteristic is calledvanishing theta characteristic. An example
of a vanishing odd theta characteristic is the divisor class of a line section of a
plane quintic curve. An example of a vanishing even theta characteristic is the
uniqueg1

3 on a canonical curve of genus 4 lying on a singular quadric.
The geometric interpretation of an even theta characteristic is more subtle.

In the previous Chapter we related theta characteristics, both even and odd,
to determinantal representations of plane curves. The only known geometrical
construction related to space curves which I know is the Scorza construction
of a quartic hypersurface associated to a canonical curve and a non-effective
theta characteristic. We will discuss this construction in section5.5.

5.1.2 Quadratic forms over a field of characteristic 2

Recall that a quadratic form on a vector spaceV over a fieldK is a mapq :
V → K such thatq(av) = a2q(v) for anya ∈ K and anyv ∈ V and the map

bq : V × V → K, (v, w) 7→ q(v + w)− q(v)− q(w)

is bilinear (it is called thepolar bilinear form). We havebq(v, v) = 2q(v) for
any v ∈ V . In particular,q can be reconstructed frombq if char(K) 6= 2. In
the case when char(K) = 2, we getbq(v, v) ≡ 0, hencebq is a symplectic
bilinear form. Two quadratic formsq, q′ have the same polar bilinear form if
and only ifq − q′ = l, wherel(v + w) = l(v) + l(w), l(av) = a2l(v) for any
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v, w ∈ V, a ∈ K. If K is a finite field of characteristic 2,
√
l is a linear form on

V , and we obtain

bq = bq′ ⇐⇒ q = q′ + `2 (5.1)

for a unique linear form̀ : V → K.
Let e1, . . . , en be a basis inV andA = (aij) = (bq(ei, ej)) be the matrix

of the bilinear formbq. It is a symmetric matrix with zeros on the diagonal if
char(K) = 2. It follows from the definition that

q(
n∑
i=1

xiei) =
n∑
i=1

x2
i q(ei) +

∑
1≤i<j≤n

xixjaij .

The rank of a quadratic form is the rank of the matrixA of the polar bilinear
form. A quadratic form is callednondegenerateif the rank is equal todimV .
In coordinate-free way this is the rank of the linear mapV → V ∨ defined by
bq. The kernel of this map is called theradical of bq. The restriction ofq to the
radical is identically zero. The quadratic formq arises from a nondegenerate
quadratic form on the quotient space. In the following we assume thatq is
nondegenerate.

A subspaceL of V is calledsingular if q|L ≡ 0. Each singular subspace is
an isotropic subspacewith respect tobq, i.e.,bq(v, w) = 0 for anyv, w ∈ E.
The converse is true only if char(K) 6= 2.

Assume char(K) = 2. Sincebq is a nondegenerate symplectic form,n = 2k,
and there exists a basise1, · · · , en in V such that the matrix ofbq is equal to

Jk =
(

0k Ik
Ik 0k

)
. (5.2)

We call such a basis astandard symplectic basis. In this basis

q(
n∑
i=1

xiei) =
n∑
i=1

x2
i q(ei) +

k∑
i=1

xixi+k.

Assume, additionally, thatK∗ = K∗2, i.e., each element inK is a square (e.g.
K is a finite or algebraically closed field). Then, we can further reduceq to the
form

q(
2k∑
i=1

xiei) = (
n∑
i=1

αixi)2 +
k∑
i=1

xixi+k, (5.3)

whereq(ei) = α2
i , i = 1, . . . , n. This makes (5.1) more explicit. Fix a non-

degenerate symplectic form〈, 〉 : V × V → K. Each linear function onV is
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given by`(v) = 〈v, η〉 for a uniqueη ∈ V . By (5.1), two quadratic formsq, q′

with polar bilinear form equal to〈, 〉 satisfy

q(v) = q′(v) + 〈v, η〉2

for a uniqueη ∈ V . Choose a standard symplectic basis. The quadratic form
defined by

q0(
2k∑
I=1

xiei) =
k∑
i=1

xixi+k

has the polar bilinear form equal to the standard symplectic form. Any other
form with the same polar bilinear form is defined by

q(v) = q0(v) + 〈v, ηq〉2,

where

ηq =
2k∑
i=1

√
q(ei)ei.

From now on,K = F2, the field of two elements. In this casea2 = a for any
a ∈ F2. Formula (5.1) shows that the setQ(V ) of quadratic forms associated to
the standard symplectic form is an affine space overV with additionq+η, q ∈
Q(V ), η ∈ V , defined by

(q + η)(v) = q(v) + 〈v, η〉 = q(v + η) + q(η). (5.4)

The number

Arf(q) =
k∑
i=1

q(ei)q(ei+k) (5.5)

is called theArf invariant of q. One can show that it is independent of the
choice of a standard symplectic basis (see [296], Proposition 1.11). A quadratic
form q ∈ Q(V ) is calledeven(resp.odd) if Arf (q) = 0 (resp. Arf(q) = 1).

If we choose a standard symplectic basis forbq and writeq in the form
q0 + ηq, then we obtain

Arf(q) =
k∑
i=1

αiαi+k = q0(ηq) = q(ηq). (5.6)

In particular, ifq′ = q + v = q0 + ηq + v,

Arf(q′) + Arf(q) = q0(ηq + v) + q0(ηq) = q0(v) + 〈v, ηq〉 = q(v). (5.7)
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It follows from (5.6) that the number of even (resp. odd) quadratic forms is
equal to the cardinality of the setq−1

0 (0) (resp.q−1
0 (1)). We have

|q−1
0 (0)| = 2k−1(2k + 1), |q−1

0 (1)| = 2k−1(2k − 1). (5.8)

This is easy to prove by using induction onk.
Let Sp(V ) be the group of linear automorphisms of the symplectic spaceV .

If we choose a standard symplectic basis then

Sp(V ) ∼= Sp(2k,F2) = {X ∈ GL(2k)(F2) : tX · Jk ·X = Jk}.

It is easy to see by induction onk that

|Sp(2k,F2)| = 2k
2
(22k − 1)(22k−2 − 1) · · · (22 − 1). (5.9)

The group Sp(V ) has 2 orbits inQ(V ), the set of even and the set of odd
quadratic forms. An even quadratic form is equivalent to the formq0 and an
odd quadratic form is equivalent to the form

q1 = q0 + ek + e2k,

where(e1, . . . , e2k) is the standard symplectic basis. Explicitly,

q1(
2k∑
i=1

xiei) =
k∑
i=1

xixi+k + x2
k + x2

2k.

The stabilizer subgroup Sp(V )+ (resp. Sp(V )−) of an even quadratic form
(resp. an odd quadratic form) is a subgroup of Sp(V ) of index 2k−1(2k +
1) (resp.2k−1(2k − 1)). If V = F2k

2 with the symplectic form defined by
the matrixJk, then Sp(V )+ (resp. Sp(V )−) is denoted by O(2k,F2)+ (resp.
O(2k,F2)−).

5.2 Hyperelliptic curves

5.2.1 Equations of hyperelliptic curves

Let us first describe explicitly theta characteristics on hyperelliptic curves. Re-
call that a hyperelliptic curve of genusg is a nonsingular projective curveX
of genusg > 1 admitting a degree 2 mapϕ : C → P1. By Hurwitz’s formula,
there are2g + 2 branch pointsp1, . . . , p2g+2 in P1. Let f2g+2(t0, t1) be a bi-
nary form of degree2g+2 whose zeros are the branch points. The equation of
C in the weighted projective planeP(1, 1, g + 1) is

t22 + f2g+2(t0, t1) = 0. (5.10)
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Recall that a weighted projective spaceP(q) = P(q0, . . . , qn) is defined as the
quotient ofCn+1 \ {0}/C∗, whereC∗ acts by

t : [z0, . . . , zn] 7→ [tq0z0, . . . , tqnzn].

A more general definition ofP(q) which works overZ is

P(q) = ProjZ[T0, . . . , Tn],

where the grading is defined by settingdeg Ti = qi. Hereq = (q0, . . . , qn) are
integers≥ 1. We refer to [191] or [345] for the theory of weighted projective
spaces and their subvarieties. Note that a hypersurface inP(q) is defined by
a homogeneous polynomial where the unknowns are homogeneous of degree
qi. Thus equation (5.10) defines a hypersurface of degree2g+ 2. Although, in
general,P(q) is a singular variety, it admits a canonical sheaf

ωP(q) = OP(q)(−|q|),

where|q| = q0+· · ·+qn. Here the Serre sheaves are understood in the sense of
theory of projective spectrums of graded algebras. There is also the adjunction
formula for a hypersurfaceX ⊂ P(q) of degreed

ωX = OX(d− |q|). (5.11)

In the case of a hyperelliptic curve, we have

ωC = OC(g − 1).

The morphismϕ : C → P1 corresponds to the projection[t0, t1, t2] 7→ [t0, t1]
and we obtain that

ωC = ϕ∗OP1(g − 1).

The weighted projective spaceP(1, 1, g + 1) is isomorphic to the projective
cone inPg+2 over the Veronese curvevg+1(P1) ⊂ Pg+1. The hyperelliptic
curve is isomorphic to the intersection of this cone and a quadric hypersurface
in Pg+1 not passing through the vertex of the cone. The projection from the
vertex to the Veronese curve is the double coverϕ : C → P1. The canonical
linear system|KC | mapsC to Pg with the image equal to the Veronese curve
vg−1(P1).

5.2.2 2-torsion points on a hyperelliptic curve

Let c1, . . . , c2g+2 be the ramification points of the mapϕ. We assume that
ϕ(ci) = pi. Obviously,2ci − 2cj ∼ 0, hence the divisor class ofci − cj is of
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order 2 in Pic(C). Also, for any subsetI of the setBg = {1, . . . , 2g + 2}, we
have

αI =
∑
i∈I

ci −#Ic2g+2 =
∑
i∈I

(ci − c2g+2) ∈ Pic(C)[2].

Now observe that

αBg =
∑
i∈Bg

ci − (2g + 2)c2g+2 = div(φ) ∼ 0, (5.12)

whereφ = t2/(bt0 − at1)g+1 andp2g+2 = (a, b) (we consider the fraction
modulo equation (5.10) definingC). Thus

ci − cj ∼ 2ci +
∑

k∈Bg\{j}

ck − (2g + 2)c2g+2 ∼ αBg\{i,j}.

Adding toαI the zero divisorc2g+2 − c2g+2, we can always assume that#S
is even. Also adding the principal divisorαBg

, we obtain thatαI = αĪ , where
Ī denotesBg \ I.

Let FBg

2
∼= F2g+2

2 be theF2-vector space of functionsBg → F2, or, equiva-
lently, subsets ofBg. The sum is defined by the symmetric sum of subsets

I + J = I ∪ J \ (I ∩ J).

The subsets of even cardinality form a hyperplane. It contains the subsets∅ and
Bg as a subspace of dimension 1. LetEg denote the quotient space. Elements
of Eg are represented by subsets of even cardinality up to the complementary
set (bifid mapsin terminology of A. Cayley). We have

Eg ∼= F2g
2 ,

hence the correspondenceI 7→ αI defines an isomorphism

Eg ∼= Pic(C)[2]. (5.13)

Note thatEg carries a natural symmetric bilinear form

e : Eg × Eg → F2, e(I, J) = #I ∩ J mod 2. (5.14)

This form is symplectic (i.e.e(I, I) = 0 for any I) and nondegenerate. The
subsets

Ai = {2i− 1, 2i}, Bi = {2i, 2i+ 1}, i = 1, . . . , g, (5.15)

form a standard symplectic basis.
Under isomorphism (5.13), this bilinear form corresponds to the Weil pair-

ing on 2-torsion points of the Jacobian variety ofC.
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Remark5.2.1 The symmetric groupS2g+2 acts onEg via its action onBg
and preserves the symplectic forme. This defines a homomorphism

sg : S2g+2 → Sp(2g,F2).

If g = 1, Sp(2,F2) ∼= S3, and the homomorphisms1 has the kernel isomor-
phic to the group(Z/2Z)2. If g = 2, the homomorphisms2 is an isomorphism.
If g > 2, the homomorphismsg is injective but not surjective.

5.2.3 Theta characteristics on a hyperelliptic curve

For any subsetT of Bg set

ϑT =
∑
i∈T

ci + (g − 1−#Tc2g+2) = αT + (g − 1)c2g+2.

We have

2ϑT ∼ 2αT + (2g − 2)c2g+2 ∼ (2g − 2)c2g+2.

It follows from the proof of the Hurwitz formula that

KC = ϕ∗(KP1) +
∑
i∈Bg

ci.

Choose a representative ofKP1 equal to−2p2g+2 and use (5.12) to obtain

KC ∼ (2g − 2)c2g+2.

This shows thatϑT is a theta characteristic. Again adding and subtracting
c2g+2 we may assume that#T ≡ g + 1 mod 2. SinceT and T̄ define the
same theta characteristic, we will consider the subsets up to taking the com-
plementary set. We obtain a setQg which has a natural structure of an affine
space overEg, the addition is defined by

ϑT + αI = ϑT+I .

Thus all theta characteristics are uniquely represented by the divisor classes
ϑT , whereT ∈ Qg.

An example of an affine space overV = F2g
2 is the space of quadratic forms

q : F2g
2 → F2 whose associated symmetric bilinear formbq coincides with the

standard symplectic form defined by (5.2). We identifyV with its dualV ∨ by
means ofb0 and setq + l = q + l2 for anyl ∈ V ∨.

For anyT ∈ Qg, we define the quadratic formqT onEg by

qT (I) = 1
2 (#(T + I)−#T ) = #T ∩ I + 1

2#I = 1
2#I + e(I, T ) mod 2.
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We have (all equalities are modulo 2)

qT (I + J) + qT (I) + qT (J)

= 1
2 (#(I + J) + #I + #J) + e(I + J, T ) + e(I, T ) + e(J, T ) = #I ∩ J.

Thus each theta characteristic can be identified with an element of the space
Qg = Q(Eg) of quadratic forms onEg with polar forme.

Also notice that

(qT + αI)(J) = qT (J) + e(I, J) = 1
2#J + e(T, J) + e(I, J)

= 1
2#J + e(T + I, J) = qT+I(J).

Lemma 5.2.1 LetϑT be a theta characteristic on a hyperelliptic curveC of
genusg identified with a quadratic form onEg. Then the following properties
are equivalent:

(i) #T ≡ g + 1 mod 4;
(ii) h0(ϑT ) ≡ 0 mod 2;
(iii) qT is even.

Proof Without loss of generality, we may assume thatp2g+2 is the point
(0, 1) at infinity in P1. Then the field of rational functions onC is generated
by the functionsy = t2/t0 andx = t1/t0. We have

ϑT =
∑
i∈T

ci + (g − 1−#T )c2g+2 ∼ (g − 1 + #T )c2g+2 −
∑
i∈T

ci.

Any functionφ from the spaceL(ϑT ) = {φ : div(φ) + ϑT ≥ 0} has a unique
pole atc2g+2 of order< 2g + 1. Since the functiony has a pole of order
2g + 1 at c2g+2, we see thatφ = ϕ∗(p(x)), wherep(x) is a polynomial of
degree≤ 1

2 (g − 1 + #T ) in x. ThusL(ϑT ) is isomorphic to the linear space
of polynomialsp(x) of degree≤ 1

2 (g − 1 + #T ) with zeros atpi, i ∈ T . The
dimension of this space is equal to1

2 (g+1−#T ). This proves the equivalence
of (i) and (ii).

Let

U = {1, 3, . . . , 2g + 1} ⊂ Bg (5.16)

be the subset of odd numbers inBg. If we take the standard symplectic basis
in Eg defined in (5.15), then we obtain thatqU = q0 is the standard quadratic
form associated to the standard symplectic basis. It follows from (5.6) thatqT
is an even quadratic form if and only ifT = U + I, whereqU (I) = 0. Let
I consists ofk even numbers ands odd numbers. ThenqU (I) = #U ∩ I +
1
2#I = m+ 1

2 (k +m) = 0 mod 2. Thus#T = #(U + S) = #U + #I −
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2#U ∩ S = (g+ 1) + (k+m)− 2m = g+ 1 + k−m. Thenm+ 1
2 (k+m)

is even, hence3m+ k ≡ 0 mod 4. This implies thatk −m ≡ 0 mod 4 and
#T ≡ g + 1 mod 4. Conversely, if#T ≡ g + 1 mod 4, thenk −m ≡ 0
mod 4 andqU (I) = 0. This proves the assertion.

5.2.4 Families of curves with odd or even theta characteristic

LetX → S be a smooth projective morphism whose fibreXs over a points ∈
S is a curve of genusg > 0 over the residue fieldκ(s) of s. Let PicnX/S → S

be therelative Picard schemeof X/S. It represents the sheaf ińetale topol-
ogy onS associated to the functor on the category ofS-schemes defined by
assigning to aS-schemeT the group Picd(X ×S T ) of isomorphism classes
of invertible sheaves onX ×S T of relative degreen overT modulo tensor
product with invertible sheaves coming fromT . TheS-schemePicnX/S → S

is a smooth projective scheme overS. Its fibre over a points ∈ S is isomor-
phic to the Picard varietyPicnXs/κ(s) over the fieldκ(s). The relative Picard
scheme comes with a universal invertible sheafU onX ×S PicnX/S (locally in
étale topology). For any pointy ∈ PicnX/S over a points ∈ S, the restriction
of U to the fibre of the second projection overy is an invertible sheafUy on
Xs ⊗κ(s) κ(y) representing a point in Picn(Xs ⊗ κ(y)) defined byy.

For any integerm, raising a relative invertible sheaf intom-th power defines
a morphism

[m] : PicnX/S → PicmnX/S .

Takingn = 2g − 2 andm = 2, the preimage of the section defined by the
relative canonical classωX/S is a closed subscheme ofPicg−1

X/S . It defines a
finite cover

T CX/S → S

of degree22g. The pull-back ofU to T CX/S defines an invertible sheafT
over P = X ×S T CX/S satisfyingT ⊗2 ∼= ωP/T CX/S

. By a theorem of
Mumford [447], the parity of a theta characteristic is preserved in an algebraic
family, thus the functionT CX/S → Z/2Z defined byy 7→ dimH0(Uy, Ty)
mod 2 is constant on each connected component ofT CX/S . LetT Cev

X/S (resp.

T Codd
X/S) be the closed subset ofT CX/S , where this function takes the value0

(resp. 1). The projectionT Cev
X/S → S (resp.T Codd

X/S → S) is a finite cover of
degree2g−1(2g + 1) (resp.2g−1(2g − 1)).

It follows from above thatT CX/S has at least two connected components.
Now takeS = |OP2(d)|ns to be the space of nonsingular plane curvesC
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of degreed andX → |OP2(d)|ns be the universal family of curves defined by
{(x,C) : x ∈ C}. We set

T Cd = T CX/S , T C
ev/odd
d = T Cev/odd

X/S .

The proof of the following Proposition can be found in [34].

Proposition 5.2.2 If d is even ord = 3, T Cd consists of two irreducible
componentsT Cevd and T Coddd . If d ≡ 1 mod 4, thenT Cevd is irreducible
but T Coddd has two irreducible components, one of which is the section of
T Cd → |OP2(d)| defined byOP2((d − 3)/2). If d ≡ 3 mod 4, thenT Coddd

is irreducible butT Cevd has two irreducible components, one of which is the
section ofT Cd → |OP2(d)| defined byOP2((d− 3)/2).

Let T C0d be the open subset ofT Cev
d corresponding to the pairs(C, ϑ) with

h0(ϑ) = 0. It follows from the theory of symmetric determinantal represen-
tations of plane curves thatT C0d/PGL(3) is an irreducible variety covered by
an open subset of a Grassmannian. Since the algebraic group PGL(3) is con-
nected and acts freely on a Zariski open subset ofT C0d, we obtain thatT C0d is
irreducible. It follows from the previous Proposition that

T C0d = T Cev
d if d 6≡ 3 mod 4. (5.17)

Note that there exist coarse moduli spaceMev
g andModd

g of curves of genus
g together with an even (odd) theta characteristic. We refer to [144] for the
proof of irreducibility of these varieties and for construction of a certain com-
pactifications of these spaces.

5.3 Theta functions

5.3.1 Jacobian variety

Recall the classical definition of the Jacobian variety of a nonsingular pro-
jective curveC of genusg over C. We considerC as a compact oriented 2-
dimensional manifold of genusg. We view the linear spaceH0(C,KC) as the
space of holomorphic 1-forms onC. By integration over 1-dimensional cycles,
we get a homomorphism ofZ-modules

ι : H1(C,Z)→ H0(C,KC)∗, ι(γ)(ω) =
∫
γ

ω.
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The image of this map is a latticeΛ of rank2g in H0(C,KC)∨. The quotient
by this lattice

Jac(C) = H0(C,KC)∨/Λ

is a complexg-dimensional torus. It is called theJacobian varietyof C.
Recall that the cap product

∩ : H1(C,Z)×H1(C,Z)→ H2(C,Z) ∼= Z

defines a nondegenerate symplectic form on groupH1(C,Z) ∼= Z2g with a
nondegenerate symplectic form. Letα1, . . . , αg, β1, . . . , βg be a standard sym-
plectic basis. We choose a basisω1, . . . , ωg of holomorphic 1-differentials on
C such that ∫

αi

ωj = δij . (5.18)

Let

τij =
∫
βi

ωi.

The complex matrixτ = (τij) is called theperiod matrix. The basisω1, . . . , ωg
identifiesH0(C,KC)∨ with Cg and the period matrix identifies the latticeΛ
with the latticeΛτ = [τ Ig]Z2g, where[τ Ig] denotes the block-matrix of size
g × 2g. The period matrixτ = <(τ) +

√
−1=(τ) satisfies

tτ = τ, =(τ) > 0.

As is well-known (see [295]) this implies that Jac(C) is a projective algebraic
group, i.e. an abelian variety. It is isomorphic to the Picard schemePic0

C/C.
We consider any divisorD =

∑
nxx onC as a 0-cycle onC. The divisors of

degree0 are boundaries, i.e.D = ∂γ for some1-chainβ. By integrating overβ
we get a linear function onH0(C,KC) whose coset moduloΛ = ι(H1(C,Z))
does not depend on the choice ofβ. This defines a homomorphism of groups
p : Div0(C) → Jac(C). The Abel-Jacobi Theoremasserts thatp is zero on
principal divisors (Abel’s part), and surjective (Jacobi’s part). This defines an
isomorphism of abelian groups

a : Pic0(C)→ Jac(C) (5.19)

which is called theAbel-Jacobi map. For any positive integerd let Picd(C)

denote the set of divisor classes of degreed. The group Pic0(C) acts simply
transitively on Picd(C) via addition of divisors. There is a canonical map

ud : C(d) → Picd(C), D 7→ [D],
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where we identify the symmetric product with the set of effective divisors of
degreed. One can show that Picd(C) can be equipped with a structure of a
projective algebraic variety (isomorphic to the Picard schemePicdC/C) such
that the mapud is a morphism of algebraic varieties. Its fibres are projective
spaces, the complete linear systems corresponding to the divisor classes of
degreed. The action of Pic0(C) = Jac(C) on Picd(C) is an algebraic action
equipping Picd(C) with a structure of a torsor over the Jacobian variety.

Let

W r
g−1 = {[D] ∈ Picg−1(C) : h0(D) ≥ r + 1}.

In particular,W 0
g−1 was denoted byΘ in Theorem4.1.3, where we showed

that the invertible sheavesL0 ∈ Picg−1(C) defining a determinantal equation
of a plane curve of genusg belong to the set Picg−1(C) \W 0

g−1. The funda-
mental property of the lociW r

g−1 is given by the followingRiemann-Kempf
Theorem.

Theorem 5.3.1

W r
g−1 = {x ∈W 0

g−1 : multxW
0
g−1 ≥ r + 1}.

Heremultx denote the multiplicity of a hypersurface at the pointx.

In particular, we get

W 1
g−1 = Sing(W 0

g−1).

From now on we will identify Pic0(C) with the set of points on the Jacobian
variety Jac(C) by means of the Abel-Jacobi map. For any theta characteristic
ϑ the subset

Θ = W 0
g−1 − ϑ ⊂ Jac(C)

is a hypersurface in Jac(C). It has the property that

h0(Θ) = 1, [−1]∗(Θ) = Θ, (5.20)

where[m] is the multiplication by an integerm in the group variety Jac(C).
Conversely, any divisor on Jac(C) satisfying these properties is equal toW 0

g−1

translated by a theta characteristic. This follows from the fact that a divisorD

on an abelian varietyA satisfyingh0(D) = 1 defines a bijective mapA →
Pic0(A) by sending a pointx ∈ A to the divisort∗xD − D, wheretx is the
translation mapa 7→ a + x in the group variety, and Pic0(A) is the group of
divisor classes algebraically equivalent to zero. This fact implies that any two
divisors satisfying properties (5.20) differ by translation by a 2-torsion point.

We call a divisor satisfying (5.20) a symmetric theta divisor. An abelian



222 Theta characteristics

variety that contains such a divisor is called aprincipally polarized abelian
variety.

Let Θ = W 0
g−1 − θ be a symmetric theta divisor on Jac(C). Applying The-

orem5.3.1we obtain that, for any 2-torsion pointε ∈ Jac(C), we have

multεΘ = h0(ϑ+ ε). (5.21)

In particular,ε ∈ Θ if and only if θ + ε is an effective theta characteristic.
According toϑ, the symmetric theta divisors are divided into two groups: even
and odd theta divisors.

5.3.2 Theta functions

The preimage ofΘ under the quotient map Jac(C) = H0(C,KC)∗/Λ is a
hypersurface in the complex linear spaceV = H0(C,KC)∗ equal to the zero
set of some holomorphic functionφ : V → C. This functionφ is not invariant
with respect to translations byΛ. However, it has the property that, for any
v ∈ V and anyγ ∈ Λ,

φ(v + γ) = eγ(v)φ(v), (5.22)

whereeγ is an invertible holomorphic function onV . A holomorphic function
φ satisfying (5.22) is called atheta functionwith theta factor{eγ}. The set of
zeros ofφ does not change if we replaceφ with φα, whereα is an invertible
holomorphic function onV . The functioneγ(v) will change into the function
eγ′(v) = eγ(v)φ(v + γ)φ−1(v). One can show that, after choosing an appro-
priateα, one may assume that

eγ(v) = exp(2πi(aγ(v) + bγ)),

whereaγ is a linear function andbγ is a constant (see [446], Chapter 1,§1).
We will assume that such a choice has been made.

It turns out that the theta function corresponding to a symmetric theta divisor
Θ from (5.20) can be given in coordinates defined by a choice of a normalized
basis (5.18) by the following expression

θ [ ε
η ] (z; τ) =

∑
r∈Zg

expπi
[
(r+ 1

2ε)·τ ·(r+ 1
2ε)+2(z+ 1

2η)·(r+ 1
2ε)
]
, (5.23)

whereε,η ∈ {0, 1}g considered as a column or a raw vector fromFg2. The
function defined by this expression is called atheta function with characteris-
tic. The theta factoreλ(z1, . . . , zg) for such a function is given by the expres-
sion

eγ(z) = exp−πi(m · τ ·m− 2z ·m− ε · n + η ·m),
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where we writeγ = τ ·m + n for somem,n ∈ Zg. One can check that

θ [ ε
η ] (−z; τ) = exp(πiε · η)θ [ ε

η ] (z; τ). (5.24)

This shows thatθ [ ε
η ] (−z; τ) is an odd (resp. even) function if and only if

ε · η = 1 (resp. 0). In particular,θ [ ε
η ] (0; τ) = 0 if the function is odd. It

follows from (5.21) thatθ [ ε
η ] (0; τ) = 0 if θ is an odd theta characteristic or

an effective even theta characteristic.
Takingε,η = 0, we obtain theRiemann!theta function

θ(z; τ) =
∑
r∈Zg

expπi(r · τ · r + 2z · r).

All other theta functions with characteristic are obtained fromθ(z; τ) by a
translate

θ [ ε
η ] (z; τ) = expπi(ε · η + ε · τ · ε)θ(z + 1

2τ · η + 1
2ε; τ).

In this way points onCg of the form 1
2τ · ε + 1

2η are identified with elements
of the 2-torsion group12Λ/Λ of Jac(C). The theta divisor corresponding to the
Riemann theta function is equal toW 0

g−1 translated by a certain theta charac-
teristicκ called theRiemann constant. Of course, there is no any distinguished
theta characteristic, the definition ofκ depends on the choice of a symplectic
basis inH1(C,Z).

The multiplicitym of a point on a theta divisorΘ = W 0
g−1 − ϑ is equal

to the multiplicity of the corresponding theta function defined by vanishing
partial derivatives up to orderm− 1. Thus the quadratic form defined byθ can
be redefined in terms of the corresponding theta function as

qϑ( 1
2τ · ε

′ + 1
2η′) = mult0θ

[
ε+ε′

η+η′

]
(z, τ) + mult0θ [ ε

η ] (z, τ).

It follows from (5.24) that this number is equal to

ε · η′ + η · η′ + η′ · η′. (5.25)

A choice of a symplectic basis inH1(C,Z) defines a standard symplectic basis
in H1(C,F2) ∼= 1

2Λ/Λ = Jac(C)[2]. Thus we can identify 2-torsion points
1
2τ · ε

′ + 1
2η′ with vectors(ε′,η′) ∈ F2g

2 . The quadratic form corresponding
to the Riemann theta function is the standard one

q0((ε′,η′)) = ε′ · η′.

The quadratic form corresponding toθ [ ε
η ] (z; τ) is given by (5.25). The Arf

invariant of this quadratic form is equal to

Arf(qϑ) = ε · η.
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5.3.3 Hyperelliptic curves again

In this case we can compute the Riemann constant explicitly. Recall that we
identify 2-torsion points with subsets of even cardinality of the setBg =
{1, . . . , 2g + 2} which we can identify with the set of ramification or branch
points. Let us define a standard symplectic basis inC by choosing the 1-cycle
αi to be the path which goes fromc2i−1 to c2i along one sheet of the Riemann
surfaceC and returns toc2i−1 along the other sheet. Similarly, we define the
1-cycleβi by choosing the pointsc2i andc2i+1. Chooseg holomorphic forms
ωj normalized by the condition (5.18). Let τ be the corresponding period ma-
trix. Notice that each holomorphic1-form changes sign when we switch the
sheets. This gives

1
2δij = 1

2

∫
αi

ωj =
∫ c2i

c2i−1

ωj =
∫ c2g+2

c2i−1

ωj −
∫ c2g+2

c2i

ωj

=
∫ c2g+2

c2i−1

ωj +
∫ c2g+2

c2i

ωj − 2
∫ c2g+2

c2i

ωj .

Since

2
(∫ c2g+2

c2i

ω1, . . . ,

∫ c2g+2

c2i

ωg

)
= a(2c2i − 2c2g+2) = 0,

we obtain

ι(c2i−1 + c2i − 2c2g+2) = 1
2ei mod Λτ ,

where, as usual,ei denotes thei-th unit vector. LetAi, Bi be defined as in
(5.15). We obtain that

a(αAi) = 1
2ei mod Λτ .

Similarly, we find that

a(αBi) = 1
2τ · ei mod Λτ .

Now we can match the setQg with the set of theta functions with characteris-
tics. Recall that the setU = {1, 3, . . . , 2g + 1} plays the role of the standard
quadratic form. We have

qU (Ai) = qU (Bi) = 0, i = 1, . . . , g.

Comparing it with (5.25), we see that the theta functionθ [ ε
η ] (z; τ) corre-

sponding toϑU must coincide with the functionθ(z; τ). This shows that

ιg−1
c2g+2

(ϑU ) = ιc2g+2(ϑU − kc2g+2) = 0.
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Thus the Riemann constantκ corresponds to the theta characteristicϑU . This
allows one to match theta characteristics with theta functions with theta char-
acteristics.

Write any subsetI of Eg in the form

I =
g∑
i=1

εiAi +
g∑
i=1

ηiBi,

whereε = (ε1, . . . , εg), η = (η1, . . . , ηg) are binary vectors. Then

ϑU+I ←→ θ [ ε
η ] (z; τ).

In particular,

ϑU+I ∈ TChar(C)ev⇐⇒ ε · η = 0 mod 2.

Example5.3.1 We give the list of theta characteristics for small genus. We
also list 2-torsion points at which the corresponding theta function vanishes.
g = 1
3 even “thetas”:

ϑ12 = θ [ 1
0 ] (α12),

ϑ13 = θ [ 0
0 ] (α13),

ϑ14 = θ [ 0
1 ] (α14).

1 odd theta

ϑ∅ = θ [ 1
1 ] (α∅).

g = 2
10 even thetas:

ϑ123 = θ [ 01
10 ] (α12, α23, α13, α45, α46, α56),

ϑ124 = θ [ 00
10 ] (α12, α24, α14, α35, α36, α56),

ϑ125 = θ [ 00
11 ] (α12, α25, α15, α34, α36, α46),

ϑ126 = θ [ 11
11 ] (α12, α16, α26, α34, α35, α45),

ϑ234 = θ [ 10
01 ] (α23, α34, α24, α15, α56, α16),

ϑ235 = θ [ 10
00 ] (α23, α25, α35, α14, α16, α46),
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ϑ236 = θ [ 01
00 ] (α23, α26, α36, α14, α45, α15),

ϑ245 = θ [ 11
00 ] (α24, α25, α13, α45, α16, α36),

ϑ246 = θ [ 00
00 ] (α26, α24, α13, α35, α46, α15),

ϑ256 = θ [ 00
01 ] (α26, α25, α13, α14, α34, α56).

6 odd thetas

ϑ1 = θ [ 01
01 ] (α∅, α12, α13, α14, α15, α16),

ϑ2 = θ [ 11
01 ] (α∅, α12, α23, α24, α25, α26),

ϑ3 = θ [ 11
01 ] (α∅, α13, α23, α34, α35, α36),

ϑ4 = θ [ 10
10 ] (α∅, α14, α24, α34, α45, α46),

ϑ5 = θ [ 10
11 ] (α∅, α15, α35, α45, α25, α56),

ϑ6 = θ [ 01
11 ] (α∅, α16, α26, α36, α46, α56).

g = 3
36 even thetasϑ∅, ϑijkl,
28 odd thetasϑij .

g = 4
136 even thetasϑi, ϑijklm
120 odd thetasϑijk.

5.4 Odd theta characteristics

5.4.1 Syzygetic triads

We have already remarked that effective theta characteristics on a canonical
curveC ⊂ Pg−1 correspond to hyperplanes everywhere tangent toC. We call
thembitangent hyperplanes(not to be confused with hyperplanes tangent at
≥ 2 points).

An odd theta characteristic is effective and determines a bitangent hyper-
plane, a unique one if it is non-vanishing. In this section we will study the
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configuration of bitangent hyperplanes to a canonical curve. Let us note here
that a general canonical curve is determined uniquely by the configuration of
its bitangent hyperplanes [66].

From now on we fix a nondegenerate symplectic space(V, ω) of dimension
2g overF2. LetQ(V ) be the affine space of quadratic forms with associated
symmetric bilinear form equal toω. The Arf invariant dividesQ(V ) into the
union of two setsQ(V )+ andQ(V )−, of even or odd quadratic forms. Recall
thatQ(V )− is interpreted as the set of odd theta characteristics whenV =
Pic(C) andω is the Weil pairing. For anyq ∈ Q(V ) andv ∈ V , we have

q(v) = Arf(q + v) + Arf(q).

Thus the function Arf is a symplectic analog of the functionh0(ϑ) mod 2
for theta characteristics.

The setṼ = V
∐
Q(V ) is equipped with a structure of aZ/2Z-graded

vector space overF2. It combines the addition onV (the 0-th graded piece)
and the structure of an affine space onQ(V ) (the1-th graded piece) by setting
q + q′ := v, whereq′ = q + v. One can also extend the symplectic form onV

to Ṽ by setting

ω(q, q′) = q(q + q′), ω(q, v) = ω(v, q) = q(v).

Definition 5.4.1 A set of three elementsq1, q2, q3 inQ(V ) is called asyzygetic
triad (resp.azygetic triad) if

Arf(q1) + Arf(q2) + Arf(q3) + Arf(q1 + q2 + q3) = 0 (resp. = 1).

A subset ofk ≥ 3 elements inQ(V ) is called anazygetic setif any subset of
three elements is azygetic.

Note that a syzygetic triad defines a set of four quadrics inQ(V ) that add up
to zero. Such a set is called asyzygetic tetrad. Obviously, any subset of three
elements in a syzygetic tetrad is a syzygetic triad.

Another observation is that three elements inQ(V )− form an azygetic triad
if their sum is an element inQ(V )+.

For any odd theta characteristicϑ any divisorDη ∈ |ϑ| is of degreeg − 1.
The condition that four odd theta characteristicsϑi form a syzygetic tetrad
means that the sum of divisorsDϑi

are cut out by a quadric inPg−1. The
converse is true ifC does not have vanishing even theta characteristic.

Let us now compute the number of syzygetic tetrads.

Lemma 5.4.1 Letq1, q2, q3 be a set of three elemenst onQ(V ). The following
properties are equivalent:
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(i) q1, q2, q3 is a syzygetic triad;
(ii) q1(q2 + q3) = Arf(q2) + Arf(q3);
(iii) ω(q1 + q2, q1 + q3) = 0.

Proof The equivalence of (i) and (ii) follows immediately from the identity

q1(q2 + q3) = Arf(q1) + Arf(q1 + q2 + q3).

We have

ω(q1 + q2, q1 + q3) = q1(q1 + q3) + q2(q1 + q3)

= Arf(q1) + Arf(q3) + Arf(q2) + Arf(q1 + q2 + q3).

This shows the equivalence of (ii) and (iii).

Proposition 5.4.2 Let q1, q2 ∈ Q(V )−. The number of ways in which the
pair can be extended to a syzygetic triad of odd theta characteristics is equal
to 2(2g−1 + 1)(2g−2 − 1).

Proof Assume thatq1, q2, q3 is a syzygetic triad inQ(V )−. By the previous
lemma,q1(q2 + q3) = 0. Also, we haveq2(q2 + q3) = Arf(q3)+ Arf(q2) = 0.
Thusq1 andq2 vanish atv0 = q2 + q3. Conversely, assumev ∈ V satisfies
q1(v) = q2(v) = 0 and v 6= q1 + q2 so thatq3 = q2 + v 6= q1, q2. We
have Arf(q3) = Arf(q2) + q2(v) = 1, henceq3 ∈ Q(V )−. Sinceq1(v) =
q1(q2 + q3) = 0, by the previous Lemmaq1, q2, q3 is a syzygetic triad.

Thus the number of the ways in which we can extendq1, q2 to a syzygetic
triad q1, q2, q3 is equal to the cardinality of the set

Z = q−1
1 (0) ∩ q−1

2 (0) \ {0, v0},

wherev0 = q1 + q1. It follows from (5.6) that v ∈ Z satisfiesω(v, v0) =
q2(v) + q1(v) = 0. Thus anyv ∈ Z is a representative of a nonzero element
in W = v⊥0 /v0

∼= F2g−2
2 on whichq1 andq2 vanish. It is clear thatq1 andq2

induce the same quadratic formq onW . It is an odd quadratic form. Indeed,
we can choose a symplectic basis inV by taking as a first vector the vector
v0. Then computing the Arf invariant ofq1 we see that it is equal to the Arf
invariant of the quadratic formq. Thus we get

#Z = 2(#Q(W )−−1) = 2(2g−2(2g−1−1)−1) = 2(2g−1 +1)(2g−2−1).

Corollary 5.4.3 Let tg be the the number of syzygetic tetrads of odd theta
characteristics on a nonsingular curve of genusg. Then

tg =
1
3
2g−3(22g − 1)(22g−2 − 1)(2g−2 − 1).



5.4 Odd theta characteristics 229

Proof Let I be the set of triples(q1, q2, T ), whereq1, q2 ∈ Q(V )− andT is
a syzygetic tetrad containingq1, q2. We count#I in two ways by projecting
I to the setP of unordered pairs of distinct elementsQ(V )− and to the set of
syzygetic tetrads. Since each tetrad contains6 pairs from the setP, and each
pair can be extended in(2g−1 + 1)(2g−2 − 1) ways to a syzygetic tetrad, we
get

#I = (2g−1 + 1)(2g−2 − 1)
(
2g−1(2g−1)

2

)
= 6tg.

This gives

tg =
1
3
2g−3(22g − 1)(22g−2 − 1)(2g−2 − 1).

LetV be a vector space with a symplectic or symmetric bilinear form. Recall
that a linear subspaceL is called isotropic if the restriction of the bilinear form
toL is identically zero.

Corollary 5.4.4 Let {q1, q2, q3, q4} be a syzygetic tetrad inQ(V )−. Then
P = {q1 + qi, . . . , q4 + qi} is an isotropic 2-dimensional subspace in(V, ω)
which does not depend on the choice ofqi.

Proof It follows from Lemma5.4.1(iii) that P is an isotropic subspace. The
equalityq1 + · · ·+ q4 = 0 gives

qk + ql = qi + qj , (5.26)

where{i, j, k, l} = {1, 2, 3, 4}. This shows that the subspaceP of V formed
by the vectorsqj + qi, j = 1, . . . , 4, is independent on the choice ofi. One of
its bases is the set(q1 + q4, q2 + q4).

5.4.2 Steiner complexes

LetP be the set of unordered pairs of distinct elements inQ(V )−. The addition
map inQ(V )− ×Q(V )→ V defines a map

s : P → V \ {0}.

Definition 5.4.2 The union of pairs from the same fibres−1(v) of the maps
is called aSteiner compex. It is denoted byΣ(v).

It follows from (5.26) that any two pairs from a syzygetic tetrad belong to
the same Steiner complex. Conversely, let{q1, q′1}, {q2, q′2} be two pairs from
Σ(v). We have(q1 + q′1) + (q2 + q′2) = v + v = 0, showing that the tetrad
(q1, q′1, q2, q

′
2) is syzygetic.
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Proposition 5.4.5 There are22g−1 Steiner complexes. Each Steiner complex
consists of2g−1(2g−1 − 1) elements paired by translationq 7→ q + v. An odd
quadratic formq belongs to a Steiner complexΣ(v) if and only ifq(v) = 0.

Proof Since22g − 1 = #(V \ {0}), it suffices to show that the maps :
P → V \ {0} is surjective. The symplectic group Sp(V, ω) acts transitively on
V \ {0} and onP, and the maps is obviously equivariant. Thus its image is a
non-emptyG-invariant subset ofV \ {0}. It must coincide with the whole set.

By (5.7), we haveq(v) = Arf(q + v) + Arf(q). If q ∈ Σ(v), thenq + v ∈
Q(V )−, hence Arf(q + v) = Arf(q) = 1 and we getq(v) = 0. Conversely, if
q(v) = 0 andq ∈ Σ(v), we getq + v ∈ Q(V )− and henceq ∈ Σ(v). This
proves the last assertion.

Lemma 5.4.6 LetΣ(v),Σ(v′) be two Steiner complexes. Then

#Σ(v) ∩ Σ(v′) =

{
2g−1(2g−2 − 1) if ω(v, v′) = 0,

2g−2(2g−1 − 1) if ω(v, v′) 6= 0.

Proof Let q ∈ Σ(v)∩Σ(v′). Then we haveq+ q′ = v, q+ q′′ = v′ for some
q′ ∈ Σ(v), q′′ ∈ Σ(v′). This implies that

q(v) = q(v′) = 0. (5.27)

Conversely, if these equalities hold, thenq+ v, q+ v′ ∈ Q(V )−, q, q′ ∈ Σ(v),
andq, q′′ ∈ Σ(v′). Thus we have reduced our problem to linear algebra. We
want to show that the number of elements inQ(V )− which vanish at 2 nonzero
vectorsv, v′ ∈ V is equal to2g−1(2g−2 − 1) or 2g−2(2g−1 − 1) depending
on whetherω(v, v′) = 0 or 1. Letq be one such quadratic form. Suppose we
have anotherq′ with this property. Writeq′ = q + v0 for somev0. We have
q(v0) = 0 sinceq′ is odd and

ω(v0, v) = ω(v0, v′) = 0.

LetL be the plane spanned byv, v′. Assumeω(v, v′) = 1, then we can include
v, v′ in a standard symplectic basis. Computing the Arf invariant, we find that
the restriction ofq toL⊥ is an odd quadratic form. Thus it has2g−2(2g−1−1)
zeros. Each zero gives us a solution forv0. Assumeω(v, v′) = 0. ThenL
is a singular plane forq sinceq(v) = q(v′) = q(v + v′) = 0. Consider
W = L⊥/L ∼= F2g−4

2 . The formq has2g−3(2g−2 − 1) zeros inW . Any
representativev0 of these zeros defines the quadratic formq + v0 vanishing
at v, v′. Any quadratic form we are looking for is obtained in this way. The
number of such representatives is equal to2g−1(2g−2 − 1).
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Definition 5.4.3 Two Steiner complexesΣ(v) andΣ(v′) are calledsyzygetic
(resp.azygetic) if ω(v, v′) = 0)(resp.ω(v, v′) = 1).

Theorem 5.4.7 The union of three mutually syzygetic Steiner complexesΣ(v),
Σ(v′) andΣ(v + v′) is equal toQ(V )−.

Proof Since

ω(v + v′, v) = ω(v + v′, v′) = 0,

we obtain that the Steiner complexΣ(v + v′) is syzygetic toΣ(v) andΣ(v′).
Supposeq ∈ Σ(v) ∩ Σ(v′). Thenq(v + v′) = q(v) + q(v′) + ω(v, v′) = 0.
This implies thatΣ(v)∩Σ(v′) ⊂ Σ(v+ v′) and henceΣ(v),Σ(v′),Σ(v+ v′)
share the same set of2g−1(2g−2 − 1) elements. This gives

#Σ(v) ∪ Σ(v′) ∪ Σ(v + v′) = 6 · 2g−2(2g−1 − 1)− 2 · 2g−1(2g−2 − 1)

= 2g−1(2g − 1) = #Q(V )−.

Definition 5.4.4 A set of three mutually syzygetic Steiner complexes is called
a syzygetic triadof Steiner complexes. A set of three Steiner complexes corre-
sponding to vectors forming a non-isotropic plane is calledazygetic triadof
Steiner complexes.

Let Σ(vi), i = 1, 2, 3 be a azygetic triad of Steiner complexes. Then

#Σ(v1) ∩ Σ(v2) = 2g−2(2g−1 − 1).

Each setΣ(v1) \ (Σ(v1) ∩ Σ(v2)) andΣ(v2) \ (Σ(v1) ∩ Σ(v2)) consists of
2g−2(2g−1 − 1) elements. The union of these sets forms the Steiner com-
plex Σ(v3). The number of azygetic triads of Steiner complexes is equal to
1
322g−2(22g − 1) (= the number of non-isotropic planes). We leave the proofs
to the reader.

Let S4(V ) denote the set of syzygetic tetrads. By Corollary5.4.4, eachT ∈
S4(V ) defines an isotropic planePT in V . Let Isok(V ) denote the set ofk-
dimensional isotropic subspaces inV .

Proposition 5.4.8 LetS4(V ) be the set of syzygetic tetrads. For each tetrad
T let PT , denote the corresponding isotropic plane. The map

S4(V )→ Iso2(V ), T 7→ PT ,

is surjective. The fibre over a planeT consists of2g−3(2g−2 − 1) tetrads
forming a partition of the intersection of the Steiner complexesΣ(v), where
v ∈ P \ {0}.
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Proof The surjectivity of this map is proved along the same lines as we
proved Proposition5.4.5. We use the fact that the symplectic group Sp(V, ω)
acts transitively on the set of isotropic subspaces of the same dimension. Let
T = {q1, . . . , q4} ∈ S4(V ). By definition,PT \ {0} = {q1 + q2, q1 + q3, q1 +
q4}. Suppose we have another tetradT ′ = {q′1, . . . , q′4} with PT = PT ′ . Sup-
poseT ∩ T ′ 6= ∅. Without loss of generality, we may assume thatq′1 = q1.
Then, after reindexing, we getq1 + qi = q1 + q′i, henceqi = q′i andT = T ′.
Thus the tetradsT with PT = P are disjoint. Obviously, anyq ∈ T belongs
to the intersection of the Steiner complexesΣ(v), v ∈ P \ {0}. It remains to
apply Lemma5.4.6.

A closer look at the proof of Lemma5.4.6shows that the fibre overP can
be identified with the setQ(P⊥/P )−.

Combining Proposition5.4.8 with the computation of the numbertg of
syzygetic tetrads, we obtain the number of isotropic planes inV :

#Iso2(V ) =
1
3
(22g − 1)(22g−2 − 1). (5.28)

Let Iso2(v) be the set of isotropic planes containing a nonzero vectorv ∈ V .
The set Iso2(v) is naturally identified with nonzero elements in the symplectic
space(v⊥/v, ω′), whereω′ is defined by the restriction ofω to v⊥. We can
transfer the symplectic formω′ to Iso2(v). We obtainω′(P,Q) = 0 if and
only if P +Q is an isotropic 3-subspace.

Let us consider the setS4(V, v) = α−1(Iso2(v)). It consists of syzygetic
tetrads that are invariant with respect to the translation byv. In particular, each
tetrad fromS4(V, v) is contained inΣ(v). We can identify the setS4(V, v)
with the set of cardinality 2 subsets ofΣ(v)/〈v〉.

There is a natural pairing onS4(V, v) defined by

〈T, T ′〉 = 1
2#T ∩ T ′ mod 2. (5.29)

Proposition 5.4.9 For anyT, T ′ ∈ S4(V, v),

ω′(PT , PT ′) = 〈T, T ′〉.

Proof Let X = {{T, T ′} ⊂ S4(V ) : αv(T ) 6= αv(T ′)}, Y = {{P, P ′} ⊂
Iso2(v)}. We have a natural map̃αv : X → Y induced byαv. The pairingω′

defines a functionφ : Y → F2. The corresponding partition ofY consists of
two orbits of the stabilizer groupG = Sp(V, ω)v onY . Suppose{T1, T2} and
{T ′1, T ′2} are mapped to the same subset{P, P ′}. Without loss of generality,
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we may assume thatT1, T
′
1 are mapped toP . Thus

〈T1 + T ′2, T2 + T ′1〉 = 〈T1, T2〉+ 〈T ′1, T ′2〉+ 〈T1, T
′
1〉+ 〈T2, T

′
2

= 〈T1, T2〉+ 〈T ′1, T ′2〉.

This shows that the functionX → F2 defined by the pairing (5.29) is constant
on fibres ofα̃v. Thus it defines a mapφ′ : Y → F2. Both functions are in-
variant with respect to the groupG. This immediately implies that their two
level sets either coincide or are switched. However,#Iso2(v) = 22g−2 − 1
and hence the cardinality ofY is equal to(22g−2 − 1)(22g−3 − 1). Since this
number is odd, the two orbits are of different cardinalities. Since the mapα̃v
isG-equinvariant, the level must coincide.

5.4.3 Fundamental sets

Suppose we have an ordered setS of 2g+1 vectors(u1, . . . , u2g+1) satisfying
ω(ui, uj) = 1 unlessi = j. It defines a standard symplectic basis by setting

vi = u1 + · · ·+u2i−2 +u2i−1, vi+g = u1 + · · ·+u2i−2 +u2i, i = 1, . . . , g.

Conversely, we can solve theui’s from thevi’s uniquely to reconstruct the set
S from a standard symplectic basis.

Definition 5.4.5 A set of2g + 1 vectors(u1, . . . , u2g+1) with ω(ui, uj) = 1
unlessi = j is called anormal!systemin (V, ω).

We have established a bijective correspondence between normal systems
and standard symplectic bases.

Recall that a symplectic formω defines a nondegenerate null-system inV ,
i.e. a bijective linear mapf : V → V ∨ such thatf(v)(v) = 0 for all v ∈ V . Fix
a basis(e1, . . . , e2g) in V and the dual basis(t1, . . . , t2g) in V ∨ and consider
vectorsui = e1 + · · ·+ e2g − ei, i = 1, . . . , 2g andu2g+1 = e1 + · · ·+ e2g.
Then there exists a unique null-systemV → V ∨ that sendsui to ti andu2g+1

to t2g+1 = t1 + · · ·+ t2g. The vectorsu1, . . . , u2g+1 form a normal system in
the corresponding symplectic space.

Let (u1, . . . , u2g+1) be a normal system. We will identify nonzero vectors
in V with points in the projective space|V |. Denote the points corresponding
to the vectorsui by εi2g+2. For anyi, j 6= 2g + 2, consider the line spanned
by εi2g+2 andεj2g+2. Let εij be the third nonzero point in this line. Now do
the same with pointsεij andεkl with the disjoint sets of indices. Denote this
point by εijkl. Note that the residual point on the line spanned byεij andεjk
is equal toεik. Continuing in this way, we will be able to index all points
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in |V | with subsets of even cardinality (up to complementary sets) of the set
Bg = {1, . . . , 2g + 2}. This notation will agree with the notation of 2-torsion
divisor classes for hyperelliptic curves of genusg. For example, we have

ω(pI , pJ) = #I ∩ J mod 2.

It is easy to compute the number of normal systems. It is equal to the num-
ber of standard symplectic bases in(V, ω). The group Sp(V, ω) acts simply
transitively on such bases, so their number is equal to

#Sp(2g,F2) = 2g
2
(22g − 1)(22g−2 − 1) · · · (22 − 1). (5.30)

Now we introduce the analog of a normal system for quadratic forms in
Q(V ).

Definition 5.4.6 A fundamental setin Q(V ) is an ordered azygetic set of
2g + 2 elements inQ(V ).

The number2g + 2 is the largest possible cardinality of a set such that any
three elements are azygetic. This follows from the following immediate corol-
lary of Lemma5.4.1.

Lemma 5.4.10 LetB = (q1, . . . , qk) be an azygetic set. Then the set(q1 +
q2, . . . , q1 + qk) is a normal system in the symplectic subspace of dimension
k − 2 spanned by these vectors.

The Lemma shows that any fundamental set inQ(V ) defines a normal sys-
tem inV , and hence a standard symplectic basis. Conversely, starting from a
normal system(u1, . . . , u2g+1) and anyq ∈ Q(V ) we can define a fundamen-
tal set(q1, . . . , q2g+2) by

q1 = q, q2 = q + u1, . . . , q2g+2 = q + u2g+1.

Since elements in a fundamental system add up to zero, we get that the
elements of a fundamental set also add up to zero.

Proposition 5.4.11 There exists a fundamental set with all or all but one
quadratic forms are even or odd. The number of odd quadratic forms in such
a basis is congruent tog + 1 modulo 4.

Proof Let (u1, . . . , u2g+1) be a normal system and(t1, . . . , t2g+1) be its im-
age under the mapV → V ∨ defined byω. Consider the quadratic form

q =
∑

1≤i<j≤2g+1

titj .
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It is immediately checked that

q(uk) ≡
(
2g
2

)
= g(2g − 1) ≡ g mod 4.

Passing to the associated symplectic basis, we can compute the Arf invariant
of q to get

Arf(q) =

{
1 if g ≡ 1 mod 2

0 otherwise.

This implies that

Arf(q + t2k) = Arf(q) + q(uk) =

{
0 if g ≡ 0, 3 mod 4,

otherwise.

Consider the fundamental set of quadricsq, 2q+ y2
k, k = 1, . . . , 2g+1. If g ≡

0 mod 4 the set consists of all even quadratic forms. Ifg ≡ 1 mod 4, the
quadratic formq is odd, all other quadratic forms are even. Ifg ≡ 2 mod 4,
all quadratic forms are odd. Finally, ifg ≡ 3 mod 4, thenq is even, all other
quadratic forms are odd.

Definition 5.4.7 A fundamental set with all or all but one quadratic forms
are even or odd is called anormal!fundamental set.

One can show (see [128], p. 271) that any normal fundamental set is ob-
tained as in the proof of the previous proposition.

Choose a normal fundamental set(q1, . . . , q2g+2) such that all the first2g+1
quadrics are of the same type. Any quadratic formq ∈ Q(V ) can be written in
the form

q2g+2 +
∑
i∈I

t2i = q +
∑
i∈I

t2i ,

whereI is a subset of[1, 2g+1] := {1, . . . , 2g+1}. We denote such a quadratic
form byqS , whereS = I∪{2g+2} considered as a subset of1, 2g+2] modulo
the complementary set. We can and will always assume that

#S ≡ g + 1 mod 2.

The quadratic formqS can be characterized by the property that it vanishes on
pointspij , wherei ∈ S andj ∈ {1, . . . , 2g + 2}.

The following properties can be checked.

Proposition 5.4.12 • qS + qT = εS+T ;
• qS + εI = qS+I ;
• qS(εT ) = 0 if and only if#S ∩ T + 1

2#S ≡ 0 mod 2;
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• qS ∈ Q(V )+ if and only if#S ≡ g + 1 mod 4.

Again we see that a choice of a fundamental set defines the notation of
quadratic forms which agrees with the notation of theta characteristics for hy-
perelliptic curves.

Since fundamental sets are in a bijective correspondence with normal sys-
tems their number is given by (5.30).

5.5 Scorza correspondence

5.5.1 Correspondences on an algebraic curve

A correspondenceof degreed between nonsingular curvesC1 andC2 is a non-
constant morphismT from C1 to thed-th symmetric productC(d)

2 of C2. A

correspondence can be defined by its graphΓT ⊂ C1 ×C2. If Z ⊂ C(d)
2 ×C2

is the incidence variety (the projectionZ → C
(d)
2 is the universal family for

the functor represented byC(d)
2 ), thenΓT is the inverse image ofZ under the

morphismT × id : C1 × C2 → C
(d)
2 × C2. Set-theoretically,

ΓT = {(x, y) ∈ C1 × C2 : y ∈ T (x)}.

We have

T (x) = ΓT ∩ ({x} × C2), (5.31)

where the intersection is scheme-theoretical.
One can extend the map (5.31) to any divisors onC1 by settingT (D) =

p∗1(D)∩ΓT . It is clear that a principal divisor goes to a principal divisor. Taking
divisors of degree 0, we obtain a homomorphism of the Jacobian varieties

φT : Jac(C1)→ Jac(C2).

The projectionΓT → C1 is a finite map of degreed. SinceT is not constant,
the projection toC2 is a finite map of degreed′. It defines a correspondence

C2 → C
(d′)
1 which is denoted byT−1 and is called theinverse correspondence.

Its graph is equal to the image ofT under the switch mapC1×C2 → C2×C1.
We will be dealing mostly with correspondencesT : C → C(d) and will

identify T with its graphΓT . If d is the degree ofT andd′ is the degree of
T−1 we say thatT is the correspondence of type(d, d′). A correspondence
is symmetricif T = T−1. We assume thatT does not contain the diagonal
∆ of C × C. A united pointof a correspondence is a common point with the
diagonal. It comes with the multiplicity.
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A correspondenceT : C → C(d) hasvalenceν if the divisor class of
T (x) + νx does not depend onx.

Proposition 5.5.1 The following properties are equivalent:

(i) T has valenceν;
(ii) the cohomology class[T ] in H2(C × C,Z) is equal to

[T ] = (d′ + ν)[{x} × C] + (d+ ν)[C × {x}]− ν[∆],

wherex is any point onC;
(iii) the homomorphismφT is equal to homomorphism[−ν] : Jac(C) →
Jac(C) of the multiplication by−ν.

Proof (i) ⇒ (ii). We know that there exists a divisorD onC such that the
restrictionT + ν∆ − p∗2(D) to any fibre ofp1 is linearly equivalent to zero.
By the seesaw principle ([446] Chapter 2, Corollary 6),T + ν∆ − p∗2(D) ∼
p∗1(D

′) for some divisorD′ onC. This implies that[T ] = degD′[{x} ×C] +
degD[C×{x}]−ν[∆]. Taking the intersections with fibres of the projections,
we find thatd′ = degD′ − ν andd = degD − ν.

(ii) ⇒ (i) Let p1, p2 : C×C → C be the projections. We use the well-known
fact that the natural homomorphism of the Picard varieties

p∗1(Pic0(C))⊕ p∗2(Pic0(C))→ Pic0(C × C)

is an isomorphism (see [311], Chapter 3, Exercise 12.6). Fix a pointx0 ∈ C
and consider the divisorT + ν∆− (d′ + ν)({x0}×C)− (d+ ν)(C ×{x0}).
By assumption, it is algebraically equivalent to zero. Thus

T + ν∆ ∼ p∗1(D1) + p∗2(D2)

for some divisorsD1, D2 onC. Thus the divisor classT (x) + νx is equal to
the divisor class of the restriction ofp∗2(D2) to {x}×C. Obviously, it is equal
to the divisor class ofD2, hence is independent onx.

(i) ⇔ (iii) This follows from the definition of the homomorphismφT .

Note that for a general curveC of genusg > 2

End(Jac(C)) ∼= Z

(see [382]), so any correspondence has valence. An example of a correspon-
dence without valence is the graph of an automorphism of order> 2 of C.

Observe that the proof of the Proposition shows that for a correspondenceR

with valenceν

T ∼ p∗1(D′) + p∗2(D)− ν∆, (5.32)
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whereD is the divisor class ofT (x) + νx andD′ is the divisor class of
T−1(x) + νx. It follows from the Proposition that the correspondenceT−1

has valenceν.
The next result is known as theCayley-Brill formula.

Corollary 5.5.2 Let T be a correspondence of type(a, b) on a nonsingular
projective curveC of genusg. Assume thatT has valence equal toν. Then the
number of united points ofT is equal to

d+ d′ + 2νg.

This immediately follows from (5.32) and the formula∆ ·∆ = 2− 2g.

Example5.5.1 LetC be a nonsingular complete intersection of a nonsingular
quadricQ and a cubic inP3. In other words,C is a canonical curve of genus
4 curve without vanishing even theta characteristic. For any pointx ∈ C, the
tangent planeTx(Q) cuts out the divisor2x+D1 +D2, where|x+D1| and
|x + D2| are the twog1

3 ’s on C defined by the two rulings of the quadric.
Consider the correspondenceT onC×C defined byT (x) = D1 +D2. This is
a symmetric correspondence of type(4, 4) with valence2. Its 24 united points
correspond to the ramification points of the twog1

3 ’s.

For any two correspondencesT1 andT2 onC one defines thecomposition
of correspondencesby consideringC ×C ×C with the projectionspij : C ×
C × C → C × C onto two factors and setting

T1 ◦ T2 = (p13)∗
(
p∗12(T1) ∩ p∗23(T2)

)
.

Set-theoretically

T1 ◦ T2 = {(x, y) ∈ C × C : ∃z ∈ C : (x, z) ∈ T1, (z, y) ∈ T2}.

Also T1 ◦ T2(x) = T1(T2(x)). Note that ifT1 = T−1
2 andT2 is of type(d, d′)

we haveT1(T2(x)) − dx > 0. Thus the graph ofT1 ◦ T2 containsd∆. We
modify the definition of the composition by settingT1♦T2 = T1 ◦ T2 − s∆,
wheres is the largest positive multiple of the diagonal component ofT1 ◦ T2.

Proposition 5.5.3 Let T1 ◦ T2 = T1♦T2 + s∆. Suppose thatTi is of type
(di, d′i) and valenceνi. ThenT1♦T2 is of type(d1d2−s, d′1d′2−s) and valence
−ν1ν2 + s.

Proof Applying Proposition5.5.1, we can write

[T1] = (d′1 + ν1)[{x} × C] + (d1 + ν1)[C × {x}]− ν1[∆],

[T2] = (d′2 + ν2)[{x} × C] + (d2 + ν2)[C × {x}]− ν2[∆].
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Easy computation with intersections gives

[T1♦T2] = (d′1d
′
2−ν1ν2)[{x}×C]+(d1d2−ν1ν2)[C×{x}]+(ν1ν2−s)[∆]

= (d′1d
′
2 − s+ ν)[{x} × C] + (d1d2 − s+ ν)[C × {x}] + ν[∆],

whereν = −ν1ν2 + s. This proves the assertion.

Example5.5.2 In Baker’s book [21], vol. 6, p. 11, the symmetric correspon-
denceT♦T−1 is called thedirect lateral correspondence. If (r, s) is the type
of T andγ is its valence, then it is easy to see thatT ◦T = T♦T−1 + s∆, and
we obtain that the type ofT♦T−1 is equal to(s(r− 1), s(r− 1)) and valence
s− γ2. This agrees with Baker’s formula.

Here is one application of a direct lateral correspondence. Consider a corre-
spondence of valence 2 on a plane nonsingular curveC of degreed such that
T (x) = Tc(C)∩C−2x. In other words,T (x) is equal to the set of the remain-
ingd−2 intersection points of the tangent atxwithC. For any pointy ∈ C the
inverse correspondence assigns toy the divisorPy(C) − 2y, wherePy(C) is
the first polar. A united point ofT♦T−1 is one of the two points of the intersec-
tion of a bitangent with the curve. We haves = d(d−1)−2, r = d−2, ν = 2.
Applying the Cayley-Brill formula, we find that the numberb of bitangents is
expressed by the following formula

2b = 2(d(d−1)−2)(d−3)+(d−1)(d−2)(d(d−1)−6) = d(d−2)(d2−9).
(5.33)

As in the case of bitangents to the plane quartic, there exists a plane curve of
degree(d − 2)(d2 − 9) (a bitangential curvewhich cuts out onC the set of
tangency points of bitangents (see [538], pp. 342-357).

There are many other applications of the Cayley-Brill formula to enumera-
tive geometry. Many of them go back to Cayley and can be found in Baker’s
book. Modern proofs of some of these formulas are available in the literature
and we omit them.

Recall that ak-secant lineof an irreducible space curveC ⊂ P3 of degree
d is a line` such that a general plane contaning` intersectsC at d − k points
outside`. Equivalently, the projection from̀defines a finite mapC → P1 of
degreed− k.

The proof of the following formula can be found in [295], Chapter 2,§5.

Proposition 5.5.4 LetC be a general space curve of genusg and degreed.
Then the number of 4-secant lines ofC is given by the following formula:

q =
1
12

(d− 2)(d− 3)2(d− 4)− 1
2g(d

2 − 7d+ 13− g). (5.34)
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There is a precise meaning of generality of a curve. We refer to loc. cit. or
[398] for the explanation.

The set of trisecant lines is infinite and parameterized by a curve of degree

t = (d− 2)
(d− 1)(d− 3)− 3g

3
. (5.35)

(see [398]).

5.5.2 Scorza correspondence

Let C be a nonsingular projective curve of genusg > 0 andϑ be a non-
effective theta-characteristic onC.

Let

d1 : C × C → Jac(C), (x, y) 7→ [x− y] (5.36)

be the difference map. LetΘ = W 0
g−1 − ϑ be the symmetric theta divisor

corresponding toϑ. Define

Rϑ = d−1
1 (Θ).

Set-theoretically,

(Rϑ)red = {(x, y) ∈ C × C : h0(x+ ϑ− y) > 0}.

Lemma 5.5.5 Rϑ is a symmetric correspondence of type(g, g), with valence
equal to−1 and without united points.

Proof SinceΘ is a symmetric theta divisor, the divisord−1
1 (Θ) is invariant

with respect to the switch of the factors ofX × X. This shows thatRϑ is
symmetric.

Fix a pointx0 and consider the mapi : C → Jac(C) defined byi(x) =
[x− x0]. It is known (see [43], Chapter 11, Corollary (2.2)) that

Θ · ι∗(C) = (C × {t0}) · d∗1(Θ) = g.

This shows thatRϑ is of type(g, g). Also it shows thatRϑ(x0) − x0 + ϑ ∈
Wg−1. For any pointx ∈ C, we haveh0(ϑ+x) = 1 becauseϑ is non-effective.
ThusRϑ(x) is the unique effective divisor linearly equivalent tox + ϑ. By
definition, the valence ofRϑ is equal to−1. Applying the Cayley-Brill formula
we obtain thatRϑ has no united points.

Definition 5.5.1 The correspondenceRϑ is called theScorza correspon-
dence.
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Example5.5.3 Assumeg = 1 and fix a point onC equippingC with a
structure of an elliptic curve. Thenϑ is a non-trivial 2-torsion point. The Scorza
correspondenceRϑ is the graph of the translation automorphism defined byϑ.

In general,Rϑ could be neither reduced nor irreducible correspondence.
However, for general curveX of genusg everything is as expected.

Proposition 5.5.6 AssumeC is general in the sense thatEnd(Jac(C)) ∼= Z.
ThenRϑ is reduced and irreducible.

Proof The assumption that End(Jac(C)) ∼= Z implies that any correspon-
dence onC × C has valence. This implies that the Scorza correspondence is
irreducible curve and reduced. In fact, it is easy to see that the valence of the
sum of two correspondences is equal to the sum of valences. SinceRϑ has
no united points, it follows from the Cayley-Brill formula that the valence of
each part must be negative. Since the valence ofRϑ is equal to−1, we get a
contradiction.

It follows from (5.32) that the divisor class ofRϑ is equal to

Rϑ ∼ p∗1(ϑ) + p∗2(ϑ) + ∆. (5.37)

SinceKC×C = p∗1(KC) + p∗2(KC), applying the adjunction formula and
using that∆ ∩R = ∅ and the fact thatp∗1(ϑ) = p∗2(ϑ), we easily find

ωRϑ
= 3p∗1ωC . (5.38)

In particular, the arithmetic genus ofRϑ is given by

pa(Rϑ) = 3g(g − 1) + 1. (5.39)

Note that the curveRϑ is very special, for example, it admits a fixed-point
free involution defined by the switching the factors ofX ×X.

Proposition 5.5.7 Assume thatC is not hyperelliptic. LetR be a symmetric
correspondence onC × C of type(g, g), without united points and some va-
lence. Then there exists a unique non-effective theta characteristicϑ onC such
thatR = Rϑ.

Proof It follows from the Cayley-Brill formula that the valenceν of R is
equal to−1. Thus the divisor class ofR(x) − x does not depend onx. Since
R has no united points, the divisor classD = R(x) − x is not effective, i.e.,
h0(R(x) − x) = 0. Consider the difference mapd1 : C × C → Jac(C). For
any(x, y) ∈ R, the divisorR(x)− y ∼ D+x− y is effective of degreeg− 1.
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Thusd1(R) + D ⊂ W 0
g−1. Let σ : X × X → X × X be the switch of the

factors. Then

φ(R) = d1(σ(R)) = [−1](d1(R)) ⊂ [−1](W 0
g−1 −D) ⊂W 0

g−1 +D′,

whereD′ = KC−D. SinceR∩∆ = ∅ andC is not hyperelliptic, the equality
d1(x, y) = d1(x′, y′) implies(x, y) = (x′, y′). Thus the difference mapd1 is
injective onR. This gives

R = d−1
1 (W 0

g−1 −D) = d−1
1 (W 0

g−1 −D′).

Restricting to{x} × C we see that the divisor classesD andD′ are equal.
HenceD is a theta characteristicϑ. By assumption,h0(R(x)− x) = h0(ϑ) =
0, henceϑ is non-effective. The uniqueness ofϑ follows from formula (5.37).

Letx, y ∈ Rϑ. Then the sum of two positive divisors(Rϑ(x)−y)+(Rϑ(y)−
x) is linearly equivalent tox+ ϑ− y + y + ϑ− x = 2ϑ = KC . This defines
a map

γ : Rϑ → |KC |, (x, y) 7→ (Rϑ(x)− y) + (Rϑ(y)− x). (5.40)

Recall from [295], p. 360, that the theta divisorΘ defines theGauss map

G : Θ0 → |KC |,

whereΘ0 is the open subset of nonsingular points ofΘ. It assigns to a pointz
the tangent spaceTz(Θ) considered as a hyperplane in

Tz(Jac(C)) ∼= H1(C,OC) ∼= H0(C,OC(KC))∨.

More geometrically,G assigns toD− ϑ the linear span of the divisorD in the
canonical space|KC |∨ (see [10], p. 246). Since the intersection of hyperplane
γ(x, y) with the canonical curveC contains the divisorsR(x)−y (andR(y)−
x), and they do not move, we see that

γ = G ◦ d1.

Lemma 5.5.8

γ∗(O|KC |(1)) ∼= ORϑ
(Rϑ) ∼= p∗1(KC).

Proof The Gauss mapG is given by the normal line bundleOΘ(Θ). Thus the
mapγ is given by the line bundle

d∗1(OΘ(Θ)) = ORϑ
(d∗1(Θ)) ∼= ORϑ

(Rϑ).

It remains to apply formula (5.37).
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The Gauss map is a finite map of degree
(
2g−2
g−1

)
. It factors through the map

Θ0 → Θ0/(ι), whereι is the negation involution on Jac(C). The mapγ also
factors through the involution ofX × X. Thus the degree of the mapRϑ →
γ(Rϑ) is equal to2d(ϑ), whered(ϑ) is some numerical invariant of the theta
characteristicϑ. We call it theScorza invariant. Let

Γ(ϑ) := γ(Rϑ).

We considered it as a curve embedded in|KC |. Applying Lemma5.5.8, we
obtain

Corollary 5.5.9

deg Γ(ϑ) =
g(g − 1)
d(ϑ)

.

Remark5.5.1 LetC be a canonical curve of genusg andRϑ be a Scorza cor-
respondence onC. For anyx, y ∈ C consider the degree2g divisorD(x, y) =
Rϑ(x)+Rϑ(y) ∈ |KC+x+y|. Since|2KC−(KC+x+y)| = |KC−x−y|,
we obtain that the linear system of quadrics throughD(x, y) is of dimension
1
2g(g + 1) − 2g = dim |OPg−1(2)| − 2g + 1. This shows that the setD(x, y)
imposes one less condition on quadrics passing through this set. For example,
wheng = 3 we get thatD(x, y) is on a conic. Ifg = 4 it is the base set of
a net of quadrics. We refer to [192] and [230] for projective geometry of sets
imposing one less condition on quadrics (calledself-associated sets).

5.5.3 Scorza quartic hypersurfaces

The following construction due to G. Scorza needs some generality assumption
onC.

Definition 5.5.2 A pair (C, ϑ) is calledScorza generalif the following prop-
erties are satisfied

(i) Rϑ is a connected nonsingular curve;
(ii) d(ϑ) = 1;
(iii) Γ(ϑ) is not contained in a quadric.

We will see in the next chapter that a general canonical curve of genus 3 is
Scorza general. For higher genus this was proven in [606].

We continue to assume thatC is non-hyperelliptic. Consider the canonical
embeddingC ↪→ |KC |∨ ∼= Pg−1 and identifyC with its image (the canonical
model ofC). For anyx ∈ C, the divisorRϑ(x) consists ofg pointsyi. If
all of them distinct we haveg hyperplanesγ(x, yi) = 〈Rϑ(x) − yi〉, or, g
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points on the curveΓ(ϑ). More generally, we have a mapC → C(g) defined
by the projectionp1 : Rϑ → C. The composition of this map with the map
γ(g) : C(g) → Γ(ϑ)(g) is a regular mapφ : C → Γ(ϑ)(g). Let H ∩ C =
x1 + · · · + x2g−2 be a hyperplane section ofC. Adding up the images of the
pointsxi under the mapφ we obtaing(2g − 2) points onΓ(ϑ).

Proposition 5.5.10 LetD = x1 + · · ·+ x2g−2 be a canonical divisor onC.
Assume(C, ϑ) is Scorza general. Then the divisors

φ(D) =
2g−2∑
i=1

φ(xi), D ∈ |KC |,

span the linear system of divisors onΓ(ϑ) which are cut out by quadrics.

Proof First note that the degree of the divisor is equal to2 deg Γ(ϑ). Let
(x, y) ∈ Rϑ andDx,y = γ(x, y) = (Rϑ(x) − y) + (Rϑ(y) − x) ∈ |KC |.
For anyxi ∈ Rϑ(x) − y, the divisorγ(x, xi) containsy. Similarly, for any
xj ∈ Rϑ(y) − x, the divisorγ(y, xj) containsx. This means thatφ(Dx,y)
is cut out by the quadricQx,y equal to the sum of two hyperplanešHx, Ȟy

corresponding to the pointsx, y ∈ C ⊂ |KC |∨ via the duality. The image of
|KC | in Γ(ϑ)(g(2g−2)) spans a linear systemL (since any map of a rational
variety to Jac(Γ(ϑ)) is constant). SinceΓ(ϑ) is not contained in a quadric, it
generates|KC |. This shows that all divisors inL are cut out by quadrics. The
quadricsQx,y span the space of quadrics in|KC | since otherwise there exists
a quadric in|KC |∨ apolar to all quadricsQx,y. This would imply that for a
fixed x ∈ C, the divisorRϑ(x) lies in a hyperplane, the polar hyperplane of
the quadric with respect to the pointx. However, becauseϑ is non-effective,
〈Rϑ(x)〉 spansPg−1. ThusdimL ≥ g(g + 1)/2, and, since no quadrics con-
tainsΓ(ϑ), L coincides with the linear system of divisors onΓ(ϑ) cut out by
quadrics.

Let E = H0(C,ωC)∨. We can identify the space of quadrics in|E| with
P(S2(E)). Using the previous Proposition, we obtain a map|E∨| → |S2(E)|.
The restriction of this map to the curveΓ(ϑ) is given by the linear system
|OΓ(ϑ)(2)|. This shows that the map is given by quadratic polynomials, so
defines a linear map

α : S2(E∨)→ S2(E).

The proof of the Proposition implies that this map is bijective.

Theorem 5.5.11 Assume(C, ϑ) is Scorza general. Then there exists a unique
quartic hypersurfaceV (f) in |E| = Pg−1 such that the inverse linear map
α−1 is equal to the polarization mapψ 7→ Dψ(f).
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Proof Considerα−1 : S2(E) → S2(E∨) as a tensorU ∈ S2(E∨) ⊗
S2(E∨) ⊂ (E∨)⊗4 viewed as a 4-multilinear mapE4 → C. It is enough to
show thatU is totally symmetric. Thenα−1 is defined by the apolarity map as-
sociated to a quartic hypersurface. Fix a reduced divisorRϑ(x) = x1+· · ·+xg.
Let Hi be the hyperplane in|E| spanned byRϑ(x) − xi. Choose a basis
(t1, . . . , tg) in E∨ such thatHi = V (ti). It follows from the proof of Propo-
sition5.5.10that the quadratic mapP(E∨)→ P(S2(E)) assigns to the hyper-
planeHi the quadricQx,xi

equal to the union of two hyperplanes associated
to x andxi via the duality. The corresponding linear mapα satisfies

α(t2j ) = ξj(
g∑
i=1

biξi), j = 1, . . . , g, (5.41)

where(ξ1, . . . , ξg) is the dual basis to(t1, . . . , tg), and(b1, . . . , bg) are the
coordinates of the pointx. This implies that

U(ξj ,
g∑
i=1

biξi, ξk, ξm) =

{
1 if j = k = m,

0 otherwise
= U(ξk,

g∑
i=1

biξi, ξj , ξm).

This shows thatU is symmetric in the first and the third arguments when
the second argument belongs to the curveΓ(ϑ). Since the curveΓ(ϑ) spans
P(E∨), this is always true. It remains to use thatU is symmetric in the first
and the second arguments, as well as in the third and the fourth arguments.

Definition 5.5.3 Let (C, ϑ) be Scorza general pair consisting of a canonical
curve of genusg and a non-effective theta characteristicϑ. Then the quar-
tic hypersurfaceV (f) is called theScorza quartic hypersurfaceassociated to
(C, ϑ).

We will study the Scorza quartic plane curves in the caseg = 3. Very little is
known about Scorza hypersurfaces for general canonical curves of genus> 3.
We do not even know whether they are nonsingular. However, it follows from
the construction that the hypersurface is given by a nondegenerate homoge-
neous form.

The Scorza correspondence has been recently extended to pairs(C, θ), where
C is a curve of genusg > 1 andθ is an effective even theta characteristic
citeAzadi2, [298].

5.5.4 Contact hyperplanes of canonical curves

LetC be a nonsingular curve of genusg > 0. Fixing a pointc0 onC allows one
to define an isomorphism of algebraic varieties Picd(C) → Jac(C), [D] 7→
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[D− dc0]. Composing this map with the mapud : C(d) → Picd(C) we obtain
a map

ud(c0) : C(d) → Jac(C). (5.42)

If no confusion arises, we dropc0 from this notation. Ford = 1, this map
defines an embedding

u1 : C ↪→ Jac(C).

For the simplicity of the notation, we will identifyC with its image. For any
c ∈ C the tangent space ofC at a pointc is a one-dimensional subspace of
the tangent space of Jac(C) at c. Using a translation automorphism, we can
identify this space with the tangent spaceT0Jac(C) at the zero point. Under
the Abel-Jacobi map, the space of holomorphic1-forms on Jac(C) is identified
with the space of holomorphic forms onC. Thus we can identifyT0Jac(C)
with the spaceH0(C,KC)∨. As a result, we obtain thecanonical mapof C

ϕ : C → P(H0(C,KC)∨) = |KC |∨ ∼= Pg−1.

If C is not hyperelliptic, the canonical map is an embedding.
We continue to identifyH0(C,KC)∨ with T0Jac(C). A symmetric odd

theta divisorΘ = W 0
g−1 − ϑ contains the origin of Jac(C). If h0(ϑ) = 1,

the origin is a nonsingular point onΘ, and henceΘ defines a hyperplane in
T0(Jac(C)), the tangent hyperplaneT0Θ. Passing to the projectivization we
have a hyperplane in|KC |∨.

Proposition 5.5.12 The hyperplane in|KC |∨ defined byΘ is a contact hy-
perplane to the imageϕ(C) under the canonical map.

Proof Consider the difference map (5.36) d1 : C ×C → Jac(C). In the case
whenΘ is an even divisor, we proved in (5.37) that

d∗1(Θ) ∼ p∗1(θ) + p∗2(θ) + ∆. (5.43)

Since two theta divisors are algebraically equivalent the same is true for an odd
theta divisor. The only difference is thatd∗1(Θ) contains the diagonal∆ as the
preimage of 0. It follows from the definition of the mapu1(c0) that

u1(c0)(C) ∩Θ = d−1
1 (Θ) ∩ p−1

1 (c0) = c0 +Dϑ,

whereDϑ is the unique effective divisor linearly equivalent toϑ. LetG : Θ →
P(T0Jac(C)) be the Gauss map defined by translation of the tangent space at
a nonsingular point ofΘ to the origin. It follows from the proof of Torelli
Theorem [10] that the Gauss map ramifies at any point whereΘ meetsu1(C).
So, the image of the Gauss map intersects the canonical image with multiplicity
≥ 2 at each point. This proves the assertion.
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More explicitly, the equation of the contact hyperplane corresponding to
Θ is given by the linear term of the Taylor expansion of the theta function
θ [ ε

η ] corresponding toΘ. Note that the linear term is a linear function on
H0(C,KC)∨, hence can be identified with a holomorphic differential

hΘ =
g∑
i=1

∂θ [ ε
η ] (z, τ)
∂zi

(0)ωi,

where(z1, . . . , zg) are coordinates inH0(C,KC)∨ defined by a normalized
basisω1, . . . , ωg of H0(C,KC). A non-zero section ofOJac(C)(Θ) can be
viewed as a holomorphic differential of order1

2 . To make this more precise,
i.e. describe how to get a square root of a holomorphic1-form, we use the
following result (see [238], Proposition 2.2).

Proposition 5.5.13 Let Θ be a symmetric odd theta divisor defined by the
theta functionθ [ ε

η ]. Then for allx, y ∈ C,

θ [ ε
η ] (d1(x− y))2 = hΘ(ϕ(x))hΘ(ϕ(y))E(x, y)2,

whereE(x, y) is a certain section ofOC×C(∆) (theprime-form).

An attentive reader should notice that the equality is not well-defined in
many ways. First, the vectorϕ(x) is defined only up to proportionality and the
value of a section of a line bundle is also defined only up to proportionality. To
make sense of this equality we pass to the universal cover of Jac(C) identified
with H0(C,KC)∨ and to the universal coverU of C × C and extend the
difference map and the mapϕ to the map of universal covers. Then the prime-
form is defined by a certain holomorphic function onU and everything makes
sense. As the equality of the corresponding line bundles, the assertion trivially
follows from (5.43).

Let

r [ ε
η ] (x, y) =

θ [ ε
η ] (d1(x− y))
E(x, y)

.

SinceE(x, y) = −E(y, x) andθ [ ε
η ] is an odd function, we haver [ ε

η ] (x, y) =
r [ ε

η ] (y, x) for anyx, y ∈ C × C \∆. It satisfies

r [ ε
η ] (x, y)2 = hΘ(ϕ(x))hΘ(ϕ(y)). (5.44)

Note thatE(x, y) satisfiesE(x, y) = −E(y, x), sinceθ [ ε
η ] is an odd function,

we haver [ ε
η ] (x, y) = r [ ε

η ] (y, x) for anyx, y ∈ C × C \∆.
Now let us fix a pointy = c0, so we can define theroot functiononC. It is

a rational function on the universal cover ofC defined byr [ ε
η ] (x, c0).

Thus every contact hyperplane of the canonical curve defines a root function.
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Suppose we have two odd theta functionsθ [ ε
η ] , θ

[
ε′

η′

]
. Then the ratio of

the corresponding root functions is equal to
θ[ ε

η ](d1(x−c0))
θ

»
ε′

η′

–
(d1(x−c0))

and its square is a

rational function onC, defined uniquely up to a constant factor depending on
the choice ofc0. Its divisor is equal to the difference2ϑ − 2ϑ′. Thus we can

view the ratio as a section ofK
1
2
X with divisorθ−θ′. This section is not defined

onC but on the double cover ofC corresponding to the 2-torsion pointϑ−ϑ′.
If we have two pairsϑ1, ϑ

′, ϑ2, ϑ
′
2 of odd theta characteristics satisfyingϑ1 −

ϑ′ = ϑ2−ϑ′2 = ε, i.e. forming a syzygetic tetrad, the product of the two ratios
is a rational function onC with divisorϑ1 +ϑ′2−ϑ′1−ϑ2. Following Riemann

[516] and Weber [647], we denote this function by
√

ϑ1ϑ′1
ϑ2ϑ′2

. By Riemann-Roch,

h0(ϑ1 +ϑ′2) = h0(KC + ε) = g− 1, hence anyg pairs(ϑ1, ϑ
′
1), . . . , (ϑg, ϑ

′
g)

of odd theta characteristics in a Steiner complex defineg linearly independent

functions
√

ϑ1ϑ′1
ϑgϑ′g

, . . . ,

√
ϑg−1ϑ′g−1
ϑgϑ′g

.After scaling, and getting rid of squares by

using (5.44) we obtain a polynomial inhΘ1(ϕ(x)), . . . , hΘg
(ϕ(x)) vanishing

on the canonical image ofC.

Example5.5.4 Let g = 3. We take three pairs of odd theta functions and get
the equation

√
ϑ1ϑ′1 +

√
ϑ2ϑ′2 +

√
ϑ3ϑ′3 = 0. (5.45)

After getting rid of square roots, we obtain a quartic equation ofC

(lm+ pq − rs)2 − 4lmpq = 0, (5.46)

where l,m, p, q, rs are the linear functions inz1, z2, z3 defining the linear
terms of the Taylor expansion at0 of the odd theta functions corresponding
to three pairs in a Steiner complex. The number of possible ways to write the
equation of a plane quartic in this form is equal to63 · 20 = 1260.

Remark5.5.2 For any non-zero2-torsion point, the linear system|KC + ε|
mapsC to Pg−2, the map is called thePrym canonical map. We have seen that

the root functions
√

ϑ1ϑ′1
ϑ2ϑ′2

belong toH0(C,KC + ε) and can be used to define

the Prym canonical map. Forg = 3, the map is a degree 4 cover ofP1 and we
expressed the quartic equation ofC as a degree 4 cover ofP1.
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Exercises

5.1Let C be an irreducible plane curve of degreed with a(d−2)-multiple point. Show
that its normalization is a hyperelliptic curve of genusg = d − 2. Conversely, show
that any hyperelliptic curve of genusg admits such a plane model.
5.2Show that a nonsingular curve of genus 2 has a vanishing theta characteristic but a
nonsingular curve of genus 3 has a vanishing theta characteristic if and only if it is a
hyperelliptic curve.
5.3 Show that a nonsingular non-hyperelliptic curve of genus 4 has a vanishing theta
characteristic if and only if its canonical model lies on a quadratic cone.
5.4Find the number of vanishing theta characteristics on a hyperelliptic curve of genus
g.
5.5Show that a canonical curve of genus5 has 10 vanishing even theta characteristics
if and only if it is isomorphic to the intersection of three simultaneously diagonalized
quadrics inP4.
5.6Compute the number of syzygetic tetrads contained in a Steiner complex.
5.7 Show that the composition of two correspondences (defined as the composition of
the multi-valued maps defined by the correspondences) with valencesν andν′ is a
correspondence with valence−νν′.
5.8 Let f : X → P1 be a non-constant rational function on a nonsingular projective
curveX. Consider the fibred productX ×P1 X as a correspondence onX ×X. Show
that it has valence and compute the valence. Show that the Cayley-Brill formula is
equivalent to the Hurwitz formula.
5.9Suppose that a nonsingular projective curveX admits a non-constant map to a curve
of genus> 0. Show that there is a correspondence onX without valence.
5.10Show that any correspondence on a nonsingular plane cubic has valence unless the
cubic is harmonic or equianharmonic.
5.11Describe all symmetric correspondences of type(4, 4) with valence 1 on a canon-
ical curve of genus 4.
5.12LetRϑ be the Scorza correspondence on a curveC. Prove that a point(x, y) ∈ Rϑ

is singular if and only ifx andy are ramification points of the projectionsRϑ → C.

Historical Notes

It is a too large task to discuss the history of theta functions. We only men-
tion that the connection between odd theta functions with characteristics and
bitangents to a quartic curves goes back to Riemann [516], [647]. There are
numerous expositions of the theory of theta functions and Jacobian varieties
(e.g. [10], [126], [447]). The theory of fundamental sets of theta characteris-
tics goes back to A. G̈opel and J. Rosenhein. Its good exposition can be found
in Krazer’s book [388]. As an abstract symplectic geometry over the field of
two elements it is presented in Coble’s book [133] which we followed. Some
additional material can be found in [128] (see also a modern exposition in
[529]).



250 Theta characteristics

The theory of correspondences on an algebraic curve originates from the
Charles’ Principle of Correspondence[103] which is the special case of the
Cayley-Brill formula in the caseg = 0. However, the formula was known
and used earlier by E. de Jonquières [175], and later but before Chasles, by L.
Cremona in [156]. We refer to C. Segre [568] for a careful early history of this
discovery and the polemic between Chasles and de Jonquières on the priority
of this discovery.

We have already encountered with the application of Chasles’ Principles to
Poncelet polygons in Chapter 2. This application was first found by A. Cay-
ley [90]. He was also the first to extend Chasles’ Principle to higher genus
[90] although with incomplete proof. The first proof of the Cayley-Brill for-
mula was given by A. Brill [57]. The notion of valence (die Werthigeit) was
introduced by Brill. The fact that only correspondences with valence exist on
a general curve was first pointed out by A. Hurwitz [342]. He also showed
the existence of correspondences without valence. A good reference to many
problems solved by the theory of correspondences is Baker’s book [21], vol. 6.
We refer to [582] for a fuller history of the theory of correspondences.

The number of bitangents to a plane curve was first computed by J. Plücker
[489], [490]. The equations of bitangential curves were given by A. Cayley
[82], G. Salmon [538] and O. Dersch [181]. The number of bitangents of a
plane curve is due to J. Plücker [489].

The study of correspondences of type(g, g) with valence−1 was initiated
by G. Scorza [557], [558]. His construction of a quartic hypersurface associ-
ated to a non-effective theta characteristic on a canonical curve of genusg was
given in [559]. A modern exposition of Scorza’ theory was first given in [194].
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Plane Quartics

6.1 Bitangents

6.1.1 28 bitangents

A nonsingular plane quarticC is a non-hyperelliptic genus 3 curve embedded
in P2 by its canonical linear system|KC |. It has no vanishing theta character-
istics, so the only effective theta characteristics are odd ones. The number of
them is28 = 22(23− 1). ThusC has exactly 28 contact lines which are in this
case coincide with bitangents. Each bitangent is tangent toC at two points that
may coincide. In the latter case a bitangent is called ainflection bitangent.

We can specialize the results from section 5.4 of the previous Chapter to the
caseg = 3. Let V = Pic(C)[2] ∼= F6

2 with the symplectic formω defined by
the Weil pairing. The elements ofQ(V )−, i.e. quadratic forms of odd type on
V , will be identified with bitangents.

The union of 4 bitangents forming a syzygetic tetrad cuts out inC an effec-
tive divisor of degree 8 equal to the intersection ofC with some conicV (q).
There aret3 = 315 syzygetic tetrads which are in a bijective correspondence
with the set of isotropic planes in Pic(C)[2].

Since a syzygetic tetrad of bitangents and the conicV (q) cuts out the same
divisor, we obtain the following.

Proposition 6.1.1 A choice of a syzygetic tetrad of bitangentsV (li), i =
1, . . . , 4, puts the equation ofC in the form

C = V (l1l2l3l4 + q2). (6.1)

Conversely, each such equation defines a syzygetic tetrad of bitangents. There
are 315 ways to writef in this form.

There are 63 Steiner complexes of bitangents. Each complex consists of 6
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pairs of bitangents̀i, `′i such that the divisor class of`i ∩C− `′i ∩C is a fixed
nonzero 2-torsion divisor class.

Proposition 6.1.2 Let(l,m), (p, q), (r, s) be three pairs of linear forms defin-
ing three pairs of bitangents from a Steiner complex. Then, after scaling the
forms, one can write the equation ofC in the form

4lmpq − (lm+ pq − rs)2 = 0, (6.2)

which is equivalent to the equation
√
lm+

√
pq +

√
rs = 0 (6.3)

after getting rid of square roots. Conversely, equation of this form is defined by
three pairs of bitangents from a Steiner complex. The number of ways in which
the equation can be written in this form is equal to1260 =

(
6
3

)
· 63.

Proof By (6.1), we can write

C = V (lmpq − a2) = V (lmrs− b2)

for some quadratic formsa, b. After subtracting the equations, we get

lm(pq − rs) = (a+ b)(a− b).

If l dividesa + b andm dividesa − b, then the quadricV (a) passes through
the pointl ∩ m. But this is impossible since no two bitangents intersect at a
point on the quartic. Thus, we obtain thatlm divides eithera + b or a − b.
Without loss of generality, we getlm = a+ b, pq− rs = a− b, and hencea =
1
2 (lm+pq−rs). Therefore, we can define the quartic by the equation4lmpq−
(lm + pq − rs)2 = 0. Conversely, equation (6.2) defines a syzygetic tetrad
V (l), V (m), V (p), V (q). By the symmetry of equation (6.3), we obtain two
other syzygetic tetradsV (l), V (m), V (r), V (s) andV (p), V (q), V (r), V (s).
Obviously, the pairs(l,m), (p, q), (r, s) define the same 2-torsion divisor class,
so they belong to a Steiner hexad.

In the previous Chapter we found this equation by using theta functions (see
(5.45)).

Remark6.1.1 Consider the4-dimensional algebraic torus

T = {(z1, z2, z3, z4, z5, z6) ∈ (C∗)6 : z1z2 = z3z4 = z5z6} ∼= (C∗)4.

It acts on 6-tuples of linear forms(l1, . . . , l6) ∈ (C3)6 ∼= C18 by scalar mul-
tiplication. The groupG = F3

2 o S3 of order48 acts on the same space by
permuting two forms in each pair(li, li+1), i = 1, 3, 5, and permuting the three
pairs. This action commutes with the action ofT and defines a linear action of
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the groupT×G onP17 = C18\{0}/C∗. The GIT-quotientX = P17/(T×G)
is a projective variety of dimension 14. A rational mapX 99K |OP2(4)| which
assigns to a general orbit ofT ×G the quartic curveV (

√
lll2 +

√
l3l4 +

√
l5l6)

is a SL(3)-equivariant and of degree48·1260. I do not know whetherX/SL(3)
is a rational variety (the orbit space|OP2(4)|/SL(3) is known to be a rational
variety [366], [48].

We know that two Steiner complexes have either four or six common bitan-
gents, depending on whether they are syzygetic or not. Each isotropic plane
in Pic(C)[2] defines three Steiner complexes with common four bitangents.
Two azygetic Steiner complexes have 6 common bitangents. The number of
azygetic triads is equal to 336.

The projection from the intersection point of two bitangents defines ag1
4

with two members of the form2p+2q. It is possible that more than two bitan-
gents are concurrent. However, we can prove the following.

Proposition 6.1.3 No three bitangents forming an azygetic triad can intersect
at one point.

Proof Let ϑ1, ϑ2, ϑ3 be the corresponding odd theta characteristics. The 2-
torsion divisor classesεij = ϑi−ϑj form a non-isotropic plane. Letε be a non-
zero point in the orthogonal complement. Thenqηi(ε) + qηj (ε) + 〈ηij , ε〉 = 0
implies thatqηi

take the same value atε. We can always chooseε such that
this value is equal to 0. Thus the three bitangents belong to the same Steiner
complexΣ(ε). Obviously, no two differ byε, hence we can form 3 pairs from
them. These pairs can be used to define the equation (6.2) of C. It follows from
this equation that the intersection point of the three bitangents lies onC. But
this is impossible becauseC is nonsingular.

Remark6.1.2 A natural question is whether the set of bitangents determines
the quartic, i.e. whether two quartics with the same set of bitangents coincide.
Surprizingly it has not been answered by the ancients. Only recently it was
proven that the answer is yes: [65] (for a general curve), [396] (for any nonsin-
gular curve).

6.1.2 Aronhold sets

We know that in the caseg = 3 a normal fundamental set of 8 theta character-
istics contains 7 odd theta characteristics. The corresponding unordered set of
7 bitangents is called anAronhold set. It follows from (5.30) that the number
of Aronhold sets is equal to#Sp(6,F2)/7! = 288.

A choice of an ordered Aronhold set defines a unique normal fundamental
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set that contains it. The eighth theta characteristic is equal to the sum of the
characteristics from the Aronhold set. Thus an Aronhold set can be defined as
an azygetic set of seven bitangents.

A choice of an ordered Aronhold set allows one to index all 2-torsion divisor
classes (resp. odd theta characteristics) by subsets of even cardinality (resp. of
cardinality 2) of {1, . . . , 8}, up to complementary set. Thus we have 63 2-
torsion classesεab, εabcd and 28 bitangents̀ij corresponding to 28 odd theta
characteristicsϑij . The bitangents from the Aronhold set correspond to the
subsets(18, 28, . . . , 78).

We also know thatϑA − ϑB = εA+B . This implies, for example, that four
bitangents̀A, `B , `C , `D form a syzygetic tetrad if and only ifA+ B + C +
D = 0.

Following Cayley, we denote a pair of numbers from the set{1, . . . , 8} by
a vertical line|. If two pairs have a common number we make them intersect.
For example, we have

• Pairs of bitangents: 210 of type|| and 168 of type∨.
• Triads of bitangents:

1. (syzygetic) 420 of typet, 840 azygetic of type|||;
2. (azygetic) 56 of type4, 1680 of type∨ |, and 280 of type99 �� .

• Tetrads of bitangents:

1. (syzygetic) 105 azygetic of types||||, 210 of type�;
2. (asyzygetic) 560 of types| 4, 280 of type99 �� , 1680 of type 99 �� , 2520 of

type∨∨;
3. (non syzygetic but containing a syzygetic triad) 2520 of type|| ∨, 5040

of type| t, 3360 of type , 840 of type�� ,, �� , 3360 of type99 �� 99 .

There are two types of Aronhold sets:????����, 99 �� 4. They are represented by
the sets(12, 13, 14, 15, 16, 17, 18) and(12, 13, 23, 45, 46, 47, 48). The number
of the former type is 8, the number of the latter type is 280. Note that the
different types correspond to orbits of the subgroup of Sp(6,F2) isomorphic to
the permutation groupS8. For example, we have two orbits ofS8 on the set
of Aronhold sets consisting of 8 and 280 elements.

Lemma 6.1.4 Three odd theta characteristicsϑ1, ϑ2, ϑ3 in a Steiner complex
Σ(ε), no two of which differ byε, are azygetic.

Proof Letϑ′i = ϑi+ε, i = 1, 2, 3. Then{ϑ1, ϑ
′
1, ϑ2, ϑ

′
2} and{ϑ1, ϑ

′
1, ϑ3, ϑ

′
3}

are syzygetic and have two common theta characteristics. By Proposition5.4.9,
the corresponding isotropic planes do not span an isotropic 3-space. Thus〈ϑ1−
ϑ2, ϑ3 − ϑ1〉 = 1, henceϑ1, ϑ2, ϑ3 is an azygetic triad.



6.1 Bitangents 255

The previous Lemma suggests a way to construct an Aronhold set from a
Steiner setΣ(ε). Choose another Steiner setΣ(η) azygetic to the first one.
They intersect at 6 odd theta characteristicsϑ1, . . . , ϑ6, no two of which dif-
fer by ε. Consider the set{ϑ1, . . . , ϑ5, ϑ6 + ε, ϑ6 + η}. We claim that this
is an Aronhold set. By the previous Lemma all triadsϑi, ϑj , ϑk, i, j, k ≤ 5
are azygetic. Any triadϑi, ϑ6 + ε, ϑ6 + η, i ≤ 5, is azygetic too. In fact
ϑi((ϑ6 + ε) + (ϑ6 + η)) = ϑi(ε + η) 6= 0 sinceϑi /∈ Σ(ε + η). So the
assertion follows from Lemma5.4.1. We leave to the reader to check that re-
maining triads{ϑi, ϑj , ϑ6 + ε}, {ϑi, ϑj , ϑ6 + η}, i ≤ 5, are azygetic.

Proposition 6.1.5 Any six lines in an Aronhold set are contained in a unique
Steiner complex.

We use that the symplectic group Sp(6,F2) acts transitively on the set of
Aronhold sets. So it is enough to check the assertion for one Aronhold set. Let
it correspond to the index set(12, 13, 14, 15, 16, 17, 18). It is enough to check
that the first six are contained in a unique Steiner complex. By Proposition
5.4.5, it is enough to exhibit a 2-torsion divisor classεij such thatϑ1k(εij) = 0
for k = 2, 3, 4, 5, 6, 7, and show its uniqueness. By Proposition5.4.12, ε18
does the job.

Recall that a Steiner subset of theta characteristics on a genus 3 curve con-
sists of 12 elements. A subset of 6 elements will be called ahexad.

Corollary 6.1.6 Any Steiner complex contains26 azygetic hexads. Half of
them are contained in another Steiner complex, necessarily azygetic to the first
one. Any other hexad can be extended to a unique Aronhold set.

Proof LetΣ(ε) be a Steiner complex consisting of6 pairs of odd theta charac-
teristics. Consider it asG-set, whereG = (Z/2Z)6 whose elements, identified
with subsetsI of [1, 6], act by switching elements ini-th pairs,i ∈ I. It is
clear thatG acts simply transitively on the set of azygetic sextuples inΣ(ε).
For any azygetic complexΣ(η), the intersectionΣ(ε) ∩ Σ(η) is an azygetic
hexad. Note that two syzygetic complexes have only 4 bitangents in common.
The number of such hexads is equal to26 − 25 = 25. Thus the set of azygetic
hexads contained in a unique Steiner complex is equal to25 ·63. But this num-
ber is equal to the number7 · 288 of subsets of cardinality 6 of Aronhold sets.
By the previous Proposition, all such sets are contained in a unique Steiner
complex.

Let (ϑ18, . . . , ϑ78) be an Aronhold set. By Proposition6.1.5, the hexadϑ28,

. . . , ϑ78 is contained in a unique Steiner complexΣ(ε). Let ϑ′28 = ϑ28 +
ε. By Proposition5.4.12, the only 2-torsion pointεij at which all quadrics
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θ28, . . . , ϑ78 vanish is the pointε18. Thusϑ′28 = ϑ28 + ε18 = ϑ12. This shows
that the bitangent defined byϑ′28 coincides withϑ12. Similarly, we see that the
bitangents corresponding toηi8 + ε, i = 3, . . . , 7, coincide with the bitangents
ϑ1i.

6.1.3 Riemann’s equations for bitangents

Here we show how to write equations of all bitangents knowing the equations
of an Aronhold set of bitangents.

Let `1 = V (l1), . . . , `7 = V (l7) be an Aronhold set of bitangents ofC. By
Proposition6.1.3, any three lines are not concurrent. We may assume that

`1 = V (t0), `2 = V (t1), `3 = V (t2), `4 = V (t0 + t1 + t2)

and the remaining ones are`4+i = V (a0it0 + a1it1 + a2it2), i = 1, 2, 3.

Theorem 6.1.7 There exist linear formsu0, u1, u2 such that, after rescaling
the linear forms,

C = V (
√
t0u0 +

√
t1u1 +

√
t2u2).

The formsui can be found from equations

u0 + u1 + u2 + t0 + t1 + t2 = 0,
u0

a01
+
u1

a11
+
u2

a21
+ k1a01t0 + k1a11t1 + k1a21t2 = 0,

u0

a02
+
u1

a12
+
u2

a22
+ k2a02t0 + k2a12t1 + k2a22t2 = 0,

u0

a03
+
u1

a13
+
u2

a23
+ k3a03t0 + k3a13t1 + k3a23t2 = 0,

wherek1, k2, k3 can be found from solving first linear equations: 1
a01

1
a02

1
a03

1
a11

1
a12

1
a13

1
a21

1
a22

1
a23

 ·
λ1

λ2

λ3

 =

−1
−1
−1

 ,

and then solving the equationsλ0a01 λ1a11 λ2a21

λ0a02 λ1a12 λ2a22

λ0a03 λ1a13 λ2a23

 ·
k1

k2

k3

 =

−1
−1
−1

 .

The equations of the remaining 21 bitangents are:

(1) u0 = 0, u1 = 0, u2 = 0,
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(2) t0 + t1 + u2 = 0, t0 + t2 + u1 = 0, t1 + t2 + u0 = 0,
(3) u0

a01
+ ki(a1it1 + a2it2) = 0, i = 1, 2, 3,

(4) u1
a11

+ ki(a0it0 + a2it2) = 0, i = 1, 2, 3,
(5) u2

a21
+ ki(a0it0 + a1it1) = 0, i = 1, 2, 3,

(6) u0
1−kia1ia2i

+ u1
1−kia0ia2i

+ u2
1−kia01a1i

= 0, i = 1, 2, 3,
(7) u0

a0i(1−kia1ia2i)
+ u1

a1i(1−kia0ia2i)
+ u2

a2i(1−kia01a1i)
= 0, i = 1, 2, 3.

Proof By Proposition6.1.5, six bitangents in our set of seven bitangents
`1, . . . , `7 are contained in a unique Steiner complex. Throwing away`1, `2, `3,
we find three Steiner complexes partitioned in pairs

(`2, ξ3), (`3, ξ2), (`4, ξ41), . . . , (`7, ξ71), (6.4)

(`3, ξ1), (`1, ξ3), (`4, ξ42), . . . , (`7, ξ72),

(`1, ξ2), (`2, ξ1), (`4, ξ43), . . . , (`7, ξ73).

Since two Steiner complexes cannot contain more than 6 common bitangents,
the bitangentsξi = V (ui−1) andξij = V (lij) are all different and differ from
`1, . . . , `7. We continue to identify bitangents with odd theta characteristics,
and the corresponding odd quadratic forms.

Now we have

`2 − ξ3 = `3 − ξ2, `3 − ξ1 = `1 − ξ3, `1 − ξ2 = `2 − ξ1.

This implies that̀ 1 − ξ1 = `2 − ξ2 = `3 − ξ3, i.e. the pairs(`1, ξ1), (`2, ξ2),
and(`3, ξ3) belong to the same Steiner complexΣ. One easily checks that

〈`1 − ξ1, `1 − ξ2〉 = 〈`2 − ξ2, `2 − ξ3〉 = 〈`3 − ξ3, `3 − ξ1〉 = 0,

and henceΣ is syzygetic to the three complexes (6.4) and therefore it does not
contain`i, i ≥ 4.

By Proposition6.1.2and its proof, we can write, after rescalingu0, u1, u2,

C = V (4t0t1u0u1− q23) = V (4t0t2u0u2− q22) = V (4t1t2u1u2− q21), (6.5)

where

q1 = −t0u0 + t1u1 + t2u2, (6.6)

q2 = t0u0 − t1u1 + t2u2,

q3 = t0u0 + t1u1 − t2u2.

Next, we use the first Steiner complex from (6.4) to do the same by using
the first three pairs. We obtain

C = V (4t1u2l4l41 − q2).
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As in the proof of Proposition (6.1.2), we find that

q1 − q = 2λ1t1u2, q1 + q =
2(t2u2 − l4l41)

λ1
.

Hence

q1 = λ1t1u2 +
t2u1 − l4l41

λ1
= −t0u0 + t1u1 + t2u3,

and we obtain

l4l41 = t2u1 − λ1(−t0u0 + t1u1 + t2u3) + λ2
1t1u2, (6.7)

l4l42 = t1u0 − λ2(t0u0 − t1u1 + t2u3) + λ2
2t2u0,

l4l43 = t0u2 − λ3(t0u0 + t1u1 − t2u3) + λ2
3t0u1.

The last two equations give

l4
( l42
λ2

+
l43
λ3

)
= t0

(
−2u0 + λ3u1 +

u2

λ3

)
+ u0

(
λ2t2 +

t1
λ3

)
. (6.8)

The lines`4, `1, and ξ1 belong to the third Steiner complex (6.4), and by
Lemma6.1.4form an azygetic triad. By Proposition6.1.3, they cannot be con-
current. This implies that the lineV (λ2t2+ t1

λ3
) passes through the intersection

point of the linesξ1 and`4. This gives a linear dependence between the linear
functionsl4 = a0t0 + a1t1 + a2t2, l1 = t0 andλ2t2 + t1

λ3
(we can assume that

a0 = a1 = a2 = 1 but will do it later). This can happen only if

λ2 = c1a2,
1
λ3

= c1a1,

for some constantc1. Now λ2t2 + 1
λ3
t1 = c1(a2t2 + a1t1) = c1(l4 − a0t0),

and we can rewrite (6.8) in the form

c1l4
( l42
λ2

+
l43
λ3
− c1u0

)
= t0

(
−c1(2 + a0c1)u0 +

u1

a1
+
u2

a2

)
.

This implies that
l42
λ2

+
l43
λ3

= c1u0 +
k1

c1
t0, (6.9)

k1l4 = −c1(2 + c1a0)u0 +
u1

a1
+
u2

a2
, (6.10)

for some constantk1. Similarly, we get

k2l4 = −c2(2 + c2a1)u1 +
u0

a0
+
u2

a2
,

k3l4 = −c3(2 + c3a2)u2 +
u1

a0
+
u2

a1
.
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It is easy to see that this implies that

k1 = k2 = k3 = k, c1 = −a0, c2 = −a1, c3 = −a2.

Equations (6.9) and (6.10) become

l42
λ2

+
l43
λ3

= −a0u0 −
k

a0
t0, (6.11)

kl4 =
u0

a0
+
u1

a1
+
u2

a2
. (6.12)

At this point, we can scale the coordinates to assume

a1 = a2 = a2 = 1 = −k = 1,

and obtain our first equation

t0 + t1 + t2 + u0 + u1 + u2 = 0.

Replacingl41 with l51, l61, l71 and repeating the argument, we obtain the re-
maining three equations relatingu0, u1, u2 with t0, t1, t2.

Let us find the constantsk1, k2, k3 for `5, `6, `7. We have found 4 linear
equations relating 6 linear functionst0, t1, t2, u0, u1, u2. Since three of them
form a basis in the space of linear functions, there must be one relation. We
may assume that the first equation is a linear combination of the last three with
some coefficientsλ1, λ2, λ3. This leads to the system of linear equations from
the statement of the Theorem.

Finally, we have to find the equations of the 21 bitangents. The equations
(6.5) show that the linesξ1, ξ2, ξ3 are bitangents. The equation (6.11) and sim-
ilar equations

l43
λ3

+
l41
λ1

= −u1 + t1,

l41
λ1

+
l42
λ2

= −u2 + t2,

after adding up, give

l41
λ1

+
l42
λ2

+
l43
λ3

= t0 + t1 + t2,

and then
l41
λ1

= u0 + t1 + t2,

l42
λ1

= u1 + t0 + t2,
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l43
λ1

= u2 + t0 + t1.

This gives us three equations of type (2). Similarly, we get the expressions for
l5i, l6i, l7i which are the nine equations of types (3), (4), (5).

Let us use the Aronhold set(`1, . . . , `7) to index bitangents by subsets(ij)
of {1, . . . , 8}. As we explained at the end of the previous section, we have

ξ1 = ϑ23, ξ2 = ϑ13, ξ3 = ϑ12,

ξ4k = ϑk4, ξ5k = ϑk5, ξ6k = ϑk6, ξ7k = ϑk7, k = 1, 2, 3.

The remaining bitangents areϑ56, ϑ57, ϑ67, ϑ45, ϑ46, ϑ47. The first three look
like ϑ23, ϑ13, ϑ12, they are of type4. The second three look likeϑ5k, ϑ6k, ϑ7k,
they are of type99 �� . To find the equations of triples of bitangents of type4, we
interchange the roles of the lines`1, `2, `3 with the lines`5, `6, `7. Our lines
will be the new lines analogous to the linesξ1, ξ2, ξ3. Solving the system, we
find their equations. To find the equations of the triple of bitangents of type99 �� ,
we deletè 4 from the original Aronhold set, and consider the Steiner complex
containing the remaining lines as we did in (6.4). The lines making the pairs
with `5, `6, `7 will be our lines. We find their equations in the same manner as
we found the equations forξ5k, ξ6k, ξ7k.

Remark6.1.3 The proof of the Theorem implies the following result which
can be found in [299]. Let (`1, ξ1), be three pairs of bitangents from the same
Steiner complex. Let(`4, ξ4) be a fourth pair of bitangents from the Steiner
complex given by pairs(`1, ξ2), (`2, ξ1) as in (6.4) (whereξ4 = ξ43). Choose
some linear formsli,mi representing̀ i, ξi. Then the equation ofC can be
given by(
(l4l2l3)(l4m2m3)l1m1 +(l1l4l3)(m1l4m3)l2m2− (l1l2l4)(m1m2l4)l3m3

)2
−4(l4l2l3)(l4m2m3)(l1l4l3)(m1l4m3)l1m1l2m2 = 0,

where the brackets denote the determinants of the matrix formed by the coeffi-
cients of the linear forms. In fact, this is equation (6.5), where the determinants
take care of scaling of the formsu0, u1, u2 (use that,V (l4) can be taken to be
V (l1 + l2 + l3) and we must keep the relationl1 + l2 + l3 +u1 +u2 +u3 = 0).

One can also find in loc.cit paper of J. Guàrdia the expressions forli,mi in
terms of the period matrix ofC.

Remark6.1.4 We will see later in Chapter 10 that any seven lines in general
linear position can be realized as an Aronhold set for a plane quartic curve.
Another way to see it can be found in [648], p. 447.
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6.2 Determinant equations of a plane quartic

6.2.1 Quadratic determinantal representations

Suppose an aCM invertible sheafF on a nonsingular plane curveC of degree
d = 2k defines a resolution

0→ U∨(−2)
φ→ V → F → 0, (6.13)

wheredimU = dimV = k. Taking the cohomology, we obtain

H0(C,F) ∼= V, H0(C,F(−1)) ∼= U, (6.14)

H0(C,F(−1)) = H1(C,F) = 0, (6.15)

The mapφ is defined by a linear mapS2 → U⊗V . In coordinates, it is defined
by ak× k-matrixA = (aij) with quadratic forms as its entries. The transpose
matrix defines the resolution

0→ V ∨(−2)
φ→ U → G → 0, (6.16)

where

G ∼= Ext1OP2
(F ,OP2)(−2) ∼= F∨(d− 2).

If we setL = F(1 − k),M = G(1 − k), thenL ⊗M ∼= OC and conditions
(6.15) can be rephrased in terms ofL. They are

H0(C,L(k − 2)) = H1(C,L(k − 1)) = 0. (6.17)

Twisting exact sequence (6.13) byOP2(1 − k), and applying Riemann-Roch,
we obtain, after easy calculation,

degL = g − 1 + χ(L) = g − 1 + k(χ(OP2(1− k))− χ(OP2(−1− k)) = 0.

Conversely, given an aCM invertible sheafL satisfying (6.17), thenF =
L(k − 1) admits a resolution of the form (4.20). Taking cohomology, one can
easily show thata1 = . . . = ak = 0, b1 = . . . = bk = 2. This gives the
following.

Theorem 6.2.1 The equivalence classes of quadratic determinantal repre-
sentations of a nonsingular plane curveC of degreed = 2k are in a bijective
correspondence with invertible sheavesL onC of degree0 satisfying

H0(C,L(k − 2)) = H1(C,L(k − 1)) = 0.

ChangingL to L−1 corresponds to the transpose of the matrix defining the
determinantal representation.
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As we know, resolutions (6.13) and (6.16) define the two maps

l : C → P(U), r : C → P(V ),

given by the left and the right kernel of the matrixA, considered as a bilinear
form onU ⊗ V . These maps are given by the linear systems|(k − 1)h + a|,
|(k − 1)h− a|, whereL ∼= OC(a) andOC(1) ∼= OC(h).

Consider the map

(l, r) : C → P(U)× P(V )

with the imageS. We identify the product of the projective spaces with its
image inP(U ⊗ V ) under the Segre embedding. Consider the restriction map

ν : H0(P(U ⊗ V ),OP(U⊗V )(1)) = U ⊗ V → H0(S,OS(1))

= H0(C,L(k − 1)⊗M(k − 1)) = H0(C,OC(2k − 2)), (6.18)

Passing to the projectivizations, and composing it with the Segre mapP(U)×
P(V )→ P(U ⊗ V ), it corresponds to the multiplication map

µ : |(k− 1)h+ a| × |(k− 1)h− a| → |OP2(2k− 2)|, (D1, D2) 7→ 〈D1, D2〉,

where〈D1, D2〉 is the unique curve of degree2k − 2 that cuts out the divisor
D1 + D2 on C. Composing the linear map (6.18) with the linear mapφ :
S2E → U ⊗ V , we get a linear map

ν′ : S2(E)
φ→ H0(P2,OP2(2)) = S2k−2(E∨). (6.19)

A similar proof as used in the case of linear determinantal representations
shows that this map coincides with the apolarity map corresponding toC.

For anyx ∈ C, consider the tensorl(x)⊗ r(x) as a hyperplane in|U ⊗ V |.
It intersects|U | × |V | at the subvariety of points whose image under the map
µ vanishes atx. Choose a basis(s1, . . . , sk) in U and a basis(s′1, . . . , s

′
k) in

V . The mapφ is given byφ(x) =
∑
aijsi ⊗ sj . It follows from above that

the matrix(ν(si⊗sj)) and the matrix adj((aij)) coincide when restricted atC
(up to a multiplicative factor). Since its entries are polynomials of degree less
thandegC, we see that they coincide for allx. This shows that the mapν can
be written by the formula

(
∑

uisi,
∑

vjs
′
j) 7→ −det


a11(t) . . . a1k(t) v1

...
...

...
...

ak1(t) . . . akk(t) vk
u1 . . . uk 0

 . (6.20)

Under the composition of the map, the zero set of the bordered determinant
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is a curve of degree2k − 2. Consider the discriminant hypersurfaceDd−2(2)
of curves of degreed − 2 = 2k − 2. The pre-image ofDd−2(2) under the
map (6.18) is a hypersurfaceX in P(U)× P(V ) ∼= Pk−1 × Pk−1 given by the
bihomogeneous equation of bidegree(3(d− 3)2, 3(d− 3)2). Here we use that
deg Dd(2) = 3(d− 1)2.

Now it is time to specialize to the cased = 4. In this case, the map|ν| is the
map

|ν| : |KC + a| × |KC − a| → |OP2(2)|.

In coordinates, the mapν is given by

(u1s1 + u2s2, v1s
′
1 + v2s

′
2) 7→ −u0v0a11 + u0v1a12 − u1v0a21 − u1v1a22.

(6.21)
The mapφ is given by

φ(x) =
∑

aij(x)s∗i ⊗ s′j∗,

where(s∗1, s
∗
2), (s

′
1
∗, s′2

∗) are the dual bases inU∨ andV ∨. One can also ex-
plicitly see the kernel mapsl andr:

l(x) = [−a21(x), a11(x)] = [−a22(x), a12(x)], (6.22)

r(x) = [−a12(x), a11(x)] = [−a22(x), a21(x)]. (6.23)

The intersection of the conicsV (a21(t))∩V (a21(t)) lies onC, sol is given by
a pencil of conics with four base pointsx1, . . . , x4 onC. The mapr is given by
another pencil of conics whose base pointsy1, . . . , y4 together with the base
pointsx1, . . . , x4 are cut out by a conic.

The hypersurfaceX ⊂ P(U)× P(V ) is of type(3, 3). It is a curve of arith-
metic genus 4. Its image under the Segre map is a canonical curve equal to the
intersection of a nonsingular quadric and a cubic surface. The cubic surface
is the pre-image of the determinantal cubic. It is a cubic symmetroid. We will
discuss such cubics in Chapter 8. As we explained in the previous Chapter,
a cubic symmetroid surface admits a unique double cover ramified along the
nodes. The restriction of this cover toX is an irreducible unramified cover
r : X̃ → X. Let τ be the nontrivial 2-torsion divisor class onX corresponding
to this cover (it is characterized by the property thatr∗(τ) = 0). The linear
system|KX + τ | mapsX to P2. The image is aWirtinger plane sexticwith
double points at the vertices of a complete quadrilateral. Conversely, we will
explain in Chapter 8 that a cubic symmetroid with 4 nodes is isomorphic to
the image of the plane under the linear system of cubics passing through the
six vertices of a complete quadrilateral. This shows that any Wirtinger sextic is
isomorphic to the intersection of a quadric and a cubic symmetroid. In this way
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we see that any general curve of genus 4 is isomorphic to the curveX arising
from a quadratic determinantal representation of a nonsingular plane quartic.
We refer for this and for more of the geometry of Wirtinger sextics to [73].

The map (6.19) is just the apolarity map ap2 : S2(E) → S2(E∨) defined
by the quarticC. It is bijective if the quarticC is nondegenerate. Under the
composition|E| → |S2(E)| → |S2(E∨)|, the preimage of the discriminant
cubic hypersurface is the Hessian sextic ofC.

Consider the hypersurfaceW of type(1, 1, 2) in |U | × |V | × |E| defined by
the section ofOP(U)(1) � OP(V )(1) � OP(E)(2) corresponding to the tensor
defining the linear mapφ : S2E → U ⊗ V . It is immediate that

W = {(D1, D2, x) ∈ |KC + a| × |KC − a| × P2 : x ∈ 〈D1, D2〉}. (6.24)

In coordinates, the equation ofW is given by the bordered determinant (6.20).
Consider the projections

pr1 : W → P1 × P1, pr2 : W → P1. (6.25)

The fibres of pr1 are isomorphic (under pr2) to conics.The discriminant curve
is the curveX. The fibres of pr2 over a pointx ∈ P2 are isomorphic, under pr1,
to curves onP1 × P1 of degree(1, 1). In the Segre embedding, they are also
conics. The discriminant curve is the curveC. ThusW has two structures of
a conic bundle. The two discriminant curves,X andC, come with the natural
double cover parameterizing irreducible components of fibres. In the first case,
it corresponds to the 2-torsion divisor classτ and an unramified irreducible
cover if X is a non-trivial unramified double cover. In the second case, the
cover splits (since the factors ofP1 × P1 come with an order).

Remark6.2.1 Recall that, for any unramified double cover of nonsingular
curvesπ : S̃ → S, the Prym variety Prym(S̃/S) is defined to be the connected
component of the identity of Jac(S̃)/ π∗Jac(S). It has a structure of a prin-
cipally polarized abelian variety (see [448]). In our case, whenS = X, the
Prym variety is isomorphic to the intermediate Jacobian ofW . On the other
hand, since the second conic structure defines the split cover of the discrim-
inant curveC, the intermediate jacobian is isomorphic to Jac(C). Thus we
obtain an isomorphism of principally polarized abelian varieties

Prym(X̃/X) ∼= Jac(C).

This is a special case of thetrigonal constructionapplied to trigonal curves
(like oursX) discovered by S. Recillas [497] (see a survey of R. Donagi [206]
about this and more general constructions of this sort). Note that, in general,
the curveX could be singular even whenC is not. However, the Prym variety
is still defined.
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LetRg be the coarse moduli space of isomorphism classes of pairs(S, S̃),
whereS is a nonsingular curve of genusg andS̃ → S is its unramified double
cover. There is aPrym map

pg : Rg → Ag−1, (S, S̃) 7→ Prym(S̃/S),

whereAg−1 is the coarse moduli space of principally polarized abelian va-
rieties of dimensiong − 1. In our caseg = 4, the quadratic determinantal
constructions allows us to describe the fibre over the Jacobian variety of a non-
singular canonical curve of genus 3. It is isomorphic to theKummer variety
Kum(C) = Jac(C)/(ι), whereι is the negation involutiona 7→ −a.

The mappg is known to be generically injective forg ≥ 7 [249], a finite map
of degree27 for g = 6 [209], and dominant forg ≤ 5 with fibres of dimension
3g − 3− 1

2g(g − 1). We refer to [207] for the description of fibres.
The varietiesRg are known to be rational ([203] for g = 2, [203], [366] for

g = 3, [73] for g = 4) and unirational forg = 5 [351], [639], g = 6 [208],
[637] and g = 7 [639]). It is known to be of general type forg > 13 and
g 6= 15 [237].

6.2.2 Symmetric quadratic determinants

By Theorem6.2.1, the equivalence classes of symmetric quadratic determinan-
tal representations of a nonsingular plane curveC of degreed = 2k correspond
bijectively to nontrivial 2-torsion divisorsε ∈ Jac(C) such that

H0(C,OC(ε)(k − 2)) = H1(C,OC(ε)(k − 2)) = 0.

Each suchε defines a quadratic determinantal representation

C := det

a11 . . . a1k

...
...

...
ak1 . . . akk

 = 0,

whereaij = aji are homogeneous forms of degree2. It comes with the maps,

φ : |E| → |S2(U∨)|, x 7→ (aij(x)),

l : C → P(U) ∼= Pk−1, x 7→ |N(A(x))|.

It is given by the linear system|(k − 1)h + ε|. The map (6.18) becomes the
restriction map of quadrics inP(U) to the imageS of C under the mapl

ν : S2(U)→ H0(C,OC(2k − 2)) = H0(P2,OP2(2k − 2)).
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The mapµ is the composition of the mapU × U → |S2(U)| given by the
complete linear system of quadrics in|U | and the mapν. It factors through the
symmetric square of|U |, and defines a map

|U |(2) → |OP2(2k − 2)|. (6.26)

Recall that|U |(2) is isomorphic to the secant variety ofsfv2(|U |) in |S2(U)|.
The preimageX(ε) of the determinantal hypersurfaceD2k−2(2) of curves of
degree2k−2 in |S2(U)| is a hypersurface of degree3(d−3)2. Its intersection
with |U | × |U |, embedded by Segre, is a hypersurface of bidegree(3(d −
3)2, 3(d−3)2). It is invariant with respect to the switch involution of|U |×|U |
and descends to a hypersurface in the quotient. Its preimage under the Veronese
map is a hypersurfaceB(ε) of degree6(d− 3)2 in P(U).

In coordinates, the multiplication map is given by the bordered determinant
(6.20). SinceA is symmetric, we haveD(A;u, v) = D(A; v, u), and the bor-
dered determinantal identity (4.11) gives

D(A;u, v)2 −D(A;u, u)D(A; v, v) = |A|P (t;u, v),

whereP (t;u, v) is of degree2k − 4 in (t0, t1, t2) and of bidegree(2, 2) in
u, v. The curvesV (D(A;u, u)) define a quadratic family of contact curves of
degree2k − 2. So, we have22g − 1 of such families, whereg is the genus of
C.

Now let us specialize to the casek = 2. The determinantal equation ofC
corresponding toε must be given by a symmetric quadratic determinant∣∣∣∣a11 a12

a12 a22

∣∣∣∣ = a11a22 − a2
12. (6.27)

Thus we obtain the following.

Theorem 6.2.2 An equation of a nonsingular plane quartic can be written in
the form ∣∣∣∣a1 a2

a2 a3

∣∣∣∣ = 0,

wherea1, a2, a3 are homogeneous forms of degree 2. The set of equivalence
classes of such representations is in a bijective correspondence with the set of
63 nontrivial 2-torsion divisor classes inPic(C).

The bordered determinants

D(A;u, u) =

∣∣∣∣∣∣
a11 a12 u0

a21 a22 u1

u0 u1 0

∣∣∣∣∣∣ = −(a11u
2
0 + 2a12u0u1 + a22u

2
1)
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defines a family ofcontact conicsof C. Each conic from the family touchesC
along a divisor from|KC + ε|.

Also identity (4.12) between the bordered determinants becomes in our case

det
(
D(A;u, u) D(A;u, v)
D(A;u, v) D(A; v, v)

)
= |A|P (u, v), (6.28)

whereP (u, v) is a bihomogeneous polynomial inu, v of bidegree(2, 2). Note
thatP (u, v) is symmetric inu, v andP (u, u) = 0. This shows thatP (u, v)
can be written in the form

P (u, v) = (u0v1 − u1v0)(αu0v0 + β(u0v1 + u1v0) + γu1v1),

whereα, β, γ are some constants.
The varietyX(ε) in |U | × |U | ∼= P1 × P1 is a curve of bidegree(3, 3). The

difference from the general case of quadratic determinantal representations of
C is that the curveX(ε) is defined by a symmetric bihomogeneous form. The
symmetric product|U |(2) is isomorphic to|S2(U)| ∼= P2. The image ofX(ε)
in the plane is a curveF (ε) of degree3. In intersects the Veronese curve|E| ↪→
|S2(U)| at 6 points. They are the images of the hypersurfaceB(ε) ⊂ |U | under
the Veronese map|E| ↪→ |S2(U)|. So, we see another special property of
X(ε). If it is nonsingular, it is a canonicalbielliptic curveof genus 4. One can
easily compute the number of moduli of such curves. It is equal to 6 instead
9 for a general curve of genus 4. This agrees with our construction since we
have 6 moduli for pairs(C, ε).

It follows from the definition that the curveF (ε) parameterizes unordered
pairsD1, D2 of divisorsD ∈ |KC + ε| such that the conic〈D1, D2〉 is equal
to the union of two lines.

Let Π(ε) be the plane in|OP2(2)| equal to the image of the map (6.26). It is
a net of conics in|E| = P2. It is spanned by the contact conics toC. We can
take for the basis of the net the conics

V (a11) = 〈2D1〉, V (a12) = 〈D1, D2〉, V (a22) = 〈2D2〉,

whereD1, D2 span|KC + ε|. In particular, we see thatΠ(ε) is base point-free.
Its discriminant curve is equal to the curveF (ε).

Proposition 6.2.3 The cubic curveF (ε) is nonsingular if and only if the
linear system|KC + ε| does not contain a divisor of the form2a+ 2b.

Proof Let D = D2(2) ⊂ |OP2(2)| be the discriminant cubic. The plane sec-
tion Π(ε)∩D2(2) is singular if and only ifΠ(ε) contains a singular point ofD
represented by a double line, or if it is tangent toD at a nonsingular point. We
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proved in Example1.2.1that the tangent hypersurface ofD at a nonsingular
point represented by a reducible conicQ is equal to the space of conics passing
through the singular pointq of Q. If L is contained in the tangent hyperplane,
then all conics fromΠ(ε) pass throughq. But, as we saw earlier, the net of
conicsΠ(ε) is base point free. This shows thatΠ(ε) intersectsD transversally
at each nonsingular point.

In particular,F (ε) is singular if and only ifΠ(ε) contains a double line.
Assume that this happens. Then we get two divisorsD1, D2 ∈ |KC + ε| such
thatD1 +D2 = 2A, whereA = a1 + a2 + a3 + a4 is cut out by a linè . Let
D1 = p1 +p2 +p3 +p4, D2 = q1 + q2 + q3 + q4. Then the equality of divisors
(not the divisor classes)

p1 + p2 + p3 + p4 + q1 + q2 + q3 + q4 = 2(a1 + a2 + a3 + a4)

implies that eitherD1 andD2 share a pointx, or D1 = 2p1 + 2p2, D2 =
2q1+2q2. The first case is impossible, since|KC+ε−x| is of dimension 0. The
second case happens if and only if|KC + ε| contains a divisorD1 = 2a+ 2b.
The converse is also true. For each such divisor the lineab defines a residual
pair of pointsc, d such thatD2 = 2c + 2d ∈ |KC + ε| andϕ(D1, D2) is a
double line.

Remark6.2.2 By analyzing possible covers of a plane cubic unramified out-
side of the singular locus, one can check thatF (ε) is either nonsingular or a
nodal cubic, maybe reducible.

From now on we assume thatF (ε) is a nonsingular cubic. Since it param-
eterizes singular conics in the netΠ(ε), it comes with a natural non-trivial
2-torsion pointη. Recall that the corresponding unramified double cover of
F (ε) is naturally isomorphic to the Cayleyan curve in the dual planeΠ(ε)∨

which parameterizes irreducible components of singular conics in the net.

Theorem 6.2.4 Let Σ(ε) = {(`1, `′1), . . . , (`6, `′6)} be a Steiner complex of
12 bitangents associated to the 2-torsion divisor classε. Each pair, considered
as a divisorDi = `i+`′i ∈ |KC+ε| = |U | is mapped under the Veronese map
|U | → |S2(U)| to a point inF (ε). It belongs to the setB(ε) of six ramification
points of the coverX(ε) → F (ε). The 12 bitangents, considered as points in
the dual plane|S2(U∨)|, lie on the cubic curvẽF (ε).

Proof Let (ϑi, ϑ′i) be a pair of odd theta characteristics corresponding to a
pair (`i, `′i) of bitangents fromΣ(ε). They define a divisorD = ϑi + ϑ′i ∈
|KC + ε| such thatD is the divisor of contact points of a reducible contact
conic, i.e. the union of two bitangents. This shows thatϑi, ϑ

′
i ∈ F̃ (ε). The

point (D,D) ∈ |KC + ε| × |KC + ε| belongs to the diagonal in|U | × |U |.
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These are the ramification points of the coverX(ε) → F (ε). They can be
identified with the branch points of the coverX(ε)→ F (ε).

So, we have a configuration of 63 cubic curvesF̃ (ε) in the plane|S2(U∨)|
(beware that this plane is different from the plane|E| containingC). Each
contains 12 bitangents from a Steiner complex. LetS1, S2, S3 be a syzygetic
(resp. azygetic) triad of Steiner complexes. They define three cubic curves
F̃ (ε), F̃ (η), F̃ (η + ε) which have 4 (resp. 6) points in common.

Let us see what happens in the symmetric case with the two-way conic bun-
dleW ⊂ P1×P1×P2 from (6.24) which we discussed in the previous subsec-
tion. First, its intersection with the product of the diagonal∆ of P1 × P1 with
P2 defines the universal familyU(ε) of the contact conics. It is isomorphic to
a surface inP1 × P2 of bidegree(2, 2). The projection toP2 is a double cover
branched along the quarticC. As we will see later,U(ε) is isomorphic to adel
Pezzo surface of degree 2. Its isomorphism class does not depend onε. The
projectionU(ε)→ P1 is a conic bundle. It has 6 singular fibres which lie over
6 points at which the diagonal intersects the curveX(ε), i.e. the ramification
points of the coverX(ε)→ F (ε). The six branch points lie on a conic, the im-
age of the diagonal∆ in P2. We will see later that a del Pezzo surface of degree
2 has 126 conic bundle structures, they divided in 63 pairs which correspond
to nonzero 2-torsion divisor classes onC.

The threefoldW is invariant with respect to the involution ofP1 × P1 × P2

which switches the first two factors. The quotientW s = W/(ι) is a hypersur-
face of bidegree(2, 2) in (P1×P1)/(ι)×P2 ∼= P2×P2. The projection to the
first factor is a conic bundle with the discriminant curveB(ε). The projection
to the second factor is not anymore a conic bundle. It is isomorphic to the pull-
back of the universal family of linesX(ε) → P2 under the map of the base
P2 → P2 given by the net of conicsΠ(ε).

Remark6.2.3 One can easily describe the Prym mapp3 : R3 → A2 restricted
to the open subset of canonical curves of genus 3. A pair(C, η) defines an el-
liptic curveF (ε) and six branch points of the coverX(ε) → F (ε). The six
points lie on the Veronese conic|E| ↪→ |S2(U)|. The coverC̃ → C defined
by ε is a curve of genus5. The Prym variety Prym(C̃/C) is a principally polar-
ized abelian variety of dimension 2. One can show that it is isomorphic to the
Jacobian variety of the hyperelliptic curve of genus 2 which is isomorphic to
the branch cover of the Veronese conic with the branch locusB(ε) (see [396],
[397]). Other description of the Prym mapp3 can be found in [638].
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6.3 Even theta characteristics

6.3.1 Contact cubics

Recall that each even theta characteristicϑ on a nonsingular quarticC defines a
3-dimensional family of contact cubics. The universal family of contact cubics
is a hypersurfaceWϑ ⊂ |E|×P(U) ∼= P2×P3 of bidegree(2, 3). If we choose
coordinates(t0, t1, t2) in |E| and coordinatesu0, u1, u2, u3 in P(U), then the
equation of the contact family is∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 a14 u0

a21 a22 a23 a24 u1

a31 a32 a33 a34 u2

a41 a42 a43 a44 u3

u0 u1 u2 u3 0

∣∣∣∣∣∣∣∣∣∣
= 0, (6.29)

where(aij) is the symmetric matrix defining the netNϑ of quadrics defined by
ϑ. The first projectionWϑ → |E| is a quadric bundle with discriminant curve
equal toC. Its fibre over a pointx 6∈ C is the dual of the quadricQx = φ(x).
Its fibres over a pointx ∈ C, is the double plane corresponding to the vertex
of the quadric coneφ(x). Scheme-theoretically, the discriminant hypersurface
of the quadric bundle is the curveC taken with multiplicity 3.

The second projectionWϑ → P3 is a fibration with fibres equal to contact
cubics. Its discriminant surfaceDϑ is the preimage of the discriminant hyper-
surfaceD3(2) of plane cubic curves in|OP2(3)| under the mapP3 → |OP2(3)|
given by quadrics. This implies thatDϑ is of degree 24 and its equation is of the
formF 3

8 +G2
12 = 0, whereF8 andG12 are homogeneous forms inu0, . . . , u3

of the degree indicated by the subscript.

Proposition 6.3.1 The discriminant surfaceDϑ of the contact family of cu-
bics is reducible and non-reduced. It consists of the union of 8 planes and a
surface of degree 8 taken with multiplicity 2.

Proof Let Nθ be the net of quadrics inP3 defined byϑ. We know that con-
tact cubicV (D(A; ξ, ξ)) is isomorphic to the discriminant curve of the net of
quadrics obtained by restrictingNϑ to the planeHξ defined by the pointξ in
the dual space. The contact cubic is singular if and only if the restricted net
has either a base point or contains a conic of rank 1, i.e. a double line. The first
case occurs if and only if the plane contains one of the base point of the netNϑ.
There are 8 of them (see the next subsection). This gives 8 plane components
of Dϑ. The second case occurs if and only if the plane is tangent to a singular
quadric inNϑ along a line. It is easy to compute the degree of the surface in
(P3)∨ parameterizing such planes. Fix a general line` in P3, the quadrics in
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Nϑ which are tangent tòare parameterized by a conic inNϑ. The conic inter-
sects the discriminant curveC of Nϑ at 8 points. Thus there are 8 cones inNϑ
which are tangent tò. Let `′i be the line on the cone intersecting`. Then the
plane spanned by the lines` and`′ is tangent to the cone. Thus we see that the
degree of the surface parameterizing planes which are tangent to some cone in
Nϑ is of degree 8. The assertion about the multiplicity of the surface entering
in the discriminant is proved in [272], Theorem 7.2.

Let Fξ be a contact nodal cubic represented by a general pointξ in one of
the 8 plane components. It is tangent toC at 6 nonsingular points. On the other
hand, ifFξ is a general point of the other component ofDϑ, then it is a nodal
cubic with a node atC.

We can see other singular contact cubics too. For example, 56 planes through
three base points of the pencilNϑ correspond to the union of three asyzygetic
bitangents. Another singular contact cubic is abiscribed triangle. It is the
union of three lines such thatC is tangent to the sides and also passes through
the three vertices of the triangle. It is proved in [442] that the number of bis-
cribed triangles in each of 36 families of contact cubics is equal to 8.

Remark6.3.1 Note that each cubic curveF in the family of contact cu-
bics comes with a distinguished 2-torsion point defined by the divisor class
η = d − 2h, whereC ∩ F = 2d, andh is the intersection ofF with a line.
One can show that the 2-torsion point is nontrivial. The locus of zeros of the
invariant surfaceV (G12) of degree 12 parameterizes harmonic contact cubics
F together with a nontrivial2-torsion divisor classη. The groupµ4 of com-
plex multiplications of Jac(F ) acts on the set of2-torsion divisor classes with
two fixed points. Ifη is invariant with respect toµ4, then the Cayleyan curve
of the cubic is also harmonic. Thus the surfaceV (G12) is reducible. One of
its irreducible component describes the locus of harmonic contact cubics with
harmonic Cayleyan. It is shown in [301](see a modern discussion of this sur-
face in [272]) that the degree of this component is equal to 4. Thus each pair
(C, ϑ) defines a quartic surfaceΘ in |KC + ϑ|. It can be also described as the
locus of planesΠ in |KC + ϑ|∨ such that the restriction ofNϑ to Π is a net of
conics with harmonic discriminant curve and the Steinerian curve. The resid-
ual surface is of degree8. It belongs to the pencil of octavic surfaces generated
by V (F8) and2Θ.
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6.3.2 Cayley octads

Let Nϑ be the net of quadrics defined by the pair(C, ϑ) andQ1, Q2, Q3 be its
basis. The base locus ofNϑ is the complete intersection of these quadrics. One
expects that it consists of 8 distinct points. Let us see that this is indeed true.

Proposition 6.3.2 The set of base points of the net of quadricsNϑ consists of
8 distinct points, no three of which are collinear, no four are coplanar.

Proof If we have less than 8 base points, then all nonsingular quadrics share
the same tangent plane at this point. This implies thatNϑ contains a pencil of
quadrics which are all singular at this point. This pencil corresponds to a line
component ofC, a contradiction.

Suppose three points are on a line`. This includes the case when two points
coincide. This implies that̀ is contained in all quadrics fromN . Take a point
x ∈ `. For any quadricQ ∈ Nϑ, the tangent plane ofQ atx contains the line
`. Thus the tangent planes form a pencil of planes through`. SinceNϑ is a
net, there must be a quadric which is singular atx. Thus each point of̀ is a
singular point of some quadric fromNϑ. However, the set of singular points of
quadrics fromNϑ is equal to the nonsingular sexticS, the image ofC under
the map given by the linear system|ϑ(1)|. This shows that no three points are
collinear.

Suppose that 4 points lie in a planeΠ. The restriction ofNϑ to Π defines a
linear system of conics through 4 points no three of which are collinear. It is of
dimension 1. Thus, there exists a quadric inNϑ which containsΠ. However,
sinceC is nonsingular, all quadrics inNϑ are of corank≤ 1.

Definition 6.3.1 A set of 8 distinct points inP3 which is a complete intersec-
tion of 3 quadrics is called aCayley octad.

From now on we assume that a Cayley octad satisfies the properties from
Theorem6.3.2.

Let S be the sextic model ofC defined by the linear system|KC + ϑ|.

Theorem 6.3.3 Let q1, . . . , q8 be a Cayley octad. Each lineqiqj intersects
the sextic curveS at two pointsϕ(pi), ϕ(pj). The linepipj is a bitangent of
C.

Proof The quadrics containing the linèij = qiqj form a pencilP in Nϑ.
Its base locus consists of the line`ij and a rational normal cubic curveR
which intersects the line at 2 points (they could be equal). Note that the locus
of singular quadrics in the net of quadrics containingR is a conic. Thus the
pencil P contains two (or one) singular quadric with singular points at the
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intersection ofR and`ij . In the netNϑ this pencil intersects the discriminant
curveC at two points. Suppose one of these two points is an ordinary cusp. It
is easy to check that the multiplicity of a zero of the discriminant polynomial
of the pencil of quadrics is equal to the corank of the corresponding quadric.
Since our pencil does not contain reducible quadrics, we see that this case does
not occur. Hence the pencilP in Nϑ is a bitangent.

We can also see all even theta characteristics.

Theorem 6.3.4 Let q1, . . . , q8 be the Cayley octad associated to an even
theta characteristicϑ. Let ϑij be the odd theta characteristic corresponding
to the linesqiqj . Then any even theta characteristic different fromϑ can be
represented by the divisor class

ϑi,jkl = ϑij + ϑik + ϑil −KC

for some distincti, j, k, l.

Proof Suppose thatϑi,jkl is an odd theta characteristicϑmn. Consider the
planeπ which contains the pointsqi, qj , qk. It intersectsS at six points cor-
responding to the theta characteristicsϑij , ϑik, ϑjk. Since the planes cut out
divisors from|KC + ϑ|, we obtain

ϑij + ϑik + ϑjk ∼ KC + ϑ.

This implies that

ϑjk + ϑil + ϑmn ∼ KC + ϑ.

Hence the linesqjqk andqiql lie in a planeπ′. The intersection point of the
linesqjqk andqiql is a base point of two pencils inN and hence is a base point
of N . However, it does not belong to the Cayley octad. This contradiction
proves the assertion.

Remark6.3.2 Note that

ϑi,jkl = ϑj,ikl = ϑk,ijl = ϑl,ijk.

Thusϑi,jkl depends only on the choice of a subset of 4 elements in{1, . . . , 8}.
Also it is easy to check that the complementary set defines the same theta
characteristic. This gives35 =

(
8
4

)
/2 different even theta characteristics. To-

gether withϑ = ϑ∅ we obtain 36 even theta characteristics. Observe now that
the notationϑij for odd thetas andϑi,jkl, ϑ∅ agrees with the notation we used
for odd even theta characteristics on curves of genus 3. For example, any set
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ϑ18, . . . , ϑ78 defines an Aronhold set. Or, a syzygetic tetrad corresponds to
four chords forming a spatial quadrangle, for examplep1p3, p2p4, p2p3, p1p4.

Here is another application of Cayley octads.

Proposition 6.3.5 There are 10080 azygetic hexads of bitangents ofC such
that their 12 contact points lie on a cubic.

Proof Let `1, `2, `3 be an azygetic triad of bitangents. The corresponding odd
theta characteristics add up toKC +ϑ, whereϑ is an even theta characteristic.
Let O be the Cayley octad corresponding to the net of quadrics for whichC

is the Hessian curve andS ⊂ P3 = |KC + ϑ|∨ be the corresponding sextic
model ofC. We know that the restriction map

|OP3(2)| → |OS(2)| = |OC(3KC)| = |OP2(3)|

is a bijection. We also know that the double planes in|OP3(2)| are mapped to
contact cubics corresponding toϑ. The cubic curvè1 +`2 +`3 is one of them.
Using the interpretation of bitangents as chords of the Cayley octad given in
Theorem6.3.3, we see that the union of the three chords corresponding to
`1, `2, `3 cut out onS six coplanar points.This means that the three chords
span a plane inP3. Obviously, the chords must be of the formqiqj , qiqk, qjqk,
where1 ≤ i < j < k ≤ 8. The number of such triples is

(
8
3

)
= 56. Fixing

such a triple of chords, we can find
(
5
3

)
= 10 triples disjoint from the fixed

one. The sum of the six corresponding odd theta characteristics is equal to3K
and hence the contact points are on a cubic. We can also see it by using the
determinantal identity (4.11). Thus any evenϑ contributes(56× 10)/2 = 280
hexads from the assertion of the Proposition. The total number is equal to
36 · 280 = 10080.

In Salmon’s book [538] one can find possible types of such hexads.

• 280 of type(12, 23, 31, 45, 56, 64);
• 168 of type(12, 34, 35, 36, 37, 38);
• 560 of type(12, 13, 14, 56, 57, 58).

Recall that the three types correspond to three orbits of the permutation group
S8 on the set of azygetic hexads whose contact points are on a cubic. Note that
not any azygetic hexad has this property. For example, a subset of an Aronhold
set does not have this property.

For completeness sake, let us give the number of not azygetic hexads whose
contact points are on a cubic.The number of them is equal 5040. Here is the
list.

• 840 of type(12, 23, 13, 14, 45, 15);
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• 1680 of type(12, 23, 34, 45, 56, 16);
• 2520 of type(12, 34, 35, 36, 67, 68).

6.3.3 Seven points in the plane

Let P = {p1, . . . , p7} be a set of seven distinct points inP2. We assume that
the points satisfy the following condition:

(∗) no three of the points are collinear and no six lie on a conic.

Consider the linear systemL of cubic curves through these points. The con-
ditions on the points imply thatL is of dimension 2 and each member ofL
is an irreducible cubic. A subpencil inL has two base points outside the base
locus ofL. The line spanned by these points (or the common tangent if these
points coincide) is a point in the dual planeP(E). This allows us to identify
the netL with the planeP2 where the seven points lie. Nets of curves with
the special property areLaguerre netswhich we will discuss later in Example
7.3.4.

Proposition 6.3.6 The rational mapL 99K L∨ given by the linear systemL
is of degree 2. It extends to a regular degree 2 finite mapπ : X → L∨ ∼= P2,
whereX is the blow-up of the setP. The branch curve ofφ is a nonsingular
plane quarticC in L∨. The ramification curveR is the proper transform of
a curveB ⊂ L of degree 6 with double points at eachpi. Conversely, given
a nonsingular plane quarticC, the double cover ofP2 ramified overC is a
nonsingular surface isomorphic to the blow-up of 7 pointsp1, . . . , p7 in the
plane satisfying(6.3.3).

We postpone the proof of this Proposition until Chapter 8. The surfaceX is
a del Pezzo surface of degree 2 .

Following our previous notation, we denote the planeL∨ by |E| for some
vector spaceE of dimension 3. ThusL can be identified withP(E). Let σ :
X → P2 be the blowing up map. The curvesEi = σ−1(pi) are exceptional
curves of the first kind,(−1)-curves for short. We will often identifyL with its
proper transform inS equal to

| −KX | = |3h− E1 − . . .− E7|,

whereh = c1(σ∗OP2(1)) is the divisor class of the preimage of a line inP2.
The preimage of a linè⊂ |E| in P(E) = L is a nonsingular member ofL

if and only if ` intersects transversallyC. In this case, it is a double cover of
` branched over̀ ∩ C. The preimage of a tangent line is a singular member,
the singular points lie over the contact points. Thus, the preimage of a general
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tangent line is an irreducible cubic curve with a singular point atσ(R). The
preimage of a bitangent is a member of|−KX | with two singular points (they
may coincide if the bitangent is an inflection bitangent). It is easy to see that
its image in the plane is either an irreducible cubicFi with a double point atpi
or the union of a linepipj and the conicKij passing through the pointpk, k 6=
i, j. In this way we can account for all 28 = 7+21 bitangents. If we denote
the bitangents corresponding toFi by `i8 and the bitangents corresponding to
pipj +Kij by `ij , we can accommodate the notation of bitangents by subsets
of cardinality 2 of[1, 8]. We will see below that this notation agrees with the
previous notation. In particular, the bitangents corresponding to the curvesFi’s
form an Aronhold set.

Let `′ ∈ |h|. Its imageπ(`′) in |L|∨ = |E| is a plane cubicG. The preimage
ofG inX is the union of̀ ′ and a curvè ′′ in the linear system3(3h−

∑
Ei)−

h| = |8h− 3
∑
Ei|. The curves̀ ′ and`′′ intersect at 6 points. Since the cubic

G splits in the coverπ, it must touch the branch curveC at each intersection
point with it. Thus it is a contact cubic and hence the divisorD = φ(`′ ∩ `′′)
belongs to|KC + ϑ| for some even theta characteristicϑ. This shows that̀ ′

cuts out inR the divisor from the linear system|KR + ϑ|. In other words, the
inverse of the isomorphismπ|R : R → C is given by a 2-dimensional series
contained in|KC + ϑ|. The imageB of R in the plane|L| is a projection of a
sextic model ofC in P3 defined by the linear system|KC + ϑ|.

We can easily locate an Aronhold set defined byθ. The full pre-image of a
curveFi onX cuts out onR the divisor2ai+2bi, whereai, bi ∈ Ei correspond
to the branches ofFi at pi. Thus the full preimage of the divisorFi − Fj cuts
out onEi the divisor

(2ai + 2bi)− (ai + bi) + (aj + bj)− 2(aj + bj) = ai + bi − aj − bj .

But Fi − Fj is the divisor of a rational function onP2. This shows that the
images of theFi’s in the plane|E| are 7 bitangents defined by odd theta char-
acteristicsϑi such thatϑi − ϑj is the same 2-torsion divisor class. Thus, the 7
bitangents form an Aronhold set.

Let us record what we have found so far.

Proposition 6.3.7 A choice of 7 unordered pointsp1, . . . , p7 in the plane
P(E) satisfying condition * defines a nonsingular plane quarticC in the dual
plane |E| and even theta characteristicϑ on C. The linear system of cubic
curves through the seven points maps each its member with a double point at
pi to a bitangentϑi of C. The seven bitangentsϑ1, . . . , ϑ7 form an Aronhold
set of bitangents.
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Let us now see the reverse construction of a set of 7 points defined by a pair
(C, ϑ) as above.

LetNϑ be the linear system of quadrics in|KC+ϑ| ∼= P3 defined by an even
theta characteristicϑ onC. LetX → P3 be the blow-up of the Cayley octad
O = {q1, . . . , q8} of its base points. The linear systemNϑ defines an elliptic
fibrationf : X → N∨ϑ . If we identifyNϑ with |E| by using the determinantal
representationφ : |E| → |OP3(2)|, thenNϑ can be identified withP(E). The
images of fibres off in P3 are quartic curves passing through O. The projection
map fromP3 from q8 ∈ O is defined by a 2-dimensional linear subsystemH of
|KC + ϑ|. The projections of quartic curves are cubic curves passing through
the setP = {p1, . . . , p7}, wherepi is the projection ofqi. In this way we
get a set of 7 points which defines(C, ϑ). The Aronhold set of bitangentsϑi8
obtained from the Cayley octad corresponds to the Aronhold setϑ1, . . . , ϑ7

defined by the cubic curvesFi. They are the projections of the rational curve
of degreeRi which together with the lineqjq8 form the base locus of the pencil
of quadrics with singular points on the lineqjq8.

So, we have proved the converse.

Proposition 6.3.8 A nonsingular plane quartic curveC ⊂ |E| together with
an even theta characteristic defined a unique Cayley octadO ⊂ |KC + ϑ| =
P3 such that the linear system of quadrics throughO is the linear system of
quadrics associated to(C, ϑ). The projection ofO from one of its points to a
plane plusP2 plus an isomorphismP2 ∼= |E∨| defines a net of cubics through 7
pointsp1, . . . , p7. The blow-up of the seven points is a del Pezzo surface and its
anticanonical linear system defined a degree 2 finite mapX → |E| branched
overC. The ramification curveR of the map is the projection of the image of
C under the linear system|KC + ϑ|.

Note that in this way we account for all288 = 8 × 36 Aronhold sets of 7
bitangents. They are defined by a choice of an even theta characteristic and a
choice of a point in the corresponding Cayley octad. We also obtain the fol-
lowing.

Corollary 6.3.9 The moduli spaceU7
2 of projective equivalence classes of

unordered 7 points in the plane is birationally isomorphic to the moduli space
Mar

3 of curves of genus 3 together with an Aronhold set of bitangents. It is (bi-
rationally) a8 : 1-cover of the moduli spaceMev

3 of curves of genus 3 together
with an even theta characteristic. The latter space is birationally isomorphic
to the moduli space of projective equivalence classes of Cayley octads.

Remark6.3.3 Both of the moduli spacesMar
3 andMev

3 are known to be
rational varieties. The rationality ofU7

2 was proven by P. Katsylo in [365]. The
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rationality ofMev
3 follows from the birational isomorphism betweenMev

3 and
M3 (see Theorem6.3.13below) and the rationality ofM3, also proven by P.
Katsylo [367]. Also is known, and much easier to prove, that the moduli space
Modd of curves of genus 3 with an odd theta characteristic is rational [23].

Remark6.3.4 The elliptic fibrationf : X → P(E) defined by the linear
systemNϑ has 8 sections corresponding to the exceptional divisors over the
pointsqj . Its discriminant locus consists of lines in|E| tangent toC, that is,
the dual curveC∨ of C. If we fix one section, say the exceptional divisor over
q8, then all nonsingular fibres acquire a group structure. The closure of the
locus of nontrivial 2-torsion points is a smooth surfaceW in X. Its image in
P3 is a surface of degree 6 with triple points atq1, . . . , q8, called theCayley
dianode surface. It is a determinantal surface equal to the Jacobian surface
of the linear system of quartic surfaces with double points atq1, . . . , q7. The
linear system of quartics defines a map fromX → P6 whose image is the cone
over a Veronese surface in a hyperplane. The map is a double cover onto the
image. The exceptional divisor overq8 is mapped to the vertex of the cone.
The surfaceW is the ramification locus of this map. Its image inP6 is the
complete intersection of the cone and a cubic hypersurface. It is a surface of
degree 12 with 28 nodes, the images of the linesqiqj . The surfaceW is a
minimal surface of general type withpg = 3 andK2

W = 3. It is birationally
isomorphic to the quotient of a symmetric theta divisor in Jac(C) modulo the
involutionx 7→ −x. All of this is discussed in [133] and [192].

There is another similar elliptic fibration overP(E). Consider the universal
family of the netL:

U = {(x, F ) ∈ |E| × L : x ∈ F}.

The fibre of the first projectionπ1 : U → X over a pointx ∈ X can be
identified, via the second projection, with the linear subsystemL(x) ⊂ L of
curves passing through the pointx. If x 6∈ P, L(x) is a pencil, otherwise it is
the wholeL. The second fibrationπ2 : U → L is an elliptic fibration, its fibre
over the point{F} is isomorphic toF . It has 7 regular sections

si : L→ U, F 7→ (pi, F ).

There is another natural rational sections8 : L → U defined as follows. We
know from 3.3.2 that anyg1

2 on a nonsingular cubic curveF is obtained by
projection from the coresidual pointp ∈ F to a line. We leave to the reader
that it remains true also for any irreducible cubic curve. Take a curveF ∈ L
and restrictL to F . This defines ag1

2 onF , and hence defines the coresidual
point cF . The sections8 mapsF to c8. Although the imagesSi of the first
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sections are disjoint inU, the imageS8 of s8 intersects eachSj , j 6= 8, at the
point (pj , Fj) (in this case theg1

2 on Fi has a base pointpi which has to be
considered as the coresidual point ofFj). The universal familyU is singular
because the netNϑ has base points. The singular points are the intersection
points of the sectionsSj andS8, j 6= 8. The varietyX is a small resolution of
the singular points. The exceptional curves are the proper transforms of lines
qjq8.

6.3.4 The Clebsch covariant quartic

Here we shall specialize the Scorza construction in the case of plane quartic
curves. Consider the following symmetric correspondence onP2

R = {(x, y) ∈ P2 × P2 : rankPyx(C) = 1}.

We know that a cubic curve has a polar quadric of rank 1 if and only if lies
in the closure of the projective equivalence class of the Fermat cubic. Equiva-
lently, a cubic curveG = V (g) has this property if and only if the Aronhold
invariantS vanishes ong. We write in this caseS(G) = 0.

Consider the projection ofR to one of the factors. It is equal to

C(C) := {x ∈ P2 : S(Px(C)) = 0}.

By symmetry of polars, ifx ∈ C(C), thenR(x) ⊂ C(C). ThusS = C(C)
comes with a symmetric correspondence

RC := {(x, y) ∈ S × S : rankPxy(C) = 1}.

Since the Aronhold invarariantS is of degree4 in coefficients of a ternary
quartic, we obtain thatC(C) is a quartic curve or the wholeP2. The case when
C(C) = P2 happens, for example, whenC is a Fermat quartic. For any point
x ∈ P2 and any vertexy of the polar triangle of the Fermat cubicPx(C), we
obtainPyx(C) = P2.

The assignmentC → C(C) lifts to a covariant

C : S4(E∨)→ S4(E∨)

which we call theScorza covariantof quartics. We use the same notation for
the associated rational map

C : |OP2(4)| 99K |OP2(4)|.

Example6.3.1 Assume that the equation ofC is given in the form

at40 + bt41 + ct42 + 6ft21t
2
2 + 6gt20t

2
2 + 6ht20t

2
1 = 0.



280 Plane Quartics

Then the explicit formula for the Aronhold invariantS (see [538], p. 270) gives

C(C) := a′t40 + b′t41 + c′t42 + 6f ′t21t
2
2 + 6g′t20t

2
2 + 6h′t20t

2
1 = 0,

where

a′ = 6e2h2, b′ = 6h2f2, c′ = 6f2g2,

d′ = bcgh− f(bg2 + ch2)− ghf2,

e′ = acfh− g(ch2 + af2)− fhg2,

h′ = abfg − h(af2 + bg2)− fgh2.

For a generalf the formula forC is too long.
Consider the pencil of quartics defined by the equation

t20 + t21 + t22 + 6α(t20t
2
1 + t20t

2
2 + t21t

2
2) = 0, α 6= 0. (6.30)

ThenC(C) is given by the equation

t20 + t21 + t22 + 6β(t20t
2
1 + t20t

2
2 + t21t

2
2) = 0,

where

6βα2 = 1− 2α− α2.

We find thatC(C) = C if and only ifα satisfies the equation

6α3 + α2 + 2α− 1 = 0.

One of the solutions isα = 1/3; it gives a double conic. Two other solutions
areα = 1

4 (−1 ±
√
−7). They give two curves isomorphic to theKlein curve

V (t30t1+t31t2+t32t0) with 168 automorphisms. We will discuss this curve later
in the Chapter.

We will be interested in the open subset of|OP2(4)| where the mapC is
defined and its values belong to the subset of nonsingular quartics.

Proposition 6.3.10 SupposeC(C) is a nonsingular quartic. ThenC is either
nondegenerate, or it has a unique irreducible apolar conic.

Proof SupposeC does not satisfy the assumption. ThenC admits either a
pencil of apolar conics or one reducible apolar conic. In any case there is a
reducible conic, hence there exist two pointsx, y such thatPxy(C) = P2. This
implies thatPx(C) is a cone with triple pointy. It follows from the explicit
formula for the Aronhold invariantS that the curvePx(C) is a singular point
in the closure of the variety of Fermat cubics. Thus the image of the polar map
x 7→ Px(C) passes through the singular point. The pre-image of this point
under the polar map is a singular point ofC.
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Theorem 6.3.11 LetC = V (f) be a general plane quartic. ThenS = C(C)
is a nonsingular curve and there exists an even theta characteristicϑ on S
such thatRC coincides with the Scorza correspondenceRϑ onS. Every non-
singularS together with an even theta characteristic is obtained in this way.

Proof To show thatC(C) is nonsingular for a general quartic, it suffices to
give one example when it happens. The Klein curve from Example6.3.1will
do.

Let S be a nonsingular quartic andRϑ be the Scorza correspondence onS

defined by a theta characteristicϑ. It defines the Scorza quarticC. It follows
immediately from (5.41) in the proof of Theorem5.5.11that for any point
(x, y) ∈ Rϑ the second polarPx,y(C) is a double line (in notation in the proof
of the loc. cit. Theorem,(x, y) = (x, xi) andV (t2i ) is the double line). This
shows thatPx(C) is a Fermat cubic, and henceC(C) = S. Thus, we obtain that
the Clebsch covariantC is a dominant map whose image contains nonsingular
quartics. Moreover, it inverts the Scorza rational map which assigns to(S, ϑ)
the Scorza quartic. Thus a general quartic curveC is realized as the Scorza
quartic for some(S, ϑ), the correspondenceRC coincides withRϑ andS =
C(C).

SupposeC is plane quartic with nonsingularS = C(C). SupposeRC = Rθ
for some even theta characteristic onS. LetC ′ be the Scorza quartic assigned
to (S, ϑ). Then, for anyx ∈ S, Px(C) = Px(C ′). SinceS spansP2, this
implies thatC = C ′. The generality condition in order thatRC = Rϑ happens
can be made more precise.

Proposition 6.3.12 SupposeS = C(C) satisfies the following conditions

• S is nonsingular;
• the Hessian ofC is irreducible;
• S does not admit nonconstant maps to curves of genus1 or 2.

ThenRC = Rθ for some even theta characteristicθ and C is the Scorza
quartic associated to(S, θ).

Proof It suffices to show thatRC is a Scorza correspondence onS. Obvi-
ously,RC is symmetric. As we saw in the proof of Proposition6.3.10, the first
condition shows that no polarPx(C), x ∈ S, is the union of three concurrent
lines. The second condition implies that the Steinerian ofC is irreducible and
hence does not containS. This shows that, for any general pointx ∈ S, the
first polarPx(C) is projectively equivalent to a Fermat cubic. This implies that
RC is of type(3, 3). SinceC is nonsingular,Px2(C) is never a double line or
P2. ThusRC has no united points.
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By Proposition5.5.7, it remains to show thatRC has valence−1. Take a
general pointx ∈ S. The divisorRC(x) consists of the three vertices of its
unique polar triangle. For anyy ∈ RC(x), the sideλ = V (l) opposite toy
is defined byPy(Px(C)) = Px(Py(C)) = V (l2). It is a common side of the
polar triangles ofPx(C) andPy(C). We havè ∩ S = y1 + y2 + x1 + x2,
whereRC(x) = {y, y1, y2} andRC(y) = {x, x1, x2}. This gives

y1 + y2 + x1 + x2 = (RC(x)− x) + (RC(y)− y) ∈ |KS |.

Consider the mapα : S → Pic2(S) given byx→ [R(x)−x]. AssumeRC has
no valence, i.e. the mapα is not constant. If we replace in the previous formula
y with y1 or y2, we obtain thatα(y) = α(y1) = α(y2) = KS − α(x). Thus
α : S → α(S) = S′ is a map of degree≥ 3. It defines a finite map of degree
≥ 3 fromS to the normalizatioñS′ of S′. Since a rational curve does not admit
non-constant maps to an abelian variety, we obtain thatS̃′ is of positive genus.
By assumption, this is impossible. HenceRC has valencev = −1.

Let |OP2(4)|snd be the open subset of plane quarticsC such thatC(C) is
a nonsingular quartic and the correspondenceRC is a Scorza correspondence
Rϑ. The Clebsch covariant defines a regular map

C̃ : |OP2(4)|snd→ T Cev
4 , C 7→ (C(C), RC). (6.31)

By Proposition5.2.2the varietyT Cev
4 is an irreducible cover of degree 36 of

the variety|OP2(4)| of nonsingular quartics. The Scorza map defines a regular
section ofC̃. By Proposition5.2.2the varietyT Cev

4 is an irreducible cover of
degree 36 of the variety|OP2(4)| of nonsingular quartics. The Scorza map
defines a regular section ofC̃. Since both the source and the target of the map
are irreducible varieties of the same dimension, this implies that (6.31) is an
isomorphism.

Passing to the quotients by PGL(3), we obtain the following.

Theorem 6.3.13 LetMev
3 be the moduli space of curves of genus 3 together

with an even theta characteristic. The birational mapS : |OP2(4)| → Qev has
the inverse defined by assigning to a pair(C, ϑ) the Scorza quartic. It induces
a birational isomorphism

M3
∼=Mev

3 .

The composition of this map with the forgetting mapMev
3 →M3 is a rational

self-map ofM3 of degree 36.

Remark6.3.5 The Corollary generalizes to genus 3 the fact that the map
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from the space of plane cubics|OP2(3)| to itself defined by the Hessian is a
birational map to the cover|OP2(3)|ev, formed by pairs(X, ε), whereε is a
non-trivial 2-torsion point (an even characteristic in this case). Note that the
Hessian covariant is defined similarly to the Clebsch invariant. We compose
the polarization mapV × S3(E∨)→ S2(E∨) with the discriminant invariant
S2(E∨)→ C.

6.3.5 Clebsch and L̈uroth quartics

Since 5 general points in the dual plane lie on a singular quartic (a double
conic), a general quartic does not admit a polar pentagon, although the count
of constants suggests that this is possible. This remarkable fact was first dis-
covered by J. L̈uroth in 1868. Suppose a quarticC admits a polar pentagon
{[l1], . . . , [l5]} (or thepolar pentalateralV (l1), . . . , V (l5)). LetQ = V (q) be
a conic inP(E) passing through the points[l1], . . . , [l5]. Thenq ∈ AP2(f). The
space AP2(f) 6= {0} if and only if det Cat2(f) = 0. Thus the set of quartics
admitting a polar pentagon is the locus of zeros of the catalecticant invariant
on the spaceP(S4(E∨)). It is a polynomial of degree 6 in the coefficients of a
ternary form of degree 4.

Definition 6.3.2 A plane quartic admitting a polar pentagon is called aCleb-
sch quartic.

Lemma 6.3.14 LetC = V (f) be a Clebsch quartic. The following properties
are equivalent.

(i) C admits polar pentagon{[l1], . . . , [l5]} such thatl21, . . . , l
2
5 ∈ S2(E∨)

are linearly independent;
(ii) dim AP2(f) = 1;
(iii) for any polar pentagon{[l1], . . . , [l5]} of C, l21, . . . , l

2
5 are linearly

independent;
(iv) for any polar pentagon{[l1], . . . , [l5]} ofC, no four of the points[li]’s
are collinear.

Proof (i) ⇒ (ii) For anyψ ∈ AP2(f), we have

0 = Dψ(f) =
∑

Dψ(l2i )l
2
i .

Sincel2i are linearly independent, this impliesDψ(l2i ) = 0, i = 1, . . . , 5. This
means thatV (ψ) is a conic passing through the points[l1], . . . , [l5]. Five points
in the plane determine unique conic unless four of the points are collinear.
It is easy to see that in this case the quadratic formsl21, . . . , l

2
5 are linearly

dependent. Thusdim AP2(f) = 1.
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(ii) ⇒ (ii) Suppose{[l1], . . . , [l5]} is a polar pentagon ofC with linearly de-
pendentl21, . . . , l

2
5. Then there exist two linearly independent functionsψ1, ψ2

in S2(E∨)∨ = S2(E) vanishing atl21, . . . , l
2
5. They are apolar tof contradict-

ing the assumption.
(iii) ⇒ (iv) Suppose{[l1], . . . , [l4]} are collinear. Then, we can choose coor-

dinates to writel1 = t0, l1 = t1, l3 = at0+bt1, l4 = ct0+dt1. Taking squares,
we see that the fivel2i are linear combinations of 4 formst20, t

2
1, t0t1, l5. This

contradicts the assumption.
(iv) ⇒ (i) Let {[l1], . . . , l5]} be a polar pentagon with no four collinear

points. It is easy to see that it implies that we can choose four of the points
such that no three among them are collinear. Now change coordinates to as-
sume that the corresponding quadratic forms aret20, t

2
1, t

2
2, a(t0 + t1 + t2)2.

Supposel21, . . . , l
2
5 are linearly dependent. Then we can write

l25 = α1t
2
0 + α2t

2
1 + α3t

2
2 + α4(t0 + t1 + t2)2.

If two of the coefficientsαi are not zero, then the quadratic form in the right-
hand side is of rank≥ 2. The quadratic form in the left-hand side is of rank 1.
Thus, three of the coefficients are zero, but the two of the points[li] coincide.
This contradiction proves the implication.

Definition 6.3.3 A Clebsch quartic is calledweakly nondegenerateif it sat-
isfies one of the equivalent conditions from the previous Lemma. It is called
nondegenerate if the unique polar conic is irreducible.

This terminology is somewhat confusing since a quartic was earlier called
nondegenerate if it does not admit an apolar conic. I hope the reader can live
with this.

It follows immediately from the definition that each polar pentalateral of
a nondegenerate Clebsch quartic consists of 5 sides no three of which pass
through a point (acomplete pentalateral). Considered as a polygon in the dual
plane, this means that no three vertices are collinear. On the other hand, the
polar pentalateral of a weakly nondegenerate Clebsch quartic may contain one
or two triple points.

Let C = V (
∑
l4i ) be a Clebsch quartic. Ifx lies in the intersection of two

sidesV (li) andV (lj) of the polar pentalateral, then

Px(C) = V (
∑
k 6=i,j

lk(x)l3k),

hence it lies in the closure of the locus of Fermat cubics. This means that the
point x belongs to the quarticC(C). WhenC is a general Clebsch quartic,
C(C) passes through each of 10 vertices of the polar complete pentalateral.
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In other words,C(C) is a Darboux plane curveof degree 4 in sense of the
definition below.

Let `1, . . . , `N be a set ofN distinct lines in the planes, the union of which
is called aN -lateral, or anarrangement of lines. A point of intersectionxij
of two of the lines̀ i and`j is called avertexof theN -lateral. The number of
lines intersecting at a vertex is called themultiplicity of the vertex. AN -lateral
with all vertices of multiplicity 2 is called acompleteN -lateral (or ageneral
arrangement). Considered as a divisor in the plane, it is a normal crossing
divisor. The dual configuration of aN -lateral (the dual arrangement) consists
of a set ofN points corresponding to the lines and a set of lines corresponding
to points. The number of points lying on a line is equal to the multiplicity of
the line considered as a vertex in the originalN -lateral.

LetJ be the ideal sheaf of functions vanishing at each vertexxij with mul-
tiplicity ≥ νij − 1, whereνij is the multiplicity ofxij . A nonzero section of
J (k) defines a plane curve of degreek which has singularities at eachxij of
multiplicity ≥ νij − 1.

Lemma 6.3.15 LetA = {`1, . . . , `N} be aN -lateral. Then

h0(P2,J (N − 1)) = N.

Proof Let ` be a general line in the plane. It defines an exact sequence

0→ J (N − 2)→ J (N − 1)→ J (N − 1)⊗O` → 0.

Since the divisor of zeros of a section ofJ (N − 2) contains the divisor̀i ∩
(
∑
j 6=i `j) of degreeN − 1, it must be the wholèi. Thush0(J (N − 2)) = 0.

SinceJ (N − 1) ⊗ O` ∼= OP1(N − 1), we haveh0(J (N − 1) ⊗ O`) = N .
This shows thath0(J (N − 1)) ≤ N . On the other hand, we can findN
linear independent sections by taking the productsfj of linear forms defining
`i, j 6= i. This proves the equality.

Definition 6.3.4 A Darboux curveof degreeN − 1 is a plane curve defined
by a nonzero section of the sheafJ for someN -lateral of lines in the plane. A
Darboux curve of degree 4 is called aLüroth quartic curve.

Obviously, any conic (even a singular one) is a Darboux curve. The same is
true for cubic curves. The first case where a Darboux curve must be a special
curve is the caseN = 5.

It follows from the proof of Lemma6.3.15that a Darboux curve can be
given by an equation

N∑
i=1

∏
j 6=i

lj =
N∏
i=1

li(
N∑
i=1

1
li

) = 0 (6.32)
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where`i = V (li).
From now, we will be dealing with the caseN = 5, i.e with Lüroth quartics.

The details for the next computation can be found in the original paper of
Lüroth [412], p. 46.

Lemma 6.3.16 LetC = V (
∑
l2i ) be a Clebsch quartic inP2 = |E|. Choose

a volume form onE to identifyli ∧ lj ∧ lk with a number|lilj lk|. Then

C(C) = V (
5∑
s=1

ks
∏
i 6=s

li),

where

ks =
∏

i<j<k,r 6∈{i,j,k}

|lilj lk|.

Proof This follows from the known symbolic expression of the Aronhold
invariant

S = (abc)(abd)(acd)(bcd).

If we polarize4Da(f) =
∑
li(a)l3i , we obtain a tensor equal to the tensor∑

li(a)li ⊗ li ⊗ li ∈ (E∨)⊗3. The value ofS is equal to the sum of the deter-
minantsli(a)lj(a)lk(a)|lilj lk|. When[a] runsP2, we get the formula from the
assertion of the Lemma.

Looking at the coefficientsk1, . . . , k5, we observe that

• k1, . . . , k5 6= 0 if and only ifC is nondegenerate.

• Two of the coefficientsk1, . . . , k5 are equal to zero if and only ifC is weakly
degenerate and the polar pentalateral ofC has one triple point.

• Three of the coefficientsk1, . . . , k5 are equal to zero if and only ifC is
weakly nondegenerate and the polar pentalateral ofC has two triple points.

• C(C) = P2 if the polar pentalateral has a point of multiplicity 4.

It follows from this observation, that a Lüroth quartic of the formC(C) is
always reducible ifC admits a degenerate polar pentalateral. SinceC(C) does
not depend on a choice of a polar pentalateral, we also see that all polar penta-
laterals of a weakly nondegenerate Clebsch quartic are complete pentalaterals
(in the limit they become generalized polar 5-hedra).

Thus we see that, for any Clebsch quarticC, the quarticC(C) is a Lüroth
quartic. One can prove that any Lüroth quartic is obtained in this way from a
unique Clebsch quartic (see [194]).
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LetC = V (f) be a nondegenerate Clebsch quartic. Consider the map

c : VSP(f, 5)o → |OP2(2)| (6.33)

defined by assigning to{`1, . . . , `5} ∈ V SP (f, 5)o the unique conic passing
through these points in the dual plane. This conic is nonsingular and is apolar
to C. The fibres of this map are polar pentagons off inscribed in the apolar
conic. We know that the closure of the set of Clebsch quartics is defined by
one polynomial in coefficients of quartic, the catalecticant invariant. Thus the
varierty of Clebsch quartics is of dimension 13.

Let E5 be the variety of 5-tuples of distinct nonzero linear forms onE.
Consider the mapE5 → |OP2(4)| defined by(l1, . . . , l5) 7→ V (l41 + · · · +
l45). The image of this map is the hypersurface of Clebsch quartics. A general
fibre must be of dimension15 − 13 = 2. However, scaling theli by the same
factor, defines the same quartic. Thus the dimension of the space of all polar
pentagons of a general Clebsch quartic is equal to 1. Over an open subset of
the hypersurface of Clebsch quartics, the fibres ofc are irreducible curves.

Proposition 6.3.17 LetC = V (f) be a nondegenerate Clebsch quartic and
Q be its apolar conic. Consider any polar pentagon ofC as a positive divisor
of degree 5 onQ. ThenVSP(f, 5)o is an open non-empty subset of ag1

5 onQ.

Proof Consider the correspondence

X = {(x, {`1, . . . , `5}) ∈ Q× VSP(f, 5)o : x = [li] for somei = 1, . . . , 5}.

Let us look at the fibres of the projection toQ. Suppose we have two polar
pentagons off with the same side[l]. We can write

f − l4 = l41 + · · ·+ l44,

f − λl4 = m4
1 + · · ·+m4

4.

For anyψ ∈ S2(E) such thatψ(li) = 0, i = 1, . . . , 4, we getDψ(f) =
12ψ(l)l2. Similarly, for anyψ′ ∈ S2(E) such thatψ′(mi) = 0, i = 1, . . . , 4,
we getDψ′(f) = 12λψ′(l)l2. This implies thatV (ψ(l)ψ′ − ψ′(l)ψ) is an
apolar conic toC. SinceC is a general Clebsch quartic, there is only one apolar
conic. The set ofV (ψ)’s is a pencil with base pointsV (li), the set ofV (ψ′)
is a pencil with base pointsV (li). This gives a contradiction unless the two
pencils coincide. But then their base points coincide and the two pentagons are
equal. This shows that the projection toQ is a one-to-one map. In particular,
X is an irreducible curve.

Now it is easy to finish the proof. The set of degree 5 positive divisors on
Q ∼= P1 is the projective space|OP1(5)|. The closureP of our curve of polar
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pentagons lies in this space. All divisors containing one fixed point in their
support form a hyperplane. Thus the polar pentagons containing one common
side[l] correspond to a hyperplane section ofP. Since we know that there is
only one such pentagon and we take[l] in an open Zariski subset ofQ, we
see that the curve is of degree 1, i.e. a line. So our curve is contained in one-
dimensional linear system of divisors of degree 5.

Remark6.3.6 The previous Proposition shows why Lüroth quartics are spe-
cial among Darboux curves. By Lemma6.3.15, the variety of pairs consisting
of aN -side and a curve of degreeN − 1 circumscribing it, is of dimension
3N − 1. This shows that the dimension of the variety of Darboux curves of
degreeN − 1 is equal to3N − 1− k, wherek is the dimension of the variety
of N -sides inscribed in a general Darboux curve. We can construct a Darboux
curve by considering an analog of a Clebsch curve, namely a curveC admit-
ting a polarN -side. Counting constants shows that the expected dimension of
the locus of such curves is equal to3N − 1 −m, wherem is the dimension
of the variety of polarN -sides ofC. Clearly every suchC defines a Darboux
curve as the locus ofx ∈ P2 such thatPx(C) admits a polar(N − 2)-side.
The equation of a general Darboux curve shows that it is obtained in this way
from a generalized Clebsch curve. In the caseN = 5, we havek = m = 1.
However, already forN = 6, the variety of Darboux quintics is known to be
of dimension17, i.e. k = 0 [24]. This shows that there is only finitely many
N -sides which a general Darboux curve of degree5 could circumscribe.

SupposeC is an irreducible L̈uroth quartic. Then it comes from a Clebsch
quarticC ′ if and only if it circumscribes a complete pentalateral andC ′ is a
nondegenerate Clebsch quartic. For example, an irreducible singular Lüroth
quartic circumscribing a pentalateral with a triple point does not belong to
the image of the Clebsch covariant. In any case, a Darboux curve of degree
N−1 given by equation (6.32), in particular, a L̈uroth quartic, admits a natural
symmetric linear determinantal representation:1.

det


l1 + l2 l1 l1 . . . l1
l1 l1 + l3 l1 . . . l1
...

...
...

...
...

l1 . . . . . . l1 l1 + lN

 = 0. (6.34)

It is clear that, ifl1(x) = l2(x) = l3(x) = 0, the corank of the matrix at the
pointx is greater than 1. Thus, if theN -lateral is not a completeN -lateral, the

1 This was communicated to me by B. van Geemen, but also can be found in Room’s book
[521], p. 178)
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theta characteristic defining the determinantal representation is not an invert-
ible one. However, everything goes well if we assume that the Lüroth quar-
tic comes from a nondegenerate Clebsch quartic. Before we state and prove
the next Theorem, we have to recall some facts about cubic surfaces which
we will prove and discuss later in Chapter 9. A cubic surfaceK always ad-
mits a polar pentahedron, maybe a generalized one. Suppose thatK is gen-
eral enough so that it admits a polar pentahedronV (L1), . . . , V (L5) such
that no four of the formsLi are linearly dependent. In this caseK is called
a Sylvester nondegenerate cubicand the polar pentahedron is unique. If we
writeK = V (L3

1 + . . .+L5), then the Hessian surface ofK can be written by
the equation

5∑
i=1

∏
i 6=j

Li(z) = 0. (6.35)

Obviously, a general plane section of the Hessian surface is isomorphic to a
Lüroth quartic.

Theorem 6.3.18 LetN be a net of quadrics inP3. The following properties
are equivalent.

(i) There exists a basis(Q1, Q2, Q3) ofN such that the quadricsQi can
be written in the form

Qj = V (
5∑
i=1

aijL
2
i ), j = 1, 2, 3, (6.36)

whereLi are linear forms with each four of them are linearly independent.

(ii) There exists a Sylvester nondegenerate cubic surfaceK in P3 such that
N is equal to a net of polar quadrics ofK.

(iii) The discriminant curveC of N is a Lüroth quartic circumscribing
a complete pentalateral{V (l1), . . . , V (l5)} andN corresponds to the
symmetric determinantal representation(6.34) ofC.

Proof (i)⇒ (ii) Consider the Sylvester nondegenerate cubic surfaceK given
by theSylverster equation

K = V (L3
1 + . . .+ L3

5).

For any pointx = [v] ∈ P3, the polar quadricPx(K) is given by the equation
V (
∑
Li(v)L2

i ). LetA = (aij) be the5 × 3 matrix defining the equations of
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the three quadrics. Let

Li =
3∑
j=0

bijzj , i = 1, . . . , 5,

andB = (bij) be the5×4 matrix of the coefficients. By assumption, rankA =
4. Thus we can find a4× 3 matrixC = (cij) such thatB · C = A. If we take
the pointsx1, x2, x3 with coordinate vectorsv1, v2, v3 equal to the columns
of the matrixC, then we obtain thatLi(vj) = aij . This shows thatQi =
Pxi

(K), i = 1, 2, 3.
(ii) ⇒ (i) Suppose we can find three non-collinear pointsxi = [vi] and a

Sylvester nondegenerate cubic surfaceK such thatQi = Pxi
(K), i = 1, 2, 3.

Writing K as a sum of 5 cubes of linear formsLi, we obtain (i).
(i)⇒ (iii) Consider the five linear formsli = ai1t0 + ai2t1 + ai3t2. Our net

of quadrics can be written in the form

Q(t0, t1, t2) = V (
5∑
i=1

li(t0, t1, t2)Li(z0, z1, z2, z3)2.

By scaling coordinatesti andzj , we may assume that the formsli andLj
satisfy

l1 + l2 + l3 + l4 + l5 = 0, (6.37)

L1 + L2 + L3 + L4 + L5 = 0.

The quadricQ(a) is singular at a pointx if and only if

rank

(
l1(a)L1(x) . . . l5(a)L5(x)

1 . . . 1

)
= 1.

This is equivalent to that

l1(a)L1(x) = . . . = L5(a)L5(x). (6.38)

Taking into account (6.37), we obtain

5∑
i=1

1
li(a)

= 0,

or
5∑
i=1

∏
i 6=j

li(a) = 0. (6.39)

This shows that the discriminant curve is a Lüroth quartic given by the deter-
minantal equation (6.34).
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(iii) ⇒ (ii) Computing the determinant, we find the equation ofC in the form
(6.39). Then we linearly embedC3 in C4 and find 5 linear formsLi such that
restriction ofLi to the image is equal toli. Since no four of thel′is are linearly
dependent, no four of theLi’s are linearly dependent. ThusK = V (

∑
L3
i )

is a Sylvester nondegenerate cubic surface. This can be chosen in such a way
that

∑
Li = 0 generates the space of linear relations between the forms. By

definition, the image ofC in P3 given by the formsli is the discriminant curve
of the net of polars ofK.

Definition 6.3.5 The even theta characteristic on a Lüroth curve defined by
the determinantal representation(5.5.7) is called apentalateraltheta charac-
teristic.

By changing the pentalateral inscribed in a weakly nondegenerate Lüroth
quarticC, we mapP1 to the variety of nets of quadrics inP3 with the same
discriminant curveC. Its image in the moduli space of nets of quadrics mod-
ulo projective transformations ofP3 is irreducible. Since there are only finitely
many projective equivalence classes of nets with the same discriminant curve,
we obtain that the pentalateral theta characteristic does not depend on the
choice of the pentalateral.

SupposeC is a nondegenerate Lüroth quartic equal toC(C ′) for some Cleb-
sch quarticC ′. It is natural to guess that the determinantal representation ofC

given by determinant (6.34) corresponds to the pentalateral theta characteris-
tic defined by the Scorza correspondenceRC′ onC. The guess is correct. We
refer for the proof to [194], Theorem 7.4.1.

Remark6.3.7 Since the locus of Clebsch quartics is a hypersurface (of degree
6) in the space of all quartics, the locus of Lüroth quartics is also a hypersur-
face. Its degree is equal to 54 ([434]) . Modern proofs of this fact can be found
in [399], [620], and in [463]. We also refer to a beautiful paper of H. Bateman
which discusses many aspects of the theory of Lüroth quartics, some of this
was revised in [463] and [464]. For example, in the second paper, G. Ottaviani
and E. Sernesi study the locus of singular Lüroth quartics and prove that it
consists of two irreducible components. One of them is contained in the image
of the Clebsch covariant. The other component is equal to the locus of Lüroth
quartics circumscribing a pentalateral with a double point.

Note that the degree of the locus of three quadrics(Q1, Q2, Q3) with dis-
criminant curve isomorphic to a Lüroth quartic is equal to4 · 54 = 216. It con-
sists of one component of degree 6, the zero set of the Toeplitz invariant, and
the other component of degree 210. The component of degree 6 corresponds to
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a choice of a pentagonal theta characteristic, the other component corresponds
to other 35 theta characteristics, for which the monodromy is irreducible.

6.3.6 A Fano model of VSP(f, 6)

Recall that a nondegenerate ternary quarticf ∈ S4(E∨) is one of the spe-
cial cases from Theorem1.3.10where Corollary1.4.6applies. So, the variety
VSP(f, 6)o embeds in the Grassmann varietyG(3,AP3(f)∨) ∼= G(3, 7). The
image is contained in the subvarietyG(3,AP3(f))σ of isotropic subspaces of
the skew-symmetric linear mapσ : Λ2E →

∧2 AP3(f). Choosing a basis in
E and identifyingΛ2E with E∨, we can view this map as a skew-symmetric
7× 7-matrixM whose entries are linear functions onE. LetL ⊂ AP3(f)∨ be
an isotropic subspace ofσ. In appropriate coordinates(t0, t1, t2), we can write
M in the block-form

M =
(
B A

−tA 0

)
,

whereB is a square skew-symmetric4 × 4 matrix andA is a 4 × 3 matrix.
The maximal minors of the matrixA generate an ideal inC[t0, t1, t2] defining
a closed0-dimensional subschemeZ of length 6. This defines the map

G(3,AP3(f))σ → VSP(f, 6)

which is the inverse of the map VSP(f, 6)o → G(3,AP3(f))σ (see [496]).
The following Theorem is originally due to S. Mukai [441] and was reproved

by a different method by K. Ranestad and F.-O. Schreyer [496], [548].

Theorem 6.3.19 Let f ∈ S4(E∨) be a nondegenerate quartic form in 3
variables. Then the mapV SP (f, 6)o → G(3,AP3(f)∨)σ extends to an iso-
morphism

µ : VSP(f, 6)→ G(3,AP3(f)∨)σ.

If f is a general quartic, the varietyG(3,AP3(f)∨)σ is a smooth threefold.
Its canonical class is equal to−H, whereH is a hyperplane section in the
Plücker embedding of the Grassmannian.

Recall that aFano varietyof dimensionn is a projective varietyX with
ample−KX . If X is smooth, and Pic(X) ∼= Z and−KX = mH, whereH is
an ample generator of the Picard group, thenX is said to be ofindexm. The
degreeof X is the self-intersection numberHn . The numberg = 1

2H
n + 1 is

called thegenus.
In fact, in [440] S. Mukai had announced a more precise result. The variety

VSP(f, 6) is a Gorenstein Fano variety iff is not a L̈uroth quartic and it is
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smooth, ifV (f) is nondegenerate and does not admit complete quadrangles as
its a polar6-side (acomplete quadrangleis the union of 6 lines joining two out
of four general points in the plane).

Remark6.3.8 A Fano varietyV22 of degree 22 (genus 12) and index 1 was
omitted in the original classification of Fano varieties with the Picard num-
ber 1 due to Gino Fano. It was discovered by V. Iskovskikh. It has the same
Betti numbers as theP3. It was proven by S. Mukai that every such variety is
isomorphic to VSP(f, 6) for a unique quartic forF = V (f). He also makes
the relation between VSP(f, 6) and the correspondingV22 very explicit. The
Clebsch quartic curveC = C(F ) of F can be reconstructed fromV22 as the
Hilbert scheme of lines onV22 (in the anticanonical embedding). The Scorza
correspondence defining the corresponding even theta characteristic is the inci-
dence relation of lines. The quartic is embedded in the plane of conics onV22.
In this way Mukai gets another proof of Corollary6.3.13. Also he shows that
through each point onV22 passes 6 conics taken with multiplicities. In the dual
plane they correspond to a generalized polar hexagon off (see [441], [442]).

By the same method, Ranestad and Schreyer extended the previous result to
all exceptional cases listed in subsection1.4.3, wheren = 2. We have

Theorem 6.3.20 Letf be a general ternary form of degree2k. Then

• k = 1: VSP(f, 3) ∼= G(2, 5)σ is isomorphic to a Fano variety of degree 5
and index 2.

• k = 2: VSP(f, 6) ∼= G(3, 7)σ is isomorphic to the Fano varietyV22 of
degree 22 and index 1.
• k = 3: VSP(f, 10) ∼= G(4, 9)σ is isomorphic to a K3 surface of degree38

in P20.
• k = 4: VSP(f, 15) ∼= G(5, 11)σ is a set of 16 points.

In the two remaining cases(n, k) = (1, k) and(n, k) = (3, 2), the variety
VSP(f, k+1) is isomorphic toP1 (see1.5.1) in the first case and, in the second
case, the birational type of the variety VSP(f, 10) is unknown at present.

LetC = V (f) be a nonsingular plane quartic andθ is an even theta charac-
teristic onC. Let Nϑ be the corresponding net of quadrics inP(H0(C, θ(1))).
Let N⊥ϑ be the apolar linear system of quadrics in the dual projective space
P̌3. Its dimension is equal to 6. We say that a rational normal cubicR in P̌3

is associated toNϑ if the net of quadrics|JR(2)| vanishing onR is contained
in N⊥ϑ . In [548] F.-O. Schreyer constructs a linear mapα :

∧2 N⊥ϑ → Nϑ and
shows that the nets of quadrics defining the associated rational normal curves is
parameterized by the subvarietyG(3,N⊥ϑ )α of isotropic subspaces ofα. This



294 Plane Quartics

reminds the construction ofG(3,AP3(f)∨)σ. In fact, consider the transpose
map tα : N∨ϑ →

∧2(E⊥)∨ and pass to the third symmetric power to get a
linear map

S3(N∨ϑ)→ S3
2∧

(N⊥ϑ )∨ →
6∧

(N⊥ϑ )∨ → N⊥ϑ .

Its kernel can be identified with AP3(g), whereV (g) is the quartic suchV (f)
is its Scorza quartic. This gives another proof of the Scorza birational isomor-
phism betweenM3 andMev

3 . A similar construction was announced earlier
by S. Mukai [440].

6.4 Invariant theory of plane quartics

Let I(d) denote the space of SL(3)-invariants of degreed in the linear action of
SL(3) on the space of quartic ternary forms. We have already encountered an
invariantF6 of degree 6, the catalecticant invariant. It vanishes on the space of
Clebsch quartics. Another familiar invariant is the discriminant invariantF27 of
degree 27. There is also an invariantF3 of degree 3 with symbolic expression
(abc)3. We will explain its geometric meaning a little later.

Let us introduce the generating function

P (T ) =
∞∑
d=0

dimC I(d)T d.

It has been computed by T. Shioda [580], the answer is

P (T ) =
N(T )∏6

i=1(1− T 3i)(1− T 27)
, (6.40)

where

N(T ) = 1 + T 9 + T 12 + T 15 + 2T 18 + 3T 21 + 2T 24 + 3T 27 + 4T 30 + 3T 33 + 4T 36

+4T 39 + 3T 42 + 4T 45 + 3T 48 + 2T 51 + 3T 54 + 2T 57 + T 60 + T 63 + T 66 + T 75.

It was proven by J. Dixmier [184] that the algebra of invariants is finite over
the free subalgebra generated by 7 invariants of degrees3, 6, 9, 12, 15, 18, 27.
This was conjectured by Shioda. He also conjectured that one needs 6 more
invariants of degrees9, 12, 15, 18, 21, 21 to generate the whole algebra of in-
variants. This is still open. We know some of the covariants of plane quartics.
These are the Hessian He of order 6 and degree 3 and the Clebsch covariant
C4 of order 4 and degree 3. Recall that it assigns to a general quartic the clo-
sure of the locus of points whose polar is equianharmonic cubic. There is a
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similar covariantC6 of degree 4 and order 6 which assigns to a general quartic
curve the closure of the locus of points whose polars are harmonic cubics. The
Steinerian covariant of degree12 and order12 is a linear combination of the
C3

4 andC2
6.

The dual analogs of the covariantsC4 andC6 are theharmoniccontravariant
Φ6 of class6 and degree 3 and theequianharmoniccontravariantΦ4 of class
4 and degree 2. The first (resp. the second) assigns to a general quartic the
closure of the locus of lines which intersect the quartic at a harmonic (resp.
equianharmonic) set of four points.

The invariantA3 vanishes on the set of curvesC such that the quartic en-
velope Φ4(C) is apolar toC. One can generate a new invariant by using
the polarity pairing between covariants and contravariants of the same or-
der. The obtained invariant, if not zero, is of degree equal to the sum of de-
grees of the covariant and the contravariant. For example,(Φ4(C),C4(C))
or (Φ6(C),He(C)) give invariants of degree 6. It follows from (6.40) that
all invariants of degree 6 are linear combinations ofA2

3 andA6. However,
(Φ6(C),C6(C)) is a new invariant of degree 9. Taking here the Hessian co-
variant instead ofC6(C), one obtains an invariant of degree6.

There is another contravariantΩ of class 4 but of degree 5. It vanishes on
the set of lines̀ such that the unique anti-polar conic of` contains` (see
[194], p. 274). Same degree and order is the contravariantA3Φ4, but the two
contravariants are different.

We can also generate new covariants and contravariants by taking the polar
pairing at already known covariants and contravariants. For example, one gets
a covariant conicσ of degree 5 by operatingΦ4(C) on He(C). Or we may
operateC onΦ6(C) to get a contravariant conic of degree 4.

Applying known invariants to covariants or contravariants gets a new invari-
ant. However, they are of large degrees. For example, taking the discriminant
of the Hessian, we get an invariant of degree215. However, it is reducible, and
contains a component of degree 48 representing an invariant which vanishes on
the set of quartics which admit a polar conic of rank1 [612]. There are other
known geometrically meaningful invariants of large degree. For example, the
Lüroth invariant of degree 54 vanishing on the locus of Lüroth quartics and
theSalmon invariantof degree 60 vanishing on the locus of quartics with an
inflection bitangent (see [134]).

The GIT-quotient of|OP2(4)| by SL(3) and other compactifications of the
moduli space of plane quartic curves were studied recently from different as-
pects. Unfortunately, it is a too large topic to discuss it here. We refer to [13],
[15],[313], [386], [407], [408].
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6.5 Automorphisms of plane quartic curves

6.5.1 Automorphisms of finite order

Since an automorphism of a nonsingular plane quartic curveC leaves the
canonical classKC invariant, it is defined by a projective transformation. We
first describe all possible cyclic groups of automorphisms ofC.

Lemma 6.5.1 Let σ be an automorphism of ordern > 1 of a nonsingular
plane quarticC = V (f). Then one can choose coordinates in such a way that
a generator of the cyclic group(σ) is represented by the diagonal matrix

diag[1, ζan, ζ
b
n], 0 ≤ a < b < n,

whereζn is a primitiven-th root of unity, andf is given in the following list.

(i) (n = 2), (a, b) = (0, 1),

t42 + t22g2(t0, t1) + g4(t0, t1);

(ii) (n = 3), (a, b) = (0, 1),

t32g1(t0, t1) + g4(t0, t1);

(iii) (n = 3), (a, b) = (1, 2),

t40 + αt20t1t2 + t0t
3
1 + t0t

3
2 + βt21t

2
2;

(iv) (n = 4), (a, b) = (0, 1),

t40 + g4(t1, t2);

(v) (n = 4), (a, b) = (1, 2),

t40 + t41 + t42 + αt20t
2
2 + βt0t

2
1t2;

(vi) (n = 6), (a, b) = (2, 3),

t40 + t42 + αt20t
2
2 + t0t

3
1;

(vii) (n = 7), (a, b) = (1, 3),

t30t2 + t32t1 + t0t
3
1;

(viii) (n = 8), (a, b) = (3, 7),

t40 + t31t2 + t1t
3
2;

(ix) (n = 9), (a, b) = (2, 3),

t40 + t0t
3
2 + t31t2;
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(x) (n = 12), (a, b) = (3, 4),

t40 + t41 + t0t
3
2.

Here the subscripts in polynomialsgi indicate their degree.

Proof Let us first choose coordinates such thatσ acts by the formula

σ : [x0, x1, x2] 7→ [x0, ζ
a
nx1, ζ

b
nx2],

wherea ≤ b < n. If a = b, we can scale the coordinates byζ−a, and then
permute the coordinates to reduce the action to the case, where0 ≤ a < b.

We will often use thatf is of degree≥ 3 in each variable. This follows from
the assumption thatf is nonsingular. A formf is invariant with respect to the
action if all monomials entering inf with nonzero coefficients are eigenvectors
of the action ofσ on the space of quartic ternary forms. We denote byp1, p2, p3

the points[1, 0, 0], [0, 1, 0], [0, 0, 1].

Case 1: a = 0.
Write f in the form:

f = αt42 + t32g1(t0, t1) + t22g2(t0, t1) + t2g3(t0, t1) + g4(t0, t1). (6.41)

Assumeα 6= 0. Sinceg4 6= 0, if α 6= 0, we must have4b ≡ 0 mod n. This
implies thatn = 2 or 4. In the first caseg1 = g3 = 0, and we get case (i). If
n = 4, we must haveg1 = g2 = g3 = 0, and we get case (iv).

If α = 0, then3b = 0 mod n. This implies thatn = 3 andg2 = g3 = 0.
This gives case (ii).

Case 2: a 6= 0.
The conditiona < b < n implies thatn > 2.

Case 2a: The pointsp1, p2, p3 lie onC.
This implies that no monomialt4i enters inf . We can writef in the form

f = t30a1(t1, t2) + t31b1(t0, t2) + t32c1(t0, t1)

+t20a2(t1, t2) + t21b2(t0, t2) + t22c2(t0, t1),

whereai, bi, ci are homogeneous forms of degreei. If one of them is zero, then
we are in the Case 1 withα = 0. Assume that all of them are not zeroes. Since
f is invariant, it is clear that noti enters in two different coefficientsa1, b1, c1.
Without loss of generality, we may assume that

f = t30t2 + t32t1 + t31t0 + t20a2(t2, t3) + t21b2(t0, t2) + t22c2(t0, t1).

Now we haveb ≡ a + 3b ≡ 3a mod n. This easily implies7a ≡ 0 mod n
and7b ≡ 0 mod n. Sincen|g.c.m(a, b), this implies thatn = 7, and(a, b) =
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(1, 3). By checking the eigenvalues of other monomials, we verify that no other
monomials enters inf . This is case (vii).

Case 2b: Two of the pointsp1, p2, p3 lie on the curve.
After scaling and permuting the coordinates, we may assume that the point

p1 = [1, 0, 0] does not lie onC. Then we can write

f = t40 + t20g2(t1, t2) + t0g3(t1, t2) + g4(t1, t2),

wheret41, t
4
2 do not enter ing4.

Without loss of generality, we may assume thatt31t2 enters ing4. This gives
3a + b ≡ 0 mod n. Supposet1t32 enters ing4. Thena + 3b ≡ 0 mod n.
Then8a ≡ n, 8b ≡ 0 mod n. As in the previous case this easily implies that
n = 8. This gives case (viii). Ift1t32 does not enter ing4, thent32 enters ing3.
This gives3b ≡ 0 mod n. Together with3a+b ≡ 0 mod n this givesn = 3
and(a, b) = (1, 2), orn = 9 and(a, b) = (2, 3). These are cases (iii) and (ix).

Case 2c: Only one pointpi lies on the curve.
Again we may assume thatp1, p3 do not lie on the curve. Then we can write

f = t40 + t41 + t20g2(t1, t2) + t0g3(t1, t2) + g4(t1, t2),

wheret41, t
4
2 do not enter ing4. This immediately gives4a ≡ 0 mod n. We

know that eithert32 enters ing3, or t1t32 enters ing4. In the first case,3b ≡ 0
mod n and together with4a ≡ 0 mod n, we getn = 12 and(a, b) = (3, 4).
Looking at the eigenvalues of other monomials, this easily leads to case (x). If
t32t1 enters ing4, we get3b + a ≡ 0 mod n. Together with4a ≡ 0 mod n,
this gives12b ≡ 0 mod 12. Hencen = 12 or n = 6. If n = 12, we get
a = b = 3, this has been considered before. Ifn = 6, we geta = 3, b = 1.
This leads to the equationt40 + t41 + αt20t

2
1 + t1t

3
2 = 0. After permutation of

coordinates(t0, t1, t2) 7→ (t2, t0, t1), we arrive at case (vi).

Case 2d: None of the reference point lies on the curve.
In this case we may assume that

f = t40 + t41 + t42 + t20g2(t1, t2) + t0g3(t1, t2) + t1t2(αt21 + βt22 + γt1t2).

Obviously,4a = 4b = 0 mod n. If n = 2, we are in case (i). Ifn = 4, we
get (a, b) = (1, 2), (1, 3), or (2, 3). Permuting(t0, t1, t2) 7→ (t2, t0, t1), and
multiplying the coordinates byζ2

4 , we reduce the case(1, 2) to the case(2, 3).
The case(1, 3) is also reduced to the case(1, 2) by multiplying coordinates
by ζ4 and then permuting them. Thus, we may assume that(a, b) = (1, 2).
Checking the eigenvalues of the monomials entering inf , we arrive at case
(v).
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6.5.2 Automorphism groups

We employ the notation from [139]: a cyclic group of ordern is denoted by
n, the semi-direct productA o B is denoted byA : B, a central extension of
a groupA with kernelB is denoted byB.A. We denote byLn(q) the group
PSL(n,Fq).

Theorem 6.5.2 The following is the list of all possible groups of automor-
phisms of a nonsingular plane quartic.

Type Order Structure Equation
I 168 L2(7) t30t2 + t0t

3
1 + t1t

3
2

II 96 42 : S3 t40 + t41 + t42
III 48 4.A4 t40 + t41 + 2

√
−3t21t

2
2 + t42

IV 24 S4 t40 + t41 + t42 + a(t20t
2
1 + t20t

2
2 + t21t

2
2)

V 16 4.22 t40 + t41 + at21t
2
2 + t42

VI 9 9 t40 + t0t
3
2 + t31t2

VII 8 D8 t40 + t41 + t42 + at20t
2
2 + bt21t0t2

VIII 6 6 t40 + t42 + t0t
3
1 + at20t

2
2

IX 6 S3 t40 + t0(t
3
1 + t32) + at20t1t2 + bt21t

2
2

X 4 22 t40 + t41 + t42 + at20t
2
2 + bt20t

2
1 + ct21t

2
2

XI 3 3 t32t1 + t0(t
3
1 + at21t0 + bt1t

2
0 + ct30)

XII 2 2 t42 + t22g2(t0, t1) + t40 + at20t
2
1 + t41

Table 6.1Automorphisms of plane quartics

Before we prove the Theorem, let us comment on the parameters of the
equations. First of all, their number is equal to the dimension of the moduli
space of curves with the given automorphism group. The equations containing
parameters may acquire additional symmetry for special values of parameters.
Thus in Type IV, one has to assume thata 6= 3

2 (−1 ±
√
−7), otherwise the

curve becomes isomorphic to the Klein curve (see [248], vol. 2, p. 209, or
[518]). In Type V, the special values area = 0,±2

√
−3,±6. If a = 0, we get

the Fermat quartic, ifa = ±6, we again get Type II (use the identity

x4 + y4 =
1
8
((x+ y)4 + (x− y)4 + 6(x+ y)2(x− y)2).

If a = ±2
√
−3, we get Type III (the identity

x4 + y4 + ax2y2 =
e−πi/4

4
((x+ iy)4 + (x− y)4 + a(x+ iy)2(x− iy)2)

exhibits an additional automorphism of order 3). In Type VII, we have to as-
sumeb 6= 0, otherwise the curve is of Type V. In Type VIII,a 6= 0, otherwise
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the curve is of type III. In Type IX,a 6= 0, otherwise the curve acquires an
automorphism of order 4. In TypeX, all the coefficientsa, b, c are different.
We leave the cases XI and XII to the reader.

Proof SupposeG contains an element of ordern ≥ 6. Applying Lemma
6.5.1, we obtain thatC is isomorphic to a quartic of type VIII (n = 6), I
(n = 7), II (n = 8), VI (n = 9), and III (n = 12). Here we use that, in the case
n = 8 (resp.n = 12) the binary formt31t2+t1t

3
2 (resp.t41+t0t

3
2) can be reduced

to the binary formst41 + t42 (resp.t41 + 2
√
−3t21t + t42) by a linear change of

variables. It corresponds to a harmonic (resp. equianharmonic) elliptic curve.
Assumen = 8. ThenC is a Fermat quartic. Obviously,G contains a sub-

groupG′ = 42 : S3 of order96. If it is a proper subgroup, then the order
of G is larger than168. By Hurwitz’s Theorem, the automorphism group of a
nonsingular curve of genusg is of order≤ 84(g − 1) (see [311], Chapter 5,
Exercise 2.5). This shows thatG ∼= 42 : S3, as in Type II.

Assumen = 7. Then the curve is projectively isomorphic to theKlein curve
which we will discuss in the next subsection and will show that its automor-
phism group is isomorphic toL2(7). This deals with Type I.

Now we see thatG may contain only Sylow 2-subgroups or 3-subgroups.
Case 1: G contains a 2-group.

First of all, the orderN = 2m of G is less than or equal to16. Indeed, by
above, we may assume thatG does not contain cyclic subgroups of order2a

with a > 2. By Hurwitz’s formula

4 = N(2g′ − 2) +N
∑

(1− 1
ei

).

If N = 2m,m > 4, then the right-hand side is divisible by 8.
SoN = 2m,m ≤ 4. As is well-known, and is easy to prove, the centerZ

of G is not trivial. Pick up an elementσ of order 2 in the center and consider
the quotientC → C/(σ) = C ′. Since any projective automorphism of order
2 fixes pointwisely a linè , g has a fixed point onC. By Hurwitz’s formula,
C ′ is a curve of genus 1, and the cover is ramified at 4 points. By choosing the
coordinates such thatσ = diag[−1, 1, 1], the equation ofC becomes

t42 + t22g2(t0, t1) + g4(t0, t1) = 0. (6.42)

If G = (σ), we get type XII. SupposeG = 22 andτ is another generator. After
a linear change of variablest1, t2, we may assume thatτ acts as[t0, t1, t2] 7→
[t0, t1,−t2]. This implies thatg2 does not contain the monomialt1t2 andg4
does not contain the monomialst31t2, t1t

3
2. This leads to Type X.

If G = (τ) ∼= Z/4Z, there are two cases to consider corresponding to
items (iv) and (v) in Lemma6.5.1. In the first case, we may assume thatτ :
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[t0, t1, t2] 7→ [t0, t1, it2]. This forcesg2 = 0. It is easy to see that any binary
quartic without multiple zeros can be reduced to the formt41 +at21t

2
2 + t42. Now

we see that the automorphism group of the curve

V (t40 + t41 + at21t
2
2 + t42), a 6= 0,

contains a subgroup generated by the transformations

g1 : [t0, t1, t2] 7→ [it0, t1, t2],

g2 : [t0, t1, t2] 7→ [t0, it1,−it2],
g3 : [t0, t1, t2] 7→ [it0, it2, it1].

The elementg1 generates the center, and the quotient is isomorphic to22 :=
(Z/2Z)2. We denote this group by4.22. It is one of 9 non-isomorphic non-
abelian groups of order 16. Other way to represent this group isD8 : 2. The
dihedral subgroupD8 is generated byg2 andg1g3. If a = 0, it is the Fermat
curve of type II.

In the second case we may assume thatτ : [t0, t1, t2] 7→ [t0, it1,−t2]. In
this case, we can reduce the equation to the form (v) from Lemma6.5.1. It is
easy to see thatG contains the dihedral groupD8. If there is nothing else, we
get Type VII. There are two isomorphism classes of group of order 16 which
containD8. They areD8 × 2 or 4.22 from above. In the first case, the group
contains a subgroup isomorphic to23 := (Z/2Z)3. This group does not embed
in PGL(3). In the second case, the center is of order 4, hence commutes with
τ but does not equal to(τ). The equation shows that this is possible only if the
coefficientb = 0. Thus we get a curve of typeV .

Case 2: G contains a Sylow 3-subgroup.
Let Q be a Sylow3-subgroup ofG. AssumeQ contains a subgroupQ′

isomorphic to32. By Hurwitz’s formula, the quotient ofC by a cyclic group
of order 3 is either an elliptic curve or a rational curve. In the first case, the
quotient map has 2 ramification points, in the second case it has 5 ramification
points. In any case, the second generator ofQ′ fixes one of the ramification
points. However, the stabilizer subgroup of any point on a nonsingular curve is
a cyclic group. This contradiction shows thatQ must be cyclic of order 3 or 9.

Case 2a: Q is of order 9.
If Q = G, we are getting Type VI. Thus, we may assume thatG contains

a Sylow 2-subgroupP of some order2m,m ≤ 4. By Sylow’s Theorem, the
numbers3 of Sylow 3-subgroups is equal to1 + 3k and it divides2m. This
givess3 = 1, 4, 16. If m = 1, the subgroupQ is normal. The coverC → C/Q

is ramified at 5 points with ramification indices(9, 9, 3). If Q 6= G, thenP
contains a subgroup isomorphic to9 : 2. It does not contain elements of order
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6. An element of order 2 in this group must fix one of the 5 ramification points
and gives a stabilzier subgroup of order 6 or 18. Both is impossible.

SupposeQ is not a normal subgroup. The numbern3 of Sylow 3-subgroups
is equal to4 if m = 2, 3, or16 if m = 4. Consider the action ofG on the set of
28 bitangents. It follows from the normal form of an automorphism of order 9
in Lemma6.5.1thatQ fixes a bitangent. Thus, the cardinality of each orbit of
G on the set of bitangents divides2m and the number of orbits is equal to 4 or
16. It easy to see that this is impossible.

Case 2a: Q is of order 3.
If P contains an element of order 4 of type (v), then, by the analysis from

Case 1, we infer thatG containsD8. If P ∼= D8, by Sylow’s Theorem, the in-
dex of the normalizerNG(P ) is equal to the numbers2 of Sylow2-subgroups.
This shows thats2 = 1, henceP is normal inG. An element of order 4 inP
must commute with an element of order 3, thusG contains an element of order
12, hence the equation can be reduced to the Fermat equation of type II. Thus
P must be of order16. This leads to Type III.

So, we may assume thatP does not contain an element of order 4 of type
(v). If it contains an element of order 4, then it must have equation of type V
with a = 0. This leads again to the Fermat curve.

Finally, we arrive at the case whenP has no elements of order 4. ThenP
is an abelian group(Z/2Z)m, wherem ≤ 2 (the group23 does not embed in
Aut(P2). If m = 0, we get Type XI, ifm = 1, we get type IX, ifm = 2, we
get Type IV.

6.5.3 The Klein quartic

Recall that a quartic curve admitting an automorphism of order 7 is projectively
equivalent to the quartic

C = V (t0t31 + t1t
3
2 + t30t2). (6.43)

The automorphismS of order 7 acts by the formula

S : [t0, t1, t2] 7→ [εt0, ε2t1, ε4t2], ε = e2πi/7,

where we scaled the action to represent the transformation by a matrix from
SL(3).

As promised, we will show that the group of automorphisms of such a quar-
tic is isomorphic to the simple groupL2(7) of order 168. By Hurwitz’s Theo-
rem, the order of this group is the largest possible for curves of genus 3.
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Observe that equation6.43has a symmetry given by a cyclic permutationU
of the coordinates. It is easy to check that

USU−1 = S4, (6.44)

so that the subgroup generated byS,U is a group of order 21 isomorphic to
the semi-direct product7 : 3.

By a direct computation one checks that the following unimodular matrix
defines an automorphismT of C of order 2:

i√
7

ε2 − ε5 ε4 − ε3 ε− ε6
ε− ε6 ε2 − ε5 ε4 − ε3
ε4 − ε3 ε− ε6 ε2 − ε5

 . (6.45)

We have

TUT−1 = U2, (6.46)

so that the subgroup generated byU, T is the dihedral group of order 6. One
checks that the 49 productsSaTSb are all distinct. In particular, the cyclic
subgroup(S) is not normal in the groupG generated byS, T, U . Since the
order ofG is divisible by2 · 3 · 7 = 42, we see that#G = 42, 84, 126, or 168.
It follows from Sylow’s Theorem that the subgroup(S) must be normal in the
first three cases, so#G = 168, and by Hurwitz’s Theorem

Aut(C) = G = 〈S,U, T 〉.

One checks thatV = (TS)−1 satisfiesV 3 = 1 and the group has the presen-
tation

G = 〈S, T, V : S7 = V 3 = T 2 = STV = 1〉.

Proposition 6.5.3 The groupAut(C) is a simple groupG168 of order 168.

Proof SupposeH is a nontrivial normal subgroup ofG. Assume that its order
is divisible by 7. Since its Sylow 7-subgroup cannot be normal inH, we see
thatH contains all Sylow 7-subgroups ofG. By Sylow’s Theorem, their num-
ber is equal to 8. This shows that#H = 56 or 84. In the first caseH contains
a Sylow 2-subgroup of order 8. SinceH is normal, all its conjugates are inH,
and, in particular,T ∈ H. The quotient groupG/H is of order 3. It follows
from (6.46) that the coset ofU must be trivial. Since3 does not divide 56, we
get a contradiction. In the second case,H containsS, T, U and hence coincide
with G. So, we have shown thatH cannot contain an element of order 7. Sup-
pose it contains an element of order 3. Since all such elements are conjugate,
H containsU . It follows from (6.44), that the coset ofS in G/H is trivial,
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henceS ∈ H, contradicting the assumption. It remains to consider the case
whenH is a 2-subgroup. Then#G/H = 2a ·3 ·7, with a ≤ 2. It follows from
Sylow’s Theorem that the image of the Sylow 7-subgroup inG/H is normal.
Thus its preimage inG is normal. This contradiction finishes the proof thatG

is simple.

Remark6.5.1 One can show that

G168
∼= PSL(2,F7) ∼= PSL(3,F2).

The first isomorphism has a natural construction via the theory of automorphic
functions. The Klein curve is isomorphic to a compactification of the modular
curveX(7) corresponding to the principal congruence subgroup of full level
7. The second isomorphism has a natural construction via considering a model
of the Klein curve over a finite field of 2 elements (see [231]). When can see
an explicit action ofG on 28 bitangents via the geometry of the projective line
P1(F7) (see [151], [356]).

The group Aut(C) acts on the set of 36 even theta characteristics with orbits
of cardinality1, 7, 7, 21 (see [194]. The unique invariant even theta characteris-
tic θ gives rise to a uniqueG-invariant inP3 = P(V ), whereV = H0(C, θ(1)).
Using the character table, one can decompose the linear representationS2(V )
into the direct sum of the 3-dimensional representationE = H0(C,OC(1))∨

and a 7-dimensional irreducible linear representation. The linear mapE →
S2(V ) defines the unique invariant net of quadrics. This gives another proof
of the uniqueness of an invariant theta characteristic. The corresponding rep-
resentation ofC as a symmetric determinant is due to F. Klein [376] (see also
[219]). We have

det


−t0 0 0 −t2
0 t2 0 −t2
0 0 t2 −t0
t2 −t2 −t0 0

 = t30t2 + t32t0 + t31t0. (6.47)

The group Aut(C) has 3 orbits onC with non-trivial stabilizers of orders
2, 3, 7. They are of cardinality84, 56 and24, respectively.

The orbit of cardinality24 consists of inflection points ofC. They are the
vertices of the 8 triangles with inflection tangents as its sides. These are the 8
contact cubics corresponding to the unique invariant theta characteristic. The
8 inflection triangles coincide with 8 biscribed triangles. The group acts on the
eight triangles with stabilizer subgroup of order 21. In fact, the coordinate tri-
angle is one of the eight triangles. The subgroup generated byS andU leaves
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it invariant. The elementT of order 2 sends the coordinate triangle to the tri-
angle with sides whose coordinates are the rows of the matrix. In fact, this is
how the elementT was found (see [376] or [248], vol. 2, p. 199).

We know that the inflection points are the intersection points ofC and its
Hessian given by the equation

He(f) = 5t20t
2
2t

2
2 − t0t52 − t50t1 − t1t51 = 0.

So the orbit of 24 points is cut out by the Hessian.
The orbit of cardinality 56 consists of the tangency points of 28 bitangents of

C. An example of an element of order 3 is a cyclic permutation of coordinates.
It has 2 fixed points[1, η3, η2

3 ] and[1, η2
3 , η3] onC. They lie on the bitangent

with equation

4t0 + (3η2
2 + 1)t1 + (3η3 + 1)t2 = 0.

Define a polynomial of degree 14 by

Ψ = det


∂2f
∂t20

∂2f
∂t0t1

∂2f
∂t0t2

∂f
∂t0

∂2f
∂t1t0

∂2f
∂t21

∂2f
∂t1t2

∂f
∂t1

∂2f
∂t2t0

∂2f
∂t2t1

∂2f
∂t22

∂f
∂t2

∂f
∂t0

∂f
∂t1

∂f
∂t2

0

 .

One checks that it is invariant with respect toG168 and does not containf as a
factor. Hence it cuts out inV (f) aG-invariant positive divisor of degree 56. It
must consists of aG168-orbit of cardinality 56.

One can compute it explicitly (see [648], p. 524) to find that

Ψ = t140 + t141 + t142 − 34t0t1t2(t100 t1 + . . .)− 250t0t1t2(t30t
8
2 + . . .)+

375t20t
2
1t

2
2(t

6
0t

2
1 + . . .) + 18(t70t

7
2 + . . .)− 126t30t

3
2t

3
1(t

3
0t

2
2 + . . .).

Here the dots mean monomials obtained from the first one by permutation of
variables.

The orbit of cardinality 84 is equal to the union of 21 sets, each consisting
of 4 intersection points ofC with the line of fixed points of a transformation
of order 2. An example of such a point is

((ε4 − ε3)(ε− ε6)ε4, (ε2 − ε5)(ε− ε6)ε, (ε4 − ε3)(ε2 − ε5)ε2).

The productξ of the equations defining the 21 lines defines a curve of degree
21 which coincides with the curveV (J(f,H,Ψ)), whereJ(f,H,Ψ) is the
Jacobian determinant off , the Hesse polynomial, andΨ. It is aG168-invariant
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polynomial of degree 21. Its explicit expression was given by P. Gordan in
[281], p. 372.

Ξ = t210 + t211 + t212 − 7t0t1t2(t170 t1 + . . .) + 217t0t1t2(t30t
15
2 . . .)−

308t20t
2
1t

2
2(t

13
0 t

2
1 + . . .)− 57(t140 t

7
1 + . . .)− 289(t70t

14
2 + . . .)+

4018t30t
3
1t

3
2(t

2
0t
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The groupG168 admits a central extension2.L2(7) ∼= SL(2,F7). It has
a linear representation inC3 where it acts as a complex reflection group. The
algebra of invariants is generated by the polynomialf defining the Klein curve,
the Hesse polynomialH, and the polynomialsΨ. The polynomialΞ is a skew
invariant, it is not invariant but its square is. We have (see [281],[248], vol. 2,
p. 208)

Ξ2 = Φ3 − 88f2HΨ2 + 16(63fH4Ψ + 68f4H2Ψ− 16f7Ψ

+108H7 − 3752f3H5 + 1376f6H3 − 128f9H). (6.48)

(note that there is some discrepancy of signs in formulas of Gordan and Fricke).
We have already mentioned that the Scorza quartic of the Klein quarticC

coincides withC. The corresponding even theta characteristic is the unique
invariant even theta characteristicθ. One can find all quartic curvesX such
that its Scorza quartic is equal toC (see [108], [194]).

The groupG acts on the set of 63 Steiner complexes, or, equivalently, on the
set of nontrivial 2-torsion divisor classes of the Jacobian of the curve. There is
one orbit of length 28, an orbit of length 21, and two orbits of length 7. Also the
groupG168 acts on Aronhold sets with orbits of length8, 168, 56 and56 [356].
In particular, there is no invariant set of 7 points in the plane which definesC.

The variety VSP(C, 6) is a Fano threefoldV22 admittingG168 as its group
of automorphisms. It is studied in [423].

Exercises

6.1Show that two syzygetic tetrads of bitangents cannot have two common bitangents.

6.2LetCt = V (tf +q2) be a family of plane quartics overC depending on a parameter
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t. Assume thatV (f) is nonsingular andV (f) andV (q) intersect transversally at 8
pointsp1, . . . , p8. Show thatCt is nonsingular for allt in some open neighborhood of
0 in usual topology and the limit of 28 bitangents whent → 0 is equal to the set of 28
linespipj .

6.3Show that the locus of nonsingular quartics which admit an inflection bitangent is a
hypersurface in the space of all nonsingular quartics.

6.4 Consider the Fermat quarticV (t40 + t41 + t42). Find all bitangents and all Steiner
complexes. Show that it admits 12 inflection bitangents.

6.5An open problem: what is the maximal possible number of inflection bitangents on
a nonsingular quartic?

6.6Let S = {(`1, `′1), . . . , (`6, `′6)} be a Steiner complex of 12 bitangents. Prove that
the six intersection points̀i ∩ `′i lie on a conic and all̀ 28

2

´
= 378 intersection points

of bitangents lie on 63 conics.

6.7 Show that the pencil of conics passing through the four contact points of two bi-
tangents contains five members each passing through the contact points of a pair of
bitangents.

6.8 Show that a choice ofε ∈ Jac(C)[2] \ {0} defines a conicQ and a cubicB such
thatC is equal to the locus of pointsx such that the polarPx(B) is touchingQ.

6.9 Let C = V (a11a22 − a2
12) be a representation of a nonsingular quarticC as a

symmetric quadratic determinant corresponding to a choice of a 2-torsion divisor class
ε. Let C̃ be the unramified double cover ofC corresponding toε. Show thatC̃ is iso-
morphic to a canonical curve of genus 5 given by the equations

a11(t0, t1, t2)− t23 = a12(t0, t1, t2)− t3t4 = a22(t0, t1, t2)− t24 = 0

in P4.

6.10Show that the moduli space of bielliptic curves of genus 4 is birationally isomor-
phic to the moduli space of isomorphism classes of genus 3 curves together with a
nonzero 2-torsion divisor class.

6.11A plane quarticC = V (f) is called aCaporali quarticif VSP(f, 4)o 6= ∅.

(i) Show that theC admits a pencil of apolar conics.
(ii) Show that the Clebsch covariant quarticC(C) is equal to the union of four lines.
(iii) Show that any Caporali quartic is projectively isomorphic to the curve

at0(t
3
1 − t32) + bt1(t

3
2 − t31) + ct2(t

3
0 − t31) = 0.

([64]).

6.11Let q be a nondegenerate quadratic form in 3 variables. Show that VSP(q2, 6)o is
a homogeneous space for the group PSL(2, C).

6.12 Show that the locus of lines̀ = V (l) such that the anti-polar conic ofl2 with
respect to a quartic curveV (f) is reducible is a plane curve of degree 6 in the dual
plane.

6.13Classify automorphism groups of irreducible singular plane quartics.

6.14For each nonsingular plane quartic curveC with automorphism groupG describe
the ramification scheme of the coverC → C/G.

6.15Let C be the Klein quartic. For any subgroupH of Aut(C) determine the genus
of H and the ramification scheme of the coverC → C/H.
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6.16Show that a smooth plane quartic admits an automorphism of order 2 if and only
if among its 28 bitangents four form a syzygetic set of bitangents intersecting at one
point.

6.17Show that the set of polar conicsPx2(C) of a plane quarticC, wherex belongs to
a fixed line, form a family of contact conics of another plane quarticC′.

6.18Show that the description of bitangents via the Cayley octad can be stated in the
following way. LetC = det A be the symmetric determinantal representation ofC with
the Cayley octad O. LetP be the8 × 4 matrix with columns equal to the coordinates
of the points in O. The matrixM = tPAP is a symmetric8× 8 matrix, and its entries
are the equations of the bitangents (thebitangent matrix, see [484]).

6.19Show that the bitangents participating in each principal4×4 minor of the bitangent
matrix from the previous exercise is a syzygetic tetrad, and the minor itself defines the
equation of the form (6.1).

6.20Let C andK be general conic and a cubic. Show that the set of pointsa such that
Pa(C) is tangent toPa(K) is a Lüroth quartic. Show that the set of polar linesPa(C)
which coincide with polar linesPa(K) is equal to the set of seven Aronhold bitangents
of the Lüroth quartic ([28]).

6.21Show that the set of 28 bitangents of the Klein quartic contains 21 subsets of four
concurrent bitangents and each bitangent has 3 concurrency points.

6.22Let ν3 : |E| → |S3(E∨)| be the Veronese embedding corresponding to the apo-
larity map ap1f : E → S3(E∨) for a general plane quarticV (f) ⊂ |E|. Show that the
variety VSP(f, 6) is isomorphic to the variety of6-secant planes of the projection of
the Veronese surfaceν3(|E|) to |S3(E∨)/ap1f (E)| ∼= P6 ([423]).

6.23Find a symmetric determinant expression for the Fermat quarticV (t40 + t41 + t42).

Historical Notes

The fact that a general plane quartic curve has 28 bitangents was first proved
in 1850 by C. Jacobi [353] although the number was apparently known to J.
Poncelet. The proof used Plücker formulas and so did not apply to any non-
singular curve. Using contact cubics, Hesse extended this result to arbitrary
nonsingular quartics [321].

The first systematic study of the configuration of bitangents began by O.
Hesse [321],[322] and J. Steiner [593]. Steiner’s paper does not contain proofs.
They considered azygetic and syzygetic sets and Steiner complexes of bi-
tangents although the terminology was introduced later by Frobenius [250].
Hesse’s approach used the relationship between bitangents and Cayley octads.
The notion of a Steiner group of bitangents was introduced by A. Cayley in
[91]. Weber [647] changed it to a Steiner complex in order not to be confused
with the terminology of group theory.

The fact that the equation of a nonsingular quartic could be brought to the
form (6.1) was first noticed by J. Plücker [490]. Equation (6.2) arising from
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a Steiner complex appears first in Hesse’s paper [322], §9. The determinantal
identity for bordered determinants (6.29) appears in [321]. The number of hex-
ads of bitangents with contact points on a cubic curve was first computed by
Hesse [321] and Salmon [538].

The equation of a quartic as a quadratic determinant appeared first in Plücker
[488], p. 228 and in Hesse [322], §10, [323]. Both of them knew that it can be
done in63 different ways. Hesse also proves that the 12 lines of a Steiner
complex, consider as points in the dual plane, lie on a cubic. More details
appear in Roth’s paper [526] and later, in Coble’s book [133].

The relationship between bitangents of a plane quartic and seven points in
the dual projective plane was first discovered by S. Aronhold [12]. The fact
that Hesse’s construction and Aronhold’ construction are equivalent via the
projection from one point of a Cayley octad was first noticed by A. Dixon
[187].

The relation of bitangents to theta functions with odd characteristics goes
back to B. Riemann [516] and H. Weber [647] and was developed later by
A. Clebsch [119] and G. Frobenius [250], [252]. In particular, Frobenius had
found a relationship between the sets of seven points or Cayley octads with
theta functions of genus 3. Coble’s book [133] has a nice exposition of Frobe-
nius’s work. The equations of bitangents presented in Theorem6.1.7were first
found by Riemann, with more details explained by H. Weber. The modern
treatment of the theory of theta functions in genus 3 can be found in many
papers. We refer to [260], [275] and the references there.

The theory of covariants and contravariants of plane quartics was initiated by
A. Clebsch in his fundamental paper about plane quartic curves [116]. In this
paper he introduces his covariant quarticC(C) and the catalecticant invariant.
He showed that the catalecticant vanishes if and only if the curve admits an
apolar conic. Much later G. Scorza [556] proved that the rational mapS on the
space of quartics is of degree 36 and related this number with the number of
even theta characteristics. The interpretation of the apolar conic of a Clebsch
quartic as the parameter space of inscribed pentagons was given by G. Lüroth
[412]. In this paper (the first issue of Mathematische Annalen), he introduced
the quartics which now bear his name. Darboux curves were first introduced
by G. Darboux in [172]. They got a modern incarnation in a paper of W. Barth
[24], where it was shown that the curves of jumping lines of a rank 2 vector
bundle with trivial determinant is a Darboux curve. The modern exposition
of works of F. Morley [434] and H. Bateman [28] on the geometry of L̈uroth
quartics can be found in papers of G. Ottaviani and E. Sernesi [461], [463],
[464].

The groups of automorphisms of nonsingular plane quartic curves were clas-
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sified by S. Kantor [362] and A. Wiman [656]. The first two curves from our
table were studied earlier by F. Klein [376] and W. Dyck [215]. Of course, the
Klein curve is the most famous of those and appears often in modern literature
(see, for example, [581]).

The classical literature about plane quartics is enormous. We refer to Ciani’s
paper [109] for a nice survey of classical results, as well as to his own con-
tributions to the study of plane quartics which are assembled in [111]. Other
surveys can be found in [473] and [236].



7

Cremona transformations

7.1 Homaloidal linear systems

7.1.1 Linear systems and their base schemes

Recall that arational mapf : X 99K Y of algebraic varieties over a fieldK is
a regular map defined on a dense open Zariski subsetU ⊂ X. The largest such
set to whichf can be extended as a regular map is denoted by dom(f). A point
x 6∈ dom(f) is called anindeterminacy pointTwo rational maps are considered
to be equivalent if their restrictions to an open dense subset coincide. A rational
map is calleddominantif f : dom(f)→ Y is a dominant regular map, i.e. the
image is dense inY . Algebraic varieties form a category with morphisms taken
to be equivalence classes of dominant rational maps.

From now on we restrict ourselves with rational maps of irreducible vari-
eties overC. We usefd to denote the restriction off to dom(f), or to any
open subset of dom(f). A dominant mapfd : dom(f) → Y defines a homo-
morphism of the fields of rational functionsf∗ : R(Y )→ R(X). Conversely,
any homomorphismR(Y ) → R(X) arises from a unique equivalence class
of dominant rational mapsX 99K Y . If f∗ makesR(X) a finite extension of
R(Y ), then the degree of the extension is thedegreeof f . A rational map of
degree 1 is called abirational map. It is also can be defined as an invertible
rational map.

We will further assume thatX is a smooth projective variety. It follows
that the complement of dom(f) is of codimension≥ 2. A rational mapf :
X 99K Y is defined by a linear system. Namely, we embedY in a projec-
tive spacePr by a complete linear system|V ′| := |H0(Y,L′)|. Its divisors
are hyperplane sections ofY . The invertible sheaff∗dL′ on dom(f) can be
extended to a unique invertible sheafL on all ofX. Also we can extend the
sectionsf∗d (s), s ∈ V ′, to sections ofL on all of X. The obtained homo-
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morphismf∗ : V ′ → H0(X,L) is injective and its image is a linear subspace
V ⊂ H0(X,L). The associated projective space|V | ⊂ |L| is the linear system
defining a morphismfd : dom(f)→ Y ↪→ Pr.

The rational mapf is given in the usual way. Evaluating sections ofV at a
point, we get a map dom(f) → P(V ), and by restriction, the map dom(f) →
P(V ′) which factors through the mapY ↪→ P(V ′). A choice of a basis(s0, . . . ,
sr) in V and a basis inV ′ defines a rational mapf : X 99K Y ⊂ Pr. It is given
by the formula

x 7→ [s0(x), . . . , sr(x)].

For any rational mapf : X 99K Y and any closed reduced subvarietyZ of
Y we denote byf−1(Z) the closure off−1

d (Z) in X. It is called theinverse
transformof Z under the rational mapf . Thus the divisors from|V | are the
inverse transforms of hyperplane sections ofY in the embeddingι : Y ↪→ Pr.
More generally, this defines the inverse transform of any linear system onY .

LetL be a line bundle andV ⊂ H0(X,L). Consider the natural evaluation
map of sheaves

ev : V ⊗OX → L

defined by restricting global sections to stalks ofL. It is equivalent to a map

ev : V ⊗ L−1 → OX

whose image is a sheaf of ideals inOX . This sheaf of ideals is denotedb(|V |)
and is called thebase idealof the linear system|V |. The closed subscheme
Bs(|V |) of X defined by this ideal is called thebase schemeof |V |. The re-
duced scheme is called thebase locus. In classical terminology, the base locus
is theF -locus; its points are calledfundamental points. We have

Bs(|V |) = ∩D∈HX
D = D0 ∩ . . . ∩Dr (scheme-theoretically),

whereD0, . . . , Dr are the divisors of sections forming a basis ofV . The
largest positive divisorF contained in all divisors from|V | (equivalently, in
the divisorsD0, . . . , Dr) is called thefixed componentof |V |. The linear sys-
tem without fixed component is sometimes calledirreducible. Each irreducible
component of its base scheme is of codimension≥ 2.

If F = div(s0) for somes0 ∈ OX(F ), then the multiplication bys0 defines
an injective mapL(−F ) → L. The associated linear mapH0(X,L(−F )) →
H0(X,L) defines an isomorphism from a subspaceW ofH0(X,L(−F )) onto
V . The linear system|W | ⊂ |L(−F )| is irreducible and defines a rational map
f ′ : X 99K P(W ) ∼= P(V ).

The linear system is calledbasepoint-free, or simplyfree if its base scheme
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is empty, i.e.b(|V |) ∼= OX . The proper transform of such a system under a
rational map is an irreducible linear system. In particular, the linear system|V |
defining a rational mapX 99K Y as described in above, is always irreducible.

Here are some simple properties of the base scheme of a linear system.

(i) |V | ⊂ |L ⊗ b(|V |)| := |H0(X, b(|V |)⊗ L)|.
(ii) Let φ : X ′ → X be a regular map, andV ′ = φ∗(V ) ⊂ H0(X ′, φ∗L). Then

φ−1(b(|V |)) = b(f−1(|V |)). Recall that, for any ideal sheafa ⊂ OX , its
inverse imageφ−1(a) is defined to be the image ofφ∗(a) = a⊗OX

OX′ in
OX′ under the canonical multiplication map.

(iii) If b(|V |) is an invertible ideal (i.e. isomorphic toOX(−F ) for some effec-
tive divisorF ), then dom(f) = X andf is defined by the linear system
|L(−F )|.

(iv) If dom(f) = X, thenb(|V |) is an invertible sheaf and Bs(|V |) = ∅.

7.1.2 Resolution of a rational map

Definition 7.1.1 A resolutionof a rational mapf : X 99K Y of projective
varieties is a pair of regular projective morphismsπ : X ′ → X andσ : X ′ →
Y such thatf = σ ◦ π−1 andπ is an isomorphism overdom(f):

X ′

π

~~||
||

||
|| σ

  B
BB

BB
BB

B

X
f //_______ Y.

(7.1)

We say that a resolution is smooth (normal) ifX ′ is smooth (normal).

Let Z = V (a) be the closed subscheme of a schemeX defined by an ideal
sheafa ⊂ OX . We denote by

σ : BlX(Z) = Proj
∞⊕
k=0

ak → X

be theblow-upof Z (see [311], Chapter II,§7). We will also use the notation
BlX(a) for the blow up ofV (a). The invertible sheafσ−1(a) is isomorphic to
OBlX(Z)(−E), whereE is the uniquely defined effective divisor onBlX(Z).
We callE theexceptional divisorof σ. Any birational morphismu : X ′ → X

such thatu−1(a) is an invertible sheaf of ideals factors through the blow-up
of a. This property uniquely determines the blow-up, up to isomorphism. The
morphismu is isomorphic to the morphismBlX(Z ′) → X for some closed
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subschemeZ ′ ⊂ Z. The exceptional divisor of this morphism contains the pre-
image of the exceptional divisor ofσ. For any closed subschemei : Y ↪→ X,
the blow-up of the ideali−1(a) in Y is isomorphic to a closed subscheme of
BlX(Z), called theproper transformof Y under the blow-up. Set-theoretically,
it is equal to the closure ofσ−1(Y \Y ∩Z) in BlX(Z). In particular, it is empty
if Y ⊂ Z.

Let ν : Bl+X(Z)→ X denote the normalization of the blow-upBlX(Z) and
E+ be the scheme-theoretical inverse image of the exceptional divisor. It is the
exceptional divisor ofν. We have

ν∗OBl+X(Z)(−E
+) = ā,

whereā denotes theintegral closureof the ideal sheafa (see [395], II, 9.6). A
local definition of the integral closure of an idealI in an integral domainA is
the set of elementsx in the fraction field ofA such thatxn + a1x

n−1 + . . .+
an = 0 for somen > 0 andak ∈ Ik (pay attention to the power ofI here).
If E+ =

∑
riEi, considered as a Weil divisor, then locally elements inā are

functionsφ such that ordEi
(ν∗(φ)) ≥ ri for all i.

An ideal sheafa is calledintegrally closed(or complete) if ā = a. We have
Bl+X(Z) = BlX(Z) if and only am is integrally closed form � 0. If X is
nonsingular, anddimX = 2, thenm = 1 suffices [662], Appendix 5.

Proposition 7.1.1 Letf : X 99K Y be a rational map of irreducible varieties
defined by a linear system|V | with base idealb. Letπ : BlX(b) → X be the
blow-up scheme ofb. Then there exists a unique regular mapσ : BlX(b)→ Y

such that(π, σ) is a resolution off . For any resolution(π′, σ′) of f there exists
a unique morphismα : X ′ → BlX(b) such thatπ′ = π ◦ α, σ′ = σ ◦ α.

Proof By properties (ii) and (iii) from above, the linear systemπ−1(|V |) =
|π∗(L)⊗ π−1(b)| defines a regular mapσ : BlX(b)→ Y . It follows from the
definition of maps defined by linear systems thatf = σ ◦ π−1. For any res-
olution, (X ′, π′, σ′) of f , the base scheme of the inverse transformπ−1(|V |)
onX ′ is equal toπ−1(b). The morphismσ′ is defined by the linear system
π′−1(|V |) and hence its base sheaf is invertible. This implies thatπ′ factors
through the blow-up of Bs(|V |).

Note that we also obtain that the exceptional divisor ofπ′ is equal to the
pre-image of the exceptional divisor of the blow-up of Bs(|V |).

Theorem 7.1.2 Assume thatf : X 99K Y is a birational map of normal pro-
jective varieties andf is given by a linear system|V | ⊂ |L| equal to the inverse
transform of a very ample complete linear system|L′| onY . Let(X ′, π, σ) be
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a resolution off andE be the exceptional divisor ofπ. Then the canonical
map

V → H0(X ′, π∗L(−E))

is an isomorphism.

Proof Setb = b(|V |). We have natural maps

V → H0(X,L ⊗ b)→ H0(X ′, π∗L ⊗ π−1(b))

∼=→ H0(X ′, (π∗L)(−E))
∼=→ H0(X ′, σ∗OY (1))

∼=→ H0(Y, σ∗σ∗L′)

∼=→ H0(Y,L′ ⊗ σ∗OX′)
∼=→ H0(Y,L′).

Here we used the Main Zariski Theorem that asserts thatσ∗OX′ ∼= OY be-
causeσ is a birational morphism andY is normal [311], Chapter III, Corollary
11.4. By definition of the linear system definingf , the composition of all these
maps is a bijection. Since each map here is injective, we obtain that all the maps
are bijective. One of the compositions is our mapV → H0(X ′, π∗L(−E)),
hence it is bijective.

Corollary 7.1.3 Assume, additionally, that the resolution(X,π, σ) is nor-
mal. Then the natural maps

V → H0(X,L ⊗ b(|V |))→ H0(X ′, π∗(L)(−E))→ H0(X,L ⊗ b(|V |))

are bijective.

We apply Theorem7.1.2 to the case whenf : Pn 99K Pn is a birational
map, aCremona transformation. In this caseL = OPn(d) for somed ≥ 1,
called the (algebraic)degreeof the Cremona transformationf . We take|L′| =
|OPn(1)|. The linear system|V | = |b(|V |)(d)| defining a Cremona transfor-
mation is called ahomaloidal linear system. Classically, members ofHX were
calledhomaloids. More generally, ak-homaloidis a proper transform of ak-
dimensional linear subspace in the target space. They were classically called
Φ-curves,Φ-surfaces, etc.).

Proposition 7.1.4

H1(Pn,L ⊗ b(|V |)) = 0.

Proof Let (X,π, σ) be the resolution off defined by the normalization of
the blow-up of Bs(HX). LetE be the exceptional divisor ofπ : X → Pn. We
know thatπ∗(π∗L(−E)) = L⊗ b(|V |) andπ∗L(−E) ∼= σ∗OPn(1). The low
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degree exact sequence defined by the Leray spectral sequence, together with
the projection formula, gives an exact sequence

0→ H1(Pn,OPn(1))→ H1(X,σ∗OPn(1))→ H0(Pn, R1σ∗OX′⊗OPn(1)).
(7.2)

Let ν : X ′ → X be a resolution of singularities ofX. Then, we have the
spectral sequence

Epq2 = Rpσ∗(Rqν∗OX′)⇒ Rp+q(π ◦ ν)∗OX′ .

It gives the exact sequence

R1π∗(ν∗OX′)→ R1(π ◦ ν)∗OX′ → π∗R
1ν∗OX′ .

SinceX is normal,ν∗OX′ = OX . Since the compositionπ ◦ ν : X ′ → Pn
is a birational morphism of nonsingular varieties,R1(π ◦ ν)∗OX′ = 0. This
shows that

R1π∗(ν∗OX′) = 0.

Together with vanishing ofH1(Pn,OPn(1)), (7.2) implies that

H1(X,π∗(L)(−E)) = 0.

It remains to use that the canonical map

H1(Pn,L ⊗ b(|V |)) ∼= H1(Pn, π∗(π∗(L)(−E)))→ H1(X,π∗(L)(−E))

is injective (usěCech cohomology, or the Leray spectral sequence).

Using the exact sequence

0→ b(HX)→ OPn → OPn/b(HX)→ 0,

and tensoring it byOPn(d), we obtain the following result, classically known
as thePostulation formula.

Corollary 7.1.5 Let |V | be a homaloidal linear system. Then

h0(O
V (b(|V |))(d)) =

(
n+ d

d

)
− n− 1.

7.1.3 The graph of a Cremona transformation

We define thegraph Γf of a rational mapf : X 99K Y as the closure in
X×Y of the graphΓfd of fd : dom(f)→ Y . Clearly, the graph, together with
its projections toX andY , defines a resolution of the rational mapf .

By the universal property of the graph, we obtain that, for any resolution
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(X ′, π, σ) of f , the map(π, σ) : X ′ → X × Y factors through the closed
embeddingΓf ↪→ X × Y . Thus the first projectionΓf → X has the univer-
sal property for morphisms which invertb(|V |), hence it is isomorphic to the
blow-up schemeBlX(b((|V |)).

Let us consider the case of a Cremona transformationf : Pn 99K Pn. If
(F0, . . . , Fn) is a basis ofV defining the homaloidal linear system, then the
graph is a closed subscheme ofPn × Pn which is an irreducible component of
the closure of the subvariety of dom(f) × Pn defined by2 × 2-minors of the
matrix (

F0(x) F1(x) . . . Fn(x)
y0 y1 . . . yn

)
, (7.3)

wherex = (t0, . . . , tn) are projective coordinates in the first factor, andy =
(y0, . . . , yn) are projective coordinates in the second factor.

In the usual way, the graphΓf defines the linear maps of cohomology

f∗k : H2k(Pn,Z)→ H2k(Pn,Z), γ 7→ (pr1)∗([Γf ] ∩ (pr2)
∗(γ)),

where pri : Pn × Pn → Pn are the projection maps. SinceH2k(Pn,Z) ∼= Z,
these maps are defined by some numbersdk, the vector(d0, . . . , dn) is called
themultidegreeof f . In more details, we write the cohomology class[Γf ] in
H∗(Pn × Pn,Z) as

[Γf ] =
n∑
k=0

dih
k
1h

n−k
2 ,

wherehi = pr∗i (h) andh is the class of a hyperplane inPn. Then

f∗k (hk) = (pr1)∗([Γf ]) · (pr∗2(h
k)) = (pr1)∗(dkh

k
1) = dkh

k.

The multidegree vector has a simple interpretation. The numberdk is equal
to the degree of the proper transform underf of a general linear subspace of
codimensionk in Pn. Sincef is birational,d0 = dn = 1. Also d1 = d is the
algebraic degree off . Invertingf , we obtain that

Γf−1 = Γ̃f ,

whereΓ̃f is the image ofΓf under the self-map ofPn × Pn that switches the
factors. In particular, we see that(dr, dr−1, . . . , d0) is the multidegree off−1.

In the case whenf is a birational map, we haved0 = dn = 1. We shorten
the definition by saying that the multidegree of a Cremona transformation is
equal to(d1, . . . , dn−1).

The next result due to L. Cremona puts some restrictions on the multidegree
of a Cremona transformation.
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Proposition 7.1.6(Cremona’s inequalities) For anyn ≥ i, j ≥ 0,

1 ≤ di+j ≤ didj , dn−i−j ≤ dn−idn−j .

Proof It is enough to prove the first inequality. The second one follows from
the first one by considering the inverse transformation. Write a general linear
subspaceLi+j of codimensioni + j as the intersection of a general linear
subspaceLi of codimensioni and a general linear subspaceLj of codimension
j. Then, we havef−1(Li+j) is an irreducible component of the intersection
f−1(Li) ∩ f−1(Lj). By Bezout’s Theorem,

di+j = deg f−1(Li+j) ≤ deg f−1(Li) deg f−1(Lj) = didj .

Remark7.1.1 There are more conditions on the multidegree which follow
from the irreducibility ofΓf . For example, using theHodge type inequality
(see [395], Corollary 1.6.3), we get the inequality

d2
i ≥ di−1di+1 (7.4)

for the multidegree of a Cremona transformationf . For example, ifn = 3, the
only non-trivial inequality followed from the Cremona inequalities isd0d2 =
d2 ≤ d2

1, and this is the same as the Hodge type inequality. However, ifn = 4,
we get new inequalities besides the Cremona ones. For example,(1, 2, 3, 5, 1)
satisfies the Cremona inequalities, but does not satisfy the Hodge type inequal-
ity.

The following are natural questions related to the classification of possible
multidegrees of Cremona transformations.

• Let (1, d1, . . . , dn−1, 1) be a sequence of integers satisfying the Cremona
inequalities and the Hodge type inequalities: Does there exist an irreducible
reduced close subvarietyΓ of Pn × Pn with [Γ] =

∑
dkh

k
1h

n−k
2 ?

• What are the components of the Hilbert scheme of this class containing an
integral scheme?

Note that any irreducible reduced closed subvariety ofPn × Pn with multide-
gree(1, d1, . . . , dn−1, 1) is realized as the graph of a Cremona transformation.

7.1.4 F-locus and P-locus

The F-locus of a Cremona transformationT is the base locus of the linear sys-
tem definingT . Its points are called thefundamental pointsor indeterminacy
points(F-points, in classical language).
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The P-locus ofT is the union of irreducible hypersurfaces which are blown
down to subvarieties of codimension≥ 2. One can make this more precise and
also give it a scheme-theoretical structure.

Let (X,π, σ) be any normal resolution of a Cremona transformationf :
Pn 99K Pn given by a homaloidal linear system|V |. The morphismπ factors
through the blow-upB(f) of the integral closure ofb(|V |). The morphismσ
factors through the blow-upB(f−1) of the integral closure of the base ideal of
the inverse transformationf−1. So we have a commutative diagram:

X

||zz
zz

zz
zz
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�
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GG

GG
GG

GG
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xx
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Γf
p1
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##G
GGGGGGGG

Pn
f //_________ Pn

Let E =
∑
i∈I riEi be the exceptional divisor ofν : B(f) → Pn and

F =
∑
j∈J mjFj be the exceptional divisor ofν′ : B(f−1) → Pn. Let J ′ be

the largest subset ofJ such that the proper transform ofFj , j ∈ J ′, in X is
not equal to the proper transform of someEi in X. The image of the divisor∑
j∈J′ Fj under the composition mapB(f−1) → Γf

p1→ Pn is classically
known as theP -locusof f . It is hypersurface in the sourcePn. The image of
any irreducible component of theP -locus is blown down underf (after we
restrict ourselves to dom(f)) to an irreducible component of the base locus of
f−1.

Let f be given by homogeneous polynomials(F0, . . . , Fn). The same col-
lection of polynomials defines a regular map̃f : Cn+1 → Cn+1. Then the
P -locus is the image inPn of the locus of critical points of̃f . It is equal to the
set of zeros of the determinant of the Jacobian matrix off̃

J =
(∂Fi
∂tj

)
i,j=0,...,n

.

So we expect that theP -locus is a hypersurface of degree(d − 1)n+1. Some
of its components may enter with multiplicities.

Example7.1.1 Consider thestandard quadratic transformationgiven by

Tst : [t0, t1, t2] 7→ [t1t2, t0t2, t0t1]. (7.5)
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Figure 7.1 A resolution ofTst

It has three fundamental pointsp1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1]. The
P -locus is the union of three coordinate linesV (ti). The Jacobian matrix is

J =

 0 t2 t1
t2 0 t0
t1 t0 0

 .

Its determinant is equal to2t0t1t2. We may takeX = BlP2({p1, p2, p3}) as
a smooth resolution ofTst. Let E1, E2, E3 be the exceptional divisors over
the fundamental pointsp1, p2, p3, andLi, i = 1, 2, 3, be the proper transform
of the coordinate linesV (t0), V (t1), V (t2), respectively. Then the morphism
σ : X → P2 blows downL1, L2, L3 to the pointsp1, p2, p3, respectively. Note
thatT−1

st = Tst, so there is no surprise here. Recall that the blow-up of a closed
subscheme is defined uniquely only up to an isomorphism. The isomorphism
τ between the blow-ups of the base scheme ofTst andT−1

st which sendsEi to
Li is a lift of the Cremona transformationT−1

st . The surfaceX is adel Pezzo
surfaceof degree6, a toric Fano variety of dimension 2. We will study such
surfaces in the next Chapter. The complement of the open torus orbit is the
hexagon of linesE1, E2, E3, L1, L2, L3 intersecting each other as in the fol-
lowing picture. We call them lines because they become lines in the embedding
X ↪→ P6 given by the anticanonical linear system. The automorphismτ of the
surface is the extension of the inversion automorphismz → z−1 of the open
torus orbit to the whole surface. It defines the symmetry of the hexagon which
exchanges its opposite sides.

Now let us consider the firstdegeneratestandard quadratic transformation
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given by

T ′st : [t0, t1, t2] 7→ [t22, t0t1, t0t2]. (7.6)

It has two fundamental pointsp1 = [1, 0, 0] andp2 = [0, 1, 0]. TheP -locus
consists of the lineV (t0) blown down to the pointp1 and the lineV (t2) blown
down to the pointp2.

The Jacobian matrix is

J =

 0 0 2t2
t1 t0 0
t2 0 t0

 .

Its determinant is equal to−2t0t22. Thus the lineV (t2) enters with multi-
plicity 2. Let us see what is the resolution in this case. The base scheme
is smooth atp1 and locally isomorphic toV (y2, x) at the pointp2, where
y = t2/t1, x = t0/t1. The blow-upB(f) is singular overp2 with the sin-
gular pointp′2 corresponding to the tangent directiont0 = 0. The singular
point is locally isomorphic to the singularity of the surfaceV (uv +w2) ⊂ C3

(a singularity of typeA1, see the next Chapter). Thus the exceptional divisor
of B(f)→ P2 is the sum of two irreducible componentsE1 andE2, both iso-
morphic toP1, with the singular pointp′2 lying onE1. The exceptional divisor
of B(f) = B(f−1) → P2 is the union of two components, the proper trans-
formL1 of the lineV (t1) and the proper transformL2 of the lineV (t0). When
we blow-upp′2, we get a smooth resolutionX of f . The exceptional divisor of
π : X → P2 is the union of the proper transforms ofE1 andE2 onX and the
exceptional divisorE′1 of the blow-upX → B(f). The exceptional divisor of
σ : X → P2 is the union of the proper transforms ofL1 andL2 onX and the
exceptional divisorE′1. Note that the proper transforms ofE1, E2 andL1, L2

are(−1)-curves and the curveE′1 is a(−2)-curve.1

Finally, we can consider thesecond degenerate standard quadratic transfor-
mationgiven by the formula

T ′′st : [t0, t1, t2] 7→ [t22 − t0t1, t21, t1t2]. (7.7)

Its unique base point isp1 = [1, 0, 0]. In affine coordinatesx = t1/t0, y =
t2/t0, the base ideal is(x2, xy, y2 − x) = (y3, x − y2). The blow-up of this
ideal is singular. It has a singular pointp′1 locally isomorphic to the singular
point of the affine surfaceV (uv + w3) in C3 (anA2-singularity, see the next
Chapter). TheP -locus consists of one linet1 = 0. A smooth resolution of the
transformation is obtained by blowing up twice the singular point. The excep-
tional divisor of the morphismπ : X → P2 consists of three curvesE,E′, E′′,

1 a (−n)-curve is a smooth rational curve with self-intersection−n.
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Figure 7.2 A resolution ofT ′
st
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Figure 7.3 A resolution ofT ′′
st

whereE is the proper transform of the exceptional divisor ofBlP2(p1) → P2

andE′ + E′′ is the exceptional divisor of the resolution of the singularityp′1.
The self-intersections of the exceptional curves are indicated on Figure7.3.

HereL denote the proper transform of the lineV (t1). The jacobian matrix
of transformationT ′′st is equal to−t1 −t0 2t2

0 2t1 0
0 t2 t1

 .

Its determinant is equal to−2t31. So the P-locus consists of one lineV (t1)
taken with multiplicity 3.
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7.1.5 Computation of the multidegree

The multidegree(d1, . . . , dn−1) of a Cremona transformation can be computed
using the intersection theory on algebraic varieties (see [253], [311], Appendix
A) For any closed subschemeZ of a schemeX of finite type over a field, the
theory assigns theSegre classs(Z,X) in the Chow groupA∗(X) of algebraic
cycles onX.

One of the most frequently used properties of the Segre classes is the fol-
lowing one. Letπ : X̃ = BlX(Z) → X be the blow-up ofX andE be the
exceptional divisor. Then

s(Z,X) =
∑
i≥1

(−1)i−1π∗([E]i), (7.8)

whereπ∗ : A∗(X̃)→ A∗(X) is the push-forward homomorphism.
The Segre classes are notoriously difficult to compute. However, in the spe-

cial case when the embeddingj : Z ↪→ X is a regular embedding with locally
free normal sheafNZ/X , they can be expressed in terms of the Chern classes
of the normal sheafNZ/X . We have

s(Z,X) = c(NZ/X)−1,

wherec(E) =
∑
ci(E) denote the total Chern class of a locally free sheafE .

In the case of a regular embedding, Chern classes ofNZ/X are computed by
using the standard exact sequence of the sheaves of differentials

0→ IZ/I2
Z → j∗Ω1

X → ΩZ → 0. (7.9)

By definition, the normal sheafNZ/X is (IZ/I2
Z)∨. We have

c(NZ/X) = j∗c((Ω1
X)∨)/c(Ω∨Z). (7.10)

For example, whenZ is a point on a smoothn-dimensional varietyX, we
haves(Z,X) = [Z] ∈ A0(X). Formula (7.8) gives

[E]n = (−1)n−1. (7.11)

Of course, this can be computed without using Segre classes. We embedX in
a projective space, take a smooth hyperplane sectionH passing through the
pointZ. Its full transform onBlX(Z) is equal to the union ofE and the proper
transformH0 intersectingE along a hyperplaneL insideE identified with
Pn−1. ReplacingH with another hyperplaneH ′ not passing throughZ, we
obtain

[H ′] · [E = [H0 + E] · [E] = e+ [E]2 = 0,

wheree is the class of a hyperplane inE. Thus [E]2 = −e. This of course
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agrees with the general theory. The line bundleO(1) on the blow-up is iso-
morphic toO(−E). The normal sheafOE(E) is isomorphicOE(−1).

We also have[H0] · [E]2 = −[H0] · e = −e2, hence

0 = [E]2 · [H ′] = [E]2 · [H0 + E] = [E]2 · [H0] + [E]3

gives[E]3 = e3. Continuing in this way, we find

[E]k = (−1)n−1ek. (7.12)

Another easy case is when we takeX = Pn andZ be a linear subspace of
codimensionk > 1. We denote byh the class of a hyperplane section inPn.
SinceZ is a complete intersection ofk hyperplanes,

NZ/Pn ∼= OZ(1)⊕k,

hence

s(Z,X) =
1

(1 + h)k
=

1
(k − 1)!

( 1
1− x

)(k−1)

|x=−h

=
n−1∑

m=k−1

(
m
k−1

)
(−h)m−k+1.

(note thathi = 0, i > dimY = n− k). In particular, we obtain

[E]n = (−1)k−1
(
n−1
k−1

)
. (7.13)

For example, the self-intersection of the exceptional divisor of the blow-up of
a line inPn is equal to(−1)n(n− 1).

Let us apply the intersection theory to compute the multidegree of a Cre-
mona transformation.

Let (X,π, σ) be a resolution of a Cremona transformationf : Pn 99K Pn.
Consider the mapν = (π, σ) : X → Pn × Pn. We haveν∗[X] = [Γf ], and,
by the projection formula,

ν∗(hk1h
n−k
2 ) ∩ [X] = [Γf ] · (hk1hn−k2 ) = dk.

Let s(Z,Pn) ∈ A∗(Z) be the Segre class of a closed subscheme ofPn. We
write its image inA∗(Pn) under the canonical mapi∗ : A∗(Z) → A∗(Pn) in
the form

∑
s(Z,Pn)mhn−m, whereh is the class of a hyperplane.

Proposition 7.1.7 Let(d0, d1, . . . , dn) be the multidegree of a Cremona trans-
formation. Let(X,π, σ) be its resolution andZ be the closed subscheme ofPn
such thatπ : X → Pn is the blow-up of a closed subschemeZ of Pn. Then

dk = dk −
k∑
i=1

dk−i
(
k
i

)
s(Z,Pn)n−i.



7.1 Homaloidal linear systems 325

Proof We know thatσ∗OPn(1) = π∗OPn(d)(−E) = OX′(dH −E), where
OX(H) = π∗OPn(1) andE is the exceptional divisor ofπ. We haveh =
c1(OPn(1)) for each copy ofPn. Thus

dk = π∗[dH − E]k · hn−k =
k∑
i=0

((−1)idk−i
(
k
i

)
π∗([H]k−i · [E]i)) · hn−k

=
k∑
i=0

(−1)idk−i
(
k
i

)
hk−i ·π∗([E]i)·hn−k =

k∑
i=0

(−1)idk−i
(
k
i

)
·π∗([E]i)·hn−i

= dk +
k∑
i=1

(−1)idk−i
(
k
i

)
· π∗([E]i) · hn−i = dk −

k∑
i=1

dk−i
(
k
i

)
s(Z,Pn)n−i.

Example7.1.2 AssumeZ is a smooth connected subscheme ofPn. A Cre-
mona transformation with smooth connected base scheme is calledspecial
Cremona transformation. There are no such transformations in the plane and
they are rather rare in higher-dimensional spaces and maybe classifiable. We
start from one-dimensional base schemes. In this case, (7.10) gives

c1(NZ/Pn) = j∗c1((Ω1
Pn)∨)− c1((Ω1

Z)∨) = (n+ 1) degZ + 2g − 2,

whereg is the genus ofZ. Thuss(Z,Pn) = degZh− ((n+ 1) degZ + 2g−
2)[point]. We have

dn = dn − dndegZ + (n+ 1) degZ + 2g − 2 = 1, (7.14)

dn−1 = dn−1 − degC, (7.15)

dk = dk, k = 0, . . . , n− 2. (7.16)

To get a Cremona transformation, we must havedn = 1. Letn = 3. One uses
the postulation formula and Riemann-Roch onZ to obtain

h0(OZ(d)) =
(
d+ 3

3

)
− 4 = d degC + 1− g.

Together with the previous equalityd3 − 3d degZ + 4 degZ + 2g − 2 = 1,
this easily givesd ≤ 3, and thendegZ = 6, g = 3. This is an example of a
bilinear cubo-cubic transformation which we will discuss later in this Chapter.

If n = 4, g = 1,degC = 5, d = 2, the formula givesd3 = 1. This
transformation is given by the homaloidal linear system of quadrics with base
scheme equal to an elliptic curve of degree 5. The multidegree must be equal to
(2, 4, 3). This is an example of a quadro-cubic transformation inP4 discussed
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in Semple-Roth’s book [573]. It turns out that these two cases are the only
possible cases withdimZ = 1 (see [153], Theorem 2.2).

In the same paper, Theorem 3.3, one can find the classification in the case
dimZ = 2.

Theorem7.1.8 A Cremona transformation with two-dimensional smooth con-
nected base schemeZ is one of the following:

(i) n = 4, d = 3, Z is an elliptic scroll of degree 5, the base scheme of the
inverse of the quadro-cubic transformation from above;

(ii) n = 4, d = 4, Z is a determinantal variety of degree 10 given by4×4-
minors of a4 × 5-matrix of linear forms (a bilinear transformation, see
later);

(iii) n = 5, d = 2, Z is a Veronese surface;

(iv) n = 6, d = 2, Z is an elliptic scroll of degree 7;

(v) n = 6, d = 2, Z is an octavic surface, the image of the projective
plane under a rational map given by the linear system of quartics through
8 points.

In cases (ii) and (iii) the inverse transformation is similar, with isomorphic
base scheme.

Example7.1.3 There is no classification for higher-dimensionalZ. However,
we have the following nice results of L. Ein and N. Shepherd-Barron [227].

Recall that aSeveri-Zak varietyis a closed a subvarietyZ of Pn of dimen-
sion 1

3 (2n− 4) such that the secant variety is a proper subvariety ofPn+1. All
such varieties are classified by F. Zak (see [394]). The list is the following:

(i) Z is a Veronese surface inP5;

(ii) Z is the Grassmann varietyG1(P5) embedded in the Plücker space
P14;

(iii) Z is the Severi varietys(P2 × P2) ⊂ P8;

(iv) Z is theE6-variety, a 16-dimensional homogeneous variety inP26.

In all these cases the secant variety of the Severi varietyZ is a cubic hyper-
surfaceX with the singular locus equal toZ.

A theorem of Ein and Shepherd-Barron asserts that a simple Cremona trans-
formationT : Pn 99K Pn with base scheme of codimension 2 of degree 2
equal to the degree ofT−1 is given by the linear system of the first polars of
the cubic hypersurfaceX.
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7.2 First examples

7.2.1 Quadro-quadratic transformations

Let us show that any vector(2, . . . , 2) is realized as the multidegree of a Cre-
mona transformation. Forn = 2, we can take the homaloidal linear system
of conics through three non-collinear points. We can view a pair of the fun-
damental points as0-dimensional quadric in the line spanned by these points.
This admits an immediate generalization to higher-dimensional spaces.

Consider the linear system of quadrics inPn containing a fixed smooth
quadricQ0 of dimensionn − 2. It mapsPn to a quadricQ in Pn+1. We may
choose coordinates such that

Q0 = V (z0) ∩ V (
∑
i=1

z2
i ),

so that the hyperplaneH = V (z0) is the linear span ofQ0. Then the linear
system is spanned by the quadricsV (

∑
z2
i ), V (z0zi), i = 0, . . . , n. It maps the

blow-upBlPn(Q0) to the quadricQ in Pn+1 with equationt0tn+1−
∑n
i=1 t

2
i =

0. The rational mapg : Pn 99K Q defined by a choice of a basis of the linear
system, can be given by the formula

[t0, . . . , tn] 7→ [
n∑
i=1

t2i , t0t1, . . . , t0tn, t
2
0].

Observe that the image ofH is equal to the pointa = [1, 0, . . . , 0]. The inverse
of g is the projection map

pa : Q 99K Pn, [z0, . . . , zn+1]→ [z0, . . . , zn]

from the pointa. It blows down the hyperplaneV (zn+1) ⊂ Pn+1 to the
quadricQ0. Now consider the projection mappb : Q 99K Pn from a point
b 6= a not lying in the hyperplaneV (tn+1). Note that this hyperplane is equal
to the embedded tangent hyperplaneTa(Q) of Q at the pointa. The compo-
sition f = pb ◦ p−1

a of the two rational maps is a quadratic transformation
defined by the homaloidal linear system of quadrics with the base locus equal
to the union ofQ0 and the pointpa(b). If we chooseb = [0, . . . , 0, 1] so that
pa(b) = [1, 0, . . . , 0], then the Cremona transformationf : Pn 99K Pn can be
given by the formula

[t0, . . . , tn] 7→ [
n∑
i=1

t2i , t0t1, . . . , t0tn]. (7.17)

Note thatf−1 = pa ◦ p−1
b must be given by similar quadratic polynomials.
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So the degree off−1 is equal to 2. This is the reason for the name quadro-
quadratic transformation.

For example, ifn = 2, if we rewrite the equation ofQ0 in the formz0 =
z1z2 = 0 and obtain the formula (7.5) for the standard quadratic transforma-
tion.

Let us compute the multidegree. For any general linear subspaceL of codi-
mensionk > 0, its pre-image under the projectionpb : Q 99K Pn is the inter-
section ofQ with the subspaceL′ = 〈L, b〉 spanned byL′ andb. It is a quadric
in this subspace. Since the pointa does not belong toL′, the projection of this
quadric from the pointa is a quadric in the projection ofL′ from the same
point. Thusdk = 2. This shows that the multidegree of the transformation is
equal to(2, . . . , 2).

Let us consider some degenerations of the transformation given by (7.17).
Let us take two nonsingular pointsa, b on an arbitrary irreducible quadricQ ⊂
Pn+1. We assume thatb does not lie in the intersection ofQwith the embedded
tangent spaceTa(Q) of Q at a. Let f = pa ◦ p−1

b . The projectionpa blows
down the intersectionTa(Q) ∩ Q to a quadricQ0 in the hyperplaneH =
pa(TaQ). If r = rankQ (i.e.n+1−r is the dimension of the singular locus of
Q), then rankQ∩Ta(Q) = r−1. Its singular locus is spanned by the singular
locus ofQ and the pointa. The projectionQ0 of Q ∩ Ta(Q) is a quadric with
singular locus of dimensionn + 1 − r, thus, it is a quadric of rank equal to
n− 1− (n+1− r) = r− 2 inH. The inverse transformationp−1

a : Pn 99K Q
is given by the linear system of quadrics inPn which pass throughQ0. So,
takinga = [1, 0, . . . , 0] andb = [0, . . . , 0, 1] as in the non-degenerate case, we
obtain thatf is given by

f : [t0, . . . , tn] 7→ [
r−2∑
i=1

t2i , t0t1, . . . , t0tn]. (7.18)

Note the special cases. Ifn = 2, andQ is an irreducible quadric cone,
thenr = 3 and we get the formula for the first degenerate standard quadratic
transformation (7.6). To get the second degenerate standard quadratic transfor-
mation, we should abandon the condition thatb 6∈ Ta(Q). We leave the details
to the reader.

Remark7.2.1 A Cremona transformationT such that the degree ofT and
of T−1 is equal to 2 is called aquadro-quadratic transformation. It is not
true that the multidegree of a quadro-quadratic transformation is always of the
form (2, . . . , 2). For example, ifn = 4, applying Cremona’s inequalities, we
obtaind2 ≤ 4. A transformation of multidegree(2, 3, 2) can be obtained by
taking the homaloidal linear system of quadrics with the base scheme equal



7.2 First examples 329

to a plane and two lines intersecting the plane at one point. A transformation
of multi degree(2, 4, 2) is given by the homaloidal linear system of quadrics
with rather complicated base scheme. The reduced base scheme consists of the
union of a conic and a line intersecting at one point. The line supports a non-
reduced scheme. All quadro-quadratic transformations inP4 were classified by
A. Bruno and A. Verra.

7.2.2 Bilinear Cremona transformations

Here we encounter again aCM sheaves which we use in Chapter 4.

Definition 7.2.1 A closed subschemeZ of Pn of pure dimensionr is called
arithmetically Cohen-Macaulay(aCM for short) if its ideal sheafJZ is an
aCM sheaf.

Assume that codimZ = 2. Then, as in Chapter 4, we obtain a locally free
resolution

0→
m⊕
i=1

OPn(−ai)→
m+1⊕
j=1

OPn(−bj)→ JZ → 0 (7.19)

for some sequences of integers(ai) and(bj).
The numbers(ai) and(bj) are determined from the Hilbert polynomials of

Z.
We will consider a special case of resolution of the form (4.14) which we

used in the theory of linear determinantal representations of hypersurfaces:

0→ U∨(−n− 1)→ V (−n)→ JZ → 0, (7.20)

whereU, V are linear susbspaces of dimensionsn andn+ 1, respectively. By
twisting the exact sequence, and taking cohomology, we obtain natural iso-
morhisms

U ∼= Hn−1(Pn,JZ), V ∼= H0(Pn,JZ(n)).

The resolution ofJZ allows one to compute the Hilbert polynomial of the
subschemeZ. We get

χ(OZ(k)) = χ(OPn(k))− χ(JZ(k)) =
(
n+k
n

)
−
(
k
n

)
− n

(
k−1
n−1

)
. (7.21)

It also defines an isomorphism betweenZ and the determinantal variety given
by the linear map

φ : E → U ⊗ V, (7.22)
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wherePn = |E|. In coordinates, it is given byn × (n + 1) matrix A with
linear functions onE as its entries. The maximal minors ofA generate the
homogeneous ideal ofZ. Let

r : E → V ∨,

be the right kernel maps. It defines the rational maps of projective spaces

|r| : |E| 99K P(V ).

Remark7.2.2 The Hilbert scheme of an aCM subschemeZ of Pn admitting
a resolution (7.20) is isomorphic to an open subset of the projective space of
(n+1)×nmatricesA(t) of linear forms such that the rank ofA(t) is equal ton
for an open non-empty subset ofPn. Modulo the action by GL(n+1)×GL(n)
by left and right multiplication. It is a connected smooth variety of dimension
n(n2 − 1) (see [477] or [232]).

Theorem 7.2.1 The mapTφ = |r| : |E| 99K P(V ) is a birational map with
base schemeZ. Its multidegree is equal to(dk) = (

(
n
k

)
).

Proof In coordinates, the map|r| is defined byn×n minors of the matrixA.
The subschemeZ is given scheme-theoretically by these minors. In particular,
we see already that the degree of the map is equal ton. Let us view the linear
mapφ as an element of the tensor productE∨⊗U ⊗V . Consider it as a linear
map

ψ : E ⊗ V ∨ → U. (7.23)

It may be considered as a collection ofn bilinear forms onE ⊗ V ∨. It is
immediate thatv∗ = r(e) for somev∗ ∈ V ∨ ande ∈ E if and only if ψ(e ⊗
v∗) = 0. This relation is symmetric, sov∗ = r(e) if and only if e = r′(v∗),
wherer′ : V ∨ → E is the right kernel map for the linear mapφ′ : V ∨ →
U ⊗E∨ defined by applying to the tensorφ the isomorphismE∨ ⊗U ⊗ V →
V ∨ ⊗ U ⊗ E. Thus, the mapTφ′ = r′ defines the inverse ofTφ.

In coordinates, if choose a basise0, . . . , en+1 in E, a basisu1, . . . , un in U
and a basisv0, . . . , vn in V , then the linear mapφ can be written as a tensor

φ = akij :=
n∑

0≤k,j≤n;1≤i≤n

akijtk ⊗ ui ⊗ vj .

The matrixA is equal tot0A0 + . . .+ tnAn, whereAk = (akij). The bilinear
mapψ is given byn square matricesXi = (akij) of sizen+1, wherek is index
for the columns, andj for the rows. The graph of the Cremona map|r| is given
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by n bilinear equations in|E| × P(V )

n∑
j,k=0

tkvja
k
ij = 0, i = 1, . . . , n. (7.24)

These equations define the graph of the transformationTφ. Also note that the
matrixB defining the linear mapφ′ : V ∨ → U ⊗E∨ is equal tov0B0 + . . .+
vnBn, whereBj = (akij). Herek is now the row index, andi is the column
index.

It is easy to compute the cohomology class of the graph (7.24) of Tφ. It is
equal to

(h1 + h2)n =
n∑
k=0

(
n

k

)
hi1h

n−i
2 .

We can also see another determinantal variety, this time defined by the trans-
pose of (7.23)

tψ : U∨ → E∨ ⊗ V. (7.25)

Let Dk ⊂ P(U) be the preimage of the determinantal variety of bilinear
forms onE ⊗ V ∨ (or linear mapsE∨ → V ) of rank≤ k. We have regular
kernel maps

lψ : Dn \ Dn−1 → |E|, rψ : Dn \ Dn−1 → P(V ).

By definition, the image of the first map is equal to the base schemeZ of the
rational map|r| considered in the previous Theorem. The image of the second
map is of course the base scheme of the inverse map. In particular, we see that
the base schemes ofTφ andT−1

φ are birationally isomorphic to the varietyDn.
Note the special case whenE = V ∨ and the image oftψ is contained in the

space of symmetric bilinear mapsE × V ∨ → C. In this case

Tφ = T−1
φ .

Example7.2.1 Consider thestandard Cremona transformationof degreen
in Pn given by

Tst : [t0, . . . , tn] 7→ [
t0 · · · tn
t0

, . . . ,
t0 · · · tn
tn

]. (7.26)

In affine coordinates,zi = ti/t0, it is given by the formula

(z1, . . . , zn) 7→ (z−1
1 , . . . , z−1

n ).
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The transformationTst is an analogue of the standard quadratic transformation
of the plane in higher dimension.

The base ideal ofTst is generated byt1 · · · tn, . . . , t0 · · · tn−1. It is equal to
the ideal generated by the maximal minors of then× n matrix

A(t) =


t0 0 · · · 0
0 t1 . . . 0
...

...
...

...
0 0 . . . tn−1

−tn −tn . . . −tn

 .

The base scheme ofTst equal to the union of the coordinate subspaces of codi-
mension 2.

It follows from the proof of Proposition7.2.1that the graph ofTst is isomor-
phic to the closed subvarietyX of Pn × Pn given byn bilinear equations

tiyi − tnyn = 0, i = 0, . . . , n− 1.

It is a smooth subvariety ofPn × Pn isomorphic to the blow-up of the union
of coordinate subspaces of codimension 2. The action of the torus(C∗)n+1

on Pn (by scaling the coordinates) extends to a biregular action onX. The
corresponding toric variety is a special case of a toric variety defined by a
fan formed by fundamental chambers of a root system of a semi-simple Lie
algebra. In our case the root system is of typeAn, and the varietyX is denoted
byX(An). In the casen = 2, the toric surfaceX(A2) is a del Pezzo surface of
degree 6 isomorphic to the blow-up of3 points in the plane, no three of which
are collinear.

Example7.2.2 Let α : U∨ → E∨ ⊗ V be a linear determinantal representa-
tion of a nonsingular plane quarticC ⊂ P(U) ∼= P2 given by the linear system
|KC + a|. The imageZ of C in |E| under the right kernel mapr is a curve
Z of degree 6 and genus 3. Letφ : E → U ⊗ V be the linear map obtained
from the tensorφ ∈ U ⊗ E∨ ⊗ V . Then the bilinear Cremona transformation
|E| → P(V ) defined by this map is given by cubic polynomials generating
the ideal ofZ. Note thatZ is an aCM subscheme of|E| ∼= P3. Its Hilbert
polynomial is6t−2 in agreement with (7.21). Conversely, any irreducible and
reduced curve of degree 6 and arithmetic genus 3 not lying on a quadric is arith-
metically Cohen-Macaulay and admits a resolution of type (7.20) (see [232],
p. 430). . AssumeZ is arithmetically Cohen-Macaulay. The bilinear Cremona
transformation defined by such a curve is classically known as acubo-cubic
transformations(see [573]).

In fact, an example of a standard Cremona transformation shows that one can
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often drop the assumption thatZ is an integral curve. In this example,Z is the
union of 6 coordinate lines, and is a curve of degree 6 and of arithmetic genus
3, and it does not lie on a quadric. Another example of this sort is whenZ is
the union of 4 skew lines and two lines intersecting them. There are examples
whenZ is not reduced, e.g. with the reduced scheme equal to a rational normal
curve. I do not know whether any closed subschemeZ of degree6 (in the sense
that [Z] = 6[line]) with h0(OZ) = 1, h1(OZ) = 3, and not lying on a quadric
surface, admits a resolution of type (7.20).

AssumeZ is a smooth curve and let us describe theP -locus of the corre-
sponding Cremona transformation. Obviously, any line intersectingZ at three
distinct points (atrisecant line) must be blown down to a point (otherwise a
general cubic in the linear system intersects the line at more than 3 points).
Consider the surface Tri(Z) of Z, the closure inP3 of the union of lines
intersectingZ at three points. Note that no line intersectsZ at > 3 points
because the ideal ofZ is generated by cubic surfaces. Consider the linear
system of cubics throughZ. If all of them are singular, by Bertini’s Theo-
rem, there will be a common singular point at the base locus, i.e. atZ. But
this easily implies thatZ is singular, contradicting our assumption. Choose
a nonsingular cubic surfaceS containingZ. By adjunction formula, we have
Z2 = −KS · Z + degKZ = 6 + 4 = 10. Take another cubicS′ containing
Z. The intersectionS ∩ S′ is a curve of degree 9, the residual curveA is of
degree 3 andZ +A ∼ −3KS easily givesZ ·A = 18− 10 = 8. Note that the
curvesA are the proper transforms of lines under the Cremona transformation.
So they are rational curves of degree 3. We know that the base scheme of the
inverse transformationT−1 is a curve of degree6 isomorphic toZ. Replacing
T with T−1, we obtain that the image of a general line` underT is a rational
curve of degree 3 intersectingZ ′ at 8-points. These points are the images of
8 trisecants intersecting̀. This implies that the degree of the trisecant surface
Tri(Z) is equal to 8. Since the degree of the determinant of the Jacobian matrix
of a transformation of degree 3 is equal to 8, we see that there is nothing else
in theP -locus.

The linear system of planes containing a trisect line` cuts out onZ a linear
series of degree6 with moving part of degree 3. It is easy to see, by using
Riemann-Roch, that anyg1

3 on a curve of genus 3 must be of the form|KZ −
x| for a unique pointx ∈ Z. Conversely, for any pointx ∈ Z, the linear
system|OZ(1)−KZ + x| is of dimension0 and of degree 3 (here we use that
|OZ(1)| = |KZ + a|, wherea is not effective divisor class of degree 2). Thus
it defines a trisecant line (maybe tangent at some point). This shows that the
curveR parameterizing trisecant lines is isomorphic toZ. This agrees with the
fact thatR must be isomorphic to the base curve of the inverse transformation.



334 Cremona transformations

The Cremona transformation can be resolved by blowing up the curveZ and
then blowing down the proper transform of the surface Tri(Z). The exceptional
divisor is isomorphic to the minimal ruled surface with the base curve equal to
Z. It is the universal family of lines parameterized byZ. Its image in the target
P3 is surface Tri(Z ′), whereZ ′ is the base locus of the inverse transformation
(the same curve only re-embedded by the linear system|KZ + a′|, wherea′ ∈
|KZ − a|).
Remark7.2.3 Let Z be a closed acM subscheme of codimension 2 inP5

defined by a resolution

0→ OP5(−4)3 → OP5(−3)4 → IZ → 0.

It is a determinantal variety inP5 with the right kernel mapr : Z → P2

isomorphic to a projective bundleP(E), whereE is a rank 2 bundle onP2 with
c1(E) = 0 andc2(E) = 6 (see [458],[460]). ThusZ is a scroll of lines inP5,
called aBordiga scroll. A general hyperplane section ofZ is a surfaceS of
degree 6 inP4 with ideal sheaf defined by a resolution

0→ OP4(−4)3 → OP4(−3)4 → IS → 0.

It is a determinantal surface inP4 with the right kernel mapr : S → P2

isomorphic to the blow-up of 10 points inP2. The embedding ofS in P4 is
given by the linear system of quartic curves passing through the ten points. The
surfaceS is of degree 6, classically known as aBordiga surface[49]. Finally,
a general hyperplane section ofS is a sextic of genus 3 inP3 discussed in
Example7.2.2.

7.2.3 de Jonquìeres transformations

LetX be a reduced irreducible hypersurface of degreem in Pn which contains
a linear subspace of points of multiplicitym−2. Such a hypersurface is called
submonoidal(a monoidal hypersurfaceis a hypersurface of degreem which
contains a linear subspace of points multiplicitym − 1). For example, every
smooth hypersurface of degree≤ 3 is submonoidal.

LetX be a submonoidal hypersurface with a singular pointo of multiplicity
m − 2. Let us choose the coordinates such thato = [1, 0, . . . , 0]. ThenX is
given by an equation

Fm = t20am−2(t1, . . . , tn) + 2t0am−1(t1, . . . , tn) + am(t1, . . . , tn) = 0,
(7.27)

where the subscripts indicate the degrees of the homogeneous forms. For a
general pointx ∈ X, let us consider the intersection of the line`x = 〈o, x〉
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with X. It containso with multiplicity m− 2 and the residual intersection is a
set of two pointsa, b in `x. DefineT (x) to be the point oǹx such that the pairs
{a, b} and{x, T (x)} are harmonically conjugate. We call it ade Jonquìeres
involution(observe thatT = T−1).

Let us find an explicit formula for the de Jonquières involution which we
have defined. Letx = [α0, . . . , αn] and let[u + vα0, vα1, . . . , vαn] be the
parametric equation of the linèx. Plugging in (7.27), we find

(u+ vα0)2vm−2am−2(α1, . . . , αn) + 2(u+ vα0)vm−1am−1(α1, . . . , αn)

+vmam(α1, . . . , αn) = 0.

Cancelingvm−2, we see that the intersection points of the line`x with X are
the two points corresponding to the zeros of the binary formAu2 + 2Buv +
Cv2, where

(A,B,C) = (am−2(x), α0am−2(x) + am−1(x), Fm(x)).

The pointsx andT (x) corresponds to the parameters satisfying the quadratic
equationA′u2 +2B′uv+C ′v2 = 0, whereAA′+CC ′− 2BB′ = 0. Sincex
corresponds to the parameters[0, 1], we haveC ′ = 0. ThusT (x) corresponds
to the parameters[u, v] = [−C,B], and

T (x) = [−C +Bα0, Bt1, . . . , Bαn].

Plugging the expressions forC andB, we obtain the following formula for the
transformationT

t′0 = −t0am−1(t1, . . . , tn)− am(t1, . . . , tn),

t′i = ti(am−2(t1, . . . , tn)t0 + am−1(t1, . . . , tn)), i = 1, . . . , n.

In affine coordinateszi+1 = ti/tn, i = 0, . . . , n− 1, the formulas are

z′1 = − am−1(z2, . . . , zn)′z1 + am(z2, . . . , zn)′

am−2(z2, . . . , zn)′z1 + am−1(z2, . . . , zn)′
,

z′i = zi, i = 2, . . . , n.

A de Jonquìeres involution is an example of adilated Cremona transforma-
tion. Starting from a Cremona transformationT in Pn−1 we seek to extend it
to a Cremona transformation inPn. More precisely, ifpo : Pn 99K Pn−1 is
a projection map from a pointo, we want to find a Cremona transformation
T : Pn 99K Pn−1 such thatpo ◦ T̄ = T ◦ po. Suppose thatT is given by
a sequence of degreed homogeneous polynomials(G1, . . . , Gn). Composing
with a projective transformation inPn, we may assume thato = [1, 0, . . . , 0].
Thus the transformationT must be given by(F0, QG1, . . . , QGn), whereQ
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andF0 are coprime polynomials of degreesr andd + r. The following result
can be found in [469].

Proposition 7.2.2 Let (G1, . . . , Gn) be homogeneous polynomials of degree
d in t1, . . . , tn. LetF0 = t0A1 + A2, Q = t0B1 + B2, whereA1, A2, B1, B2

are homogeneous polynomials int1, . . . , tn of degreesd+r−1, d+r, r−1, r,
respectively. Assume thatF0 andQ are coprime andA1B2 6= A2B1. Then the
polynomials(F0, QG1, . . . , QGn) define a Cremona transformation ofPn if
and only if(G1, . . . , Gn) define a Cremona transformation ofPn−1.

Proof Let F ′(z1, . . . , zn) denote the dehomogenization of a homogeneous
polynomialF (t0, . . . , tn) in the variablet1. It is obvious that(F0, . . . , Fn)
define a Cremona transformation if and only if the field

C(F1/F0, . . . , Fn/F0) := C(F ′1/F
′
0, . . . , F

′
n/F

′
0) = C(z1, . . . , zn).

Consider the ratioF0/QG1 = t0A1+A2
t0GB1+GB2

. Dehomogenizing with respect to

t1, we can write the ratio in the formaz1+bcz1+d
, wherea, b, c, d ∈ C(z2, . . . , zn).

By our assumption,ad− bc 6= 0. Then

C(F1/F0, . . . , Fn/F0) = C(F0/QG1, G2/G1, . . . , Gn/G1)

= C(G2/G1, . . . , Gn/G1)(F0/QG1) = C(G2/G1, . . . , Gn/G1)(
az1 + b

cz1 + d
).

This field coincides withC(z1, . . . , zn) if and only if C(G2/G1, . . . , Gn/G1)
coincides withC(z2, . . . , zn).

TakingGi = ti, i = 1, . . . , n, and

F0 = −t0am−1(t1, . . . , tn)− am(t1, . . . , tn),

Q = am−2(t1, . . . , tn)t0 + am−1(t1, . . . , tn),

we see that a de Jonquières involution is dilated from the identity transfor-
mation ofPn−1. If we replaceF0 with t0bm−1(t1, . . . , tn) + bm(t1, . . . , bm),
wherebm−1, bm are any polynomials of indicated degrees such thatF0 andQ
still satisfy the assumptions of Proposition7.2.2, then we get a Cremona trans-
formation, not necessary involutive. In fact, one defines a general de Jonquières
transformation as follows.

Definition 7.2.2 A Cremona transformationT : Pn 99K Pn is called ade
Jonquìeres transformationif there exists a rational mapf : Pn 99K Pk bi-
rationally isomorphic to the projection mappr2 : Pn−k × Pk → Pk and a
Cremona transformationT ′ : Pk 99K Pk such thatf ◦ T = T ′ ◦ f .
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In algebraic language, this definition is equivalent to thatT defines an auto-
morphismΦ of the field of rational functions inz1, . . . , zn of the form

(z1, . . . , zn) 7→ (R1, . . . , Rk, Rk+1, . . . , Rn),

whereR1, . . . , Rk are rational functions in variablesz1, . . . , zk with coeffi-
cients inC andRk+1, . . . , Rn are rational functions in variableszk+1, . . . , zn
with coefficients in the fieldC(z1, . . . , zk).

A de Jonquìeres transformation obtained by dilating the identity map of
Pn−1 is the special case whenk = n−1 andT ′ is the identity. It is easy to com-
pute its multidegree. Take a general lineark-codimensional subspaceL of Pn.
We can writeL as the intersection ofk−1 hyperplanesHi = V (li(t1, . . . , tn))
containing the pointo and one hyperplaneHk = V (lk(t0, . . . , tn)) which does
not containo. The preimage of the firstk−1 hyperplanesHi are reducible hy-
persurfacesDi = V (tiQ) of degreem. The preimage ofHk is a hypersurface
Dk of degreem. The intersection of the hypersurfaceV (Q) with Dk is con-
tained in the base scheme ofT . Thus the degree of the intersectionD1 · · ·Dk

outside the base locus is equal tom. This shows that the multi degree ofT is
equal to(m, . . . ,m). Note that the casem = 2 corresponds to quadratic trans-
formations we studied in subsection 7.2.1. In the notation from this subsection,
the pointo is the isolated base point and the submonoidal hypersurface in this
case is a quadric hypersurfaceQ such that the quadric componentQ0 of the
base locus is equal to the intersectionQ ∩ Po(Q).

7.3 Planar Cremona transformations

7.3.1 Exceptional configurations

From now on we will study birational maps between algebraic surfaces. We
know (see [311], Chapter V,§5) that any birational morphismπ : Y → X of
nonsingular projective surfaces can be factored into a composition of blow-ups
with centers at closed points. Let

π : Y = YN
πN−→ YN−1

πN−1−→ . . .
π2−→ Y1

π1−→ Y0 = X (7.28)

be such a factorization. Hereπi : Yi → Yi−1 is the blow-up of a pointxi ∈
Yi−1. Set

πki := πi+1 ◦ . . . ◦ πk : Yk → Yi, k > i.

Let

Ei = π−1
i (xi), Ei = π∗Ni(Ei). (7.29)
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The divisorsEi are called theexceptional configurationsof the birational
morphismπ : Y → X. Note thatEi should be considered as an effective
divisor, not necessary reduced.

For any effective divisorD 6= 0 onX let multxi
D be defined inductively in

the following way. We set multx1D to be the usual multiplicity ofD atx1. It is
defined as the largest integerm such that the local equation ofD atx1 belongs
to them-th power of the maximal idealmX,x1 . So, the multiplicity multxi

D

is defined. Next, we take the proper inverse transformπ−1
i (D) of D in Xi and

define multxi+1(D) = multxi+1π
−1
i (D). It follows from the definition that

π−1(D) = π∗(D)−
N∑
i=1

miEi,

wheremi = multxiD. Now supposeπ : Y → X is a resolution of a rational
dominant mapf : X → X ′ of algebraic surfaces given by the linear system
|V | ⊂ |L|, the inverse image of the complete linear system|L′| defining a
closed embeddingX ′ ↪→ Pr. Let

mi = min
D∈|V |

multxiD, i = 1, . . . , N.

If D0, . . . , Dk are divisors corresponding to a basis ofV , then

mi = min{multxi
D0, . . . ,multxi

Dk}, i = 1, . . . , N.

It is clear that

π−1(|V |) = π∗(|V |)−
N∑
i=1

miEi. (7.30)

Let

E =
N∑
i=1

miEi.

Thenπ−1(|V |) ⊂ |π∗(L)(−E)|. Let b = b(|V |). The ideal sheafπ−1(b) =
b · OY is the base locus ofπ−1(|V |) and hence coincides withOY (−E). The
complete linear system|π∗(L) ⊗ OY (−E)| has no base points and defines a
morphismσ : Y → X ′. The preimage of a generalm − 2-dimensional linear
space inY consists ofmdegX ′ points, wherem is the degree of the rational
mapf : X → X ′ anddegX ′ is the degree ofX ′ in the embeddingX ′ ↪→ Pr.
It is also equal to the self-intersection[D − E]2, whereL ∼= OX(D). Thus,
we obtain thatf is a birational map ontoX ′ if and only if

D2 − E2 = degX ′. (7.31)
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From now on we use the intersection theory on smooth surfaces and use the
notationD ·D′ for the intersection of the divisor classes[D] · [D′].

Lemma 7.3.1 Let π : Y → X be a birational morphism of nonsingular
surfaces andEi, i = 1, . . . , N, be its exceptional configurations. Then

Ei · Ej = −δij ,

Ei ·KY = −1.

Proof This follows from the standard properties of the intersection theory on
surfaces. For any morphism of nonsingular projective surfacesφ : X ′ → X

and two divisorsD,D′ onX, we have

φ∗(D) · φ∗(D′) = deg(φ)D ·D′. (7.32)

Also, if C is a curve such thatφ(C) is a point, we have

C · φ∗(D) = 0. (7.33)

Applying (7.32), we have

−1 = E2
i = π∗Ni(Ei)

2 = E2
i .

Assumei < j. Applying (7.33) by takingC = Ej andD = Ei, we obtain

0 = Ej · π∗ji(Ei) = π∗Nj(Ej) · π∗Ni(Ei) = Ej · Ei.

This proves the first assertion.
To prove the second assertion, we use that

KYi+1 = π∗i (KYi
) + Ei.

By induction, this implies that

KY = π∗(KY0) +
N∑
i=1

Ei. (7.34)

Intersecting with both sides and using (7.33), we get

KY · Ej =
( N∑
i=1

Ei
)
·Ej = E2

j = −1.

Assume now thatf : X 99K X ′ is a birational map of nonsingular projective
algebraic surfaces. By Bertini’s Theorem ([311], Chapter II, Theorem 8.18), a
general hyperplane sectionH ′ ofX ′ is a nonsingular irreducible curve of some
genusg. Sincef−1(|V |) has no base points, by another Bertini’s Theorem
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([311], Chapter II, Corollary 10.9), its general memberH is a nonsingular
irreducible curve. SinceH ∈ |σ∗(H ′)|, we obtain thatH is of genusg and
the mapσ : H → σ(H) is an isomorphism. Using the adjunction formula, we
obtain

H ·KY = 2g − 2−H2 = H ′2 +H ′ ·KX′ −H2.

WriteH = π∗(D)− E and apply the projection formula, to obtain

H ·KY = D ·KX − E ·KY .

Applying (7.31) and the previous Lemma, we obtain

Proposition 7.3.2 Supposef : X 99K X ′ is a birational rational map of
nonsingular projective algebraic surfaces. LetD ∈ |L|. Then

(i) D2 −
∑N
i=1m

2
i = H ′2 = degX ′;

(ii) D ·KX −
∑N
i=1mi = H ′ ·KX′ .

Let us apply all of this to the case of a Cremona transformationT : P2 99K
P2. Let L = OP2(d). Of course, we takeL′ = OP2(1), thenL = OP2(d),
whered is the algebraic degree ofT . By the previous Proposition,

1 = d2 −
N∑
i=1

m2
i , (7.35)

3 = 3d−
N∑
i=1

mi.

Let b be the base ideal of|V |. We know thatπ∗(OY (−E)) is equal to the
integral closureb of b, and we have a bijection

H0(P2,L ⊗ b) ∼= H0(Y, π∗OP2(d)(−E)) ∼= H0(Y, σ∗OP2(1)) ∼= C3.

Subtracting the two equalities from (7.35), and applying the Postulation for-
mula from Corollary7.1.5, we find

h0(OP2/b̄) = 1
2

N∑
i=1

mi(mi + 1). (7.36)

This also follows from theHoskin-Deligne formula(see [174], Th’eorème 2.13
and [334]). The vector(d;m1, . . . ,mN ) is called thecharacteristicof the
homaloidal net, or, of a Cremona transformation defined by this net.

Of course, not any vector(d;m1, . . . ,mN ) satisfying equalities (7.35) is
realized as the characteristic vector of a homaloidal net. There are other neces-
sary conditions for a vector to be realized as the characteristic(d;m1, . . . ,mN )
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for a homaloidal net. For example, ifm1,m2 correspond to points of height
0 of largest multiplicity, a line through the points should intersect a general
member of the net non-negatively. This gives the inequality

d ≥ m1 +m2.

Next we take a conic through 5 points with maximal multiplicities. We get

2d ≥ m1 + · · ·+m5.

Then we take cubics through 9 points, quartics through 14 points and so on.
The first case which can be ruled out in this way is(5; 3, 3, 1, 1, 1, 1, 1). It
satisfies the equalities from the Theorem but does not satisfy the condition
m ≥ m1 +m2. We will discuss the description of characteristic vectors later
in this Chapter.

7.3.2 The bubble space of a surface

Consider a factorization (7.28) of a birational morphism of nonsingular sur-
faces. Note that, if the morphismπ1 ◦ · · · ◦ πi : Yi → X is an isomorphism on
a Zariski open neighborhood of the pointxi+1, the pointsxi can be identified
with its image inX. Other points are calledinfinitely nearpoints inX. To
make this notion more precise one introduces the notion of thebubble space
of a surfaceX.

LetBX be the category of birational morphismsπ : X ′ → X of nonsingular

projective surfaces. Recall that a morphism from(X ′ π
′

→ X) to (X ′′ π
′′

→ X) in
this category is a regular mapφ : X ′ → X ′′ such thatπ′′ ◦ φ = π′.

Definition 7.3.1 Thebubble spaceXbb of a nonsingular surfaceX is the
factor set

Xbb =
( ⋃

(X′π′→X)∈BX

X ′
)
/R,

whereR is the following equivalence relation:x′ ∈ X ′ is equivalent tox′′ ∈
X ′′ if the rational mapπ′′−1 ◦ π′ : X ′ 99K X ′′ maps isomorphically an open
neighborhood ofx′ to an open neighborhood ofx′′.

It is clear that for anyπ : X ′ → X fromBX we have an injective mapiX′ :
X ′ → Xbb. We will identify points ofX ′ with their images. Ifφ : X ′′ → X ′

is a morphism inBX which is isomorphic inBX′ to the blow-up of a point
x′ ∈ X ′, any pointx′′ ∈ φ−1(x′) is called a pointinfinitely nearx′ of the
first order. This is denoted byx′′ �1 x

′. By induction, one defines an infinitely
near point of orderk, denoted byx′′ �k x′. This puts a partial order onXbb
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wherex > y if x is infinitely neary. When we do not specify the order of an
infinitely near point we writex′ � x.

We say that a pointx ∈ Xbb is of heightk, if x �k x0 for somex0 ∈ X.
This defines theheight functionon the bubble space

ht : Xbb→ N.

Clearly,X = ht−1(0). Points of height zero are calledproper pointsof the
bubble space. They will be identified with points inX. They are minimal points
with respect to the partial order onXbb.

Let ZXbb
be the free abelian group generated by the setXbb. Its elements are

integer valued functions onXbb with finite support. They added up as func-
tions with values inZ. We write elements ofZXbb

as finite linear combinations∑
m(x)x, wherex ∈ Xbb andm(x) ∈ Z (similar to divisors on curves). Here

m(x) is the value of the corresponding function atx.

Definition 7.3.2 A bubble cycleis an elementη =
∑
m(x)x of ZXbb

satis-
fying the following additional properties:

(i) m(x) ≥ 0 for anyx ∈ Xbb;
(ii)

∑
x′�xmx′ ≤ mx.

We denote the subgroup of bubble cycles byZ+(Xbb).

Clearly, any bubble cycleη can be written in a unique way as a sum of
bubble cyclesZk such that the support ofηk is contained in ht−1(k).

We can describe a bubble cycle by a weighted oriented graph, called the
Enriques diagram, by assigning to each point from its support a vertex, and
joining two vertices by an oriented edge if one of the points is infinitely near
another point of the first order. The arrow points to the vertex of lower height.
We weight each vertex by the corresponding multiplicity.

Let η =
∑
mxx be a bubble cycle. We order the points from the support of

η such thatxi � xj impliesj < i. We refer to such an order as anadmissible
order. We writeη =

∑N
i=1mixi. Then we representx1 by a point onX and

defineπ1 : X1 → X to be the blow-up ofX with center atx1. Thenx2 can
be represented by a point onX1 as either infinitely near of order 1 tox1 or as
a point equivalent to a point onX. We blow upx2. Continuing in this way, we
get a sequence of birational morphisms:

π : Yξ = YN
πN−→ YN−1

πN−1−→ . . .
π2−→ Y1

π1−→ Y0 = X, (7.37)

whereπi+1 : Yi+1 → Yi is the blow-up of a pointxi ∈ Yi−1. Clearly, the
bubble cycleη is equal to the bubble cycle

∑N
i=1mixi.
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Let Ei = π∗Ni(Ei) be the exceptional configurations andE =
∑
miEi.

The ideala = π∗(OY (−E)) is an integrally closed ideal associated toη. The
Deligne-Hoskin formulawe mentioned before asserts that

h0(OX/a) = 1
2

∑
mi(mi + 1). (7.38)

Conversely, any integrally closed ideala defining a0-dimensional closed sub-
scheme ofX defines a bubble cycleηa as follows. First we blow-upa to get
a morphismX ′ → X. By a result of O. Zariski (see [662], Appendix 5),
the blow-up of an integrally closed ideal on a smooth surface is a normal
surface (this is specific to the two-dimensional case). Then we take a min-
imal resolution of singularitiesY → X ′. Then we factor the composition
π : Y → X ′ → X as in7.28. The corresponding bubble cycle isaη.

Definition 7.3.3 The bubble cycleη corresponding to the integral closure
of the base ideal of the linear system|V | defining a Cremona transformation
T : P2 → P2 is called thefundamental bubble cycle. Its points are called
fundamental pointsof T .

Let η be the bubble cycle corresponding tob(|V |). We set

|dh− η| := |OP2(d)⊗ b(|V |)|.

Example7.3.1 Supposeη =
∑
mixi, where all pointsxi are proper. Then

the integrally closed ideal corresponding toη is equal to the product of the
ideal sheavesmmi

xi
. In fact, the blow-up of this ideal has the exceptional divisor∑

miEi, and the same exceptional divisor is defined byη. One immediately
checks the Deligne-Hoskin formula in this case. Ifη is the fundamental bubble
cycle of a homaloidal linear system|V |, thenb = b(|V |) is generated, at each
pointxi by three elementsg1, g2, g3, the local equations of a basis of the linear
system. Certainly,b is not integrally closed ifmi ≥ 3, and its integral closure
is equal tommi

xi
.

Remark7.3.1 An idealI in the formal power series ringC[[x, y]] of colength
2 such thatI is not contained in the square of the maximal ideal can be all ex-
plicitly described (see [346]). Every such ideal has one or both of the following
forms:

I = (x+ a0y + . . .+ an−1y
n−1, yn),

or,

I = (y + b0x+ . . .+ an−1x
n−1, xn).

If x is a base point of a homaloidal linear system of multiplicity 1, then the
completion of the localizationbx of the base ideal is an ideal of the above
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form. The numbern is equal to the number of irreducible components in the
exceptional curve overx. The coefficients(ai, bi) determine the correspond-
ing pointt of the bubble cycle. Thus the first pointx1 �1 x infinitely nearx
corresponds to the tangent direction defined by the ideal(x+a0y) or (y+ b0).
The next infinitely near pointx1 �1 x1 is determined by the coefficienta1 or
b1, and so on.

It follows from this that the blow-up of the idealI is a normal surface with
one singularity locally isomorphic to the singularity at the origin of the surface
V (uv + wn) ⊂ C3.

7.3.3 Nets of isologues and fixed points

Let T : P2 99K P2 be a Cremona transformation. Letp be a point in the
plane. Consider the locus of pointsCT (p) such thatx, φ(x), p are collinear.
This locus is calledisologueof p, the pointp is called itscenter. In terms of
equations, ifφ is given by polynomials(f0(t), f1(t), f2(t)) of degreed and
p = [a0, a1, a2], thenCT (p) is given by equation

det

 a0 a1 a2

t0 t1 t2
f0(t) f1(t) f2(t)

 = 0. (7.39)

It follows immediately thatdegCT (p) = d + 1 unlessCT (p) = P2. This
always happens for de Jonquières transformation if we takep to be the base
pointo of maximal multiplicity.

From now on we assume thatCT (p) 6= P2 for any pointp. ThenCT (p) is a
curve of degreed+ 1. It passes through the fundamental points ofT (because
the last row in the determinant is identical zero for such point) and it passes
through thefixed pointsof T , i.e. pointsx ∈ dom(T ) such thatT (x) = x

(because the last two rows are proportional). AlsoCT (p) contains its centerp
(because the first two rows are proportional).

One more observation is that

CT (p) = CT−1(p).

When p varies in the plane we obtain anet of isologues. If F is the one-
dimensional component of the set of fixed points, thenF is a fixed component
of the net of isologues.

Remark7.3.2 It follows from the definition that the isologue curveC(p) is
projectively generatedby the pencil of lines̀ throughp and the pencil of
curvesT−1(`). Recall that given two pencilsP andP ′ of plane curve of degree
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d1 andd2 and a projective isomorphismα : P → P ′, the union of points
Q ∩ α(Q), Q ∈ P, is a plane curveC. Assuming that the pencils have no
common base points,C is a plane curve of degreed1 + d2. To see this we take
a general linè and restrictP andP ′ to it. We obtain two linear seriesg1

d and
g1
d′ on `. The intersectionC ∩ ` consists of points common to divisors fromg1

d

andg1
d′ . The number of such points is equal to the intersection of the diagonal

of P1×P1 with a curve of bidegree(d, d′), hence it is equal tod+d′. It follows
from the definition thatC contains the base points of the both pencils.

Proposition 7.3.3 Assume thatT has no infinitely near fundamental points.
Then the multiplicity of a general isologue curve at a fundamental pointx of
multiplicitym is equal tom.

Proof Letu, v be local affine parameters atx. For each homogeneous polyno-
mial φ(t0, t1, t2) vanishing atx with multiplicity ≥ m, let [φ]k := [φ]k(u, v)
be the degreek homogeneous term in the Taylor expansion atx. If V (f) is a
general member of the homaloidal net, then[f ]k = 0 for k < m and[fm] 6= 0.
Let Bm be the space of binary forms of degreem in variablesu, v. Consider
the linear mapα : C3 → Bm defined by

(a, b, c) 7→ [(bt2 − ct1)f0(t) + (ct0 − at2)f1(t) + (at1 − bt0)f2(t)]m.

The map is the composition of the linear mapC3 → C3 defined by(a, b, c) 7→
([bt2 − ct1]0, [ct0 − at2]0, [at1 − bt0]0) and the linear mapC3 → Bm defined
by (a, b, c) 7→ [af0 + bf1 + cf2]m. The rank of the first map is equal to 2, the
kernel is generated by[t0]0, [t1]0, [t2]0). Since no infinitely near point is a base
point of the homaloidal net, the rank of the second map is greater than or equal
to 2. This implies that the mapα is not the zero map. Hence there exists an
isologue curve of multiplicity equal tom.

Remark7.3.3 Coolidge claims in [143], p. 460, that the assertion is true even
in the case of infinitely near points. By a direct computation, one checks that
the multiplicity of isologue curves of the degenerate standard Cremona trans-
formation (7.7) at the unique base point are equal to 2.

Corollary 7.3.4 Assume that the homaloidal net has no infinitely near base
points and the net of isologues has no fixed component. Then the number of
fixed points ofT is equal tod+ 2.

Proof Take two general pointsp, q in the plane. In particular, we may assume
that the line` = pq does not pass through the base points of the homaloidal
net and the fixed points. Alsop 6∈ CT (q) andq 6∈ CT (p). Consider a point
x in the intersectionCT (p) ∩ Cφ(q). Assume that it is neither a base point
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nor a fixed point. Thenp, q ∈ xT (x), hencex, T (x), p, q lie on `. Conversely,
if x ∈ ` ∩ CT (p) andx 6= p, then the pointsx, T (x), p are collinear and,
sinceq ∈ `, we get thatx, T (x), q are collinear. This implies thatx ∈ CT (q).
This shows that the base points of the pencil of isologue curvesCT (p), p ∈ `,
consists of base points of the homaloidal net, fixed points andd points on`
(counted with multiplicities). The base points of the homaloidal net contribute∑N
i=1m

2
i to the intersection. Applying Proposition7.3.3, we obtain that fixed

points contributed+ 2 = (d+ 1)2 − d−
∑N
i=1m

2
i to the intersection.

Note that the transformation from Remark7.3.3has no fixed points.

Remark7.3.4 The assumption thatφ has no infinitely near points implies
that the graphΓ of φ is a nonsingular surface inP2 × P2 isomorphic to the
blow-up of the base scheme of the homaloidal net. Leth1, h2 be the preimages
of the cohomology classes of lines under the projections. They generate the
cohomology ringH∗(P2 × P2,Z). Let [Γ] be the cohomology class ofΓ and
[∆] be the cohomology class of the diagonal∆. Write [Γ] = ah2

1+bh1h2+ch2
2.

Since the preimage of a general point underφ is a point, we have[Γ] · h2
2 = 1.

Replacingφ with φ−1, we get[Γ] · h2
1 = 1. Since a general line intersects the

preimage of a general line atd points we get[Γ] · h1 · h2 = d. This gives

[Γ] = h2
1 + dh1h2 + h2

2. (7.40)

Similarly, we get

[∆] = h2
1 + h1h2 + h2

2. (7.41)

This implies that

[Γ] · [∆] = d+ 2.

This confirms the assertion of the previous Corollary. In fact, one can use the
argument for another proof of the Corollary if we assume (that follows from
the Corollary) that no point in the intersectionΓ ∩ ∆ lies on the exceptional
curves of the projections.

The net of isologue curves without fixed component is a special case of a
Laguerre net. It is defined by one of the following three equivalent properties.

Theorem 7.3.5 Let |V | be an irreducible net of plane curves of degreed. The
following properties are equivalent.

(i) There exists a basisf0, f1, f2 such that

t0f0(t) + t1f1(t) + t2f2(t) = 0. (7.42)
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(ii) For any basisf0, f1, f2 of V , there exist three linearly independent
linear formsl1, l2, l3 such that

l0f0 + l1f1 + l2f2 = 0.

(iii) There exists a basisf0, f1, f2 of V such that

f0 = t1g2 − t2g1, f1 = t2g0 − t0g2, f2 = t0g1 − t1g0,

whereg0, g1, g2 are homogeneous forms of degreed− 1.

(iv) The base locus of a general pencil in|V | is the union of the base locus
of |V | and a set ofd− 1 collinear points.

Proof The equivalence of the fist two properties is obvious. Also property
(iii) obviously implies property (i). Suppose (i) holds. The Koszul complex in
the ring of polynomialsS = C[t0, t1, t2] is an exact sequence

0→ S
α→ S3 β→ S3 γ→ S → S/(t0, t1, t2)→ 0,

whereα is defined bya 7→ a(t0, t1, t2). The mapβ is defined by the matrix 0 −t2 t1
t2 0 −t0
−t1 t0 0

 ,

and the mapγ is defined by(a, b, c) 7→ at0 + bt1 + ct2 (see [228], 17.2).
Property (i) says that(f0, f1, f2) belongs to the kernel ofγ. Thus it belongs to
the image ofβ, and hence (iii) holds.

(i) ⇒ (iv) Take two general curvesCλ = V (λ0f0 + λ1f1 + λ2f2) and
Cµ = V (µ0f0 + µ1f1 + µ2f2) from the net. They intersect with multiplicity
≥ 2 at a pointx if and only if x belongs to the Jacobian curve of the net.
This shows that the set of pencils which intersect non-transversally outside
of the base locus is a proper closed subset of|V ∨|. So, we may assume that
C(µ) andC(ν) intersect transversally outside the base locus of the net. Let
p = [a] belong toCλ ∩ Cµ but does not belong to the base locus of|V |. Then
(f0(a), f1(a), f2(a)) is a nontrivial solution of the system of linear equations
with the matrix of coefficients equal toλ0 λ1 λ2

µ0 µ1 µ2

a0 a1 a2

 .

This implies that the line spanned by the pointsλ = [λ0, λ1, λ2] andµ =
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[µ0, µ1, µ2] contains the pointp. Thus all base points of the pencil differ-
ent from the base points of the net are collinear. Conversely, suppose a non-
base point[a] 6= λ, µ lies on a lineλµ and belongs to the curveCλ. Then
(f0(a), f1(a), f2(a)) is a non-trivial solution of

λ0t0 + λ1t1 + λ2t2 = 0, a0t0 + a1t1 + a2t2 = 0,

hence satisfies the third equationµ0t0 + µ1t1 + µ2t2 = 0. This shows that
a ∈ Cλ ∩ Cµ. Thus we see that the intersectionCλ ∩ Cµ consists ofd − 1
non-base points.

(iv)⇒ (ii) We follow the proof from [143], p. 423. LetV (f0), V (f1) be two
general members intersecting atd−1 points on a lineV (l) not passing through
the base points. Letpi be the residual point onV (fi). Choose a general line
V (l0) passing throughp2 and a general lineV (l1) passing throughp1. Then
V (l0f0) andV (l1f1) contain the same set ofd + 1 points on the lineV (l),
hence we can write

l0f0 + cl1f1 = lf2 (7.43)

for some polynomialf2 of degreed and some constantc. For any base point
q of the net, we havel0(q)f0(q) + cl1(q)f1(q) = l(q)f2(q). Sincel(q) 6= 0
andf0(q) = f1(q) = 0, we obtain thatf2(q) = 0. Thus the curveV (f2)
passes through each base point and hence belongs to the net|V |. This shows
thatf0, f1 andf2 define a basis of|V | satisfying property (ii).

Corollary 7.3.6 Letb be the base ideal of a Laguerre net of curves of degree
d and b̄ be its integral closure. Thenh0(OP2/b̄) = d2 − d+ 1.

Proof It is known that a complete ideal in a regular two-dimensional ring is
generated by two elements [662], Appendix 5. This implies that̄b is generated
by two general members of the net. By Bezout’s Theoremh0(OP2/b̄) = d2 −
(d− 1).

Replacing the first row in the determinant defining an isologue curve with
t0, t1, t2 we see that the net of isologue curves is a Laguerre net of curves of
degreed + 1. Applying the previous Corollary, we obtain that the number of
fixed points of a Cremona transformations

Example7.3.2 Take an irreducible net of cubic curves with 7 base points.
Then it is a Laguerre net since two residual intersection points of any two
general members are on a line. Thus it is generated by the minors of the matrix(

t0 t1 t2
g0 g1 g2

)
,
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whereg0, g1, g2 are quadratic forms. Recall that the linear system of cubics
with 7 base points satisfying (6.3.3) define a nonsingular quartic curve. It is
known that the quartic curve is a Lüroth quartic if and only if there exists a
cubic curveV (f) such thatgi = ∂f

∂ti
(see [28], [463]).

7.3.4 Quadratic transformations

Taked = 2. Formulas (7.35) give m1 = m2 = m3 = 1, N = 3. The bi-
rational transformation of this type is called aquadratic transformation. We
have already encountered these transformations before, the standard quadratic
transformationsTst, T

′
st, T

′′
st .

The homaloidal linear system is the net of conics|2h − η|. Since the net is
irreducible|h−η| = ∅. Assume first thatη consists of proper pointsx1, x2, x3.
Let g : P2 99K P2 be a projective automorphism which sends the points
p1 = [1, 0, 0], p2 = [0, 1, 0], p3 = [0, 0, 1] to the pointsx1, x2, x3. Then the
compositionT ◦ g has base points atp1, p2, p3. The linear system of con-
ics through these points consists of conicsV (at0t1 + bt0t1 + ct1t2). If we
choose a basis formed by the conicsV (t1t2), V (t0t2), V (t0t1), this amounts
to composeT ◦ g with someg′ ∈ Aut(P2) on the left, we obtain the standard
quadratic transformationTst from Example7.1.1. It has the special property
thatTst = T−1

st .
Next we assume that the bubble cycleη has two proper pointsx1, x2 and an

infinitely near pointx3 � x2. The base idealb of the homaloidal linear system
is integrally closed and coincides with the idealmx1 ∩ a2, whereax2 ⊂ mx2

with dim mx2/ax2 = 1. If we choose local parametersu, v at x2, thenax2 =
(au + bv, v2), whereau + bv = 0 is the tangent direction defining the point
x3. Let g be an automorphism ofP2 which sendsp1 to x1, p2 to x2 and the
tangent directiont1 = 0 at p2 to the tangent directionau + bv = 0 at p2.
Then the compositionT ◦ g is given by the linear system of conics passing
through the pointsp1 andp2 and tangent the lineV (t0) at the pointp2. The
equation of a conic from this linear system isat22 +bt0t1 +ct0t2 = 0. A choice
of a basis of this linear system defines a quadratic Cremona transformation.
The special choice of a basis formed byV (t21), V (t0t1), V (t0t2) defines the
standard quadratic transformationT ′st from Example7.1.1with T ′st = T ′st

−1.
Assume now thatx3 � x2 � x1. Let b be the ideal of the base scheme.

Applying a linear transformationg, we obtain that the base point ofT ◦ g is
equal top1. Let x = t1/t0, y = t2/t0 be local parameters atx1. By Remark
7.3.1, we may assume thatb = (x + ay + by2, y3) or (y + ax + bx2, x3). It
is easy to see that one can find another linear transformationg′ which fixesp1

such that the base ideal ofT ◦ g ◦ g′ is equal to(−x+ y2, y3). The homaloidal
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linear system generated by conicsV (t22 − t0t1), V (t21), V (t1t2). In this basis,
the transformation coincides with the involutorial standard quadratic transfor-
mationT ′′st from Example7.1.1.

Example7.3.3 The first historical example of a Cremona transformation is
the inversionmap. Recall the inversion transformation from the plane geome-
try. Given a circle of radiusR, a pointx ∈ R2 with distancer from the center
of the circle is mapped to the point on the same ray at the distanceR/r.

��������������� Rr

R
r

•

•

In the affine planeC2 the transformation is given by the formula

(x, y) 7→ (
Rx

x2 + y2
,

Ry

x2 + y2
).

In projective coordinates, the transformation is given by the formula

(t0, t1, t2) 7→ (t21 + t22, Rt1t0, Rt2t0).

Note that the transformation has three fundamental points[1, 0, 0], [0, 1, i], and
[0, 1,−i]. It is an involution and transforms lines not passing through the fun-
damental points to conics (circles in the real affine plane). The lines passing
though one of the fundamental points are transformed to lines. The lines pass-
ing through the origin(1, 0, 0) are invariant under the transformation. The
conict21 + t22 −Rt20 = 0 is the closure of the set of fixed points.

Example7.3.4 LetC1 andC2 be two conics intersecting at 4 distinct points.
For each general pointx in the plane letT (x) be the intersection of the polar
linesPx(C1) andPx(C2). Let us see that this defines an involutorial quadratic
transformation with fundamental points equal to the singular points of three
reducible conics in the pencil generated byC1 andC2. It is clear that the trans-
formationT is given by three quadratic polynomials. SincePx(C1) ∩ Px(C2)
is equal toPx(C) ∩ Px(C ′) for any two different members of the pencil, tak-
ingC to be a reducible conic andx to be its singular point, we obtain thatT is
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not defined atx. Since the pencil contains three reducible members, we obtain
thatT has three base points, henceT is given by a homaloidal net and hence
is a birational map. Obviously,x ∈ PT (x)(C1) ∩ PT (x)(C2), henceT is an
involution.

7.3.5 Symmetric Cremona transformations

Assume that the fundamental bubble cycleη of a Cremona transformationT
consists of points taken with equal multiplicitym. In this case the Cremona
transformations is calledsymmetric. We must have

d2 −Nm2 = 1, 3d−Nm = 3.

Multiplying the second equality bym and subtracting from the first one, we
obtaind2− 3dm = 1− 3m. This gives(d− 1)(d+1) = 3m(d− 1). The case
d = 1 corresponds to a projective transformation. Assumed > 1. Then we get
d = 3m− 1 and hence3(3m− 1)−Nm = 3. Finally, we obtain

(9−N)m = 6, d = 3m− 1.

This gives us 4 cases.

(1) m = 1, N = 3, d = 2;
(2) m = 2, N = 6, d = 5;
(3) m = 3, N = 7, d = 8;
(4) m = 6, N = 8, d = 17.

The first case is obviously realized by a quadratic transformation with 3 fun-
damental points.

The second case is realized by the linear system of plane curves of degree
5 with 6 double points. Take a bubble cycleη = 2t1 + · · · + 2t6, where the
pointsti in the bubble space do not lie on a proper transforms of a conic and
no three lie on the proper transforms of a line. I claim that the linear system
|V | = |OP2(2)− η| is homaloidal. The space of plane quintics is of dimension
20. The number of conditions for passing through a point with multiplicity≥ 2
is equal to 3. Thusdim |OP2(2)−η| ≥ 2. It is easy to see that the linear system
does not have fixed components. For example, if the fixed component is a line,
it cannot pass through more than 2 points, hence the residual components are
quartics with 4 double points, obviously reducible. If the fixed component is a
conic, then it passes through at most 5 points, hence the residual components
are cubics with at least one double point and passing through the remaining
points. It is easy to see that the dimension of such linear system is at most 1. If
the fixed component is a cubic, then by the previous analysis we may assume
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that it is irreducible. Since it has at most one singular point, the residual conics
pass through at least 5 points and the dimension of the linear system is equal
to zero (or it is empty). Finally, if the fixed component is a quartic, then the
residual components are lines passing through 3 points, again a contradiction.

Applying Bezout’s Theorem, we see that two general members of our linear
system intersect at 1 point outside of the base locus, also their genus is equal
to 0. Thus the linear system is a homaloidal.

Assume that all base points are proper points in the plane. Then theP -locus
of the transformation consists of six conics, each passing through 5 of the six
base points.

The third case is realized by aGeiser involution. We consider an irreducible
netN of cubic curves through 7 pointsx1, . . . , x7 in the plane. The existence
of such a net puts some conditions on the seven points. For example, no 4
points must be collinear, and no 7 points lie on a conic. We leave to the reader
to check that these conditions are sufficient that such a net exists. Now consider
the transformationG that assigns to a general pointx in the plane the base point
of the pencil of cubics from the net which pass throughx. If pointsx1, . . . , x7

satisfy condition(∗) from subsection6.3.3, then the net of cubics defines a
rational map of degree 2 to the plane with a nonsingular quartic curve as the
branch curve. The Geiser involutionG is the rational deck transformation of
this cover. Under a weaker conditions on the seven points, the same is true.
The only difference is that the branch curve may acquire simple singularities.

Let us confirm that the degree of the transformationG is equal to 8. The
image of a general linè under the map given byN is a cubic curveL. Its
preimage is a curve of degree 9 passing through the pointsxi with multiplic-
ity 3. Thus the unioǹ + L is invariant underT , henceT (`) = L. Since
T = T−1, this shows that the degree ofT is equal to8. It also shows that
the homaloidal linear system consists of curves of degree 8 passing through
the base points with multiplicities≥ 3. In other words, the homaloidal linear
system is|8h−3η|, whereη = x1 + . . .+x7. If one composeG with a projec-
tive transformation we obtain a transformation given by the same homaloidal
linear system but not necessary involutorial. Also, the bubble cycleη may not
consist of only proper points, as soon as we continue to require that the linear
system|3h− η| has no fixed components. All admissibleη’s will be classified
in the next Chapter.

The last case is realized by aBertini involution. We consider an irreducible
pencil of cubic curves through a general set of 8 pointsx1, . . . , x8. Let q be
its ninth base point (it could be infinitely near one of the pointsxi). For any
general pointx in the plane, letF (x) be the member of the pencil containing
x. Let B(x) be the residual point in the intersection ofF (x) with the line
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xq (it could be the tangent line toF (x) if q � xi). The transformationx →
B(x) is the Bertini involution. If we takeq as the origin in the group law on a
nonsingular cubicF (p), thenB(x) = −x.

Consider the webN of curves of degree 6 and genus 2 whose general mem-
ber passes through each pointxi with multiplicity 2. The restriction ofN to
anyF (x) is a pencil with fixed part2x1 + · · · + 2x8 and the moving partg1

2 .
One of the members of thisg1

2 is the divisor2q cut out by2F (x′), x 6= x′.
As we have seen in subsection6.3.3, the members of this pencil are cut out by
lines through the coresidual point onF (x). This point must coincide with the
pointq. Thus members of theg1

2 are divisorsx+B(x). We will see in the next
Chapter that the netN defines a degree 2 rational mapf : P2 99K Q ⊂ P3,
whereQ is a singular irreducible quadric inP3. The image ofq is the vertex
of the cone. The images of the curvesF (x) are lines onQ. Consider a general
line ` in the plane. It is mapped to a curve of degree 6 onQ not passing through
the vertex ofQ. A curve onQ not passing through the vertex is always cut out
by a cubic surface. In our case the curvef(`) is cut out by a cubic surface.
The preimage of this curve is a curve of degree18 passing through the points
xi with multiplicities 6. As in the case of the Geiser involution, this shows
that B(`) is a curve of degree 17 with 6-tuple pointsx1, . . . , x8. Thus the
homaloidal linear system defining the Bertini involution is equal to|17h−6η|,
whereη = x1 + . . .+ x8. Again, we may considerη not necessary consisting
of proper points. All admissibleη’s will be classified in the next Chapter.

7.3.6 de Jonquìeres transformations and hyperelliptic curves

A planar de Jonquières transformationJ is obtained by dilation from the iden-
tity transformation ofP1. It follows from subsection 7.2.3 that such a transfor-
mation is given by the formula

t′0 = t0bm−1(t1, t2) + bm(t1, t2), (7.44)

t′1 = t1(t0am−2(t1, t2) + am−1(t1, t2)),

t′2 = t2(t0am−2(t1, t2) + am−1(t1, t2)).

Here it is assumed that the polynomialsFm = t0bm−1 + bm andQm−1 =
t0am−2 + am−1 are coprime andbm−1am−1 6= bmam−2.

In affine coordinatesx = t1/t2, y = t0/t2, the transformation is given by

(x′, y′) =
(
x,

yb′m−1(x) + b′m(x)
ya′m−2(x) + a′m−1(x)

)
. (7.45)

Let us consider the closure of fixed points of this transformation. It is given by
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the affine equation

yb′m−1(x) + b′m(x) = y(ya′m−2(x) + a′m−1(x)).

Going back to our projective coordinates, the equation becomes

t20am−2(t1, t2) + t0(am−1(t1, t2)− bm−1(t1, t2))− bm(t1, t2) = 0. (7.46)

This a plane curveHm of degreem with the pointo = [1, 0, 0] of multiplicity
m− 2. The pencil of lines throughx1 defines ag1

2 on the curve. So, ifHm has
no other singularities, it must be a rational curve ifm = 2, an elliptic curve if
m = 3, and a hyperelliptic curve of genusm− 2 if m ≥ 4.

The homaloidal linear system defining the de Jonquières transformationJ
is generated by the curvesD1, D2, D3 whose equations are given by the right-
hand sides in (7.44). The pointo = [1, 0, 0] is a base point of multiplicity
m− 2. Let us find other base points. Letx = [α, β, γ] be a base point different
from o. Then eitherβ or γ is not zero. Hence

αbm−1(β, γ) + bm(β, γ) = αam−2(β, γ) + am−1(β, γ) = 0.

If α 6= 0 this happens if and only if

(bm−1am−1 − bmam−2)(β, γ) = 0.

If α = 0, then the condition isbm(β, γ) = am−1(β, γ) = 0, hence the point
still satisfies the previous equation. Under some generality condition, this gives
2m− 2 base pointsx1, . . . , x2m−2. Obviously, the pointsxi lie onHm. They
also lie on the curve

Γ = V (t0am−2(t1, t2) + am−1(t1, t2)). (7.47)

This is a monoidal curve of degreem− 1 with singular pointo of multiplicity
m− 1. It has the same tangent cone ato as the curveHm. Thus one expects to
findm(m− 1)− (m− 2)2− (m− 2) = 2m− 2 points of intersection outside
o.

Note that a general memberD of the homaloidal linear system intersects
the linexio with multiplicity m− 1 ato and multiplicity 1 atxi. This implies
that each line belongs to the P-locus ofJ . Also D intersects the curveΓ at
o with multiplicity (m − 1)2 and at the pointsxi with multiplicity 1. Since
D · Γ = m(m− 1) = (m− 1)2 + 2m− 2, this implies thatΓ belongs to the
P-locus two. The degree of the Jacobian is equal to3(m−1) = m−1+2m−2,
thus there is nothing more in the P-locus.

Let us record what we have found so far.
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Proposition 7.3.7 LetJ be de Jonquìeres transformation given by(7.44). As-
sume that the binary formbm−1am−1−bmam−2 of degree2m−2 has no mul-
tiple roots. ThenJ has2m − 1 proper fundamental pointso, x1, . . . , x2m−2.
The pointo is of multiplicitym − 2, the remaining ones are of multiplicity 1.
The characteristic vector is(m,m − 2, 1, . . . , 1). TheP -locus consists of a
monoidal curveΓ given by equation(7.47) and2m− 2 linesxio.

If we drop the condition on the binary formbm−1am−1− bmam−2, some of
the fundamental points become infinitely near.

Let us see whenJ satisfiesJ = J−1. The affine equation shows that this

happens if and only if the trace of the matrix

(
b′m−1 b′m
a′m−2 a′m1

)
is equal to0.

Thus the condition is

am−1(t1, t2) + bm−1(t1, t2) = 0. (7.48)

In this case the hyperelliptic curve has the equation

t20am−2(t1, t2) + 2t0am−1(t1, t2)− bm(t1, t2) = 0. (7.49)

The curveΓ coincides with the first polar ofHm. The fundamental points are
the ramification points of the projection ofHm from the pointo. The trans-
formationJ is the de Jonquières involution described in subsection 7.3.3. It is
clear that the curveHm is nonsingular if and only if we have2m − 2 distinct
fundamental points of multiplicity 1.

A space construction of a de Jonquières transformation is due to L. Cremona
[158]. Consider a rational curveR of bidegree(1,m − 2) on a nonsingular
quadricQ in P3. Let ` be a line onQ which intersectsR atm − 2 distinct
points. For each pointx in the space, there exists a unique line joining a point
on ` and onR. In fact, the plane spanned byx and` intersectsR at a unique
point r outsideR ∩ ` and the linexr intersects̀ at a unique points. Take two
general planesΠ andΠ′ and consider the following birational transformation
f : Π 99K Π′. Take a general pointp ∈ Π, find the unique line joining a point
r ∈ R and a points ∈ `. It intersectsΠ′ at the pointf(p). For a general line
` in Π the union of linesrs, r ∈ R, s ∈ L, which intersect̀ is a ruled surface
of degreem. Its intersection withΠ′ is a curve of degreem. This shows that
the transformationf is of degreem. It has2m − 2 simple base points. They
arem − 1 points inΠ′ ∩ R andm − 1 points which are common to the line
Π ∩ Π′ and them − 1 lines joining the point̀ ∩ Π with the points in the
intersectionΠ ∩ R. Finally, the point` ∩ Π′ is a base point of multiplicity
m − 1. Identifying Π andΠ′ by means of an isomorphism, we obtain a de
Jonquìeres transformation.
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7.4 Elementary transformations

7.4.1 Minimal rational ruled surfaces

First let us recall the definition of a minimal rational ruled surfaceFn. If n = 0
this is the surfaceP1 × P1. If n = 1 it is isomorphic to the blow-up of one
point inP2 with the rulingπ : F1 → P1 defined by the pencil of lines through
the point. If n > 1, we consider the cone inPn+1 over a Veronese curve
vn(P1) ⊂ Pn, i.e., we identifyPn−1 with a hyperplane inPn and consider the
union of lines joining a fixed pointp0 not on the hyperplane with all points in
vn(P1). The surfaceFn is a minimal resolution of the vertexp0 of the cone.
The exceptional curve of the resolution is a smooth rational curveEn with
E2
n = −n. The projection from the vertex of the cone extends to a morphism

p : Fn → P1 which defines a ruling. The curveEn is its section, called the
exceptional section. In the casen = 1, the exceptional curveE1 of the blow-
up F1 → P2 is also a section of the corresponding rulingp : F1 → P1. It is
also called the exceptional section.

Recall from [311] some facts about vector and projective bundles which we
will need next and later on. For any locally free sheafE of rankr + 1 over a
schemeS one defines thevector bundleV(E) as the scheme Spec(Sym(E)).
A local sectionU → V(E) is defined by a homomorphism Sym(E) → O(U)
of O(U)-algebras, and hence by a linear mapE|U → O(U). Thus the sheaf
of local sections of the vector bundleV(E) is isomorphic to the sheafE∨. The
fibre V(E)x over a pointx ∈ X is equal to Spec Sym(E(x)) = E(x)∨, where
E(x) = E ⊗OX,x

κ(x) is the fibre ofE atx considered as a vector space over
the residue fieldκ(x) of the pointx.

The projective bundleassociated with a vector bundleV(E) (or a locally
free sheafE) is the schemeP(E) = Proj(Sym(E)). It comes with the natural
morphismp : P(E)→ S. In the same notation as above,

P(E)|U ∼= Proj(Sym(Or+1
U )) ∼= Proj(O(U)[t0, . . . , tr]) ∼= PrU .

For any pointx ∈ X, the fibreP(E)x overx is equal toP(E(x)).
By definition of the projective spectrum, it comes with an invertible sheaf
OP(E)(1). Its sections overp−1(U) are homogeneous elements of degree 1 in
Sym(Or+1

U ). This gives, for anyk ≥ 0,

p∗OP(E)(k) ∼= Symk(E).

Note that for any invertible sheafL over S, we haveP(E ⊗ L) ∼= P(E) as
schemes, however the sheafOP(E)(1) has to be replaced withOP(E)(1)⊗p∗L.

For any schemeπ : X → S overS, a morphism ofS-schemesf : X →
P(E) is defined by an invertible sheafL overX and a surjectionφ : π∗E → L.
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When we trivializeP(E) overU , the surjectionφ definesr + 1 sections of
L|π−1(U). This gives a local mapx 7→ [s0(x), . . . , sr(x)] from π−1(U) to
p−1(U) = PrU . These maps are glued together to define a global map. We have
L = f∗OP(E)(1).

Example7.4.1 Let us takeX = S. Then anS-morphismS → P(E) is a
sections : S → P(E). It is defined by an invertible sheafL on S and a
surjectionφ : E → L. We haveL = s∗OP(E)(1). LetN = Ker(φ). This is a
locally free sheaf of rankr.

Another special case is when we takei : x = Spec(κ(x)) ↪→ S to be a
closed point inS. Then an invertible sheaf on a point is the constant sheafκx
andi∗E = Ex = E/mxE = E(x) is the fibre of the sheafE . The corresponding
morphismx → P(E) is defined by a surjectionE(x) → κx, i.e. by a point in
the projective spaceP(E(x)). This agrees with the description of fibres of a
projective bundle from above.

Lemma 7.4.1 Let s : S → P(E) be a section,L = s∗OP(E)(1) andK =
Ker(E → L). Let us identifyS with s(S). ThenK∨ ⊗ L is isomorphic to the
normal sheaf ofs(S) in P(E).

Proof We use exact sequence (7.9) to compute the normal sheaf. Recall that
the sheafΩ1

Pn of regular 1-forms on projective space can be defined by the
exact sequence (theEuler exact sequence)

0→ Ω1
Pn → OPn(−1)n+1 → OPn → 0.

More generally, we have a similar exact sequence on any projective bundle
P(E) over a schemeS:

0→ Ω1
P(E)/S → p∗E ⊗ OP(E)(−1)→ OP(E) → 0. (7.50)

Here the homomorphismp∗E ⊗ OP(E)(−1) → OP(E) is equal to the homo-
morphismp∗E → OP(E)(1) after twisting by−1. Thus

Ω1
P(E)/S(1) ∼= Ker(p∗E → OP(E)(1)). (7.51)

Applying s∗ to both sides we get

K ∼= s∗Ω1
P(E)/S(1).

SinceΩ1
s(S)/S = {0}, we get from (7.9)

s∗(N∨
s(S)/P(E)) ∼= s∗Ω1

P(E)/S
∼= K ⊗ L−1.

Passing to the duals, we get the formula for the normal sheaf of the section.
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Let us apply this to minimal ruled surfacesFn. It is known that any locally
free sheaf overP1 is isomorphic to the direct sum of invertible sheaves. Sup-
poseE is of rank2. ThenE ∼= OP1(a) ⊕ OP1(b) for some integersa, b. Since
the projective bundleP(E) does not change if we tensorE with an invertible
sheaf, we may assume thata = 0 andb = −n ≤ 0 (this corresponds to the
normalization taken in [311], Chapter V,§2, Proposition 2.8).

Proposition 7.4.2 Letπ : X → P1 be a morphism of a nonsingular surface
such that all fibres are isomorphic toP1. Supposeπ has a section whose image
E satisfiesE2 = −n for somen ≥ 0. ThenX ∼= Fn.

Proof Let f be the divisor class of a fibre ofπ ande be the divisor class of
the sectionE. For any divisor classD onX such thatD · f = a, we obtain
(D−ae) · f = 0. If D represents an irreducible curveC, this implies thatπ(C)
is a point, and henceC is a fibre. Writing every divisor as a linear combination
of irreducible curves, we obtain that any divisor class is equal toaf + be for
some integersa, b. Let us writeKX = af+ be. By adjunction formula, applied
to a fibre and the sectionE, we get

−2 = (af + be) · f, −2 + n = (af + be) · e = a− 2nb.

This gives

KX = (−2− n)f− 2e. (7.52)

Assumen > 0. Consider the linear system|nf + e|. We have

(nf + e)2 = n, (nf + e) · ((−2− n)f− 2e) = −2− n.

By Riemann-Roch,dim |nf + e| ≥ n + 1. The linear system|nf + e| has no
base points because it contains the linear system|nf| with no base points. Thus
it defines a regular mapP(E)→ Pn. Since(nf + e) · e = 0, it blows down the
sectionE to a pointp. Since(nf + e) · f = a, it maps fibres to lines passing
throughp. The degree of the image is(nf + e)2 = n. Thus the image of the
map is a surface of degreen equal to the union of lines through a point. It must
be a cone over the Veronese curvevn(P1) if n > 1 andP2 if n = 1. The map
is its minimal resolution of singularities. This proves the assertion in this case.

Assumen = 0. We leave to the reader to check that the linear system|f + e|
mapsX isomorphically to a quadric surface inP3.

Corollary 7.4.3

P(OP1 ⊕OP1(−n)) ∼= Fn.
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Proof The assertion is obvious ifE = OP1 ⊕OP1 . Assumen > 0. Consider
the section ofP(E) defined by the surjection

φ : E = OP1 ⊕OP1(−n)→ L = OP1(−n), (7.53)

corresponding to the projection to the second factor. Obviously,N = Ker(φ) ∼=
OP1 . Applying Lemma7.4.1, we get

Ns(P1)/P(E)
∼= OP1(−n).

Now, if C is any curve on a surfaceX, its ideal sheaf is isomorphic toOX(−C)
and hence the conormal sheaf is isomorphic toOX(−C)/OX(−2C). This
easily implies that

NC/X = OX(C)⊗OC . (7.54)

In particular, we see that the degree of the invertible sheafNC/X on the curve
C is equal to the self-intersectionC2.

Thus we obtain that the self-intersection of the sections defined by the sur-
jection (7.53) is equal to−n. It remains to apply the previous Proposition.

7.4.2 Elementary transformations

Let π : Fn → P1 be a ruling ofFn (the unique one ifn 6= 0). Let x ∈ Fn
andFx be the fibre of the ruling containingx. If we blow upx, the proper
transformF̄x of Fx is an exceptional curve of the first kind. We can blow it
down to obtain a nonsingular surfaceX. The projectionπ induces a morphism
π′ : X → P1 with any fibre isomorphic toP1. Let S0 be the exceptional
section or any section with the self-intersection 0 ifn = 0 (such a section is
of course equal to a fibre of the second ruling ofF0). Assume thatx 6∈ S0.
The proper transform̄S0 of S0 on the blow-up has the self-intersection equal
to−n, and its image inX has the self-intersection equal to−n+ 1. Applying
Proposition7.4.2, we obtain thatX ∼= Fn−1. This defines a birational map

elmx : Fn 99K Fn−1.

Here in the picture, on the left, we blow down̄Fx to obtainFn−1, and, on
the right, we blow down̄Fx to obtainFn+1.

Assume thatx ∈ En. Then the proper inverse transform ofEn on the blow-
up has self-intersection−n − 1 and its image inS′ has the self-intersection
equal to−n− 1. Applying Proposition7.4.2, we obtain thatS′ ∼= Fn+1. This
defines a birational map

elmx : Fn 99K Fn+1.

A birational map elmx is called anelementary transformation.
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Figure 7.4 Elementary transformation

Remark7.4.1 Let E be a locally free sheaf over a nonsingular curveB. As
we explained in Example7.4.1, a pointx ∈ P(E) is defined by a surjection
E(x) → κ(x), whereκ(x) is considered as the structure sheaf of the closed
point x. Composing this surjection with the natural surjectionE → E(x), we
get a surjective morphism of sheavesφx : E → κ(x). Its kernel Ker(φx) is a
subsheaf ofE which has no torsion. Since the base is a regular one-dimensional
scheme, the sheafE ′ = Ker(φx) is locally free. Thus we have defined an oper-
ation on locally free sheaves. It is also called an elementary transformation.

Consider the special case whenB = P1 andE = OP1 ⊕OP1(−n). We have
an exact sequence

0→ E ′ → OP1 ⊕OP1(−n)
φx−→ κx → 0.

The pointx belongs to the exceptional sectionS0 if and only if φx factors
throughOP1(−n)→ κx. ThenE ′ ∼= OP1 ⊕OP1(−n− 1) andP(E ′) ∼= Fn+1.

The inclusion of sheavesE ′ ⊂ E gives rise to a rational mapP(E) 99K P(E ′)
which coincides with elmx. If x 6∈ S0, thenφx factors throughOP1 , and we ob-
tainE ′ ∼= OP1(−1)⊕OP1(−n). In this caseP(E ′) ∼= P(OP1⊕OP1(−n+1)) ∼=
Fn−1 and again, the inclusionE ′ ⊂ E defines a rational mapP(E) 99K P(E ′)
which coincides with elmx. We refer for this sheaf-theoretical interpretation
of elementary transformation to [310]. A more general definition applied to
projective bundles over any algebraic variety can be found in [25], [618].

Let x, y ∈ Fn. Assume thatx ∈ S0, y 6∈ S0 andπ(x) 6= π(y). Then the
composition

ex,y = elmy ◦ elmx : Fn 99K Fn

is a birational automorphism ofFn. Here we identify the pointy with its image
in elmx(Fn). If n = 0, we have to fix one of the two structures of a projective
bundle onF0. Similarly, we get a birational automorphismey,x = elmy ◦elmx
of Fn. We can also extend this definition to the case wheny �1 x, where
y does not correspond to the tangent direction defined by the fibre passing
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throughx or the exceptional section (or any section with self-intersection0).
We blow upx, theny, and then blow down the proper transform of the fibre
throughx and the proper inverse transform of the exceptional curve blown up
from x.

7.4.3 Birational automorphisms ofP1 × P1

LetX be a rational variety andφ : X 99K Pn be a birational isomorphism. It
defines a homomorphism of the groups of birational automorphisms

Bir(Pn)→ Bir(X), f 7→ φ−1 ◦ f ◦ φ

with the inverse

Bir(X)→ Bir(Pn), T 7→ φ ◦ g ◦ φ−1.

Here we realize this simple observation by takingX = P1 × P1, identified
with a nonsingular quadricQ in P3. We identifyP2 with a plane inP3 and take
φ : Q 99K P2 to be the projection mappx0 from a pointx0. Let a, b be the
images of the two lines onQ containing the pointx0. The inverse mapφ−1 is
given by the linear system|2h − q1 − q2| of conics through the pointsq1, q2,
and a choice of an appropriate basis in the linear system. Let

Φx0 : Bir(Q)→ Bir(P2)

be the corresponding isomorphism of groups.
A birational automorphism ofP1 × P1 is given by a linear system|mh1 +

kh2 − η|, whereh1, h2 are the divisor classes of fibres of the projection maps
pri : P1 × P1 → P1, andη is a bubble cycle onQ. If we fix coordinates
(u0, u1), (v0, v1) on each factor ofP1 × P1, then a birational automorphism
of the product is given by four bihomogeneous polynomialsR0, R1, R

′
0, R

′
1 of

bidegree(m, k):

([a0, a1], [b0, b1]) 7→ ([R1(a, b), R2(a, b], [R′0(a, b), R
′
1(a, b)]).

Explicitly, let us use an isomorphism

P1 × P1 → Q, ([a0, a1], [b0, b1]) 7→ [a0b0, a0b1, a1b0, a1b1],

whereQ = V (z0z3 − z1z2). Takex0 = [0, 0, 0, 1]. The projection mappx0 is
given by[z0, z1, z2, z3] 7→ [z0, z1, z2]. The inverse mapp−1

x0
can be given by

the formulas

[t0, t1, t2] 7→ [t20, t0t1, t0t2, t1t2].

It is not defined at the pointsq1 = [0, 1, 0] andq2 = [0, 0, 1].
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If g is given byR0, R1, R
′
0, R

′
1, thenΦx0(g) is given by the formula

[z0, z1, z2] 7→ [R0(a, b)R′0(a, b), R0(a, b)R′1(a, b), R1(a, b)R′0(a, b)],

where[z0, z1, z2] = [a0b0, a0b1, a1b0] for some[a0, b0], [b0, b1] ∈ P1.
If f : P2 99K P2 is given by the polynomialsP0, P1, P2, thenΦ−1

x0
(f) is

given by the formula

[z0, z1, z2, z3] 7→ [P0(z′)2, P0(z′)P1(z′), P0(z′)P2(z′), P1(z′)P2(z′)],
(7.55)

wherePi(z′) = Pi(z0, z1, z2).
Let Aut(Q) ⊂ Bir(Q) be the subgroup of biregular automorphisms ofQ.

It contains a subgroup Aut(Q)o of index 2 which leaves invariant each family
of lines onQ. By acting on each factor of the productP1 × P1, it becomes
isomorphic to the product PGL(2)× PGL(2).

Lemma 7.4.4 Letσ ∈ Aut(Q)o. If σ(x0) 6= x0, thenΦx0(σ) is a quadratic
transformation with fundamental pointsa, b, px0(σ

−1(x0)). If σ(x0) = x0,
thenΦx0(σ) is a projective transformation.

Proof If x = σ(x0) 6= x0, then the F-locus off = Φx0(σ) consists of three
points q1, q2 andpx0(x). It follows from (7.35), that it must be a quadratic
transformation. Ifσ(x0) = x0, then the mapf is not defined only atq1 and
q2. The rational mapφ : P2 99K Q can be resolved by blowing up the two
pointsq1, q2 followed by blowing down the proper transform of the lineq1q2.
It is clear that it does not have infinitely near fundamental points. Since any
non-projective planar Cremona transformation has at least three fundamental
points, we obtain that the mapf extends to an automorphism ofP2.

Remark7.4.2 The imageΦx0(Aut(Q) consists of quadratic or projective
transformations which leave invariant the linear system of conics through two
points q1, q2. These are complex conics discussed in subsection 2.2.3. Over
reals, when we deal with real conics through the ideal points in the line at in-
finity, the groupΦx0(Aut(Q)) is known as theInversive groupin dimension 2
(see [435]).

The subgroupΦt0(Aut(Q)) of Cr(2) = Bir(P2) is an example of a linear
algebraic subgroup of the Cremona group Cr(2). All such subgroups in Cr(2)
were classified by F. Enriques [234]. In particular, he showed that any linear
algebraic subgroup of rank 2 in Cr(2) is contained in a subgroup isomorphic
to Aut(Fn) for somen. There is a generalization of this result to the group
Cr(n) = Bir(Pn) (see [180]). Instead of minimal ruled surfaces one considers
smooth toric varieties of dimensionn.
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Take two pointsx, y in Q which do not lie on a line and consider the bira-
tional transformationex,y := elmx ◦ elmy defined in the previous subsection.
Recall that to defineex,y, we have to fix one of the two structures of a projec-
tive bundle onQ. We do not exclude the case when there is only one proper
point amongx andy, sayy � x. It is easy to see that the linear system defining
the transformationex,y is equal to|2h1 + h2− x− y|, whereh1 is the class of
a fibre of the projective bundle structure pr: Q→ P1.

Proposition 7.4.5 Φx0(tx,y) is a product of quadratic transformations. More-
over, ifx0 ∈ {x, y}, thenΦx0(tx,y) is a quadratic transformation. Otherwise,
Φt0(tx,y) is the product of two quadratic transformations.

Proof Let τ : X → Q be the blow-up of the bubble cyclex + y. It factors
into the composition of the blow-upτ1 : Qx → Q of x and the blow-up
τ2 : Q′ → Qx of y. Supposex ∈ {x, y}. Without loss of generality, we
may assume thatx0 = x. The composition of rational mapsπ = px0 ◦ τ :
Q′ 99K P2 is a regular map. Letα : X → Q be the blowing-down of the
proper transforms of the fibrèx (resp.̀ y) of pr : Q→ P1 containingx (resp.
y). The compositionσ = px0 ◦ α : Q′ → Q 99K P2 is also a regular map.
The two morphismsπ, σ : X → P2 define a resolution of the birational map
Φx0(ex,y). It is immediate that this resolution coincides with a resolution of a
quadratic transformation with fundamental pointsq1, q2, px0(y). Note that, if
y � x, thenpx0(y) � q2, where the linèy is blown down toq2 under the map
Q′x → P2.

If x0 6= x, y, we composeex,y with an automorphismg of Q such that
σ(x0) = x. Then

Φx0(ex,y ◦ g) = Φx0(ex0,g−1(y)) = Φx0(ex,y) ◦ Φx0(g).

By Lemma7.4.4, Φx0(g) is a quadratic transformation. By the previous case,
Φx0(ex0,σ−1(y)) is a quadratic transformation. Also the inverse of a quadratic
transformation is a quadratic transformation. ThusΦx0(ex,y) is a product of
two quadratic transformations.

Proposition 7.4.6 Let T : Fn 99K Fm be a birational map. Assume thatT
commutes with the projections of the minimal ruled surfaces toP1. ThenT is
a composition of biregular maps and elementary transformations.

Proof Let (X,π, σ) be a resolution ofT . The morphismπ (resp.σ) is the
blow-up of an admissible ordered bubble cycleη = (x1, . . . , xN ) (resp.ξ =
(y1, . . . , yN )). Let p1 : Fn → P1 andp2 : Fm → P1 be the structure mor-
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phisms of the projective bundles. The two compositionp1 ◦ π andp2 ◦ σ coin-
cide and define a map

φ : X → P1.

Let a1, . . . , ak be points inP1 such thatFi = φ−1(ai) = π∗(p−1
1 (ai)) is a

reducible curve. We haveπ∗(Fi) = p−1
1 (ai) andσ∗(Fi) = p−1

2 (ai). LetEi be
the unique component ofRi which is mapped surjectively top−1

1 (ai) andE′i
be the unique component ofFi which is mapped surjectively top−1

2 (ai). The
preimages inX of the maximal points inη andξ (with respect to the admissible
order) are(−1)-curvesE1, . . . , Ek andE′1, . . . , E

′
k′ . Let E be a(−1)-curve

component ofFi which is different fromE1. . . . , Ek andE′1, . . . , E
′
k′ . We can

reorder the order of the blow-ups to assume thatπ(E) = xN andσ(E) = yN .
Let πN : X → XN−1 be the blow-up ofxN andσN : X → YN−1 be the
blow-up of yN . SinceπN andσN blow down the same curve, there exists
an isomorphismφ : XN−1

∼= YN−1. Thus, we can replace the resolution
(X,π, σ) with

(XN−1, π1 ◦ . . . ◦ πN−1, σ1 ◦ . . . ◦ σN−1 ◦ φ).

Continuing in this way, we may assume thatxN andyN are the only maximal
points ofπ andσ such thatp1(xN ) = p2(yN ) = ai. LetE = π−1(xN ) and
E′ = σ−1(yN ). LetR 6= E′ be a component ofφ−1(ai) which intersectsE.
Let x = π(R). SincexN � x, and no other points is infinitely nearx, we get
R2 = −2. Blowing downE, we get that the image ofR has self-intersection
−1. Continuing in this way, we get two possibilities

(1)

Fi = Ei + E′i, E2
i = E′i

2 = −1, Ei · E′i = 1,

(2)

Fi = Ei +R1 + · · ·+Rk + E′i, E2
i = E′i

2 = −1,

R2
i = −1, Ei ·R1 = . . . = Ri ·Ri+1 = Rk · E′i = 1,

and all other intersections are equal to zero.
In the first case,T = elmxN

. In the second case, letg : X → X ′ be the
blow-down ofEi, letx = π(R1∩Ei). ThenT = T ′ ◦elmx, whereT ′ satisfies
the assumption of the proposition. Continuing in this way, we writeT as the
composition of elementary transformations.

Let J be a de Jonquières transformation of degreem with fundamental
pointso, x1, . . . , x2m−2. We use the notation from subsection 7.3.6. Letπ :
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X → P2 be the blow-up of the base points. We factorπ as the composi-
tion of the blow-upπ1 : X1 → X0 = P2 of the pointo and the blow-ups
πi : Xi+1 → Xi of the pointsxi. Let p : X1 → P1 be the map given by the
pencil of lines through the pointo. The compositionφ : X → X1 → P1 is a
conic bundle. This means that its general fibre is isomorphic toP1 and it has
2m−2 singular fibresFi over the pointsai corresponding to the lines̀i = oxi.
Each singular fibre is equal to the union of two(−1)-curvesF ′i +F

′′
i intersect-

ing transversally at one pointx′i. The curveF ′i is the proper transform of the
line `i, and the curveF ′′i is the proper transform of the exceptional curveEi
of the blow-upXi+1 → Xi, i ≥ 1. The proper transformE of the exceptional
curve ofX1 → X0 is a section of the conic bundleφ : X → P1. It intersects
the componentsF ′i . The proper transformΓ of the curveΓ is another section.
It intersects the componentsF ′′i . Moreover, it intersectsE at 2m − 2 points
z1, . . . , z2m−2 corresponding to the common branches ofΓ and the proper
transformH ′

m of the hyperelliptic curveHm at the pointo. The curveH ′
m is

a 2-section of the conic bundle (i.e. the restriction of the mapφ to H ′
m is of

degree 2).

Recall that the curveΓ and the lines̀ i form the P-locus ofJ . Let σ : X →
P2 be the blow-down of the curvesF ′i , . . . , F

′
2m−2 and Γ. The morphisms

π, σ : X → P2 define a resolution of the transformationJ . We may assume
thatσ is the composition of the blow-downsX → Y2m−3 → . . . → Y1 →
Y0 = P2, whereY1 → Y0 is the blow-down of the image ofΓ under the
compositionX → . . . → Y1, andY2 → Y1 is the blow-down of the image of
F ′1 in Y2.

The surfacesX1 andY1 are isomorphic toF1. The morphismsX → X1

andX → Y1 define a resolution of the birational mapT ′ : F1 99K F1 equal to
the composition of2m− 2 elementary transformations

F1

elmx′2
99K F0 99K F1 99K . . . 99K F0

elmx′2m−2
99K F1.

If we takex0 to be the image of̀1 under elmx′2 , and use it to define the iso-
morphismΦx0 : Bir(F0) → Bir(P2), then we obtain thatT = Φx0(T

′),
whereT ′ is the composition of transformationsex′i,x′i+1

∈ Bir(F0), where
i = 3, 5, . . . , 2m− 3. Applying Proposition7.4.5, we obtain the following.

Theorem 7.4.7 A de Jonquìeres transformation is equal to a composition of
quadratic transformations.
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7.5 Noether’s Factorization Theorem

7.5.1 Characteristic matrices

Consider a resolution (7.1) of a Cremona transformationT of degreed

X
π

~~}}
}}

}}
}

σ

  B
BB

BB
BB

B

P2 T //_______ P2.

Obviously, it gives a resolution of the inverse transformationT−1. The roles
of π andσ are interchanged. Let

σ : X = XM
σM−→ XM−1

σM−1−→ . . .
σ2−→ X1

σ1−→ X0 = P2 (7.56)

be the factorization into a sequence of blow-ups similar to the one we had for
π. It defines a bubble cycleξ and the homaloidal net|d′h − ξ| definingT−1

(we will see a little later thatd′ = d). Let E ′1, . . . , E ′M be the corresponding
exceptional configurations. We will always take forX a minimal resolution. It
must be isomorphic to the minimal resolution of the graph ofφ.

Lemma 7.5.1 Let E1, . . . , EN be the exceptional configurations forπ and
E ′1, . . . , E ′M be the exceptional configurations forσ. Then

N = M.

Proof LetS be a nonsingular projective surface andπ : S′ → S be a blow-up
map. Then the Picard group Pic(S′) is generated by the preimageπ∗(Pic(S))
and the divisor class[E] of the exceptional curve. Also we know that[E] is
orthogonal to any divisor class fromπ∗(Pic(S)) and this implies that

Pic(S′) = Z[E]⊕ π∗(Pic(S)).

In particular, takingS = P2, we obtain, by induction that

Pic(X) = π∗(Pic(P2))
N⊕
i=1

[Ei].

This implies that Pic(X) is a free abelian group of rankN + 1. Replacingπ
with σ, we obtain that the rank is equal to1 +M . ThusN = M .

It could happen that all exceptional configurations ofπ are irreducible (i.e.
no infinitely points are used to defineπ) but some of the exceptional configu-
rations ofσ are reducible. This happens in the case of the transformation given
in Exercise 7.2.
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Definition 7.5.1 An ordered resolutionof a Cremona transformation is the
diagram(7.1) together with an order of a sequence of the exceptional curves
for σ andπ (equivalently, a choice of an admissible order on the bubble cycles
definingπ andσ).

Any ordered resolution ofT defines two bases in Pic(X). The first basis is

e′ : e′0 = σ∗(h), e′1 = [E ′1], . . . , e′N = [E ′N ].

The second basis is

e : e0 = π∗(h), e1 = [E1], . . . , eN = [EN ].

Here, as always,h denotes the class of a line in the plane.
We say that a resolution isminimal if e′j 6= ei for any i, j. If e′j = ei,

then the exceptional configurationsEi andE ′j are equal. We can change the
admissible orders on the bubble cycles defining the mapsπ andσ to assume
that i = j = n − b, whereb is the number of irreducible components inEi,
the exceptional divisor ofπN−i : X → Xi is equal toEi and the exceptional
divisor of σNi : X → Yi is equal toE ′i . By the universal property of the
blow-up, this implies that there exists an isomorphismφ : Xi → Yi such that
φ ◦ πNi = σNj . Thus, we can replaceX with Xi and define a new resolution
πi0 : Xi → P2, σi0 ◦φ : Xi → P2 of T . The old resolution factors through the
new one.

From now on, we assume that we chose a minimal resolution ofT . Write

e′0 = de0 −
N∑
i=1

miei, e′j = dje0 −
N∑
i=1

mijei, j > 0.

By the minimality property, we may assume thatd, d1, . . . , dN > 0. The ma-
trix

A =


d d1 . . . dN
−m1 −m11 . . . −m1N

...
...

...
...

−mN −mN1 . . . −mNN

 (7.57)

is called thecharacteristic matrixof T with respect to an ordered resolution. It
is the matrix of change of basis frome to e′.

Here(d;m1, . . . ,mN ) is the characteristic ofT . In other columns the vec-
tors (dj ,m1j , . . . ,mNj) describe the divisor classes of the exceptional con-
figurationsE ′j of σ. The image ofE ′j in P2 is a curve in the linear system

|dh −
∑N
i=1mijxi|. Its degree is equaldi. It may not be irreducible or re-

duced. LetE be a unique(−1)-component of the exceptional configuration
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E ′j . It corresponds to a minimal point in the bubble cycleη′ infinitely near
xj of order equal to the numberbj of irreducible components ofE ′j . By the
minimality assumption, the imageπ(E) is an irreducible curve, and the image
π(Ej) containsπ(E) with multiplicity equal tobj .

The image ofEj under the mapπ is called atotal principal curveof T . Its
degree is equal todj . The reduced union of total principal curves is equal to
the P-locus ofT .

The characteristic matrix defines a homomorphism of free abelian groups

φA : Z1+N → Z1+N .

We equipZ1+N with the standard hyperbolic inner product, where the norm
v2 of a vectorv = (a0, a1, . . . , aN ) is defined by

v2 = a2
0 − a2

1 − . . .− a2
N .

The groupZ1+N equipped with this integral quadratic form is customary de-
noted byI1,N . It is an example of aquadratic lattice, a free abelian group
equipped with an integral valued quadratic form. We will discuss quadratic
lattices in Chapter 9. Since both basese ande′ are orthonormal with respect
to the inner product, we obtain that the characteristic matrix is orthogonal, i.e.
belongs to the group O(I1,N ) ⊂ O(1, N), whereO(1, N) is the real orthog-
onal group of the hyperbolic spaceR1,N with the hyperbolic norm defined by
the quadratic formx2

0 − x2
1 − . . .− x2

n.
Recall that the orthogonal group O(1, N) consists of(N + 1) × (N + 1)

matricesM such that

M−1 = JN+1
tMJN+1, (7.58)

whereJN+1 is the diagonal matrix diag[1,−1, . . . ,−1].
In particular, the characteristic matrixA−1 of T−1 satisfies

A−1 = J tAJ =


d m1 . . . mN

−d1 −m11 . . . −mN1

...
...

...
...

−dN −m1N . . . −mNN

 . (7.59)

It follows that the vector(d; d1, . . . , dN ) is equal to the characteristic vector
of T−1. In particular, we obtain that the degree ofT is equal to the degree of
T−1, the fact specific to dimension 2. Also, (7.35) implies thatd1+. . .+dN =
d − 3. This shows that the sum of the degrees of total principal curves ofT

is equal to the degree of the JacobianJ of the polynomials definingT . This
explains the multiplicities of irreducible components ofV (J). They are larger
than one when not all fundamental points are proper.
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Let f : X ′ → X be a rational map of irreducible varieties. For any closed
irreducible subvarietyZ of X ′ with X ′ ∩dom(f) 6= ∅, we denote byf(Z) the
closure of the image ofZ ∩ dom(f) underf .

Proposition 7.5.2 Let T : P2 99K P2 be a Cremona transformation with
fundamental pointsx1, . . . , xN and fundamental pointsy1, . . . , yN of T−1.
LetA be the characteristic matrix ofT . LetC be an irreducible curve onP2

of degreen which passes through the pointsyi with multiplicitiesni. Letn′ be
the degree ofT (C) and letn′i be the multiplicity ofT (C) at ti. Then the vector
v = (n′,−n′1, . . . ,−n′N ) is equal toA−1 · v, wherev = (n,−n1, . . . ,−nN ).

Proof Let (X,π, σ) be a minimal resolution ofT . The divisor class of the
proper inverse transformπ−1(C) in X is equal tov = ne0 −

∑
niei. If we

rewrite it in terms of the basis(e′0, e
′
1, . . . , e

′
N ) we obtain that it is equal to

v′ = n′e0 −
∑
n′iei, wherev′ = Av. Now the image ofπ−1(C) underσ

coincides withφ(C). By definition of the curvesEi, the curveφ−1(C) is a
curve of degreen′ passing through the fundamental pointsyi of T−1 with
multiplicitiesn′i.

Let C be a total principal curve ofT andce0 −
∑N
i=1 ciei be the class of

π−1(C). Let v = (c,−c1, . . . ,−cN ). SinceT (C) is a point,A · v = −e′j for
somej.

Example7.5.1 The following matrix is a characteristic matrix of the standard
quadratic transformationTst or its degenerationsTst, T

′′
st .

A =


2 1 1 1
−1 0 −1 −1
−1 −1 0 −1
−1 −1 −1 0

 . (7.60)

This follows from Example7.1.1.
The following is a characteristic matrix of a de Jonquières transformation

A =



m m− 1 1 . . . 1
−m+ 1 −m+ 2 −1 . . . −1
−1 −1 −1 . . . 0
−1 −1 0 . . . 0
...

...
...

...
...

−1 −1 0 . . . 0
−1 −1 0 . . . −1


. (7.61)

Observe that the canonical classKX is an element of Pic(X) which can be
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written in both bases as

KX = −3e0 +
N∑
i=1

ei = −3e′0 +
n∑
i=1

e′i.

This shows that the matrixA considered as an orthogonal transformation of
I1,N leaves the vector

kN = −3e0 + e1 + · · ·+ eN = (−3, 1, . . . , 1)

invariant. Here,ei denotes the unit vector inZ1+N with (i+ 1)-th coordinate
equal to 1 and other coordinates equal to zero.

The matrixA defines an orthogonal transformation of the orthogonal com-
plement(ZkN )⊥.

Lemma 7.5.3 The following vectors form a basis of(ZkN )⊥.

N ≥ 3 : α1 = e0 − e1 − e2 − e3, αi = ei−1 − ei, i = 2, . . . , N,

N = 2 : α1 = e0 − 3e1, α2 = e1 − e2,

N = 1 : α1 = e0 − 3e1.

Proof Obviously, the vectorsαi are orthogonal to the vectorkN . Suppose a
vectorv = (a0, a1, . . . , aN ) ∈ (ZkN )⊥. Thus3a0 +

∑N
i=1 ai = 0, hence

−aN = 3a0 +
∑N−1
i=1 ai. AssumeN ≥ 3. We can write

v = a0(e0− e1− e2− e3) + (a0 + a1)(e1− e2) + (2a0 + a1 + a2)(e2− e3)

+
N−1∑
i=3

(3a0 + a1 + · · ·+ ai)(ei − ei+1).

If N = 2, we writev = a0(e0 − 3e1) + (3a0 + a1)(e1 − e2). If N = 1,
v = a0(e0 − 3e1).

It is easy to compute the matrixQN = (aij) of the restriction of the inner
product to(ZkN )⊥ with respect to the basis(α0, αN−1). We have

(−8), if N = 1,
(
−8 3
3 −2

)
, if N = 2.

If N ≥ 3, we have

aij =


−2 if i = j,

1 if |i− j| = 1 andi, j ≥ 1,

1 if i = 0, j = 3,

0 otherwise.
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ForN ≥ 3 the matrixA+ 2IN is the incidence matrix of the following graph
(theCoxeter-Dynkin diagramof typeT2,3,N−3).

• • • • • •

•

· · ·
α2 α3 α4 α4 αN−2 αN

α1

Figure 7.5 Coxeter-Dynkin diagram of typeT2,3,N−3

For 3 ≤ N ≤ 8 this is the Coxeter-Dynkin diagram of the root system of
the semi-simple Lie algebrasl3⊕ sl2 of typeA2 +A1 if N = 3, of sl5 of type
A4 if N = 4, of so10 of typeD5 if N = 5 and of the exceptional simple Lie
algebra of typeEN if N = 6, 7, 8.

We have

k2
N = 9−N.

This shows that the matrixQN is negative definite ifN < 9, semi-negative
definite with one-dimensional null-space forN = 9, and of signature(1, N −
1) for N ≥ 10. By a direct computation one checks that its determinant is
equal toN − 9.

Proposition 7.5.4 AssumeN ≤ 8. There are only finitely many possible char-
acteristic matrices. In particular, there are only finitely many possible charac-
teristics of a homaloidal net with≤ 8 base points.

Proof Let

G = {M ∈ GL(N) : tMQNM = QN}.

SinceQN is negative definite forN ≤ 8, the groupG is isomorphic to the
orthogonal group O(N). The latter group is a compact Lie group. A character-
istic matrix belongs to the subgroup O(QN ) = G∩GL(N,Z). Since the latter
is discrete, it must be finite.

There are further properties of characteristic matrices for which we refer to
[2] for the modern proofs. The most important of these is the followingClebsch
Theorem.

Theorem 7.5.5 LetA be the characteristic matrix. There exists a bijection
β : N → N such that for any setI of columns withdi = n, i ∈ I, there exists
a set of rowsJ with #I = #J such thatµj = β(a), j ∈ J .
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Note that subtracting two columns (or rows) with the same first entry, and
taking the inner product square, we easily get that they differ only at two en-
tries by±1. This implies a certain symmetry of the matrix if one reorders the
columns and rows according to Clebsch’s Theorem. We refer for the details to
[2].

7.5.2 The Weyl groups

Let EN = (ZkN )⊥ ∼= ZN equipped with the quadratic form obtained by
the restriction of the inner product inI1,N . AssumeN ≥ 3. For any vector
α ∈ EN with α2 = −2, we define the following element in O(EN ):

rα : v 7→ v + (v, α)α.

It is called areflectionwith respect toα. It leaves the orthogonal complement
to α pointwisely fixed, and mapsα to−α.

Definition 7.5.2 The subgroupW (EN ) of O(EN ) generated by reflections
rαi is called theWeyl groupof EN .

The following Proposition is stated without proof. It follows from the theory
of groups generated by reflections (see, for example, [204], 4.3.

Proposition 7.5.6 The Weyl groupW (EN ) is of infinite index inO(EN ) for
N > 10. ForN ≤ 10,

O(EN ) = W (EN ) o (τ),

whereτ2 = 1 andτ = 1 if N = 7, 8, τ = −1 if N = 9, 10 andτ is induced
by the symmetry of the Coxeter-Dynkin diagram forN = 4, 5, 6.

Note that any reflection can be extended to an orthogonal transformation of
the latticeI1,N (use the same formula). The subgroup generated by reflections
rαi , i 6= 0, acts as the permutation groupSN of the vectorse1, . . . , eN .

Lemma 7.5.7 (Noether’s inequality) Letv = (d,m1, . . . ,mN ). Assumed >
0,m1 ≥ . . . ≥ mN > 0, and

(i)
∑n
i=1m

2
i = d2 + a;

(ii)
∑N
i=1mi = 3d− 2 + a,

wherea ∈ {−1, 0, 1}. Then

m1 +m2 +m3 ≥ d.
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Proof We have

m2
1 + · · ·+m2

N = d2 − 1, m1 + · · ·+mN = 3d− 3.

Multiplying equality (ii) bym3 and subtracting it from equality (i), we obtain

m1(m1−m3)+m2(m2−m3)−
∑
i≥4

mi(m3−mi) = d2+a−3m3(d− 2−a
3 ).

We can rewrite the previous equality in the form

(d− 2−a
3 )(m1 +m2 +m3 − d− 2−a

3 ) = (m1 −m3)(d− 2−a
3 −m1)+

(m2 −m3)(d− 2−a
3 −m2) +

∑
i≥4

mi(m3 −mi) + a+ ( 2−a
3 )2.

Note that 2−a
3 < 1 ≤ d unlessa = −1 when 2−a

3 = 1. In any case, (i)
and (ii) give thatd − 2−a

3 − mi > 0. Thus all summands in the right-hand
side are positive. In the left-hand side, the factord − 2−a

3 is positive unless
d = 1, a = −1. In the latter case, allmi = 0 contradicting our assumption that
mN > 0. Thus we obtainm1 +m2 +m3 > d + 2−a

3 . Since2−a
3 = − 1

3 if it
is not positive, this impliesm1 +m2 +m3 > d.

Corollary 7.5.8

m1 > d/3.

We can apply Noether’s Lemma to the case whenv = (d,m1, . . . ,mN ) is
the characteristic vector of a homaloidal net or whende0−

∑
miei is the class

of an exceptional configuration.

Definition 7.5.3 Let v = de0 −
∑N
i=1miei ∈ I1,N . We say thatv is of

homaloidal type(resp.conic bundle type, exceptional type) if it satisfies con-
ditions (i) and (ii) from above witha = −1 (resp.a = 0, resp.a = 1). We
say thatv is of properhomaloidal (exceptional type) if there exists a Cremona
transformation whose characteristic matrix hasv as the first (resp. second col-
umn).

Lemma 7.5.9 Let v = de0 −
∑n
i=1miei belong to theW (EN )-orbit of e1.

Thend ≥ 0. Let η =
∑N
i=1 xi be a bubble cycle andαη : I1,N → Pic(Yη)

be an isomorphism of lattices defined by choosing some admissible order ofη.
Thenαη(v) is an effective divisor.

Proof The assertion is true forv = e1. In fact, αη(v) is the divisor class
of the first exceptional configurationE1. Let w = sk ◦ · · · ◦ s1 ∈ W (EN )
be written as the product of simple reflections with minimal possiblek. One
can show thatk is uniquely defined byw. It is called thelength of w. Let
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v = w(e1) = (d′,m′
1, . . . ,m

′
N ). We prove the assertion by using induction on

the length ofw. The assertion is obvious ifk = 1 sincev′ = e0 − ei − ej or
differs fromv by a permutation of themi’s. Suppose the assertion is true for
all w of length≤ k. Letw has lengthk+1. Without loss of generality, we may
assume thatsk+1 is the reflection with respect to some roote0− e1− e2− e3.
Thend′ = 2d −m1 − m2 −m3 < 0 implies4d2 < (m1 + m2 + m3)2 ≤
3(m2

1+m2
2+m2

3), henced2−m2
1−m2

2−m2
3 < −d

2

3 . If d ≥ 2, this contradicts
condition (i) of the exceptional type. Ifd = 1, we check the assertion directly
by listing all exceptional types.

To prove the second assertion, we use the Riemann-Roch Theorem applied
to the divisor classαη(v). We haveαη(v)2 = −1, αη(v) ·KYη

= −1, hence
h0(αη(v))+h0(KYη

−αη(v)) ≥ 1. Assumeh0(KYη
−αη(v)) > 0. Intersect-

ing KY − αη(v) with e0 = αη(e0), we obtain a negative number. However,
the divisor classe0 is nef onYη. This shows thath0(αη(v)) > 0 and we are
done.

Lemma 7.5.10 Let v be a proper homaloidal type. Then it belongs to the
W (EN )-orbit of the vectore0.

Proof Let v = de0 −
∑N
i=1miei be a proper homaloidal type andη be the

corresponding homaloidal bubble cycle. Letw ∈ W (EN ) andv′ = w(v) =
d′e0 −

∑N
i=1m

′
iei. We havem′

i = ei · v′ = w−1(ei) · v. Sincew−1(ei)
represents an effective divisor onYη andv is the characteristic vector of the
corresponding homaloidal net, we obtainw−1(ei) · v ≥ 0, hencemi ≥ 0.

Obviously,mi ≥ 0. We may assume thatv 6= e0, i.e. the homaloidal net has
at least 3 base points. Applying the Noether inequality, we findmi,mj ,mk

such thatmi +mj +mk > d. We choose maximal possible suchmi,mj ,mk.
After reordering, we may assume thatm1 ≥ m2 ≥ m3 ≥ . . . ≥ mN . Note
that this preserves the properness of the homaloidal type since the new order
on η is still admissible. Applying the reflections with respect to the vector
e0 − e1 − e2 − e3, we obtain a new homaloidal typev′ = d′e0 −

∑N
i=1m

′
iei

with d′ = 2d − m1 − m2 − m3 < d. As we saw in above, eachmi ≥ 0.
So, we can apply Noether’s inequality again until we getw ∈ W (EN ) such
that the number of nonzero coefficientsm′

i of v′ = w(v) is at most 2 (i.e. we
cannot apply Noether’s inequality anymore). A straightforward computation
shows that such vector must be equal toe0.

Remark7.5.1 Observe that the characteristic matrix of a quadratic transfor-
mation with fundamental pointsx1, x2, x3 is the matrix of the reflectionsα0

with respect to the vectorα1 = e0−e1−e2−e3. So, the previous Proposition
seems prove that applying a sequence of quadratic transformation we obtain a
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Cremona transformation with characteristic vector(1, 0, . . . , 0). It must be a
projective transformation. In other words, any Cremona transformation is the
composition of quadratic and projective transformations. This is the content of
Noether’s Factorization Theorem which we will proof later in this section. The
original proof of Noether was along these lines, where he wrongly presumed
that one can always perform a standard quadratic transformation with funda-
mental points equal to the highest multiplicities, saym1,m2,m3. The problem
here is that the three pointsx1, x2, x3 may not represent the fundamental points
of a standard Cremona transformation when one of the following three cases
happen for the three fundamental pointsx1, x2, x3 of highest multiplicities

(i) x2 � x1, x3 � x1;
(ii) the base ideal in an affine neighborhood ofx1 is equal to(u2, v3) (cus-
pidal case).

Theorem 7.5.11 LetA be a characteristic matrix of a homaloidal net. Then
A belongs to the Weyl groupW (EN ).

Proof LetA1 = (d,−m1, . . . ,−mN ) be the first column ofA. Applying the
previous lemma, we obtainw ∈W (EN ), identified with a(N +1)× (N +1)-
matrix, such that thew · A1 = e0. Thus the matrixA′ = w · A has the first
column equal to the vector(1, 0, . . . , 0). SinceA′ is an orthogonal matrix (with
respect to the hyperbolic inner product), it must be the block matrix of the unit
matrixI1 of size1 and an orthogonal matrix O of sizen−1. Since O has integer
entries, it is equal to the product of a permutation matrixP and the diagonal
matrix with ±1 at the diagonal. SinceA · kN = kN and tw · kN = kN ,
this easily implies that O is the identity matrixIN . Thusw · A = IN+1 and
A ∈W (EN ).

Proposition 7.5.12 Every vectorv in theW (EN )-orbit of e0 is a proper
homaloidal type.

Proof Let v = w(e0) for somew ∈ W (EN ). Writew as the composition of
simple reflectionssk ◦ · · · ◦ s1. Choose an open subsetU of (P2)N such that
an ordered set of points(x1, . . . , xN ) ∈ U satisfies the following conditions:

(i) xi 6= xj for i 6= j;
(ii) if s1 = se0−ei−ej−ek

, thenxi, xj , xk are not collinear;
(iii) let T be the involutive quadratic transformation with the fundamental

pointsxi, xj , xk and (y1, . . . , yN ) be the set of points withyi = xi, yj =
xj , yk = xk and yh = T (xh) for h 6= i, j, k. Then (y1, . . . , yN ) satisfies
conditions (i) and (ii) fors1 is replaced withs2. Next do it again by takings3
and so on. It is easy to see that in this wayU is a non-empty Zariski open subset
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of (P2)N such thatw(e0) represents the characteristic vector of a homaloidal
net.

Corollary 7.5.13 Every vectorv in theW (EN )-orbit of e1 can be realized
as a proper exceptional type.

Proof Let v = w(e1) for somew ∈ W (EN ). Thenη be a bubble cycle real-
izing the homaloidal typew(e0) andT be the corresponding Cremona trans-
formation with characteristic matrixA. Thenv is its second column, and hence
corresponds to the first exceptional configurationE ′1 for φ−1.

7.5.3 Noether-Fano inequality

First we generalize Corollary7.5.8to birational maps of any rational surfaces.
The same idea works even for higher-dimensional varieties. LetT : S 99K S′

be a birational map of surfaces. Letπ : X → S, σ : X → S′ be its resolution.
LetH′ be a linear system onX ′ without base points. For anyH ′ ∈ H′,H ∈ H,

σ∗(H ′) ∼ π∗(H)−
∑
i

miEi

whereEi are the exceptional configurations of the mapπ. SinceH′ has no
base points,σ∗(H′) has no base points. Thus any divisorσ∗(H ′) intersects
nonnegatively any curve onX. In particular,

σ∗(H ′) · Ei = −miE2
i = mi ≥ 0. (7.62)

This can be interpreted by saying thatT−1(H ′) belongs to the linear system
|H − η|, whereη =

∑
mixi is the bubble cycle onS defined byπ.

Theorem 7.5.14 (Noether-Fano inequality) Assume that there exists some
integerm0 ≥ 0 such that|H ′ + mKS′ | = ∅ for m ≥ m0. For anym ≥ m0

such that|H +mKS | 6= ∅ there existsi such that

mi > m.

Moreover, we may assume thatxi is a proper point inS.

Proof We know thatKX = π∗(KS) +
∑
i Ei. Thus we have the equality in

Pic(X)

σ∗(H ′) +mKX = (π∗(H +mKS)) +
∑

(m−mi)Ei.

Applying σ∗ to the left-hand side we get the divisor classH ′ +mKS′ which,
by assumption cannot be effective. Since|π∗(H+mKS)| 6= ∅, applyingσ∗ to
the right-hand side, we get the sum of an effective divisor and the image of the
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divisor
∑
i(m −mi)Ei. If all m −mi are nonnegative, it is also an effective

divisor, and we get a contradiction. Thus there existsi such thatm−mi < 0.
The last assertion follows from the fact thatmi ≥ mj if xj � xi.

Example7.5.2 AssumeS = S′ = P2, [H] = dh and [H ′] = h. We have
|H + KS′ | = | − 2h| = ∅. Thus we can takem0 = 1. If d ≥ 3, we have for
any1 ≤ a ≤ d/3, |H ′ + aKS | = |(d − 3a)h| 6= ∅. This givesmi > d/3 for
somei. This is Corollary7.5.8.

Example7.5.3 Let S = Fn andS′ = Fr be the minimal Segre-Hirzebruch
ruled surfaces. LetH′ = |f′|, wheref′ is the divisor class of a fibre of the fixed
projective bundle structure onS′. The linear system|f′| is a pencil without base
points. So we can writeσ∗(H′) = |π∗(af + be) − η| for some bubble cycle,
wheref, e are the divisor classes of a fibre and the exceptional section onS.
Here(X,π, σ) is a resolution ofT . ThusH ⊂ |af + be|.

It is well-known (and follows from formula (7.51)) that

KS = −(2 + n)f− 2e,KS′ = −(2 + r)f′ − 2e′. (7.63)

Thus|H ′ +KS′ | = |(−1− n)f− 2e| = ∅. We takem0 = 1. We have

|af + be +mKS | = |(a−m(2 + n))f + (b− 2m)e|.

Assume that

1 < b ≤ 2a
2 + n

.

If m = [b/2], thenm ≥ m0 and both coefficientsa−m(2+n) andb−2m are
nonnegative. Thus we can apply Theorem7.5.14to find an indexi such that
mi > m ≥ b/2.

In the special case, whenn = 0, i.e. S = P1 × P1, the inequalityb ≤ a

implies that there existsi such thatmi > b/2.
Similar argument can be also applied to the caseS = P2, S′ = Fr. In this

case,H = |ah| and|h+mKS | = |(a− 3m)h|. Thus, we can takem = [a/3]
and findi such thatmi > a/3.

7.5.4 Noether’s Factorization Theorem

We shall prove the following.

Theorem 7.5.15 The groupBir(F0) is generated by biregular automorphisms
and a birational automorphismex,y for some pair of pointsx, y.

Applying Proposition7.4.5, we obtain the following Noether’s Factorization
Theorem.
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Corollary 7.5.16 The groupBir(P2) is generated by projective automor-
phisms and quadratic transformations.

Now let us prove Theorem7.5.15. LetT : Fn 99K Fm be a birational map.
Let

Pic(Fn) = Zf + Ze, Pic(Fm) = Zf′ + Ze′,

where we use the notation from the previous subsection. We have two bases in
Pic(X)

e : π∗(f), π∗(e), ei = [Ei], i = 1, . . . , N,

e′ : π∗(f′), π∗(e′), e′i = [E ′i ], i = 1, . . . , N.

For simplicity of notation, let us identifyf, e, f′, e′ with their inverse transforms
in Pic(X). Similar to the case of birational maps of projective plane, we can
use an ordered resolution(X,π, σ) of T to define its characteristic matrixA.

Lemma 7.5.17 Let T be a quadratic transformation with two (resp. one)
proper base points. ThenT is equal to the composition of two (resp. four or
less) quadratic transformations with proper base points.

Proof Composing the transformationT with a projective transformation, we
may assume thatT is eitherT ′st or T = T ′′st (see Example7.1.1). In the first
case, we composeT with the quadratic transformationT ′ with fundamental
points[1, 0, 0], [0, 1, 0], [1, 0, 1] given by the formula:

[t′0, t
′
1, t

′
2] = [t1t2, t1(t0 − t2), t2(t0 − t2)].

The compositionT ′ ◦ T ′st is given by the formula

[t′0, t
′
1, t

′
2] = [t20t1t2, t0t

2
2(t2 − t0), t0t1t2(t2 − t0)] = [t0t1, t2(t2 − t0), t1(t2 − t0)].

It is a quadratic transformation with three fundamental points[0, 1, 0], [1, 0, 0],
and[1, 0, 1].

In the second case, we letT ′ be the quadratic transformation

[t′0, t
′
1, t

′
2] = [t0t1, t1t2, t22]

with two proper fundamental points[1, 0, 0], [0, 1, 0]. The compositionT ′ ◦T ′′st

is given by

[t′0, t
′
1, t

′
2] = [t21(t

2
2 − t0t1), t21t22, t31t2] = [t22 − t0t1, t1t2, t22].

It is a quadratic transformation with two proper base points. By the above,
T ′ andT ′ ◦ T are equal to the composition of two quadratic transformations
with three proper points. ThusT is a composition of four, or less, quadratic
transformations with three proper base points.
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Lemma 7.5.18 LetT : F0 99K F0 be a birational automorphism equal to a
composition of elementary transformations. ThenT is equal to a composition
of biregular automorphisms ofF0 and a transformationex,y for a fixed pair of
pointsx, y, wherey is not infinitely nearx.

Proof It follows from Proposition7.4.5and the previous Lemma thatex,y,
wherey �1 x can be written as a composition of two transformations of type
ex′,y′ with no infinitely near points. Now notice that the transformationsex,y
andex′,y′ for different pairs of points differ by an automorphism ofF0 which
sendsx to x′ andy to y′. Suppose we have a compositionT of elementary
transformations

F0

elmx1
99K F1

elmx2
99K . . .

elmxk−1
99K F1

elmxk
99K F0.

If no F0 occurs among the surfacesFn here, thenT is a composition of even
numberk of elementary transformations preserving the projections toP1. It
is clear that not all pointsxi are images of points inF0 lying on the same
exceptional section asx1. Let xi be such a point (maybe infinitely nearx1).
Then we composeT with exi,x1 to obtain a birational mapT ′ : F0 99K F0

which is a composition ofk−2 elementary transformations. Continuing in this
way we writeT as a composition of transformationsex′,y′ .

If F1

elmxi−1
99K F0

elmxi
99K F1 occurs, then elmxi may be defined with respect to

another projection toP1. Then we write as a composition of the automorphism
τ of P1×P1 which switches the factors and the elementary transformation with
respect to the first projection. Then we repeat this if such(F0,elmxj

) occurs
again.

Let T : F0 99K F0 be a birational transformation. Assume the image of|f|
is equal to|af + be −

∑
mxx|. Applying the automorphismτ , if needed, we

may assume thatb ≤ a. Thus, using Example7.5.3, we can find a pointx with
mx > b/2. ComposingT with elmx, we obtain that the image of|f| in F1 is the
linear system|a′f′+ be′−mx′x

′−
∑
y 6=x′ myy|, wheremx′ = b−mx < mx.

Continuing in this way, we get a mapT ′ : F0 99K Fq such that the image of
|f| is the linear system|a′f′+ be′−

∑
mxx|, where allmx ≤ b/2. If b = 1, we

get allmi = 0. ThusT ′ is everywhere defined and henceq = 0. The assertion
of the Theorem is verified.

Assumeb ≥ 2. Since allmi ≤ b/2, we must have, by Example7.5.3,

b >
2a′

2 + q
.



380 Cremona transformations

Since the linear system|a′f ′ + bs′| has no fixed components, we get

(a′f′ + be′) · e′ = a′ − bq ≥ 0.

Thusq ≤ a′/b < (2 + q)/2, and henceq ≤ 1. If q = 0, we getb > a′.
Applying τ , we will decreaseb and will start our algorithm again until we
either arrive at the caseb = 1, and we are done, or arrive at the caseq = 1, and
b > 2a′/3 and allmx′ ≤ b/2.

Let π : F1 → P2 be the blowing down the exceptional section to a pointq.
Then the image of a fibre|f| onF1 underπ is equal to|h−q|. Hence the image
of our linear system inP2 is equal to|a′h−(a′−b)q−

∑
p6=qm

′
pp|. Obviously,

we may assume thata′ ≥ b, hence the coefficient atq is non-negative. Since
b > 2a′/3, we geta′ − b < a′/3. By Example7.5.3, there exists a point
p 6= q such thatm′

p > a′/3. Let π(x) = p andE1 be the exceptional curve
corresponding tox ands be the exceptional section inF1. If x ∈ S, the divisor
classe− e1 is effective and is represented by the proper inverse transform ofs

in the blow-up ofx. Then

(a′f + be−m′
xe1 −

∑
i>1

m′
iei) · (e− e1) ≤ a′ − b−m′

x < 0.

This is impossible because the linear system|a′f + be −mxx −
∑
y 6=x y| on

F1has no fixed part. Thusx does not lie on the exceptional section. If we apply
elmx, we arrive atF0 and may assume that the new coefficient atf ′ is equal
to a′ −m′

x. Sincem′
x > a′/3 anda′ < 3b/2, we see thata′ −m′

x < b. Now
we apply the switch automorphismτ to decreaseb. Continuing in this way,
we obtain thatT is equal to a product of elementary transformations and auto-
morphisms ofF0. We finish the proof of Theorem7.5.15by applying Lemma
7.5.18.

Applying Propositions7.4.4, 7.4.5and Lemma7.5.18, we obtain the follow-
ing.

Corollary 7.5.19 The groupCr(2) of Cremona transformations ofP2 is gen-
erated by projective automorphisms and the standard Cremona transformation
Tst.

Remark7.5.2 It is known that forn > 2, the Cremona groupsCr(n) :=
Bir(Pn) cannot be generated by the subgroup of projective transformations
and a countable set of other transformations. Forn = 3, this is a classical
result of Hilda Hudson [340]. A modern, and different proof forn ≥ 3 can be
found in [469].
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Exercises

7.1Show that Cremona transformations with reduced0-dimensional base scheme exist
only in dimension 2.

7.2 Find all possible Cremona transformations ofP3 with base scheme equal to the
union of skew lines. Describe their P-loci.

7.3Prove that the base scheme of a Cremona transformation is not a complete intersec-
tion of hypersurfaces.

7.4Let Z be the union of four 4 skew lines inP3 and two lines intersecting them. Show
that the linear system of cubic surfaces throughZ defines a Cremona transformation.
Find itsP -locus, as well as the base scheme and theP -locus of the inverse Cremona
transformation.

7.5A Cremona transformationT of Pn is calledregularizableif there exists a rational
varietyX, a birational isomorphismφ : X → Pn, and an automorphismg of X such
thatT = φ ◦ g ◦ φ−1. Show that anyT of finite order in Cr(n) is regularizable. On the
other hand, a general quadratic transformation is not regularizable.

7.6Consider a minimal resolutionX of the standard quadratic transformationTst with
three proper base points. Show thatTst lifts to an automorphismσ of X. Show thatσ
has 4 fixed points and the orbit spaceX/(σ) is isomorphic to the cubic surface with 4
nodes given by the equationt0t1t2 + t0t1t3 + t1t2t3 + t0t2t3 = 0.

7.7Consider the rational map defined by

[t0, t1, t2] 7→ [t1t2(t0− t2)(t0−2t1), t0t2(t1− t2)(t0−2t1), t0t1(t1− t2)(t0− t2)].

Show that it is a Cremona transformation and find the Enriques diagram of the corre-
sponding bubble cycle.

7.8 Let C be a plane curve of degreed with a singular pointp. Let π : X → P2 be a
sequence of blow-ups which resolves the singularity. Define the bubble cycleη(C, p) =P

miti as follows:t1 = p andm1 = multpC, t2, . . . , tk are infinitely near points top
of order 1 such that the proper transformC′ of C under the blow-up atp contains these
points,mi = multtiC

′, i = 2, . . . , k, and so on.

(i) Show that the arithmetic genus of the proper transform ofC in X is equal to
1
2
(d− 1)(d− 2)− 1

2

P
i mi(mi − 1).

(ii) Describe the Enriques diagram ofη(C, p), whereC = V (tb−a0 ta1 + tb2), p =
[1, 0, 0], anda ≤ b are positive integers.

7.9Show that two hyperelliptic plane curvesHm andH ′
m of degreem and genusm−2

are birationally isomorphic if and only if there exists a de Jonquières transformation
which transforms one curve to another.

7.10 Consider a set of 5 pointso, x1, x2, x3, x4 such that the last three points are
collinear. Consider a de Joinquières transformation of degreee 3 with fundamental point
o of multiplicity 2 and simple fundamental points at the pointsxi. Show that one of five
total principal curves is reducible.

7.11 Let Hg+2 be a hyperelliptic curve given by the equation (7.46). Consider the
linear system of hyperelliptic curvesHq+2 = V (t22gq(t0, t1) + 2t2gq+1(t0, t1) +
gq+2(t0, t1)) such thatfggq+2 − 2fg+1gq+1 + fg+2gq = 0. Show that

(i) the curvesHq+2 exist if q ≥ (g − 2)/2;
(ii) the branch points ofHg+2 belong toHq+2 and vice versa;



382 Cremona transformations

(iii) the curveHq+2 is invariant with respect to the de Jonquières involutionIHg+2

defined by the curveHg+2 and the curveHg+2 is invariant with respect to the de
Jonquìeres involutionIHq+2 defined by the curveHq+2;

(iv) the involutionsIHg+2 andIHq+2 commute with each other;
(v) the fixed locus of the compositionHg+2 ◦Hq+2 is given by the equation

fg+q+3 = det

0@fg fg+1 fg+2

gq gq+1 gq+2

1 −t2 t22

1A = 0;

(vi) the de Jonquières transformations which leave the curveHg+2 invariant form a
group. It contains an abelian subgroup of index 2 which consists of transformations
which leaveHg+2 pointwisely fixed.

7.12Consider the linear systemLa,b = |af + bs| on Fn, wheres is the divisor class
of the exceptional section, andf is the divisor class of a fibre. Assumea, b ≥ 0. Show
that

(i) La,b has no fixed part if and only ifa ≥ nb;
(ii) La,b has no base points if and only ifa ≥ nb;
(iii) Assumeb = 1 and a ≥ n. Show that the linear systemLa,1 mapsFn in

P2a−n+1 onto a surfaceXa,n of degree2a− n;
(iv) show that the surfaceXa,n is isomorphic to the union of linesva(x)va−n(x),

whereva : P1 → Pa, v2a−n : P1 → Pa−n are the Veronese maps, andPa and
Pa−n are identified with two disjoint projective subspaces ofP2a−n+1.

7.13Find the automorphism group of the surfaceFn.

7.14Compute characteristic matrices of symmetric Cremona transformations of degree
5,8 and17.

7.15Let C be an irreducible plane curve of degreed > 1 passing through the points
x1, . . . , xn with multiplicities m1 ≥ . . . ≥ mn. Assume that its proper inverse trans-
form under the blowing up the pointsx1, . . . , xn is a smooth rational curvēC with
C̄2 = −1. Show thatm1 + m2 + m3 > d.

7.16Let (m, m1, . . . , mn) be the characteristic vector of a Cremona transformation.
Show that the number of fundamental points withmi > m/3 is less than 9.

7.17Compute the characteristic matrix of the compositionT ◦ T ′ of a de Jonquìeres
transformationT with fundamental pointso, x1, x2, . . . , x2d−2 and a quadratic trans-
formationT ′ with fundamental pointso, x1, x2.

7.18 Let σ : A2 → A2 be an automorphism of the affine plane given by a formula
(x, y) → (x+P (y), y), whereP is a polynomial of degreed in one variable. Consider
σ as a Cremona transformation. Compute its characteristic matrix. In the cased = 3
write as a composition of projective transformations and quadratic transformations.

7.19Show that every Cremona transformation is a composition of the following maps
(“links”):

(i) the switch involutionτ : F0 → F0;
(ii) the blow-upσ : F1 → P2;
(iii) the inverseσ−1 : P2 99K F1;
(iv) an elementary transformation elmx : Fq 99K Fq±1.
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7.20Show that any planar Cremona transformation is a composition of de Jonquières
transformations and projective automorphisms.
7.21 Let x0 = [0, 1] × [1, 0] ∈ P1 × P1, y0 = τ(t0), whereτ : P1 → P1 is the
switch of the factors. Show thatey0,x0 is given by the formula[u0, u1] × [v0, v1] 7→
[u0, u1]× [u0v1, u2v0]. Check that the compositionT = τ ◦ ey0,x0 satisfiesT 3 = id.
7.22 Let P be a linear pencil of plane curves whose general member is a curve of
geometric genus 1 andf : P2 99K P1 be a rational map it defines.

(i) Show that here exist birational morphismsπ : X → P2, φ : X → P1 with
f = φ ◦ π−1 such thatφ : X → P1 is a relatively minimal rational elliptic
surface.

(ii) Use the formula for the canonical class of an elliptic surface to show that the
divisor class of a fibre is equal to−mKX for some positive integerm.

(iii) Show that there exists a birational morphismσ : X → P2 such that the image of
the elliptic fibration is anHalphen pencilof indexm, i.e. a linear pencil of curves
of degree3m with ninem-multiple base points (including infinitely near).

(iv) Conclude by deducingBertini’s Theoremthat states that any linear pencil of
plane elliptic curves can be reduced by a plane Cremona transformation to an
Halphen pencil.

7.23 Find all possible characteristic vectors of planar Cremona transformations with
N ≤ 8 base points.

Historical Notes

A comprehensive history of the theory of Cremona transformations can be
found in several sources [143], [340], [582]. Here we give only a brief sketch.

The general study of plane Cremona transformations was first initiated by L.
Cremona in his two papers [157] and [158] published in 1863 and 1864. How-
ever, examples of birational transformations were known since the antiquity,
for example, the inversion transformation. The example of a quadratic trans-
formation which we presented in Example7.3.4goes back to Poncelet [494],
although the first idea of a general quadratic transformation must be credited
to C. MacLaurin [414]. It was generally believed that all birational transfor-
mations must be quadratic and much work was done in developing the general
theory of quadratic transformations. The first transformation of arbitrary de-
gree was constructed in 1859 by E. de Jonquières in [177], the de Jonquières
transformations. His memoir remained unpublished until 1885 although an ab-
stract was published in 1864 [176]. In his first memoir [157] Cremona gives
a construction of a general de Jonquières transformation without reference to
de Jonquìeres. We reproduced his construction in section7.3.6. Cremona gives
the credit to de Jonquières in his second paper. Symmetric transformations of
order 5 were first studied by R. Sturm [599], of order 8 by C. Geiser [263], and
of order 17 much later by E. Bertini [40]. In his second paper Cremona lays
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foundation of the general theory of plane birational transformations. He intro-
duces the notion of fundamental points and principal curves, establishes the
equalities (7.35), proves that the numbers of fundamental points of the trans-
formation and its inverse coincide, proves that principal curves are rational
and computes all possible characteristic vectors up to degree10. The notion
of a homaloidal linear system was introduced by Cremona later, first for space
transformations in [161] and then for plane transformations in [162]. The word
“homaloid” means flat and was used by J. Sylvester to mean a linear subspace
of a projective space. More generally it was applied by A. Cayley to rational
curves and surfaces. Cremona also introduces the net of isologues and proves
that the number of fixed points of a general transformation of degreed is equal
to d+2. In the special case of de Jonquière transformations this was also done
by de Jonquìere in [177]. The notion of isologue curves belongs to him as well
as the formula for the number of fixed points.

Many special Cremona transformations inP3 are discussed in Hudson’s
book [340]. In her words, the most interesting space transformation is the bi-
linear cubo-cubic transformation with base curve of genus 3 and degree 6. It
was first obtained by L. Magnus in 1837 [416]. In modern times bilinear trans-
formations, under the name determinantal transformations, were studied by I.
Pan [471], [470] and G. Gonzales-Sprinberg [277].

The first major result in the theory of plane Cremona transformations af-
ter Cremona’s work was Noether’s Theorem. The statement of the Theorem
was guessed by W. Clifford in 1869 [127]. The original proof of M. Noether
in [456] based on Noether’s inequality contained a gap which we explained
in Remark7.5.1. Independently, J. Rosanes found the same proof and made
the same mistake [522]. In [457] Noether tried to correct his mistake, taking
into account the presence of infinitely near fundamental points of highest mul-
tiplicities where one cannot apply a quadratic transformation. He took into
account the case of infinitely near points with different tangent direction but
overlooked the cuspidal case. The result was accepted for thirty years until in
1901 C. Segre pointed out that the cuspidal case was overlooked [562]. In the
same year G. Castelnuovo [70] gave a complete proof along the same lines
as used in this chapter. In 1916 J. Alexander [4] raised objections to Castel-
nuovo’s proof and gives a proof without using de Jonquières transformations
[4]. This seems to be a still accepted proof. It is reproduced, for example, in
[3].

The characteristic matrices of Cremona transformation were used by S. Kan-
tor [362] and later by P. Du Val [212]. The latter clearly understood the connec-
tion to reflection groups. The description of proper homaloidal and exceptional
types as orbits of the Weyl groups were essentially known to H. Hudson. There
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are numerous modern treatments, of this started from M. Nagata [449] and cul-
minated in the monograph of M. Alberich-Carramiñana [2]. A modern account
of Clebsch’s Theorem and its history can be also found there. Theorem7.5.11
is usually attributed to Nagata, although it was known to S. Kantor and A.
Coble.

The original proof of Bertini’s Theorem on elliptic pencils discussed in Ex-
ercise 7.20 can be found in [40]. The Halphen pencils were studied by G.
Halphen in [304] A modern proof of Bertini’s Theorem can be found in [190].
A survey of results about reducing other linear system of plane curves by pla-
nar Cremona transformation to linear systems of curves of lower degree can be
found in [582] and in [276]. The formalism of bubble spaces originated from
the classical notion of infinitely near points was first introduced by Yu. Manin
[417].

The theory of decomposition of Cremona transformation via composition
of elementary birational isomorphisms between minimal ruled surfaces has a
vast generalization to higher dimension under the nameSarkisov program(see
[145]).

We intentionally omitted the discussion of finite subgroups of the Cremona
group Cr(2), the modern account of this classification and the history can be
found in [205].
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Del Pezzo surfaces

8.1 First properties

8.1.1 Surfaces of degreed in Pd

Recall that a subvarietyX ⊂ Pn is callednondegenerateif it is not contained
in a proper linear subspace. All varieties we consider here are assumed to be
reduced. Letd = deg(X). We have the following well-known (i.e., can be
found in modern text-books, e.g. [295], [307]) result.

Theorem 8.1.1 LetX be an irreducible nondegenerate subvariety ofPn of
dimensionk and degreed. Thend ≥ n− k+ 1, and the equality holds only in
one of the following cases:

(i) X is a quadric hypersurface;

(ii) X is a Veronese surfaceV4
2 in P5;

(iii) X is a cone over a Veronese surfaceV4
2 in P5;

(iv) X is a rational normal scroll.

Recall that arational normal scrollis defined as follows. Choosek disjoint
linear subspacesL1, . . . , Lk in Pn which together span the space. Letai =
dimLi. We have

∑k
i=1 ai = n−k+1. Consider Veronese mapsvai

: P1 → Li
and defineSa1,...,ak;n to be the union of linear subspaces spanned by the points
va1(x), . . . , vak

(x), wherex ∈ P1. It is clear thatdimSa1,...,ak;n = k and it
is easy to see thatdegSa1,...,ak;n = a1 + · · ·+ ak anddimSa1,...,ak;n = k. In
this notation, it is assumed thata1 ≤ a2 ≤ . . . ≤ ak.

A rational normal scrollSa1,a2,n of dimension 2 witha1 = a, a2 = n−1−a
will be redenoted bySa,n. Its degree isn − 1 and it lies inPn. For example,
S1,3 is a nonsingular quadric inP3 andS0,3 is an irreducible quadric cone.

Corollary 8.1.2 LetS be an irreducible nondegenerate surface of degreed
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in Pn. Thend ≥ n − 1 and the equality holds only in one of the following
cases:

(i) X is a nonsingular quadric inP3;
(ii) X is a quadric cone inP3;
(iii) X is a Veronese surfacev2(P2) in P5;
(iv) X is a rational normal scrollSa,n ⊂ Pn.

Del Pezzo surfaces come next. LetX be an irreducible nondegenerate sur-
face of degreed in Pd. A general hyperplane sectionH of X is an irreducible
curve of degreed. Let pa = h1(X,OX) denote its arithmetic genus. There are
two possibilities:pa = 0 or pa = 1. In fact, projecting toP3 from a general set
of d− 3 nonsingular points, we get an irreducible curveH ′ of degree4 in P3.
Taking9 general points inH ′, we find an irreducible quadric surfaceQ con-
tainingH ′. If Q is singular, then its singular point lies outsideH ′. We assume
thatQ is nonsingular, the other case is considered similarly. Letf1 andf2 be
the divisor classes of the two rulings generating Pic(Q). ThenH ′ ∈ |af1 +bf2|
with a, b ≥ 0 anda + b = degH ′ = 4. This gives(a, b) = (3, 1), (1, 3), or
(2, 2). In the first two casespa(H ′) = 0, in the second casepa(H ′) = 1.

Proposition 8.1.3 An irreducible nondegenerate surfaceX of degreed in
Pd with hyperplane sections of arithmetic genus equal to0 is isomorphic to a
projection of a surface of degreed in Pd+1.

Proof Obviously,X is a rational surface. Assume thatX is embedded inPd
by a complete linear system, otherwise it is a projection from a surface of the
same degree inPN+1. A birational mapf : P2 99K X is given by a linear
system|mh − η| for some bubble cycleη =

∑
mixi. By Proposition7.3.2,

we have

d = degX = m2 −
N∑
i=1

m2
i ,

r = dim |mh− η| ≥ 1
2 (m(m+ 3)−

n∑
i=1

mi(mi + 1)).

Since hyperplane sections ofX are curves of arithmetic genus0, we get

(m− 1)(m− 2) =
N∑
i=1

mi(mi − 1).

Combing all this together, we easily get

r ≥ d+ 1.
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SinceX is nondegenerate, we must get the equalityr = d + 1. ThusX is a
surface of degreed in Pd+1, and we get a contradiction.

Recall that an irreducible reduced curve of arithmetic genuspa = 0 is a
nonsingular rational curve. It follows from the Proposition that every surfaceX

embedded inPn by a complete linear system with rational hyperplane sections
has degreen + 1. By Corollary8.1.2, it must be either a scroll or a Veronese
surface. For example, if we takem = 4, N = 3,m1 = m2 = m3 = 2, we
obtain a surface of degree 4 inP5. It is a Veronese surface in disguise. Indeed, if
we compose the map with a quadratic transformation with fundamental points
atx1, x2, x3, we obtain that the image is given by the linear system of conics
in the plane, so the image is a Veronese surface. On the hand, if we takem =
3, N = 1,m1 = 2, we get a surfaceX of degree 5 inP6. The family of lines
through the pointx1 is mapped to a ruling of lines onX, soX is a scroll.

Proposition 8.1.4 SupposeX is a scroll of degreed in Pd, d > 3, which is
not a cone. ThenX is a projection of a scroll of degreed in Pd+1.

Proof Projecting a scroll from a point on the surface we get a surface of
degreed′ in Pd−1 satisfying

d = kd′ + 1, (8.1)

wherek is the degree of the rational map defined by the projection. Since the
image of the projection is a nondegenerate surface, we obtaind′ ≥ d − 2, the
only solution isk = 1 andd′ = d − 1. Continuing in this way, we arrive at a
cubic surface inP3. If it is a cone, it is a rational surface. We will see later, in
Chapter 10, that a rational scroll is a projection of a normal rational scrollSq,n
of degreen− 1 in Pn.

The classical definition of a del Pezzo surface is the following.

Definition 8.1.1 A del Pezzo surfaceis a nondegenerate irreducible surface
of degreed in Pd which is not a cone and not isomorphic to a projection of a
surface of degreed in Pd+1.

According to a classical definition (see [573], 4.5.2), a subvarietyX is called
normal subvarietyif it is not a projection of a subvariety of the same degree.

Recall that a closed nondegenerate subvarietyX of degreed in Pn is called
linearly normalif the restriction map

r : H0(Pn,OX(1))→ H0(X,OX(1)) (8.2)

is bijective.
The relation between the two definitions is the following one.
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Proposition 8.1.5 SupposeX is a normal nondegenerate subvariety inPn.
ThenX is linearly normal. Conversely, ifX is linearly normal and normal
(i.e. coincides with its normalization), then it is a normal subvariety.

Proof It is clear thatX is nondegenerate if and only ifr is injective. If it is
not surjective, then linear system|OX(1)| embedsX in Pm with m > n with
the imageX ′ of the same degree, andX is a projection ofX.

Conversely, suppose the restriction mapr is surjective andX is a projection
of X ′ of the same degree. The center of the projection does not belong toX ′,
so the projection is a regular mapp : X ′ → X. We havep∗OX(1) ∼= OX′(1).
By the projection formulap∗p∗OX′(1) ∼= OX(1)⊗π∗OX′ . SinceX is normal,
p∗OX′ ∼= OX (see [311]). Thus the canonical homomorphism

H0(X,OX(1))→ H0(X ′,OX′(1)) ∼= H0(X, p∗p∗OX(1)) (8.3)

is bijective. Sincer is bijective,

dimH0(X,OX(1)) = dimH0(X ′,OX′(1)) = n+ 1.

SinceX ′ is nondegenerate,dimH0(X ′,OX′(1)) ≥ n+ 2. This contradiction
proves the assertion.

Let Sd ⊂ Pd be a del Pezzo surface. Assumed ≥ 4. As in the proof of
Proposition8.1.4, we projectSd from a general subset ofd − 3 nonsingular
points to obtain a cubic surfaceS3 in P3. SupposeS3 is a cone over a cubic
curve with vertexx0. A general plane section ofS3 is the union of three con-
current lines. Its preimage inS4 is the union of four lines passing through the
preimagex′0 of x0. This means that the pointx′0 is a singular point of multi-
plicity 4 equal to the degree ofS4. Clearly, it must be a cone. Proceeding in
this way back toSd, we obtain thatSd is a cone, a possibility which we have
excluded. Next assume thatS3 is not a normal surface. We will see later that it
must be a scroll. A general hyperplane section ofS4 passing through the center
of the projectionS4 99K S3 is a curve of degree 4 and arithmetic genus 1. Its
image inS3 is a curve of degree 3 and arithmetic genus 1. So, it is not a line.
The preimage of a general line onS3 must be a line onS4. ThusS4 is a scroll.
Going back toSd, we obtain thatSd is a scroll. This has been also excluded.
Thus, we obtain that a general projection ofSd from a set ofd− 3 nonsingular
points is a normal cubic surface.

Let us derive immediate corollaries of this.

Proposition 8.1.6 The degreed of a del Pezzo surfaceSd is less than or equal
to 9.

Proof We follow the original argument of del Pezzo. LetSd 99K Sd−1 be the
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projection from a general pointp1 ∈ Sd. It extends to a regular mapS′d →
Sd−1, whereS′d is the blow-up ofp1. The image of the exceptional curveE1

of the blow-up is a linè 1 in S′d. Let Sd−1 → Sd−2 be the projection from a
general point inSd−1. We may assume that the projection mapSd 99K Sd−1

is an isomorphism overp2 and thatp2 does not lie oǹ 1. Continuing in this
way, we arrive at a normal cubic surfaceS3, and the images of lines̀1, and so
on, will be a set of disjoint lines onS3. We will see later that a normal cubic
surface does not have more than 6 skew lines. This shows thatd ≤ 9.

Proposition 8.1.7 A del Pezzo surfaceSd is a normal surface (i.e. coincides
with its normalization in the field of rational functions).

Proof We follow the same projection procedure as in the previous proof. The
assertion is true ford = 3. The mapS′4 → S3 is birational map onto a normal
surface. Since we may assume that the centerp of the projectionS4 99K S3

does not lie on a line, the map is finite and of degree 1. SinceS3 is normal, it
must be an isomorphism. In fact, the local ringA of a pointx ∈ S′4 is integral
over the local ringA′ point of its imagex′ and both rings have the same fraction
fieldQ. Thus the integral closure ofA in Q is contained in the integral closure
of A′ equal toA′. This shows thatA coincides withA′. Thus we see thatS4

is a normal surface. Continuing in this way, we get thatS5, . . . , Sd are normal
surfaces.

8.1.2 Rational double points

Here we recall without proofs some facts about rational double points (RDP)
singularities which we will often use later. The proofs can be found in many
sources [16], [501], [482].

Recall that we say that a varietyX hasrational singularitiesif there exists
a resolution of singularitiesπ : Y → X such thatRiπ∗OY = 0, i > 0. One
can show that, if there exists one resolution with this property, any resolution
of singularities satisfies this property. Also, one can give a local definition of a
rational singularityx ∈ X by requiring that the stalk(Riπ∗OY )x vanishes for
i > 0. Note that a nonsingular points is, by definition, a rational singularity.

We will be interested in rational singularities of normal algebraic surfaces.
Let π : Y → X be a resolution of singularities. We can always choose it to be
minimal in the sense that it does not factor nontrivially through another reso-
lution of singularities. This is equivalent to that the fibres ofπ do not contain
(−1)-curves. A minimal resolution always exists and is unique, up to isomor-
phism. A curve in the fibreπ−1(x) is called anexceptional curve.

Let Z =
∑
niEi, whereni ≥ 0 andEi are irreducible components of
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π−1(x), calledexceptional components. We say thatZ is a fundamental cycle
if Z ·Ei ≤ 0 for allEi andZ is minimal (in terms of order on the set of effective
divisors) with this property. A fundamental cycle always exists unique.

Proposition 8.1.8 The following properties are equivalent.

(i) x is a rational singularity;

(ii) the canonical mapsπ∗ : Hi(X,OX)→ Hi(Y,OY ) are bijective;

(iii) for every curve (not necessary reduced)Z supported inπ−1(x), one
hasH1(Z,OZ) = 0;

(iv) for every curveZ supported inπ−1(x), pa(Z) := 1+ 1
2Z ·(Z+KY ) ≤

0.

Recall that themultiplicity of a pointx on a varietyX is the multiplicity
of the maximal idealmX,x defined in any text-book in Commutative Algebra.
If X is a hypersurface, then the multiplicity is the degree of the first nonzero
homogeneous part in the Taylor expansion of the affine equation ofX at the
pointx.

If x is a rational surface singularity, then−Z2 is equal to its multiplicity,
and−Z2 + 1 is equal to the embedding dimension ofx (the dimension of
mX,x/m

2
X,x) [16], Corollary 6. It follows that a rational double point is locally

isomorphic to a hypersurface singularity, and hence is a Gorenstein singularity.
The converse is also true, a rational Gorenstein singularity has multiplicity 2.

Suppose now thatx is a rational double point of a normal surfaceX. Then
each exceptional componentE satisfiesH1(E,OE) = 0. This implies that
E ∼= P1. Since the resolution is minimal,E2 ≤ −2. By the adjunction formula,
E2 + E ·KY = −2 impliesE ·KY ≥ 0. LetZ =

∑
niEi be a fundamental

cycle. Then, by (iii) from above,

0 = 2 + Z2 ≤ −Z ·KY = −
∑

ni(Ei ·KY ).

This givesEi ·KY = 0 for everyEi. By the adjunction formula,E2
i = −2.

LetKX be a canonical divisor onX. This is a Weyl divisor, the closure of a
canonical divisor on the open subset of nonsingular points. Letπ∗(KX) be its
preimage onY . We can write

KY = π∗(KX) + ∆,

where∆ is a divisor supported inπ−1(x). Supposex is a Gorenstein singular-
ity. This means thatωX is locally free atx, i.e. one can choose a representative
of KX which is a Cartier divisor in an open neighborhood ofx. Thus, we can
choose a representative ofπ∗(KX) which is disjoint fromπ−1(x). For any
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exceptional componentEi, we have

0 = KY · Ei = Ei · π∗(KX) + Ei ·∆ = Ei ·∆.

It is known that theintersection matrix(Ei ·Ej) of exceptional components is
negative definite [444]. This implies that∆ = 0.

To sum up, we have the following.

Proposition 8.1.9 Let π : Y → X be a minimal resolution of a rational
double pointx on a normal surfaceX. Then each exceptional component ofπ

is a (−2)-curve.

8.1.3 A blow-up model of a del Pezzo surface

Let us show that a del Pezzo surface satisfies the following properties which
we will take for a more general definition of a del Pezzo surface.

Theorem 8.1.10 LetS be a del Pezzo surface of degreed in Pd. Then all its
singularities are rational double points andω−1

S is an ample invertible sheaf.

Proof The assertion is true ifd = 3. It follows from the proof of Proposition
8.1.7thatS is isomorphic to the blow-up of a cubic surface atd − 3 nonsin-
gular points. Thus the singularities ofS are isomorphic to singularities of a
cubic surface which are RDP. In particular, the canonical sheafωS of S is an
invertible sheaf.

LetC be a general hyperplane section. It defines an exact sequence

0→ OS → OS(1)→ OC(1)→ 0.

Tensoring byωS , and applying the adjunction formula forC, we obtain an
exact sequence

0→ ωS → ωS(1)→ ωC → 0.

Applying Serre’s duality and Proposition8.1.8, we obtain

H1(S, ωS) ∼= H1(S,OS) = 0.

SinceC is an elliptic curve,ωC ∼= OC . The exact sequence implies that
H0(S, ωS(1)) 6= 0. LetD be an effective divisor defined by a nonzero section
of ωS(1). By adjunction formula, its restriction to a general hyperplane section
is zero. ThusD is zero. This shows thatωS(1) ∼= OS , henceωS ∼= OS(−1).
In particular,ω−1

S
∼= OS(1) is ample (in fact, very ample).

Definition 8.1.2 A normal algebraic surfaceS is called adel Pezzo surface
if its canonical sheafωS is invertible,ω−1

S is ample and all singularities are
rational double points.
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By the previous Theorem and Propositions8.1.7, a del Pezzo surface of
degreed in Pd is a del Pezzo surface in this new definition. Note that one
take a more general definition of a del Pezzo surface without assuming the
normality property (see [502]). However, we will not pursue this.

Let π : X → S be a minimal resolution of singularities of a del Pezzo
surface. Our goal is to show thatX is a rational surface isomorphic either to
a minimal rational surfaceF0, or F2, or is obtained fromP2 by blowing up a
bubble cycle of length≤ 8.

Lemma 8.1.11 Any irreducible reduced curveC on X with negative self-
intersection is either a(−1)-curve or(−2)-curve.

Proof By adjunction

C2 + C ·KS = degωC = 2dimH1(C,OC)− 2 ≥ −2.

By Proposition8.1.9, the assertion is true ifC is an exceptional curve of the
resolution of singularitiesπ : X → S. Supposeπ(C) = C ′ is a curve. Since
−KS is ample, there exists somem > 0 such that| −mKS | defines an iso-
morphism ofS onto a surfaceS′ in Pn. Thus| −mKX | defines a morphism
X → S′ which is an isomorphism outside the exceptional divisor ofπ. Taking
a general section inPn, we obtain that−mKX · C > 0. By the adjunction
formula, the only possibility isC2 = −1, andH1(C,OC) = 0.

Recall that a divisor classD on a nonsingular surfaceX is callednef if
D · C ≥ 0 for any curveC onX. It is calledbig if D2 > 0. It follows from
the proof of the previous Lemma that−KX is nef and big.

Lemma 8.1.12 LetX be a minimal resolution of a del Pezzo surfaceS. Then

Hi(X,OX) = 0, i 6= 0.

Proof SinceS has rational double points, by Proposition8.1.9, the sheafωS
is an invertible ample sheaf and

ωX ∼= π∗(ωS). (8.4)

Since,ωS ∼= OS(−A) for some ample divisorA, we haveωX ∼= OX(−A′),
whereA′ = π∗(A) is nef and big. We write0 = KX +A and apply Ramanu-
jam’s Vanishing Theorem ([495], [395], vol. I, Theorem 4.3.1): for any nef
and big divisorD on a nonsingular projective varietyX

Hi(X,OX(KX +D)) = 0, i > 0.
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Theorem 8.1.13 LetX be a minimal resolution of a del Pezzo surface. Then,
eitherX ∼= F0, or X ∼= F2, or X is obtained fromP2 by blowing upN ≤ 8
points in the bubble space.

Proof Let f : X → X ′ be a morphism onto a minimal model ofX. Since
−KX is nef and big,KX′ = f∗(KX) is not nef but big. It follows from the
classification of algebraic surfaces thatX ′ is a minimal ruled surface. Assume
X ′ is not a rational surface. By Lemma8.1.12, H1(X ′,OX′) = 0. If p :
X ′ → B is a ruling ofX ′, we must haveB ∼= P1 (use that the projection
p : X ′ → B satisfiesp∗OX′ ∼= OB and this defines a canonical injective map
H1(B,OB) → H1(X ′,OX′). ThusX ′ = Fn or P2. AssumeX ′ = Fn. If
n > 2, the proper transform inX of the exceptional section ofX ′ has self-
intersection−r ≤ −n < −2. This contradicts Lemma8.1.11. Thusn ≤ 2.
If n = 1, then composing the mapX ′ = F1 → P2, we obtain a birational
morphismX → X ′ → P2, so the assertion is verified.

Assumen = 2, and the birational morphismf : X → X ′ = F2 is not
an isomorphism. Then it is an isomorphism over the exceptional section (oth-
erwise we get a curve onX with self-intersection< −2). Thus, it factors
through a birational morphismf : X → Y → F2, whereY is the blow-
up of a pointy ∈ F2 not on the exceptional section. LetY → Y ′ be the
blow-down morphism of the proper transform of a fibre of the ruling ofF2

passing through the pointy. ThenY ′ is isomorphic toF1, and the composition
X → X ′ → Y → Y ′ → P2 is a birational morphism toP2.

Assumen = 0 andf : X → F2 is not an isomorphism. Again, we factorf
as the compositionX → Y → F0, whereY → F0 is the blow-up of a point
y ∈ F0. Blowing down the proper transforms of the lines throughy, we get a
morphismY → P2 and the compositionX → Y → P2.

The last assertion follows from the known behavior of the canonical class
under a blow-up. Ifπ : S → P2 is a birational morphism which is a composi-
tion ofN blow-ups, then

K2
X = K2

P2 −N = 9−N. (8.5)

SinceK2
X > 0, we obtainN < 9.

Definition 8.1.3 The numberd = K2
X is called thedegreeof a del Pezzo

surface.

It is easy to see that it does not depend on a minimal resolution ofS. Note
that this definition agrees with the definition of the degree of a del Pezzo sur-
faceS ⊂ Pd in its classical definition. Indeed, letH be a hyperplane section
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of S, the intersection theory of Cartier divisors show that

d = H2 = π∗(H)2 = p∗(−KS)2 = (−KX)2 = K2
X .

SupposeS is a nonsingular del Pezzo surface. SinceKF2 is not ample, we
obtain the following.

Corollary 8.1.14 Assume thatS is a nonsingular del Pezzo surface. Then
S ∼= F0 or is obtained by blowing-up of a bubble cycle inP2 of≤ 8 points.

Definition 8.1.4 A weak del Pezzo surfaceis a nonsingular surfaceS with
−KS nef and big.

So, we see that a minimal resolution of a singular del Pezzo surface is a
weak del Pezzo surface. The proof of Theorem8.1.13shows that a weak del
Pezzo surface is isomorphic toF0,F2 or to the blow-up of a bubble cycle on
P2 that consists of≤ 8 points.

Remark8.1.1 Recall that a Fano variety is a nonsingular projective varietyX

with−KX ample. A quasi-Fano variety is a nonsingular variety with−KX big
and nef. Thus a nonsingular del Pezzo surface is a Fano variety of dimension
2, and a weak del Pezzo surface is a quasi-Fano variety of dimension 2.

Definition 8.1.5 A blowing down structureon a weak del Pezzo surfaceS is
a composition of birational morphisms

π : S = SN
πN−→ SN−1

πN−1−→ . . .
π2−→ S1

π1−→ P2,

where eachπ : Si → Si−1 is the blow-up a pointxi in the bubble space ofP2.

Recall from section7.5.1that a blowing-down structure of a weak del Pezzo
surface defines a basis(e0, e1, . . . , eN ) in Pic(S), wheree0 is the class of the
full preimage of a line andei is the class of the exceptional configurationsEi
defined by the pointxi. We call it ageometric basis. As we explained in the
previous Chapter, a blowing-down structure defines an isomorphism of free
abelian groups

φ : ZN+1 → Pic(S) such thatφ(kN ) = KS ,

wherekN = −3e0 + e1 + · · · + eN . The classe0 is the full preimage of
the classh of a line in the plane, and the classesei are the divisor classes of
the exceptional configurationsEi. We call such an isomorphism ageometric
marking.

Definition 8.1.6 A pair (S, φ), whereS is a weak del Pezzo surface andφ
is a marking (resp. geometric marking)ZN+1 → Pic(S) is called amarked
(resp.geometrically marked) weak del Pezzo surface.
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The bubble cycleη appearing in a blowing-up model of a weak del Pezzo
surface must satisfy some restrictive conditions. Let us find them.

Lemma 8.1.15 LetX be a nonsingular projective surface withH1(X,OX) =
0. Let C be an irreducible curve onX such that| − KX − C| 6= ∅ and
C 6∈ | −KX |. ThenC ∼= P1.

Proof We have−KX ∼ C + D for some nonzero effective divisorD, and
henceKX+C ∼ −D 6∼ 0. This shows that|KX+C| = ∅. By Riemann-Roch,

0 = h0(OX(KX + C)) = 1
2 ((KX + C)2 − (KX + C) ·KX) + 1

−h1(OX) + h2(OX) ≥ 1 + 1
2 (C2 +KX · C) = h1(OC).

ThusH1(C,OC) = 0, and, as we noted earlier, this implies thatC ∼= P1.

Proposition 8.1.16 LetS be a weak del Pezzo surface.

(i) Let f : S → S̄ be a blowing down of a(−1)-curveE. ThenS̄ is a
weak del Pezzo surface.

(ii) Letπ : S′ → S be the blowing-up with center at a pointx not lying on
any(−2)-curve. AssumeK2

S > 1. ThenS′ is a weak del Pezzo surface.

Proof (i) We haveKS = f∗(KS̄) +E, and hence, for any curveC on S̄, we
have

KS̄ · C = f∗(KS̄) · f∗(C) = (KS − E) · f∗(C) = KS · f∗(C) ≤ 0.

AlsoK2
S̄

= K2
S + 1 > 0. ThusS̄ is a weak del Pezzo surface.

(ii) SinceK2
S > 2, we haveK2

S′ = K2
S − 1 > 0. By Riemann-Roch,

dim | −KS′ | ≥ 1
2 ((−KS′)2 − (−KS′ ·KS′)) = K2

S′ ≥ 0.

Thus | − KS′ | 6= ∅, and hence, any irreducible curveC with −KS′ · C <

0 must be a proper component of some divisor from| − KS′ | (it cannot be
linearly equivalent to−KS′ because(−KS′)2 > 0). Let E = π−1(x). We
have−KS′ · E = 1 > 0. So we may assume thatC 6= E. Let C̄ = f(C). We
have

−KS′ · C = π∗(−KS) · C − E · C = −KS · C̄ −multx(C̄).

Sincef∗(KS′) = KS andC 6= E, the curveC̄ is a proper irreducible com-
ponent of some divisor from| − KS |. By Lemma8.1.15, C̄ ∼= P1. Thus
multxC̄ ≤ 1 and hence0 > −KS′ ·C ≥ −KS ·C̄−1. This gives−KS ·C̄ = 0
andx ∈ C̄ and henceC̄ is a (−2)-curve. Sincex does not lie on any(−2)-
curve we get a contradiction.
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Corollary 8.1.17 Let η =
∑r
i=1 xi be a bubble cycle onP2 andSη be its

blow-up. ThenSη is a weak del Pezzo surface if and only if

(i) r ≤ 8;
(ii) the Enriques diagram ofη is the disjoint union of chains;
(iii) |OP2(1)− η′| = ∅ for anyη′ ⊂ η consisting of four points;
(iv) |OP2(2)− η′| = ∅ for anyη′ ⊂ η consisting of 7 points.

Proof The necessity of condition (i) is clear. We know thatS does not contain
curves with self-intersection< −2. In particular, any exceptional cycleEi of
the birational morphismπ : S → P2 contains only smooth rational curvesE
with E2 = −1 or−2. This easily implies that the bubble points corresponding
to each exceptional configurationEi represent a totally ordered chain. This
checks condition (ii).

Suppose (iii) does not hold. LetD be an effective divisor from the linear
system|OP2(1)− η′|. We can change the admissible order onη to assume that
η′ = x1 + x2 + x3 + x4. Then the divisor class of the proper transform ofD

in Yη is equal toe0 − e1 − e2 − e3 − e4 −
∑
i≥4miei. Its self-intersection is

obviously≤ −3.
Suppose (iv) does not hold. LetD ∈ |OP2(2) − η′|. Arguing as above,

we find that the divisor class of the proper transform ofD is equal to2e0 −∑7
i=1 ei −

∑
i≥7miei. Its self-intersection is again≤ −3.

Let us prove the sufficiency. LetEN = π−1
N (xN ) be the last exceptional

configuration of the blow-downYη → P2. It is an irreducible(−1)-curve.
Obviously,η′ = η− xN satisfies conditions (i)-(iv). By induction, we may as-
sume thatS′ = Sη′ is a weak del Pezzo surface. Applying Proposition8.1.16,
we have to show thatxN does not lie on any(−2)-curve onS′. Condition
(ii) implies that it does not lie on any irreducible component of the exceptional
configurationsEi, i 6= N . We will show in the next section that any(−2)-curve
on a week del Pezzo surfaceS′ of degree≤ 7 is either blown down to a point
under the canonical mapSη′ → P2 or equal to the proper inverse transform of
a line through 3 points, or a conic through 5 points. IfxN lies on the proper
inverse transform of such a line (resp. a conic), then condition (iii) (resp. (iv))
is not satisfied. This proves the assertion.

A set of bubble points satisfying conditions (i)-(iv) is called a set of points
in almost general position.

We say that the points are ingeneral positionif the following holds:

(i) all points are proper points;
(ii) no three points are on a line;
(iii) no 6 points on a conic;
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(iv) no cubic passes through the points with one of the point being a singular
point.

Proposition 8.1.18 The blow-up ofN ≤ 8 points inP2 is a del Pezzo surface
if and only if the points are in general position.

8.2 TheEN -lattice

8.2.1 Quadratic lattices

A (quadratic)lattice is a free abelian groupM ∼= Zr equipped with a sym-
metric bilinear formM × M → Z. A relevant example of a lattice is the
second cohomology group modulo torsion of a compact smooth 4-manifold
(e.g. a nonsingular projective surface) with respect to the cup-product. An-
other relevant example is the Picard group modulo numerical equivalence of a
nonsingular projective surface equipped with the intersection pairing.

The values of the symmetric bilinear form will be often denoted by(x, y) or
x · y. We writex2 = (x, x). The mapx 7→ x2 is an integer valued quadratic
form onM . Conversely, such a quadratic formq : M → Z defines a symmetric
bilinear form by the formula(x, y) = q(x + y) − q(x) − q(y). Note that
x2 = 2q(x).

LetM∨ = HomZ(M,Z) and

ιM : M →M∨, ιM (x)(y) = x · y.

We say thatM is nondegenerateif the homomorphismιM is injective. In this
case the group

Disc(M) = M∨/ιM (M)

is a finite abelian group. It is called thediscriminant groupof M . If we choose
a basis to represent the symmetric bilinear form by a matrixA, then the order
of Disc(M) is equal to|det(A)|. The number disc(M) = det(A) is called the
discriminantofM . A different choice of a basis changesA to tCAC for some
C ∈ GL(n,Z), so it does not changedet(A). A lattice is calledunimodularif
|disc(M)| = 1.

TensoringM with reals, we get a real symmetric bilinear form onMR ∼= Rr.
We can identifyM with an abelian subgroup of the inner product spaceRr
generated by a basis inRr. The Sylvester signature(t+, t−, t0) of the in-
ner product spaceMR is called thesignatureof M . We write (t+, t−) if
t0 = 0. For example, the signature ofH2(X,Z)/Torsion∼= Zb2 for a non-
singular projective surfaceX is equal to(2pg + 1, b2 − 2pg − 1), where
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pg = dimH0(X,OX(KX)). This follows from the Hodge Theory (see [295]).
The signature on the lattice of divisor classes modulo numerical equivalence
Num(X) = Pic(X)/≡ ∼= Zρ is equal to(1, ρ − 1) (this is called theHodge
Index Theorem, see [311], Chap. V, Thm. 1.9).

LetN ⊂ M be a subgroup ofM . The restriction of the bilinear form toN
defines a structure of a lattice onN . We say thatN together with this form is
a sublatticeof M . We say thatN is of finite indexm if M/N is a finite group
of orderm. Let

N⊥ = {x ∈M : x · y = 0,∀y ∈ N}.

Note thatN ⊂ (N⊥)⊥ and the equality takes place if and only ifN is a
primitive sublattice(i.e.M/N is torsion-free).

We will need the following Lemmas.

Lemma 8.2.1 LetM be a nondegenerate lattice andN be its nondegenerate
sublattice of finite indexm. Then

|disc(N)| = m2|disc(M)|.

Proof SinceN is of finite index inM , the restriction homomorphismM∨ →
N∨ is injective. We will identifyM∨ with its image inN∨. We will also
identifyM with its imageιM (M) in M∨. Consider the chain of subgroups

N ⊂M ⊂M∨ ⊂ N∨.

Choose a basis in M, a basis in N, and the dual bases inM∨ andN∨. The
inclusion homomorphismN → M is given by a matrixA and the inclusion
N∨ → M∨ is given by its transposetA. The orderm of the quotientM/N

is equal to|det(A)|. The order ofN∨/M∨ is equal to|det(tA)|. They are
equal. Now the chain of lattices from above has the first and the last quotient
of order equal tom and the middle quotient is of order|disc(M)|. The total
quotientN∨/N is of order|disc(N)|. The assertion follows.

Lemma 8.2.2 LetM be a unimodular lattice andN be its nondegenerate
primitive sublattice. Then

|disc(N⊥)| = |disc(N)|.

Proof Consider the restriction homomorphismr : M → N∨, where we
identifyM with M∨ by means ofιM . Its kernel is equal toN⊥. Composingr
with the projectionN∨/ιN (N) we obtain an injective homomorphism

M/(N +N⊥)→ N∨/ιN (N).

Notice thatN⊥ ∩ N = {0} becauseN is a nondegenerate sublattice. Thus
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N⊥+N = N⊥⊕N is of finite indexi inM . Also the sum is orthogonal, so that
the matrix representing the symmetric bilinear form onN⊕N⊥ can be chosen
to be a block matrix. We denote the orthogonal direct sum of two latticesM1

andM2 byM1 ⊕M2. This shows that disc(N ⊥ N⊥) = disc(N)disc(N⊥).
Applying Lemma8.2.1, we get

#(M/N ⊥ N⊥) =
√
|disc(N⊥)||disc(N)| ≤ #(N∨/N) = |disc(N)|.

This gives|disc(N⊥)| ≤ |disc(N)|. SinceN = (N⊥)⊥, exchanging the roles
of N andN⊥, we get the opposite inequality.

Lemma 8.2.3 LetN be a nondegenerate sublattice of a unimodular lattice
M . Then

ιM (N⊥) = Ann(N) := Ker(r : M∨ → N∨) ∼= (M/N)∨.

Proof Under the isomorphismιM : M → M∨ the image ofN⊥ is equal to
Ann(N). Since the functor HomZ(−,Z) is left exact, applying it to the exact
sequence

0→ N →M →M/N → 0,

we obtain an isomorphism Ann(N) ∼= (M/N)∨.

A morphism of latticesσ : M → N is a homomorphism of abelian groups
preserving the bilinear forms. IfM is a nondegenerate lattice, thenσ is nec-
essary injective. We say in this case thatσ is an embeddingof lattices. An
embedding is calledprimitive if its image is a primitive sublattice. An invert-
ible morphism of lattices is called anisometry. The group of isometries of a
latticeM to itself is denoted by O(M) and is called theorthogonal groupof
M .

LetMQ := M ⊗Q ∼= Qn with the symmetric bilinear form ofM extended
to a symmetricQ-valued bilinear form onMQ. The groupM∨ can be identified
with the subgroup ofMQ consisting of vectorsv such that(v,m) ∈ Z for any
m ∈ M . Suppose thatM is nondegenerate lattice. The finite group Disc(M)
can be equipped with a quadratic form defined by

q(x̄) = (x, x) mod Z,

wherex̄ denotes a cosetx+ ιM (M). If M is aneven lattice, i.e.m2 ∈ 2Z for
all m ∈ M , then we take values modulo2Z. The group of automorphisms of
Disc(M) leaving the quadratic form invariant is denoted by O(Disc(M)).

The proof of the next Lemma can be found in [455].
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Lemma 8.2.4 LetM ⊂ N be a sublattice of finite index. Then the inclusion
M ⊂ N ⊂ N∨ ⊂ M∨ defines the subgroupN/M in Disc(M) = M∨/M

such that the restriction of the quadratic form ofDisc(M) to it is equal to
zero. Conversely, any such subgroup defines a latticeN containingM as a
sublattice of finite index.

The group O(M) acts naturally on the dual groupM∨ preserving its bilin-
ear form and leaving the subgroupιM (M) invariant. This defines a homomor-
phism of groups

αM : O(M)→ O(Disc(M)).

Lemma 8.2.5 LetN be a primitive sublattice in a nondegenerate latticeM .
Then an isometryσ ∈ O(N) extends to an isometry ofM acting identically on
N⊥ if and only ifσ ∈ Ker(αN ).

8.2.2 TheEN -lattice

Let I1,N = ZN+1 equipped with the symmetric bilinear form defined by the
diagonal matrix diag(1,−1, . . . ,−1) with respect to the standard basis

e0 = (1, 0, . . . , 0), e1 = (0, 1, 0, . . . , 0), . . . , eN = (0, . . . , 0, 1)

of ZN+1. Any basis defining the same matrix will be called anorthonormal
basis. The latticeI1,N is a unimodular lattice of signature(1, N).

Consider the special vector inI1,N defined by

kN = (−3, 1, . . . , 1) = −3e0 +
N∑
i=1

ei. (8.6)

We define theEN -latticeas a sublattice ofI1,N given by

EN = (ZkN )⊥.

Sincek2
N = 9 − N , it follows from Lemma8.2.2, thatEN is a negative

definite lattice forN ≤ 8. Its discriminant group is a cyclic group of order
9−N . Its quadratic form is given by the value on its generator equal to− 1

9−N
mod Z (or 2Z if N is odd).

Lemma 8.2.6 AssumeN ≥ 3. The following vectors form a basis ofEN

α1 = e0 − e1 − e2 − e3, αi = ei−1 − ei, i = 2, . . . , N.
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The matrix of the symmetric bilinear form ofEN with respect to this basis is
equal to

CN =



−2 0 0 1 0 0 0 0 . . . 0
0 −2 1 0 0 0 0 0 . . . 0
0 1 −2 1 0 0 0 0 . . . 0
1 0 1 −2 1 0 0 0 . . . 0
0 0 0 1 −2 1 0 0 . . . 0
0 0 0 0 1 −2 1 0 . . . 0
...

...
...

...
...

...
...

...
...

...
0 0 0 . . . . . . 0 0 0 −2 1


. (8.7)

Proof By inspection, eachαi is orthogonal tokN . Suppose(a0, a1, . . . , aN )
is orthogonal tokN . Then

3a0 + a1 + · · ·+ aN = 0. (8.8)

We can write this vector as follows

(a0, a1, . . . , aN ) = a0α1 + (a0 + a1)α2 + (2a0 + a1 + a2)α3

+(3a0 + a1 + a2 + a3)α4 + · · ·+ (3a0 + a1 + · · ·+ aN−1)αN .

We use here that (8.8) implies that the last coefficient is equal to−aN . We
leave the computation of the matrix to the reader.

One can express the matrixCN by means of the incidence matrixAN of the
following graph withN vertices

• • • • • •

•

· · · N ≥ 4

1

2 3 4 5 N − 1 N

Figure 8.1 Coxeter-Dynkin diagram of typeEN

We haveCN = −2IN +AN .

8.2.3 Roots

A vectorα ∈ EN is called aroot if α2 = −2. A vector(d,m1, . . . ,mN ) ∈
I1,N is a root if and only if

d2 −
N∑
i=1

m2
i = −2, 3d−

N∑
i=1

mi = 0. (8.9)
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Using the inequality(
∑N
i=1mi)2 ≤ N

∑N
i=1m

2
i , it is easy to find all solu-

tions.

Proposition 8.2.7 LetN ≤ 8 and

αij = ei − ej , 1 ≤ i < j ≤ N,
αijk = e0 − ei − ej − ek, 1 ≤ i < j < k ≤ N.

Any root inEN is equal to±α, whereα is one of the following vectors:

N= 3 : αij ,α123. Their number is8.
N= 4 :αij ,αijk. Their number is20.
N= 5 : αij ,αijk. Their number is40.
N= 6 :αij ,αijk, 2e0 − e1 − . . .− e6. Their number is72.
N= 7 : αij ,αijk, 2e0 − e1 − . . .− e7 − ei). Their number is126.
N= 8 :αij ,αijk, 2e0−e1− . . .−e8−ei−ej), 3e0−e1− . . .−e8−ei.
Their number is240.

ForN ≥ 9, the number of roots is infinite. From now on we assume

3 ≤ N ≤ 8.

An ordered setB of roots{β1, . . . , βr} is called aroot basisif they are linearly
independent overQ and

βi · βj ≥ 0.

A root basis is calledirreducible if it is not equal to the union of non-empty
subsetsB1 andB2 such thatβi · βj = 0 if βi ∈ B1 andβj ∈ B2. The
symmetricr × t-matrixC = (aij), whereaij = βi · βj is called theCartan
matrix of the root basis.

Definition 8.2.1 A Cartan matrixis a symmetric integer matrix(aij) with
aii = −2 andaij ≥ 0, or such a matrix multiplied by−1.

We will deal only with Cartan matricesC with aii = −2. The matrixC+2I,
whereI is the identity matrix of the size equal to the size ofC, can be taken as
the incidence matrix of a non-oriented graphΓC with ordered set of vertices in
which we put the numberaij−2 at the edge corresponding to verticesi andj if
this number is positive. The graph is called theCoxeter-Dynkin diagramof C.
The Cartan matrixCN for N = 6, 7, 8 has the corresponding graph pictured
in Figure8.2.

Cartan matrix is calledirreducible if the graphΓC is connected.
If C is negative definite irreducible Cartan matrix, then its Coxeter-Dynkin

diagram is one of the types indicated in Figure8.2 (see [54]). A lattice with
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quadratic form defined by a negative (positive) definite Cartan matrix is called
a root!lattice. Thus the latticeEN , N ≤ 8, is an example of a root lattice.

An • • • •· · ·
1 2 n− 1 n

Dn • • • • •

•

. . .

1

2 3 4 n− 1 n

E6 • • • • •

••1

2 3 4 5 6

E7 • • • • • •

••1

2 3 4 5 6 7

E8 • • • • • • •

••1

2 3 4 5 6 7 8

Figure 8.2 Coxeter-Dynkin diagrams of types A,D, E

For 3 ≤ n ≤ 5, we will useEn to denote the Coxeter-Dynkin diagrams of
typesA2 +A1(N = 3),A4(N = 4) andD5(N = 5).

Example8.2.1 We know that exceptional componentsEi of a minimal reso-
lution of a RDP are(−2)-curves. We have already used that the fact the inter-
section matrix(Ei · Ej) is negative definite. This implies that the intersection
matrix is a Cartan matrix.

Proposition 8.2.8 The Cartan matrixC of an irreducible root basis inEN is
equal to an irreducible Cartan matrix of typeAr, Dr, Er with r ≤ N .

Definition 8.2.2 A canonical root basisin EN is a root basis with Cartan
matrix (8.7) and the Coxeter-Dynkin diagram from Figure8.1.

An example of a canonical root basis is the basis(α1, . . . ,αN ).

Theorem 8.2.9 Any canonical root basis is obtained from a unique orthonor-
mal basis(v0, v1, . . . , vn) in I1,N such thatkN = −3v0 + v1 + · · · + vN by
the formula

β1 = v0 − v1 − v2 − v3, βi = vi−1 − vi, i = 2, . . . , N. (8.10)

Proof Given a canonical root basis(β1, . . . , βN ) we solve forvi in the system



8.2 TheEN -lattice 405

of equations (8.10). We have

vi = vN +
N∑
i=2

βi, i = 1, . . . , N − 1,

v0 = β1 + v1 + v2 + v3 = β1 + 3vN + 3
N∑
i=4

βi + 2β3 + β2,

−kN = 3v0 − v1 − · · · − vN = 9vN + 9
N∑
i=4

βi + 6β3 + 3β2

−(vN +
N∑
i=2

βi)− (vN +
N∑
i=3

βi)− . . .− (vN + βN )− vN .

This gives

vN = − 1
9−N

(kN + 3β1 + 2β2 + 4β3 +
N∑
i=3

(9− i)βi+1).

Taking the inner product of both sides withβi, we find (vN , βi) = 0, i =
1, . . . , N − 1, and(vN , βN ) = 1. Thus allvi belong to(kN ⊥ EN )∨. The
discriminant group of this lattice is isomorphic to(Z/(9−N)Z) and the only
isotropic subgroup of order9 − N is the diagonal subgroup. This shows that
E∨N is the only sublattice of(kN ⊥ EN )∨ of index9−N , hencevi ∈ E∨N for
all i. It is immediately checked that(v0, v1, . . . , vN ) is an orthonormal basis
andkN = −3v0 + v1 + · · ·+ vN .

Corollary 8.2.10 Let O(I1,N )kN
be the stabilizer subgroup ofkN . Then

O(I1,N )kN
acts simply transitively on the set of canonical root bases inEN .

Each canonical root basisβ = (β1, . . . , βN ) defines a partition of the set of
rootsR

R = R+

∐
R−,

whereR+ is the set of non-negative linear combinations ofβi. The roots from
R+ (R−) are calledpositive(negative) roots with respect to the root basisβ.
It is clear thatR− = {−α : α ∈ R+}.

For any canonical root basisβ, the subset

Cβ = {x ∈ I1,N ⊗ R : (x, βi) ≥ 0}

is called aWeyl chamberwith respect toβ. A subset of a Weyl chamber which
consists of vectors such that(v, βi) = 0 for some subsetI ⊂ {1, . . . , N} is
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called aface. A face corresponding to the empty set is equal to the interior of
the Weyl chamber. The face corresponding to the subset{1, . . . , N} is spanned
by the vectorkN .

For any rootα, let

rα : I1,N → I1,N , v 7→ v + (v, α)α.

It is immediately checked thatrα ∈ O(I1,N )kN
, rα(α) = −α andrα(v) = v

if (v, α) = 0. The isometryrα is called thereflectionin the rootα. By linearity,
rα acts as an orthogonal transformation of the real inner product spaceR1,N :=
I1,N ⊗ R.

The following is a basic fact from the theory of finite reflection groups. We
refer for the proof to numerous text-books on this subject (e.g. [54], [361]).

Theorem 8.2.11 LetC be a Weyl chamber defined by a canonical root basis
β. LetW (EN ) be the subgroup ofO(EN ) generated by reflectionsrβi

. For
anyx ∈ R1,N there existsw ∈ W (EN ) such thatw(x) ∈ C. If x,w(x) ∈ C,
thenx = w(x) andx belongs to a face ofC. The union of Weyl chambers is
equal toR1,N . Two Weyl chambers intersect only along a common face.

Corollary 8.2.12 The groupW (EN ) acts simply transitively on canonical
root bases, and Weyl chambers. It coincides with the groupO(I1,N )kN

.

The first assertion follows from the Theorem. The second assertion follows
from Corollary8.2.10sinceW (EN ) is a subgroup of O(I1,N )kN

.

Corollary 8.2.13

O(EN ) = W (EN )× 〈τ〉,

whereτ is an isometry ofEN which is realized by a permutation of roots in a
canonical basis leaving invariant the Coxeter-Dynkin diagram. We haveτ = 1
for N = 7, 8 andτ2 = 1 for N 6= 7, 8.

Proof By Lemma8.2.5, the image of the restriction homomorphism

O(I1,N )kN
→ O(EN )

is equal to the kernel of the homomorphismα : O(EN ) → O(Disc(EN )). It
is easy to compute O(Disc(EN )) and find that it is isomorphic toZ/τZ. Also
it can be checked thatα is surjective and the image of the symmetry of the
Coxeter-Dynkin diagram is the generator of O(Disc(EN )). It remains to apply
the previous Corollary.

The definition of the groupW (EN ) does not depend on the choice of a
canonical basis and hence coincides with the definition of Weyl groupsW (EN )
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from Chapter 7. Note that Corollary8.2.12also implies thatW (EN ) is gener-
ated by reflectionsrα for all rootsα in EN . This is true forN ≤ 10 and is not
true forN ≥ 11.

Proposition 8.2.14 If N ≥ 4, the groupW (EN ) acts transitively on the set
of roots.

Proof Let (β1, . . . , βN ) be a canonical basis from (8.10). Observe that the
subgroup ofW (EN ) generated by the reflections with respect to the roots
β2, . . . , βN is isomorphic to the permutation groupSN . It acts on the set
{e1, . . . , eN} by permuting its elements and leavese0 invariant. This implies
that SN acts on the rootsαij , αijk, via its action on the set of subsets of
{1, . . . , N} of cardinality2 and3. Thus it acts transitively on the set of roots
αij and on the set of rootsαijk. Similarly, we see that it acts transitively on
the set of roots2e0 − ei1 − . . . − ei6 and−k8 − ei if N = 8. Also applying
rα toα we get−α. Now the assertion follows from the following computation

rβ1(−k8 − e8) = 2e0 − e1 − e4 − . . .− e8,

rβ1(2e0 − e1 − . . .− e6) = α456,

rβ1(α124) = α34.

A sublatticeR of EN isomorphic to a root lattice is called aroot sublattice.
By definition, it has a root basis(β1, . . . , βr) such that the matrix(βi · βj) is
a Cartan matrix. Each such sublattice is isomorphic to the orthogonal sum of
root lattices with irreducible Cartan matrices.

The types of root sublattices in the latticeEN can be classified in terms of
their root bases by the following procedure due to A. Borel and J. de Siebenthal
[50] and, independently by E. Dynkin [216].

Let D be the Coxeter-Dynkin diagram. Consider the extended diagram by
adding one more vertex which is connected to other edges as shown on the
following extended Coxeter-Dynkin diagrams. Consider the following set of
elementary operations over the diagramsD and their disconnected sumsD1 +
· · ·+Dk. Extend one of the componentsDi to get the extended diagram. Con-
sider its subdiagram obtained by deleting subset of vertices. Now all possible
root bases are obtained by applying recursively the elementary operations to
the initial Coxeter-Dynkin diagram of typeEN and all its descendants.
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Figure 8.3 Extended Coxeter-Dynkin diagrams of typesÃ, D̃, Ẽ

8.2.4 Fundamental weights

Let β = (β1, β2, . . . , βN ) be a canonical root basis inEN . Consider its dual
basis(β∗1 , . . . , β

∗
N ) in E∨N ⊗ Q. Its elements are calledfundamental weights.

We use the expressions forβi from Theorem8.2.9. Let us identifyE∨N with
(k⊥N )∨ = I1,N/ZkN . Then we can take for representatives ofβ∗j the following
vectors fromI1,N :

β∗1 = v0,

β∗2 = v0 − v1,
β∗3 = 2v0 − v1 − v2,
β∗i = vi + · · ·+ vN , i = 4, . . . , N.

Definition 8.2.3 A vector inI1,N is called anexceptional vectorif it belongs
to theW (EN )-orbit of β∗N .

Proposition 8.2.15 A vectorv ∈ I1,N is exceptional if and only ifkN · v =
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−1 andv2 = −1. The set of exceptional vectors is the following

N = 3, 4 : ei, e0 − ei − ej ;

N = 5 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e5;

N = 6 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e6 + ei;

N = 7 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e7 + ei + ej ;−k7 − ei;

N = 8 : ei, e0 − ei − ej , 2e0 − e1 − . . .− e7 + ei + ej ;−k8 + ei − ej ;

−k8 + e0 − ei − ej − ek,−k8 + 2ei1 − . . .− ei6 .

The number of exceptional vectors is given by the following table:

N 3 4 5 6 7 8
# 6 10 16 27 56 240

Table 8.1Number of exceptional vectors

Proof Similarly to the case of roots, we solve the equations

d2 −
N∑
i=1

m2
i = −1, 3d−

N∑
i=1

mi = 1.

First we immediately get the inequality(3d − 1)2 ≤ N(d2 + 1) which gives
0 ≤ d ≤ 4. If d = 0, the condition

∑
m2
i = d2 + 1 andkN · v = −1 gives the

vectorsei. If d = 1, this gives the vectorse0−ei−ej , and so on. Now we use
the idea of Noether’s inequality from Chapter 7 to show that all these vectors
(d,m1, . . . ,mN ) belong to the same orbit ofW (EN ). We apply permutations
from SN to assumem1 ≥ m2 ≥ m3, then use the reflectionrα123 to decrease
d.

Corollary 8.2.16 The orders of the Weyl groupsW (EN ) are given by the
following table:

N 3 4 5 6 7 8
#W (EN ) 12 5! 24 · 5! 23 · 32 · 6! 26 · 32 · 7! 27 · 33 · 5 · 8!

Table 8.2Orders of the Weyl groups

Proof Observe that the orthogonal complement ofeN in I1,N is isomorphic
to IN−1. Sincee2

N = −1, by Lemma8.2.5, the stabilizer subgroup ofeN in
O(I1,N ) is equal to O(I1,N−1). This implies that the stabilizer subgroup of
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eN in W (EN ) is equal toW (EN−1). Obviously,W (E3) ∼= S3 × S2 and
W (E3) ∼= S5. Thus

#W (E5) = 16 ·#W (E4) = 24 · 5!,

#W (E6) = 27 ·#W (E5) = 23 · 32 · 6!,

#W (E7) = 56 ·#W (E6) = 26 · 32 · 7!,

#W (E8) = 240 ·#W (E7) = 27 · 33 · 5 · 8!.

Proposition 8.2.17 Let N ≤ 8. For any two different exceptional vectors
v, w ∈ EN ,

(v, w) ∈ {0, 1, 2}.

Proof This can be seen directly from the list, however we prefer to give a
proof independent of the classification. Obviously, we may assume thatn =
8. It is immediately seen that all vectorsei are exceptional. Since(v,k8) =
(w,k8), we havev − w ∈ E8. SinceE8 is a negative definite even lattice we
have(v − w, v − w) = −2 − 2(v, w) ≤ −2. This gives(v, w) ≥ 0. Assume
(v, w) > 2. Let h = 2k8 + v + w. We have(v + w)2 = −2 + 2(v, w) ≥
4 andh2 = 4 − 8 + (v + w)2 ≥ 0, h · k8 = 0. ThusI1,8 contains two
non-proportional orthogonal vectorsh andk8 with non-negative norm square.
Since the signature ofI1,N is equal to(1, N), we get a contradiction.

8.2.5 Gosset polytopes

Consider the real vector spaceRN,1 ⊗ R with the inner product〈, 〉 defined
by the quadratic form onI1,N multiplied by−1. All exceptional vectors lie
in the affine spaceVN = {x ∈ VN : (kN , x) = 1} and belong to the unit
sphereSN . Let ΣN be the convex hull of the exceptional vectors. For any
two vectorsw,w′ ∈ SN , the vectorw − w′ belongs to the even quadratic
lattice EN , hence2 ≤ 〈w − w′, w − w′〉 = 2 − 2〈w,w′〉. This shows that
the minimal distance〈w − w′, w − w′〉1/2 between two vertices is equal to√

2 and occurs only when the vectorsw andw′ are orthogonal. This implies
that the edges ofΣN correspond to pairs of orthogonal exceptional vectors.
The difference of such vectors is a rootα = w − w′ such that〈α,w〉 = 1.
The reflectionssα : x 7→ x − 〈x, α〉α sendsw to w′. Thus the reflection
hyperplaneHα = {x ∈ VN : 〈x, α〉 = 0} intersects the edge at the mid-point.
It permutes two adjacent vertices. The Weyl groupW (EN ) acts onΣN with
the set of vertices forming one orbit. The edges coming out of a fixed vertex
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correspond to exceptional vectors orthogonal to the vertex. For example, if we
take the vertex corresponding to the vectoreN , then the edges correspond to
exceptional vectors for the root systemEN−1. Thus the vertex figure at each
vertex (i.e. the convex hull of mid-points of edges coming from the vertex)
is isomorphic toΣN−1. A convex polytope with isomorphic vertex figures
is called asemi-regular polytope(a regular polytopesatisfies the additional
property that all facets are isomorphic).

The polytopesΣN are Gosset polytopes discovered by T. Gosset in 1900
[284]. Following Gosset they are denoted by(N − 4)21. We refer to [149],
p. 202, for their following facts about their combinatorics. Each polytopeΣN
has twoW (EN )-orbits on the set of facets. One of them is represented by the
convex hull of exceptional vectorse1, . . . , eN orthogonal to the vectore0. It is
a (N − 1)-simplexαN−1. The second one is represented by the convex hull
of exceptional vectors orthogonal toe0 − e1. It is a cross-polytopeβN−1 (a
cross-polytopeβi is the bi-pyramide overβi−1 with β2 being a square). The
number of facets is equal to the index of the stabilizer group ofe0 or e0 − e1
in the Weyl group. The rest of faces are obtained by induction onN . Their
number ofk-faces inΣN is given in the following Table (see [149], 11.8).

k/N 3 4 5 6 7 8

0 6 10 16 27 56 240
1 3α + 6α 30 80 216 756 6720
2 2α + 3β 10α + 20α 160 720 4032 60480
3 5α + 5β 40α + 80α 1080 10080 241920
4 16α + 10β 432α+ 12096 483840

216α
5 72α5+ 2016α+ 483840

27β 4032α
6 576α+ 69120α+

126β 138240α
7 17280α+

+2160β

Table 8.3Gosset polytopes

The Weyl groupW (EN ) acts transitively on the set ofk-faces whenk ≤
N − 2. Othwerwise there are two orbits, their cardinality can be found in the
table. The dual (reciprocal) polytopes are not semi-regular anymore since the
group of symmetries has two orbits on the set of vertices. One is represented
by the vectore0 and another bye0 − e1.
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8.2.6 (−1)-curves on del Pezzo surfaces

Letφ : I1,N → Pic(S) be a geometric marking of a weak del Pezzo surfaceS.
The intersection form on Pic(S) equips it with a structure of a lattice. Sinceφ
sends an orthonormal basis ofI1,N to an orthonormal basis of Pic(S), the iso-
morphismφ is an isomorphism of lattices. The imageK⊥

S of EN is isomorphic
to the latticeEN .

The image of an exceptional vector is the divisor classE such thatE2 =
E ·KS = −1. By Riemann-Roch,E is an effective divisor class. Write it as a
sum of irreducible componentsE = R1 + . . .+Rk. Intersecting withKS , we
obtain that there exists a unique component, sayR1 such thatR1 ·KS = −1.
For all other components we haveRi ·KS = 0. It follows from the adjunction
formula that any such component is a(−2)-curve. So, ifS is a nonsingular
del Pezzo surface, the image of any exceptional divisor is a(−1)-curve on
S, and we have a bijection between the set of exceptional vectors inEN and
(−1)-curves onS. If S is a weak del Pezzo surface, we use the following.

Lemma 8.2.18 LetD be a divisor class withD2 = D · KS = −1. Then
D = E +R, whereR is a nonnegative sum of(−2)-curves, andE is either a
(−1)-curve orK2

S = 1 andE ∈ |−KS | andE ·R = 0, R2 = −2. MoreoverD
is a(−1)-curve if and only if for each(−2)-curveRi onS we haveD ·Ri ≥ 0.

Proof Fix a geometric basise0, e1, . . . , eN in Pic(S). We know thate20 =
1, e0 ·KS = −3. Thus((D · e0)KS + 3D) · e0 = 0 and hence(

(D · e0)KS + 3D
)2 = −6D · e0 − 9 + (D · e0)2K2

S < 0.

Thus−6D · e0 − 9 < 0 and henceD · e0 > −9/6 > −2. This shows that
(KS − D) · e0 = −3 − D · e0 < 0, and sincee0 is nef, we obtain that
|KS − D| = ∅. Applying Riemann-Roch, we getdim |D| ≥ 0. Write an
effective representative ofD as a sum of irreducible components and use that
D · (−KS) = 1. Since−KS is nef, there is only one componentE entering
with coefficient1 and satisfyingE ·KS = −1, all other components are(−2)-
curves. IfD ∼ E, thenD2 = E2 = −1 andE is a(−1)-curve. Letπ : S′ → S

be a birational morphism of a weak del Pezzo surface of degree 1 (obtained by
blowing up8− k points onS in general position not lying onE). We identify
E with its preimage inS′. Then(E + KS′) ·KS′ = −1 + 1 = 0, hence, by
Hodge Index Theorem, eitherS′ = S andE ∈ | −KS |, or

(E +KS′)2 = E2 + 2E ·KS′ +K2
S′ = E2 − 1 < 0.

SinceE · KS = −1, E2 is odd. Thus, the only possibility isE2 = −1. If
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E ∈ | − KS |, we haveE · Ri = 0 for any (−2)-curveRi, henceE · R =
0, R2 = −2.

AssumeR 6= 0. Since−1 = E2 + 2E ·R+R2 andE2 ≤ 1,R2 ≤ −2, we
getE ·R ≥ 0, where the equality take place only ifE2 = 1. In both cases we
get

−1 = (E +R)2 = (E +R) ·R+ (E +R) · E ≥ (E +R) ·R.

Thus ifD 6= E, we getD ·Ri < 0 for some irreducible component ofR. This
proves the assertion.

The number of(−1)-curves on a nonsingular del Pezzo surface is given in
Table8.2.15. It is also can be found in Table8.3. It is the number of vertices of
the Gosset polytope. Other faces give additional information about the combi-
natorics of the set of(−1)-curves. For example, the number ofk-faces of type
α is equal to the number of sets ofk non-intersecting(−1)-curves.

We can also see the geometric realization of the fundamental weights:

w1 = e0, w2 = e0−e1, w3 = 2e0−e1−e2, wi = e1+. . .+eN , i = 4, . . . , N.

The image ofw1 under a geometric marking represents the divisor classe0.
The image ofw2 representse0 − e1. The image ofw3 is e0 − e1 − e2 − e3.
Finally, the images of the remaining fundamental weights represent the classes
of the sums of disjoint(−1)-curves.

Recall the usual attributes of the minimal model program. Let Eff(S) be
the effective coneof a smooth projective surfaceS, i.e. the open subcone in
Pic(S)⊗R spanned by effective divisor classes. LetEff(S) be its closure. The
Cone Theorem [383] states that

Eff(S) = Eff(S)KS≥0 +
∑
i

R[Ci],

whereEff(S)KS≥0 = {x ∈ Eff(S) : x ·KS ≥ 0} and[Ci] areextremal rays
spanned by classes of smooth rational curvesCi such that−Ci ·KX ≤ 3.

Recall that a subconeτ of a coneK is extremal if there exists a linear func-
tion φ such thatφ(K) ≥ 0 andφ−1(0) ∩ K = τ . In the case whenK is a
polyhedral cone, an extremal subcone is a face ofK.

Theorem 8.2.19 LetS be a nonsingular del Pezzo surface of degreed. Then

Eff(S) =
k∑
i=1

R[Ci],

where the set of curvesCi is equal to the set of(−1)-curves ifd 6= 8, 9. If
d = 8 andS is isomorphic toP1 × P1, thenk = 2, and the[Ci]’s are the
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classes of the two rulings onS. If d = 8 andS ∼= F1, thenk = 2 and [C1] is
the class of the exceptional section, and[C2] is the class of a fibre. Ifd = 9,
thenk = 1 and[C1] is the class of a line.

Proof SinceS is a del Pezzo surface,Eff(S)KS≥0 = {0}, so it suffices to find
the extremal rays. It is clear thatE · KS = −1 implies that any(−1)-curve
generates an extremal ray. Choose a geometric marking onS to identify Pic(S)
with I1,N . LetC be a smooth rational curve such thatc = −C ·KS ≤ 3. By
the adjunction formula,C2 = −2 + c. If c = 1, C is a(−1)-curve. If c = 2,
applying Corollary7.5.7, we follow the proof of Proposition8.2.15to obtain
that all vectors withv ∈ I1,N satisfyingv ·kN = −2 and(v, v) = 0 belong to
the same orbit ofW (EN ). Thus, ifd < 8, we may assume thatv = e0 − e1,
but thenv = (e0 − e1 − e2) + e2 is equal to the sum of two exceptional
vectors, hence[C] is not extremal. Ifc = 3, thenC2 = 1, C · KS = −3.
Again, we can apply Noether’s inequality and the proof of Lemma7.5.10to
obtain that all such vectors belong to the same orbit. Takev = e0 and write
e0 = (e0 − e1 + e2) + e1 + e2 to obtain that[C] is not extremal ifd < 8. We
leave the casesd = 8, 9 to the reader.

Corollary 8.2.20 Assumed < 8. Let φ : I1,N → Pic(S) be a geometric
marking of a nonsingular del Pezzo surface. Thenφ−1(Eff(S)) is equal to the
Gosset polytope.

Recall from [383] that any extremal faceF of Eff(S) defines a contrac-
tion morphismφF : S → Z. The two types of extremal faces of a Gosset
polytope define two types of contraction morphismsαk-type andβk-type. The
contraction ofαk-type blows down the set of disjoint(−1)-curves which are
the vertices of the set. The contraction ofβk-type defines a conic bundle struc-
ture onS. It is a morphism ontoP1 with general fibre isomorphic toP1 and
singular fibres equal to the union of two(−1)-curves intersecting transversally
at one point. Thus the number of facets of typeβ of the Gosset polytope is
equal to the number of conic bundle structures onS.

Another attribute of the minimal model program is thenef coneNef(S) in
Pic(S)⊗R spanned by divisor classesD such thatD ·C ≥ 0 for any effective
divisor classC. The nef cone is the dual ofEff(S). Under a geometric marking
it becomes isomorphic to the dual of the Gosset polytope. It has two types of
vertices represented by the normal vectors to facets. One type is represented
by the Weyl group orbit of the vectore0 and another by the vectore0 − e1.
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8.2.7 Effective roots

Let φ : I1,N → Pic(S) be a geometric marking of a weak del Pezzo surface
of degreed = 9 − N . The image of a rootα ∈ EN is a divisor classD such
thatD2 = −2 andD · KS = 0. We say thatα is aneffective rootif φ(α)
is an effective divisor class. An effective root representing a(−2)-curve will
be called anodal root. Let

∑
i∈I niRi be its effective representative. Since

−KS is nef, we obtain thatRi ·KS = 0. SinceK2
S > 0, we also getR2

i < 0.
Together with the adjunction formula this implies that eachRi is a(−2)-curve.
Since a(−2)-curve does not move, we will identify it with its divisor class.

Proposition 8.2.21 LetS be a weak del Pezzo surface of degreed = 9−N .
The numberr of (−2)-curves onS is less than or equal toN . The sublattice
NS of Pic(S) generated by(−2)-curves is a root lattice of rankr.

Proof Since each nodal curve is contained inK⊥
S andRi ·Rj ≥ 0 for i 6= j,

it suffices to prove that the set of(−2)-curves is linearly independent over
Q. Suppose that this is not true. Then we can find two disjoint sets of curves
Ri, i ∈ I, andRj , j ∈ J, such that∑

i∈I
niRi ∼

∑
j∈J

mjRj ,

whereni,mj are some non-negative rational numbers. Taking intersection of
both sides withRi we obtain that

Ri ·
∑
i∈I

niRi = Ri ·
∑
j∈J

mjRj ≥ 0.

This implies that

(
∑
i∈I

niRi)2 =
∑
i∈I

niRi ·
(∑
i∈I

niRi
)
≥ 0.

Since(ZKS)⊥ is negative definite, this could happen only if
∑
i∈I niRi ∼ 0.

Since all coefficients are non-negative, this happens only if allni = 0. For the
same reason eachmi is equal to0.

Let η = x1 + · · · + xN be the bubble cycle defined by the blowing down
structureS = SN → SN−1 → . . . S1 → S0 = P2 defining the geometric
marking. It is clear thatφ(αij) = ei− ej is effective if and only ifxi �i−j xj .
It is a nodal root if and only ifi = j + 1.

A root αijk is effective if and only if there exists a line whose proper trans-
form on the surfacesSi−1, Sj−1, Sk−1 pass through thexi, xj , xk. It is a nodal
root if and only if all rootsαi′,j′,k′ with xi′ � xi, xj′ � xj , xk′ � xk are not
effective.
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The root2e0−ei1−. . .−ei6 is nodal if and only if its image in Pic(S) is the
divisor class of the proper transform of an irreducible conic passing through
the pointsxi1 , . . . , xi6 .

The root3e0− e1− . . .− e8− ei is nodal if and only if its image in Pic(S)
is the divisor class of the proper transform of an irreducible cubic with double
points atxi and passing through the rest of the points.

Definition 8.2.4 A Dynkin curveis a reduced connected curveR on a pro-
jective nonsingular surfaceX such that its irreducible componentsRi are−2-
curves and the matrix(Ri ·Rj) is a Cartan matrix. The type of a Dynkin curve
is the type of the corresponding root system.

Under a geometric marking a Dynkin curve on a weak del Pezzo surfaceS

corresponds to an irreducible root base in the latticeEN . We use the Borel-de
Siebenthal-Dynkin procedure to determine all possible root bases inEN .

Theorem 8.2.22 LetR be a Dynkin curve on a projective nonsingular surface
X. There is a birational morphismf : X → Y , whereY is a normal surface
satisfying the following properties:

(i) f(R) is a point;
(ii) the restriction off toX \R is an isomorphism;
(iii) f∗ωY ∼= ωX .

Proof LetH be a very ample divisor onX. Since the intersection matrix of
components ofR =

∑n
i=1Ri has non-zero determinant, we can find rational

numbersri such that

(
n∑
i=1

riRi) ·Rj = −H ·Rj , j = 1, . . . , n.

It is known and that the entries of the inverse of a Cartan matrix are non-
positive. Thus allri’s are nonnegative numbers. ReplacingH by some multiple
mH, we may assume that allri are nonnegative integers. LetD =

∑
riRi.

SinceH +D is an effective divisor and(H +D) ·Ri = 0 for eachi, we have
OX(H +D)⊗ORi

= ORi
. Consider the standard exact sequence

0→ OX(H)→ OX(H +D)→ OD → 0.

ReplacingH bymH, we may assume, by Serre’s Duality, thath1(OX(H)) =
0 andOX(H) is generated by global sections. Lets0, . . . , sN−1 be sections
of OX(H) which define an embedding ofX in PN−1. Consider them as sec-
tions ofOX(H + D). Let sN be a section ofOX(H + D) which maps to
1 ∈ H0(X,OD). Consider the mapf ′ : X → PN defined by the sections
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(s0, . . . , sN ). Thenf ′(D) = [0, . . . , 0, 1] andf ′|X ⊂ D is an embedding. So
we obtain a mapf : X → PN satisfying properties (i) and (ii). SinceX is
normal,f ′ factors through a mapf : X → Y , whereY is normal. LetωY
be the canonical sheaf ofY (it is defined to be equal to the sheafj∗ωY \f ′(R),
wherej : Y \ f ′(R)→ Y is the natural open embedding). We have

ωX = f∗ωY ⊗OX(A)

for some divisorA. SinceKX · Ri = 0 for eachi, andf∗ωY ⊗ ORi
= ORi

we getA · Ri = 0. Since the intersection matrix ofR is negative definite we
obtainA = 0.

Applying the projection formula and property (iii), we obtain

ωY ∼= f∗ωX .

Sincef is a resolution of singularities andY is a normal surface, hence Cohen-
Macaulay, this property is equivalent to thatY has rational singularities [383],
Lemma 5.12. For any canonical root basisβ1, . . . , βN in a root system of
type EN , N ≤ 8, there exists a positive rootβmax satisfying the property
βmax · βi ≤ 0, i = 1, . . . , N . For an irreducible root system, it is equal to the
following vector

An : βmax = β1 + . . .+ βn;

Dn : βmax = β1 + β2 + 2β3 + . . .+ 2βn−1 + βn;

E6 : βmax = 2β1 + β2 + 2β3 + 3β4 + 2β5 + β6;

E7 : βmax = 2β1 + 2β2 + 3β3 + 4β4 + 3β5 + 2β6 + β7;

E8 : βmax = 3β1 + 2β2 + 4β3 + 6β4 + 5β5 + 4β6 + 3β7 + 2β8.

In the root sublattice defined by a Dynkin curve it represents the fundamental
cycleZ. Sinceβ2

max = −2, we see that there the singular pointf(R) admits a
fundamental cycleZ with Z2 = −2. Thusf(R) is a RDP. As we already ob-
served in Example8.2.1the exceptional components of a RDP form a Dynkin
curve.

An example of a RDP is the singularity of the orbit of the origin of the
orbit spaceV = C2/Γ, whereΓ is a finite subgroup of SL(2). The orbit space
is isomorphic to the affine spectrum of the algebra of invariant polynomials
A = C[X,Y ]Γ. It is known since F. Klein that the algebraA is generated
by three elementsu, v, w with one single basic relationF (u, v, w) = 0. The
origin (0, 0, 0) of the surfaceV (F ) ⊂ C3 is a RDP with the Dynkin diagram
of typeAn, Dn, En dependent onΓ in the following way. A nontrivial cyclic
group of ordern+ 1 corresponds to typeAn, a binary dihedral group of order
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4n, n ≥ 2, corresponds to typeDn+2, a binary tetrahedral group of order 24
corresponds to typeE6, a binary octahedron group of order 48 corresponds to
typeE7, and binary icosahedral group of order 120 corresponds to typeE8. It
is known that the local analytic isomorphism class of a RDP is determined by
the Dynkin diagram (see [481]). This gives the following.

Theorem 8.2.23 A RDP is locally analytically isomorphic to one of the fol-
lowing singularities

An : z2 + x2 + yn+1 = 0, n ≥ 1, (8.11)

Dn : z2 + y(x2 + yn−2) = 0, n ≥ 4,

E6 : z2 + x3 + y4 = 0,

E7 : z2 + x3 + xy3 = 0,

E8 : z2 + x3 + y5 = 0.

The corresponding Dynkin curve is of respective typeAn, Dn, En.

Comparing this list with the list of simple singularities of plane curves from
definition4.2.3, we find that a surface singularity is a RDP if and only if it is
locally analytically isomorphic to a singularity at the origin of the double cover
of C2 branched along a curveF (x, y) with simple singularity at the origin. The
types match.

Remark8.2.1 A RDP is often named anADE-singularityfor the reason clear
from above. Also it is often called aDu Val singularityin honor of P.Du Val
who was the first to characterize them by the property (iii) from Theorem 8.2.2.
They are also calledKlein singularitiesfor the reason explained in above.

8.2.8 Cremona isometries

Definition 8.2.5 LetS be a weak del Pezzo surface. An orthogonal transfor-
mationσ of Pic(S) is called aCremona isometryif σ(KS) = KS andσ sends
any effective class to an effective class. The group of Cremona isometries will
be denoted byCris(S).

It follows from Corollary8.2.12that Cris(S) is a subgroup ofW (S).

Lemma 8.2.24 Let

Cn = {D ∈ Pic(S) : D ·R ≥ 0 for any(−2)-curveR}.

For anyD ∈ Pic(S) there existsw ∈ W (S)n such thatw(D) ∈ Cn. If
D ∈ Cn andw(D) ∈ Cn for somew ∈ W (S)n, thenw(D) = D. In other
words,Cn is a fundamental domain for the action ofW (S)n in Pic(S).
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Proof The set of(−2)-curves form a root basis in the Picard lattice Pic(S)
andW (S)n is its Weyl group. The setCn is a chamber defined by the root ba-
sis. Now the assertion follows from the theory of finite reflection groups which
we have already employed for a similar assertion in the case of a canonical
root basis inEN .

Proposition 8.2.25 An isometryσ of Pic(S) is a Cremona isometry if and
only if it preserves the canonical class and sends a(−2)-curve to a(−2)-
curve.

Proof Clearly, any Cremona isometry sends the class of an irreducible curve
to the class of an irreducible curve. Since it also preserves the intersection
form, it sends a(−2)-curve to a(−2)-curve.

Let us prove the converse. LetD be an effective class in Pic(S) with D2 ≥
0. Then−KS · D > 0 and(KS − D) · D < 0. This gives−KS · σ(D) >
0, σ(D)2 ≥ 0. Since(KS − σ(D)) · (−KS) = −K2

S + σ(D) ·KS < 0, we
have|KS − σ(D)| = ∅. By Riemann-Roch,|σ(D)| 6= ∅.

So it remains to show thatσ sends any(−1)-curveE to an effective divisor
class. By the previous Lemma, for any(−2)-curveR, we have0 < EṘ =
σ(E) · σ(R). Sinceσ(R) is a (−2)-curve, and any(−2) curve is obtained in
this way, we see thatσ(E) ∈ Cn. Henceσ(E) is a(−1)-curve.

Corollary 8.2.26 LetR be the set of effective roots of a marked del Pezzo
surface(S, φ). Then the group of Cremona isometriesCris(S) is isomorphic
to the subgroup of the Weyl group ofEN which leaves the subsetR invariant.

LetW (S)n be the subgroup ofW (S) generated by reflections with respect
to (−2)-curves. It acts on a markingϕ : I1,N → Pic(S) by composing on the
left.

By Lemma8.2.18, a divisorD withD2 = D·KS = −1 belongs toCn if and
only if it is a (−1)-curve. This and the previous Lemma imply the following.

Proposition 8.2.27 Letφ : W (S) → W (EN ) be an isomorphism of groups
defined by a geometric marking onS. There is a natural bijection

(−1)-curves onS ←→W (S)n\φ−1(ExcN ),

whereExcN is the set of exceptional vectors inI1,N .

Theorem 8.2.28 For any marked weak del Pezzo surface(S, ϕ), there exists
w ∈ W (S)n such that(S,w ◦ ϕ) is geometrically marked weak del Pezzo
surface.
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Proof We use induction onN = 9−K2
S . Letei = φ(ei), i = 0, . . . , N . It fol-

lows from the proof of Lemma8.2.18, that eachei is an effective class. Assume
eN is the class of a(−1)-curveE. Let πN : S → SN−1 be the blowing down
of E. Thene0, e1, . . . , eN−1 are equal to the preimages of the divisor classes
e′0, e

′
1, . . . , e

′
N−1 on SN−1 which define a marking ofSN−1. By induction,

there exists an elementw ∈W (SN−1)n such thatw(e′0), w(e′1), . . . , w(e′N−1)
define a geometric marking. SinceπN (eN ) does not lie on any(−2)-curve
(otherwiseS is not a weak del Pezzo surface), we see that for any(−2)-curve
R onSN−1, π∗N (R) is a(−2)-curve onS. Thus, under the canonical isomor-
phism Pic(S) ∼= π∗N (Pic(SN−1)) ⊥ ZeN , we can identifyW (SN−1)n with a
subgroup ofW (S)n. Applyingw to (e0, . . . , eN−1) we get a geometric mark-
ing of S.

If eN is not a(−1)-curve, then we apply an elementw ∈ W (S)n such that
w(eN ) ∈ Cn. By Lemma8.2.18,w(eN ) is a(−1)-curve. Now we have a basis
w(e0), . . . , w(eN ) satisfying the previous assumption.

Corollary 8.2.29 There is a bijection from the set of geometric markings on
S and the set of left cosetsW (S)/W (S)n.

Proof The groupW (S) acts simply transitively on the set of markings. By
Theorem8.2.28, each orbit ofW (S)n contains a unique geometric marking.

Corollary 8.2.30 The groupCris(S) acts on the set of geometric markings
of S.

Proof Let (e0, . . . , eN ) defines a geometric marking, andσ ∈ Cris(S). Then
there existsw ∈W (S)n such thatω(σ(e0)), . . . , ω(σ(eN )) defines a geomet-
ric marking. By Proposition8.2.25, σ(eN ) is the divisor class of a(−1)-curve
E, hence it belongs toCn. By Lemma8.2.24, we getw(σ(e1)) = σ(e1). This
shows thatw ∈ Wn(S̄), whereS → S̄ is the blow-downσ(E1). Continuing
in this way, we see thatw ∈ W (P2)n = {1}. Thusw = 1 and we obtain that
σ sends a geometric marking to a geometric marking.

Letϕ : I1,N → Pic(S) andϕ′ : I1,N → Pic(S) be two geometric markings
corresponding to two blowing-down structuresπ = π1 ◦ . . . ◦ πN andπ′ =
π′1 ◦ . . . ◦ π′N . ThenT = π′ ◦ π−1 is a Cremona transformation ofP2 and
w = ϕ ◦ ϕ′−1 ∈ W (EN ) is its characteristic matrix. Conversely, ifT is a
Cremona transformation with fundamental pointsx1, . . . , xN such that their
blow-up is a weak del Pezzo surfaceS, a characteristic matrix ofT defines a
pair of geometric markingsϕ,ϕ′ of S and an elementw ∈W (EN ) such that

ϕ = ϕ′ ◦ w.
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Example8.2.2 Let S be a nonsingular del Pezzo surface of degree 3 and
π : S → P2 be the blow-up of 6 points. Lete0, e1, . . . , e6 be the geometric
marking andα = 2e0−e1− . . .−e6. The reflectionw = sα transforms the ge-
ometric markinge0, e1, . . . , e6 to the geometric markinge′0, e

′
1, . . . , e

′
6, where

e′0 = 5e0−2(e1 + . . .+e6), e′i = 2e0− (e1 + . . .+e6)+ei, i = 1, . . . , 6. The
corresponding Cremona transformation is the symmetric involutorial transfor-
mation of degree 5 with characteristic matrix equal to

5 2 2 2 2 2 2
−2 0 −1 −1 −1 −1 −1
−2 −1 0 −1 −1 −1 −1
−2 −1 −1 0 −1 −1 −1
−2 −1 −1 −1 0 −1 −1
−2 −1 −1 −1 −1 0 −1
−2 −1 −1 −1 −1 −1 0


. (8.12)

Let S be a weak del Pezzo surface of degreed and Aut(S) be its group of
biregular automorphisms. By functoriality Aut(S) acts on Pic(S) leaving the
canonical classKS invariant. Thus Aut(S) acts on the latticeK⊥

X = (ZKS)⊥

preserving the intersection form. Let

ρ : Aut(S)→ O(K⊥
X), σ 7→ σ∗,

be the corresponding homomorphism.

Proposition 8.2.31 The image ofρ is contained in the groupCris(S). If S is
a nonsingular del Pezzo surface, the kernel ofρ is trivial if d ≤ 5. If d ≥ 6,
then the kernel is a linear algebraic group of dimension2d− 10.

Proof Clearly, any automorphism induces a Cremona isometry of Pic(S). We
know that it is contained in the Weyl group. An element in the kernel does not
change any geometric basis of Pic(S). Thus it descends to an automorphism
of P2 which fixes an ordered set ofk = 9− d points in general linear position.
If k ≥ 4 it must be the identity transformation. Assumek ≤ 3. The assertion
is obvious whenk = 0.

If k = 1, the surfaceS is the blow-up of one point. Each automorphism
leaves the unique exceptional curve invariant and acts trivially on the Picard
group. The group Aut(S) is the subgroup of Aut(P2) fixing a point. It is a
connected linear algebraic group of dimension 6 isomorphic to the semi-direct
product ofC2 o GL(2).

If k = 2, the surfaceS is the blow-up of two distinct pointsp1, p2. Each
automorphism leaves the proper inverse transform of the linep1p2 invariant.
It either leaves the exceptional curvesE1 andE2 invariant, or switches them.
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The kernel of the Weyl reprsentation consists of elements which do not switch
E1 andE2. It is isomorphic to the subgroup of Aut(P2) which fixes two points
in P2 and is isomorphic to the groupG of invertible matrices of the form1 0 ∗

0 ∗ ∗
0 0 ∗

 .

Its dimension is equal to4. The image of the Weyl representation is a group of
order 2. So Aut(S) = Go C2.

If k = 3, the surfaceS is the blow-up of 3 non-collinear points. The kernel
of the Weyl representation is isomorphic to the group of invertible diagonal
3× 3 matrices modulo scalar matrices. It is isomorphic to a 2-dimension torus
(C∗)2.

Corollary 8.2.32 LetS be a nonsingular del Pezzo surface of degreed ≤ 5,
thenAut(S) is isomorphic to a subgroup of the Weyl groupW (E9−d).

We will see later examples of automorphisms of weak del Pezzo surfaces of
degree 1 or 2 which act trivially on Pic(S).

8.3 Anticanonical models

8.3.1 Anticanonical linear systems

In this section we will show that any weak del Pezzo surface of degreed ≥ 3
is isomorphic to a minimal resolution of a del Pezzo surface of degreed in Pd.
In particular, any nonsingular del Pezzo surface of degreed ≥ 3 is isomorphic
to a nonsingular surface of degreed in Pd.

Lemma 8.3.1 LetS be a weak del Pezzo surface withK2
S = d. Then

dimH0(S,OS(−rKS)) = 1 + 1
2r(r + 1)d.

Proof By Ramanujam’s Vanishing Theorem which we already used, for any
r ≥ 0 andi > 0,

Hi(S,OS(−rKS)) = Hi(S,OS(KS + (−r − 1)KS)) = 0. (8.13)

The Riemann-Roch Theorem gives

dimH0(S,OS(−rKS)) = 1
2 (−rKS −KS) · (−rKS)+1 = 1+ 1

2r(r+1)d.
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Theorem 8.3.2 LetS be a weak del Pezzo surface of degreed andR be the
union of(−2)-curves onS. Then

(i) | −KS | has no fixed part.
(ii) If d > 1, then| −KS | has no base points.
(iii) If d > 2, | −KS | defines a regular mapφ to Pd which is an isomor-
phism outsideR. The image surfacēS is a del Pezzo surface of degreed
in Pd. The image of each connected component ofR is a RDP ofφ(S).

(iv) If d = 2, | −KS | defines a regular mapφ : S → P2. It factors as a
birational morphismf : S → S̄ onto a normal surface and a finite map
π : S̄ → P2 of degree 2 branched along a curveB of degree 4. The image
of each connected component ofN is a RDP ofS̄. The curveB is either
nonsingular or has only simple singularities.

(v) If d = 1, | − 2KS | defines a regular mapφ : S → P3. It factors as a
birational morphismf : S → S̄ onto a normal surface and a finite map
π : S̄ → Q ⊂ P3 of degree 2, whereQ is a quadric cone. The morphismπ
is branched along a curveB of degree 6 cut out onQ by a cubic surface.
The image of each connected component ofN underf is a RDP ofS̄.
The curveB either nonsingular or has only simple singularities.

Proof The assertions are easily verified ifS = F0 or F2. So we assume that
S is obtained fromP2 by blowing upk = 9− d pointsti.

(i) Assume there is a fixed partF of | − KS |. Write | − KS | = F + |M |,
where|M | is the mobile part. IfF 2 > 0, by Riemann-Roch,

dim |F | ≥ 1
2 (F 2 − F ·KS) ≥ 1

2 (F 2) > 0,

and henceF moves. ThusF 2 ≤ 0. If F 2 = 0, we must also haveF ·KS = 0.
ThusF =

∑
niRi, whereRi are (−2)-curves. Hence[f ] ∈ (ZKS)⊥ and

henceF 2 ≤ −2 (the intersection form on(ZKS)⊥ is negative definite and
even). ThusF 2 ≤ −2. Now

M2 = (−KS − F )2 = K2
S + 2KS · F + F 2 ≤ K2

S + F 2 ≤ d− 2,

−KS ·M = K2
S +KS · F ≤ d.

Suppose|M | is irreducible. Sincedim |M | = dim | − KS | = d, the linear
system|M | defines a rational map toPd whose image is a nondegenerate irre-
ducible surface of degree≤ d − 3 (strictly less if|M | has base points). This
contradicts Theorem8.1.1.

Now assume that|M | is reducible, i.e. defines a rational map to a nonde-
generate curveW ⊂ Pd of some degreet. By Theorem8.1.1, we havet ≥ d.
SinceS is rational,W is a rational curve, and then the preimage of a general
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hyperplane section is equal to the disjoint sum oft linearly equivalent curves.
ThusM ∼ tM1 and

d ≥ −KS ·M = −tKS ·M1 ≥ d(−KS ·M1).

Since−KS ·M = 0 impliesM2 < 0 and a curve with negative self-intersection
does not move, this gives−KS ·M1 = 1, d = t. But thenM2 = d2M2

1 ≤ d−2
gives a contradiction.

(ii) Assumed > 1. We have proved that| − KS | is irreducible. A general
member of|−KS | is an irreducible curveC with ωC = OC(C+KS) = OC .
If C is smooth, then it is an elliptic curve and the linear system|OC(C)| is of
degreed > 1 and has no base points. The same is true for a singular irreducible
curve of arithmetic genus 1. This is proved in the same way as in the case of a
smooth curve. Consider the exact sequence

0→ OS → OS(C)→ OC(C)→ 0.

Applying the exact sequence of cohomology, we see that the restriction of the
linear system|C| = |−KS | toC is surjective. Thus we have an exact sequence
of groups

0→ H0(S,OS)→ H0(S,OS(C))→ H0(S,OC(C))→ 0.

Since|OC(C)| has no base points, we have a surjection

H0(S,OC(C))⊗OC → OC(C).

This easily implies that the homomorphism

H0(S,OS(C))⊗OC → OS(C)

is surjective. Hence|C| = | −KS | has no base points.

(iii) Assumed > 2. Letx, y ∈ S be two points outsideR. Letf : S′ → S be
the blowing up ofx andy with exceptional curvesEx andEy. By Proposition
8.1.16, blowing them up, we obtain a weak del Pezzo surfaceS′ of degree
d− 2. We know that the linear system| −KS′ | has no fixed components. Thus

dim | −KS − x− y| = dim | −KS′ − Ex − Ey| ≥ 1.

This shows that|−KS | separates points. Also, the same is true ify �1 x andx
does not belong to any(−1)-curveE onS orx ∈ E andy does not correspond
to the tangent direction defined byE. Since−KS ·E = 1 andx ∈ E, the latter
case does not happen.

Sinceφ : S 99K S̄ is a birational map given by a complete linear system
| − KS |, its image is a nondegenerate surface of degreed = (−KS)2. Since
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−KS · R = 0 for any (−2)-curve, we see thatφ blows downR to a point
p. If d = 3, thenS̄ is a cubic surface with isolated singularities (the images
of connected components ofN ). It is well-known that a hypersurface with no
singularities in codimension1 is a normal variety. Thus̄S is a normal surface.
If d = 4, thenS is obtained by a blow-up one point on a weak del Pezzo surface
S′ of degree 3. This point does not lie on a(−2)-curve. Thus,S̄′ is obtained
from S̄ by a linear projection from a nonsingular point. We have explained
already in Proposition8.1.7that this implies that̄S is a normal surface.

The fact that singular points of̄S are RDP is proven in the same way as we
have proved assertion (iii) of Theorem8.2.22.

(iv) Assumed = 2. By (ii), the linear system| −KS | defines a regular map
φ : S → P2. SinceK2

S = 2, the map is of degree 2. Using Stein’s factorization
[311], Chapter 3, Corollary 11.5, it factors through a birational morphism onto
a normal surfacef : S → S̄ and a finite degree 2 mapπ : S̄ → P2. Also we
know thatf∗OS = OS̄ . A standard Hurwitz’s formula gives

ωS̄
∼= π∗(ωP2 ⊗ L), (8.14)

wheres ∈ H0(P2,L⊗2) vanishes along the branch curveW of π. We have

OS(KS) = ωS = (π ◦ f)∗OP2(−1) = f∗(π∗OP2(−1)).

It follows from the proof of Theorem8.2.22(iii) that singular points of̄S are
RDP. Thusf∗ωS̄ = ωS , and hence

f∗ωS̄
∼= f∗(π∗OP2(−1)).

Applying f∗ and using the projection formula and the fact thatf∗OX = OY ,
we getωS̄ ∼= π∗OP2(−1). It follows from (8.14) thatL ∼= OP2(2) and hence
degW = 4.

Proof of (v). Letπ : S → P2 be the blow-up of8 pointsx1, . . . , x8. Then
| − KS | is the proper inverse transform of the pencil|3h − x1 − . . . − x8|
of plane cubics passing through the pointsx1, . . . , x8. Let x9 be the ninth
intersection point of two cubics generating the pencil. The pointx′9 = π−1(x9)
is the base point of| − KS |. By Bertini’s Theorem, all fibres except finitely
many, are nonsingular curves (the assumption that the characteristic is zero is
important here). LetF be a nonsingular member from| −KS |. Consider the
exact sequence

0→ OS(−KS)→ OS(−2KS)→ OF (−2KS)→ 0. (8.15)

The linear system|OF (−2KS)| onF is of degree 2. It has no base points. We
know from (8.13) thatH1(S,OS(−KS)) = 0. Thus the restriction map

H0(S,OS(−2KS))→ H0(F,OF (−2KS))
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is surjective. By the same argument as we used in the proof of (ii), we obtain
that | − 2KS | has no base points. By Lemma8.3.1, dim | − 2KS | = 3. Let
φ : S → P3 be a regular map defined by| − 2KS |. Its restriction to any
nonsingular memberF of | − KS | is given by the linear system of degree 2
and hence is of degree 2. Therefore, the mapf is of degreet > 1. The image of
φ is a surface of some degreek. Since(−2KS)2 = 4 = kt, we conclude that
k = t = 2. Thus the image ofφ is a quadric surfaceQ in P3 and the images
of membersF of | −KS | are lineslF onQ. I claim thatQ is a quadric cone.
Indeed, all lineslF intersect at the pointφ(t′9). This is possible only ifQ is a
cone.

Let S
π→ S′

φ′→ Q be the Stein factorization. Note that a(−2)-curveR does
not pass through the base pointx′9 of | −KS | (because−KS · R = 0). Thus
π(x′9) is a nonsingular pointq′ of S′. Its image inQ is the vertexq ofQ. Since
φ′ is a finite map, the local ringOS′,q′ is a finite algebra overOQ,q of degree
2. After completion, we may assume thatOS′,q′ ∼= C[[u, v]]. If u ∈ OQ,q, then
v satisfies a monic equationv2 + av+ b with coefficients inOQ,q, where after
changingv to v + 1

2a we may assume thata = 0. ThenOQ,q is equal to the
ring of invariants inC[[u, v]] under the automorphismu 7→ u, v 7→ −v which
as easy to see isomorphic toC[[u, v2]]. However, we know thatq is a singular
point so the ringOQ,q is not regular. Thus we may assume thatu2 = a, v2 = b

and thenOQ,q is the ring of invariants for the action(u, v) 7→ (−u,−v). This
action is free outside the maximal ideal(u, v). This shows that the finite mapφ′

is unramified in a neighborhood ofq′ with q′ deleted. In particular, the branch
curveQ of φ′ does not pass throughq. We leave to the reader to repeat the
argument from the proof of (iv) to show that the branch curveW of φ belongs
to the linear system|OQ(3)|.

LetX be a weal del Pezzo surface of degreed ≤ 3. The image of a(−1)-
curve onX under the antticanonical map is a line on the anti canonical model
S of X in Pd. Conversely, any linè on a del Pezzo surfaceS of degreed
in Pd is the image of a(−1)-curveE on its minimal resolutionX. It passes
through a singular point if and only ifE intersects a component of a Dynkin
curve blown down to this singular point. By Proposition8.2.27, the set of lines
onS is in a bijective correspondence to the set of orbits of exceptional vectors
in the latticeK⊥

X
∼= E9−d with respect to the Weyl group of the root sublattice

of generated by(−2)-curves. This justifies to call a(−1)-curve on on a weak
del Pezzo surface aline.
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8.3.2 Anticanonical model

Let X be a normal projective algebraic variety andD be a Cartier divisor on
X. It defines the graded algebra

R(X,D) =
∞⊕
r=0

H0(S,OS(rD))

which depends only (up to isomorphism) on the divisor class ofD in Pic(X).
AssumeR(X,D) is finitely generated, thenXD = ProjR(X,D) is a projec-
tive variety. Ifs0, . . . , sn are homogeneous generators ofR(X,D) of degrees
q0, . . . , qn there is a canonical closed embedding into the weighted projective
space

XD ↪→ P(q0, . . . , qn).

Also, the evaluation homomorphism of sheaves of graded algebras

R(X,D)⊗OX → S(L) =
∞⊕
r=0

OS(rD)

defines a morphism

ϕcan : X = Proj(S(L))→ XD.

For everyr > 0, the inclusion of subalgebras

S(H0(X,OX(rD)))→ R(X,D)

defines a rational map

τr : XD 99K P(H0(X,OX(rD))).

The rational mapφ|rD| : X 99K P(H0(X,OX(rD))) is given by the complete
linear system|rD| factors throughϕ

φ|rd| : X
ϕ

99K XD
τr

99K P(H0(X,OX(rD))).

A proof of the following Proposition can be found in [173], 7.1.

Proposition 8.3.3 Suppose|rD| has no base points for somer > 0 and
DdimX > 0. Then

(i) R(X,D) is a finitely generated algebra;
(ii) XD is a normal variety;
(iii) dimXD = maxr>0 dimφ|rD|(X);
(iv) if dimXD = dimX, thenϕ is a birational morphism.



428 Del Pezzo surfaces

We apply this to the case whenX = S is a weak del Pezzo surface and
D = −KS . Applying the previous Proposition, we easily obtain that

X−KS
∼= S̄,

where we use the notation of Theorem8.3.2. The varietyS̄ is called thean-
ticanonical modelof S. If S is of degreed > 2, the mapτ1 : S̄ → Pd is a
closed embedding, henceR(S,−KS) is generated byd+ 1 elements of order
1. If d = 2, the mapτ1 is the double cover ofP2. This shows thatR(S,−KS)
is generated by 3 elementss0, s1, s2 of degree1 and one elements3 of degree
2 with a relations23 + f4(s0, s1, s2) = 0 for some homogeneous polynomial
f4 of degree 2. This shows that̄S is isomorphic to a hypersurface of degree 4
in P(1, 1, 1, 2) given by an equation

t23 + f4(t0, t1, t2) = 0. (8.16)

In the cased = 1, by Lemma8.3.1we obtain that

dimR(S,−KS)1 = 2, dimR(S,−KS)2 = 4, dimR(S,−KS)3 = 7.

Let s0, s1 be generators of degree 1,s2 be an element of degree 2 which is not
in S2(R(S,−KS)1) and lets3 be an element of degree3 which is not in the
subspace generated bys30, s0s

2
1, s

2
0s1, s

3
1, s2s0, s2s1. The subringR(S,−KS)′

generated bys0, s1, s2, s3 is isomorphic toC[t0, t1, t2, t3]/(F (t0, t1, t2, t3)),
where

F = t23 + t32 + f4(t0, t1)t2 + f6(t0, t1),

andf4(t0, t1) andf6(t0, t1) are binary forms of degrees 4 and 6. The projec-
tion [t0, t1, t2, t3] 7→ [t0, t1, t2] is a double cover of the quadratic coneQ ⊂ P3

which is isomorphic to the weighted projective planeP(1, 1, 2). Using The-
orem8.3.2, one can show that the rational map̄S 99K Proj R(S,−KS)′ is
an isomorphism. This shows that the anticanonical modelS̄ of a weak del
Pezzo surface of degree 1 is isomorphic to a hypersurfaceV (F ) of degree 6 in
P(1, 1, 2, 3).

Recall that a nondegenerate subvarietyX of a projective spacePn is called
projectively normalif X is normal and the natural restriction map

H0(Pn,OPn(m))→ H0(X,OX(m))

is surjective for allm ≥ 0. This can be restated in terms of vanishing of coho-
mology

H1(Pn, IX(m)) = 0, m > 0 (resp.m = 1),

whereIX is the ideal sheaf ofX. If X is a normal surface, this is equivalent to
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that the ideal sheafIX is an aCM sheaf. As we saw earlier, in our discussion
of aCM sheaves, this is also equivalent that the ring⊕∞m=0H

0(X,OX(m)) is
a Cohen-Macaulay ring, and in dimension two, this the same as a normal ring.

Theorem 8.3.4 Let S be a weak del Pezzo surface, then the anticanonical
ring R(S,−KS) is a normal domain. In particular, a del Pezzo surface of
degreed in Pd is projectively normal.

Proof For d ≤ 2, this follows from the explicit description of the ring. It is
quotient of a ring of polynomials by a principal ideal, and it has singularities
in codimension≥ 2. By Serre’s criterion, it is a normal domain (see [228],
11.2). Ford ≥ 3, we have to show that a del Pezzo surface of degreed in Pd is
projectively normal.

LetH be a general hyperplane. Tensoring the exact sequence

0→ OPn(m− 1)→ OPn(m)→ OH(m)→ 0

with IX we get an exact sequence

0→ IX(m− 1)→ IX(m)→ IH∩X(m)→ 0. (8.17)

We know that a general hyperplane sectionC = S ∩H is an elliptic curve of
degreed in H which is a projectively normal curve inH. Thus

H1(C, IC(m)) = 0, m > 0.

We know thatS is linearly normal surface inPd. This implies that

H1(Pd, IX(1)) = 0.

The exact sequence gives thatH1(Pd, IX(2)) = 0. Continuing in this way, we
get thatH1(Pd, IX(m)) = 0,m > 0.

8.4 Del Pezzo surfaces of degree≥ 6

8.4.1 Del Pezzo surfaces of degree7, 8, 9

A weak del Pezzo surface of degree9 is isomorphic toP2. Its anticanonical
model is a Veronese surfaceV2

3. It does not contain lines.
A weak del Pezzo surface is isomorphic to eitherF0, or F1, or F2. In the

first two cases it is a del Pezzo surface isomorphic to its anticanonical model in
P8. If S ∼= F0, the anticanonical model is a Veronese-Segre surface embedded
by the complete linear system of divisors of type(2, 2). It does not contain
lines. If S ∼= F1, the anticanonical model is isomorphic to the projection of
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the Veronese surfaceV2
2 from one point on the surface. It contains one line.

If S ∼= F2, the anticanonical model is isomorphic to the quadratic coneQ

embedded inP8 by the complete linear system|OQ(2)|. It does not contain
lines.

A weak del Pezzo surface of degree 7 is isomorphic to the blow-up of two
pointsx1, x2 in P2. If the points are proper, the anticanonical model ofS is
a nonsingular surface which contains 3 lines representing the divisor classes
e1, e2, e0 − e1 − e2. If only one point is proper, then it has one singular point
of typeA1 and contains 2 intersecting lines representing the classese1 and
e0 − e1 − e2. In both cases the surface is isomorphic to a projection of the
Veronese surfaceV2

3 from a secant line of the surface. In the second case, the
secant line is tangent to the Veronese surface.

The automorphism groups of a nonsingular del Pezzo surfaces of degree≥ 7
were described in subsection 8.2.8.

8.4.2 Del Pezzo surfaces of degree 6

A weak del Pezzo surfaceS of degree 6 is isomorphic to the blow-up of a
bubble cycleη = x1 + x2 + x3. Up to a change of an admissible order, we
have the following possibilities:

(i,i’) x1, x2, x3 are three proper non-collinear (collinear) points;

(ii, ii’) x2 � x1, x3 are non-collinear (collinear) points;

(iii, iii’) x3 � x2 � x1 are non-collinear (collinear) points.

In cases (i),(ii) and (iii) the net of conics|OP2(2) − η| is homaloidal and the
surfaceS is isomorphic to a minimal resolution of the graph of the Cremona
transformationT defined by this net. Since a quadratic Cremona transforma-
tion is a special case of a bilinear Cremona transformation, its graph is a com-
plete intersection of two hypersurfaces of bidegree(1, 1) in P2 × P2. Under
the Segre map, the graph embeds inP6 and the composition of the maps

Φ : S → ΓT ↪→ P2 × P2 s
↪→ P6,

is the map given by the anticanonical linear system. Its image is a del Pezzo
surface of degree 6 embedded inP6. It is a nonsingular surface in case (i) and it
has one singular point of typeA1 in case (ii) and typeA2 in case (iii). The two
mapsS → P2 are defined by the linear systems|e0| and|2e0 − e1 − e2 − e3|.

The set of(−1)-curves and(−2)-curves on a weak del Pezzo surface of
types (i) (resp. (ii), resp. (iii)) is pictured in Figure7.1(resp.7.2, resp.7.3).
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In the cases where the pointsx1, x2, x3 are collinear,S has only one map to
P2 defined by the linear system|e0| and is not related to Cremona transforma-
tions.

Surfaces of types (i), (ii), (ii’), (iii’) are examples oftoric surfaces. They
contain an algebraic torus as its open Zariski setU , and the action ofU on
itself by translations extends to a biregular action ofU onS. The complement
of U is the union of orbits of dimension0 and1. It supports an anticanonical
divisor. For example, in case (i), the complement ofU is the union of 6 lines
on the surface.

The anticanonical model of a weak toric del Pezzo surface is a toric del
Pezzo surface of degree 6 inP6. It is nonsingular only in case (i).

The types of singular points and the number of lines on a del Pezzo surface
of degree 6 is given in the following table.

Bubble cycle (i) (ii) (iii) (i’) (ii’) (iii’)
Singular points ∅ A1 A2 A1 2A1 A1 + A2

Lines 6 4 2 3 2 1

Table 8.4Lines and singular points on a del Pezzo surface of degree 6

The secant variety of a nonsingular del Pezzo surface of degree 6 inP6 is
of expected dimension 5. In fact, projecting from a general point, we obtain
a nonsingular surface of degree 6 inP5. It follows from Zak’s classification
of Severi varieties that a surface inP5 with secant variety of dimension 4 is
a Veronese surface. More precisely, we have the following description of the
secant variety.

Theorem 8.4.1 LetS be a nonsingular del Pezzo surface of degree 6 inP6.
ThenS is projectively equivalent to the subvariety given by equations express-
ing the rank condition

rank

t0 t1 t2
t3 t0 t4
t5 t6 t0

 ≤ 1.

The secant varietySec(X) is the cubic hypersurface defined by the determi-
nant of this matrix.

Proof We know thatS is isomorphic to the intersection of the Segre vari-
ety S2,2

∼= P2 × P2 ↪→ P8 by a linear subspaceL of codimension 2. If we
identify P8 with the projectivization of the space of3 × 3 matrices, then the
Segre varietyS2,2 is the locus of matrices of rank 1, hence given, even scheme-
theoretically, by the2 × 2 matrices. A secant ofS is contained inL and is a
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secant ofS2,2. It represents a matrix equal to the sum of matrices of rank 1.
Hence each secant is contained in the determinantal cubic hypersurface. Thus
the secant variety ofS is the intersection of the cubic by the linear subspaceL,
so it is a cubic hypersurface inP6.

Explicitly, we find the linear spaceL as follows. The mapS → P2 × P2

is given by the map(π1, π2), whereπi : S → P2 are given by the linear
systems|e0| and|2e0 − e1 − e2 − e3|. Choose a basisz0, z1, z2 in |e0| and a
basisz1z2, z0z1, z0z1 in |2e0 − e1 − e2 − e3| corresponding to the standard
quadratic transformationTst. Then the graph ofTst is equal to the intersection
of S2,2 ⊂ |Mat3,3| with equal diagonal entriesa11 = a22 = a33 corresponding
to the relationsz0(z1z2) = z1(z0z2) = z2(z0z1). This gives the equations
from the assertion of the Theorem.

Let us describe the group of automorphisms of a nonsingular del Pezzo sur-
face of degree6. The surface is obtained by blowing up 3 non-collinear points
x1, x2, x3. We may assume that their coordinates are[1, 0, 0], [0, 1, 0], [0, 0, 1].
We know from section8.2.8that the kernel of the representationρ : Aut(S)→
O(Pic(S)) is a 2-dimensional torus. The root system is of typeA2 +A1, so the
Weyl group is isomorphic to2×S3

∼= D12, whereD12 is the dihedral group
of order 12. Let us show that the image of the Weyl representation is the whole
Weyl group.

We choose the standard generatorss1, s2, s3 of W (S) ∼= W (E3) defined
by the reflections with respect to the rootse0 − e1 − e2, e1 − e2, e2 − e3. The
reflections1 acts as the standard quadratic transformationTst which is lifted to
an automorphism ofS. It acts on the hexagon of lines onS by switching the
opposite sides. The reflections2 (resp.s3) acts as a projective transformations
which permutes the pointsx1, x2 and fixesx3 (resp. permutesx2 andx3 and
fixesx1). The action of the subgroup〈s2, s3〉 ∼= D6

∼= S3 on the hexagon of
lines by natural embeddingD6 ↪→ O(2).

We leave to the reader to verify the following.

Theorem 8.4.2 LetS be a del Pezzo surface of degree6. Then

Aut(S) ∼= (C∗)2 o S3 ×S2.

If we represent the torus as the quotient group of(C∗)3 by the diagonal sub-
group∆ ∼= C∗, then the subgroupS3 acts by permutations of factors, and the
cyclic subgroupS2 acts by the inversion automorphismz 7→ z−1.

Finally, we mention that the Gosset polytopeΣ3 = −121 corresponding to
a nonsingular del Pezzo surface of degree 6 is an octahedron. This agrees with
the isomorphismW (E3) ∼= D12. The surface has 2 blowing-down morphisms
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S → P2 corresponding to twoα-facets and three conic bundle structures cor-
responding to the pencils of lines through three points on the plane.

8.5 Del Pezzo surfaces of degree 5

8.5.1 Lines and singularities

A weak del Pezzo surfaceS of degree 5 is isomorphic to the blow-up of a
bubble cycleη = x1 + x2 + x3 + x4. The only assumption on the cycle is that
|h−η| = ∅. Lete0, e1, e2, e3, e4 be a geometric basis defined by an admissible
order ofη. There are 4 possibilities:

(i) x1, x2, x3, x4 are proper points;
(ii) x2 � x1, x3, x4;
(iii) x3 � x2 � x1, x4;
(iv) x2 � x1, x4 � x3;
(v) x4 � x3 � x2 � x1.

There are the following root sublattices in a root lattice of typeA4:

A1, A1 +A1, A2, A1 +A2, A3, A4.

In case (i)S is a del Pezzo surface or has one Dynkin curve of typeA1 if three
points are collinear.

In case (ii) we have three possibilities for Dynkin curves:A1 if no three
points are collinear,A1 + A1 if x1, x2, x3 are collinear,A2 if x1, x3, x4 are
collinear.

In case (iii) we have three possibilities:A2 if no three points are collinear,
A3 if x1, x2, x3 are collinear,A1 +A2 if x1, x2, x4 are collinear.

In case (iv) we have two possibilities:A1+A1 if no three points are collinear,
A2 +A1 if x2, x3, x4 or x1, x2, x3 are collinear,

In case (v) we have two possibilities:A3 if x1, x2, x3 are not collinear,A4

otherwise.
It can be checked that the cases with the same root bases are obtained from

each other by Cremona isometries. So, they lead to isomorphic surfaces.
The following table gives the possibilities of lines and singular points on the

anticanonical model, a del Pezzo surface of degree 5 inP5.
From now on we will study nonsingular del Pezzo surfaces of degree 5.

Since any set of four points in general position is projectively equivalent to
the set of reference points[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1], we obtain that
all nonsingular del Pezzo surfaces of degree 5 are isomorphic. A nonsingular



434 Del Pezzo surfaces

Singular points ∅ A1 2A1 A2 A1 + A2 A3 A4

Lines 10 7 5 4 3 2 1

Table 8.5Lines and singular points on a del Pezzo surface of degree 5

del Pezzo surface of degree 5 has 10 lines. The union of them is a divisor in
| − 2KS |. The incidence graph of the set of 10 lines is the famousPetersen
graph.
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Figure 8.4 Petersen graph

The Gosset polytopeΣ4 = 021 has 5 facets of typeα corresponding to
contractions of 5 disjoint lines onS and 5 pencils of conics corresponding to
the pencils of lines through a point in the plane and the pencil of conics through
the four points.

8.5.2 Equations

In this subsection we use some elementary properties of Grassmann varieties
Gk(Pn) = G(k + 1, n + 1) of k-dimensional subspaces inPn (equivalently,
(k+1)-dimensional linear subspaces ofCn+1). We refer to Chapter 10 for the
proof of all properties we will use.

Proposition 8.5.1 Let S be a nonsingular del Pezzo surface of degree 5 in
P5. ThenS is isomorphic to a linear section of the Grassmann varietyG1(P4)
of lines inP4.

Proof It is known that the degree ofG = G1(P4) in the Pl̈ucker embedding
is equal to 5 anddimG = 6. Also is known that the canonical sheaf is equal to
OG(−5). By the adjunction formula, the intersection ofGwith a general linear
subspace of codimension 4 is a nonsingular surfaceX with ωX ∼= OX(−1).
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This must be a del Pezzo surface of degree 5. Since all del Pezzo surfaces of
degree 5 are isomorphic, the assertion follows.

Corollary 8.5.2 LetS be a nonsingular del Pezzo surface of degree5 in P5.
Then its homogeneous ideal is generated by 5 linearly independent quadrics.

Proof SinceS is projectively normal, applying Lemma8.3.1, we obtain that
the linear system of quadrics containingS has dimension equal to4. It is
known that the homogeneous ideal of the GrassmannianG(2, 5) is generated
by 5 quadrics. In fact, the Grassmannian is defined by five pfaffians of prin-
cipal 4 × 4 minors of a general skew-symmetric5 × 5 matrix. So, restricting
this linear system to the linear section of the Grassmannian, we obtain that the
quadrics containingS defineS scheme-theoretically.

Let P4 = |E| for some linear spaceE of dimension5. For any linè = |U |
in |E|, the dual subspaceU⊥ in E∨ defines a plane|U⊥| in P(E). This gives
a natural isomorphism between the GrassmanniansG1(|E|) andG2(P(E)).
Dually, we get an isomorphismG2(|E|) ∼= G1(P(E)).

Fix an isomorphism
∧5

E ∼= C, and consider the natural pairing

2∧
E ×

3∧
E →

5∧
E ∼= C

defined by the wedge product. It allows one to identify(
∧2

E)∨ =
∧2

E∨

with
∧3

E. The corresponding identification of the projective spaces does not
depend on the choice of an isomorphism

∧5
E ∼= C. A point U ∈ G(2, E)

is orthogonal to a pointV ∈ G(3, E) if and only if |U | ∩ |V | 6= ∅. We know
that a quintic del Pezzo surfaceS is contained in the base locus of a webW of
hyperplanes in|

∧2
E|. The web of hyperplanes, considered as a 3-dimensional

subspace of|
∧2

E∨| ∼= |
∧3

E| intersectsG3(|E|) at 5 pointsΛ1, . . . ,Λ5.
Thus any point inS intersectsΛ1, . . . ,Λ5.

Conversely, letΛ1, . . . ,Λ5 be 5 planes in|E| such that, considered as points
in the space|

∧3
E|, they span a general 3-dimensional subspaceW . Then

W∨ ∩ G2(|E|) is a general 5-dimensional subspace in|
∧2

E| which cuts
G2(|E|) along a quintic del Pezzo surface.

Let us record this.

Proposition 8.5.3 A nonsingular del Pezzo quintic is isomorphic to the va-
riety of lines inP4 which intersect 5 planes inP4 which span a general 3-
dimensional subspace in the Plücker spaceP9. Via duality, it is also isomor-
phic to the variety of planes inP4 which intersect 5 lines inP4 which span a
general 3-dimensional subspace of the Plücker space.
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8.5.3 OADP varieties

Let S be a del Pezzo surface of degree 5 inP5. The linear system of cubics
in P5 containingS has dimension24. Let us see that any nonsingular cubic
fourfold containingX is rational (the rationality of a general cubic fourfold is
unknown at the moment).

Lemma 8.5.4 LetS be a nonsingular del Pezzo surfaceS of degree 5 inP5.
For any pointx outsideS there exists a unique secant ofS containingx.

Proof It is known that Sec(X) = P5 since any nondegenerate nonsingular
surface inP5 with secant variety of dimension 4 is a Veronese surface. Let
a, b ∈ S such thatx ∈ ` = ab. Consider the projectionp` : X 99K P3 from the
line `. Its image is a cubic surfaceS3 isomorphic to the anticanonical model
of the blow-up ofS at a, b. If a = b, the line` is tangent toS, and one of the
points is infinitely near the other. In this case the cubic surface is singular. The
mapp` : S \ ` is an isomorphism outsidea, b. Supposex belongs to another
secant̀ ′ = cd. Then the projection of the plane〈`, `′〉 spanned bỳ and`′ is a
point on the cubic surface whose preimage containsc, d. This shows thatp` is
not an isomorphism outsidè∩S. This contradiction proves the assertion.

Theorem 8.5.5 LetF be an irreducible cubic fourfold containing a nonsin-
gular del Pezzo surfaceS of degree 5 inP5. ThenF is a rational variety.

Proof Consider the linear system|IS(2)| of quadrics containingX. It de-
fines a morphism mapY → P4, whereY is the blow-up ofS. Its fibres are
proper transforms of secants ofX. This shows that the subvariety ofG1(P5)
parameterizing secants ofS is isomorphic toP4. Let take a general pointz in
F . By the previous Lemma, there exists a unique secant ofX passing through
z. By Bezout’s Theorem, no other point outsideS lies on this secant. This
gives rational injective mapF 99K P4 defined outsideS. Since a general se-
cant intersectsF at three points, with two of them onS, we see that the map is
birational.

Remark8.5.1 According to a result of A. Beauville [37], Proposition 8.2,
any smooth cubic fourfold containingS is a pfaffian cubic hypersurface, i.e.
is given by the determinant of a skew-symmetric matrix with linear forms as
its entries. Conversely, any pfaffian cubic fourfold contains a nondegenerate
surface of degree 5, i.e. an anticanonical weak del Pezzo or a scroll.

Remark8.5.2 A closed subvarietyX of Pn is called asubvariety with one
apparent double point(OADP subvariety, for short) if a general point inPn
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lies on a unique secant ofX. Thus we see that a nonsingular del Pezzo surface
of degree 5 is a OADP variety of dimension 2.

A OADP subvarietyX of Pn defines a Cremona involution ofPn in a way
similar to the definition of a de Jonquières involution. For a general pointx ∈
Pn we find a unique secant ofX intersectingX at two points(a, b), and then
define the uniqueT (x) such that the pair{x, T (x)} is harmonically conjugate
to {a, b}.

An infinite series of examples of OADP subvarietes were given by D. Bab-
bage [19] and W. Edge [224]. They are now called theEdge varieties. The
Edge varieties are of two kinds. The first kind is a general divisorEn,2n+1 of
bidegree(1, 2) in P1 × Pn embedded by Segre inP2n+1. Its degree is equal to
2n + 1. For example, whenn = 1, we obtain a twisted cubic inP3. If n = 2,
we obtain a del Pezzo surface inP5. The second type is a general divisor of
bidegree(0, 2) in P1 × Pn. For example, whenn = 1, we get the union of
two skew lines. Whenn = 2, we get a quartic ruled surfaceS2,5 in P5 isomor-
phic toP1 × P1 embedded by the linear system of divisors of bidegree(1, 2).
A smooth OADP surface inP5 is either an Edge variety of dimension 2, or a
scrollS1,5 of degree 4 [528].

We refer to [113] for more information about OADP subvarieties.

8.5.4 Automorphism group

Let us study automorphisms of a nonsingular del Pezzo surface of degree 5.
Recall that the Weyl groupW (E4) is isomorphic to the Weyl groupW (A4) ∼=
S5. By Proposition8.2.31, we have a natural injective homomorphism

ρ : Aut(S) ∼= S5.

Theorem 8.5.6 LetS be a nonsingular del Pezzo surface of degree 5. Then

Aut(S) ∼= S5.

Proof We may assume thatS is isomorphic to the blow-up of the reference
pointsx1 = [1, 0, 0], x2 = [0, 1, 0], x3 = [0, 0, 1] andx4 = [1, 1, 1]. The group
S5 is generated by its subgroup isomorphic toS4 and an element of order
5. The subgroupS4 is realized by projective transformations permuting the
pointsx1, . . . , x4. The action is realized by the standard representation ofS4

in the hyperplanez1 + · · ·+ z4 = 0 of C4 identified withC3 by the projection
to the first 3 coordinates. An element of order 5 is realized by a quadratic
transformation with fundamental pointsx1, x2, x3 defined by the formula

T : [t0, t1, t2] 7→ [t0(t2 − t1), t2(t0 − t1), t0t2]. (8.18)
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It maps the lineV (t0) to the pointx2, the lineV (t1) to the pointx4, the line
V (x2) to the pointx1, the pointx4 to the pointx3.

Note that the group of automorphisms acts on the Petersen graph of 10 lines
and defines an isomorphism with the group of symmetries of the graph.

Let S be a del Pezzo surface of degree 5. The group Aut(S) ∼= S5 acts
linearly on the spaceV = H0(S,OS(−KS)) ∼= C6. Let us compute the char-
acter of this representation. Choose the following basis in the spaceV :

(t20t1− t0t1t2, t
2
0t2− t0t1t2, t

2
1t0− t0t1t2, t

2
1t2− t0t1t2, t

2
2t0− t0t1t2, t

2
2t1− t0t1t2).

(8.19)

Let s1 = (12), s2 = (23), s3 = (34), s4 = (45) be the generators ofS5. It
follows from the proof of Theorem8.5.6thats1, s2, s3 generate the subgroup
of Aut(S) which is realized by projective transformations permuting the points
x1, x2, x3, x4, represented by the matrices

s1 =

0 1 0
1 0 0
0 0 0

 , s2 =

1 0 0
0 0 1
0 1 0

 , s3 =

1 0 −1
0 1 −1
0 0 −1

 .

The last generators4 is realized by the standard quadratic transformationTst.
Choose the following representatives of the conjugacy classes inS5 different
from the conjugacy class of the identity element id:

g1 = (12), g2 = (123) = s2s1, g3 = (1234) = s3s2s1,

g4 = (12345) = s4s3s2s1, g5 = (12)(34) = s1s3, g6 = (123)(45) = s3s2s1s4.

The subgroup generated bys1, s2 acts by permuting the coordinatest0, t1, t2.
The generators3 acts as the projective transformation

(y1, . . . , y6) 7→ (y1−y2+y5,−y2+y5−y6, y3−y4+y6,−y4−y5+y6,−y6,−y5),

where(y1, . . . , y6) is the basis from (8.19). Finally,s4 acts by

(y1, y2, y3, y4, y5, y6) 7→ (y6, y4, y5, y2, y3, y1).

Simple computation gives the character vector of the representation

χ = (χ(1), χ(g1), χ(g2), χ(g3), χ(g4), χ(g5), χ(g6)) = (6, 0, 0, 0, 1,−2, 0).

Using the character table ofS5, we find thatχ is the character of an irre-
ducible representation isomorphic toE =

∧2
V , whereV is the standard

4-dimensional irreducible linear representation ofS5 with character vector
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(4, 2, 1, 0,−1, 0,−1) (see [255], p. 28). The linear system| −KS | embedsS
in P(E). SinceE is isomorphic to its dual representation we can identifyP(E)
with |E|.

We will see later in Chapter 10 thatG1(P4), embedded inP9, is defined by
5 pfaffians of principal minors of a5× 5 skew-symmetric matrix(pij), where
pji = −pij , i < j, are the Pl̈ucker coordinates. The groupS5 acts onP9

via it natural representations on
∧2 C5, whereC5 = C[1,5] is the permutation

representation ofS5. The permutation representation decomposes asV ⊕ U ,
and

∧2 C5 decomposes as
∧2

V ⊕ U ∧ V ∼= E ⊕ V . Let e1, . . . , e5 be the
standard basis inC5 ande1− e5, . . . , e4− e5 be a basis ofV . The linear space∧2

V has a basis formed by

(ei − e5) ∧ (ej − e5) = ei ∧ ej − ei ∧ e5 + ej ∧ e5, 1 ≤ i < j ≤ 4.

The Pl̈ucker coordinatespij is the dual basis of the basisei∧ej , 1 ≤ i < j ≤ 5,
of
∧2 C5. This shows thatS is cut outS5-equivariantly by the linear subspace

defined by the equations

pk5 −
4∑

i 6=k,i=1

pi5 = 0, k = 1, 2, 3, 4. (8.20)

Now let us consider the linear representation ofS5 on the symmetric square
S2(V ). Using the formula

χS2(V )(g) = 1
2 (χ(g)2 + χ(g2)),

we get

χS2(V ) = (21, 3, 0,−1, 1, 5, 0).

Taking the inner product with the character of the trivial representation, we
get 1. This shows that the subspace of invariant vectorsU = S2(V )S5 is
one-dimensional. Similarly, we find thatdimS2(V ) contains one copy of the
one-dimensional sign representationU ′ of S5. The equation of the union of
10 lines, considered as an element ofS2(V ), is represented by the equation of
the union of 6 linesxixj , wherex1, . . . , x4 are the reference points. It is

F = t0t1t2(t0 − t1)(t0 − t2)(t1 − t2) = 0.

It is easy to check thatF transforms underS5 as the sign representation.
It is less trivial, but straightforward, to find a generator of the vector space
S2(V )S5 . It is equal to

G = 2
∑

t4i t
2
j − 2

∑
t4i tjtk −

∑
t3i t

2
j tk + 6t20t

2
1t

2
2. (8.21)
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Its singular points are the reference pointsx1, . . . , x4. In another coordinate
system, the equation looks even better:

t60 + t61 + t62 + (t20 + t21 + t22)(t
4
0 + t41 + t42)− 12t20t

2
1t

2
2 = 0.

(see [221]). The singular points here are the reference pointsx1, . . . , x4. The
equationG = 0 reveals obvious symmetry with respect to the group generated
by the permutation of the coordinates corresponding to the generatorss1 and
s2. It is also obviously invariant with respect to the standard quadratic trans-
formationTst which we can write in the form[t0, t1, t2] 7→ [1/t0, 1/t1, 1/t2].
Less obvious is the invariance with respect to the generators3.

The S5-invariant plane sexticW = V (G) is called theWiman sextic. Its
proper transform onS is a smooth curve of genus 6 in| − 2KS |. All curves
in the pencil of sextics spanned byV (λF + µG) (theWiman pencil) areA5-
invariant. It contains twoS5-invariant membersV (F ) andV (G).

Remark8.5.3 It is known that a del Pezzo surface of degree 5 is isomorphic
to the GIT-quotientP 5

2 of the space(P1)5 by the group SL(2) (see [192]).
The groupS5 is realized naturally by the permutation of factors. The isomor-
phism is defined by assigning to any pointx on the surface the five ordered
points (x1, . . . , x4, x5 = x), wherep1, . . . , p4 are the tangent directions of
the conic in the plane passing through the pointsx1, x2, x3, x4, x. The iso-
morphism fromP 5

2 onto a quintic surface inP5 is given by the linear system
of bracket-functions(ab)(cd)(ef)(hk)(lm), wherea, b, c, d, e, f, h, k, l,m be-
long to the set{1, 2, 3, 4, 5} and each number from this set appears exactly 2
times.

Remark8.5.4 Let S be a weak del Pezzo surface andD be a smooth divisor
in | − 2KS |. The double coverX of S branched overD is a K3 surface. If
we takeS to be a nonsingular del Pezzo surface of degree 5 andD to be the
proper transform of the Wiman sextic, we obtain a K3 surface with automor-
phism group containing the groupS5 × 2. The cyclic factor here acts on the
cover as the deck transformation. Consider the subgroup ofS5 × 2 isomor-
phic to S5 which consists of elements(σ, ε(σ)), whereε : S5 → {±1} is
the sign representation. This subgroup acts onX symplectically, i.e. leaves a
nonzero holomorphic 2-form onX invariant. The list of maximal groups of au-
tomorphisms of K3 surfaces which act symplectically was given by S. Mukai
[439]. We find the groupS5 in this list (although the example in the paper is
different).

Remark8.5.5 If we choose one of the nonsingular quadrics containing a non-
singular del Pezzo quintic surfaceS to represent the GrassmannnianG1(P3),
thenS can be viewed as a congruence of lines inP3 of order 2 and class 3. It
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is equal to one of the irreducible components of the variety of bitangent lines
of a quartic surfaceX with 15 nodes and 10tropes(planes which touch the
quartic along a conic). Each ray of the congruence contains 2 tangency points
with X. This defines a double cover ofS ramified along a curveΓ cut out by
a quadric. This curve is touching all 10 lines. Their pre-images split into the
set of 20 lines onX. The image ofΓ in the plane is a curve of degree 6 with 4
cusps. For each line joining two cusps, the two residual points coincide.

8.6 Quartic del Pezzo surfaces

8.6.1 Equations

Here we study in more details del Pezzo surfaces of degree 4. Their minimal
resolutions of singularities are obtained by blowing up 5 points inP2 and hence
vary in a 2-dimensional family.

Lemma 8.6.1 LetX be the complete intersection of two quadrics inPn. Then
X is nonsingular if and only if it is isomorphic to the variety

n∑
i=0

ti =
n∑
i=0

ait
2
i = 0

where the coefficientsa0, . . . , an are all distinct.

Proof The pencil of quadrics has the discriminant hypersurface∆ defined by
a binary form of degreen + 1.If all quadrics are singular, then, by Bertini’s
Theorem they share a singular point. This implies thatX is a cone, and hence
singular. Conversely, ifX is a cone, then all quadrics in the pencil are singular.
Suppose∆ consists of less thann + 1 points. The description of the tangent
space of the discriminant hypersurface of a linear system of quadrics (see Ex-
ample1.2.1) shows that a multiple point corresponds to either a quadric of
corank≥ 2 or a quadric of corank 1 such that all quadrics in the pencil con-
tain its singular point. In both cases,X contains a singular point of one of the
quadrics in the pencil causingX to be singular. Conversely, ifX has a singular
point, all quadrics in the pencil are tangent at this point. One of them must be
singular at this point causing∆ to have a multiple point.

So, we see thatX is nonsingular if and only if the pencil contains exactly
n + 1 quadrics of corank 1. It is a standard fact from linear algebra that in
this case the quadrics can be simultaneously diagonalized (see, for example,
[257] or [?]), vol. 2, Chapter XIII). Thus we see that, after a linear change of
coordinates,X can be given by equations from the assertion of the Lemma.
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If two coefficientsai are equal, then the pencil contains a quadrics of corank
≥ 2, and hence∆ has a multiple point.

Theorem 8.6.2 Let S be a del Pezzo surfaceS of degree 4. ThenS is a
complete intersection of two quadrics inP4. Moreover, ifS is nonsingular,
then the equations of the quadrics can be reduced, after a linear change of
variables, to the diagonal forms:

4∑
i=0

t2i =
4∑
i=0

ait
2
i = 0,

whereai 6= aj for i 6= j.

Proof By Theorem8.3.4, S is projectively normal inP4. This gives the exact
sequence

0→ H0(P4, IS(2))→ H0(P4,OP4)→ H0(S,OS(2))→ 0.

By Lemma8.3.1,

dimH0(S,OS(2)) = dimH0(S,OS(−2KS)) = 13.

This implies thatS is the base locus of a pencil of quadrics. Now the assertion
follows from the previous Lemma

Following the classical terminology a del Pezzo surface of degree 4 inP4 is
called aSegre quartic surface.

One can say more about equations of singular del Pezzo quartics. LetQ be a
pencil of quadrics inPn. We view it as a line in the space of symmetric matrices
of sizen+1 spanned by two matricesA,B. Assume thatQ contains a nonsin-
gular quadric, so that we can chooseB to be a nonsingular matrix. Consider the
λ-matrixA+ λB and compute its elementary divisors. Letdet(A+ λB) = 0
hasr distinct rootsα1, . . . , αr. For every rootαi we have elementary divisors
of the matrixA+ λB

(λ− αi)e
(1)
i , . . . , (λ− αi)e

(si)
i , e

(1)
i ≤ . . . ≤ e

(si)
i .

TheSegre symbolof the pencilQ is the collection

[(e(1)1 . . . e
(s1)
1 )(e(1)2 . . . e

(s2)
2 ) . . . (e(1)r . . . e(sr)

r )].

It is a standard result in linear algebra (see, the references in the proof of
Lemma8.6.1) that one can simultaneously reduce the pair of matrices(A,B)
to the form(A′, B′) (i.e. there exists an invertible matrixC such thatCACt =
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A′, CBCt = B′) such that the corresponding quadratic formsQ′1, Q
′
2 have

the following form

Q′1 =
r∑
i=1

si∑
j=1

p(αi, e
(j)
i ), Q′2 =

r∑
i=1

si∑
j=1

q(e(j)i ), (8.22)

where

p(α, e) = α
e∑
i=1

tite+1−i +
e−1∑
i=1

ti+1te+1−i,

q(e) =
e∑
i=1

tite+1−i.

It is understood here that eachp(α, e) andq(e) are written in disjoint sets of
variables. This implies the following.

Theorem 8.6.3 Let X andX ′ be two complete intersections of quadrics
andP,P ′ be the corresponding pencils of quadrics. Assume thatP andP ′
contains a nonsingular quadric. LetH andH ′ be the set of singular quadrics
inP andP ′ considered as sets marked with the corresponding part of the Segre
symbol. ThenX is projectively equivalent toX ′ if and only if the Segre symbols
of P andP ′ coincide and there exists a projective isomorphismφ : P → P ′
such thatφ(H) = H ′ and the marking is preserved.

Applying this to our casen = 4, we obtain the following possible Segre
symbols:

r = 5 : [11111];

r = 4 : [(11)111], [2111];

r = 3 : [(11)(11)1], [(11)21], [311], [221], [(12)11];

r = 2 : [14], [(13)1], [3(11)], [32]; [(12)2], [(12)(11)];

r = 1 : [5], [(14)].

Here r is the number of singular quadrics in the pencil. Note that the case
[(1, 1, 1, 1, 1)] leads to linearly dependent matricesA,B, so it is excluded for
our purpose. Also in cases[(111)11], [(1111)1], [(112)1], [(22)1], there is a
reducible quadric in the pencil, so the base locus is a reducible. Finally, the
cases[(23)], [(113)], [(122)], and[(1112)] correspond to cones over a quartic
elliptic curve.
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8.6.2 Cyclid quartics

Let S be a nonsingular del Pezzo quartic surface inP4. Let us projectS to P3.
First assume that the center of the projectionp lies onS. Then the image of
the projection is a cubic surfaceS3 in P3. It is nonsingular if the center of the
projection does not belong to a line onS has one node if it lies on one line, and
has anA2 singularity if it lies on two lines. Note that no three lines onS are
coplanar since otherwise the pencil of hyperplanes through this line cuts out,
residually, a pencil of lines onS. So, no point lies on three lines.

Now let us assume that the center of the projectionp does not lie onS. Let
Qp be the unique quadric from the pencil which containsp.

Theorem 8.6.4 Assume that the quadricQp is nonsingular. Then the projec-
tion X of S from p is a quartic surface inP3 which is singular along a non-
singular conic. Any irreducible quartic surface inP3 which is singular along
a nonsingular conic arises in this way from a Segre quartic surfaceS in P4.
The surfaceS is nonsingular if and only ifX is nonsingular outside the conic.

Proof First of all let us see thatX is indeed a quartic surface. If not, the
projection is a finite map of degree 2 onto a quadric. In this case, the preimage
of the quadric inP4 is a quadratic cone containingS with the vertex at the
center of the projection. This is excluded by the assumption.

LetH be the tangent hyperplane ofQp atp andC = H∩S. The intersection
H∩Qp is an irreducible quadric inH with singular point atp. The curveC lies
on this quadric and is cut out by a quadricQ′ ∩H for some quadricQ′ 6= Q

from the pencil. Thus the projection fromp defines a degree 2 map fromC to
a nonsingular conicK equal to the projection of the coneH ∩Qp. It spans the
plane inP3 equal to the projection of the hyperplaneH. Since the projection
defines a birational isomorphism fromS to X which is not an isomorphism
over the conicK, we see thatX is singular alongK. It is also nonsingular
outsideK (since we assume thatS is nonsingular).

Conversely, letK be a nonsingular conic inP3. As we saw in subsection
7.2.1, the linear system|IK(2)| of quadrics throughK mapsP3 onto a quadric
Q1 in P4. The preimage of a quadricQ2 6= Q1 under this rational map is
a quartic surfaceX containingK as a double curve. The intersectionS =
Q1 ∩ Q2 is a Segre quartic surface. The image of the planeΠ containingK
is a pointp onQ1. The inverse mapS 99K X is the projection fromp. Since
the rational mapP3 99K Q1 is an isomorphism outsideΠ, the quarticX is
nonsingular outsideK if and only if S is nonsingular.
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In classical literature a quartic surface inP3 singular along a conic is called
acyclide quartic surface.

Remark8.6.1 If we choose the equation of the conicK in the formV (t20 +
t21 + t22), then formula (7.17) shows that the equation of the quartic can be writ-
ten in the formV (

∑
aijzizj), where(z0, z1, z2, z3) = (t20, t0t1, t0t2, t0t3).

Since the quartic is irreducible, we may assume thata00 6= 0, hence the equa-
tion of a cyclide surface can be reduced to the form

(t21 + t22 + t23)
2 + t20g2(t0, t1, t2, t3) = 0. (8.23)

Note that this can generalized to any dimension. We obtain a quartic hypersur-
face

(
n∑
i=1

t2i )
2 + t20g2(t0, . . . , tn) = 0

singular along the quadricV (t0) ∩ V (
∑n
i=1 t

2
i ). In dimension1, we obtain a

quartic curve with two double points (acyclide curve). Let` be the line through
the nodes. We may assume that its equation ist0 = 0 and the coordinates of
the points are[0, 1, i], [0, 1,−i]. By definition, acomplexn-spherein Pn+1 is
a quadric containing a fixed nonsingular quadricQ0 in a fixed hyperplane in
Pn+1. We already discussed complex circles in Chapter 2. Thus we see that
complex spheres are preimages of quadrics inPn+2 under a map given by the
linear system of quadrics inPn+1 throughQ0. The equation of a complexn-
ball in Pn+1 becomes a linear equation inPn+2. Over reals, we obtain that the
geometry of real spheres is reduced to the geometry of hyperplane sections of
a fixed quadric in a higher-dimensional space (see [373]).

Next we consider the projection of a nonsingular Segre surface from a non-
singular pointp on a singular quadricQ from the pencil containingS. The
tangent hyperplaneH of Q at p intersectsQ along the union of two planes.
ThusH intersectsS along the union of two conics intersecting at two points.
This is a degeneration of the previous case. The projection is adegenerate
cyclide surface. It is isomorphic to the preimage of a quadric inP4 under a
map given by the linear system of quadrics inP3 containing the union of two
coplanar lines (a degeneration of the conicK from above). Its equation can be
reduced to the form

t21t
2
2 + t20g2(t0, t1, t2, t3) = 0.

Finally, let us assume that the center of the projection is the singular point
p of a coneQ from the pencil. In this case the projection defines a degree 2
mapS → Q̄, whereQ̄ is a nonsingular quadric inP3, the projection ofQ.
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The branch locus of this map is a nonsingular quartic elliptic curve of bidegree
(2, 2). If we choose the diagonal equations ofS as in Theorem8.6.2, and take
the pointp = [1, 0, 0, 0, 0], thenQ is given by the equation

(a2 − a1)t21 + (a3 − a1)t22 + (a3 − a1)t23 + (a4 − a1)t24 = 0.

It is projected to the quadric with the same equations in coordinates[t1, . . . , t4]
in P3. The branch curve is cut out by the quadric with the equation

t21 + t22 + t23 + t24 = 0.

A more general cyclid quartic surfaces are obtained by projection from sin-
gular quartic surfaces inP3. They have been all classified by C. Segre [567].

8.6.3 Lines and singularities

Let S be a quartic del Pezzo surface andX be its minimal resolution of
singularities. The surfaceX is obtained by blowing up a bubble cycleη =
x1 + . . .+ x5 of points in almost general position. Applying the procedure of
Borel-De Sibenthal-Dynkin, we obtain the following list of types of root bases
in the latticeK⊥

X
∼= E5:

D5, A3+2A1, D4, A4, 4A1, A2+2A1, A3+A1, A3, 3A1, A2+A1, A2, 2A1, A1.

All of these types can be realized as the types of root bases defined by Dynkin
curves.

D5 : x5 � x4 � x3 � x2 � x1, andx1, x2, x3 are collinear;

A3 + 2A1 : x3 � x2 � x1, x5 � x4, x1, x4, x5 andx1, x2, x3 are collinear;

D4 : x4 � x3 � x2 � x1, andx1, x2, x5 are collinear;

A4 : x5 � x4 � x3 � x2 � x1;

4A1 : x2 � x1, x4 � x3, x1, x2, x5 andx3, x4, x5 are collinear;

2A1 +A2 : x3 � x2 � x1, x5 � x4 andx1, x2, x3 are collinear;

A1 +A3 : x3 � x2 � x1, x5 � x4, andx1, x4, x5 are collinear;

A3 : x4 � x3 � x2 � x1, orx3 � x2 � x1 andx1, x2, x4 are collinear;

A1 +A2 : x3 � x2 � x1, x5 � x4;

3A1 : x2 � x1, x4,� x3, andx1, x3, x5 are collinear;

A2 : x3 � x2 � x1;

2A1 : x2 � x1, x3 � x2, orx1, x2, x3 andx1, x3, x4 are collinear;

A1 : x1, x2, x3 are collinear.
This can be also stated in terms of equations indicated in the next table. The
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number of lines is also easy to find by looking at the blow-up model. We have
the following table (see [614]).

∅ A1 2A1 2A1 A2 3A1

[11111] [2111] [221] [(11)111] [311] [(11)21]
16 12 9 8 8 6

A1 + A2 A3 A3 A1 + A3 A2 + 2A1 4A1

[32] [41] [(21)11] [(21)2] [3(11)] [(11)(11)1]
6 5 4 3 4 4

A4 D4 2A1 + A3 D5

[5] [(31)1] [(21)(11)] [(41)]
3 2 2 1

Table 8.6Lines and singularities on a weak del Pezzo surface of degree 4

Example8.6.1 The quartic surfaces with singular points of type4A1 or2A1+
A3 have a remarkable property that they admit a double cover ramified only
at the singular points. We refer to [147] for more details about these quartic
surfaces. The projections of these surfaces toP3 are cubic symmetroid surfaces
which will be discussed in the next Chapter. The cover is the quadric surface
F0 in the first case and the quadric coneQ in the second case.

The Gosset polytopeΣ5 = 121 has 16 facets of typeα and 10 facets of type
β. They correspond to contractions of 5 disjoint lines and pencils of conics
arising from the pencils of lines through one of the 5 points in the plane and
pencils of conics through four of the 5 points.
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Figure 8.5 Lines on a del Pezzo quartic
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8.6.4 Automorphisms

Let S be a nonsingular del Pezzo surface. We know that the natural homomor-
phism

Aut(S)→W (S) ∼= W (D5)

is injective.

Proposition 8.6.5

W (D5) ∼= 24 o S5,

where2k denotes the elementary abelian group(Z/2Z)k.

Proof This is a well-known fact from the theory of reflection groups. How-
ever, we give a geometric proof exhibiting the action ofW (D5) on Pic(S).
Fix a geometric basise0, . . . , e5 corresponding to an isomorphismS and the
blow-up of 5 pointsx1, . . . , x5 in general position. Consider 5 pairs of pencils
of conics defined by the linear systems

Li = |e0 − ei|, L′i = |2e0 −
5∑
i=1

ei|, i = 1, . . . , 5.

Let α1, . . . , α5 be the canonical root basis defined by the geometric basis and
ri = rαi

be the corresponding reflections. Thenr2, . . . , r5 generateS5 and
act by permutingLi’s andL′i. Consider the productr1 ◦ r5. It is immediately
checked that it switchesL4 with L′4 andL5 with L′5 leavingLi, L′i invariant
for i = 1, 2, 3. Similarly, a conjugate ofr1 ◦ r5 in W (D5) does the same for
some other pair of the indices. The subgroup generated by the conjugates is
isomorphic to24. Its elements switch theLi with L′i in an even number of
pairs of pencils. This defines a surjective homomorphismW (D5)→ S5 with
kernel containing24. Comparing the orders of the groups we see that the kernel
is 24 and we have an isomorphism of groups asserted in the Proposition.

We know that the pencil of quadrics containingS has exactly five singular
membersQi of corank 1. Each quadricQi is a cone over a nonsingular quadric
in P3. It contains two rulings of planes containing the vertex ofQi. Since
S = Qi ∩ Q for some nonsingular quadricQ, we see thatS contains two
pencils of conics|Ci| and|C ′i| such thatCi ∩C ′i = 2. In the blow-up model of
S these are the pencils of conics|Li| andL′i| which we used in the proof of the
previous Proposition. The groupW (S) acts on pairs of conics, and on the set
of 5 singular quadricsQi. The subgroup24 acts trivially on the set of singular
quadrics.
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Theorem 8.6.6 Let S be a nonsingular del Pezzo surface of degree 4. The
image of the homomorphism

Aut(S)→ 24 o S5

contains the normal subgroup24. The quotient group is isomorphic to either a
cyclic group of order 2 or 4, or to the dihedral groupD6 or D10.

Proof Consider the map

|Li| × |L′i| → | −KS |, (D,D′) 7→ D +D′.

Its image generates a 3-dimensional linear system contained in| −KS |. This
linear system defines the projection mapψi : S → P3. SinceDi · D′

i = 2
for Di ∈ Li, D

′
i ∈ L′i, the degree of the map is equal to 2. So the image of

ψ is a quadric inP3. This shows that the center of the projection is the vertex
of one of the five singular quadric cones in the pencil of quadrics containing
S. The deck transformationgi, i = 1, . . . , 5, of the cover is an automorphism
and these five automorphisms generate a subgroupH of Aut(S) isomorphic to
24. One can come to the same conclusion by looking at the equations (8.6.2)
of S. The group of projective automorphisms generated by the transformations
which switchti to−ti realizes the subgroup24.

Let G be the quotient of Aut(S) by the subgroup24. The group Aut(S)
acts on the pencil|IS(2)| of quadrics containingS leaving invariant the subset
of 5 singular quadrics. The kernel of this action is the subgroup24. ThusG
is isomorphic to a subgroup of Aut(P1) ∼= PGL(2) leaving a set of 5 points
invariant. It follows from the classification of finite subgroups of SL(2) and
their algebra of invariants that the only possible groups are the cyclic groups
C2, C3, C4, C5, the dihedral groupD6

∼= S3, and the dihedral groupD10 of
order 10. The corresponding binary forms are projectively equivalent to the
following binary forms:

(i) C2 : u1(u2
1 − u2

0)(u
2
1 − a2u2

0), a
2 6= 0, 1;

(ii) C4 : u1(u2
1 − u2

0)(u
2
1 + u2

0);
(iii) C3, D6 : u1(u1 − u0)(2u1 − u0)(u1 + ηu0)(u1 + η2u2

0);
(iv) C5, D10 : (u1 − u0)(u1 − εu0)(u1 − ε2u0)(u1 − ε3u0)(u1 − ε4u0),

whereη = e2πi/3, ε = e2πi/5. In case (iii) the zeros of the binary form
are [1, 0], [1, 1], [1, 2], [1,−η], [1,−η2] are projectively equivalent to the set
[1, 0], [0, 1], [1, 1], [1, η], [1, η2]. In all cases the symmetry becomes obvious;
it consists of multiplication of the affine coordinateu1/u0 by some roots of
unity, and, in cases (iii) and (iv), the additional symmetry[u0, u1] 7→ [u1, u0].
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Using the equations ofS from Theorem8.6.2, we find that the singular
quadrics in the pencil of quadrics

u0

4∑
i=0

ait
2
i − u1

4∑
i=0

t2i = 0

correspond to the parameters[u0, u1] = [1, ai]. The corresponding surfaces
are projectively equivalent to the following surfaces:

(i) C2 : t20 + t22 + t21 + t23 + t24 = t21 − t22 + at21 − at23 = 0, a 6= 0,±1;
(ii) C4 : t20 + t21 + t22 + t23 + t24 = t21 − t22 + it23 − it24 = 0;
(iii) S3 : t20 + t21 + t22 + t23 + t24 = t21 + 1

2 t
2
2 + ηt23 + η2t24 = 0;

(iv) D10 : t20 + t21 + t22 + t23 + t24 = t20 + εt21 + ε2t22 + ε3t23 + ε4t24 = 0.

Remark8.6.2 In 1894 G. Humbert [337] discovered a plane sexticΓ with 5
cusps which has automorphism group isomorphic to24. Its proper transform
on the blow-up of the five cusps is a nonsingular curveΓ′ of genus 5 on a del
Pezzo quartic surfaceS. It is embedded inP5 by its canonical linear system.
The curveΓ′ is cut out by a quadricV (

∑
a2
i t

2
i ), where we considerS given

by equations (8.6.2) (see [220]). The curve is tangent to all 16 lines onS. The
double cover ofS branched along this curve is a K3 surface isomorphic to a
nonsingular model of a Kummer quartic surface. The following equation ofΓ
was found by W. Edge [224]

9t22(t
2
2 − t20)(t22 − t21) + (t21 + 3t22 − 4t20)(t1 + 2t0)2(t21 − t20) = 0.

The curve has peculiar properties: the residual points of each line containing
two cusps coincide, and the two contact points are on a line passing through
a cusp; the residual points of the conic through the five cusps coincide and all
cuspidal tangents pass through the contact point (see loc.cit.). The five maps
S → P1 defined by the pencils of conics, restricted toΓ′, define fiveg1

4 ’s onΓ′.
The quotient by the involution defined by the negation of one of the coordinates
ti is an elliptic curve. This makes the 5-dimensional Jacobian variety ofΓ′

isogenous to the product of five elliptic curves (this is how it was found by
Humbert). The quotient ofΓ′ by the involution defined by the negation of two
coordinatesti is a curve of genus 3. It is isomorphic to the quartic curve with
automorphism group isomorphic to23.

By taking special del Pezzo surfaces with isomorphism groups24 oD6 and
24 oD10 we obtain curves of genus 5 with automorphism groups of order96
and160 (see [220]).

Let p1, . . . , p6 be 6 points inP3 in general linear position. AHumbert curve
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can be also defined as the locus of tangency points of lines passing through
p6 with rational normal cubic passing throughp1, . . . , p5 (see [21], vol. 6, p.
24). It is also characterized by the property that it has 10 effective even theta
characteristics (see [636]).

The double cover ofS ramified overΓ′ is a K3 surface isomorphic to a
nonsingular model of a Kummer quartic surface with 16 nodes. The preimages
of the 16 lines onS split into 32 curves, the images of a subset of 16 of them
on the Kummer surface are 16 nodes, and the images of the remaining 16
curves are the 16 conics cut by 16 tropes of the surface. The surfaceS admits
a nonsingular model as a surface in the GrassmannianG1(P3) of degree and
class equal to 2. It is one of irreducible components of the surface of bitangents
of a Kummer quartic surface (see [354]).

8.7 Del Pezzo surfaces of degree 2

8.7.1 Singularities

Let S be a weak del Pezzo surface of degree 2. Recall that the anticanonical
linear system defines a birational morphismφ′ : S → X, whereX is the
anticanonical model ofS isomorphic to the double cover ofP2 branched along
a plane quartic curveC with at most simple singularities (see section6.3.3). We
have already discussed nonsingular del Pezzo surfaces of degree 2 in Chapter
6, in particularly the geometry associated with 7 points in the plane in general
position. Nonsingular del Pezzo surface is isomorphic to the double cover of
the projective plane ramified over a nonsingular plane quartic. It has 56 lines
corresponding to 28 bitangents of the branch curve.

Letφ : S → P2 be the composition ofφ and the double cover mapσ : X →
P2. The restriction ofφ to a(−1)-curveE is a map of degree−KS ·E = 1. Its
image in the plane is a linè. The preimage of̀ is the union ofE and a divisor
D ∈ |−KS−E|. Since−KS ·D = 1, the divisorD is equal toE′+R, where
E′ is a (−1)-curve andR is the union of(−2)-curves. Also we immediately
find thatE ·D = 2, D2 = −1. There are three possible cases:

(i) E 6= E′, E · E′ = 2;

(ii) E 6= E′, E · E′ = 1;

(iii) E 6= E′, E = E′.

In the first case, the image ofE is a line` tangent toC at two nonsingular
points. The image ofD−E′ is a singular point ofC. By Bezout’s Theorem,̀
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cannot pass through the singular point. HenceD = E′ and` is a bitangent of
C.

In the second case,E · (D−E′) = 1. The line` passes through the singular
pointφ(D − E′) and is tangent toC at a nonsingular point.

Finally, in the third case,̀ is a component ofC.
Of course, whenS is a del Pezzo surface, the quarticC is nonsingular, and

we have 56 lines paired into 28 pairs corresponding to 28 bitangents ofC. Let
π : S → P2 be the blow-up of seven pointsx1, . . . , x7 in general position.
Then 28 pairs of lines are the proper inverse transforms of the isolated pairs of
curves:

21 pairs: a line throughxi, xj and the conic through the complementary five
points;

7 pairs: a cubic with a double point atxi and passing through other points
plus the exceptional curveπ−1(xi).

We use the procedure of Borel-de Siebenthal-Dynkin to compile the list of
root bases inE7. It is convenient first to compile the list of maximal (by inclu-
sions) root bases of typeA,D,E of (see [361], §12).

Type rankn− 1 rankn
An Ak + An−k−1

Dn An−1, Dn−1 Dk + Dn−k, k ≥ 2
E6 D5 A1 + A5, A2 + A2 + A2

E7 E6 A1 + D6, A7, A2 + A5

E8 D8, A1 + E7, A8, A2 + E6, A4 + A4

Table 8.7Maximal root bases

HereD2 = A1 +A1 andD3 = A3.
From this we easily find the following table of root bases inE7. Note that

r Types
7 E7, A1 + D6, A7, 3A1 + D4, A1 + 2A3, A5 + A2, 7A1

6 E6, D5 + A1, D6, A6, A1 + A5, 3A2, 2A1 + D4, 2A3,
3A1 + A3, 6A1, A1 + A2 + A3, A2 + A4

5 D5, A5, A1 + D4, A1 + A4, A1 + 2A2, 2A1 + A3,
3A1 + A2, A2 + A3, 5A1

≤ 4 D4, Ai1 + · · ·+ Aik , i1 + · · ·+ ik ≤ 4

Table 8.8Root bases in theE7-lattice

there are two root bases of typesA1 +A5,A2 + 2A1, 3A1,A1 +A3 and4A1

which are not equivalent with respect to the Weyl group.
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The simple singularities of plane quartics were classified by P. Du Val [213],
Part III.

A1: one node;

2A1: two nodes;

A2: one cusp;

3A1: irreducible quartic with three nodes;

3A1: a cubic and a line;

A1 +A2: one node and one cusp;

A3: one tacnode (two infinitely near ordinary double points);

4A1: a nodal cubic and a line;

4A1: two conics intersecting at 4 points;

2A1 +A2: two nodes and one cusp;

A1 +A3: a node and a tacnode;

A1 +A3: cubic and a tangent line;

A4: one rhamphoid cusp (two infinitely near cusps);

2A2: two cusps;

D4: an ordinary triple point;

5A1: a conic and two lines;

3A1 +A2: a cuspidal cubic and a line;

2A1 +A3: two conics tangent at one point;

2A1 +A3: a nodal cubic and its tangent line;

A1 +A4: a rhamphoid cusp and a node;

A1 + 2A2: a cusp and two nodes;

A2 +A3: a cusp and a tacnode;

A5: one oscnode (two infinitely near cusps);

A5: a cubic and its inflection tangent;

D5: nodal cubic and a line tangent at one branch;

A1 +D4: a nodal cubic and line through the node;

E6: an irreducible quartic with onee6-singularity;

D6: triple point with one cuspidal branch;

A1 +A5: two conics intersecting at two points with multiplicities 3 and 1;

A1 +A5: a nodal cubic and its inflection tangent;

6A1: four lines in general position;
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3A2: a three-cuspidal quartic;

2A1 +D4: two lines and conic through their intersection point;

D5 +A1: cuspidal cubic and a line through the cusp;

2A3: two conics intersecting at two points with multiplicities 2;

3A1 +A3: a conic plus its tangent line plus another line;

A1 +A2 +A3: cuspidal cubic and its tangent;

A6: one oscular rhamphoid cusp (three infinitely neart1 � t2 � t1 cusps);

A2 +A4: one rhamphoid cusp and a cusp;

E7: cuspidal cubic and its cuspidal tangent;

A1 +D6: conic plus tangent line and another line through point of contact;

D4 + 3A1: four lines with three concurrent;

A7: two irreducible conics intersecting at one point;

A5 +A2: cuspidal cubic and an inflection tangent;

2A3 +A1: conic and two tangent lines.
Note that all possible root bases are realized except7A1 (this can be real-

ized in characteristic 2). One can compute the number of lines but this rather
tedious. For example, in the caseA1 we have 44 lines and a one-nodal quartic
C has 22 proper bitangents (i.e. lines with two nonsingular points of tangency)
and 6 bitangents passing through the node.

The Gosset polytopeΣ7 = 321 has 576 facets of typeα and 126 facets of
typeβ. They correspond to contractions of 7 disjoint(−1)-curves and pencils
of conics arising from 7 pencils of lines through one of the 7 points in the plane,
35 pencils of conics through 4 points, 42 pencils of cubic curves through 6
points with a node at one of these points, 35 pencils of 3-nodal quartics through
the 7 points, and 7 pencils of quintics through the 7 points with 6 double points.

8.7.2 Geiser involution

Let S be a weak del Pezzo surface of degree 2. Consider the degree 2 regular
mapφ : S → P2 defined by the linear system|−KS |. In the blow-up model of
S, the linear system| −KS | is represented by the net of cubic curvesN with
seven base bubble pointsx1, . . . , x7 in P2. It is an example of a Laguerre net
considered in Remark7.3.4. Thus we can viewS as the blow-up of 7 points in
the planeP2 which is canonically identified with| −KS |. The target planeP2

can be identified with the dual plane| −KS |∨ of | −KS |. The plane quartic
curveC belongs to| −KS |∨.
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If S is a del Pezzo surface, thenφ is a finite map of degree 2 and any sub-
pencil of | − KS | has no fixed component. Any pencil contained inN has
no fixed components and has 2 points outside the base points of the net. As-
signing the line through these points, we will be able to identify the planeP2

with the netN , or with | − KS |. This is the property of a Laguerre net. The
inverse map is defined by using the coresidual points of Sylvester. For every
nonsingular memberD ∈ N , the restriction of| −KS | toD defines ag1

2 real-
ized by the projection from the coresidual point onD. This map extends to an
isomorphismN → P2.

Let X ⊂ P(1, 1, 1, 2) be an anticanonical model ofS. The mapφ factors
through a birational mapσ : S → X that blows down the Dynkin curves
and a degree 2 finite map̄φ : X → P2 ramified along a plane quartic curve
C with simple singularities. The deck transformationγ of the coverφ̄ is a
birational automorphism ofS called theGeiser involution. In fact, the Geiser
involution is a biregular automorphism ofS. Sinceσ is a minimal resolution
of singularities ofX, this follows from the existence of a equivariant minimal
resolution of singularities of surfaces [403] and the uniqueness of a minimal
resolution of surfaces.

Proposition 8.7.1 The Geiser involutionγ has no isolated fixed points. Its
locus of fixed points is the disjoint union of smooth curvesW +R1 + · · ·+Rk,
whereR1, . . . , Rk are among irreducible components of Dynkin curves. The
curveW is the normalization of the branch curve of the double coverφ : S →
P2. A Dynkin curve of typeA2k has no fixed components, a Dynkin curve of
typeA2k+1 has one fixed component equal to the central component. A Dynkin
curve of typeD4, D5, D6, E6, E7 have fixed components marked by square on
their Coxeter-Dynkin diagrams.
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Assume thatS is a del Pezzo surface. Then the fixed locus of the Geiser
involution is a smooth irreducible curveW isomorphic to the branch curve of
the cover. It belongs to the linear system| − 2KS | and hence its image in the
plane is a curve of degree 6 with double points atx1, . . . , x7. It is equal to the
Jacobian curve of the net of cubics, i.e. the locus of singular points of singular
cubics from the set. It follows from the Lefschetz Fixed-Point-Formula that the
trace ofγ in Pic(S) ∼= H2(S,Z) is equal toe(W ) − 2 = −6. This implies
that the trace ofσ onQS = (KS)⊥ is equal to−7. Since rankQS = 7 this
implies thatγ acts as the minus identity onQS . It follows from the theory
of finite reflection groups that the minus identity isogeny of the latticeE7

is represented by the elementw0 in W (E7) of maximal length as a word in
simple reflections. It generates the center ofW (E7).

We can also consider the Geiser involution as a Cremona involution of the
plane. It coincides with the Geiser involution described in Chapter 7. The char-
acteristic matrix of a Geiser involution with respect to the basese0, . . . , e7 and
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σ∗(e0), . . . , σ∗(e7) is the following matrix:

8 3 3 3 3 3 3 3
−3 −2 −1 −1 −1 −1 −1 −1
−3 −1 −2 −1 −1 −1 −1 −1
−3 −1 −1 −2 −1 −1 −1 −1
−3 −1 −1 −1 −2 −1 −1 −1
−3 −1 −1 −1 −1 −2 −1 −1
−3 −1 −1 −1 −1 −1 −2 −1
−3 −1 −1 −1 −1 −1 −1 −2


. (8.24)

The elementw0 acts on the Gosset polytope321 as the reflection with respect
to the center defined by the vector1

2k7 = − 1
56

∑
vi, wherevi are the excep-

tional vectors. The 28 orbits on the set of vertices correspond to 28 bitangents
of a nonsingular plane quartic.

8.7.3 Automorphisms of del Pezzo surfaces of degree 2

Let S be a del Pezzo surface of degree 2. We know that the natural homomor-
phism

Aut(S)→W (S) ∼= W (E7)

is injective. The Geiser involutionγ belongs to the center ofW (S). The quo-
tient group Aut(S)/〈γ〉 is the group of projective automorphisms which leaves
the branch curveC of the map invariantφ : S → P2. We use the classification
of automorphisms of plane quartic curves from Chapter 6. LetG′ be a group
of automorphisms of the branch curveC = V (f). Let χ : G′ → C∗ be the
character ofG′ defined byσ∗(f) = χ(σ)f . Let

G = {(g′, α) ∈ G′ × C∗ : χ(g′) = α2}.

This is a subgroup of the groupG′ × C∗. The projection toG′ defines an
isomorphismG ∼= 2.G′. The extension splits if and only ifχ is equal to the
square of some character ofG′. In this caseG ∼= G′ × 2. The groupG acts on
S given by equation (8.16) by

(σ′, α) : [t0, t1, t2, t3] 7→ [σ′∗(t0), σ′∗(t1), σ′∗(t2), αt3].

Any group of automorphisms ofS is equal to a groupG as above. This easily
gives the classification of possible automorphism groups of del Pezzo surfaces
of degree 2.

We leave to a curious reader the task of classifying automorphism groups
of weak del Pezzo surfaces. Notice that in the action of Aut(S) in the Picard
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Type Order Structure Equation
I 336 2× L2(7) t23 + t30t1 + t31t2 + t32t0
II 192 2× (42 : S3) t23 + t40 + t41 + t42
III 96 2× 4A4 t23 + t42 + t40 + at20t21 + t41
IV 48 2×S4 t23 + t42 + t41 + t40 + +a(t20t21 + t20t22 + t21t22)

V 32 2× 4.22 t23 + t42 + t40 + at20t21 + t41
VI 18 18 t23 + t40 + t0t31 + t1t32
VII 16 2×D8 t23 + t42 + t40 + t41 + at20t21 + bt22t0t1
VIII 12 2× 6 t23 + t32t0 + t40 + t41 + at20t21
IX 12 2×S3 t23 + t42 + at22t0t1 + t2(t30 + t31) + bt20t21
X 8 23 t23 + t42 + t41 + t40 + at22t20 + bt21t22 + ct20t21
XI 6 6 t23 + t32t0 + f4(t0, t1)

XII 4 22 t23 + t42 + t22f2(t0, t1) + f4(t0, t1)

XIII 2 2 t23 + f4(t0, t1, t2)

Table 8.9Groups of automorphisms of del Pezzo surfaces of degree 2

group they correspond to certain subgroups of the group Cris(S). Also the
action is not necessary faithful, for example the Geiser involution acts trivially
on Pic(S) in the case of a weak del Pezzo surface with singularity of typeE7.

8.8 Del Pezzo surfaces of degree 1

8.8.1 Singularities

Let S be a weak del Pezzo surface of degree 1. It is isomorphic to the blow-
up of a bubble cycle of 8 points in almost general position. The anticanonical
modelX of S is a finite cover of degree 2 of a quadratic coneQ ramified over
a curveB in the linear system|OQ(3)|. It is nonsingular or has simple singu-
larities. The list of types of possible Dynkin curves is easy to compile. First
we observe that all diagrams listed for the case of theE7-lattice are included
in the list. Also all the diagramsA1 + T , whereT is from the previous list are
included. We give only the new types.

r Types
8 E8, A8, D8, 2A4, A1 + A2 + A5, A3 + D5, 2D4,

A2 + E6, A3 + D5, 4A2

7 D7, A2 + D5, A3 + A4, A3 + D4

6 A2 + D4

Table 8.10Root bases in theE8-lattice
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Note that there are two root bases of typesA7, 2A3, A1 + A5, 2A1 + A3

and4A1 which are not equivalent with respect to the Weyl group.
The following result of P. Du Val [213] will be left without proof. Note that

Du Val uses the following notation:

A1 = [ ], An = [3n−1], n ≥ 2, Dn = [3n−3,1,1], n ≥ 4,

E6 = [33,2,1], E7 = [34,2,1], E8 = [35,2,1].

Theorem 8.8.1 All types of root bases inE8 can be realized by Dynkin curves
except the cases7A1, 8A1, D4 + 4A1.

In fact, Du Val describes explicitly the singularities of the branch sextic
similarly to the case of weak del Pezzo surfaces of degree 2.

The number of lines on a del Pezzo surface of degree 1 is equal to 240. Note
the coincidence with the number of roots. The reason is simple, for any root
α ∈ E8, the sum−k8 + α is an exceptional vector. The image of a line under
the coverφ : S → Q is a conic. The plane spanning the conic is atritangent
plane, i.e. a plane touching the branch sexticW at three points. There are
120 tritangent planes, each cut out a conic inQ which splits under the cover
in the union of two lines intersecting at three points. Note that the effective
divisorD of degree 3 onW such that2D is cut out by a tritangent plane, is an
odd theta characteristic onW . This gives another explanation of the number
120 = 23(24 − 1).

The Gosset polytopeΣ8 = 421 has 17280 facets of typeα corresponding
to contractions of sets of 8 disjoint(−1)-curves, and 2160 facets of typeβ
corresponding to conic bundle structures arising from the pencils of conics
|de0 −m1e1 − . . .−m8| in the plane which we denote by(d;m1, . . . ,m8):

• 8 of type(1; 1, 07),
• 70 of type(2; 14, 05),
• 168 of type(3; 2, 15, 02),
• 280 of type(4; 23, 14, 0),
• 8 of type(4; 3, 17),
• 56 of type(5; 26, 1, 0),
• 280 of type(5; 3, 23, 14),
• 420 of type(6; 32, 24, 12),
• 280 of type(7; 34, 23, 1),
• 56 of type(7; 4, 3, 26),
• 8 of type(8; 37, 1),
• 280 of type(8; 4, 34, 23),
• 168 of type(9; 42, 35, 2),
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• 70 of type(10; 44, 34),

• 8 of type(11; 47, 3),

Observe the symmetry(d;m1, . . . ,m8) 7→ −4k8 − (d;m1, . . . ,m8).

8.8.2 Bertini involution

Let S be a weak del Pezzo surface of degree 1. Consider the degree 2 regular
mapφ : S → Q defined by the linear system| − 2KS |. In the blow-up model
of S, the linear system| − 2KS | is represented by the webW of sextic curves
with eight base bubble pointsx1, . . . , x8 in P2. If S is a del Pezzo surface, then
φ is a finite map of degree 2.

Let X ⊂ P(1, 1, 2, 3) be the anticanonical model ofS. The mapφ factors
through the birational mapσ : S → X that blows down the Dynkin curves
and a degree 2 finite map̄φ : X → Q ramified along a curve of degree 6 cut
out by a cubic surface. The deck transformationβ of the coverφ̄ is a birational
automorphism ofS called theBertini involution. As in the case of the Geiser
involution, we prove that the Bertini involution is a biregular automorphism of
S.

Proposition 8.8.2 The Bertini involutionβ has one isolated fixed point, the
base point of| −KS |. The one-dimensional part of the locus of fixed points is
the disjoint union of smooth curvesW + R1 + · · · + Rk, whereR1, . . . , Rk
are among irreducible components of Dynkin curves. The curveW is the nor-
malization of the branch curve of the double coverφ : S → Q. A Dynkin
curve of typeA2k has no fixed components, a Dynkin curve of typeA2k+1 has
one fixed component equal to the central component. A Dynkin curve of types
D4, D7, D8, E8 have fixed components marked by square on their Coxeter-
Dynkin diagrams. The fixed components of Dynkin curves of other types given
in the diagrams from Proposition8.7.1.
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Assume thatS is a del Pezzo surface. Then the fixed locus of the Bertini
involution is a smooth irreducible curveW of genus 4 isomorphic to the branch
curve of the cover and the base point of|−KS |. It belongs to the linear system
| − 3KS | and hence its image in the plane is a curve of degree 9 with triple
points atx1, . . . , x8. It follows from the Lefschetz fixed-point-formula that the
trace ofβ in Pic(S) ∼= H2(S,Z) is equal to1 + e(W )− 2 = −7. This implies
that the trace ofσ onQS = (KS)⊥ is equal to−8. Since rankQS = 8 this
implies thatγ acts as the minus identity onQS . It follows from the theory
of finite reflection groups that the minus identity isogeny of the latticeE7

is represented by the elementw0 in W (E8) of maximal length as a word in
simple reflections. It generates the center ofW (E8).

We can also consider the Bertini involution as a Cremona involution of the
plane. It coincides with a Bertini involution described in Chapter 7. The char-
acteristic matrix of a Bertini involution with respect to the basese0, . . . , e8 and
σ∗(e0), . . . , σ∗(e8) is the following matrix:

17 6 6 6 6 6 6 6 6
−6 −3 −2 −2 −2 −2 −2 −2 −2
−6 −2 −3 −2 −2 −2 −2 −2 −2
−6 −2 −2 −3 −2 −2 −2 −2 −2
−6 −2 −2 −2 −3 −2 −2 −2 −2
−6 −2 −2 −2 −2 −3 −2 −2 −2
−6 −2 −2 −2 −2 −2 −3 −2 −2
−6 −2 −2 −2 −2 −2 −2 −3 −2
−6 −2 −2 −2 −2 −2 −2 −2 −3


.

We can consider this matrix as the matrix of the elementw0 ∈ O(I1,8) in
the basise0, e1, . . . , e8. It is immediately checked that its restriction toE8 is
equal to the minus identity transformation. As an element of the Weyl group
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W (E8), it is usually denoted byw0. This is element of maximal length as a
word in simple reflections. The group〈w0〉 is equal to the center ofW (E8).

The elementw0 acts on the Gosset polytope421 as the reflection with re-
spect to the center defined by the vectork8 = − 1

240

∑
vi, wherevi are the

exceptional vectors. The 120 orbits on the set of vertices correspond to 120
tritangent planes of the branch curve of the Bertini involution.

8.8.3 Rational elliptic surfaces

We know that the linear system| −KS | is an irreducible pencil with one base
pointt0. Letτ : F → S be its blow-up. The proper inverse transform of|−KS |
in F is a base point-free pencil of curves of arithmetic genus1. It defines an
elliptic fibrationϕ : F → P1. The exceptional curveE = τ−1(t0) is a section
of the fibration. Conversely, letϕ : F → P1 be an elliptic fibration on a rational
surfaceF which admits a sectionE and relative minimal in the sense that no
fibre contains a(−1)-curve. It follows from the theory of elliptic surfaces that
−KF is the divisor class of a fibre andE is a (−1)-curve. Blowing downE,
we obtain a rational surfaceS with K2

S = 1. SinceKF is obviously nef, we
obtain thatKS is nef, soS is a weak del Pezzo surface of degree 1.

Let ϕ : F → P1 be a rational elliptic surface with a sectionE. The section
E defines a rational pointe on a generic fibreFη, considered as a curve over
the functional fieldK of the base of the fibration. It is a smooth curve of genus
1, so it admits a group law with the zero equal to the pointe. It follows from
the theory of relative minimal models of surfaces that any automorphism ofFη
overK extends to a biregular automorphism ofF over P1. In particular, the
negation automorphismx → −x extends to an automorphism ofF fixing the
curveE. Its descent to the blowing down ofE is the Bertini involution.

LetD be a Dynkin curve onS. The pointt0 cannot lie onD. In fact, other-
wise the proper transformR′ of a component ofD that containst0 is a(−3)-
curve onF . However,−KF is nef onF , henceKF · R′ ≤ 0 contradicting
the adjunction formula. This implies that the preimageτ∗(D) of D on F is
a Dynkin curve contained in a fibre. The whole fibre is equal to the union of
τ∗(D) + R, whereR is a (−2)-curve intersecting the zero sectionE. Ko-
daira’s classification of fibres of elliptic fibrations shows that the intersection
graph of the irreducible components of each reducible fibre is equal to one of
the extended Coxeter-Dynkin diagrams.

The classification of Dynkin curves on a weak del Pezzo surfaces of degree
1 gives the classification of all possible collections of reducible fibres on a
rational elliptic surface with a section. The equation of the anticanonical model
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in P(1, 1, 2, 3)

t23 + t32 + f4(t0, t1)t2 + f6(t0, t1) = 0, (8.25)

after dehomogenizationt = t1/t0, x = t2/t
2
0, y = t3/t

3
0, becomes theWeier-

strass equationof the elliptic surface

y2 + x3 + a(t)x+ b(t) = 0.

The classification of all possible singular fibres of rational elliptic surfaces
(not necessary reducible) in terms of the Weierstrass equation was done by
several people, e.g. [476].

8.8.4 Automorphisms of del Pezzo surfaces of degree 1

Let S be a nonsingular del Pezzo surface of degree 1. We identify it with its
anticanonical model (8.25). The vertex ofQ has coordinates[0, 0, 1] and its
preimage in the cover consists of one point[0, 0, 1, a], wherea2 + 1 = 0 (note
that[0, 0, 1, a] and[0, 0, 1,−a] represent the same point inP(1, 1, 2, 3). This is
the base point of| −KS |. The members of| −KS | are isomorphic to genus 1
curves with equationsy2 +x3 +f4(t0, t1)x+f6(t0, t1) = 0. Our groupḠ acts
on P1 via a linear action on(t0, t1). The locus of zeros of∆ = 4f3

4 + 27f2
6

is the set of points inP1 such that the corresponding genus 1 curve is singular.
It consists ofa simple roots andb double roots. The zeros off4 are either
common zeros withf6 and∆, or represent nonsingular equianharmonic elliptic
curves. The zeros off6 are either common zeros withf4 and∆, or represent
nonsingular harmonic elliptic curves. The groupḠ leaves both sets invariant.

Recall thatḠ is determined up to conjugacy by its set of points inP1 with
non-trivial stabilizers. IfḠ is not cyclic, then there are three orbits in this set of
cardinalitiesn/e1, n/e2, n/e3, wheren = #Ḡ and(e1, e2, e3) are the orders
of the stabilizers. LetΓ be a finite noncyclic subgroup of PGL(2). We have the
following possibilities:

(i) Γ = D2k, n = 2k, (e1, e2, e3) = (2, 2, k);
(ii) Γ = A4, n = 12, (e1, e2, e3) = (2, 3, 3);
(iii) Γ = S4, n = 24, (e1, e2, e3) = (2, 3, 4);
(iv) Γ = A5, n = 60, (e1, e2, e3) = (2, 3, 5).

If Γ̄ is a cyclic group of ordern, there are 2 orbits of cardinality 1.
The polynomialsf4 andf6 are projective invariants of̄G on P1, i.e. their

sets of zeros are invariant with respect to the group action. Each orbit defines
a binary form (the orbital form) with the set of zeros equal to the orbit. One
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can show that any projective invariant is a polynomial in orbital forms. This
immediately implies that̄G 6∼= A5 and if Ḡ ∼= S4, thenf4 = 0.

We choose to represent̄G by elements of SL(2), i.e. we consider̄G as a
quotient of a binary polyhedral subgroupG ⊂ SL(2) by its intersection with
the center of SL(2). A projective invariant ofḠ becomes a relative invariant
of G, i.e. elements ofG leave the line spanned by the form invariant. Each
relative invariant defines a character ofG defined by

σ∗(f) = χ(σ)f.

We use the description of relative invariants and the corresponding characters
of G from [586]. This allows us to list all possible polynomialsf4 andf6.

The following is the list of generators of the groups̄G, possible relative
invariantsf4, f6 and the corresponding character.

We use that a multiple root off6 is not a root off4 (otherwise the surface is
singular). In the followingεk will denote a primitivek-th root of unity.

Case 1: Ḡ is cyclic of ordern. If n is odd (even), we choose a generator
σ given by the diagonal matrix diag[εn, ε−1

n ] (diag[ε2n, ε−1
2n ]). Any monomial

ti0t
j
1 is a relative invariant withχ(σ) = εi−jn if n is odd andχ(σ) = εi−j2n if n

is even. In the next Table we list relative invariants which are not monomials.

n f4 χ(σ) f6 χ(σ)
2 at40 + bt20t

2
1 + ct41 1 at60 + t20t

2
1(bt

2
0 + ct21) + dt61 -1

t0t1(at20 + bt21) -1 t0t1(at40 + bt20t
2
1 + ct41) 1

3 t0(at30 + bt31) ε3 at60 + bt30t
3
1 + ct61 1

t1(at30 + bt31) ε23 t0t
2
1(at30 + bt31) ε23

t20t1(at30 + bt31) ε3
4 at40 + bt41 -1 t20(at40 + bt41) -i

t0t1(at40 + bt41) -1
t21(at40 + bt41) i

5 t0(at50 + bt51) ε5
t1(at50 + bt51) ε45

6 at60 + bt61 -1

Table 8.11Relative invariants:cyclic group

Case 2: Ḡ = Dn is a dihedral group of ordern = 2k. It is generated by two
matrices

σ1 =
(
ε2k 0
0 ε−1

2k

)
, σ2 =

(
0 i

i 0

)
.
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k f4 χ(σ1) χ(σ2)
2 a(t40 + t41) + bt20t

2
1 1 1

t0t1(t
2
0 − t21) -1 -1

t40 − t41 1 -1
t0t1(t

2
0 + t21) -1 1

3 t20t
2
1 1 1

4 t40 ± t41 -1 ±1
6 t20t

2
1 1 1

Table 8.12Relative invariants of degree 4:dihedral group

k f6 χ(σ1) χ(σ2)
2 t0t1

`
a(t40 + t41) + bt20t

2
1

´
1 -1

a(t60 + t61) + bt20t
2
1(t

2
0 + t21) -1 -1

a(t60 − t61) + bt20t
2
1(t

2
0 − t21) -1 1

t0t1(t
4
0 − t41) 1 1

3 t60 + t61 + at30t
3
1 1 -1

t60 − t61 1 1
4 t0t1(t

4
0 ± t41) -1 ∓1

6 t60 ± t61 -1 ∓1

Table 8.13Relative invariants of degree 6:dihedral group

Case 3: Ḡ = A4. It is generated by matrices

σ1 =
(
i 0
0 −i

)
, σ2 =

(
0 i

i 0

)
, σ3 =

1√
2

(
ε−1
8 ε−1

8

ε58 ε8

)
.

Up to the variable changet0 → it0, t1 → t1, we have only one case

f4 = t40 + 2
√
−3t20t

2
1 + t41, (χ(σ1), χ(σ2), χ(σ3) = (1, 1, ε3), (8.26)

f6 = t0t1(t40 − t41), (χ(σ1), χ(σ2), χ(σ3) = (1, 1, 1). (8.27)

Case 4: Ḡ = S4. It is generated by matrices

σ1 =
(
ε8 0
0 ε−1

8

)
, σ2 =

(
0 i

i 0

)
, σ3 =

1√
2

(
ε−1
8 ε−1

8

ε58 ε8

)
.

There is only one, up to a change of variables, orbital polynomial of degree
≤ 6. It is

f6 = t0t1(t40 − t41).

It is an invariant ofḠ. In this casef4 = 0.
In the next Theorem we list all possible groupsG′ = Aut(S)/〈β〉 and their

lifts G to subgroups of Aut(S). We extend the action of̄G on the coordinates
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t0, t1 to an action on the coordinatest0, t1, t2. Note that not all combinations
of (f4, f6) admit such an extension. For example, a common root off4 andf6
must be a simple root off6 since otherwise the surfaceS is singular.

In the following list, the vectora = (a0, a1, a2, a3) will denote the transfor-
mation[t0, t1, t2, t3] 7→ [a0t0, a1t1, a2t2, a3t3]. The Bertini transformationβ
corresponds to the vector(1, 1, 1,−1).

1. Cyclic groupsG′

(i) G′ = 2, G = 〈(1,−1, 1, 1), β〉 ∼= 22,

f4 = at40 + bt20t
2
1 + ct41, f6 = dt60 + et40t

2
1 + ft20t

4
1 + gt61.

(ii) G′ = 2, G = 〈(1,−1,−1, i)〉,

f4 = at40 + bt20t
2
1 + ct41, f6 = t0t1(dt40 + et20t

2
1 + ft41).

(iii) G′ = 3,G = 〈(1, ε3, 1,−1)〉 ∼= 6,

f4 = t0(at30 + bt31), f6 = at60 + bt30t
3
1 + ct61.

(iv) G′ = 3, G = 〈(1, ε3, ε3,−1)〉,

f4 = t20t
2
1, at60 + bt30t

3
1 + ct61.

(v) G′ = 3, G = 6, a = (1, 1, ε3,−1),

f4 = 0.

(vi) G′ = 4, G = 〈(i, 1,−1, i), β〉 ∼= 4× 2,

f4 = at40 + bt41, f6 = t20(ct
4
0 + dt41).

(vii) G′ = 4, G = 〈(i, 1,−i,−ε8)〉 ∼= 8,

f4 = at20t
2
1, f6 = t0t1(ct40 + dt41),

(viii) G′ = 5, G = 〈(1, ε5, 1,−1)〉 ∼= 10,

f4 = at40, f6 = t0(bt50 + t51).

(ix) G′ = 6, G = 〈(1, ε6, 1, 1), β〉 ∼= 2× 6.

f4 = t40, f6 = at60 + bt61.

(x) G′ = 6, G = 〈(ε6, 1, ε23, 1), β〉 ∼= 2× 6,

f4 = t20t
2
1, f6 = at60 + bt61.

(xi) G′ = 6, G = 〈(−1, 1, ε3, 1), β〉 ∼= 2× 6,

f4 = 0, f6 = dt60 + et40t
2
1 + ft20t

4
1 + gt61,
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(xii) G′ = 10, G = 〈(1, ε10,−1, i)〉 ∼= 20,

f4 = at40, f6 = t0t
5
1.

(xiii) G′ = 12, G = 〈(ε12, 1, ε23,−1), β〉 ∼= 2× 12,

f4 = at40, f6 = t61.

(xiv) G′ = 12, G = 〈(i, 1, ε12, ε8)〉 ∼= 24,

f4 = 0, f6 = t0t1(t40 + bt41).

(xv) G′ = 15, G = 〈(1, ε5, ε3, ε30)〉 ∼= 30,

f4 = 0, f6 = t0(t50 + t51).

2. Dihedral groups

(i) G′ = 22, G = D8,

f4 = a(t40 + t41) + bt20t
2
1, f6 = t0t1[c(t40 + t41) + dt20t

2
1],

σ1 : [t0, t1, t2, t3] 7→ [t1,−t0, t2, it3],
σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ4
1 = σ2

2 = 1, σ2
1 = β, σ2σ1σ

−1
2 = σ−1

2 .

(ii) G′ = 22, G = 2.D4,

f4 = a(t40 + t41) + bt20t
2
1, f6 = t0t1(t40 − t41),

σ1 : [t0, t1, t2, t3] 7→ [t0,−t1,−t2, it3],
σ2 : [t0, t1, t2, t3] 7→ [t1, t0,−t2, it3],

σ2
1 = σ2 = (σ1σ2)2 = β.

(iii) G′ = D6, G = D12,

f4 = at20t
2
1, f6 = t60 + t61 + bt30t

3
1,

σ1 : [t0, t1, t2, t3] 7→ [t0, ε3t1, ε3t2,−t3],
σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ3
1 = β, σ2

2 = 1, σ2σ3σ
−1
2 = σ−1

1 .
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(v) G′ = D8, G = D16,

f4 = at20t
2
1, f6 = t0t1(t40 + t41),

σ1 : [t0, t1, t2, t3] 7→ [ε8t0, ε−1
8 t1,−t2, it3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3],

σ4
1 = β, σ2

2 = 1, σ2σ1σ
−1
2 = σ−1

1 .

(vi) G′ = D12, G = 2.D12,

f4 = at20t
2
1, f6 = t60 + t61,

σ1 : [t0, t1, t2, t3] 7→ [t0, ε6t1, ε23t2, t3],

σ2 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3], σ3 = β.

We have

σ6
1 = σ2

2 = σ3
3 = 1, σ2σ1σ

−1
2 = σ−1

1 σ3.

3. Other groups

(i) G′ = A4, G = 2.A4,

f4 = t40 + 2
√
−3t20t

2
1 + t42, f6 = t0t1(t40 − t41),

σ1 =


i 0 0 0
0 −i 0 0
0 0 1 0
0 0 0 1

 , σ2 =


0 i 0 0
i 0 0 0
0 0 1 0
0 0 0 1

 ,

σ =
1√
2


ε−1
8 ε−1

8 0 0
ε58 ε8 0 0
0 0

√
2ε3 0

0 0 0
√

2

 .

(ii) G′ = 3×D4, G = 3×D8,

f4 = 0, f6 = t0t1(t40 + at20t
2
1 + t41).

(iii) G′ = 3×D6, G = 6.D6
∼= 2× 3.D6,

f4 = 0, f6 = t60 + at30t
3
1 + t61.
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It is generated by

σ1 : [t0, t1, t2, t3] 7→ [t0, t1, ε3t2, t3],

σ2 : [t0, t1, t2, t3] 7→ [t0, ε3t1, t2, t3],

σ3 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3].

They satisfyσ3 · σ2 · σ−1
3 = σ−1

2 σ4
1 .

(iv) G′ = 3×D12, G = 6.D12,

f4 = 0, f6 = t60 + t61.

It is generated by

σ1 : [t0, t1, t2, t3] 7→ [t0, t1, ε3t2, t3],

σ2 : [t0, t1, t2, t3] 7→ [t0, ε6t1, t2, t3],

σ3 : [t0, t1, t2, t3] 7→ [t1, t0, t2, t3].

We haveσ3 · σ2 · σ−1
3 = σ−1

2 σ1.

(v) G′ = 3×S4, G = 3× 2.S4,

f4 = 0, f6 = t0t1(t40 − t41),

σ1 =

ε8 0 0 0

0 ε−1
8 0

0 0 −1 0
0 0 0 i

 , σ2 =

0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 i

,

σ3 =
1√
2

ε−1
8 ε−1

8 0 0
ε58 ε8 0 0

0 0
√

2 0

0 0 0
√

2

, σ4 =

1 0 0 0
0 1 0 0
0 0 ε3 0
0 0 0 1

.

The following Table gives a list of the full automorphism groups of del
Pezzo surfaces of degree 1.
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Type Order Structure f4 f6

I 144 3× (T : 2) 0 t0t1(t40 − t41)

II 72 3× 2D12 0 t60 + t61
III 36 6×D6 0 t60 + at30t31 + t61
IV 30 30 0 t0(t50 + t51)

V 24 T a(t40 + 2
√
−3t20t21 + t41) t0t1(t40 − t41)

VI 24 2D12 at20t21 t60 + t61
VII 24 2× 12 t40 t61
VIII 20 20 t40 t0t51
IX 16 D16 at20t21 t0t1(t40 + t41)

X 12 D12 t20t21 t60 + at30t31 + t61
XI 12 2× 6 0 g3(t20, t21)

XII 12 2× 6 t40 at60 + t61
XIII 10 10 t40 t0(at50 + t51)

XIV 8 Q8 t40 + t41 + at20t21 bt0t1(t40 − t41)

XV 8 2× 4 at40 + t41 t20(bt40 + ct41)

XVI 8 D8 t40 + t41 + at20t21 t0t1(b(t40 + t41) + ct20t21)

XVII 6 6 0 f6(t0, t1)

XVIII 6 6 t0(at30 + bt31) ct60 + dt30t31 + t61
XIX 4 4 g2(t20, t21 t0t1f2(t20, t21)

XX 4 22 g2(t20, t21 g3(t20, t21)

XXI 2 2 f4(t0, t1) f6(t0, t1)

Table 8.14Groups of automorphisms of del Pezzo surfaces of degree 1

The parameters here satisfy some conditions in order the different tips do
not overlap.

Exercises

8.1Show that a del Pezzo surface of degree 8 inP8 isomorphic to a quadric is given by
the linear system of plane quartic curves with two fixed double points.

8.2Let S be a weak del Pezzo surface of degree 6. Show that its anticanonical model is
isomorphic to a hyperplane section of the Segre varietys1,1,1(P1 × P1 × P1) in P7.

8.3Show that a general point inP6 is contained in three secants of a del Pezzo surface
of degree 6.

8.4Prove that a del Pezzo surface of degree6 in P6 has the property that all hyperplanes
intersecting the surface along a curve with a singular point of multiplicity≥ 3 have a
common point inP6. According to [627] this distinguishes this surface among all other
smooth projections of the Veronese surfaceV2

3 ⊂ P9 to P6 (see [634]).

8.5Describe all weak del Pezzo surfaces which are toric varieties (i.e. contain an open
Zariski subset isomorphic to the torus(C∗)2 such that each translation of the torus
extends to an automorphism of the surface).

8.6 Show that a del Pezzo surface of degree 5 embeds intoP1 × P2 as a hypersurface
of bidegree(1, 2).
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8.7 Show that a canonical curve of genus 6 inP5 lies on a unique del Pezzo quintic
surface [29], [579].

8.8Consider a nonsingular del Pezzo surfaceS of degree 5 inP5 as the variety of lines
intersecting 5 planes spanning a 3-dimensional space in the Plücker space. Prove that
the pencil of hyperplanes through each of the planes cuts out onS a pencil of conics.

8.9Show that the Petersen graph of 10 lines on a del Pezzo quintic surface contains 12
pentagons and each pentagon represents 5 lines contained in a hyperplane.

8.10 Show that the union of tangent planes to a nonsingular del Pezzo surfaceS of
degreed ≥ 5 in Pd not isomorphic to a quadric is a hypersurface of degree4(d − 3)
which is singular alongS with multiplicity 4 [223],[21], vol. 6, p.275.

8.11Show that the quotient of a nonsingular quadric by an involution with 4 isolated
fixed points is isomorphic to a quartic del Pezzo surface with 4 nodes.

8.12 A Dupont cyclide surfaceis a quartic cyclide surface with 4 isolated singular
points. Find an equation of such a surface.

8.13Let S be a del Pezzo surface of degree 4 obtained by blowing up 5 points in the
plane. Show that there exists a projective isomorphism from the conic containing the
five points and the pencil of quadrics whose base locus is an anticanonical model ofS
such that the points are sent to singular quadrics.

8.14Show that the Wiman pencil of 4-nodal plane sextics contains two 10-nodal ratio-
nal curves [223].

8.15Show that the linear system of quadrics inP3 with 8 − d base points in general
position mapP3 onto a 3-fold inPd+1 of degreed. Show that a del Pezzo surface of
degreed ≤ 8 in Pd is projectively equivalent to a hyperplane section of this threefold.

8.16Show that the projection of a del Pezzo surface of degreed in Pd from a general
point in the space is a surface of degreed in Pd−1 with the double curve of degree
d(d− 3)/2.

8.17Compute the number of(−1)-curves on a weak del Pezzo surfaces of degree 1 or
2.

8.18Let X be a Bordiga surface obtained by the blow-up of 10 general points in the
plane and embedded inP4 by the linear system of quartic curves passing through the
ten points. Show thatX is a OADP surface.

8.19 Let X be a rational elliptic surface. Show that any pair of two disjoint sections

defines an involution onX whose fixed locus is a nonsingular curve of genus 3 and the

quotient by the involution is isomorphic to the ruled surfaceF1.

Historical Notes

As the name suggests, P. del Pezzo was the first who laid the foundation of the
theory. In his paper of 1887 [178] he proves that a non-ruled nondegenerate
surface of degreed in Pd can be birationally projected to a cubic surface inP3

fromd−3 general points on it. He showed that the images of the tangent planes
at the points are skew lines on the cubic surface and deduced from this that
d ≤ 9. He also gave a blow-up model of del Pezzo surfaces of degreed ≥ 3,
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found the number of lines and studied some singular surfaces. A realization of
a del Pezzo surface of degree 5 as the variety of planes inP4 intersecting 5
planes is due to C. Segre [567]. He called the five planes the associated planes.
The quartic cyclides inP3 with a nodal conic were first studied in 1864 by G.
Darboux[167] and M. Moutard [436] and a year later by E. Kummer [391]. The
detailed exposition of Darboux’ work can be found in [170], [171]. Some spe-
cial types of these surfaces were considered much earlier by Ch. Dupin [210].
Kummer was the first to observe the existence of five quadratic cones whose
tangent planes cut out two conics on the surface (theKummer cones). They
correspond to the five singular quadrics in the pencil defining the correspond-
ing quartic surface inP4. A. Clebsch finds a plane representation of a quartic
cyclide by considering a web of cubics through five points in the plane [121].
He also finds in this way the configuration of 16 lines previously discovered
by Darboux and proves that the Galois group of the equation for the 16 lines is
isomorphic to24 o S5. An ‘epoch-making memoir’ (see [573], p. 141) of C.
Segre [567] finishes the classification of quartic cyclides by considering them
as projections of a quartic surface inP4. Jessop’s book [355] contains a good
exposition of the theory of singular quartic surfaces including cyclides. At the
same time he classified the anticanonical models of singular del Pezzo surfaces
of degree 4 in terms of pencil of quadrics they are defined by. The Segre sym-
bol describing a pencil of quadratic forms was introduced earlier by A. Weiler
[650]. The theory of canonical forms of pencils of quadrics was developed by
K. Weierstrass [649] based an earlier work of J. Sylvester [602]. J. Steiner was
probably the first who related 7 points in the plane with curves of genus 3 by
proving that the locus of singular points of the net of cubic curves is a plane
sextic with nodes at the seven points [592]. A. Clebsch should be considered as
a founder of the theory of del Pezzo surfaces of degree 2. In his memoir [125]
on rational double plane he considers a special case of double planes branched
along a plane quartic curve. He shows that the preimages of lines are cubic
curves passing through a fixed set of 7 points. He identifies the branch curve
with the Steiner sextic and relates the Aronhold set of 7 bitangents with the
seven base points. Although C. Geiser was the first to discover the involution
defined by the double cover, he failed to see the double plane construction.

E. Bertini in [40], while describing his birational involution of the plane,
proves that the linear system of curves of degree 6 with eight double base
points has the property that any curve from the linear system passing through
a general pointx must also pass through a unique pointx′ (which are in the
Bertini involution). He mentions that the same result was proved independently
by L. Cremona. This can be interpreted by saying that the linear system defines
a rational map of degree 2 onto a quadric surface. Bertini also shows that the
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set of fixed points of the involution is a curve of degree 9 with triple points at
the base points.

The classification of double singular points on algebraic surfaces inP3 started
from the work of G. Salmon [530] who introduced the following notationC2

for an ordinary node,Bk for binode(the tangent cone is the union of two dif-
ferent planes) which depend on how the intersection of the planes intersect the
surface, anunodeUk with tangent cone being a double plane. The indices here
indicates the differencek between the degree of the dual surface and the dual
of the nonsingular surface of the same degree. This nomenclature can be ap-
plied to surfaces in spaces of arbitrary dimension if the singularity is locally
isomorphic to the above singularities. For del Pezzo surfaces the defectk can-
not exceed8 and all corresponding singularities must be rational double points
of typesA1 = C2,Ak−1 = Bk,Dk−2 = Uk, k = 6, 7, E6 = U8. Much later P.
Du Val [213] have characterized these singularities as ones which do not affect
the conditions on adjunctions, the conditions which can be applied to any nor-
mal surface. He showed that each RDP is locally isomorphic to either a node
C2, or binodeBk, or an unodeUk, or other unnodesU8∗ = E6, U

∗
8 = E7 and

E∗10 = E8 (he renamedU8 withE∗8 ). A modern treatment of RDP singularities
was given by M. Artin [16].

In the same series of papers P. Du Val classifies all possible singularities
of anticanonical models of weak del Pezzo surfaces of any degree and relates
them to Coxeter’s classification of finite reflection groups. The relationship of
this classification to the study of the singular fibres of a versal deformation
of a simple elliptic singularities was found by J. Mérindol [424], H. Pinkham
[480], [632], and E. Looijenga (unpublished).

In a fundamental paper of G. Timms [614] one can find a detailed study of
the hierarchy of del Pezzo surfaces obtained by projections from a Veronese
surface of degree 9. In this way he find all possible configurations of lines and
singularities. Possible projections of a nonsingular del Pezzo surface from a
point outside the surface were studied by H. Baker [21], vol. 6, p. 275.

The Weyl groupW (E6) andW (E7) as the Galois group of 27 lines on
a cubic surface and the group of 28 bitangents on a plane quartic were first
studied by C. Jordan [357]. These groups are discussed in many classical text-
books in algebra (e.g. [648], B. II, [ 182]). S. Kantor [362] realized the Weyl
groupsW (En) as groups of linear transformations preserving a quadratic form
of signature(1, n) and a linear form. A Coble [129], Part II, was the first who
showed that the group is generated by the permutations group and one addi-
tional involution. So we should credit him the discovery of the Weyl groups
as reflection groups. Apparently independently of Coble, this fact was redis-
covered by P. Du Val [212]. We refer to [54] for the history of Weyl groups,
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reflection groups and root systems. These parallel directions of study of Weyl
groups has been reconciled only recently.

The Gosset polytopes were discovered in 1900 by T. Gosset [284]. The no-
tation n21 belongs to him. They had been later rediscovered by E. Elte and
H.S.M. Coxeter (see [152]) but only Coxeter realized that their groups of sym-
metries are reflection groups. The relationship between the Gosset polytopes
n21 and curves on del Pezzo surfaces of degree5 − n was found by Du Val
[212]. In the case ofn = 2, it goes back to [547]. The fundamental paper of
Du Val is the origin of a modern approach to the study of del Pezzo surfaces
by means of root systems of finite-dimensional Lie algebras [179], [417].

We refer to modern texts on del Pezzo surfaces [573], [417], [179], [384].
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Cubic surfaces

9.1 Lines on a nonsingular cubic surface

9.1.1 More about theE6-lattice

Let us study the latticeI1,6 and its sublatticeE6 in more details.

Definition 9.1.1 A sixer in I1,6 is a set of 6 mutually orthogonal exceptional
vectors inI1,6.

An example of a sixer is the set{e1, . . . , e6}.

Lemma 9.1.1 Let {v1, . . . , v6} be a sixer. Then there exists a unique rootα

such that

(vi, α) = 1, i = 1, . . . , 6.

Moreover,(w1, . . . , w6) = (rα(v1), . . . , rα(v6)) is a sixer satisfying

(vi, wj) = 1− δij .

The root associated to(w1, . . . , w6) is equal to−α.

Proof The uniqueness is obvious sincev1, . . . , v6 are linearly independent,
so no vector is orthogonal to all of them. Let

v0 =
1
3
(−k6 + v1 + · · ·+ v6) ∈ R1,6.

Let us show thatv0 ∈ I1,6. SinceI1,6 is a unimodular lattice, it suffices to
show that(v0, v) is an integer for allv ∈ I1,6. Consider the sublatticeN of I1,6

spanned byv1, . . . , v6,k6. We have(v0, vi) = 0, i > 0, and(v0,k6) = −3.
Thus(v0, I1,6) ⊂ 3Z. By computing the discriminant ofN , we find that it is
equal to9. By Lemma8.2.1N is a sublattice of index 3 ofI1,6. Hence for any
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x ∈ I1,6 we have3x ∈ N . This shows that

(v0, x) =
1
3
(v0, 3x) ∈ Z.

Now let us set

α = 2v0 − v1 − . . .− v6. (9.1)

We check thatα is a root, and(α, vi) = 1, i = 1, . . . , 6.
Sincerα preserves the symmetric bilinear form,{w1, . . . , w6} is a sixer. We

have

(vi, wj) =
(
vi, rα(vj)

)
=
(
vi, vj + (vj , α)α

)
= (vi, vj) + (vi, α)(vj , α)

= (vi, vj) + 1 = 1− δij .

Finally, we check that

(rα(vi),−α) =
(
r2α(vi),−rα(α)

)
= −(vi, α) = 1.

The two sixes with opposite associated roots form adouble-sixof excep-
tional vectors.

We recall the list of exceptional vectors inE6 in terms of the standard or-
thonormal basis inI1,6.

ai = ei, i = 1, . . . , 6; (9.2)

bi = 2e0 − e1 − . . .− e6 + ei, i = 1, . . . , 6; (9.3)

cij = e0 − ei − ej , 1 ≤ i < j ≤ 6. (9.4)

Theorem 9.1.2 The following is the list of 36 double-sixes with correspond-
ing associated roots:

1 of typeD

a1 a2 a3 a4 a5 a6 αmax

b1 b2 b3 b4 b5 b6 −αmax
,

15 of typeDij

ai bi cjk cjl cjm cjn αij

aj bj cik cil cim cin −αij
,

20 of typeDijk

ai aj ak clm cmn cln αijk

cjk cik cij bn bl bm −αijk
.
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Hereαmax is the maximal root of the root systemα1, . . . ,α6 equal to2e0 −
e1−. . .−e6. The reflection with the respect to the associated root interchanges
the rows preserving the order.

Proof We have constructed a map from the set of sixes (resp. double-sixes)
to the set of roots (resp. pairs of opposite roots). Let us show that no two sixes
{v1, . . . , v6} and{w1, . . . , w6} can define the same root. Sincew1, . . . , w6,k6

span a sublattice of finite index inI1,6, we can write

vi =
6∑
j=1

ajwj + a0k6 (9.5)

with someaj ∈ Q. Assume thatvi 6= wj for all j. Taking the inner product of
both sides withα, we get

1 = a0 + · · ·+ a6. (9.6)

Taking the inner product with−k6, we get1 = a1 + · · · + a6 − 3a0, hence
a0 = 0. Taking the inner product withwj , we obtain−aj = (vi, wj). Applying
Proposition8.2.17, we getaj ≤ −1. This contradicts (9.6). Thus eachvi is
equal to somewj .

The verification of the last assertion is straightforward.

Proposition 9.1.3 The groupW (E6) acts transitively on sixes and double-
sixes. The stabilizer subgroup of a sixer (resp. double-six) is of order6! (2 ·6!).

Proof We know that the Weyl groupW (EN ) acts transitively on the set of
roots and the number of sixes is equal to the number of roots. This shows that
all sixes form one orbit. The stabilizer subgroup of the sixer(a1, . . . ,a6) (and
hence of a root) is the groupS6. The stabilizer of the double-sixD is the
subgroup〈S6, sα0〉 of order2.6!.

One can check that two different double-sixes can share either 4 or 6 excep-
tional vectors. More precisely, we have

#D ∩Dij = 4, #D ∩Dijk = 6,

#Dij ∩Dkl =

{
4 if #{i, j} ∩ {k, l} = 0,

6 otherwise;

#Dij ∩Dklm =

{
4 if #{i, j} ∩ {k, l,m} = 0, 2,

6 otherwise;
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#Dijk ∩Dlmn =

{
4 if #{i, j} ∩ {k, l} = 1,

6 otherwise.

A pair of double-sixes is called asyzygetic duad(resp.azygetic duad) if they
have 4 (resp. 6) exceptional vectors in common.

The next Lemma is an easy computation.

Lemma 9.1.4 Two double-sixes with associated rootsα, β form a syzygetic
duad if and only if(α, β) ∈ 2Z.

This can be interpreted as follows. Consider the vector space

V = E6/2E6
∼= F6

2 (9.7)

equipped with the quadratic form

q(x+ 2E6) = 1
2 (x, x) mod 2.

Notice that the latticeE6 is an even lattice. So, the definition makes sense. The
associated symmetric bilinear form is the symplectic form

(x+ 2E6, y + 2E6) = (x, y) mod 2.

Each pair of opposite roots±α defines a vectorv in V with q(v) = 1. It
is easy to see that the quadratic formq has Arf-invariant equal to 1 and hence
vanishes on 28 vectors. The remaining 36 vectors correspond to 36 pairs of
opposite roots or, equivalently, double-sixes.

Note that we have a natural homomorphism of groups

W (E6) ∼= O(6,F2)− (9.8)

obtained from the action ofW (E6) onV . It is an isomorphism. This is checked
by verifying that the automorphismv 7→ −v of the latticeE6 does not belong
to the Weyl groupW and then comparing the known orders of the groups.

It follows from above that an syzygetic pair of double-sixes corresponds to
orthogonal vectorsv, w. Sinceq(v + w) = q(v) + q(w) + (v, w) = 0, we see
that each nonzero vector in the isotropic plane spanned byv, w comes from a
double-six.

A triple of pairwise syzygetic double-sixes is called asyzygetic triadof
double-sixes. They span an isotropic plane. Similarly, we see that a pair of
azygetic double-sixes spans a non-isotropic plane inV with three nonzero vec-
tors corresponding to a triple of double-sixes which are pairwise azygetic. It is
called anazygetic triadof double-sixes.

We say that three azygetic triads form aSteiner complex of triads of double-
sixesif the corresponding planes inV are mutually orthogonal. It is easy to see
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that an azygetic triad contains 18 exceptional vectors and thus defines a set of 9
exceptional (the omitted ones). The set of 27 exceptional vectors omitted from
three triads in a Steiner complex is equal to the set of 27 exceptional vectors in
the latticeI1,6. There are 40 Steiner complexes of triads:

10 of type

Γijk,lmn = (D,Dijk, Dlmn), (Dij , Dik, Djk), (Dlm, Dln, Dmn),

30 of type

Γij,kl,mn = (Dij , Dikl, Djkl), (Dkl, Dkmn, Dlmn), (Dmn, Dmij , Dnij).

Theorem 9.1.5 The Weyl groupW (E6) acts transitively on the set of triads
of azygetic double-sixes with stabilizer subgroup isomorphic to the groupS3×
(S3 oS2) of order 432. It also acts transitively on Steiner complexes of triads
of double-sixes. A stabilizer subgroup is a maximal subgroup ofW (E6) of
order1296 isomorphic to the wreath productS3 oS3.

Proof We know that a triad of azygetic double-sixes corresponds to a pair
of roots (up to replacing the root with its negative)α, β with (α, β) = ±1.
This pair spans a root sublatticeQ of E6 of typeA2. Fix a root basis. Since
the Weyl group acts transitively on the set of roots, we findw ∈ W such that
w(α) = αmax. Since(w(β),αmax) = (β, α) = 1, we see thatw(β) = ±αijk

for somei, j, k. Applying elements fromS6, we may assume thatw(β) =
−α123. Obviously, the rootsα12,α23,α45,α56 are orthogonal tow(α) and
w(β). These roots span a root sublattice of type2A2. Thus we obtain that the
orthogonal complement ofQ in E6 contains a sublattice of type2A2 ⊥ A2.
Since|disc(A2)| = 3, it follows easily from Lemma8.2.1thatQ⊥ is a root
lattice of typeA2 + A2 (2A2, for short). Obviously, any automorphism which
leaves the two rootsα, β invariant leaves invariant the sublatticeQ and its or-
thogonal complementQ⊥. Thus the stabilizer contains a subgroup isomorphic
toW (A2)×W (A2)×W (A2) and the permutation of order 2 which switches
the two copies ofA2 in Q⊥. SinceW (A2) ∼= S3 we obtain that a stabilizer
subgroup contains a subgroup of order2 · 63 = 432. Since its index is equal to
120, it must coincide with the stabilizer group.

It follows from above that a Steiner complex corresponds to a root sublattice
of type3A2 contained inE6. The groupW (A2)oS3 of order3·432 is contained
in the stabilizer. Since its index is equal to 40, it coincides with the stabilizer.

Remark9.1.1 The notions of syzygetic (azygetic) pairs, triads and a Steiner
complex of triads of double-sixes is analogous to the notions of syzygetic
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(azygetic) pairs, triads, and a Steiner complex of bitangents of a plane quar-
tic (see Chapter 6). In both cases we deal with a 6-dimensional quadratic space
F6

2. However, they have different Arf invariant.

A triple v1, v2, v3 of exceptional vectors is called atritangent trio if

v1 + v2 + v3 = −k6.

If we view exceptional vectors as cosets inI1,6/Zk6, this is equivalent to say-
ing that the cosets add up to zero.

It is easy to list all tritangent trios.

Lemma 9.1.6 There are 45 tritangent trios:
30 of type

ai,bj , cij , i 6= j,

15 of type

cij , ckl, cmn, {i, j} ∪ {k, l} ∪ {m,n} = {1, 2, 3, 4, 5, 6}.

Theorem 9.1.7 The Weyl group acts transitively on the set of tritangent trios.

Proof We know that the permutation subgroupS6 of the Weyl group acts on
tritangent trios by permuting the indices. Thus it acts transitively on the set of
tritangent trios of the same type. Now consider the reflectionw with respect to
the rootα123. We have

rα123(a1) = e1 + α123 = e0 − e3 − e4 = c34,

rα123(b2) = (2e0 − e1 − e3 − e4 − e5 − e6)−α123 = e0 − e5 − e6 = c56,

rα123(c12) = e0 − e1 − e2 = c12.

Thusw(a1,b2, c12) = (c34, c56, c12). This proves the assertion.

Remark9.1.2 The stabilizer subgroup of a tritangent trio is a maximal sub-
group ofW (E6) of index 45 isomorphic to the Weyl group of the root system
of typeF4.

Let Π1 = {v1, v2, v3} andΠ2 = {w1, w2, w3} be two tritangent trios with
no common elements. We have

(vi, w1 + w2 + w3) = −(vi,k6) = 1,

and by Proposition8.2.17, (vi, wj) ≥ 0. This implies that there exists a unique
j such that(vi, wj) = 1. After reordering, we may assumej = i. Let ui =
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−k6 − vi −wi. Sinceu2
i = −1, (ui, k6) = −1, the vectorui is an exceptional

vector. Since

u1 + u2 + u3 =
3∑
i=1

(−k6 − vi − wi) = −3k6 −
3∑
i=1

vi −
3∑
i=1

wi = −k6,

we get a new tritangent trioΠ3 = (u1, u2, u3). The unionΠ1 ∪ Π2 ∪ Π3

contains 9 linesvi, wi, ui, i = 1, 2, 3. There is a unique triple of tritangent
trios which consists of the same 9 lines. It is formed by tritangent triosΠ′i =
(vi, wi, ui), i = 1, 2, 3. Any pair of triples of tritangent trios which consists of
the same set of 9 lines is obtained in this way. Such a pair of triples of tritangent
trios is called a pair ofconjugate triads of tritangent trios.

We can list all conjugate pairs of triads of tritangent trios:

(I)
ai bj cij
bk cjk aj
cik ak bi

, (II)
cij ckl cmn
cln cim cjk
ckm cjn cil

, (III)
ai bj cij
bk al ckl
cik cjl cmn

.

(9.9)
Here a triad is represented by the columns of the matrix and its conjugate triad
by the rows of the same matrix. Altogether we have20 + 10 + 90 = 120
different triads.

There is a bijection from the set of pairs of conjugate triads to the set of
azygetic triads of double-sixes. The 18 exceptional vectors contained in the
union of the latter is the complementary set of the set of 9 exceptional vectors
defined by a triad in the pair. Here is the explicit bijection.

ai bj cij
bk cjk aj
cik ak bi

↔ Dij , Dik, Djk;

cij ckl cmn
cln cim cjk
ckm cjn cil

↔ D,Dikn, Djlm;

ai bj cij
bk al ckl
cik cjl cmn

↔ Dmn, Djkm, Djkn.

Recall that the set of exceptional vectors omitted from each triad entering in a
Steiner complex of triads of azygetic double-sixes is the set of 27 exceptional
vectors. Thus a Steiner complex defines three pairs of conjugate triads of tri-
tangent trios which contains all 27 exceptional vectors. We have 40 such triples
of conjugate pairs.
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Theorem 9.1.8 The Weyl group acts transitively on the set of 120 conjugate
pairs of triads of tritangent trios. A stabilizer subgroupH is contained in the
maximal subgroup ofW (E6) of index 40 realized as a stabilizer of a Steiner
complex. The quotient group is a cyclic group of order 3.

Proof This follows from the established bijection between pairs of conjugate
triads and triads of azygetic double-sixes and Theorem9.1.5. In fact it is easy
to see directly the transitivity of the action. It is clear that the permutation
subgroupS6 acts transitively on the set of pairs of conjugate triads of the
same type. Since the Weyl group acts transitively on the set of tritangent trios,
we can send a tritangent trio(cij , ckl, cmn) to a tritangent trio(ai,bj , cij). By
inspection, this sends a conjugate pair of type III to a pair of conjugate triads
of type I. Also it sends a conjugate pair of type II to type I or III. Thus all pairs
areW -equivalent.

Remark9.1.3 Note that each monomial entering into the expression of the
determinant of the matrix (9.9) expressing a conjugate pair of triads represents
three orthogonal exceptional vectors. If we take only monomials corresponding
to even permutations (resp. odd) we get a partition of the set of 9 exceptional
vectors into the union of 3 triples of orthogonal exceptional vectors such that
each exceptional vector from one triple has non-zero intersection with two
exceptional vectors from any other triple.

9.1.2 Lines and tritangent planes

Let S be an nonsingular cubic surface inP3. Fix a geometric markingφ :
I1,6 → Pic(S). We can transfer all the notions and the statements from the
previous subsection to the Picard lattice Pic(S). The image of an exceptional
vector is the divisor class of a line onS. So, we will identify exceptional vec-
tors with lines onS. We have 27 lines. A tritangent trio of exceptional vectors
defines a set of three coplanar lines. The plane containing them is called a
tritangent plane. We have 45 tritangent planes.

Thus we have 72 sixes of lines, 36 double-sixes and 40 Steiner complexes
of triads of double-sixes. Ife0, e1, . . . , e6 define a geometric marking, then we
can identify the divisor classesei with the exceptional curves of the blow-up
S → P2 of 6 pointsx1, . . . , x6 in general position. They correspond to the ex-
ceptional vectorsai. We identify the proper transforms of the conic through the
six points excluding thexi with the exceptional vectorbi. Finally, we identify
the line through the pointsxi andxj with the exceptional vectorcij . Under
the geometric marking the Weyl groupW (E6) becomes isomorphic to the in-
dex 2 subgroup of the isometry group of Pic(S) leaving the canonical class
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invariant (see Corollary8.2.13). It acts transitively on the set of lines, sixes,
double-sixes, tritangent planes, and on the set of conjugate pairs of triples of
tritangent planes.

I do not know any elementary geometric proof of the fact that any nonsingu-
lar cubic surface contains 27 lines. The first proofs of A. Cayley and G. Salmon
apply only to general nonsingular cubic surfaces. Without the assumption of
genericity, any proof I know uses the representation of the surface as the blow-
up of 6 points. For completeness sake, let us reproduce the original proof of
Cayley [77].

Theorem 9.1.9 A general nonsingular cubic surface contains 27 lines and
45 tritangent planes.

Proof First of all, let us show that any cubic surface contains a line. Consider
the incidence variety

X = {(S, `) ∈ |OP3(3)| ×G : ` ⊂ S}.

The assertion follows if we show that the first projection is surjective. It is
easy to see that the fibres of the second projections are linear subspaces of
codimension 4. ThusdimX = 4 + 15 = 19 = dim |OP3(3)|. To show the
surjectivity of the first projection, it is enough to find a cubic surface with only
finitely many lines on it. Let us consider the surfaceS given by the equation

t1t2t3 − t30 = 0.

Suppose a linè lies onS. Let [a0, a1, a2, a3] ∈ `. If a0 6= 0, thenai 6= 0, i 6=
0. On the other hand, every line hits the planesti = 0. This shows that̀ is
contained in the planet0 = 0. But there are only three lines onS contained in
this plane:ti = t0 = 0, i = 1, 2 and3. ThereforeS contains only 3 lines. This
proves the first assertion.

We already know that every cubic surfaceS = V (f) has at least one line.
Pick up such a linè0. Without loss of generality, we may assume that it is
given by the equation:

t2 = t3 = 0.

Thus

f = t2q0(t0, t1, t2, t3) + t3q1(t0, t1, t2, t3) = 0, (9.10)

whereq0 andq1 are quadratic forms. The pencil of planesΠλ,µ = V (λt2−µt3)
through the linè 0 cuts out a pencil of conics onS. The equation of the conic
in the planeΠλ,µ is

A00(λ, µ)t20 +A11(λ, µ)t21 +A22(λ, µ)t22+
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2A01(λ, µ)t0t1 + 2A12(λ, µ)t1t2 + 2A02(λ, µ)t0t2 = 0,

whereA00, A11, A01 are binary forms of degree 1,A02, A12 are binary forms
of degree 2 andA22 is a binary form of degree 3. The discriminant equation of
this conic is equal to ∣∣∣∣∣∣

A00 A01 A02

A01 A11 A12

A02 A12 A22

∣∣∣∣∣∣ = 0.

This is a homogeneous equation of degree 5 in variablesλ, µ. Thus we expect
5 roots of this equation which gives us 5 reducible conics. This is the tricky
point because we do not know whether the equation has 5 distinct roots. First,
we can exhibit a nonsingular cubic surface and a line on it and check that the
equation has indeed 5 distinct roots. For example, let us consider the cubic
surface

2t0t1t2 + t3(t20 + t21 + t22 + t23) = 0.

The equation becomesλ(λ4 − µ4) = 0. It has 5 distinct roots. This implies
that, for general nonsingular cubic surface, we have 5 reducible residual conics.
Note that no conic is a double line since otherwise the cubic surface is singular.

Thus each solution of the quintic equation defines a tritangent planeΠi of S
consisting of three lines, one of them is`0. Thus we found 11 lines onX: the
line `0 and5 pairs of lines̀ i, `

′
i lying in the planeΠi. Pick up some plane, say

Π1. We have 3 lines̀0, `1, `2 in Π1. Replacing̀ 0 by `1, and then bỳ 2, and
repeating the construction, we obtain 4 planes through`1 and 4 planes through
`2 not containing̀ 0 and each containing a pair of additional lines. Altogether
we found3 + 8 + 8 + 8 = 27 lines onS. To see that all lines are accounted
for, we observe that any line intersecting either`0, or `1, or `2 lies in one of the
planes we have considered before. So it has been accounted for. Now let` be
any line. We find a planeΠ through` that contains three lines̀, `′ and`′′ on
S. This plane intersects the plane containing`,0 `1, and`′1 along a line. This
line intersectsS at some point oǹ and on one of the lines̀0, `1, `′1. Thus`
intersects one of the lines̀0, `1, `′1 and has been accounted for.

It remains to count tritangent planes. Each line belongs to 5 tritangent planes,
each tritangent plane contains 3 lines. This easily gives that the number of tri-
tangent planes is equal to 45.

Remark9.1.4 To make the argument work for any nonsingular cubic sur-
face we may use that the number of singular conics in the pencil of conics
residual to a line determines the topological Euler-Poincaré characteristic of



9.1 Lines on a nonsingular cubic surface 485

the surface. Using the additivity of the Euler-Poincaré characteristic of a CW-
complex, we obtain the formula

χ(X) = χ(B)χ(F ) +
∑
b∈B

(χ(Fb)− χ(F )), (9.11)

wheref : X → B is any regular map of an algebraic variety onto a curve
B with general fibreF and fibresFb over pointsb ∈ B. In our caseχ(B) =
χ(F ) = 2 andχ(Fb) = 3 for a singular fibre. This givesχ(S) = 4 + s,
wheres is the number of singular conics. Since any two nonsingular surfaces
are homeomorphic (they are parameterized by an open subset of a projective
space), we obtain thats is the same for all nonsingular surfaces. We know that
s = 5 for the example in above, hences = 5 for all nonsingular surfaces. Also
we obtainχ(S) = 9 which of course agrees with the fact thatS is the blow-up
of 6 points in the plane.

The closure of the effective coneEff(S) of a nonsingular cubic surface is
isomorphic to the Gosset polytopeΣ6 = 221. It has 72 facets corresponding
to sixes and 27 faces corresponding to conic bundles onS. In a geometric
basise0, e1, . . . , e6 they are expressed by the linear systems of types|e0 −
e1|, |2e0 − e1 − e2 − e3 − e4|, |3e0 − 2e1 − e2 − . . . − e6|. The center of
Eff(S) is equal toO = − 1

3KS = (e1 + . . . + e27)/27, wheree1, . . . , e27 are
the divisor classes of lines. A double-six represents two opposite facets whose
centers lie on a line passing throughO. In fact, if we consider the double-six
(ei, e′i = 2e0 − e1 − . . .− e6 + ei), i = 1, . . . , 6, then

1
12

(
6∑
i=1

ei) +
1
12

6∑
i=1

e′i = −1
3
KS = O.

The line joining the opposite face is perpendicular to the facets. It is spanned by
the root corresponding to the double-six. The three linesei, ej , ek in a tritan-
gent plane add up to−KS . This can be interpreted by saying that the center of
the triangle with verticesei, ej , ek is equal to the centerO. This easily implies
that the three lines joining the centerO with ei, ej , ek are coplanar.

Remark9.1.5 Let ai, bi, cij denotes the set of 27 lines on a nonsingular cubic
surface. Consider them as 27 unknowns. LetF be the cubic form in 27 vari-
ables equal to the sum of 45 monomialsaibjcij , cijcklcmn corresponding to
tritangent planes. It was shown by E. Cartan that the group of projective auto-
morphisms of the cubic hypersurfaceV (F ) in P26 is isomorphic to the simple
complex Lie group of typeE6. We refer to [411] for integer models of this
cubic.
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9.1.3 Schur’s quadrics

There are 36 double-sixes of lines on a nonsingular cubic surfaceS corre-
sponding to 36 double-sixes of exceptional vectors inI1,6. Let (`1, . . . , `6),
(`′1, . . . , `

′
6) be one of them. Choose a geometric markingφ : I1,6 → Pic(S)

such thatφ(ei) = ei = [`i], i = 1, . . . , 6. Then the linear system|e0| defines a
birational mapπ1 : S → 1P2 = |e0|∨ which blows down the lines̀i to points
x1, . . . , x6. The class of the linè′i is equal to2e0 − (e1 + . . . + e6) + ei. Its
image in the plane1P2 is the conicCi passing through allpj exceptpi. Let
φ′ : I1,6 → Pic(S) be the geometric marking such thatφ′(ei) = `′i. It is ob-
tained fromφ by composingφ with the reflections = sαmax ∈ O(I1,6). We
have

e′0 = s(e0) = e0 + 2(2e0 − e1 − . . .− e6) = 5e0 − 2e1 − . . .− 2e6.

The linear system|e′0| defines a birational mapπ′ : S → 2P2 = |e′0|∨ which
blows down the lines̀′i to pointsx′i in 2P2. The Cremona transformation

T = π2 ◦ π−1
1 : 1P1 99K 2P2

is the symmetric Cremona transformation of degree5. It is given by the homa-
loidal linear system|I2

x1,...,x6
(5)|. TheP -locus ofT consists of the union of

the conicsCi. Note that the ordered sets of points(x1, . . . , x6) and(x′1, . . . , x
′
6)

are not projectively equivalent.
Consider the map

1P2 × 2P2 = |e0| × |e′0| → |e0 + e′0| = | − 2KS | ∼= |OP3(2)| ∼= P9. (9.12)

It is isomorphic to the Segre maps2,2 : P2 × P2 → P8, and its image is a
hyperplaneH in the space of quadrics inP3. LetQ be the unique quadric in
the dual space of quadrics which is apolar toH.

The following beautiful result belongs to F. Schur.

Theorem 9.1.10(F. Schur) The quadricQ is nonsingular. The polar of each
line `i with respect to the dual quadricQ∨ is equal to`′i. The quadricQ∨ is
uniquely determined by this property.

Proof Let (`1, . . . , `6) and (`′1, . . . , `
′
6) form a double-six. We use the no-

tationsai, bj , cij (resp.(ai, b′j , c
′
ij)) for lines defined by the geometric ba-

sis (e0, . . . , e6) (resp.(e′0, . . . , e
′
6)). The divisor class of the sum of six lines

ai, aj , cij anda′i, b
′
k, c

′
ik is equal to

ei+ej+(e0−ei−ej)+2e0−(e1+. . .+e6−ej)+2e0−(e1+. . .+e6−ek)+

(e0 − ej − ek) = 6e0 − 2(e1 + . . .+ e6) = −2KS .
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The corresponding quadricQijk cuts out 6 lines distributed into two triples of
coplanar linesai, a′j , cjk andaj , a′k, c

′
jk. ThusQijk consists of the union of

two planesHij andHjk (note thatk here could be equal toi). This implies
that, considered as points in the dual space, the polar plane(Hij)⊥Q of Hij

with respect toQ containsHjk. Let pij be the point in the original spaceP3

which corresponds to the hyperplane(Hij)⊥Q in the dual projective space. Then
Hij ⊂ (pij)⊥Q∨ , or, pij ∈ (Hij)⊥Q∨ . The inclusionHij ∈ (Hjk)⊥Q means that
pij ∈ Hjk. SinceHbc ∈ (Hab)⊥Q for any three indicesa, b, c, we get

pij ∈ Hjk ∩Hji∩Hki = {aj +a′k+ cjk}∩{aj +a′i+ cji}∩{ak+a′i+ cki}.

The pointaj ∩ a′i belongs to the intersection. Since no three tritangent planes
intersect along a line, we obtain thatpij = aj∩a′i, and, similarly,pji = ai∩a′j .
Now, we use thatpji ∈ (Hji)⊥Q∨ andpij ∈ (Hij)⊥Q∨ . Sinceai ∈ Hij , a

′
i ⊂

Hji, we obtain that the pointspij andpji are orthogonal with respect toQ∨.
Similarly, we find that the pairspki, pik andpjk, pjk are orthogonal. Sinceai
containspji, pki, anda′i containspik, pij , we see that the linesai anda′i are
orthogonal with respect toQ∨.

�����������������������������

�������������������

a′i

a′j

a′k

ai aj ak

cij

cjk

•

•

• •

pji

pki

pij pik

pkj

pjk

•

•

Let us show thatQ is a nondegenerate quadric. SupposeQ is degenerate,
then its set of singular points is a non-empty linear spaceL0. Thus, for any
subspaceL of the dual space ofP3, the polar subspaceL⊥Q containsL0. There-
fore, all the pointspij lie in a proper subspace ofP3. But this is obviously
impossible, since some of these points lie on a pair of skew lines and spanP3.
Thus the dual quadricQ∨ is nonsingular and the lines`i, `′i are orthogonal with
respect toQ∨.

Let us show the uniqueness ofQ∨. Suppose we have two quadricsQ1 and
Q2 such that̀ ′i = (`i)⊥Qi

, i = 1, . . . , 6. Let Q be a singular quadric in the
pencil spanned byQ1 andQ2. LetK be its space of singular points. ThenK
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is orthogonal to each subspace ofP3. Hence, it is contained iǹ′i and`i. Since
these lines are skew, we get a contradiction.

Definition 9.1.2 Let (`1, . . . , `6), (`′1, . . . , `
′
6) be a double-six of lines on a

nonsingular cubic surfaceS. The unique quadricQ such that(`i)⊥Q = `′i is
called theSchur quadricwith respect to the double-six.

Consider the bilinear map corresponding to the pairing (9.12)

H0(S,OS(e0))×H0(S,OS(5e0 − 2e1 − . . .− 2e6))

→ H0(S,OS(−2KS)) = H0(P3,OP3(2)).

A choice of an equation of the dual of the Schur quadric defines a linear map
H0(P3,OP3(2)) → C. Composing the pairing with this map, we obtain an
isomorphism

H0(S,OS(5e0 − 2e1 − . . .− 2e6)) ∼= H0(S,OS(e0))∨.

This shows that the Schur quadric allows us to identify the plane1P2 and2P2

as the dual to each other. Under this identification, the linear system|−2KS−
e0| defines an involutive Cremona transformationP2 99K P2.

Fix six pointsx1, . . . , x6 ∈ P2 in general position. The linear system|6h−
2x1 − . . . − 2x6| is equal to the preimage of the linear system of quadrics in
P3 = |3e0 − x1 − . . . − x6|∨ under the mapP2 99K P3 given by the linear
system|3h−x1− . . .−x6|. The preimage of the Schur quadric corresponding
to the double-six(e1, . . . , e6), (e′1, . . . , e

′
6) is a curve of degree 6 with double

points atx1, . . . , x6. It is called theSchur sexticassociated with 6 points. Note
that it is defined uniquely by the choice of six points. The proper transform
of the Schur sextic under the blow-up of the points is a nonsingular curve of
arithmetic genus 4. In the anticanonical embedding, it is the intersection of the
Schur quadric with the cubic surface.

Proposition 9.1.11 The six double points of the Schur sextic are biflexes, i.e.
the tangent line to each branch is tangent to the branch with multiplicity≥ 3.

Proof Let Q be the Schur quadric corresponding to the Schur sextic and`i
be the lines on the cubic surfaceS corresponding to the pointsx1, . . . , x6. Let
`i ∩Q = {a, b} and`′i ∩Q = {a′, b′}. We know that

Pa(Q) ∩Q = {x ∈ Q : a ∈ Tx(Q)}.

Since`′i = (`i)⊥Q, we have

`′i ∩Q = (Pa(Q) ∩ Pb(Q)) ∩Q = {a′, b′}.
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This implies thata′, b′ ∈ Ta(Q) and hence the linesaa′, ab′ spanTa(Q). The
tangent planeTa(Q) contains the linè′i and hence intersects the cubic surface
S along`′i and some conicK(a). We have

Ta(K(a)) = Ta(S) ∩ Ta(Q) = Ta(Q∩ S).

Thus the conicK(a) and the curveC = Q∩S are tangent at the pointa. Since
the line`′i is equal to the proper inverse transform of the conicC ′ in P2 passing
through the pointsxj , j 6= i, the conicK(a) is the proper inverse transform
of some linè in the plane passing throughxi. The pointa corresponds to the
tangent direction atxi defined by a branch of the Schur sextic atxi. The fact
thatK(a) is tangent toC at a means that the linè is tangent to the branch
with multiplicity ≥ 3. Since the same is true, when we replacea with b, we
obtain thatxi is a biflex of the Schur sextic.

Remark9.1.6 A biflex is locally given by an equation whose Taylor expan-
sion looks likexy + xy(ax + by) + f4(x, y) + . . .. This shows that one has
to impose 5 conditions to get a biflex. To get 6 biflexes for a curve of degree 6
one has to satisfy 30 linear equations. The space of homogeneous polynomials
of degree 6 in 3 variables has dimension 28. So, one does not expect that such
sextics exist.

Also observe that the set of quadricsQ such that̀ ⊥Q = `′ for a fixed pair
of skew lines(`, `′) is a linear (projective) subspace of codimension 4 of the
9-dimensional space of quadrics. So the existence of the Schur quadric is un-
expected!

I do not know whether for a given set of 6 points onP2 defining a nonsingu-
lar cubic surface, there exists a unique sextic with biflexes at these points. We
refer to [196], where the Schur sextic is realized as the curve of jumping lines
of second kind of a rank 2 vector bundle onP2.

Example9.1.1 LetS be theClebsch diagonal surfacegiven by two equations
in P4:

5∑
i=1

ti =
5∑
i=1

t3i = 0. (9.13)

It exhibits an obvious symmetry defined by permutations of the coordinates.
Leta = 1

2 (1+
√

5), a′ = 1
2 (1−

√
5) be two roots of the equationx2−x−1 = 0.

One checks that the skew lines

` : t1 + t3 + at2 = at3 + t2 + t4 = at2 + at3 − t5 = 0

and

`′ : t1 + t2 + a′t4 = t3 + a′t1 + t4 = a′t1 + a′t4 − t5 = 0
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lie onS. Applying to each line even permutations we obtain a double-six. The
Schur quadric is

∑
t2i =

∑
ti = 0.

Let π1 : S → 1P2, π2 : S → 2P2 be two birational maps defined by
blowing down two sixes forming a double-six. We will see later in section
9.3.2that there exists a3× 3-matrixA = (aij) of linear forms such thatS =
V (detA). The mapπ1 (resp.π2) is given by the left (resp. right) kernel ofA.
In coordinates, it is given by a row (resp. column) of adj(A). The composition
of the map(π1, π2) : S → 1P2 × 2P2 with the Segre map1P2 × 2P2 → P8 is
given byx 7→ [adj(A)(x)]. We immediatelyy identify this map with the map
(8.2.17). Thus the entries of adj(A) define the quadrics in the image of this
map. They are apolar to the dual of the Schur quadrics.

Let x = [z0, . . . , z3] be any point inP3. The polar quadric ofS with center
atx is given by the equation

˛̨̨̨
˛̨Da11 Da12 Da13

a21 a22 a23

a31 a32 a33

˛̨̨̨
˛̨ +

˛̨̨̨
˛̨ a11 a12 a13

Da21 Da22 Da23

a31 a32 a33

˛̨̨̨
˛̨ +

˛̨̨̨
˛̨ a11 a12 a13

a21 a22 a23

Da31 Da32 Da33

˛̨̨̨
˛̨ = 0,

whereD is the linear differential operator
∑
zi

∂
∂ti

. It is clear that this equation
is a linear combination of the entries of adj(A). Thus all polar quadrics ofS
are apolar to all the dual of all 36 Schur quadrics. This proves the following.

Proposition 9.1.12 The duals of the 36 Schur quadrics belong to the 5-
dimensional projective space of quadrics apolar to the 3-dimensional linear
system of polar quadrics ofS.

This result was first mentioned by H. Baker in [20], its proof appears in his
book [21], Vol. 3, p. 187. In the notation of Theorem9.1.2, letQα is the Schur
quadric corresponding to the double-six defined by the rootα (see Theorem
9.1.2). Any three of typeQαmax , Qα123 , Qα456 are linearly dependent. Among
Qαij

’s at most 5 are linearly independent ([519]).

Remark9.1.7 We refer to [196] for the relationship between Schur quadrics
and rank 2 vector bundles onP2 with odd first Chern class. The case of cubic
surfaces corresponds to vector bundles withc1 = −1 andc2 = 4. For higher
n the Schur quadrics define some polarity relation for a configuration of

(
n+1

2

)
lines and(n− 2)-dimensional subspaces inPn defined by aWhite surfaceX,
the blow-up of a setZ of

(
n+1

2

)
points in the plane which do not lie on a curve

of degreen−1 and non points among them are collinear [651]. The casen = 3
corresponds to cubic surfaces and the casen = 4 to Bordiga surfaces. The
linear system|IZ(n)| embedsX in Pn. The images of the exceptional curves
are lines, and the images of the curves through all points inZ except one (for
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each point, there is a unique such curve) spans a subspace of dimensionn− 3.
The configuration generalizes a double-six on a cubic surface. The difference
here is that, in the casen > 3, the polarity of the configuration exists only for
a non-general White surface.

9.1.4 Eckardt points

A point of intersection of three lines in a tritangent plane is called anEckardt
point. As we will see later the locus of nonsingular cubic surfaces with an
Eckardt point is of codimension 1 in the moduli space of cubic surfaces.

Recall that the fixed locus of an automorphismτ of order 2 ofPn is equal
to the union of two subspaces of dimensionsk andn − k − 1. The number
k determines the conjugacy class ofτ in the group Aut(Pn) ∼= PGL(n + 1).
In terminology of classical projective geometry, a projective automorphism
with a hyperplane of fixed points is called ahomology. A homology of order 2
was called aharmonic homology. The isolated fixed point is thecenterof the
homology.

Proposition 9.1.13 There is a bijective correspondence between the set of
Eckardt points on a nonsingular cubic surfaceS and the set of harmonic ho-
mologies inP3 with center inS.

Proof Let x = `1 ∩ `2 ∩ `3 ∈ S be an Eckardt point. Choose coordinates
such thatx = [1, 0, 0, 0] and the equation of the tritangent plane ist1 = 0. The
equation ofS is

t20t1 + 2t0g2 + g3 = 0, (9.14)

whereg2, g3 are homogeneous forms int1, t2, t3. The polar quadricPx(S)
contains the three coplanar lines`i passing through one point. This implies
thatPx(S) is the union of two planes, one of them isV (t1). Since the equation
of Px(S) is t0t1 + g2 = 0, we obtain thatg2 = t1g1(t1, t2, t3). Making one
more coordinate changet0 → t0 + g1, we reduce the equation to the form
t20t1 + g′3(t1, t2, t3). The intersectionV (t0) ∩ S is isomorphic to the cubic
curveV (g3). Now we define the homology

τ : [t0, t1, t2, t3] 7→ [−t0, t1, t2, t3]. (9.15)

It obviously leavesS invariant and hasx as its isolated fixed point. The other
component of the fixed locus is the cubic curveV (t0) ∩ V (S).

Conversely, assumeS admits a projective automorphismτ of order 2 with
one isolated fixed pointp on S. Choose projective coordinates such thatτ is
given by formula (9.15). ThenS can be given by equation (9.14). The surface
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is invariant with respect toτ if and only if g2 = 0. The planeV (t0) is the
tritangent plane with Eckardt point[1, 0, 0, 0].

It is clear that the automorphismτ is defined by the projection from the
Eckardt pointx. It extends to a biregular automorphism of the blow-upπ :
S′ → S of the pointx which fixes pointwisely the exceptional curveE of π.
The surfaceS′ is a weak del Pezzo surface of degree 2. It has three disjoint
(−2)-curvesRi equal to the proper transforms of the lines`i containingx.
The projection mapS′ → P2 is equal to the composition of the birational
morphismS′ → X which blows down the curvesRi and a finite map of
degree 2X → P2. The surfaceX is an anticanonical model ofS′ with three
singular points of typeA1. The branch curve ofX → P2 is the union of a
line and a nonsingular cubic intersecting the line transversally. The line is the
image of the exceptional curveE.

Example9.1.2 Consider acyclic cubic surfaceS given by equation

f3(t0, t1, t2) + t33 = 0,

whereC = V (f3) is a nonsingular plane cubic in the plane with coordinates
t0, t1, t2. Let ` be an inflection tangent ofC. We can choose coordinates such
that` = V (t1) and the tangency point is[1, 0, 0]. The equation ofS becomes

t20t1 + t0t1g1(t1, t2) + t1g2(t1, t2) + t32 + t33 = 0.

The preimage of the linèunder the projection map[t0, t1, t2, t3] 7→ [t0, t1, t2]
splits into the union of three lines with equationt1 = t32 + t33 = 0. The point
[1, 0, 0, 0] is an Eckardt point. Since there are 9 inflection points on a nonsin-
gular plane cubic, the surface contains 9 Eckardt points. Note that the corre-
sponding 9 tritangent planes contain all 27 lines.

Example9.1.3 Consider a cubic surface given by equations

4∑
i=0

ait
3
i =

4∑
i=0

ti = 0,

whereai 6= 0. We will see later that a general cubic surface is projectively
equivalent to such surface (but not the cyclic one). Assumea0 = a1. Then
the pointp = [1,−1, 0, 0, 0] is an Eckardt point. In fact, the tangent plane at
this point ist0 + t1 = t2 + t3 + t4 = 0. It cuts out the surface along the
union of three lines intersecting at the pointp. Similarly, we have an Eckardt
point wheneverai = aj for somei 6= j. Thus we may have 1,2,3,4, 6 or 10
Eckardt points dependent on whether we have just two equal coefficients, or
two pairs of equal coefficients, or three equal coefficients, or a pair and a triple
of equal coefficients, or four equal coefficients, or five equal coefficients. The
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other possibilities for the number of Eckardt points are 9 as in the previous
example or 18 in the case when the surface is isomorphic to a Fermat cubic
surface. We will prove later that no other case occurs.

For the future need let us prove the following.

Proposition 9.1.14 Letx andy be two Eckardt points onS such that the line
` = xy is not contained inS. Then` intersectsS in a third Eckardt point.
Moreover, no three Eckardt points lie on a line contained in the surface.

Proof Let τ be the harmonic homology involution ofS defined by the Eckardt
pointx. Then` intersectsS at the pointz = g(y). The pointsy andz are on the
line xy. If ` is not contained inS, then it is not contained in the polar quadric
Px(S), and hence does not intersect the one-dimensional componentF of the
fixed locus ofτ . This shows thaty 6= z. On the other hand, if̀ is contained in
S, then it is one of the three lines in the tritangent plane containingx. Hence it
is tangent toS atx and intersectsS at one additional pointy onF .

Proposition 9.1.15 Letx1, x2, x3 be three collinear Eckardt points. Then the
involutionsτi corresponding to these points generate a subgroup of automor-
phisms isomorphic toS3. If two Eckardt pointsx1, x2 lie on a line` ⊂ S,
then the involutions commute, and the product fixes the line and the other line
which contains the tangency points of three tritangent planes through`.

Proof Suppose three Eckardt points lie on a line`. Obviously, eachτi leaves
the line` = x1x2 invariant. Thus the subgroupG generated by the three in-
volutions leaves the line invariant and permutes 3 Eckardt points. This defines
a homomorphismG → S3 which is obviously surjective. Letg be a non-
trivial element from the kernel. Then it leaves three points fixed, hence leaves
all points on the line fixed. Without loss of generality, we may assume that
g = τ1τ2 or g = τ1τ2τ3. Sinceτ1 andτ2, andτ1τ2, τ3 act differently oǹ , we
getg = 1.

Now suppose that two Eckardt points lie on a line` contained in the surface.
Obviously,τi fixes both pointsx1 andx2. Since a finite automorphism group
of P1 fixing two points is cyclic, the productτ = τ1τ2 is of order 2; it fixes̀
pointwise, and also fixes the linè′ equal to intersection of the planes of fixed
points ofτ1, τ2. This line intersects each tritangent plane through` at some
point. Hence each such plane is invariant with respect toτ , and the tangency
point of the remaining three tritangent planes lie on`′.

Let us projectS from a pointx ∈ S which is not an Eckardt point. Suppose
x does not lie on any line inS. Then the blow-upS′ of S at x is a del Pezzo
surface of degree 2. The projection map lifts to a finite double cover ofP2
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branched along a nonsingular quartic curveB. The 27 lines, together with the
exceptional curveE of the blow-up, map to the 28 bitangents ofB. The image
of a sixer of lines and the curveE is an Aronhold set of 7 bitangents.

If x lies on one line,S′ is a weak del Pezzo surface of degree 2 with one
(−2)-curveR. The projection map lifts to a degree mapS′ → P2 which factors
through the blowing down mapS → X of R and a finite map of degree 2
X → P2 branched over one-nodal quartic curve. Ifx lies on two lines, then we
have a degree 2 mapS′ → X → P2, whereX has twoA1-singularities, and
the branch curve ofX → P2 is a 2-nodal quartic.

9.2 Singularities

9.2.1 Non-normal cubic surfaces

Let X be an irreducible cubic surface inP3. Assume thatX is not normal
and is not a cone over a singular cubic curve. Then its singular locus contains
a one-dimensional partC of some degreed. Let m be the multiplicity of a
general point ofC. By Bertini’s Theorem, a general plane sectionH ofX is an
irreducible plane cubic wich containsd singular points of multiplicitym. Since
an irreducible plane cubic curve has only one singular point of multiplicity 2,
we obtain that the singular locus ofX is a line.

Let us choose coordinates in such a way thatC is given by the equations
t0 = t1 = 0. Then the equation ofX must look like

l0t
2
0 + l1t0t1 + l2t

2
1 = 0,

whereli, i = 0, 1, 2, are linear forms int0, t1, t2. This shows that the left-hand
side containst2 andt3 only in degree 1. Thus we can rewrite the equation in
the form

t2f + t3g + h = 0, (9.16)

wheref, g, h are binary forms int0, t1, the first two of degree 2, and the third
one of degree3.

Supposef, g are proportional. Then, the equation can be rewritten in the
form (at1 + bt2)f + h = 0 which shows thatX is a cone. A pair of non-
proportional binary quadratic formsf, g can be reduced to the formt20 +
t21, at

2
0 +bt21, or t0t1, at20 + t0t1 (corresponding to the Segre symbol(2)). After

making a linear change of variablest2, t3, we arrive at two possible equations

t2t
2
0 + t3t

2
1 + (at0 + bt1)t20 + (ct0 + dt1)t1 = 0,

t2t0t1 + t3t
2
0 + (at0 + bt1)t20 + (ct0 + dt1)t1 = 0.
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Replacingt2 with t′2 = t2 + at0 + bt1 andt3 with t′3 = t3 + ct0 + dt1, we
obtain two canonical forms of non-normal cubic surfaces which are not cones.

The plane sections through the singular line of the surface define a structure
of a scroll on the surface.

Theorem 9.2.1 Let X be an irreducible non-normal cubic surface. Then,
eitherX is a cone over an irreducible singular plane cubic, or it is projectively
equivalent to one of the following cubic surfaces singular along a line:

(i) t20t2 + t21t3 = 0;
(ii) t2t0t1 + t3t

2
0 + t31 = 0.

The two surfaces are not projectively isomorphic.

The last assertion follows from considering the normalizationX̄ of the sur-
faceX. In both cases it is a nonsingular surface, however in (i), the preimage
of the singular line is irreducible, but in the second case it is reducible.

We have already seen two cubic scrolls inP3 in subsection 2.1.1. They are
obtained as projections of the cubic scrollS1,4 in P4 isomorphic to the rational
minimal ruled surfaceF1 (a del Pezzo surface of degree 8). There are two
possible centers of the projection: on the exceptional(−1)-curve or outside
of this curve. Case (i) corresponds to the first possibility, and case (ii) to the
second one.

9.2.2 Lines and singularities

From now on we assume thatS is a normal cubic surface which is not a cone.
Thus its singularities are rational double points, andS is a del Pezzo surface
of degree 3.

Let X be a minimal resolution of singularities ofS. All possible Dynkin
curves onX can be easily found from the list of root bases inE6.

(r = 6) E6, A6, D4 +A2,

s∑
k=1

Aik , i1 + · · ·+ is = 6,

(r = 5) D5, D4 +A1,
s∑

k=1

Aik , i1 + · · ·+ is = 5,

(r = 4) D4,

s∑
k=1

Aik , i1 + · · ·+ is = 4,

(r = 3) A3, A2 +A1, 3A1,

(r = 2) A2, A1 +A1,

(r = 1) A1.
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The following Lemma is easily verified, and we omit its proof.

Lemma 9.2.2 Letx0 = (1, 0, 0, 0) be a singular point ofS = V (f3). Write

f3 = t0g2(t1, t2, t3) + g3(t1, t2, t3),

whereg2, g3 are homogeneous polynomials of degrees 2 and 3, respectively.
Let x = [a0, a1, a2, a3] ∈ S. If the linex0x is contained inS, then the point
q = [a1, a2, a3] is a common point of the conicV (g2) and the cubicV (g3). If,
moreover,x is a singular point ofS, then the conic and the cubic intersect at
q with multiplicity> 1.

Corollary 9.2.3 V (f3) has at most 4 singular points. Moreover, ifV (f3) has
4 singular points, then each point is of typeA1.

Proof Let x0 be a singular point which we may assume to be the point
[1, 0, 0, 0] and apply Lemma9.2.2. Suppose we have more than 4 singular
points. The conic and the cubic will intersect at least in four singular points
with multiplicity > 1. Since they do not share an irreducible component (oth-
erwisef3 is reducible), this contradicts Bézout’s Theorem. Suppose we have
4 singular points andx0 is not of typeA1. Sincex0 is not an ordinary dou-
ble point, the conicV (g2) is reducible. Then the cubicV (g3) intersects it at
3 points with multiplicity> 1 at each point. It is easy to see that this also
contradicts B́ezout’s Theorem.

Lemma 9.2.4 The cases,Ai1 + · · ·+Aik , i1 + · · ·+ ik = 6, except the cases
3A2, A5 +A1 do not occur.

Proof AssumeM = Ai1 +· · ·+Aik , i1+· · ·+ik = 6. Then the discriminant
dM of the latticeM is equal to(i1 + 1) · · · (ik + 1). By Lemma8.2.1, 3|dM ,
one of the numbers, sayi1 + 1, is equal either to 3 or6. If i1 + 1 = 6, then
M = A5 +A1. If i1 + 1 = 3, then(i2 + 1) . . . (ik + 1) must be a square, and
i2+ · · ·+ik = 4. It is easy to see that the only possibilities arei2 = i3 = 2 and
i2 = i3 = i4 = i5 = 1. The last possibility is excluded by applying Corollary
9.2.3.

Lemma 9.2.5 The casesD4 +A1 andD4 +A2 do not occur.

Proof Let x0 be a singular point ofS of typeD4. Again, we assume that
x0 = (1, 0, 0, 0) and apply Lemma9.2.2. As we have already noted, the sin-
gularity of typeD4 is analytically (or formally) isomorphic to the singularity
z2 + xy(x + y) = 0. This shows that the conicV (g2) is a double linè .
The planez = 0 cuts out a germ of a curve with 3 different branches. Thus
there exists a plane section ofS = V (f3) passing throughx0 which is a plane
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cubic with 3 different branches atx0. Obviously, it must be the union of 3
lines with a common point atx0. Now the cubicV (g3) intersects the linè
at 3 points corresponding to the lines throughx0. ThusS cannot have more
singular points.

Let us show that all remaining cases are realized. We will exhibit the cor-
responding del Pezzo surface as the blow-up of 6 bubble pointsp1, . . . , p6 in
P2.

A1: 6 proper points inP2 on an irreducible conic;

A2: p3 �1 p1;

2A1: p2 �1 p1, p4 �1 p3;

A3: p4 �1 p3 �1 p2 �1 p1;

A2 +A1: p3 �1 p2 �1 p1, p5 �1 p4;

A4: p5 �1 p4 �1 p3 �1 p2 �1 p1;

3A1: p2 �1 p1, p4 �1 p3, p6 �1 p5;

2A2: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4;

A3 +A1: p4 �1 p3 �1 p2 �1 p1, p6 �1 p5;

A5: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1;

D4: p2 �1 p1, p4 �1 p3, p6 �1 p5 andp1, p3, p5 are collinear;

A2 + 2A1: p3 �1 p2 �1 p1, p5 �1 p4, and|h− p1 − p2 − p3| 6= ∅;
A4 +A1: p5 �1 p4 �1 p3 �1 p2 �1 p1 and|2h− p1 − . . .− p6| 6= ∅;
D5: p5 �1 p4 �1 p3 �1 p2 �1 p1 and|h− p1 − p2 − p6| 6= ∅;
4A1: p1, . . . , p6 are the intersection points of 4 lines in a general linear posi-
tion;

2A2 +A1: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4 and|h− p1 − p2 − p3| 6= ∅;
A3 + 2A1: p4 �1 p3 �1 p2 �1 p1, p6 �1 p5 and|h− p1 − p2 − p3| 6= ∅;
A5 +A1: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1 and|2h− p1 − . . .− p6| 6= ∅;
E6: p6 �1 p5 �1 p4 �1 p3 �1 p2 �1 p1 and|h− p1 − p2 − p3| 6= ∅;
3A2: p3 �1 p2 �1 p1, p6 �1 p5 �1 p4, |h − p1 − p2 − p3| 6= ∅, |h − p4 −
p5 − p6| 6= ∅;

Projecting from a singular point and applying Lemma9.2.2we see that each
singular cubic surface can be given by the following equation.

A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is a nonsingular conic
which intersectsV (g3) transversally;

A2: V (t0t1t2 + g3(t1, t2, t3)),whereV (t1t2) intersectsV (g3) transversally;
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2A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is a nonsingular conic
which is simply tangent toV (g3) at one point;

A3: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1t2) intersectsV (g3) at the point
[0, 0, 1] and at other 4 distinct points;

A2+A1: V (t0t1t2+g3(t1, t2, t3)), whereV (g3) is tangent toV (t2) at [1, 0, 0];

A4: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangent toV (t1) at [0, 0, 1];

3A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is nonsingular and is
tangent toV (g3) at 2 points;

2A2: V (t0t1t2+g3(t1, t2, t3)), whereV (t1) intersectsV (g3) transversally and
V (t2) is an inflection tangent toV (g3) at [1, 0, 0];

A3 +A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) passes through[0, 0, 1] and
V (t1) is tangent toV (g3) at the point[1, 0, 0];

A5: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1) is an inflection tangent ofV (g3)
at the point[0, 0, 1];

D4: V (t0t21 + g3(t1, t2, t3)), whereV (t1) intersects transversallyV (g3);

A2 + 2A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) is tangentV (t1t2) at two
points not equal to[0, 0, 1];

A4+A1: V (t0t1t2+g3(t1, t2, t3)), whereV (g3) is tangent toV (t1) at [0, 0, 1]
and is tangent toV (t2) at [1, 0, 0];

D5: V (t0t21 + g3(t1, t2, t3)), whereV (t1) is tangent toV (g3) at [0, 0, 1];

4A1: V (t0g2(t1, t2, t3) + g3(t1, t2, t3)), whereV (g2) is nonsingular and is
tangent toV (g3) at 3 points;

2A2 +A1: V (t0g2(t1, t2, t3)+g3(t1, t2, t3)), whereV (g2) is tangent toV (g3)
at 2 points[1, 0, 0] with multiplicity 3;

A3 +2A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (g3) passes through[0, 0, 1] and
is tangent toV (g1) and toV (g2) at one point not equal to[0, 0, 1];

A5 + A1: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1) is an inflection tangent of
V (g3) at the point[0, 0, 1] andV (t2) is tangent toV (g3);

E6: V (t0t21 + g3(t1, t2, t3)), whereV (t1) is an inflection tangent ofV (g3).

3A2: V (t0t1t2 + g3(t1, t2, t3)), whereV (t1), V (t2) are inflection tangents of
V (g3) at points different from[0, 0, 1].

Remark9.2.1 Applying a linear change of variables, one can simplify the
equations. For example, in the caseXXI, we may assume that the inflection
points are[1, 0, 0] and[0, 1, 0]. Theng3 = t33 + t1t2L(t1, t2, t3). Replacingt0
with t′0 = t0 + L(t1, t2, t3), we reduce the equation to the form

t0t1t2 + t33 = 0. (9.17)
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Another example is theE6-singularity (case XX). We may assume that the
inflection point is[0, 0, 1]. Theng3 = t32 + t1g2(t1, t2, t3). The coefficient att23
is not equal to zero, otherwise the equation is reducible. After a linear change
of variables we may assume thatg2 = t23+at21+bt1t2+ct22. Replacingt0 with
t0 + at1 + bt2, we may assume thata = b = 0. After scaling the unknowns,
we get

t0t
2
1 + t1t

2
2 + t32 = 0. (9.18)

The following table gives the classification of possible singularities of a cu-
bic surface, the number of lines and the class of the surface.

Type Singularity Lines Class Type Singularity Lines Class
I ∅ 27 12 XII D4 6 6
II A1 21 10 XIII A2 + 2A1 8 5
III A2 15 9 XIV A4 + A1 4 5
IV 2A1 16 8 XV D5 3 5
V A3 10 8 XVI 4A1 9 4
VI A2 + A1 11 7 XVII 2A2 + A1 5 4
VII A4 6 7 XVIII A3 + 2A1 5 4
VIII 3A1 12 6 XIX A5 + A1 2 4
IX 2A2 7 6 XX E6 1 4
X A3 + A1 7 6 XXI 3A2 3 3
XI A5 3 6

Table 9.1Singularities of cubic surfaces

Note that the number of lines can be checked directly by using the equa-
tions. The map fromP2 to S is given by the linear system of cubics generated
by V (g3), V (t1g2), V (t2g2), V (t3g2). The lines are images of lines or con-
ics which a general member of the linear system with multiplicity 1 outside
base points. The class of the surface can be computed applying the Plücker-
Teissier formula from Theorem1.2.5. We use that the Milnor number of an
An, D + n,En singularity is equal ton, and the Milnor number of the singu-
larity of a general plane section through the singular point is equal to 1 if type
isAn and 2 otherwise.

Example9.2.1 The cubic surface with 3 singular points of typeA2 given
by equation (9.17) plays an important role in the Geometric Invariant The-
ory of cubic surfaces. It represents the unique isomorphism class of a strictly
semistable point in the action of the group SL(4) in the space of cubic surfaces.
The Table shows that it is the only normal cubic surface whose dual surface
is also a cubic surface. By the Reciprocity TheoremX ∼= (X∨)∨, the dual
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surface cannot be a cone or a scroll. Thus the surface of Type XXI is the only
self-dual cubic surface.

Another interesting special case is the surface with fourA1-singularities. In
notation from above, let us choose coordinates such that the three tangency
points of the conicV (g2) and the cubicV (g3) are [1, 0, 0], [0, 1, 0], [0, 0, 1].
After scaling the coordinates, we may assume thatg2 = t1t2 + t1t3 + t2t3. An
example of a cubic tangent to the conic at the three points is the union of three
tangent lines

h = (t1 + t2)(t1 + t3)(t2 + t3) = g2(t1 + t2 + t3)− t1t2t3.

Any other cubic can be given by equationlg2 +h = 0, wherel is a linear form.
Replacingt0 with t′0 = −(t0 + l+ t1 + t2 + t3), we reduce the equation to the
form

t0(t1t2 + t1t3 + t2t3) + t1t2t3 = t0t1t2t3(
1
t0

+
1
t1

+
1
t2

+
1
t3

) = 0. (9.19)

A cubic surface with 4 nodes is called theCayley cubic surface. As we see,
all Cayley cubics are projectively equivalent. They admitS4 as its group of
automorphisms.

Let us find the dual surface of a Cayley surface. Table9.1 shows that it
must be a quartic surface. The equation of a tangent plane at a general point
[a, b, c, d] is

t0
a2

+
t1
b2

+
t2
c2

+
t3
d2

= 0.

Thus the dual surface is the image ofS under the map

[t0, t1, t2, t3] 7→ [ξ0, ξ1, ξ2, ξ3] = [1/t20, 1/t
2
1, 1/t

2
2, 1/t

2
3].

Write ti = 1/
√
ξi and plug in equation (9.19). We obtain the equation

(
√
ξ0ξ1ξ2ξ3)−2(

√
ξ0 +

√
ξ1 +

√
ξ2 +

√
ξ3) = 0.

This shows that the equation of the dual quartic surface is obtained from the
equation √

ξ0 +
√
ξ1 +

√
ξ2 +

√
ξ3 = 0

by getting rid of the irrationalities. We get the equation

(
3∑
i=0

ξ2i − 2
∑

0≤i<j≤3

ξiξj)2 − 64ξ0ξ1ξ2ξ3 = 0.

The surface has three singular linesti + tk = tl + tm = 0. They meet at
one point[1, 1, 1, 1]. The only quartic surface with this property is a Steiner
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quartic surface from subsection 2.1.1. Thus the dual of Cayley cubic surface is
a Steiner quartic surface.

9.3 Determinantal equations

9.3.1 Cayley-Salmon equation

Let S′ be a minimal resolution of singularities of a del Pezzo cubic surfaceS.
Choose a geometric markingφ : I1,6 → Pic(S′) and consider the image of
one of 120 conjugate pairs of triples of tritangent trios from (9.9). Write them
as a matrix

e11 e12 e13
e21 e22 e23
e31 e32 e33

. (9.20)

Suppose the divisor classeseij are the classes of(−1)-curves onS′. Then their
images inS are lines̀ ij . The lines defined by thei-th row (thej-th column)
lie in a planeΛi (Λ′j), a tritangent plane ofS. The union of the planesΛi
contains all nine lines̀ij . The same is true for the planesΛ′j . The pencil of
cubic surfaces spanned by the cubicsΛ1 + Λ2 + Λ3 andΛ′1 + Λ′2 + Λ′3 must
contain the cubicS. This shows that we can choose the equationsli = 0 of Λi
and the equationsmj = 0 of Λ′j such thatS can be given by equation

l1l2l3 +m1m2m3 = det

 l1 m1 0
0 l2 m2

−m3 0 l3

 = 0. (9.21)

The equation of a cubic surface of the form (9.21), where the nine lines de-
fined by the equationsli = mj = 0 are all different, is calledSalmon-Cayley
equation. Note that the lines̀ii are skew (otherwise we have 4 lines in one
plane). We say that two Cayley-Salmon equations are equivalent if they define
the same unordered sets of 3 planesV (li) andV (mj).

Suppose a cubic surface can be given by a Cayley-Salmon equation. Each
planeV (li) contains three different lines̀ij = V (li)∩V (mj), j = 1, 2, 3 and
hence is a tritangent plane. After reindexing, we may assume that the lines`ii
are skew lines. Leteij be the divisor classes of the preimages of the lines in
S′. Then they form the image of a conjugate pair of tritangent trios under some
geometric marking ofS′.

Theorem 9.3.1 Let S be a normal cubic surface. The number of the equiv-
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alence classes of Cayley-Salmon equations forS is equal to 120 (type I), 10
(type II), 1 (type III, IV, VIII), and zero otherwise.

Proof We know that the number of conjugate pairs of triads of tritangent trios
of exceptional vectors is equal to 120. Thus the number of conjugate triads of
triples of tritangent planes on a nonsingular cubic surface is equal to 120.

SupposeS has one node. We take a blow-up model ofS′ as the blow-up of
6 proper points on an irreducible conic. We have 10 matrices of type II in (9.9)
which give us 10 pairs of conjugate triples of tritangent planes.

SupposeS has 3 nodes. We take the blow-up model corresponding to a
bubble cyclex1 + . . .+ x6 with x4 � x1, x5 � x2, x6 � x3. The set of lines
`ij are represented by the divisor classes of

e0−e1−e4, e0−e2−e5, e0−e3−e6, ek, 2e0−e1− . . .−e6 +ek, k = 4, 5, 6.

It is easy to see that this is the only possibility.
We leave to the reader to check the assertion in the remaining cases.

Suppose a normal cubic surfaceS contains 3 skew lines̀1, `2, `3. Consider
the pencil of planesPi through the linè i. For any general pointx ∈ P3 one
can choose a unique planeΠi ∈ Pi containing the pointx. This defines a
rational map

f : P3 99K P1 × P2 × P3. (9.22)

Suppose the intersection of the planesΠi contains a linè . Then` intersects
`1, `2, `3, and hence either belongs toS or does not intersectS at a point out-
side the three lines. This shows that the restriction of the mapf to S is a
birational map onto its imageX.

The composition of map (9.22) with the Segre map defines a rational map

f : P3 99K S ⊂ P7,

whereS is isomorphic to the Segre varietys(P1 × P1 × P1). Since the pencils
Pi generate the complete linear system|V | of cubic surfaces containing the
lines `i, the mapf is given by|V |. Since our cubicS is a member of|V |, it
is equal to the preimage of a hyperplane sectionH of X. The Segre varietyS
is of degree 6, soH is isomorphic to a surfaceS6 of degree 6 inP6 and the
restriction off to S is a birational map ontoS6. The hyperplane sectionH is
defined by a divisor of tridegree(1, 1, 1) on the Segre variety. This gives the
following.

Theorem 9.3.2(F. August) Any cubic surface containing 3 skew lines`1, `2,
`3 can be generated by 3 pencilsPi of planes with base locus̀i in the following
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sense. There exists a correspondenceR of degree(1, 1, 1) onP1 × P2 × P3

such that

S = {x ∈ P3 : x ∈ Π1 ∩Π2 ∩Π3 for some(Π1,Π2,Π3) ∈ R}.

Note that a del Pezzo surfaceS6 of degree 6 containing in the Segre variety
s(P1×P1×P1) has three different pencils of conics. So, it is either nonsingular,
or has one node. In the first case, it is a toric surface which can be given by the
equation

u0v0w0 + u1v1w1 = 0,

where(u0, u1), (v0, v1), (w0, w1) are projective coordinates in each factor of
(P1)3. The equation can be considered as a linear equations in the spaceP7

with coordinatesuivjwk. If S6 is singular, it is not a toric surface. The cor-
responding weak del Pezzo surface is the blow-up of three collinear points. It
contains only 3 lines.

SupposeS6 is a nonsingular surface. Then we can identify the coordinates
(u0, u1) with the coordinates in the pencilP1 of planes through̀1, and, simi-
larly, for the other two pairs of coordinates. Thus the cubic surface is equal to
the set of solutions of the system of linear equations

u0l1(t0, t1, t2, t3) = u1m1(t0, t1, t2, t3),

v0l2(t0, t1, t2, t3) = v1m2(t0, t1, t2, t3),

w0l3(t0, t1, t2, t3) = w1m3(t0, t1, t2, t3).

whereli,mi are linear forms andu0v0w0 + u1v1w1 = 0. This immediately
gives Cayley-Salmon equation ofS. Conversely, a choice of Cayley-Salmon
equation gives August’s projective generation ofS.

Remark9.3.1 The rational mapf : P3 99K S ⊂ P7 is a birational map. To see
this, we take a general linè4 in P3. The image of this line is a rational curve
of degree 3 inX. The composition off and the projectionP7 99K P3 from the
subspace spanned byf(`4) is a rational mapT : P3 99K P3. It is given by the
linear system of cubics passing through the lines`1, `2, `3, `4. Since four skew
lines in P3 has 2transversals(i.e. lines intersecting the four lines), the base
locus of the linear system contains also the two transversal lines. The union
of the six lines is a reducible projectively normal curve of arithmetic genus 3.
The transformationT is a bilinear Cremona transformation. The P-locus ofT

consists of the union of four quadricsQk, each containing the lines̀i, i 6= k

(since it must be of degree 8, there is nothing else). In particular, the mapf

blows down the quadricQ4 to a curve parameterizing the ruling ofQ4 which
does not contain the lines̀1, `2, `3. If S6 is a nonsingular surface, we must
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blow down exactly 3 lines onS, hence the lines̀1, `2, `3 have 3 transversals
contained inS. Also, if S6 is nonsingular, the singular points ofS must lie
on the lines̀ 1, `2, `3. This can be checked in all cases where Cayley-Salmon
equation applies.

Corollary 9.3.3 LetS be a nonsingular cubic surface. ThenS is projectively
equivalent to a surface

V (t0t1t2 + t3(t0 + t1 + t2 + t3)l(t0, . . . , t3)).

A generalS can be written in this form in exactly 120 ways (up to projective
equivalence).

Proof We will prove later that a nonsingular cubic surface has at most 18
Eckardt points. Thus we can choose the linear formsm1,m2,m2 such that
the lines`1j , `2j , `3j , j = 1, 2, 3 do not intersect. This implies that the linear
forms l1, l2, l3,mj are linearly independent. Similarly, we may assume that
the linear formsm1,m2,m3, lj , j = 1, 2, 3 are linearly independent. Choose
coordinates such thatl1 = t0, l2 = t1, l3 = t2,m1 = t3. The equation ofS
can be written in the formt0t1t2 + t3m2m3 = 0. Letm2 =

∑
aiti. It follows

from the previous assumption, that the coefficientsai are all nonzero. After
scaling the coordinates, we may assume thatm2 = t0 + t1 + t2 + t3 and we
takel = m3.

9.3.2 Hilbert-Burch Theorem

Salmon-Cayley equation has determinantal form and hence gives a determi-
nantal representation of a cubic surface. Unfortunately, it applies to only a few
of 21 different classes of cubics. By other methods we will see that a determi-
nantal representation exists for any normal cubic surface of type different from
XX. We will use the following result from commutative algebra (see [?]).

Theorem 9.3.4(Hilbert-Burch) Let I be an ideal in a polynomial ringR
such thatdepth(I) = codimI = 2 (thusR/I is a Cohen-Macaulay ring).
Then there exists a projective resolution

0 −→ Rn−1 φ2−→ Rn
φ1−→ R −→ R/I −→ 0.

Thei-th entry of the vector(a1, . . . , an) definingφ1 is equal to(−1)ici, where
ci is the complementary minor obtained from the matrixA definingφ2 by delet-
ing its i-th row.

We apply this Theorem to the case whenR = C[t0, t1, t2] and I is the
homogeneous ideal of a closed0-dimensional subschemeZ of P2 = Proj(R)
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generated by four linearly independent homogeneous polynomials of degree 3.
LetIZ be the ideal sheaf ofZ. Then(IZ)m = H0(P2, IZ(m)). By assumption

H0(P2, IZ(2)) = 0. (9.23)

Applying the Hilbert-Burch Theorem, we find a resolution of the graded ring
R/I

0 −→ R(−4)3
φ2−→ R(−3)4

φ1−→ R −→ R/I → 0,

whereφ2 is given by a3×4 matrixAwhose entries are linear forms int0, t1, t2.
Passing to the projective spectrum, we get an exact sequence of sheaves

0 −→ U ⊗OP2(−4)
φ2−→ V ⊗OP2(−3)

φ1−→ IZ −→ 0,

whereU , V are vector spaces of dimension3 and4. Twisting byOP2(3), we
get the exact sequence

0 −→ U ⊗OP2(−1)
φ̃2−→ V ⊗OP2

φ̃1−→ IZ(3) −→ 0. (9.24)

Taking global sections, we obtain

V = H0(P2, IZ(3)).

Twisting fact sequence (9.24) byOP2(−2), and using the canonical trace iso-
morphismH2(P2,OP2(−3)) ∼= C, we obtain that

U = H1(P2, IZ(1)).

The exact sequence

0→ IZ(1)→ OP2(1)→ OZ → 0

shows that

U ∼= Coker(H0(P2,OP2(1))→ H0(OZ)) ∼= Coker
(
C3 → Ch

0(OZ)
)
.

SincedimU = 3, we obtain thath0(OZ) = 6. ThusZ is a0-cycle of length
6.

Now we see that the homomorphism̃φ2 of vector bundles is defined by a
linear map

φ : E → Hom(U, V ) = U∨ ⊗ V, (9.25)

whereP2 = |E|. We can identify the linear mapφ with the tensort ∈ E∨ ⊗
U∨ ⊗ V . Let us now view this tensor as a linear map

ψ : V ∨ → Hom(E,U∨) = E∨ ⊗ U∨. (9.26)
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The linear map (9.25) defines a rational map, the right kernel map,

f : |E| → |V ∨| = |IZ(3)|∨, [v] 7→ |φ(v)(U)⊥|.

It is given by the linear system|IZ(3)|. In coordinates, it is given by maximal
minors of the matrixA definingφ2. ThusS is contained in the locus of[α] such
thatα belongs to the preimage of the determinantal locus in Hom(E,U∨). It
is a cubic hypersurface in the space Hom(E,U∨). Thus the image off is con-
tained in a determinantal cubic surfaceS. Since the intersection scheme of two
general membersC1, C2 of the linear system|IZ(3)| is equal to the0-cycle
Z of degree 6, the image off is a cubic surface. This gives a determinantal
representation ofS.

Theorem 9.3.5 AssumeS is a normal cubic surface. ThenS admitsk equiv-
alence classes of linear determinantal representations, wherek depends on
type ofS, and is given in the following Table.

I II III IV V VI VII VIII IX X XI
72 70 66 68 60 64 52 66 60 58 42

XII XIII XIV XV XVI XVII XVIII XIX XX XXI
48 62 50 32 64 58 56 40 0 54

Table 9.2Number of determinantal representations

Proof LetS′ be a minimal resolution of singularities ofS. It follows from the
previous construction that a blowing-down structure defined by a bubble cycle
of 6 points not containing in a conic, gives a determinantal representation of
S. Conversely, supposeS ⊂ P(V ), and we have a linear map (9.26) for some
3-dimensional vector spacesE andU defining a determinantal representation
of S. Thenψ defines a map of vector bundlesU ⊗OP2(−4)→ V ⊗OP2(−3),
and the cokernel of this map is the ideal sheaf of a0-cycle of length6. Its blow-
up is isomorphic toS. SinceS is normal, the ideal sheaf is integrally closed,
and hence corresponds to a bubble cycleη whose blow-up is isomorphic toS′.

So, the number of equivalence classes of linear determinantal representa-
tions is equal to the number of nef linear systems|e0| on S′ which define a
birational morphismS′ → P2 isomorphic to the blow-up of bubble cycleη of
6 points not lying on a conic. It follows from the proof of Lemma 9.1.1 that
there is a bijection between the set of vectorsv ∈ I1,6 with v2 = 1, v ·k6 = −3
and the set of roots inE6. The corresponding rootα can be written in the form
α = 2e − v1 − . . . − v6, where(v1, . . . , v6) is a unique six of exceptional
vectors. If we choose a geometric markingφ : I1,6 → Pic(S′) defined by
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this sixer, thenφ(α) is an effective root if and only if the bubble cycle corre-
sponding to this marking lies on a conic. Thus the number of determinantal
representations is equal to the number of non-effective roots inK⊥

S′ . In other
words, this is the number of roots inE6 (equal to 72) minus the number of
roots in the root sublattice defining the types of singularities onS. Now we use
the known number of roots in root lattices and get the result. Note the excep-
tional case of a surface with aE6-singularity. Here all roots are effective, soS
does not admit a determinantal representation.

Consider the left and the right kernel maps for the linear map (9.26)

l : S 99K |E|, r : S 99K |U |.

The composition of these maps with the resolution of singularitiesS′ → S

is the blowing-down mapl′ : S′ → |E| and r′ : S′ → |U |. WhenS is
nonsingular, these are two maps defined by a double-six. The correspond-
ing Cremona transformation|E| 99K |U is given by the homaloidal linear
system|I2

Z(5)| = |5e0 − 2(e1 − . . . − e6)|. To identify, the spaceU with
H0(|E|, I2

Z(5))∨, we consider the pairing

S2(ψ) : S2(V ∨)→ S2(E∨ ⊗ U∨)→
2∧
E∨ ⊗

2∧
U∨ ∼= E ⊗ V,

where the last isomorphism depends on a choice of volume forms onE∨ and
U∨. Dualizing, we get a linear pairing

E∨ ⊗ U∨ → S2(V ).

If we identify H0(S,OS(−2KS)) with S2V , andE∨ with H0(S,OS(e0)),
thenU∨ can be identified withH0(S,OS(−2KS − e0)). Note that we have
also identifiedU with the cokernel of the mapr : E → H0(P2,OZ). Let
us choose a basis inE ∼= C3 and an order of points inZ, hence a basis in
H0(P2,OZ) ∼= C6. The mapC6 → U = Coker(r) gives 6 vectors inU . The
corresponding 6 points in|U | is the bubble cycle defining the blowing-down
structurer : S → |U |. This is a special case of the construction ofassociated
sets of points (see [192], [230], [619]).

Remark9.3.2 We can also deduce Theorem9.3.5from the theory of determi-
nantal equations from Chapter4. Applying this theory we obtain thatS admits
a determinantal equation with entries linear forms if it contains a projectively
normal curveC such that

H0(S,OS(C)(−1)) = H2(S,OS(C)(−2)) = 0. (9.27)

Moreover, the set of non-equivalent determinantal representations is equal to
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the set of divisor classes of such curves. Letπ : S′ → S be a minimal reso-
lution of singularities andC ′ = π∗(C). Sinceπ∗OS(−1) = OS′(KS′), the
conditions (9.27) are equivalent to

H0(S′,OS′(C ′ +KS′)) = H2(S′,OS′(C ′ + 2KS′)) = 0. (9.28)

SinceC ′ is nef,H1(S′,OS′(C ′ +KS′)) = 0. Also

H2(S′,OS′(C ′ +KXS
′)) = H0(S′,OS′(−C ′)) = 0.

By Riemann-Roch,

0 = χ(OS′(C ′ +KS′)) = 1
2 ((C ′ +KS′)2 − (C ′ +KS′) ·KS′) + 1

= 1
2 (C ′2 + C ′ ·KS′) + 1.

ThusC ′ is a smooth rational curve, henceC is a smooth rational curve. It is
known that a rational normal curve inPn must be of degreen. Thus−KS′ ·
C ′ = 3, henceC ′2 = 1. The linear system|C ′| defines a birational map
π : S′ 99K P2. Let e0 = [C ′], e1, . . . , e6 be the corresponding geometric basis
of Pic(S′). The condition

0 = H2(X,OS′(C ′ + 2KS′)) = H0(S′,OS′(−C ′ −KS′)) = 0

is equivalent to

|2e0 − e1 − . . .− e6| = ∅. (9.29)

9.3.3 Cubic symmetroids

A cubic symmetroidis a hypersurface inPn admitting a representation as a
symmetric(3×3)-determinant whose entries are linear forms inn+1 variables.
Here we will be interested in cubic symmetroid surfaces. An example of a
cubic symmetroid is the Cayley 4-nodal cubic surface

t0t1t2 + t0t1t3 + t0t2t3 + t1t2t3 = det

 t0 0 t2
0 t1 −t3
−t3 t3 t2 + t3

 ,

which we have already encounter before. By choosing the singular points to
be the reference points[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], it is easy
to see that cubic surfaces with 4 singularities of typeA1 are projectively iso-
morphic. Since the determinantal cubic hypersurface inP5 is singular along a
surface, a nonsingular cubic surface does not admit a symmetric determinantal
representation.
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Lemma 9.3.6 LetL ⊂ |OP2(2)| be a pencil of conics. Then it is projectively
isomorphic to one of the following pencils:

(i) λ(t0t1 − t0t2) + µ(t1t2 − t0t2) = 0;
(ii) λ(t0t1 + t0t2) + µt1t2 = 0;
(iii) λ(t0t1 + t22) + µt0t2 = 0;
(iv) λt22 + µt0t1 = 0;
(v) λt20 + µ(t0t2 + t21) = 0;
(vi) λt20 + µt21 = 0;
(vii) λt0t1 + µt0t2 = 0;
(viii) λt0t1 + µt20 = 0.

Proof The first 5 cases correspond to the Segre symbols[1, 1, 1], [(2)1], [(3)],
[(11)1], [(12)], respectively. For the future use, we chose different bases. The
last three cases correspond to pencils of singular conics.

Theorem 9.3.7 A cubic symmetroid is a del Pezzo surface if and only if it is
projectively isomorphic to one of the following determinantal surfaces:

(i) C3 = V (t0t1t2 + t0t1t3 + t0t2t3 + t1t2t3) with four RDP of typeA1;
(ii) C′3 = V (t0t1t2 + t1t

2
3 − t2t23) with two RDP of typeA1 and one RDP

of typeA3;
(iii) C′′3 = V (t0t1t2 − t23(t0 + t2) − t1t22) with one RDP of typeA1 and
one RDP of typeA5.

Proof Let A = (lij) be a symmetric3 × 3 matrix with linear entrieslij
defining the equation ofS. It can be written in the formA(t) = t0A0 + t1A1 +
t2A2 + t3A3, whereAi, i = 1, 2, 3, 4, are symmetric3× 3 matrices. LetW be
a linear system of conics spanned by the conics

Ci = [t0, t1, t2] ·A ·

t0t1
t2

 = 0.

Each web of conics is apolar to a unique pencil of conics. Using the previ-
ous Lemma, we find the following possibilities. We list convenient bases in
corresponding dual 4-dimensional spaces of quadratic forms.

(i) ξ20 , ξ
2
1 , ξ

2
2 , 2(ξ0ξ1 + ξ1ξ2 + ξ0ξ2);

(ii) ξ20 , ξ
2
1 , ξ

2
2 , 2(ξ0ξ1 − ξ0ξ2);

(iii) ξ20 , ξ
2
1 , 2ξ0ξ1 − ξ2, 2ξ1ξ2;

(iv) ξ20 , ξ
2
1 , 2ξ0ξ2, 2(ξ1ξ2 − ξ0ξ1);

(v) 2ξ0ξ2 − ξ21 , ξ22 , 2ξ0ξ1, 2ξ1ξ2;
(vi) ξ22 , 2ξ0ξ1, 2ξ1ξ2, 2ξ0ξ2;
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(vii) ξ20 , ξ
2
1 , ξ

2
2 , 2ξ0ξ1;

(viii) ξ21 , ξ
2
2 , 2ξ0ξ2, 2ξ1ξ2.

The corresponding determinantal varieties are the following.

(i)

det

t0 t3 t3
t3 t1 t3
t3 t3 t2

 = t0t1t2 + t23(−t0 − t2 − t1 + 2t3) = 0.

It has 4 singular points[1, 0, 0, 0], (0, 1, 0, 0], [0, 0, 1, 0], and[1, 1, 1, 1].
The surface is a Cayley 4-nodal cubic.

(ii)

det

 t0 t3 −t3
t3 t1 0
−t3 0 t2

 = t0t1t2 − t1t23 − t2t23 = 0.

It has 2 ordinary nodes[0, 1, 0, 0], [0, 0, 1, 0] and a RDP[1, 0, 0, 0] of type
A3.

(iii)

det

0@t0 t2 0
t2 t1 t3
0 t3 −t2

1A = −t0t1t2 − t0t
2
3 + t32 = 0.

The surface has an ordinary node at[1, 0, 0, 0] and a RDP of typeA5 at
[0, 1, 0].

(iv)

det

 t0 −t3 t2
−t3 t1 t3
t2 t3 0

 = t23(−t0 − 2t2)− t1t22 = 0.

It has a double linet3 = t2 = 0.
(v)

det

 0 t2 t0
t2 −t0 t3
t0 t3 t1

 = −t1t22 + 2t0t2t3 + t30 = 0.

The surface has a double linet0 = t2 = 0.
(vi)

det

 0 t1 t3
t1 0 t2
t3 t2 t0

 = −t0t21 + 2t1t2t3 = 0.

The surface is the union of a plane and a nonsingular quadric.
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(vii)

det

t0 0 0
0 t1 t3
0 t3 t2

 = t0(t1t2 − t23) = 0.

The surface is the union of a plane and a quadratic cone.
(viii)

det

 0 0 t2
0 t0 t3
t2 t3 t1

 = t0t
2
2 = 0.

The surface is reducible.

Remark9.3.3 LetS be a cone over a plane cubic curveC. We saw in Example
4.2.2that any irreducible plane cubic curve admits a symmetric determinan-
tal representation. This gives a symmetric determinantal representation of the
cone over the cubic, however it is note defined by a web of conics. In fact, we
see from the list in above that no irreducible cone is given by a web of conics.
I do not see an a priori proof of this.

If S is irreducible non-normal surface, thenS admits a symmetric determi-
nantal representation. This corresponds to cases (iv) and (v) from the proof of
the previous Theorem. Case (iv) (resp. (v)) gives a surface isomorphic to the
surface from case (i) (resp. (ii)) of Theorem9.3.7. We also see that a reducible
cubic surface which is not a cone admits a symmetric determinantal represen-
tation only if it is the union of an irreducible nonsingular (singular) quadric
and its tangent (non-tangent) plane. The plane is a tangent if the quadric is
nonsingular; it intersects the quadric transversally.

Remark9.3.4 The three symmetroid del Pezzo cubic surfacesS can be char-
acterized among all del Pezzo cubics by the property that they admit a double
coverπ : S̄ → S ramified only over the singular points. For example, the
4-nodal cubic surface is isomorphic to the quotient ofP1 × P1 by the cyclic
group generated by the product of involutionσ1×σ2 of each factor. The orbits
of 4 fixed points are the nodes of the quotient. We leave to the reader to check
that the quotient is a del Pezzo surface of degree 4. The projection from a gen-
eral point on the quotient gives the cubic symmetroid. The cover isP1 × P61
blown up at one point, i.e. a del Pezzo surface of degree 7. If we do a similar
construction, replacingP1 × P1 with the quadric coneF2, we obtain a quartic
del Pezzo surface with two singular points of typeA1 and one singular point
of typeA3. Again after projecting we get a cubic symmetroid with singular
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points of the same type. To get the cubic symmetroid surface of type (iii), one
has to project from a special point (see [147], Chapter 0,§5)

9.4 Representations as sums of cubes

9.4.1 Sylvester’s pentahedron

Counting constants, we see that it is possible that a general homogeneous cubic
form in 4 variables can be written as a sum of 5 cubes of linear forms in finitely
many ways. Since there are no cubic surfaces singular at 5 general points, the
theory of apolarity tells us that the count of constants gives a correct answer.
The following result of J. Sylvester gives more:

Theorem 9.4.1 A general homogeneous cubic formf in 4 variables can be
written as a sum

f = l31 + l32 + l33 + l34 + l35, (9.30)

whereli are linear forms in 4 variables, no two are proportional. The forms
are defined uniquely, up to scaling by a cubic root of unity.

Proof The variety of cubic formsf ∈ S3(E∨) represented as a sum of
five cubes lies in the image of the dominant map of 20-dimensional spaces
(E∨)5 → S3(E∨). The subvariety of(E∨)5 which consists of 5-tuples of lin-
ear forms containing four linearly dependent forms is a hypersurface. Thus, we
may assume that in a representation off as a sum of five cubes of linear forms,
any set of four linear forms are linearly independent.

Suppose

f =
5∑
i=1

l3i =
5∑
i=1

m3
i .

Let xi, yi be the points in the dual space(P3)∨ corresponding to the hyper-
planesV (li), V (mi). The first five and the last five are distinct points. Con-
sider the linear system of quadrics in(P3)∨ which pass through the pointsx5,
y1, . . . , y5. Its dimension is larger than or equal 3. Choose a web|W | con-
tained in this linear system. Applying the corresponding differential operator
to f we find a linear relations between the linear formsl1, l2, l3, l4. Since we
assumed that they are linearly independent, we obtain that all quadrics in the
web containx1, . . . , x4. Thus all quadrics in the web pass throughxi, yj .

Suppose the union of the setsX = {x1, . . . , x5} andY = {y1, . . . , y5}
contains 9 distinct points. Since 3 quadrics intersect at≤ 8 points unless they
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contain a common curve, the web|W | has a curveB in its base locus. Since an
irreducible nondegenerate curve of degree 3 is not contained in the base locus
of a web of quadrics,degB ≤ 2. SupposeB contains a linè 0. Since neither
X nor Y is contained in a line, we can find a pointxi outside`0. Consider a
planeΠ spanned bỳ0 andxi. The restriction of quadrics toΠ is a pencil of
conics with fixed linè 0 and the base pointxi. This implies that|W | contains
a pencil of quadrics of the formΠ∪Π′, whereΠ′ belongs to a pencil of planes
containing a linè passing throughxi. SinceX ∪ Y is contained in the base
locus of any pencil in|W |, we see thatX ∪ Y ∪ Π ∪ `. Now we change the
point xi to some other pointyj not in Π. We find thatX ∪ Y is contained in
Π′ ∪ `′. Hence the set is contained in(Π ∪ `) ∩ (Π′ ∪ `′). It is the union of
`0 and a setZ consisting of either the linexiyj or a set of≤ 3 points. This
implies that one of the setsX andY has 4 points oǹ0. ThenX or Y spans a
plane, a contradiction.

SupposeB is a conic. Then we restrict|W | to the planeΠ it spans, and
obtain that|W | contains a net of quadrics of the formΠ ∪ Π′, whereΠ′ is
a net of planes. This implies thatX ∪ Y is contained inΠ ∪ Z, whereZ is
either empty or consists of one point. Again this leads to contradiction with
the assumption on linear independence of the points.

We may now assume thatm5 = λ5`5,m4 = λ4l4, for some nonzero con-
stantsλ4, λ5, and get

3∑
i=1

l3i + (1− λ3
4)l

3
4 + (1− λ3

5)l
3
5 =

3∑
i=1

m3
i .

Take the linear differential operator of the second order corresponding to the
double plane containing the pointsy1, y2, y3. It gives a linear relation be-
tween l1, . . . , l5 which must be trivial. Since the pointsy1, y2, y3, y4 = x4

andy1, y2, y3, y5 = x5 are not coplanar, we obtain thatλ3
4 = λ3

5 = 1. Taking
the differential operator of the first order corresponding to the plane through
y1, y2, y3, we obtain a linear relation between the quadratic formsl21, l

2
2, l

2
3.

Since no two ofl1, l2, l3 are proportional, this is impossible. Thus all the coef-
ficients in the linear relation are equal to zero, hencex1, x2, x3, y1, y2, y3 are
coplanar.

The linear system of quadrics throughy1, . . . , y5 is 4-dimensional. By an
argument from above, each quadric in the linear system containsx1, x2, x3 in
its base locus. Sincex1, x2, x3, y1, y2, y3 lie in a planeΠ, and no three points
xi’s or yj ’s are collinear, the restriction of the linear system to the plane is
a fixed conic containing the six points. This shows that the dimension of the
linear system is less than or equal to 3. This contradiction shows that the sets
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{x1, x2, x3}, {y1, y2, y3} have two points in common. Thus, we can write

l31 + (1− λ3
2)l

3
2 + (1− λ3

3)l
3
3 = m3

1.

The common point of the planesV (l1), V (l2), V (l3) lies onV (m1). After
projecting from this point, we obtain that the equation of a triple line can be
written as a sum of cubes of three linearly independent linear forms. This is
obviously impossible. So, we getλ3

2 = λ3
3 = 1, hencem1 = λ1l1, where

λ3
1 = 1. So, all cubesλ3

i are equal to 1.

Corollary 9.4.2 A general cubic surface is projectively isomorphic to a sur-
face inP4 given by equations

4∑
i=0

aiz
3
i =

4∑
i=0

zi = 0. (9.31)

The coefficients(a0, . . . , a4) are determined uniquely up to permutation and a
common scaling.

Proof Let S = V (f) be a cubic surface given by equation (9.31). Let b0l1 +
. . .+ b4l5 = 0 be a unique, up to proportionality, linear relation. Consider the
embedding ofP3 into P4 given by the formula

[y0, . . . , y4] = [l1(t0, . . . , t3), . . . , l5(t0, . . . , t3)].

Then the image ofS is equal to the intersection of the cubic hypersurface
V (
∑
y3
i ) with the hyperplaneV (

∑
biyi). Now make the change of coordi-

nateszi = biyi, if bi 6= 0 andzi = yi otherwise. In the new coordinates, we
get equation (9.31), whereai = b3i . The Sylvester presentation is unique, up to
permutation of the linear functionsli, multiplicationli by third roots of 1, and
a common scaling. It is clear that the coefficients(a0, . . . , a4) are determined
uniquely up to permutation and common scaling.

We refer to equations (9.31) asSylvester equationsof a cubic surface.
Recall from subsection 6.3.5, that a cubic surfaceV (f) is called Sylvester

nondegenerate if it admits equation (9.30), where any four linear forms are
linearly independent.

It is clear that in this case the coefficientsa1, . . . , a5 are all nonzero.
If four of the linear forms in (9.30)are linearly dependent, after a linear

change of variables, we may assume thatl1 = t0, l2 = t1, l3 = t2, l4 =
t3, l5 = at0 + bt1 + ct2. The equation becomes

f = t33 + g(t0, t1, t2), (9.32)
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whereg3 is a ternary cubic form. We called such surfacesV (f) cyclic.

Remark9.4.1 Suppose a cubic surfaceV (f) admits Sylvester equations.
Then any net of polar quadrics admits a common polar pentahedron. The con-
dition that a net of quadrics admits a common polar pentahedron is given by
vanishing of the Toeplitz invariantΛ from (1.64). Using this fact, Toeplitz gave
another proof of the existence of Sylvester pentahedron for a general cubic sur-
face [613].

Then all polar quadrics admit a common polar pentahedron.

9.4.2 The Hessian surface

SupposeS is given by Sylvester equation (9.31). Let us find the equation of its
Hessian surface. Recall that this is the locus of points whose polar quadric is
singular. For our surfaceS in the planeH = V (

∑
zi) ⊂ P4 this means that

this is the locus of pointsz = [α0, . . . , α4] ∈ H with
∑
αi = 0 such that the

polar quadric is tangent toH at some point. The equation of the polar quadric
is
∑
αiaiz

2
i = 0.

It is tangent toH if the point[1, . . . , 1] lies in the dual quadric
∑

1
αiai

u2
i =

0. Here we omit the term withai = 0. Thus, the equation of the Hessian surface
is

4∑
i=0

1
ziai

= 0,
∑

zi = 0,

where we have to reduce to the common denominator to get an equation of a
quartic hypersurface. If allai 6= 0, we get the equation

z0 · · · z5
( 4∑
i=0

Ai
zi

)
=

4∑
i=0

zi = 0, (9.33)

whereAi = (a0 · · · a5)/ai. If some coefficientsai are equal to zero, saya0 =
. . . = ak = 0, the Hessian surface becomes the union of planesV (zi) ∩
V (
∑
zi), i = 0, . . . , k, and a surface of degree3− k.

Assume thatS = V (f) is Sylvester nondegenerate, so the Hessian surface
He(S) is irreducible. The 10 lines

`ij = V (zi) ∩ V (zj) ∩ V (
∑

zi)

are contained in He(S). The 10 points

pijk = V (zi) ∩ V (zj) ∩ V (zj) ∩ V (
∑

zi)

are singular points of He(S).
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The union of the planesV (zi)∩V (
∑
zi) is called theSylvester pentahedron,

the lines̀ ij are itsedges, the pointspijk are itsvertices.

Remark9.4.2 Recall that the Hessian of any cubic hypersurface admits a bi-
rational automorphismσ which assigns to the polar quadric of corank 1 its
singular point. LetX be a minimal nonsingular model of He(S). It is a K3 sur-
face. The birational automorphismσ extends to a biregular automorphism of
X. It exchanges the proper inverse transforms of the edges with the exceptional
curves of the resolution. One can show that for a generalS, the automorphism
of X has no fixed points, and hence the quotient is an Enriques surface.

We know that a cubic surface admitting a degenerate Sylvester equation
must be a cyclic surface. Its Hessian is the union of a plane and the cone over
a cubic curve. A cubic form may not admit a polar pentahedral, so its equation
may not be written as a sum of powers of linear forms. For example, consider
a cubic surface given by equation

t30 + t31 + t32 + t33 + 3t23(at0 + bt1 + ct2) = 0.

For a general choice of the coefficients, the surface is nonsingular and non-
cyclic. Its Hessian has the equation

t0t1t2t3 + t0t1t2(at0 + bt1 + ct2)− t23(a2t1t2 + b2t0t2 + c2t0t1) = 0.

It is an irreducible surface with an ordinary node at[0, 0, 0, 1] and singular
points [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0] of typeA3. So we see that the surface
cannot be Sylvester nondegenerate. The surface does not admit a polar pen-
tahedral, it admits a generalized polar pentahedral in which two of the planes
coincide. We refer to [517] and [166] for more examples of cubic surfaces
with degenerate Hessian.

Proposition 9.4.3 A cubic surface given by a nondegenerate Sylvester equa-
tion (9.31) is nonsingular if and only if, for all choices of signs,

4∑
i=0

± 1
√
ai
6= 0. (9.34)

Proof The surface is singular at a point(z0, . . . , z4) if and only if

rank

(
a0z

2
0 a1z

2
1 a2z

2
2 a3z

2
3 a4z

2
4

1 1 1 1 1

)
= 1.

This givesaiz2
i = c, i = 0, . . . , 3, for somec 6= 0. Thuszi = ±c/√ai for

some choice of signs, and the equation
∑
zi = 0 gives (9.34). Conversely,

if (9.34) holds for some choice of signs, then[± 1√
a0
, . . . ,± 1√

a4
] satisfies
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zi = 0 and

∑
aiz

3
i = 0. It also satisfies the equationsait2i = ajt

2
j . Thus it

is a singular point.

9.4.3 Cremona’s hexahedral equations

The Sylvester Theorem has the deficiency that it cannot be applied to any non-
singular cubic surface. The Cremona’s hexahedral equations which we con-
sider here work for any nonsingular cubic surface.

Theorem 9.4.4(L. Cremona) Assume that a cubic surfaceS is not a cone
and admits a Cayley-Salmon equation (e.g.S is a nonsingular surface). Then
S is isomorphic to a cubic surface inP5 given by the equations

5∑
i=0

t3i =
5∑
i=0

ti =
5∑
i=0

aiti = 0. (9.35)

Proof LetS = V (l1l2l3+m1m2m3) be a Cayley-Salmon equation ofS. Let
us try to find some constants such that the linear forms, after scaling, add up to
zero. Write

l′i = λili, m′
i = µimi, i = 1, 2, 3.

SinceS is not a cone, four of the linear forms are linearly independent. After
reordering the linear forms, we may assume that the linear formsl1, l2, l3,m1

are linearly independent. Let

m2 = al1 + bl2 + cl3 + dm1, m3 = a′l1 + b′l2 + c′l3 + d′l4.

The constantsλi, µi must satisfy the following system of equations

λ1 + aµ2 + a′µ3 = 0,

λ2 + bµ2 + b′µ3 = 0,

λ3 + cµ2 + c′µ3 = 0,

µ1 + dµ2 + d′µ3 = 0,

λ1λ2λ3 + µ1µ2µ3 = 0.

The first four linear equations allow us to express linearly all unknowns in
terms ofµ2, µ3. Plugging in the last equation, we get a cubic equation in
µ2/µ3. Solving it, we get a solution. Now set

z1 = l′2 + l′3 − l′1, z2 = l′3 + l′1 − l′2, z3 = l′1 + l′2 − l′3,

z4 = µ′2 + µ′3 − µ′1, z5 = µ′3 + µ′1 − µ′2, z6 = µ′1 + µ′2 − µ′3.
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One checks that these six linear forms satisfy the equations from the assertion
of the Theorem.

Equations (9.35) of a del Pezzo cubic surface are calledCremona’s hexahe-
dral equations.

Corollary 9.4.5 (T. Reye) A general homogeneous cubic formf in 4 vari-
ables can be written as a sum of 6 cubes in∞4 different ways. In other words,

dim VSP(f, 6)o = 4.

Proof This follows from the proof of the previous theorem. Consider the map

(C4)6 → C20, (l1, . . . , l6) 7→ l31 + · · ·+ l36.

It is enough to show that it is dominant. We show that the image contains
the open subset of nonsingular cubic surfaces. In fact, we can use a Clebsch-
Salmon equationl1l2l3 +m1m2m3 for S = V (f) and apply the proof of the
Theorem to obtain that, up to a constant factor,

f = z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 .

Suppose a nonsingularS is given by equations (9.35). They allow us to
locate 15 lines onS such that the remaining lines form a double-six. The equa-
tions of these lines inP5 are

zi + zj = 0, zk + zl = 0, zm + zn = 0,
6∑
i=1

aizi = 0,

where{i, j, k, l,m, n} = {1, 2, 3, 4, 5, 6}. Let us denote the line given by the
above equations bylij,kl,mn.

Let us identify a paira, b of distinct elements in{1, 2, 3, 4, 5, 6}with a trans-
position(ab) in S6. We have the product(ij)(kl)(mn) of three commuting
transpositions corresponding to each linelij,kl,mn. The groupS6 admits a
unique (up to a composition with a conjugation) outer automorphism which
sends each transposition to the product of three commuting transpositions. In
this way we can match lineslij,kl,mn with exceptional vectorscab of theE6-
lattice. To do it explicitly, one groups together 5 products of three commuting
transpositions in such a way that they do not contain a common transposition.
Such a set is called atotal and the triples(ij, kl,mn) are calledsynthemes.
Here is the set of 6 totals
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T1 = (12)(36)(45), (13)(24)(56), (14)(26)(35), (15)(23)(46), (16)(25)(34), (9.36)

T2 = (12)(36)(45), (13)(25)(46), (14)(23)(56), (15)(26)(34), (16)(24)(35),

T3 = (12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45),

T4 = (12)(34)(56), (13)(25)(46), (14)(26)(35), (15)(24)(36), (16)(23)(45),

T5 = (12)(34)(56), (13)(26)(45), (14)(25)(36), (15)(23)(46), (15)(24)(35),

T6 = (12)(35)(46), (13)(26)(45), (14)(23)(56), (15)(24)(36), (16)(25)(34).

Two different totalsTa, Tb contain one common product(ij)(kl)(mn). The
correspondence(a, b) 7→ (ij)(kl)(mn) defines the outer automorphism

α : S6 → S6. (9.37)

For example,α((12)) = (12)(36)(45) andα((23)) = (15)(26)(34).
After we matched the lineslij,kl,mn with exceptional vectorscab, we check

that this matching defines an isomorphism of the incidence subgraph of the
lines with the subgraph of the incidence graph of 27 lines on a cubic surface
whose vertices correspond to exceptional vectorscab .

Theorem 9.4.6 Cremona’s hexahedral equations of a nonsingular cubic sur-
faceS defines an ordered double-six of lines. Conversely, a choice of an or-
dered double-six defines uniquely Cremona hexahedral equations ofS.

Proof We have seen already the first assertion of the theorem. If two sur-
faces given by hexahedral equations define the same double-six, then they have
common 15 lines. Obviously, this is impossible. Thus the number of different
hexahedral equations ofS is less than or equal to 36. Now consider the identity

(z1+ · · ·+z6)
(
(z1+z2+z3)2+(z4+z5+z6)2−(z1+z2+z3)(z4+z5+z6)

)
= (z1 + z2 + z3)3 + (z4 + z5 + z6)3 = z3

1 + · · ·+ z3
6

+3(z2 + z3)(z1 + z3)(z1 + z2) + 3(z4 + z5)(z5 + z6)(z4 + z6).

It shows that Cremona hexahedral equations define a Cayley-Salmon equation

(z2 + z3)(z1 + z3)(z1 + z2) + (z4 + z5)(z5 + z6)(z4 + z6) = 0,

where we have to eliminate one unknown with help of the equation
∑
aizi =

0. Applying permutations ofz1, . . . , z6, we get 10 Cayley-Salmon equations
of S. Each 9 lines formed by the corresponding conjugate pair of triads of
tritangent planes are among the 15 lines determined by the hexahedral equa-
tion. It follows from the classification of the conjugate pairs that we have 10
such pairs of linescij ’s (type II). Thus a choice of Cremona hexahedral equa-
tions defines exactly 10 Cayley-Salmon equations ofS. Conversely, it follows
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from the proof of Theorem9.4.4that each Cayley-Salmon equation gives three
Cremona hexahedral equations (unless the cubic equation has a multiple root).
Since we have 120 Cayley-Salmon equations forS we get36 = 360/10 hexa-
hedral equations forS. They match with 36 double-sixes.

9.4.4 The Segre cubic primal

Let p1, . . . , pm be a set of points inPn, wherem > n + 1. For any ordered
subset(pi1 , . . . , pin+1) of n + 1 points we denote by(i1 . . . in+1) the de-
terminant of the matrix whose rows are projective coordinates of the points
(pi1 , . . . , pin+1) in this order. We consider(i1 . . . in+1) as a section of the in-
vertible sheaf⊗n+1

j=1 p
∗
ij
OPn(1) on (Pn)m. It is called abracket-function. A

monomial in bracket-functions such that each indexi ∈ {1, . . . ,m} occurs
exactlyd times defines a section of the invertible sheaf

Ld =
n⊗
i=1

p∗iOPn(d).

According to the Fundamental Theorem of Invariant Theory (see [199]) the
subspace(Rmn )(d) of H0((Pn)m,Ld) generated by such monomials is equal
to the space of invariantsH0((Pn)m,Ld)SL(n+1, where the group SL(n + 1)
acts linearly on the space of sections via its diagonal action on(Pn)m. The
graded ring

Rmn =
∞⊕
d=0

(Rmn )(d) (9.38)

is a finitely generated algebra. Its projective spectrum is isomorphic to the GIT-
quotient

Pmn := (Pn)m//SL(n+ 1)

of (Pn)m by SL(n + 1). The complementU ss of the set of common zeros of
generators of the algebraRmn admits a regular map toPmn . The setU ssdoes not
depend on the choice of generators. Its points are calledsemi-stable. LetU s be
the largest open subset such that the fibres of the restriction mapU s → Pmn
are orbits. Its points are calledstable.

It follows from the Hilbert-Mumford numerical stability criterion that a
points set(p1, . . . , pm) in P1 is semi-stable (resp. stable) if and only if at most
1
2m (resp.< 1

2m) points coincide. We have already seen the definition of the
bracket-functions in the casem = 4. They define the cross ratio of 4 points

[p1, p2, p3, p4] =
(12)(34)
(13)(24)

.
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The cross ratio defines the rational map(P1)4 99K P1. It is defined on the open
setU s of points where no more that2 coincide and it is an orbit space over the
complement of three points0, 1,∞.

In the case of points inP2 the condition of stability (semi-stability) is that at
most 1

3m (resp.< 1
3m) coincide and at most23m (resp.< 2

3m) points are on
a line.

Proposition 9.4.7 LetP = (p1, · · · , p6) be an ordered set of distinct points
in P1. The following conditions are equivalent.

(i) There exists an involution ofP1 such that the pairs(p1, p2), (p3, p4),
(p5, p6) are orbits of the involution.

(ii) The binary formsgi, i = 1, 2, 3 with zeros(p1, p2), (p3, p4), (p5, p6)
are linearly dependent.

(iii) Let xi be the image ofpi under a Veronese mapP1 → P2. Then the
linesx1x2, x3x4, x5x6 are concurrent.

(iv) The bracket-function(14)(36)(25)− (16)(23)(54) vanishes atP.

Proof (i) ⇔ (ii) Let f : P1 → P1 be the degree 2 map defined by the invo-
lution. Letf be given by[t0, t1] 7→ [g1(t0, t1), g2(t0, t1)], whereg1, g2 are bi-
nary forms of degree 2. By choosing coordinates in the target space, we may as-
sume thatf(p1) = f(p2) = 0, f(p3) = f(p4) = 1, f(p5) = f(p6) = ∞, i.e.
g1(p1) = g1(p2) = 0, g2(p3) = g2(p4) = 0, (g1− g2)(p5) = (g1− g2)(p6) =
0. Obviously, the binary formsg1, g2, g3 = g1−g2 are linearly dependent. Con-
versely, supposeg1, g2, g3 are linearly dependent. By scaling, we may assume
thatg3 = g1−g2. We define the involution by[t0, t1] 7→ [g1(t0, t1), g2(t0, t1)].

(ii) ⇔ (iii) Without loss of generality, we may assume thatpi = [1, ai] and
g1 = t21 − (a1 + a2)t0t1 + a1a2t

2
0, g2 = t21 − (a3 + a4)t0t1 + a3a4t

2
0, g3 =

t21 − (a5 + a6)t0t1 + a5a6t
2
0. The condition that the binary forms are linearly

dependent is

det

1 a1 + a2 a1a2

1 a3 + a4 a3a4

1 a5 + a6 a5a6

 = 0. (9.39)

The image ofpi under the Veronese map[t0, t1] 7→ [t20, t0t1, t
2
2] is the point

xi = [1, ai, a2
i ]. The linexixj has equation

det

t0 t1 t2
1 ai a2

i

1 aj a2
j

 = (aj − ai)(aiajt0 − (ai + aj)t1 + t2) = 0.

Obviously, the three lines are concurrent if and only if (9.39) is satisfied.
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(iii) ⇔ (iv) We have1 a1 + a2 a1a2

1 a3 + a4 a3a4

1 a5 + a6 a5a6

 ·
 a2

1 a2
3 a2

5

−a1 −a3 −a5

1 1 1



=

 0 (a3 − a1)(a3 − a2) (a5 − a1)(a5 − a2)
(a1 − a3)(a1 − a4) 0 (a5 − a3)(a5 − a4)
(a1 − a5)(a1 − a6) (a3 − a5)(a3 − a6) 0

 .

Taking the determinant, we obtain

D(a1 − a3)(a1 − a5)(a3 − a5) =

= det

0@ 0 (a3 − a1)(a3 − a2) (a5 − a1)(a5 − a2)
(a1 − a3)(a1 − a4) 0 (a5 − a3)(a5 − a4)
(a1 − a5)(a1 − a6) (a3 − a5)(a3 − a6) 0

1A =

= (a3−a5)(a5−a1)(a1−a3)[(a1−a4)(a3−a6)(a5−a2)+(a6−a1)(a2−a3)(a4−a5)].

Since the points are distinct, cancelling by the product(a3−a5)(a5−a1)(a1−
a3), we obtain

D = (a1 − a4)(a3 − a6)(a5 − a2) + (a6 − a1)(a2 − a3)(a4 − a5) =

= (14)(36)(25)− (16)(23)(54).

We let

[ij, kl,mn] := (il)(kn)(jm)− (jk)(lm)(ni). (9.40)

For example,[12, 34, 56] = (14)(36)(25) − (16)(23)(54). Note that determi-
nant (9.39) does not change if we permute(ai, ai+1), i = 1, 3, 5. It also does
not change if we apply an even permutation of the pairs, and changes the sign
if we apply an odd permutation.

Let us identify the set(1, 2, 3, 4, 5, 6) with points(∞, 0, 1, 2, 3, 4, 5) of the
projective lineP1(F5). The group PSL(2,F5) ∼= A5 acts onP1(F5) via Moe-
bius transformationsz 7→ az+b

cz+d . Letu0 = [∞0, 14, 23] and letui, i = 1, . . . , 4,
be obtained fromu0 via the action of the transformationz 7→ z + i. Let

U1 := u0 + u1 + u2 + u3 + u4

=
(
[∞0, 14, 23]+ [∞1, 20, 34]+ [∞2, 31, 40]+ [∞3, 42, 01]+ [∞4, 03, 12]

)
.

Obviously,U1 is invariant under the subgroup of order 5 generated by the
transformationz 7→ z+1. It is also invariant under the transformationτ : z 7→
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−1/z. It is well-known thatA5 is generated by these two transformations. The
orbit ofU∞ under the groupA6 acting by permutations of∞, 0, . . . , 4 consists
of 6 functionsU1, U2, U3, U4, U5, U6. We will rewrite them now returning to
our old notation of indices by the set(1, 2, 3, 4, 5, 6).

U1

U2

U3

U4

U5

U6

 =


0 [12, 36, 45] [13, 24, 56] [14, 35, 26] [15, 46, 23] [16, 25, 34]

0 [15, 26, 34] [13, 46, 25] [16, 35, 24] [14, 23, 56]
0 [16, 23, 45] [14, 25, 36] [12, 35, 46]

0 [12, 34, 56] [15, 36, 24]
0 [13, 45, 26]

0




1
1
1
1
1
1

,
(9.41)

where the matrix is skew-symmetric. We immediately observe that

U1 + U2 + U3 + U4 + U5 + U6 = 0. (9.42)

Next observe that the triples of pairs[ij, kl,mn] in each row of the matrix
constitute a total from (9.36). One easely computes the action ofS6 onUi’s.
For example,

(12) : (U1, U2, U3, U4, U5, U6) 7→ (−U2,−U1,−U6,−U5,−U4,−U3).

Its trace is equal to 1.
Recall that there are 4 isomorphism classes of irreducible 5-dimensional

linear representations of the permutation groupS6. They differ by the trace of
a transposition(ij).

If the trace is equal to 3, the representation is isomorphic to the standard
representationVst in the space

V = {(z1, . . . , z6) ∈ C6 : z1 + . . .+ z6 = 0}.

It coincides with the action of the Weyl groupW (A6) on the root latticeA6. It
corresponds to the partition(5, 1) of 6.

If the trace is equal to−3, the representation is isomorphic to the tensor
product of the standard representation and the one-dimensional sign represen-
tation. It corresponds to the dual partition(2, 1, 1, 1, 1).

If the trace is equal to 1, the representation is isomorphic to the composition
of the outer automorphismα : S6 → S6 and the standard representation. It
corresponds to the partition(3, 3).

If the trace is equal to -1, the representation is isomorphic to the tensor prod-
uct of the previous representation and the sign representation. It corresponds
to the partition(2, 2, 2).

So, our representation on the linear spaceV = (R6
1)(1) associated with the

partition(3, 3).
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One checks that the involution(12)(34)(56) acts as

(U1, U2, U3, U4, U5, U6) 7→ (−U1,−U2,−U3,−U5,−U4,−U6). (9.43)

Its trace is equal to−3. A well-known formula from the theory of linear repre-
sentations

dimV G =
1

#G

∑
g∈G

Trace(g)

shows that the dimension of the invariant subspace for the element(12)(34)(56)
is equal to 1. It follows from (9.43) that the functionU4 − U5 is invariant. On
the other hand, we also know that the function[12, 34, 56] is invariant too. This
givesU4−U5 = c[12, 36, 54] for some scalarc. Evaluating these functions on
a point set(p1, . . . , p6) with p1 = p2, p3 = p6, p4 = p5 we find thatc = 6.
Now applying permutations we obtain:

U1 − U2 = 6[12, 36, 45], U1 − U3 = 6[13, 24, 56], U1 − U4 = 6[14, 35, 26], (9.44)

U1 − U5 = 6[15, 46, 23], U1 − U6 = 6[16, 25, 34], U2 − U3 = 6[15, 26, 34],

U2 − U4 = 6[13, 46, 25], U2 − U5 = 6[16, 35, 24], U2 − U6 = 6[14, 23, 56],

U3 − U4 = 6[16, 45, 23], U3 − U5 = 6[14, 25, 36], U3 − U6 = 6[12, 46, 35],

U4 − U5 = 6[12, 43, 56], U4 − U6 = 6[15, 36, 24], U5 − U6 = 6[13, 45, 26].

Similarly, we find thatU1 +U2 is the only anti-invariant function underσ and
hence coincides withc(12)(36)(45). After evaluating the functions at a point
set(p1, . . . , p6) with p1 = p3, p2 = p4, p5 = p6 we find thatc = 4. In this
way we get the relations:

U1 + U2 = 4(12)(36)(45), U1 + U3 = 4(13)(42)(56), U1 + U4 = 4(41)(53)(26), (9.45)

U1 + U5 = 4(15)(46)(32), U1 + U6 = 4(16)(25)(34), U2 + U3 = 4(15)(26)(43),

U2 + U4 = 4(13)(46)(25), U2 + U5 = 4(16)(35)(42), U2 + U6 = 4(14)(23)(56),

U3 + U4 = 4(16)(54)(32), U3 + U5 = 4(14)(25)(63), U3 + U6 = 4(12)(46)(53),

U4 + U5 = 4(12)(34)(56), U4 + U6 = 4(15)(36)(24), U5 + U6 = 4(13)(45)(62).

Using (9.42), we obtain

U1 = (12)(36)(45) + (13)(42)(56) + (14)(35)(26) + (15)(46)(32) + (16)(25)(34),(9.46)

U2 = (12)(36)(45) + (13)(46)(25) + (14)(56)(23) + (15)(26)(43) + (16)(24)(53),

U3 = (12)(53)(46) + (13)(42)(56) + (14)(52)(36) + (15)(26)(43) + (16)(23)(45),

U4 = (12)(34)(56) + (13)(46)(25) + (14)(35)(26) + (15)(24)(36) + (16)(23)(45),

U5 = (12)(34)(56) + (13)(54)(26) + (14)(52)(36) + (15)(46)(32) + (16)(24)(53),

U6 = (12)(53)(46) + (13)(54)(26) + (14)(56)(23) + (15)(36)(24) + (16)(25)(34).

We see that our functions are in bijective correspondence with 6 totals from
above. The functionsU1, . . . , U6 are known as theJoubert functions..
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It is easy to see that the functionsUi do not vanish simultaneously on semi-
stable point sets. Thus they define a morphism

J : P 6
1 → P5.

Theorem 9.4.8 The morphismJ defined by the Joubert functions is an iso-
morphism onto the subvarietyS3 of P5 given by the equations

5∑
i=0

zi =
5∑
i=0

z3
i = 0. (9.47)

Proof It is known that the graded ringR6
1 is generated by the following

bracket-functions (standard tableaux)

(12)(34)(56), (12)(35)(46), (13)(24)(56), (13)(25)(46), (14)(25)(36)

(see [192]). The subspace ofR6
1(1) generated by the Joubert functions is in-

variant with respect toS6. SinceR6
1(1) is an irreducible representation, this

implies that the relation
∑
Ui = 0 spans the linear relations between the Jou-

bert functions. Consider the sumΣ =
∑
U3
i . Obviously, it is invariant with

respect toA6. One immediately checks that an odd permutation inS6 trans-
forms each sumΣ to−Σ. This implies thatΣ = 0 whenever two pointspi and
pj coincide. HenceΣ must be divisible by the product of15 functions(ij).
This product is of degree5 in coordinates of each point butΣ is of degree 3.
This implies thatΣ = 0. Since the functionsUi generate the graded ringR6

1,
by definition of the spaceP 6

1 , we obtain an isomorphism fromP 6
1 to a closed

subvariety ofS3. Since the latter is irreducible and of dimension equal to the
dimension ofP 6

1 , we obtain the assertion of the theorem.

The cubic threefoldS3 is called theSegre cubic primal. We will often con-
sider it as a hypersurface inP4.

It follows immediately by differentiating that the cubic hypersurfaceS3 has
10 double points. They are the pointsp = [1, 1, 1,−1,−1,−1] and others
obtained by permuting the coordinates. A pointp is given by the equations
zi + zj = 0, 1 ≤ i ≤ 3, 4 ≤ j ≤ 6. Using (9.42) this implies thatp is the
image of a point set withp1 = p4 = p6 or p2 = p3 = p5. Thus the singular
points of the Segre cubic primal are the images of semi-stable but not stable
point sets.

AlsoS3 has 15 planes with equationszi+zj = zk+zl = zl+zm = 0. Let us
see that they are the images of point sets with two points coincide. Without loss
of generality, we may assume thatz1+z2 = z3+z4 = z5+z6 = 0. Again from
(9.42), we obtain that(12)(36)(45), (16)(23)(45) and (13)(26)(45) vanish.
This happens if and only ifp4 = p5.
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We know that the locus of point sets(q1, . . . , q6) such that the pairs(qi, qj),
(qk, ql), and (qm, qn) are orbits of an involution are defined by the equa-
tion [ij, kl,mn] = 0. By (9.44), we obtain that they are mapped to a hyper-
plane section ofS3 defined by the equationza − zb = 0, whereα((ab)) =
(ij)(kl)(mn).

It follows from Cremona’s hexahedral equations that a nonsingular cubic
surface is isomorphic to a hyperplane section of the Segre cubic. In a Theorem
below we will make it more precise. But first we need some lemmas.

Lemma 9.4.9 Let x1, . . . , x6 be six points inP2. Let{1, . . . , 6} = {i, j} ∪
{k, l} ∪ {m,n}. The condition that the linesxixj , xkxl, xmxn are concurrent
is

(ij, kl,mn) := (kli)(mnj)− (mni)(klj) = 0. (9.48)

Proof The expression(kli)(mnx)− (mni)(klx) can be considered as a lin-
ear function defining a line inP2. Plugging inx = xi we see that it passes
through the pointxi. Also if x is the intersection point of the linesxkxl and
xmxn, then, writing the coordinates ofx as a linear combination of the coor-
dinates ofxkxl, and ofxmxn, we see that the line passes through the pointx.
Now equation (9.48) expresses the condition that the pointxj lies on the line
passing throughxi and the intersection point of the linesxkxl andxmxn. This
proves the assertion.

The functions(ij, kl,mn) change the sign after permuting two numbers in
one pair. They change sign after permuting two pairs of numbers.

It is known (see [192]) that the spaceR6
2(1) is generated by bracket-functions

(ijk)(lmn). Its dimension is equal to 5 and it has a basis corresponding to
standard tableaux

(123)(456), (124)(356), (125)(346), (134)(256), (135)(246).

The groupS6 acts linearly on this space via permuting the numbers1, . . . , 6.
Let
Ū1
Ū2
Ū3
Ū4
Ū5
Ū6

 =


0 (12, 36, 45) (13, 24, 56) (14, 26, 35) (15, 46, 23) (16, 34, 25)

0 (15, 26, 34) (13, 25, 46) (16, 35, 24) (14, 56, 23)
0 (16, 45, 23) (14, 36, 25) (12, 46, 35)

0 (12, 56, 34) (15, 36, 24)
0 (13, 45, 26)

0




1
1
1
1
1
1

.
Equations (9.44) extend to the functions̄Ui.

Note that the transposition(12) acts on the functions̄U as

(Ū1, Ū2, Ū3, Ū4, Ū5, Ū6) 7→ (Ū2, Ū1, Ū6, Ū5, Ū4, Ū3).

The trace is equal to−1. This shows that the representation(R6
2)(1) is different
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from the representation(R6
1)(1); it is associated to the partition(2, 2, 2). One

checks that the substitution(12)(34)(56) acts by

(Ū1, Ū2, Ū3, Ū4, Ū5, Ū6) 7→ (Ū1, Ū2, Ū3, Ū5, Ū4, Ū6).

The trace is equal to3. This implies that the sign representation enters in the
representation of the cyclic group〈(12)(34)(56)〉 on(R6

2)(1) with multiplicity
1. Thus the space of anti-invariant elements is one-dimensional. It is spanned
by Ū4 − Ū5. Since the function(12)(34)(56) is anti-invariant, we obtain that
Ū4 − Ū5 = c(12)(34)(56). Again, as above, we check thatc = 6. In this way,
the equations (9.44) extend to the functions̄Ui with [ij, kl.mn] replaced with
(ij)(kl)(mn).

Lemma 9.4.10 We have the relation

Ū1 + Ū2 + Ū3 = −6(146)(253) (9.49)

and similar relations obtained from this one by permuting the set(1, . . . , 6).

Proof Adding up, we get

Ū1 + Ū2 + Ū3 =
(
(14, 26, 35) + (14, 56, 23) + (14, 25, 36)

)
+
(
(16, 34, 25)

+(16, 35, 24) + (16, 45, 23)
)

+
(
(15, 46, 23) + (13, 25, 46) + (12, 46, 35)

)
.

Next we obtain

(14, 26, 35) + (14, 56, 23) + (14, 25, 36) = (142)(536)− (146)(532) + (146)(523)

−(143)(526) + (142)(563)− (143)(562) = −2(146)(253),

(16, 34, 25) + (16, 35, 24) + (16, 45, 23) = (163)(524)− (164)(523) + (165)(243)

−(163)(245) + (164)(325)− (165)(324) = −2(146)(253),

(15, 46, 23) + (13, 25, 46) + (12, 46, 35) = (465)(312)− (462)(315) + (463)(152)

−(461)(153)+(465)(123)−(463)(125) = 2
`
(465)(312)−(462)(315)+(463)(152)

´
.

Now we use the Plücker relation (10.3)

(ijk)(lmn)− (ijl)(kmn) + (ijm)(kln)− (ijn)(klm) = 0. (9.50)

It gives

(465)(312)− (462)(315) + (463)(152) = −(146)(253).

Collecting all of this together, we get the assertion.
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Let (p1, . . . , p6) be a fixed ordered set of 6 points inP2. Consider the fol-
lowing homogeneous cubic polynomials in coordinatesx = (t0, t1, t2) of a
point inP2.

F1 = (12x)(36x)(45x) + (13x)(42x)(56x) + (14x)(26x)(35x) + (15x)(46x)(32x) + (16x)(34x)(25x),

F2 = (12x)(36x)(45x) + (13x)(25x)(46x) + (14x)(56x)(23x) + (15x)(26x)(43x) + (16x)(24x)(53x),

F3 = (12x)(35x)(46x) + (13x)(42x)(56x) + (14x)(52x)(36x) + (15x)(26x)(43x) + (16x)(45x)(23x),

F4 = (12x)(34x)(56x) + (13x)(46x)(25x) + (14x)(35x)(26x) + (15x)(36x)(24x) + (16x)(23x)(45x),

F5 = (12x)(34x)(56x) + (13x)(54x)(26x) + (14x)(52x)(36x) + (15x)(46x)(32x) + (16x)(24x)(53x),

F6 = (12x)(53x)(46x) + (13x)(54x)(26x) + (14x)(56x)(23x) + (15x)(36x)(24x) + (16x)(25x)(34x).

Theorem 9.4.11 The rational map

Φ : P2 99K P5, x 7→ [(F1(x), . . . , F6(x)]

has the image given by the equations

z3
1 + z3

2 + z3
3 + z3

4 + z3
5 + z3

6 = 0, (9.51)

z1 + z2 + z3 + z4 + z5 + z6 = 0,

a1z1 + a2z2 + a3z3 + a4z4 + a5z5 + a6z6 = 0,

where(a1, . . . , a6) are the values of(Ū1, . . . , Ū6) at the point set(p1, . . . , p6).

Proof Takex = (1, 0, 0), then each determinant(ijx) is equal to the determi-
nant(ij) for the projection ofp1, . . . , p6 to P1. Since all the bracket-functions
are invariant with respect to SL(3) we see that any(ijx) is the bracket-function
for the projection of the points toP1 with center atx. This shows that the re-
lations for the functionsUi imply the similar relations for the polynomialsFi.
This is an example of Clebsch’s transfer principle which we discusses in sub-
section 3.4.2. Let us find the additional relation of the form

∑5
i=0 aizi = 0.

Consider the cubic curve

C = a1F1(x) + · · ·+ a6F6(x) = 0,

wherea1, . . . , a6 are as in the assertion of the theorem. We have already noted
that (ij, kl,mn) are transformed byS6 in the same way as(ij)(kl)(mn) up
to the sign representation. Thus the expression

∑
i aiFi(x) is transformed to

itself under an even permutation and transformed to−
∑
i aiFi(x) under an

odd permutation. Thus the equation of the cubic curve is invariant with respect
to the order of the pointsp1, . . . , p6. Obviously,C vanishes at the pointspi.
Suppose we prove thatC vanishes at the intersection point of the linesp1p2
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andp3p4, then by symmetry it vanishes at the intersection points of all possible
pairs of lines, and hence contains 5 points on each line. SinceC is of degree 3
this implies thatC vanishes on 15 lines, henceC is identical zero and we are
done.

So, let us prove that the polynomialC vanishes atp = p1p2 ∩ p3p4. Recall
from analytic geometry (or multilinear algebra) thatp can be represented by
the vector(v1 × v2) × (v3 × v4) = (v1 ∧ v2 ∧ v3)v4 − (v1 ∧ v2 ∧ v4)v3 =
(123)v4 − (124)v3. Thus the value of(ijx) atp is equal to

(ijp) = (123)(ij4)− (124)(ij3) = (12)(ij)(34). (9.52)

Applying Clebsch’s transfer principle to (9.45), we obtain

F1(x) + F2(x) = 4(12x)(36x)(45x), F4(x) + F5(x) = 4(12x)(34x)(56x),

F1(x) + F6(x) = 4(16x)(25x)(34x), F3(x) + F6(x) = 4(12x)(53x)(46x),

F2(x) + F3(x) = (15x)(26x)(43x).

This implies thatF1 + F2, F4 + F5, F1 + F6, F3 + F6, F2 + F3 all vanish
atp. Thus the value ofC atp is equal to

(a4 − a5)F4(p) + (a2 + a6 − a1 − a3)F6(p)

= (a4 − a5)(F4(p) + F6(p)) + (a2 + a6 + a5 − a1 − a3 − a4)F6(p)

= (a4 − a5)(F4(p) + F6(p)) + (a2 + a5 + a6)(F1(p) + F3(p)).

Here we used thata1 + · · · + a6 = 0 andF1(p) + F3(p) + 2F6(p) = 0. By
Lemma9.4.10,

a4−a5 = (a4+a1+a2)−(a5+a1+a2) = 6(125)(436)−6(126)(435) = 6(12, 43, 56).

a2 + a5 + a6 = 6(346)(125).

Using (9.45) and (9.52), we get

F4(p) + F6(p) = (51p)(42p)(36p) = (42p)(12, 34, 15)(12, 36, 34),

F1(p) + F3(p) = (13p)(42p)(56p) = (42p)(12, 56, 34)(12, 13, 34).

Collecting this together, we obtain that the value of1
6C atp is equal to

(12, 43, 56)(42p)[(12, 34, 15)(12, 36, 34) + (125)(436)(12, 13, 34)).
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It remains to check that

(12, 34, 15)(12, 36, 34) + (125)(436)(12, 13, 34)

= (125)(314)(123)(364) + (125)(463)(123)(134) = 0.

Recall that the Segre cubic contains 15 planes defined by equations

Πij,kl,mn : zi + zj = zk + zl = zm + zn = 0,

where{i, j} ∪ {k, l} ∪ {m,n} = [1, 6]. The intersection of this plane with the
hyperplaneH :

∑
aizi = 0 is the union of three lines on the cubic surface. In

this way we see 15 lines. Each hyperplaneHij : zi = zj = 0 cuts out the Segre
cubicS3 along the union of three planesΠij,kl,mn, where the union of{k, l}
and{m,n} is equal to[1, 6] \ {i, j}. The hyperplaneH intersectsHij ∩ S3

along the union of three lines. Thus we see 15 tritangent planes and 15 lines
forming a configuration(153). This is a subconfiguration of the configuration
(275, 453) of 27 lines and 45 tritangent planes on a nonsingular cubic surface.

The Segre cubic is characterized by the property that it has 10 nodes.

Theorem 9.4.12 Let S be a normal cubic hypersurface inP4 with 10 ordi-
nary double nodes. ThenS is isomorphic to the Segre cubic primal.

Proof Choose projective coordinates such that one of the singular points is
the point[1, 0, 0, 0, 0]. The equation ofS can be written in the form

t0A(t1, . . . , t4) +B(t1, . . . , t4) = 0.

By taking the partials, we obtain that the degree 6 curveC = V (A,B) in
P3 has 9 singular points. Since[1, 0, 0, 0, 0] is an ordinary double point, the
quadratic formA is nondegenerate. Thus the curveC is a curve of bidegree
(3, 3) on a nonsingular quadricV (A). It is a curve of arithmetic genus with
9 singular points. It is easy to see that this is possible only ifC is the union
of 6 lines, two triples of lines from each of the two rulings. Since Aut(P1)
acts transitively on the set of ordered triple of points, we can fix the curveC.
Two cubicsV (B) andV (B′) cut out the same curveC onV (A) if and only if
B′ − B = AL, whereL is a linear form. Replacingt0 by t0 + L, we can fix
B.

It follows from the proof that no cubic hypersurface inP4 has more than
10 ordinary double points. Thus the Segre cubic primal can be characterized,
up to projective equivalence, by the property that it has maximal number of
ordinary double points.
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Proposition 9.4.13 Let p1, . . . , p5 be points inP3 in general linear posi-
tion. The linear system of quadrics through these points defines a rational map
P3 99K P4 whose image is isomorphic to the Segre cubic primal.

Proof It is clear that the dimension of the linear system is equal to 4. To com-
pute the degree of the image, we have to compute the number of intersection
points of three general quadrics from the linear system and subtract the num-
ber of base points. Three general quadrics intersect at 8 points, subtracting 5,
we get 3. So, the image of the rational map is a cubic hypersurfaceS in P4.
For each linè ij = pipj , the general member of the linear system intersects
`ij only at the pointspi, pj . This implies that the image of the line inP4 is
a point. It is easy to see that no other line inP4, except the ten lines̀ij , is
blown down to a point. This implies that the image of`ij is an isolated sin-
gular point ofS. Let Y → P3 be the blow-up of the pointsp1, . . . , p5. The
compositionf : Y → P3 99K P4 defines a regular birational map fromY
to S. It is a small resolution ofS in the sense that the preimages of the sin-
gular points are not divisors but curves. LetY ′ → Y be the blow-up of the
proper transforms of the lines̀ij in Y . The normal bundle of a linèn P3 is
isomorphic toO`(1) ⊕ O`(1). It follows from some elementary facts of the
intersection theory (see [253], Appendix B.6) that the normal bundle of the
proper transform̄̀ ij of `ij is isomorphic toO¯̀

ij
(−1) ⊕ O¯̀

ij
(−1). This im-

plies that the preimage of̄`ij in Y ′ is isomorphic to the productP1×P1. Thus
the compositionY ′ → Y → S is a resolution of singularities with exceptional
divisor over each singular point ofS isomorphic toP1 × P1. It is well-known
that it implies that each singular point ofS is an ordinary double point ofS.
Applying Theorem9.4.12, we obtain thatS is isomorphic to the Segre cubic
primal.

Remark9.4.3 According to [240], the Segre cubic primal admits 1024 small
resolutions in the category of complex manifolds. By the action ofS6 they
are divided into 13 isomorphism classes. Six of the classes give projective
resolutions.

The coefficients(a1, . . . , a6) in Theorem9.4.11can be viewed as elements
of the 5-dimensional linear spaceV = (R6

2)(1). Since the functions̄Ui add up
to zero,a1 + . . . + a6 = 0. They map the moduli spaceP 6

2 of ordered sets of
6 points inP2 to the hyperplaneV (

∑
ti) in P5. We know that the action of

S6 onP 6
2 defines an irreducible representation of type(2, 2, 2) onV and the

functionsŪi are transformed according to the same representation. It is known
that the algebraR6

2 is generated by the space(R6
2)(1) and one elementΥ from
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(R6
2)(2). We have

Υ = (123)(145)(246)(356)− (124)(135)(236)(456). (9.53)

If we replace here6 with x and consider this as an equation of a conic inP2,
we observe that the expression vanishes whenx = p1, p2, p3, p4, p5. Thus the
conic passes through the pointsp1, p2, p3, p4, p5, x. So, the functionΥ van-
ishes on the set of points(p1, . . . , p6) lying on a conic. This is a hypersurface
X in P 6

2 . One shows thatΥ2 is a polynomial of degree 4 in generators of
(R6

2)(1). This implies that the image ofX is a quartic hypersurface inP(V ).
Since the mapX → P(V ) is S6-equivariant, the image ofX can be given by
aS6-invariant polynomial inti. Since the representationV is self-dual, and is
obtained from the standard representation ofS6 onV by composing with the
outer automorphism, the invariant functions are symmetric polynomials. So,
the equation of the image ofX is equal to

s22 + λs4 = 0,

wheresk =
∑5
i=0 t

k
i . The coefficientλ can be found from the fact that the hy-

persurfaceX is singular at the locus of strictly semi-stable points represented
by points setspi = pj and the remaining 4 points are collinear. The locus con-
sists of 15 lines. A simple computation shows that the only symmetric quartic
with this property is the quarticV (s22 − 4s4) (see [261], Theorem 4.1).

The quartic threefoldCR4 in P5 given by the equations

5∑
i=0

ti = 0, (
5∑
i=0

t2i )
2 − 4

5∑
i=0

t4i = 0 (9.54)

will be called theCastelnuovo-Richmond quartic.

Corollary 9.4.14 The varietyP 6
2 is isomorphic to the double quadric ofP4

ramified over the Castelnuovo-Richmond quadric. It can be given by the equa-
tions

t25 + (
5∑
i=0

t2i )
2 − 4

5∑
i=0

t4i = 0,
5∑
i=0

ti = 0. (9.55)

in P(1, 1, 1, 1, 1, 2).

The involution(t0, . . . , t6) 7→ (t0, . . . , t5,−t6) is theassociation involu-
tion. Applying it to the projective equivalence class of a general point set
(p1, . . . , p6) we obtain the projective equivalence class of a set(q1, . . . , q6)
such that the blow-ups of the two sets are isomorphic cubic surfaces, and the
two geometric markings are defined by a double-six. We refer for all of this to
[192]
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Consider the dual variety(S3)∨ of the Segre cubic primal. SinceS3 has
10 ordinary nodes, the Plücker-Teissier Formula shows that(S3)∨ is a quartic
hypersurface. The duals of the hyperplanesHij define 15 points in the dualP4.
The duals of the planesΠij,kl,mn are 15 lines. They are singular lines ofCR4.
The 15 lines and 15 points form a configuration(153) in the dual space.

Proposition 9.4.15 The dual variety of the Segre cubic primal is isomorphic
to the Castelnuovo-Richmond quartic hypersurface:

CR4
∼= (S3)∨.

Proof We may assume thatS3 is given by the equation
∑4
i=0 t

3
i−(

∑4
i=0 ti)

3 =
0 in P4, and the groupS6 acts by letting its subgroupS5 permutet0, . . . , t4
and sending the transposition(56) to the transformationti 7→ ti, i ≤ 4, t4 7→
−L, whereL = t0 + . . . + t4. The polar map is given by polynomialsFi =
t2i − L2, i = 0, . . . , 4. After a linear change of the coordinatesyi in the target
space

y′i = yi −
1
3
(y0 + y1 + y2 + y3), i = 0, . . . , 4,

we obtain that the linear representation ofS6 on the target space is isomorphic
to the representation on theti’s. Thus the dual hypersurface is isomorphic to a
quartic threefold inP5 given by the equations

5∑
i=0

yi = 0, s22 + λs4 = 0,

wheresk =
∑5
i=0 y

k
i . Under the polar map, the 15 planes inS3 are mapped to

15 singular lines on the dual variety. A straightforward computation shows that
this implies that the parameterλ is equal to−4 (see [261], Theorem 4.1).

9.4.5 Moduli spaces of cubic surfaces

The methods of the Geometric Invariant Theory (GIT) allows one to construct
the moduli space of nonsingular cubic surfacesMcub as an open subset of the
GIT-quotient

P(S3((C4)∨)//SL(4) = Proj
∞⊕
d=0

Sd(S3((C4)∨)∨)SL(4). (9.56)

The analysis of stability shows that, except one point, the points of this variety
represent the orbits of cubic surfaces with ordinary double points. The excep-
tional point corresponds to the isomorphism class of a unique surface with
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threeA2-singularities. So, the GIT-quotient can be taken as a natural compact-
ificationM̄cub of the moduli spaceMcub. The computations from the classical
invariant theory due to G. Salmon [535], [540] and A. Clebsch [115] (see a
modern exposition in [341]) show that the graded ring of invariants is gener-
ated by elementsId of degreesd = 8, 16, 24, 32, 40, and100 (a modern proof
of completeness can be found in [38]). The first four basic invariants are in-
variants with respect to the groupG of invertible matrices with the determinant
equal to±1. This explains why their degrees are divisible by 8 (see [199]). The
last invariant is what the classics called a skew invariant, it is not an invariant
of G but an invariant of SL(4). There is one basic relation expressingI2

100 as
a polynomial in the remaining invariants. The graded subalgebra generated by
elements of degree divisible by 8 is freely generated by the first 5 invariants.
Since the projective spectrum of this subalgebra is isomorphic to the projective
spectrum of the whole algebra, we obtain an isomorphism

M̄cub
∼= P(8, 16, 24, 32, 40) ∼= P(1, 2, 3, 4, 5). (9.57)

This, of course, implies that the moduli space of cubic surfaces is a rational
variety.

The discriminant∆ of a homogeneous cubic form in four variables is ex-
pressed in terms of the basic invariants by the formula

∆ = (I2
8 − 64I16)2 − 214(I32 + 2−3I8I24) (9.58)

(the exponent−3 is missing in Salmon’s formula and also the coefficient atI32
was wrong, it has been corrected in [166]).

We may restrict the invariants to the open Zariski subset of Sylvester non-
degenerate cubic surfaces, It allows one to identify the first four basic invari-
ants with symmetric functions of the coefficients of the Sylvester equations.
Salmon’s computations give

I8 = σ2
4 − 4σ3σ5, I16 = σ1σ

3
5 , I24 = σ4σ

4
5 , I32 = σ2σ

6
5 , I40 = σ8

5 ,

(9.59)
whereσi are elementary symmetric polynomials. Evaluating∆ from above, we
obtain a symmetric polynomial of degree 8 obtained from (9.34) by eliminating
the irrationality.

The invariantI40 restricts to(a0a1a2a3a4)8. It does not vanish on the set
of Sylvester nondegenerate cubic surfaces. Its locus of zeros is the closure of
locus of Sylvester-degenerate nonsingular cubic surfaces.
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The skew invariantI100 is given by the equation

I100 = (a0a1a2a3a4)19 det


a0 a1 a2 a3 a4

a−1
0 a−1

1 a−1
2 a−1

3 a−1
4

a2
0 a2

1 a2
2 a2

3 a2
4

a3
0 a3

1 a3
2 a3

3 a3
4

 .

It vanishes on the closure of the locus of nonsingular surfaces with an Eckardt
point . Observe that it vanishes ifai = aj and that agrees with Example9.1.3.

Following [166] we can interpret (9.59) as a rational map

P(C4)/S5
∼= P(1, 2, 3, 4, 5) 99K M̄cub

∼= P(1, 2, 3, 4, 5).

We have

σ1 =
I16
σ3

5

, σ2 =
I32
σ6

5

, σ3 =
I2
24 − I8I40

σ9
5

, σ4 =
I24I40
σ12

5

, σ5 =
I2
40

σ15
5

.

This gives the inverse rational map

M̄cub 99K P(C4)/S5.

The map is not defined at the set of points where all the invariantsI8d vanish
exceptI8. It is shown in [166], Theorem 6.1 that the set of such points is the
closure of the orbit of a Fermat cubic surface.

Remark9.4.4 One should compare the moduli spaceP 6
2 of ordered sextuples

of points in the plane and the moduli spacēMcub of cubic surfaces. The blow-
up of a set of six points in general position is isomorphic to a cubic surface.
It comes equipped with a geometric basis. The Weyl groupW (E6) acts tran-
sitively on geometric bases, and the birational quotient ofP 6

2 by the action of
W (E6) is isomorphic toM̄cub. The forgetful map

P 6
2 99K M̄cub (9.60)

is of degree equal to#W (E6). The action of the subgroupS6 of the Weyl
group is easy to describe. It is a regular action onP 6

2 via permuting the points.
In the model ofP 6

2 given by equation (9.55), the action is by permuting the co-
ordinatest0, . . . , t5 according to the representation of type(2, 2, 2). The quo-
tient is isomorphic to the double cover

(P6
2)/S6 → P4/S6

∼= P(2, 3, 4, 5, 6).

It is ramified over the image of the hypersurfaceV (Υ) ⊂ P 6
2 parameteriz-

ing points sets on a conic. The branch locus is the image of the Castelnuovo-
Richmond quarticCR4 in the quotient. It is isomorphic toP(2, 3, 5, 6). In the
cubic surface interpretation the ramification locus is birationally isomorphic to
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cubic surfaces with a node. This shows that the moduli space of singular cu-
bic surfaces is birationally isomorphic toP(2, 3, 5, 6), and hence is a rational
variety.

The quotient(P6
2)/S6 can be viewed as a birational model of the moduli

space of cubic surfaces together with a choice of a double-six. The previous
isomorphism shows that this moduli space is rational. It is not known whether
the moduli space of cubic surfaces together with a sixer of lines is a rational
variety.

Note that the functions̄Ui, taken as generators of the space(R6
2)(1), al-

low one to identify some special loci inP 6
2 with ones inM̄cub. For exam-

ple, we know from (9.44) that Ū1 − Ū2 = 0 represents the locus of points
sets(p1, . . . , p6) such that the linesp1p2, p3p6, p4p5 are collinear. This corre-
sponds to a cubic surface with an Eckardt point. Changing the order of points,
this gives 15 hypersurfaces inP 6

2 permuted byS6. Another example is a hy-
persurfaceV (Ū1+Ū2+Ū3). According to (9.4.10), it corresponds to the locus
of points set(p1, . . . , p6), where the pointsp1, p4, p6 or p2, p3, p5 are collinear.
They are permuted byS6 and give 20 hypersurfaces inP 6

2 . The image of these
hypersurfaces under the map (9.60) is contained in the locus of singular sur-
faces.

A cubic surface inP3 can be given as a hyperplane section of a cubic three-
fold in P4 = |W |. In this way the theory of projective invariant of cubic sur-
faces becomes equivalent to the theory of projective invariants of PGL(5) in
the spaceS3(W∨)×W∨. The Cremona hexahedral equations of a cubic sur-
face represents a subvariety of this representation isomorphic toC6. Clebsch’s
transfer principle (see for a modern explanation [341]) allows one to express
projective invariants of GL(4) as polynomial functions onC6. The degree of
an invariant polynomial of degreem equal to their weights3m/4. In particular,
the basic polynomialsI8, . . . , I100 become polynomialsJ6, J12, J18, J24, J30, J75

in (a1, . . . , a6) of degrees indicated in the subscript. The first five polynomi-
als are symmetric polynomials ina1, . . . , a6, the last one is a skew-symmetric
polynomial. For example,

J6 = 24(4σ3
2 − 3σ2

3 − 16σ2σ4 + 12σ6)

(see [129] Part III, p. 336, and [585]).
The skew-invariantJ75 defining the locus of cubic surfaces with an Eckardt

points is reducible. It contains as a factor of degree 15 the discriminant
∏
i<j(ai−

aj) of the polynomial(X − a1) · · · (X − a6). The remaining factor of degree
60 is equal to the product of 30 polynomials of the form

T1256;3 = (126)(356)(134)(253)− (136)(256)(123)(354), (9.61)
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where we use Lemma9.4.10to express the product of two brackets as a func-
tionai+aj+ak. The vanishing ofT1256;3 expresses the condition that the conic
through the pointsp1, p2, p3, p5, p6 is touched atp3 by the linep3p4 (equiva-
lently, the tritangent plane defined by the linese3, 2e0−

∑
ei, e0−e3−e4 has

an Eckardt point). Together with 15 polynomialsŪi− Ūj , this accounts for 45
hypersurfaces defining the locus of cubic surfaces with an Eckardt point. Note
that the formulas for̄Ui − Ūj andT1256;3 allow one to compute the number
of Eckardt points on a surface given by Cremona’s hexahedral equations. For
example, if we have one pair of equal coefficientsai, we have an Eckardt point
on the surface. Although, it is not a necessary condition because an Eckardt
point may arise from vanishing of a function of typeT1256;3. For example, a
cyclic cubic surface has 9 Eckardt points, and they cannot be found only from
the equalities of the coefficientsai.

We can also find the expression of the discriminant invariant∆ (9.58) in
terms of the coefficientsa0, . . . , a5.

We know that the quartic symmetric polynomialsσ2
2 − 4σ4 in a1, . . . , a6

equal to the squares of the functionΥ from (9.53) representing points sets on
a conic. Thus we see that the discriminant invariant in(a0, . . . , a5), being of
of degree 24, must be a scalar multiple of the product of powers of(σ2 − 4σ4)
and powers of(ai + aj + ak), 1 ≤ i < j < k ≤ 5 representing points sets
with three collinear points. The only way to make a symmetric polynomial of
degree 24 in this way is to take all factors in the first power. We also use that
σ1 vanishes on(a1, . . . , a6). The computer computation gives the following
expression in terms of the elementary symmetric polynomials.

∆ = (σ2
2−4σ4)(σ

4
3σ2

4−2σ2σ
3
3σ4σ6+σ2

2σ2
3σ2

5+2σ2
3σ4σ

2
5−2σ2σ3σ

4
5+2σ2σ3σ4σ6−

8σ2
3σ2

4σ6−2σ3
2σ3σ5σ6+8σ2σ3σ4σ5σ5σ6+2σ2

2σ2
5σ6+σ4

2σ2
6−8σ2

2σ4σ
2
6 +16σ2

4σ2
6).

Remark9.4.5 The story goes on. The groupW (E6) acts birationally on the
spaceP 6

2 by changing the markings and Coble describes in [129], Part III,
rational invariants of this action. He also defines a linear system of degree 10 of
elements of degree 3 inR6

2 which gives aW (E6)-equivariant embedding of a
certain blow-up ofP 6

2 in P9 corresponding to some irreducible 10-dimensional
linear representation of the Weyl group. We refer for a modern treatment of
this construction to [137], [259]. OtherW (E6)-equivariant birational models
of R6

2 were given in [453] and [302].
We also refer to a recent construction of the GIT-moduli space of cubic

surfaces as a quotient of a complex 4-dimensional ball by a reflection group



538 Cubic surfaces

[6],[202]. The embedding of the moduli spaces inP9 by means of automorphic
forms on the 4-dimensional complex ball is discussed in [7], [247].

9.5 Automorphisms of cubic surfaces

9.5.1 Cyclic groups of automorphisms

Let W be the Weyl group of a simple root system of typeA,D,E. The con-
jugacy classes of elements of finite order can be classified. We will use the
classification of conjugacy classes of elements inW . This can be found in
[139], [68], or [417]. We also include the information about the characteristic
polynomial of the action of an elementw ∈W on the root space, in particular,
its trace. The fourth column gives the order of the centralizer subgroup of the
conjugacy class.

Atlas Carter Manin Ord #C Tr Char
x 1A ∅ c25 6 51840 6 (t− 1)6

x 2A 4A1 c3 2 1152 -2 p4
1(t− 1)2

x 2B 2A1 c2 2 192 2 p2
1(t− 1)4

2C A1 c16 2 1440 4 p1(t− 1)5

2D 3A1 c17 2 96 0 p3
1(t− 1)3

x 3A 3A2 c11 3 648 -3 p3
2

x 3C A2 c6 3 216 3 p2(t− 1)4

x 3D 2A2 c9 3 108 0 p2
2(t− 1)2

x 4A D4(a1) c4 4 96 2 (t2 + 1)2(t− 1)2

x 4B A1 + A3 c5 4 16 0 p1p3(t− 1)2

4C 2A1 + A3 c19 4 96 -2 p2
1p3(t− 1)2

4D A3 c18 4 32 2 p3(t− 1)3

x 5A A4 c15 5 10 1 p4(t− 1)2

x 6A E6(a2) c12 6 72 1 p2(t
2 − t + 1)2

x 6C D4 c21 6 36 1 p1(t
3 + 1)(t− 1)2

x 6E A1 + A5 c10 6 36 -2 p1p5

x 6F 2A1 + A2 c8 6 24 -1 p2
1p2(t− 1)2

6G A1 + A2 c7 6 36 1 p1p2(t− 1)3

6H A1 + 2A2 c10 6 36 -2 p1p
2
2(t− 1)

6I A5 c23 6 12 0 p5(t− 1)
x 8A D5 c20 8 8 0 p1(t

4 + 1)(t− 1)
x 9A E6(a1) c14 9 9 0 (t6 + t3 + 1)

10A A1 + A4 c25 10 36 -1 p1p4(t− 1)
x 12A E6 c13 12 12 -1 p2(t

4 − t2 + 1)
12C D5(a1) c24 12 12 1 (t3 + 1)(t2 + 1)(t− 1)

Table 9.3Conjugacy classes inW (E6)
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We know that the automorphism group Aut(S) of a nonsingular cubic sur-
face acts faithfully on Pic(S). We will identify elementsg ∈ Aut(S) with
the corresponding elementsg∗ ∈ W (S). We fix a geometric basis to identify
element ofW (S) with the Weyl growW (E6).

To apply the previous information about elements of the Weyl group to auto-
morphisms of a cubic surface, we use the following two Lemmas. The first one
is the well-knownLefschetz’s fixed-point formulawhich can be found in most
of topology text-books. From now on,S denote a nonsingular cubic surface.

Lemma 9.5.1 Let σ be an automorphism of a nonsingular cubic surfaceS

andFix(σ) be its fixed locus. LetTr(σ) be the trace ofσ in its action onK⊥
S .

Then the topological Euler-Poincaré characteristic ofFix(σ) is given by the
formula

χ(Fix(σ)) = 3 + Tr(σ).

Since any automorphism ofS is a restriction of a projective automorphism
of P3 (because|−KS | = |OS(1)| is invariant) we will identify automorphisms
of S with projective automorphisms ofP3. It is clear that the fixed locus Fix(σ)
of σ in S is equal to the intersection of the fixed locusF (σ) of σ in P3 with S.

Let n > 1 be the order ofσ in PGL(4). We can representσ by a matrix
A ∈ GL(4) such thatAn = cI4. Multiplying A by 1/α, whereαn = 1/λ,
we may assume thatA is of ordern. Letλ1, . . . , λ4 be eigenvalues ofA. They
determine the type of the fixed locusF (σ) of σ. Letk be the number of distinct
eigenvalues. We have

• k = 4: F (σ) consists of four isolated points;
• k = 3: F (σ) consists of a line and two isolated points;
• k = 2: F (σ) consists of two lines or a plane and an isolated point.

Let us see what are the possibilities for Fix(σ) = S∩F (σ). If k = 4, Fix(σ)
may consist ofN ≤ 4 isolated fixed points. Ifk = 3, Fix(σ) may consist of
a line andN ≤ 2 isolated points, orN ≤ 5 isolated fixed points. Ifk = 2,
Fix(σ) may consist of a plane cubic curve, necessarily nonsingular andN ≤ 1
isolated points, or two lines, or a line andN ≤ 3 points, orN ≤ 6 points.

Some of these possibilities can be excluded. If Fix(σ) consists of two lines,
then a general line intersecting the two lines contains a third intersection point
with S. It must be a fixed point contradicting the assumption. Also, a line`

in F (σ) either is contained inS or intersectsS at three points. In fact, if̀ is
tangent toS at a pointx, then the action ofσ in the tangent spaceTx(S) has one
eigenvector with eigenvalue equal to 1. So, one can choose local coordinates
u, v at x such that the action is locally given by(u, v) 7→ (u, εv). The curve
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locally given byv = 0 belongs to Fix(σ), contradicting the assumption thatx
is an isolated fixed point.

We will start from the case whenσ is of order 2. In this caseF (σ) is a plane
plus a point, or two lines. In the first case, if Fix(σ) consists of a curve only, we
haveχ(Fix(σ)) = 0,Tr(σ) = −3, and the Table of conjugacy classes shows
that there is no element of order 2 with trace−3. Thus Fix(σ) consists of a
plane and a point andσ belongs to the conjugacy class2A. We choose equation
of the plane to beV (t3) and the isolated fixed point to be[1, 0, 0, 0]. We may
assume that the action is defined by the diagonal matrix diag[1, 1, 1,−1]. The
equation ofS becomes

at33 + t23l(t0, t1, t2) + t3q(t0, t1, t2) + g3(t0, t1, t2) = 0,

whereV (g3) is a nonsingular plane curve inV (x3). Since the surface isσ-
invariant, we must havea = q = 0. Reducing the equationV (g3) to a Hesse
form, we get the equation

t23(at0 + bt1 + ct2) + t30 + t31 + t32 + ct0t1t2 = 0. (9.62)

Suppose thatF (σ) is the union of two lines. If Fix(σ) consists of 6 points, then
χ(Fix(σ)) = 6,Tr(σ) = 3, and Table9.3shows that there are no elements of
order 2 with trace 3. So, Fix(σ) must consist of a line and 3 points, andσ is
of type 2B. We can choose coordinates such such that`1 = V (t0) ∩ V (t1)
and`2 = V (t1) ∩ V (t2). The elementσ is represented by a diagonal matrix
diag[1, 1,−1,−1]. The equation ofS becomes

t0q1(t2, t3) + t1q2(t2, t3) +
∑
i+j=2

ti0t
j
1aij(t2, t3) + g3(t0, t1) = 0. (9.63)

SinceS is g-invariant, the linear formsaij(t2, t3) must be equal to zero. Since
S is nonsingular,g3 has no multiple zeroes, so it can be reduced to the form
t30 + t31. For the same reason,t22, t

2
3 enter inq1 or q2. If q1 and q2 have the

same roots, one checks that the surface is singular. So, after a linear change
of variablest2, t3, we reduceq1, q2 to the formq1 = t2(at3 + ct2), q2 =
t3(bt2 + dt3),wherec, d 6= 0 (otherwise,t2 or t3 enters in the equation in
degree≤ 1, and the surface is singular. After scalingt2, t3, we may assume
c = d = 1. This gives the equation

t0t2(t2 + at3) + t1t3(t3 + bt2) + t30 + t31 = 0. (9.64)

Now, the information about the characteristic polynomial tells us the conjugacy
class of a power ofσ. Suppose,σ is of order2k. It follows from above thatσk

must be of type2A or 2B. Going through the list of the conjugacy classes, we
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find that the classes

4C, 4D, 6G, 6H, 6I, 10A, 12C

do not occur.
Let us tabulate all possible cases, the corresponding values ofTr(σ), and

possible conjugacy classes with this trace.

Order F (g) Fix(σ) χ Tr(σ) Conjugacy class
n ≥ 2 plane+1 pt. curve+point 1 -2 2A,6E

curve 0 -3 3A
n ≥ 2 2 lines line+3 pts. 5 2 2B,4A

6 pts. 6 3 3C
n ≥ 3 line+2pts. line+2pts. 4 1 5A,6A,6C

line+1 pt. 3 0 3D,4B,8A,9A
line 2 -1 6F, 12A

5 pts. 5 2 2B, 4A
4 pts. 4 1 5A,6A, 6C
3 pts. 3 0 3D,8A,9A

n ≥ 4 4 pts. 4 pts. 4 1 5A,6A,6C,6G
3pts. 3 0 4B,6I,8A,9A
2pts. 2 -1 6F,12A
1 pt. 1 -2 6E

Table 9.4Fixed points

Now, we are in business. In the followingεn denotes a primitiven-th root of
unity.

• σ is of type 3A.

In this caseF (σ) is the union of a plane and a point, and Fix(σ) consists of
a single curve. We can choose coordinates such thatσ is represented by the
diagonal matrix diag[1, 1, 1, ε3]. It is easy to see that the equation must be

t33 + g3(t0, t1, t2) = 0.

The surface is a cyclic surface. SinceV (g3) must be nonsingular, we can re-
duce it to a Hesse form to obtain the equation

t33 + t30 + t31 + t32 + at0t1t2 = 0. (9.65)

• σ is of type 3C.

In this caseF (σ) is the union of two lines, and Fix(σ) consists of 6 points.
We can choose coordinates such thatσ is represented by the diagonal matrix
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diag[1, 1, ε3, ε3]. Write the equation ofS in the form

3∑
k=0

k∑
i=0

ti0t
k−i
1 aik(t2, t3) = 0,

whereaik is a binary form of degree3 − k. Applying σ, we see thatai1 =
ai2 = 0. The equations become

g3(t0, t1) + h3(t2, t3) = 0.

SinceS is nonsingular, the binary formsg3, h3 have no multiple zeros. Thus,
after a linear change of coordinates, we reduce equation to the Fermat form.

• σ is of type 3D.

In this caseF (σ) is the union of a line and two points, Fix(σ) consists of
either 3 points or a line plus one point. Consider the first case. We can choose
coordinates such thatσ is represented by the diagonal matrix diag[1, 1, ε3, ε23],
where the line ist2 = t3 = 0. Since the isolated fixed points[0, 0, 1, 0] and
[0, 0, 0, 1] are not inS, we can write the equation ofS in the form

t32 + t33 + t2t3a1(t0, t1) + g3(t0, t1) +
∑

ti2t
j
3aij(t0, t1) = 0,

where(i, j) 6= (3, 0), (0, 3), (1, 1), (0, 0). Since all monomialsti0t
j
1 with such

(i, j) are notσ-invariant, we obtain thataij = 0. ThusS can be given by
equation

t32 + t33 + t2t3a1(t0, t1) + g3(t0, t1) = 0.

To make it different from case 3C, we have to assume thata1 6= 0. By further
change of coordinates, we can reduce it to the equation

t32 + t33 + t2t3(t0 + at1) + t30 + t31 = 0. (9.66)

Consider the second case. We keep the coordinates from the previous case.
The equation becomes

f =
∑

0<i+j≤3

ti2t
j
3a3−i−j(t0, t1) = 0.

As we saw in the previous case, each monomial entering inf must be divisible
by t32, t

3
3, t2t3. This shows that the variablest0, t1 enter with degree≤ 1. This

implies that the surface is singular. So, this case does not occur.

• σ is of type 4A.
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Note thatσ2 belongs to the conjugacy class2A. Hence we can choose coor-
dinates such thatσ acts via the diagonal matrix[1, 1,−1, i] andS is given by
equation

t23l(t0, t1, t2) + g3(t0, t1, t2) = 0.

This equation isσ-invariant only if l(t0, t1, t2) = at2 andg3(t0, t2,−t2) =
g3(t0, t1, t2). This gives the equation

t23t2 + t22g(t0, t1) + h(t0, t1) = 0.

We can further reduce it to the form

t23t2 + t22t1 + t30 + at0t
2
1 + bt31 = 0. (9.67)

Note that Fix(σ) consists of 5 isolated points.

• σ is of type 4B.

In this caseF (σ) consists of 4 isolated points and Fix(σ) consists of 3
points. Sinceσ2 is of type 2B, we may write equation in the form (9.64).

t0q1(t2, t3) + t1q2(t2, t3) + g3(t0, t1) = 0.

Hereσ acts via the matrix diag[1,−1, i, i] or diag[1,−1, i,−i]. SinceS is non-
singular, one of the monomialst30, t

2
0t1 and one of the monomialst31, t

2
1 must

enter ing3. It is clear that botht30 and t31 cannot enter ing3. After switch-
ing the variables, we may assume thatt30 enters. In order thatS remains in-
variant with respect toσ, we must haveq1 = ct2t3, q2 = at22 + bt23 and
g3(t0, t1) = at30 + bt0t

2
1. If c = 0, we get singular surface. So, we may as-

sume thatc = 1, and get the equation1

t0t2t3 + t1(at22 + bt23) + t30 + bt0t
2
1 = 0. (9.68)

Herea, b 6= 0.

• σ is of type 5A.

In this caseF (σ) is either the union of a line and two points, or the union of
4 points. Let us see that the first case does not occur. If Fix(σ) contains a line
`, we can reduce the equation to the form (9.63), where` = V (t2) ∩ V (t3).
The quadratic formsq1, q2 must be invariant with respect to an automorphism
of order 5 of the lineV (t0) ∩ V (t1). This forcesq1 = q2 = 0, and shows that
this case does not occur.

So, we may assume thatF (σ) consists of 4 points. In this case Fix(σ) con-
sists of 4 points and we may assume thatσ acts via the matrix diag[1, ε5, ε25, ε

3
5].

1 This corrects the mistake in [205], where the equation defines a singular surface.
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Since[1, 0, 0, 0], . . . , [0, 0, 0, 1] are on the surface, the equation does not con-
taint30, . . . , t

3
3. Since every monomial contains one of the powerst2i (otherwise

S is singular), we can write the equation in the form

t20a0(t1, t2, t3) + t21a1(t0, t2, t3) + t22a2(t0, t1, t3) + t23a3(t0, t1, t2) = 0.
(9.69)

The only way to make it invariant is to assume (after permuting the variables,
if necessary) thata0 = c0t2, a1 = c1t0, a2 = c2t3, a3 = c3t1. After scaling
the coordinates, we get the equation

t20t2 + t21t0 + t22t3 + t23t0 = 0. (9.70)

• σ is of type 6A.

Similarly to the previous case, we prove that Fix(σ) cannot contain a line. So
Table9.4 shows that it consists of 4 points. Note thatσ3 is of type 2A and
σ2 is of type 3A. So, we can choose coordinates to assume thatσ acts via
diag[1, 1,−1, ε3], and the equation is in the form (9.65)

t33 + g3(t0, t1, t2) = 0.

The only way to make it invariant is to assume thatg3 = t22(at0 + bt1) +
h3(t0, t1). Reducingh3 to the sum of cubics, and scalingt2, we get the equa-
tion

t33 + t22(t0 + bt1) + t30 + t31 = 0. (9.71)

• σ is of type 6C.

In this caseσ3 is of type 2A. We can choose the equation of the form

t23(at0 + bt1 + ct2) + g3(t0, t1, t2) = 0, (9.72)

and the action to one defined by the matrix[1, 1, εi6, ε6], wherei = ±2. In
order to make the equation invariant, we must assume thati = −2, a = b = 0
andg3 = dt32 + h3(t0, t1). After additional change of coordinates, we reduce
the equation to the form

t23t2 + t32 + t30 + t31 = 0. (9.73)

• σ is of type 6E.

In this case,σ3 is of type 2A. We can choose the equation of the form

t23(at0 + bt1 + ct2) + g3(t0, t1, t2).

and the action is defined by diag[1, εi3, ε3, ε6], wherei = 1 or 2. Table9.4
shows thatF (σ) consists of 4 points and Fix(σ) is a single point. This shows
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that all eigenvalues are different, soi = 2. Supposea 6= 0. Then all monomials
entering in the equation have eigenvalueε3. This implies thatt32, t

2
2t0, t

2
2t2, t2t3

do not enter. This makesS singular at the point[0, 0, 1, 0]. Soa = 0, and after
switchingt1, t2, if necessary, we may assume thatb 6= 0, c = 0. This makes all
monomials to be invariant. After scaling the coordinates, we get the equation

t23t1 + t30 + t31 + t32 + at0t1t2 = 0. (9.74)

• σ is of type 6F.

As in case 6A, we show that Fix(σ) does not contain a line. Consulting Table
9.4, we find thatF (g) has 4 isolated fixed points. Thusσ can be represented
by the diagonal matrix with all distinct eigenvalues. We find thatσ2 is of type
3C. Thus we can reduce the equation to the form

g3(t0, t1) + h3(t2, t3) = 0.

The elementσ acts via the matrix diag[1, ε36, ε
4
6, ε6]. To make the equation

invariant, we must (after permuting(t0, t1) and (t2, t3)) take g3 = at30 +
bt0t

2
1, h3 = ct32+dt2t23. After scaling the coordinates, we arrive at the equation

t30 + t0t
2
1 + t32 + t2t

2
3 = 0. (9.75)

• σ is of type 8A.

The square ofσ is an element of order 4 from the conjugacy class 4A. So we
can choose coordinates such that the equation ofS is reduced to the form

t23t2 + t22g(t0, t1) + h3(t0, t1) = 0

andσ acts via diag[1, ε48, ε
i
8, ε8], wherei = 2 or i = 6. If i = 2, the equation is

invariant only if it is of the form

t23t2 + at22t0 + t1(bt20 + ct21) = 0.

If i = 6, we must have

t23t2 + at22t1 + t0(bt20 + ct21) = 0.

Switching t0, t1, we may choose the second one. Herea, b, c 6= 0 because
otherwiseS is singular. After scaling the unknowns, we get the equation

t23t2 + t22t1 + t30 + t0t
2
1 = 0. (9.76)

• σ is of type 9A.
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σ Action Equation Fix(σ)
2A [1, 1, 1,−1] t23l(t0, t1, t2) + t30 + t31 + t32 + ct0t1t2 cubic+1 pt.
2B [1, 1,−1,−1] t0t2(t2 + at3) + t1t3(t3 + bt2) + t30 + t31 line+1 pt.
3A [1, 1, 1, ε3] t33 + t30 + t31 + t32 + at0t1t2 cubic
3C [1, 1, ε3, ε3] t30 + t31 + t32 + t33 6 pts.
3D [1, 1, ε3, ε

2
3] t32 + t33 + t2t3(t0 + at1) + t30 + t31 3 pts.

4A [1, 1,−1, i] t23t2 + t22t1 + t30 + at0t
2
1 + bt31 5 pts.

4B [1,−1, i,−i] t0t2t3 + t1(at22 + bt23) + t30 + bt0t
2
1 3 pts.

5A [1, ε5, ε
2
5, ε

3
5] t20t2 + t21t0 + t22t3 + t23t0 4 pts.

6A [1, 1,−1, ε3] t33 + t22(t0 + bt1) + t30 + t31 4 pts.
6C [1, 1, ε23, ε6] t23t2 + t32 + t30 + t31 4 pts.
6E [1, ε23, ε3, ε6] t23t1 + t30 + t31 + t32 + at0t1t2 1 pt.
6F [1,−1, ε23, ε6] t30 + t0t

2
1 + t32 + t2t

2
3 2 pts.

8A [1,−1,−i, ε8] t23t2 + t22t1 + t30 + t0t
2
1 3 pts.

9A [1, ε3, ε
2
3, ε9] t33 + t20t1 + t21t2 + t22t0 3 pts.

12A [1,−1, i, ε6] t33 + t31 + t22t0 + t20t1 2 pts.

Table 9.5Cyclic groups of automorphisms

The cube ofσ is an element of order 3A. So, the surfaceS is a cyclic sur-
face with equation (9.65) with σ acting via diag[1, εi3, ε

j
3, ε9]. All monomials

entering in the equation must be eigenvectors with eigenvalueε3. Thus, no
cubes of the variablest0, t1, t2 enter in the equation. SinceS is nonsingular,
t20, t

2
1, t

2
2 must divide some of the monomials. This gives, up to a permutation

of variables, the equation

t33 + t20t1 + t21t2 + t22t0 = 0. (9.77)

• σ is of type 12A.

The square ofσ is an element of order 6 of type 6A. So, equation can be
reduced to the form

t33 + t22(at0 + bt1) + h3(t0, t1) = 0.

The automorphism acts via the matrix diag[1,−1, εi4, ε6], wherei = 1 or 3.
This forces to takeb = 0 andh3 to be a linear combination of monomials
t31, t

2
0t1. After scaling the coordinates, we arrive at the equation

t33 + t31 + t22t0 + t20t1 = 0. (9.78)

We sum up our findings in Table9.5.
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9.5.2 Maximal subgroups ofW (E6)

We will need some known information about the structure of the Weyl group
of typeE6.

Theorem 9.5.2 LetH be a maximal subgroup ofW (E6). Then one of the
following cases occurs:

(i) H ∼= 24 : S5 of order24 · 5! and index 27;
(ii) H ∼= S6 × 2 of order2 · 6! and index 36;
(iii) H ∼= 31+2

+ : 2S4 of order1296 and index 40;
(iv) H ∼= S3 oS3

∼= 33 : (S4 × 2) of order1296 and index 40;
(v) H ∼=

(
2.(A4 × A4).2

)
.2 of order is1152 and index 45.

Here we use the notations from the ATLAS [139], whereZ/nZ = n, semi-
direct products:H n G = H : G, 31+2

+ denotes the group of order33 of
exponentp, andA.B denote a group with normal subgroup isomorphic toA

and quotient isomorphic toB.
Let us identify the groupW (E6) with the Weyl group of the latticeK⊥

S

defined by a nonsingular cubic surfaceS. We recognize a maximal subgroup
from (i) as the stabilizer subgroup of a line onS.

A maximal subgroupH of type (ii) is the stabilizer subgroup of a double-six.
Its subgroup isomorphic toS6 permutes lines in one of the sixes.

I do not know a geometric interpretation of a maximal subgroup of type (iii).
By Theorem9.1.5, a maximal subgroup of type (iv) is isomorphic to the

stabilizer subgroup of a Steiner complex of triads of double-sixes. It is also
coincides with a stabilizer subgroup of the root sublattice of typeA2+A2+A2.
There is another interpretation of this subgroup in terms of a compactification
of the moduli space of cubic surfaces (see [453]).

A maximal subgroup of type (v) is the stabilizer subgroup of a tritangent
plane.

Proposition 9.5.3 W (E6) contains a unique normal subgroupW (E6)′. It is
a simple group and its index is equal to 2.

Proof Choose a root basis(α1, . . . , α6) in the root latticeE6. Let s0, . . . , s5
be the corresponding simple reflections. Each elementw ∈ W (E6) can be
written as a product of the simple reflections. Let`(w) is the minimal length of
the word needed to writew as such a product. For example,`(1) = 0, `(si) =
1. One shows that the functioǹ : W (E6) → Z/2Z, w 7→ `(w) mod 2
is a homomorphism of groups. Its kernelW (E6)′ is a subgroup of index 2.
The restriction of the functioǹ to the subgroupH ∼= S6 generated by the
reflectionss1, . . . , s5 is the sign function. SupposeK is a normal subgroup of
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W (E6)′. ThenK ∩H is either trivial or equal to the alternating subgroupA6

of index 2. It remains to use thatH × (r) is a maximal subgroup ofW (E6)
ands is a reflection which does not belong toW (E6)′.

Remark9.5.1 Recall that we have an isomorphism (9.8) of groups

W (E6) ∼= O(6,F2)−.

The subgroupW (E6)′ is isomorphic to the commutator subgroup of O(6,F2)−.

Let us mention other realizations of the Weyl groupW (E6).

Proposition 9.5.4

W (E6)′ ∼= SU4(2),

whereU4(2) is the group of linear transformations with determinant 1 ofF4
4

preserving a nondegenerate Hermitian product with respect to the Frobenius
automorphism ofF4.

Proof Let F : x 7→ x2 be the Frobenius automorphism ofF4. We view the
expression

3∑
i=0

t3i =
3∑
i=0

tiF(ti)

as a nondegenerate hermitian form inF4
4. Thus SU4(2) is isomorphic to the

subgroup of the automorphism group of the cubic surfaceS defined by the
equation

t30 + t31 + t32 + t33 = 0

over the fieldF̄2. The Weyl representation (which is defined for nonsingu-
lar cubic surfaces over fields of arbitrary characteristic) of Aut(S) defines a
homomorphism SU4(2) → W (E6). The group SU4(2) is known to be sim-
ple and of order equal to12 |W (E6)|. This defines an isomorphism SU4(2) ∼=
W (E6)′.

Proposition 9.5.5

W (E6) ∼= SO(5,F3), W (E6)′ ∼= SO(5,F3)+,

whereSO(5,F3)+ is the subgroup of elements of spinor norm 1.

Proof Let V = E6/3E6. Since the discriminant of the latticeE6 is equal to
3, the symmetric bilinear form defined by

〈v + 3E6, w + 3E6〉 = −(v, w) mod 3
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is degenerate. It has one-dimensional radical spanned by the vector

v0 = 2α1 + α1 + 2α4 + α5 mod 3E6.

The quadratic formq(v) = (v, v) mod 3 defines a nondegenerate quadratic
form on V̄ = V/F3v0 ∼= F5

3. We have a natural injective homomorphism
W (E6) → O(5,F2). Comparing the orders, we find that the image is a sub-
group of index 2. It must coincide with SO(5,F3). Its unique normal subgroup
of index 2 is SO(5,F3)+.

Remark9.5.2 LetE be a vector space of odd dimension2k + 1 over a finite
field Fq equipped with a nondegenerate symmetric bilinear form. An element
v ∈ E is called aplus vector(resp.minus vector) if (v, v) is a square inF∗q
(resp. is not a square∈ F∗q). The orthogonal group O(E) has three orbits in
|E|: the set of isotropic lines, the set of lines spanned by a plus vector and
the set of lines spanned by a minus vector. The isotropic subgroup of a non-
isotropic vectorv is isomorphic to the orthogonal group of the subspacev⊥.
The restriction of the quadratic form tov⊥ is of Witt index k if v is a plus
vector and of Witt indexk − 1 if v is a minus vector. Thus the stabilizer group
is isomorphic to O(2k,Fq)±. In our case, whenk = 2 andq = 3, we obtain
that minus vectors correspond to cosets of roots inV = E6/3E6, hence the
stabilizer of a minus vector is isomorphic to the stabilizer of a double-six, i.e.
a maximal subgroup ofW (E6) of index 36. The stabilizer subgroup of a plus
vector is a group of index 45 and isomorphic to the stabilizer of a tritangent
plane. The stabilizer of an isotropic plane is a maximal subgroup of type (iii),
and the stabilizer subgroup of an isotropic line is a maximal subgroup of type
(iv).

9.5.3 Groups of automorphisms

Now we are ready to classify all possible subgroups of automorphisms of a
nonsingular cubic surface.

In the following Table we use the notationH3(3) for theHeisenberg group
of unipotent3× 3-matrices with entries inF3.

Theorem 9.5.6 The following is the list of all possible groups of automor-
phisms of nonsingular cubic surfaces.

Here, in the third row,α is a root of the equation8x6 + 20x3 − 1 = 0,
and in the next row,a 6= α and alsoa 6= a4, otherwise the surface is of
Type II. Similar restrictions must be made for other parameters. There are also
conditions for the surface to be nonsingular.
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Type Order Structure f(t0, t1, t2, t3) Eckardt
I 648 33 : S4 t30 + t31 + t32 + t33 18
II 120 S5 t20t1 + t21t2 + t22t3 + t23t0 10
III 108 H3(3) : 4 t30 + t31 + t32 + t33 + 6at1t2t3 9
IV 54 H3(3) : 2 t30 + t31 + t32 + t33 + 6at1t2t3 9
V 24 S4 t30 + t0(t

2
1 + t22 + t23) 6

VI 12 S3 × 2 t32 + t33 + at2t3(t0 + t1) + t30 + t31 4
VII 8 8 t23t2 + t22t1 + t30 + t0t

2
1 3

VIII 6 S3 t32 + t33 + at2t3(t0 + bt1) + t30 + t31 3
IX 4 4 t23t2 + t22t1 + t30 + t0t

2
1 + at31 1

X 4 22 t20(t1 + t2 + bt3) + t31 + t32 + t33 + 6at1t2t3 2
XI 2 2 t20(t1 + bt2 + ct3) + t31 + t32 + t33 + 6at1t2t3 1

Table 9.6Groups of automorphisms of cubic surfaces

Proof Let S be a nonsingular cubic surface.

• Suppose Aut(S) contains an element from the conjugacy class 3C.

Table9.5shows thatS is isomorphic to the Fermat cubicV (t30+t31+t32+t33).
Obviously, its automorphism group contains a subgroupG isomorphic to33 :
S4. To see that it coincides with this group, we use thatG is a subgroup of
index 2 of a maximal subgroupH of type (iv). As we noted before, the group
H is the stabilizer subgroup of a root latticeA2 + A2 + A2. It contains an
element represented by a reflection in one copy of the lattice, and the identity
on other copies. This element has trace equal to 4, so belongs to the conjugacy
class 2C. It is not realized by an automorphism of a nonsingular cubic surface.
This gives Type I from the Table.

• Suppose Aut(S) contains an element of order 5.

Table9.5shows thatS is isomorphic to the surface

t20t1 + t21t2 + t22t3 + t23t0 = 0. (9.79)

Consider the embedding ofS in P4 given by the linear functions

z0 = t0 + t1 + t2 + t3, (9.80)

z1 = εt0 + ε3t1 + ε4t2 + ε2t3,

z2 = ε2t0 + εt1 + ε3t2 + ε4t3,

z3 = ε3t0 + ε4t1 + ε2t2 + εt3,

z4 = ε4t0 + ε2t1 + εt2 + ε3t3,
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whereε5 = 1. One checks that
∑4
i=0 zi = 0 and (9.79) implies that also∑4

i=0 z
3
i = 0. This shows thatS is isomorphic to the following surface inP4:

4∑
i=0

z3
i =

4∑
i=0

zi = 0. (9.81)

These equations exhibit a subgroupG of automorphisms ofS isomorphic to
S5.

Assume thatG is a proper subgroup of Aut(S). Note that the only maximal
subgroup ofW (E6) which contains a subgroup isomorphic toS5 is a sub-
groupH of type (i) or (ii). If H is of type (i), then Aut(S) contains one of
the involutions from the subgroup24. The groupH is isomorphic to the Weyl
groupW (D5). We encountered it as the Weyl group of a del Pezzo surface of
degree 4. It follows from the proof of Proposition8.6.5that nontrivial elements
of the subgroup24 are conjugate to the composition of reflectionsα1 ◦ sα5 . Its
trace is equal to 1. Thus, this element belongs to the conjugacy class 2D which
is not realized by an automorphism. IfH is of type (ii), thenG is contained in
S6 or contains an element which commutes withG. It is immediately seen that
the surface does not admit an involution which commutes with all elements in
G. SinceS5 is a maximal subgroup ofS6, in the first case, we obtain that
Aut(S) contains a subgroup isomorphic toS6. However, a cyclic permutation
g of order 6 acts onE6 by cyclically permuting vectorse1, . . . , e6 and leaving
e0 invariant. Its trace is equal to 1. This shows thatg belongs to the conjugacy
class 6I and is not realized by an automorphism. This gives us Type II from the
Table.

• Suppose Aut(S) contains an element of type 3A.

From Table9.5, we infer thatS is a cyclic surface which is projectively
isomorphic to the surface goS = V (t30 + t31 + t32 + t33 + at1t2t3). Obvi-
ously, it contains a group of automorphismsG isomorphic to3.(32 : 2). The
central element of order 3 is realized by the matrix[1, 1, 1, ε3]. The quotient
group is isomorphic to a group of projective automorphisms of the plane cu-
bic C = S ∩ V (t3). In the group law, the group is generated by translation
by points of order 3 and the inversion automorphism. For special parametera

we get more automorphisms corresponding to harmonic or an equianharmonic
cubic. Let us see that there is nothing else in Aut(S). An equianharmonic cu-
bic is projectively isomorphic to the Fermat cubic, so it will give Type I. The
remaining two cases will give us surfaces of Types III and IV.

The subgroup3.32 is isomorphic to the Heisenberg groupH3(3) of upper-
triangular3× 3 matrices with entries inF3 with 1 at the diagonal. In the nota-
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tion of the ATLAS, it is group31+2
+ . We see that it is contained in the only max-

imal subgroup which is of type (iii). The element generating the center of31+2
+

is a central element in the maximal subgroup. Thus any extra automorphism
commutes with the central element, and hence descends to an automorphism
of the cubic curveC. This proves thatG = Aut(S).

• Suppose Aut(S) contains an element of type 8A.

Consulting our Table (9.5), we infer thatS is isomorphic to the surface of
Type VII. The only maximal subgroup ofW (E6) which contains an element
of order 8 is a subgroupH of order 1152. As we know it stabilizes a tritan-
gent plane. In our case the tritangent plane ist2 = 0. It has the Eckardt point
x = [0, 0, 0, 1]. ThusG = Aut(S) is a subgroup of the linear tangent space
TxS. If any element ofG acts identically on the set of lines in the tritangent
plane, then it acts identically on the projectivized tangent space, and henceG

is a cyclic group. Obviously this implies thatG is of order 8. Assume that
there is an elementτ which permutes cyclically the lines. LetG′ be the sub-
group generated byσ andτ . Obviously,τ3 = σk. SinceG does not contain
elements of order 24, we may assume thatk = 2 or 4. Obviously,τ normalizes
〈σ〉 since otherwise we have two distinct cyclic groups of order 8 acting on a
line with a common fixed point. It is easy to see that this is impossible. Since
Aut(Z/8Z)) ∼= (Z/2Z)2 this implies thatσ andτ commute. Thusστ is of
order 24 which is impossible. This shows that Aut(S) ∼= Z/8Z.

By taking powers of an elements of order 9 and 12, we obtain surfaces with
automorphism groups which we have already classified. So, we may assume
that Aut(S) does not contain elements of order 5,8,9,12. In a similar manner,
we may assume that any element of order 3 belongs to the conjugacy class 3D,
and an element of order 6 belongs to the conjugacy class of type 6A or 6E.

• Suppose Aut(S) contains an element of type 3D.

Assume Aut(S) contains an elementσ from conjugacy class3D. Then the
surface is isomorphic toV (t32 + t33 + t2t3(t0 +at1)+ t30 + t31).We assume that
a 6= 0. Otherwise, the surface is cyclic, and has an automorphism of type3A2.
This has been already taken care of. Letτ be an involution which exchanges
the coordinatest2 andt3. The subgroupH generated byσ andτ is isomorphic
to S3. The involutionτ is of type 2A, it is a harmonic homology. Thus the
three involutions inH define three Eckardt pointsx1, x2, x3. They are on the
line ` = V (t0) ∩ V (t1). The groupH acts faithfully on the set of the three
Eckardt points.

By Proposition9.1.15, a triple of collinear Eckardt points defines a subgroup
of Aut(S) isomorphic toS3. If the triples are disjoint, then the subgroups do
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not have a common involution, hence intersect only at the identity. Otherwise,
they have one common involution.

Suppose we have an automorphismg 6∈ H. If gHg−1 = H, theng com-
mutes withσ. This shows that we can simultaneously diagonalize the matri-
ces representingg andσ. It is immediately checked from the equation of the
surface that this is possible only ifa = 1 andg is the transformation which
switchest0 andt1. So, if we prove that the casegHg−1 6= H does not occur,
we obtain Aut(S) is isomorphic toS3 or 2 × S3. This gives Types VI and
VIII.

Let us assume thatH ′ = gHg−1 6= H. ThenH ′ is the subgroup defined by
the three Eckardt pointsyi on the lineg(`). Suppose two of the pointsxi, yj lie
on a line inS. By Proposition9.1.15, the corresponding involutions commute.
Again, we check from the equation that an involution commuting with one
of the involutionsτσi must be the involution switching the coordinatest0, t1.
This shows that any linexiyj , wherexi 6= yj is not contained inS, and hence
contains the third Echardt pointzij . Note a plane section ofS not containing a
line onS intersects the 27 lines at 27 points, an Eckardt point is counted with
multiplicity 3. This shows that an irreducible plane section ofS contains≤ 9
Eckardt points. If it contains a line with 2 Eckardt point on it, then the number
is at most 7.

Suppose the lines̀and`′ do not intersect. Then the plane spanned byx1 and
`′ contains 9 Eckardt pointx1, x2, x3, y1, y2, y3, z11, z12, z13. Thus, the plane
section does not contain lines, hence it contains the third Eckardt point on each
line yizij . We get a contradiction.

If the lines ` and `′ intersect, say atx1 = y1, then the plane containing
them contains 8 Eckardt pointx1, x2, x3, y2, y3, z22, z23, z32, z33. So it does
not contain lines onS. But then it contains two extra Eckardt points on the lines
z11y3, z12y2. This contradiction proves the claim that Aut(S) is isomorphic to
S3 or 2×S3.

• Suppose Aut(S) contains an element of type2B.

Then the equation of the surface is (9.64). The surface admits an automor-
phism of type 3C defined by the diagonal matrix[1, 1, ε3, ε3]. So, this case was
considered before.

• Suppose Aut(S) contains an element of order 4.

If σ belongs to the conjugacy class 4B, thenσ2 belongs to2B and hence
this case has been already considered. Ifσ belongs to4A then the equation
of the surface is (9.67). This is a cubic surface of type IX with cyclic group
of automorphisms of order 4. Here we have to assume that the surface is not
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isomorphic to the surface of type VII. It follows from the proof of the next
Corollary that in all previous cases, except type VII, the automorphism group
is generated by involutions of type4A1. Thus our surface cannot be reduced to
one of the previous cases.

Finally, it remains to consider the case

• Aut(S) contains only involution of type type2A, i.e. harmonic homologies.

Suppose we have two such involutions. They define two Eckardt pointsx1

andx2. By Proposition9.1.15, if the linex1x2 is contained inS, then the in-
volutions commute. If the line does not belong toS, then the two involutions
generateS3, and hence contains an element of order 3. Suppose we have a
third involution defining a third Eckardt pointx3. Then we have a tritangent
plane formed by the linesxixj . Obviously, it must coincide with each tritan-
gent plane corresponding to the Eckardt pointsxi. This contradiction shows
that we can have at most 2 commuting involutions. This gives the last two
cases of our theorem. The condition that there is only one involution of type
2A is that the lineV (t1 + t2 + at3) does not pass through an inflection point
of the plane curveV (t0).

The next Corollary can be checked case by case, and its proof is left as an
exercise.

Corollary 9.5.7 Let Aut(S)o be the subgroup ofAut(S) generated by invo-
lutions of type2A. ThenAut(S)o is a normal subgroup ofAut(S) such that
the quotient group is either trivial or a cyclic group of order 2 or 4. The order
4 could occur only for the surface of type VII. The order 2 occurs only for
surfaces of type IX.

Finally, we explain the last column of Table9.6. We already noticed that the
Fermat surface has 18 Eckardt points. A harmonic involution of a surface of
type II corresponds to a transposition inS5. Their number is equal to 10. The
surfaces of types III and IV are cylic surfaces, we have already explained that
they have 9 Eckardt points. This can be also confirmed by looking at the struc-
ture of the group. A surface of type VI has 4 Eckardt points. They correspond
to four harmonic symmetries. Three of them come from the subgroupS3 and
the fourth one corresponds to the central involution. Of course, we can see it in
the equation. The fourth Eckardt point is[1,−1, 1,−1]. Surfaces of type VII
and IX have one involution of type 2A. Surfaces of type X have 2 and surfaces
of type X have only one.
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9.5.4 The Clebsch diagonal cubic

We have already defined the Clebsch diagonal surface in Example9.1.1as a
nonsingular cubic surface given by equations

t30 + . . .+ t33 − (t0 + t1 + t2 + t3)3 = 0.

In the proof of Theorem9.5.6we found an explicit isomorphism to the surface
in P3 with equation

t20t1 + t21t2 + t22t3 + t23t0 = 0.

The Sylvester pentahedron of the surface isV (t0t1t2t3(t0+t1+t2+t3)). Its
10 vertices are the Eckardt points. Each edge is a line going through 3 Eckardt
points. The graph whose vertices are Eckardt points and edges is the Petersen
graph8.5.1which we have already encountered in the discussion of del Pezzo
surfaces of degree 5.

Each face of the pentahedron intersects the tetrahedron formed by the other
four faces along three diagonals, they are lines onS (this explains the name of
the surface). In this way we get 15 lines, theS5-orbit of the line

t0 = t1 + t2 = t3 + t4 = 0.

The remaining 12 lines form a double-six. Their equations are as follows.
Let η be a primitive 5-th root of unity. Letσ = (a1, . . . , a4) be a permuta-
tion of {1, 2, 3, 4}. Each line`σ spanned by the points[1, ηa1 , . . . , ηa4 ] and
[1, η−a1 , . . . , η−a4 ] belongs to the surface. This gives12 = 4!/2 different
lines. Here is one of the ordered double-sixes formed by the twelve lines

(`1234, `1243, `1324, `1342, `1432, `1423), (`2413, `2431, `3412, `3421, `2312, `2321).
(9.82)

The Schur quadricQ corresponding to this double-six is the quadric

t20 + . . .+ t24 = 0, t0 + . . .+ t4 = 0.

For example, the polar line of`1234 is the line given by the equations

4∑
i=0

ηiti =
4∑
i=0

η−iti =
4∑
i=0

ti = 0

and, as is easy to see, it coincides with the line`2413. The Schur quadric inter-
sects̀ ijkl at two points[1, ηi, ηj , ηk, ηl] and[1, η−i, η−j , η−k, η−l].

The groupS5 (as well its subgroupS4) acts transitively on the double-six.
The groupA5 stabilizes a sixer.

The intersectionQ∩ S is theBring curveof genus 4 given by the equations

t30 + . . .+ t34 = t20 + . . .+ t24 = t0 + . . .+ t4 = 0.
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Its automorphism group is isomorphic toS6. The image of this curve under
the mapπ1 : S → P2 which blows down the first half(`1, . . . , `6) of the
double-six (9.82) is Schur sextic with nodes at the pointspi = π(`i).

Consider the stereographic projection from the 2-dimensional sphereS2 :
{(a, b, c) ∈ R3 : a2 + b2 + c2 = 1} to the Riemann sphere(a, b, c) 7→ z =
a+ib
1−c . A rotation around the axisR(a, b, c) about the angle2φ corresponds to
the Moebius transformation

z 7→ (α+ iβ)z − (γ − δi)
(γ + δi)z + (α− βi)

,

whereα = cosφ, β = a sinφ, γ = b sinφ, δ = c sinφ. The icosahedron group
A5 acting by rotation symmetries of an icosahedron inscribed inS2 defines an
embedding ofA5 in the group PGL(3). One can choose the latter embedding
as a subgroup generated by the following transformationsS,U, T of orders
5, 2, 3 represented by the Moebius transformations

S : z 7→ ηz, U : z 7→ −z−1, T : z 7→ (η − η4)z + η2 − η3

(η2 − η3)z + η4 − η
.

The orbit of the north pole of the sphere under the corresponding group of
rotations is an icosahedron. It is known that the icosahedron group has three
exceptional orbits inP1 with stabilizers of orders5, 3, 2. They are the sets of
zeros of the homogeneous polynomials

Φ12 = z0z1(z10
1 + 11z5

0z
5
1 − z10

0 ),

Φ20 = −(z20
0 + z20

1 ) + 228(z15
1 z5

0 − z5
1z

15
0 )− 494z10

1 z10
0 ,

Φ30 = z30
0 + z30

1 + 522(z25
1 z5

0 − z5
1z

25
0 )− 10005(z20

1 z10
0 + z10

1 z20
0 ).

The isomorphism SU(2)/ ± 1 → SO(3) defines a 3-dimensional complex
linear representation ofA5 which embedsA5 in PGL(3). In appropriate coor-
dinate system it leaves the conicK = V (t20 + t1t2) invariant. The groupA5

acts in the plane in such a way that the Veronese map

[z0, z1] 7→ [−z0z1, z2
0 ,−z2

1 ] (9.83)

is equivariant. The six lines with equations

V (t1), V (t2), V (t0 + ηit1 + η−it2), i = 0, 1, 2, 3, 4, (9.84)

cut out onK the set

V (Φ12) = {0,∞, ηi(η + η−1), ηi(η2 + η−2)}, i = 0, . . . , 4.

The poles of the six lines with respect to the conic is the set of 6 points

[1, 0, 0], [1, 2ηi, 2η−i], i = 0, 1, 2, 3, 4.
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They is called thefundamental set of points.
The rational mapP2 99K P4 defined by the four cubics(F0, F1, F2, F3, F4)

Fi = ηi(4t20t2−t1t22)+η2i(−2t0t22+t31)+η
3i(2t0t21−t32)+η4i(−4t20t1+t21t2),

has the image the Clebsch diagonal cubic given by equations (9.13) (see [378],
II, 1. §5).

The equation of the Schur sextic (also called theKlein sexticin this case) is

40B = F 2
0 +· · ·+F 2

4 = 20(4t20t2−t1t
2
2)(−4t20t1+t21t2)+20(−2t0t

2
2+t31)(2t0t

2
1−t32)

= 40(8t20t1t2 − 2t20t
2
1t

2
2 + t31t

3
2 − t0t

5
1 − t0t

5
2) = 0.

The 12 intersection points of the sextic with the conicK are the images of
the 12 roots ofΦ12 under the Veronese map (9.83). The images of the thirty
roots ofΦ30 are the intersection points ofK with the union of 15 lines joining
pairwisely the six fundamental points. LetD be the product of the linear forms
defining these lines

ηνt1 − η−it2, (1 +
√

5)t0 + ηit1 + η−it2, (1−
√

5)t0 + η−it1 + ηit2.

The images of these lines under the map given by the polynomialsFi’s are the
15 diagonals of the Clebsch cubic. The images of the twenty roots ofΦ20 are
cut out by an invariant curve of degree 10 given by equation

C = G2
0 +G1G2

where

G0 = −8t30t1t2 + 6t0t21t
2
2 − t51 − t52,

G1 = 16t30t
2
2 − 8t20t

3
1 − 4t0t1t32 + 2t41t2,

G2 = 16t20t
3
1 − 8t20t

3
2 − 4t0t31t2 + 2t1t42

are quintic polynomials which define theA5-equivariant symmetric Cremona
transformation of degree5. The curveV (C) (with the source and the target
identified via the duality defined by the conicK) is equal to the image of the
conicK. The curveV (C) is a rational curve which has the fundamental point
as its singular points of multiplicity 4 with two ordinary cuspidal branches.

The four polynomials of degrees 2,6,10 and 15

A = t20 + t1t2, B, C, D

generate the algebraC[t0, t1, t2]A5 of invariant polynomials. The relation be-
tween the fundamental invariants is

D2 = −1728B5 + C3 + 720ACB3 − 80A2C2B + 64A3(5B2 −AC)2
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(see [378], II, 4. §3). The even part of the graded ringC[t0, t1, t2]A5 is freely
generated by polynomialsA,B,C of degrees2, 6, 10, so that

P2/A5
∼= ProjC[t0, t1, t2]A5 ∼= P(1, 3, 5).

Remark9.5.3 The Clebsch diagonal surface and the Bring curve of genus 4
play a role in the theory of modular forms. Thus, the Bring curve is isomor-
phic to the modular curveH/Γ, whereΓ = Γ0(2)∩Γ(5). It is also realized as
the curve of fixed points of the Bertini involution on the del Pezzo surface of
degree 1 obtained from the elliptic modular surfaceS(5) of level 5 by blow-
ing down the zero section [61],[451]. The blow-up of the Clebsch diagonal
surface at its 10 Eckardt points is isomorphic to a minimal resolution of the
Hilbert modular surfaceH×H/Γ, whereΓ is the 2-level principal congru-
ence subgroup of the Hilbert modular group associated to the real fieldQ(

√
5)

[327]. The curveC of degree 10 is isomorphic to the image of the diagonal in
H×H under the involution switching the factors [328].

Remark9.5.4 The pencil of curves of degree 6λC3+µB = 0 has remarkable
properties studied by R. Winger [657]. It has 12 base points, each point is an
inflection point for all members of the pencil. They curves share the common
tangents at these points. They are the six lines (9.84). These lines count for
12 inflection tangents and 24 bitangents of each curve. The pencil contains 3
singular fibres: the curveV (B), the union of the six lines, and a rational curve
W with 10 nodes forming an orbit ofA5 with stabilizer subgroup isomorphic
to S3. The union of lines corresponds to the parameter[λ, µ] = [1,−1]. The
rational sextic corresponds to the parameter[λ, µ] = [32, 27]. Another remark-
able members of the pencil correspond to the parameter[1 + α,−α], where
α = (−9 ± 3

√
−15)/20. These are Wiman sextics with automorphism group

isomorphic toA5 which we found in anotherA5-invariant pencil of sextics
while studying del Pezzo surfaces of degree 5.

Let PSO(3) ∼= SO(3) be the group of projective automorphisms leaving
invariant the conicK = V (t20+t1t2). Via the Veronese map it is isomorphic to
PSL(2). We have described explicitly the embeddingι : A5 ↪→ SO(3). There
are two non-isomorphic 3-dimensional irreducible representations ofA5 dual
to each other. Note that the transformationsS andS−1 are not conjugate in
A5, so that the dual representations are not isomorphic. In our representation
the trace ofS is equal to1 + η + η−1 = 1 + 2 cos 2π/5 = (1 +

√
5)/2

and, in the dual representation, the trace ofS is equal to1 + η2 + η−2 =
2 cos 4π/5 = (1 −

√
5)/2. The polar lines of the fundamental set of 6 points

define the fundamental set in the dual representation. Thus each subgroup of
SO(3) isomorphic toA5 defines 2 sets of fundamental points, one in each of
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the two dual planes. We call themicosahedral setsof 6 points. The group
SO(3) acts by conjugation on the set of subgroups isomorphic toA5, with two
conjugacy classes. This shows that the set of dual pairs of fundamental sets is
parameterized by the homogeneous space SO(3)/A5.

The six fundamental lines (9.84) form a polar hexagon of the double conic
V (A2) as the following identity shows (see [441], p. 261):

30(t20 + t1t2)2 = 25t40 +
∑

(t0 + ηit1 + η−it2)4.

This shows that an icosahedral set in the dual plane is a polar hexagons of
A2. Hence VSP(A2, 6) contains a subvariety isomorphic to the homogeneous
space SO(3)/A5. As we have explained in section1.4.4, this variety embeds
into the GrassmannianG(3,H3), whereH3 is the 7-dimensional linear space
of cubic harmonic polynomial with respect to the quadratic formq = t20+t1t2.
Its closure is the subvariety ofG(3,H3)σ ofG(3,H3) of subspaces isotropic to
the Mukai skew formsσω,A2 . It is a smooth irreducible Fano variety of genus
12 (see [441]). A compactification of the homogeneous space SO(3)/A5 iso-
morphic toG(3,H3)σ was constructed earlier by S. Mukai and H. Umemura
[438]. It is isomorphic to the closure of the orbit of SL(2) acting on the pro-
jective space of binary forms of degree 12.

Recall that the dual of the 4-dimensional space of cubic polynomials vanish-
ing at the polar hexagon is a 3-dimensional subspace ofH3 which is isotropic
with respect to Mukai’s skew forms. It follows from Theorem6.3.19that the
variety VSP(A2, 6) is the closure of SO(3)/A5 and isomorphic to a Fano vari-
ety of genus 12.

Observe that the cubic polynomialsFν are harmonic with respect to the
Laplace operator corresponding to the dual quadratic formq∨ = − 1

4ξ
2
0 +ξ1ξ2.

Thus each fundamental set in the plane defines a 4-dimensional subspace of the
space′H3 of harmonic cubic polynomials with respect toq∨. This space is dual
to the 3–dimensional subspace inH3 defined by the dual fundamental set with
respect to the polarity pairingH3×′H3 → C. Note that the intersection of two
4-dimensional subspaces in the 7-dimensional space′H3 of cubic polynomials
is non-zero. Thus for each two fundamental sets there is a harmonic polynomial
vanishing at the both sets. One can show that the set of harmonic cubic curves
vanishing at infinitely many fundamental sets is parameterized by a surface in
the dual projective spaceP3 which is isomorphic to the Clebsch diagonal cubic
surface under the map given by the Schur quadric (see [331]).

We refer to [422] for more of the beautiful geometry associated to the Bring
curve and the Clebsch diagonal cubic surface.
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Exercises

9.1Let Tst be the standard Cremona transformation, considered as a biregular automor-
phismσ of a nonsingular del Pezzo surfaceS of degree 6. Show that the orbit space
S/〈σ〉 is isomorphic to a Cayley 4-nodal cubic surface.

9.2 Show that a cubic surface can be obtained as the blow-up of 5 points onP1 × P1.
Find the conditions on the 5 points such that the blow-up is isomorphic to a nonsingular
cubic surface. Show that each pair of skew lines on a cubic surface is intersected by 5
skew lines which can be blown down to 5 points on a nonsingular quadric.

9.3 Compute the number ofm-tuples of skew lines on a nonsingular surface form =
2, 3, 4, 5.

9.4Suppose a quadric intersects a cubic along the union of three conics. Show that the
three planes defined by the conics pass through three lines in a tritangent plane.

9.5 Let Γ andΓ′ be two rational normal cubics inP3 containing a common pointp.
For a general planeΠ throughp let Π ∩ Γ = {p, p1, p2}, Π ∩ Γ′ = {p, p′1, p

′
2} and

f(p) = p1p1 ∩ p′1p
′
2. Consider the set of planes throughp as a hyperplaneH in the

dual space(P3)3. Show that the image of the rational mapH 99K P3, Π 7→ f(Π) is a
nonsingular cubic surface and every such cubic surface can be obtained in this way.

9.6Show that the linear system of quadrics inP3 spanned by quadrics which contain a
degree 3 rational curve on a nonsingular cubic surfaceS can be spanned by the quadrics
defined by the minors of a matrix defining a determinantal representation ofS.

9.7Show that all singular surfaces of typeV II, X, XI, XIII−XXI are isomorphic
and there are two non-isomorphic surfaces of typeXII.

9.8Show that a cubic surface with 3 nodes is isomorphic to a surfaceV (w3 + w(xy +
yz + xz) + λxyz). Show that the surface admits an Eckardt point if and only ifλ =
±
√
−2.

9.9 Let ` be a line on a del Pezzo cubic surface andE be its proper inverse transform
on the corresponding weak del Pezzo surfaceX. Let N be the sublattice of Pic(X)
spanned by irreducible components of exceptional divisors ofπ : X → S. Define the
multiplicity of ` by

m(l) =
#{σ ∈ O(Pic(X)) : σ(E)− E ∈ N}

#{σ ∈ O(Pic(X)) : σ(E) = E} .

Show that the sum of the multiplicities is always equal to 27.

9.10Show that the 24 points of intersection of a Schur quadric with the corresponding
double-six lie on the Hessian of the surface ([21], vol. 3, p. 211).

9.11Consider a Cayley-Salmon equationl1l2l3 − l′1l
′
2l
′
3 = 0 of a nonsingular cubic

surface.

(i) Show that the six linear polynomialsli, l′i satisfy the following linear equations

3X
j=1

aij lj =

3X
j=1

a′ij l
′
j = 0, i = 1, 2, 3,

where
3X
i=1

aij = 0, j = 1, 2, 3, ai1ai2ai3 = a′i1a
′
i2a

′
i3, i = 1, 2, 3.
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(ii) Show that for eachi = 1, 2, 3 the nine planes

aij li − a′ij l
′
j = 0, i, j = 1, 2, 3

contain 18 lines common to three planes. The 18 lines obtained in this way form
three double-sixes associated to the pair of conjugate triads defined by the Cayley-
Salmon equation.

(iii) Show that the Schur quadrics defined by the three double-sixes can be defined
by the equations

3X
j=1

a2ja3j l
2
j −

3X
j=1

a2ja3j l
′
j
2 = 0,

3X
j=1

a1ja3j l
2
j −

3X
j=1

a1ja3j l
′
j
2 = 0,

3X
j=1

a1ja2j l
2
j −

3X
j=1

a1ja2j l
′
j
2 = 0

([188]).

9.12([189]) Prove the following theorem of Schläfli: given five skew lines inP3 and a
line intersecting them all, there exists a unique cubic surface that contains a double-six
including the seven lines.

9.13For each type of a cubic surface with nontrivial group of automorphisms, find its
Cremona’s hexahedral equations.

9.14 Show that the pull-back of a bracket-function(ijk) under the Veronese map is
equal to(ij)(jk)(ik).

9.15 Let S be a weak del Pezzo surface andR be a Dynkin curve onS. Show that
S admits a double cover ramified only overR if and only if the sum of irreducible
components inR is divisible by 2 in the Picard group. Using this, classify all del Pezzo
surfaces which admit a double cover ramified only over singular points.

9.16Show that the Segre cubic primal is isomorphic to a tangent hyperplane section of
the cubic fourfold with 9 lines given by the equationxyz − uvw = 0 (Perazzo primal
[475], [22]).

9.17Consider the followingCayley’s family of cubic surfacesin P3 with parameters
l, m, n, k.

w[x2 + y2 + z2 + w2 + (mn +
1

mn
)yz + (ln +

1

ln
)xz + (lm +

1

lm
)xy

+(l +
1

l
)xw + (m +

1

m
)yw + (n +

1

n
)zw] + kxyz = 0.

Find the equations of 45 tritangent planes whose equations depend rationally on the
parametersl, m, n, k.

9.18 Show that the polar quadric of a nonsingular cubic surface with respect to an
Eckardt point is equal to the union of two planes.

9.19Show that the equation of the dual of a nonsingular cubic surface can be written
in the formA3 + B2 = 0, whereA andB are homogeneous forms of degree 4 and 6,
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respectively. Show that the dual surface has 27 double lines and a curve of degree 24 of
singularities of typeA2.

9.20Show that any normal cubic surface can be given as the image of a plane under a
Cremona transformation ofP3 of degree 3.

9.21Show that a general cubic surface can be projectively generated by three nets of
planes.

9.22Show that the Eckardt points are singular points of the parabolic curve of a non-
singular cubic surface.

9.23 Show that each line on a nonsingular cubic intersects the parabolic curve with
multiplicity 2.

9.24Find anA5-invariant determinantal representation of the Clebsch diagonal cubic.

9.25Use the Hilbert-Birch Theorem to show that any White surface (see Remark9.1.7)
is isomorphic to a determinantal surfaceW in Pn of degreè n

2

´
.

Historical Notes

Good sources for the references here are [315], [425], and [473]. According to
[425], the study of cubic surfaces originates from the work of J. Plücker [485]
on intersection of quadrics and cubics and L. Magnus [416] on maps of a plane
by a linear system of cubics.

However, it is customary to think that the theory of cubic surfaces starts from
Cayley’s and Salmon’s discovery of 27 lines on a nonsingular cubic surface
[77], [531] (see the history of discovery in [539], n. 529a, p. 183). Salmon’s
proof was based on his computation of the degree of the dual surface [530] and
Cayley’s proof uses the count of tritangent planes through a line, the proof we
gave here. It is reproduced in many modern discussions of cubic surfaces (e.g.
[501]). The number of tritangent planes was computed by [531] and Cayley
[77]. Cayley gives an explicit four-dimensional family of cubic surfaces with
a fixed tritangent plane. In 1851 J. Sylvester claimed, without proof, that a
general cubic surface can be written uniquely as a sum of 5 cubes of linear
forms [604]. This fact was proven 10 years later by A. Clebsch [117]. In 1854
L. Schl̈afli discovers 36 double-sixes on a nonsingular cubic surface. This and
other results about cubic surfaces were published later in [543]. In 1855 H.
Grassmann proves that three collinear nets of planes generate a cubic surface
[290]. The fact that a general cubic surface can be obtained in this way (this
implies a linear determinantal representation of the surface) has a long history.
In 1862 F. August proves that a general cubic surface can be generated by
three pencils of planes [18]. L. Cremona deduces from this that a general cubic
surface admits Grassmann’s generation [159]. In 1904 R. Sturm pointed out
that Cremona’s proof had a gap. The gap was fixed by C. Segre in [570]. In
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the same paper Segre proves that any normal cubic surface which does not
contain a singularity of typeE6 has a linear determinantal representation. In
1956 J. Steiner introduces what we called Steiner systems of lines [594]. This
gives 120 essentially different Cayley-Salmon equations of a nonsingular cubic
surface. The existence of which was first shown by Cayley [77] and Salmon
[531].

Cubic surfaces with a double line were classified in 1862 by A. Cayley [86]
and, via a geometric approach, by L. Cremona [154]. In 1863 L. Schl̈afli [542]
classified singular cubic surfaces with isolated singularities, although most of
these surfaces were already known to G. Salmon [531]. The old notations
for Ak-singularities areC2 for A1 (conic-node),Bk+1 (biplanar nodes) for
Ak, k,> 1 andUk+1 (uniplanar node) forDk. The subscript indicates the de-
crease of the class of the surface. In [93] Cayley gives a combinatorial descrip-
tion of the sets of lines and tritangent planes on singular surfaces. He also gives
the equations of the dual surfaces. Even before the discovery of 27 lines, in a
paper of 1844 [75], Cayley studied what we now call the Cayley 4-nodal cubic
surface. He finds its equation and describes its plane sections which amounts
to describe its realization as the image of the plane under the map given by
the linear system of cubic curves passing through the vertices of a complete
quadrilateral. Schläfli and later F. Klein [375] and L. Cremona [159] also stud-
ied the reality of singular points and lines. The Benjamino Segre’s book [561]
on cubic surfaces treats real cubic surfaces with special detail.

In 1866 A. Clebsch proves that a general cubic surface can be obtained as the
image of a birational map from the projective plane given by cubics through
6 points [120]. Using this he shows that Schläfli’s notationai, bi, cij for 27
lines correspond to the images of the exceptional curves, conics through 5
points and lines through two points. This important result was independently
proven by L. Cremona in his memoir [159] of 1868 that got him the prize
(shared with R. Sturm) offered by R. Steiner through the Royal Academy of
Sciences of Berlin in 1864 and awarded in 1866. Some of the results from this
memoir are discussed from a modern point of view in [201]. Many results from
Cremona’s memoir are independently proved by R. Sturm [598], and many of
them were announced by J. Steiner (who did not provide proofs). In particular,
Cremona proves the result, anticipated in the work of Magnus, that any cubic
surface can be obtained as the image of a plane under the cubo-cubic birational
transformation ofP3. Both of the memoirs had a lengthy discussion of Steiner
systems of tritangent planes. We refer to [201] for a historical discussion of
Cremona’s work on cubic surfaces.

Cremona’s hexahedral equations were introduced by L. Cremona in [163].
Although known to T. Reye [506] (in geometric form, no equations can be
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found in his paper), Cremona was the first who proved that the equations are
determined by a choice of a double-six. The invariant theory of Cremona hex-
aedral equations was studied by A. Coble in [129]. He used the Joubert func-
tions introduced by P. Joubert in [359]. The Segre cubic arised in the work of
C. Segre on cubic threefolds with singular points. Its realization as the GIT-
quotient space of ordered sets of six points inP1 is due to Coble.

F. Eckardt gives a complete classification of cubic surfaces with Eckardt
points (called Ovalpoints in [540]) in terms of their Hessian surface [217]. He
also considers singular surfaces. A modern account of this work can be found
[166]. The Clebsch Diagonalfl̈ache with 10 Eckardt points was first studied by
A. Clebsch in [124]. It has an important role in Klein’s investigation of the
Galois group of a quintic equations [378].

The classification of possible groups of automorphisms of a nonsingular
cubic surfaces was initiated by S. Kantor [362]. Some of the mistakes in his
classification were later corrected by A. Wiman [656]. However, Wiman’s
classification was also incomplete. For example the case VII was missing and
the description of some of the groups was wrong. For example, in case VI he
claimed that the group is a dihedral group of order 12. Segre’s book [561] con-
tains the same mistakes. Apparently, all three sources used the assumption that
a surface is Sylvester nondegenerate. The first complete, purely computational,
classification was given only in 1997 by T. Hosoh [335].

In 1897 J. Hutchinson showed in [344] that the Hessian surface of a nonsin-
gular cubic surface could be isomorphic to the Kummer surface of the Jacobian
of a genus 2 curve. This happens if the invariantI8I24 + 8I32 vanishes [525].
The group of automorphisms of the Hessian of a cubic surface was described
only recently [198].

The relationship of the Gosset polynomial221 to 27 lines on a cubic surface
was first discovered in 1910 by P. Schoute [547] (see [621]). The Weyl group
W (E6) as the Galois group of 27 lines was first studied by C. Jordan [357].

Together with the group of 28 bitangents of a plane quartic isomorphic to
W (E7), it is discussed in many classical text-books in algebra (e.g. [648], B.
II, [ 182]). S. Kantor [362] realized the Weyl groupW (En), n ≤ 8, as a group
of linear transformations preserving a quadratic form of signature(1, n) and
a linear form. A Coble [129], Part II, was the first who showed that the group
is generated by the permutations group and one additional involution. So
we should credit him the discovery of the Weyl groups as reflection groups.
Apparently independently of Coble, this fact was rediscovered by P. Du Val
[212]. We refer to [54] for the history of Weyl groups, reflection groups and
root systems. Note that the realization of the Weyl group as a reflection group
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in the theory of Lie algebras was obtained by H. Weyl in 1928, ten years later
after Coble’s work.

As we had already mentioned in the previous chapter, the Gosset polytopes
were discovered in 1900 by T. Gosset [284]. The notationn21 belongs to him.
They had been later rediscovered by E. Elte and H.S.M. Coxeter (see [152])
but only Coxeter realized that their groups of symmetries are reflection groups.
The relationship between the Gosset polytopesn21 and curves on del Pezzo
surfaces of degree5 − n was found by Du Val [212]. This fundamental paper
is the origin of a modern approach to the study of del Pezzo surfaces by means
of root systems of finite-dimensional Lie algebras [179], [417].

Volume 3 of Baker’s book [21] contains a lot of information about the ge-
ometry if cubic surfaces. Yu. Manin’s book [417] is a good source on cubic
surfaces with emphasis on the case on a non-algebraically closed base field.
It has been used as one of the main sources in the study of arithmetic of del
Pezzo surfaces.
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Geometry of Lines

10.1 Grassmannians of lines

10.1.1 Generalities about Grassmannians

We continue to useE to denote a linear space of dimensionn+1. Let us recall
some basic facts about Grassmann varieties ofm-dimensional subspaces ofE
and fix the notations. We will denote byG(m,E) the set ofm-dimensional
linear subspaces ofE. We will identify it with the setGm−1(|E|) of m − 1-
dimensional planes in the projective space|E| of lines ofE. Another identifi-
cation can be made with the setG(E,n+ 1−m) of n+ 1−m-dimensional
quotients ofE. By assigning toL ∈ G(m,E) the image of

∧m
L in

∧m
E,

we will identify the setG(m,E) with the set of lines in
∧m

E generated by
decomposablem-vectorsv1 ∧ . . . ∧ vm, where(v1, . . . , vm) is a basis ofL.
The linear subspaceL can be reconstructed from a decomposablem-vectorω
via

L = {v ∈ E : ω ∧ v = 0}.

In this wayG(m,E) acquires a structure of a projective subvariety of|
∧m

E|
corresponding to lines[ω] such that the rank of the linear map

E →
m+1∧

E, v 7→ v ∧ ω,

is less than or equal ton+ 1−m.
The tautological embedding of projective varietiesG(m,E) ↪→ |

∧m
E| is

called thePlücker embedding.
By taking the dual subspaceL⊥ ⊂ E∨, we obtain an isomorphism of pro-

jective varieties

G(m,E) ∼= G(n+ 1−m,E∨), L 7→ L⊥.
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If we fix a basis inE to identify it with Cn+1, we writeG(m,n + 1) or
Gm−1(Pn)) instead ofG(m,Cn+1) orGm−1(|E|).

In a more sophisticated way, the Grassmann varietyG = G(m,E) can be
defined as the variety representing the functor which assigns to a schemeS the
set of rankn + 1 −m locally free quotientsF of the vector bundleE ⊗ OS .
The corresponding morphismS → G is defined by assigning to a points ∈ S
the kernel of the surjectionE → F(s). The universal object in the sense of
representable functors is defined by a vector bundleE⊗OG → QG, whereQG
is a vector bundle of rankm overG, called theuniversal quotient bundleover
G. Its kernel is denoted bySG and is called theuniversal subbundleoverG. By
definition, we have an exact sequence of locally free sheaves (thetautological
exact sequenceonG)

0→ SG → E ⊗OG → QG → 0. (10.1)

and its dual exact sequence

0→ Q∨G → E∨ ⊗OG → S∨G → 0. (10.2)

The Pl̈ucker embedding is defined now as the composition of the natural mor-
phisms

G ∼= P(
m∧
S∨G )→ P(

m∧
E∨ ⊗OG) = |

m∧
E| ×G→ |

m∧
E|.

A choice of a basis inE and a choice of a basis(v1, . . . , vm) of L ∈
G(m,E) defines a matrixAL of sizem× (n+ 1) and rankm whosei-th row
consists of coordinates of the vectorvi. Two such matricesA andB define
the same linear subspace if and only if there exists a matrixC ∈ GL(m) such
thatCA = B. In this wayG(m,E) can be viewed as the orbit space of the
action of GL(m) on the open subset of Matm,n+1(m) of rankm matrices. By
the First Fundamental Theorem of Invariant Theory, the orbit space is isomor-
phic to the projective spectrum of the subring of the polynomial ring in

(
n+1
m

)
variablesXij , 1 ≤ i ≤ m, 1 ≤ j ≤ n + 1, generated by the maximal minors
of the matrixX = (Xij). A choice of an order on the set of maximal minors
(we will always use the lexicographic order) defines an embedding of the orbit

space inP
(
n+1
m

)
−1. It is isomorphic to the Plücker embedding. In coordinates

(t0, . . . , tn) ∈ (E∨)n+1, the maximal minorsXi1...im can be identified with
m-vectorspi1...im = ti1 ∧ . . . ∧ tim ∈

∧m
E∨ = (

∧m
E)∨. Considered as

coordinates in the vector space
∧m

E, they are called thePlücker coordinates.
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The maximal minorsXi1...ik satisfy thePlücker equations

n∑
k=1

(−1)kpi1,...,im−1,jkpj1,...,jk−1,jk+1,...,jm+1 = 0, (10.3)

where(i1, . . . , im−1) and(j1, . . . , jm+1) are two strictly increasing subsets of
[1, n+1]. These relations are easily obtained by considering the left-hand-side
expression as an alternating(m + 1)-multilinear function onCm. It is known

that these equations defineG(m,n+1) scheme-theoretically inP(n+1
m )−1 (see,

for example, [333], vol. 2).
The open subsetD(pI) ∩ G(m,n + 1) is isomorphic to the affine space

Am(n−m). The isomorphism is defined by assigning to a matrixA definingL,
the point(zJ), wherezJ = |AJ |/|AI | taken in some fixed order. This shows
thatG(m,n+ 1) is a smooth rational variety of dimensionm(n+ 1−m).

The surjectionE∨ ⊗ OG → S∨G defines a closed embeddingP(S∨G ) ↪→
P(E∨ ⊗OG) = |E| ×G. Its image is theincidence variety

ZG = {(x,Π) ∈ |E| ×G : x ∈ Π}.

Let

p : ZG → |E|, q : ZG → G

be the corresponding projections. By definition, the projectionq is the projec-
tive bundleP(S∨G ) = |SG|.

The fibre of the projectionp over a pointx = [v] ∈ |E| can be canonically
identified withG(m−1, E/Cv). Recall that the quotient spacesE/Cv, v ∈ E,
are the fibres of the quotient sheafE ⊗ O|E|/O|E|(−1) which is isomorphic
to the twisted tangent sheafT|E|(−1) via the Euler exact sequence (the dual of
exact sequence (7.50))

0→ O|E| → O|E|(1)⊗ E → T|E| → 0.

Assumem = 2, thenG(m− 1, E/Cv) ∼= |E/Cv|. This gives

ZG ∼= |T|E|(−1)| = P(Ω1
|E|(1)). (10.4)

In the general case, the projectionp is theGrassmann bundleG(m−1, T|E|(−1)).
Since we will not need this fact, we omit the relevant definitions and the proof
(see [370]).

Let us compute the canonical sheafωG of G.



10.1 Grassmannians of lines 569

Lemma 10.1.1 LetTG be the tangent bundle ofG. There is a natural isomor-
phism of sheaves

TG ∼= S∨G ⊗QG,

ωG ∼= OG(−n),

whereOG(1) is taken with respect to the Plücker embedding.

Proof Let us trivializeSG over an open subsetU to assume thatSG = S ⊗
OU . ThenU is isomorphic to the quotient of an open subset of Hom(S,E) by
GL(S). The tangent bundle ofU becomes isomorphic to

Hom(S,E)/Hom(S, S) ∼= S∨ ⊗ E/S∨ ⊗ S ∼= S∨ ⊗ (E/S).

These isomorphisms can be glued together to define a global isomorphism
TG ∼= S∨G ⊗QG.

Since
∧m

V →
∧m

S∨G defines the Plücker embedding, we have

c1(S∨G ) = c1(OG(1)).

Now the second isomorphism follows from a well-known formula for the first
Chern class of tensor product of vector bundles (see [311], Appendix A).

SinceZG is a projective bundle overG, we can apply formula (7.51) for the
canonical sheaf of a projective bundle to obtain

ωZG/G ∼= q∗(
m∧
S∨G )⊗ p∗O|E|(−m) ∼= q∗OG(1)⊗ p∗O|E|(−m),

ωZG
∼= ωZG/G ⊗ q∗(ωG) ∼= q∗OG(−n)⊗ p∗O|E|(−m),

10.1.2 Schubert varieties

Let us recall some facts about the cohomology ringH∗(G,Z) of G = Gr(Pn)
(see [253], Chapter 14).

Fix a flag

A0 ⊂ A1 ⊂ . . . ⊂ Ar ⊂ Pn

of subspaces of dimensiona0 < a1 < . . . < ar, and define theSchubert
variety

Ω(A0, A1, . . . , Ar) = {Π ∈ G : dim Π ∩Ai ≥ i, i = 0, . . . , r}.

This is a closed subvariety ofG of dimension
∑r
i=0(ai − i). Its homology

class[Ω(A0, A1, . . . , Ar)] inH∗(G,Z) depends only ona0, . . . , ar. It is called
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a Schubert cycleand is denoted by(a0, . . . , ar). Let a0 = N − r − d, ai =
N − r + i, i ≥ 1. The varieties

Ω(A0) := Ω(A0, . . . , Ar) = {Π ∈ G : Π ∩A0 6= ∅}

are called thespecial Schubert varieties. Their codimension is equal tod.
Under the Poincaré DualityH∗(G,Z)→ H∗(G,Z), the cycles(a0, . . . , ar)

are mapped toSchubert classes{λ0, . . . , λr} defined in terms of the Chern
classes

σs = cs(QG) ∈ H2s(G,Z), s = 1, . . . , N − r,

by thedeterminantal formula

{λ0, . . . , λr} = det(σλi+j−i)0≤i,j≤r,

whereλi = N−r+ i−ai, i = 0, . . . , r. The classesσs are dual to the classes
of special Schubert varietiesΩ(A0), wheredimA0 = N − r − s.

The tautological exact sequence (10.1) shows that

1 = (
∑

cs(QG))(
∑

cs(SG)).

In particular,

σ1 = −c1(SG) = c1(S∨G ) = c1(OG(1)).

A proof of the following result can be found in [253] or [333], vol. 2.

Proposition 10.1.2 The cohomology ringH∗(G,Z) is generated by the spe-
cial Schubert classesσs. The Schubert cycles(a0, . . . , ar) with

∑r
i=0(ai −

i) = d freely generateH2d(G,Z). The Schubert classes{λ0, . . . , λr} with
d =

∑r
i=0 λi freely generateH2d(G,Z). In particular,

Pic(G) ∼= H2(G,Z) = Zσ1.

It follows from the above Proposition thatH∗(G,Z) is isomorphic to the
Chow ringA∗(G) of algebraic cycles onG. Under the Poincaré Dualityγ 7→
αγ , the intersection form on cycles〈γ, µ〉 is defined by

〈γ, µ〉 =
∫
µ

αγ =
∫
G

αγ ∧ αµ := αγ · αµ.

The intersection form onA∗(G) is calculated by using thePieri’s formulas

{λ0, . . . , λr} · σs =
∑
{µ0, . . . , µr}, (10.5)

where the sum is taken over all{µ} such thatN − r ≥ λ0 ≥ . . . µr ≥ λr and∑
λi = s+

∑
µi.
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Here are some special cases. We setσs,t = {s, t, 0, . . . , 0}. Then

σ2
1 = σ2 + σ1,1,

σ1 · σ2 = σ3 + σ2,1,

σ1 · σ1,1 = σ2,1.

For example, the degree ofG is equal toσdim G
1 . We refer to [253], Example

14.7.11, for the following formula computing the degree ofGr(Pn)

degGr(Pn) =
1!2! . . . r! dimG!

(n− r)!(n− r + 1)! . . . n!
. (10.6)

Example10.1.1 Let us look at the GrassmannianG1(P3) = G(2, 4) of lines
in P3. The Pl̈ucker equations are reduced to one quadratic relation

p12p34 − p13p24 + p14p23 = 0. (10.7)

This is a nonsingular quadric inP5, often called theKlein quadric. The Schu-
bert class of codimension 1 is represented by the special Schubert varietyΩ(`)
of lines intersecting a given linè. We have two codimension 2 Schubert cycles
σ2 andσ1,1 represented by the Schubert varietiesΩ(x) of lines containing a
given pointx andΩ(Π) of lines containing in a given planeΠ. Each of these
varieties is isomorphic toP2. In classical terminology,Ω(x) is anα-planeand
Ω(Π) is aβ-plane. We have one-dimensional Schubert cycleσ2,1 represented
by the Schubert varietyΩ(x,Π) of lines in a planeΠ containing a given point
x ∈ Π. It is isomorphic toP1. Thus

A∗(G(2, 4)) = Z[G]⊕ Zσ1 ⊕ (Zσ2 + Zσ1,1)⊕ Zσ2,1 ⊕ Z[point].

Note that the two Schubert classes of codimension 2 represent two different
rulings of the Klein quadric by planes.

We have

σ2 · σ1,1 = 0, σ2
2 = 1, σ2

1,1 = 1. (10.8)

Write σ2
1 = aσ2 + bσ1,1. Intersecting both sides withσ2 andσ1,1, we obtain

a = b = 1 confirming Pieri’s formula (10.5). Squaringσ2
1 , we obtaindegG =

σ4
1 = 2, confirming the fact thatG(2, 4) is a quadric inP5.

A surfaceS in G1(P3) is called acongruence of lines. Its cohomology class
[S] is equal tomσ2+nσ1,1. The numberm (resp.n) is classically known as the
order of S (resp.class). It is equal to the number of lines inS passing through
a general point inP3 (resp. contained in a general plane). The summ + n is
equal toσ1 · [S] and hence coincides with the degree ofS in P5.
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There are numerous applications of Schubert calculus to enumerative prob-
lems in algebraic geometry. Let us prove the following nice result which can
be found in many classical text-books (first proven by L. Cremona [155]).

Proposition 10.1.3 The number of common secants of two general rational
normal curves inP3 is equal to 10.

Proof Consider the congruence of lines formed by secants of a rational nor-
mal cubic curve inP3. Through a general point inP3 passes one secant. In a
general plane lie 3 secants. Thus the order of the congruence is equal to 1 and
the class is equal to 3. Using (10.8), we see that the two congruences intersect
at 10 points.

Remark10.1.1 Let R1 andR2 be two general rational normal cubic curves
in P3 and letNi be the net of quadrics throughRi. The linear systemW of
quadrics in the dual space which is apolar to the linear systemN spanned
by N1 andN2 is of dimension 3. The Steinerian quartic surface defined by
this linear system contains 10 lines, the singular lines of 10 reducible quadrics
fromW. The dual of these lines are the ten common secants ofR1 andR2

(see [508], [426], [133]). Also observe that the 5-dimensional linear system
N mapsRi to a curveCi of degree 6 spanning the planeΠi in N∨ apolar to
the planeNj . The ten pairs of intersection points ofCi with the ten common
secants correspond to the branches of the ten singular points ofCi.

10.1.3 Secant varieties of Grassmannians of lines

From now on, we will restrict ourselves with the Grassmannian of lines in
Pn = |E|. Via contraction, one can identify

∧2
E with the space of linear

mapsu : E∨ → E such that the transpose maptu is equal to−u. Explicitly,

v ∧ w(l) = l(v)w − l(w)v.

The rank ofu is the rank of the map. Sincetu = −u, the rank takes even
values. The Grassmann varietyG(2, E) is the set of points[u], whereu is a
map of rank 2.

After fixing a basis inE, we can identify
∧2

E with the space of skew-
symmetric matricesA = (pij) of size (n + 1) × (n + 1). The Grassmann
varietyG(2, E) is the locus of rank 2 matrices, up to proportionality. The en-
triespij , i < j, are the Pl̈ucker coordinates. In particular,G(2, E) is the zero
set of the4 × 4 pfaffians ofA. In fact, each of the Plücker equations is given
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by the4× 4 pfaffian of the matrix(pij)

pijpkl − pikpjl + pilpjk = Pf


0 pij pik pil
−pij 0 pjk pjl
−pik −pjk 0 pkl
−pil −pjl −pkl 0

 .

Another way to look atG(2, E) is to use the decomposition

E ⊗ E ∼= S2(E)⊕
2∧
E.

It identifiesG(2, E) with the projection of the Segre varietys2(|E| × |E|) ⊂
|E ⊗ E| to |

∧2
E| from the subspace|S2(E)|.

The formula (10.6) for the degree of the Grassmannian gives in our special
case

degG1(Pn) =
(2n− 2)!
(n− 1)!n!

. (10.9)

One can also compute the degrees of Schubert varieties

deg Ω(a0, a1) =
(a0 + a1 − 1)!

a0!a1!
(a1 − a0). (10.10)

Lemma 10.1.4 The rank ofu ∈
∧2

E is equal to the smallest numberk such
thatω can be written as a sumu1 + · · ·+ uk of 2-vectorsui of rank2.

Proof It suffices to show that for anyu of rank2k ≥ 4, there exists a2-vector
u1 of rank 2 such thatu−u1 is of rank≤ 2k− 2. LetR be the kernel ofu and
l0 6∈ R. Choosev0 ∈ E such that, for anyl ∈ R, l(v0) = 0 andl0(v0) = 1.
By skew-symmetry ofu, for anyl,m ∈ E∨,m(u(x)) = −l(u(m)). Consider
the differenceu′ = u− v0 ∧ u(l0). For anyl ∈ R, we have

u′(l) = u(l)− l(v0)u(l0) + l(u(l0))v0 = l(u(l0))v0 = −l0(u(l))v0 = 0.

This shows thatR ⊂ Ker(u). Moreover, we have

u′(l0) = u(l0) + l0(u(l0))v0 − l0(v0)u(l0) = u(l0)− u(l0) = 0.

This implies that Ker(u′) is strictly larger than Ker(u).

This gives the following.

Proposition 10.1.5 The variety

Gk =: {[u] ∈ |
2∧
E| : u has rank≤ 2k + 2}

is equal to thek-secant varietySeck(G) of G.
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Let t = [n−3
2 ], thent is the maximal numberk such that Seck(G) 6= |

∧2
E|.

So the Pl̈ucker space is stratified by the rank of its points and the strata are the
following:

|E| \Gt, Gt \Gt−1, . . . ,G1 \G, G. (10.11)

It follows from the previous remarks thatGk \ Gk−1 is the orbit of a matrix
of rank 2k + 2 and size(n + 1) × (n + 1) under the action of GL(n + 1).
Therefore,

dim Gk = dim GL(n)/Hk,

whereHk is the stabilizer of a skew-symmetric matrix of rank2k+2. An easy
computation gives the following.

Proposition 10.1.6 Let0 ≤ k ≤ t, then

dk = dim Gk = (k + 1)(2n− 2k − 1)− 1. (10.12)

Let X ⊂ Pr be a reduced and nondegenerate closed suvariety. Thek-th
defectof X can be defined as

δk(X) = min
(
(k + 1) dimX + k, r

)
− dim Seck(X),

which is the difference between the expected dimension of thek-secant variety
ofX and the effective one. We say thatX is k-defectiveif Seck(X) is a proper
subvariety andδk(X) > 0.

Example10.1.2 Let n = 2t+ 3, thenGt ⊂ |
∧2

E| is the pfaffian hypersur-
face of degreet+2 in |

∧2
E| parameterizing singular skew-symmetric matri-

ces(aij) of size2t+ 4. The expected dimension ofGt is equal to4t2 + 8t+ 5
which is larger thandim |

∧2
E| =

(
2t+4

2

)
− 1. Thusdt(G) = dim Gt + 1 and

δt(G) = 1.
In the special casen = 5, the varietyG1(P5) is one of the four Severi-Zak

varieties.

Using Schubert varieties one can describe the projective tangent space of
Gk at a given pointp = [u] /∈ Gk−1. LetK = Ker(u) ⊂ E∨. Since the rank
of u is equal to2k + 2, the dual subspaceK⊥ ⊂ E defines a linear subspace

Λp = |K⊥|

of |E| of dimension2k + 1. Let Ω(Λp) be the corresponding special Schubert
variety and〈Ω(Λp)〉 be its linear span in the Plücker space.

Proposition 10.1.7

Tp(Gk) = 〈Ω(Λp)〉.
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Proof SinceGk \ Gk−1 is a homogeneous space for GL(n + 1), we may
assume that the pointp is represented by a 2-vectoru =

∑k
i=0 e2i+1 ∧ e2i+2,

where(e1, . . . , en) is a basis inE. The corresponding subspaceK⊥ is spanned
by e1, . . . , e2k+2. A line ` intersectsΛp if and only if it can be represented by
a bivectorv ∧ w, wherev ∈ K⊥. ThusW = 〈Ω(Λp)〉 is the span of points
[ei∧ej ], where eitheri or j is less than or equal to2k+2. In other words,W is
given by vanishing of

(
n−2k−1

2

)
Plücker coordinatespab, wherea, b > 2k+2.

It is easy to see that this agrees with formula (10.1.6) for dim Seck(G). So, it
is enough to show thatW is contained in the tangent space. We know that the
equations of Seck(G) are given by pfaffians of size4k+ 4. Recall the formula
for the pfaffians from Chapter 2, Exercise 2.1,

Pf(A) =
∑
S∈S
±
∏

(ij)∈S

aij ,

whereS is a set of pairs(i1, j1), . . . , (i2k+2, j2k+2) such that1 ≤ is < js ≤
4k + 4, s = 1, . . . , 2k + 2, {i1, . . . , i2k+2, j1, . . . , j2k+2} = {1, . . . , 4k + 4}.
Consider the Jacobian matrix ofGk at the pointp. Each equation ofGk is
obtained by a choice of a subsetI of {1, . . . , n} of cardinality4k + 4 and
writing the pfaffian of the submatrix of(pij) formed by the columns and rows
with indices inI. The corresponding row of the Jacobian matrix is obtained
by taking the partials of this equation with respect to allpij evaluated at the
point p. If a, b ≤ 2k + 2, then one of the factors in the product

∏
(ij)∈S pij

corresponds to a pair(i, j), wherei, j > 2k + 2. When we differentiate with
respect topab its value atp is equal to zero. Thus the corresponding entry in
the Jacobian matrix is equal to zero. So, all nonzero entries in a row of the
Jacobian matrix correspond to the coordinates of vectors fromW which are
equal to zero. ThusW is contained in the space of solutions.

Takingk = 0, we obtain

Corollary 10.1.8 For any` ∈ G,

T`(G) = 〈Ω(`)〉.

Let Λ be any subspace ofPn of dimension2k + 1 and

PΛ = {p ∈ |
2∧
E| : Λ = Λp}.

This is the projectivization of the linear space of skew-symmetric matrices of
rank2k+2 with the given nullspace of dimension2k+2. An easy computation
using formula (10.12) shows thatdimPΛ = (2k + 1)(k + 1)− 1.
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Let

γk : Gk \Gk−1 → G(dk + 1,
2∧
E), dk = dim Gk,

be theGauss mapwhich assigns to a point its embedded tangent space. Apply-
ing Proposition10.1.7, we obtain

Corollary 10.1.9

γ−1
k (〈Ω(Λ)〉) = PΛ.

In particular, any hyperplane in the Plücker space containingΩ(Λ) is tangent
to Seck(G) along the subvarietyPΛ of dimension(2k + 1)(k + 1)− 1.

Example10.1.3 LetG = G(2, 6). We already observed that the secant variety
G1 is a cubic hypersurfaceX in P14 defined by the pfaffian of the6× 6 skew-
symmetric matrix whose entries are Plücker coordinatespij . The Gauss map
is the restriction toX of the polar mapP14 99K (P14)∨ given by the partials of
the cubic. The singular locus ofX is equal toG(2, 6), it is defined by polars
of X. The map polar map is a Cremona transformation inP14. This is one of
the examples of Cremona transformations defined by Severi-Zak varieties (see
Example7.1.3).

LetX be a subvariety ofG, andZX be the preimage ofX under the projec-
tion q : ZG → G. The image ofZX in Pn is the union of lines̀ ∈ X. We will
need the description of its set of nonsingular points.

Proposition 10.1.10 The projectionpX : ZX → Pn is smooth at(x, `) if and
only if

dim` Ω(x) ∩ T`(X) = dim(x,`) p
−1
X (x).

Proof Let (x, `) ∈ ZX and letF be the fibre ofpX : ZX → Pn passing
through the point(x, `) identified with the subsetΩ(x)∩X under the projection
q : ZX → G. Then

Tx,`(F ) = T`(Ω(x)) ∩ T`(X) = Ω(x) ∩ T`(X). (10.13)

This proves the assertion.

Corollary 10.1.11 Let Y = pX(ZX) ⊂ Pn be the union of lines̀ ∈ X.
AssumeX is nonsingular andp−1

X (x) is a finite set. Supposedim` Ω(x) ∩
T`(X) = 0 for somè ∈ X containingx. Thenx is nonsingular point ofY .
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10.2 Linear line complexes

10.2.1 Linear line complexes and apolarity

An effective divisorC ⊂ G = G1(Pn) is called aline complex. Since we know
that Pic(G) is generated byOG(1) we see thatC ∈ |OG(d)| for somed ≥ 1.
The numberd is called thedegreeof the line complex.

An example of a line complexC of degreed in G1(Pn) is theChow form
of a subvarietyX ⊂ Pn of codimension 2 (see [264]). It parameterizes lines
which have non-empty intersection withX. Its degree is equal to the degree of
X. WhenX is linear, this is of course the special Schubert varietyΩ(X).

A linear line complexis a line complex of degree one, that is a hyperplane
sectionC = H ∩G of G. If no confusion arises we will sometimes identifyC

with the corresponding hyperplaneH. A linear line complex is calledspecial
if it is equal to the special Schubert varietyΩ(Π), whereΠ is a subspace of
codimensionn−2. The corresponding hyperplane is tangent to the Grassman-
nian at any point̀ such that̀ ⊂ Π. In particular, whenn = 3, the special
linear line complex is isomorphic to a quadric cone.

For anyω ∈ (
∧2

E)∨ =
∧2

E∨, let Cω denote the linear line complex
defined by the hyperplaneV (ω). In coordinates, ifω =

∑
aijpij , the linear

line complexCω is given by adding to the Plücker equations the additional
equation ∑

0≤i<j≤n

aijpij = 0.

For example, the line complexV (pij) parameterizes the lines intersecting the
coordinate(n− 2)-planetk = 0, k 6= i, j, in Pn.

Remark10.2.1 It follows from the Euler sequence that there is a natural iso-
morphism

H0(|E|,Ω1
|E|(2)) ∼= Ker

(
E∨ ⊗ E∨ → S2(E∨)

) ∼= 2∧
E∨. (10.14)

Also we know from (10.4) that the incidence varietyZG is isomorphic to the
projective bundleP(Ω1

|E|(1)) ∼= P(Ω1
|E|(2)). Thus a linear line complex can be

viewed as a divisor in the linear system|OZG(1)|, wherep∗OZG(1) ∼= Ω1
|E|(2).

The fibre ofZG over a pointx ∈ |E| is isomorphic to projectivized tangent
spaceP(Ω1

|E|(x)) ∼= |Tx(|E|)|.
Choose local coordinatesz1, . . . , zn in |E| defining the basis( ∂

∂z1
, . . . , ∂

∂zn
)

in tangent spaces, then, for any nonzeroω ∈
∧2

E∨ the line complexCω ∈
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E∨ is locally given by an expression

n∑
i=1

Ai(z1, . . . , zn)dzi = 0.

This equation is called thePfaff partial differential equation. More generally,
any line complex of degreed can be considered as the zero set of a section of
OZG(d) and can be locally defined by theMonge’s partial differential equation

n∑
i1+...+in=d

Ai1,...,indz
i1
1 . . . dzinn = 0.

We refer to S. Lie book [402] for the connection between the theory of Pfaff
equations and line complexes.

The projective equivalence classes of linear line complexes coincide with
the orbits of GL(E) acting naturally on|

∧2
E∨|. The GL(E)-orbit of a linear

line complexCω is uniquely determined by therank 2k of ω. We will identify
ω with the associated linear mapE → E∨. Let

Sω = |Ker(ω)|. (10.15)

It is called thecenterof a linear line complexCω. We have encountered with
it in Chapter 2. This is a linear subspace of|E| of dimensionn− 2k, where2k
is the rank ofω.

Proposition 10.2.1 Let Cω be a linear line complex andSω be its singular
variety. Then the Schubert varietyΩ(Sω) is contained inCω and

G1(Sω) = Sing(Cω).

Proof Since GL(E) acts transitively on the set of linear line complexes of
equal rank, we may assume thatω =

∑k
i=1 e

∗
i ∧ e∗k+i, wheree∗1, . . . , e

∗
n is a

basis ofE∨ dual to a basise1, . . . , en ofE. The linear space Ker(ω) is spanned
by ei, i > 2k. A line ` intersectsSω if and only if it can be represented by a
bivectorv ∧ w ∈

∧2
E, where[v] ∈ Sω. Therefore, the linear span of the

Schubert varietyΩ(Sω) is generated by bivectorsei ∧ ej , wherei < 2k. It is
obvious that it is contained in the hyperplaneV (ω) = 〈Cω〉 ⊂ |

∧2
E|. This

checks the first assertion.
It follows from Corollary10.1.8that

` ∈ Sing(Cω)⇐⇒ T`(G) ⊂ V (ω)⇐⇒ Ω(`) ⊂ Cω.

SupposeΩ(`) ⊂ Cω but ` does not belong toSω. We can find a point iǹ
represented by a vectorv =

∑
aiei, whereai 6= 0 for somei ≤ 2k. Then the

line represented by a bivectorv ∧ ek+i intersects̀ but does not belong toCω
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(sinceω(v ∧ ek+i) = ai 6= 0). ThusΩ(`) ⊂ Cω implies` ⊂ Sω. Conversely,
this inclusion impliesΩ(`) ⊂ Ω(Sω) ⊂ Cω. This proves the second assertion.

It follows from the Proposition that any linear line complex is singular unless
its rank is equal to2[n+1

2 ], maximal possible. Thus the set of hyperplanes in the
Plücker space which are tangent toG can be identified with the set of linear line
complexes of rank≤ 2[n−3

2 ]. ConsiderG(2, E∨) in its Plücker embedding in
P(
∧2

E). Exchanging the roles ofE andE∨, we obtain the following beautiful
result.

Corollary 10.2.2 Let t = [n−3
2 ], thenSect(G) is equal to the dual variety of

the GrassmannianG(2, E∨) in P(
∧2

E).

Whenn = 4, 5 we obtain thatG(2, E) is dual toG(2, E∨). Whenn = 6 we
obtain that the dual ofG(2, E∨) is equal to Sec1(G(2, E)). This agrees with
Example10.1.3.

For any linear subspaceL of E, let

Lω = ω(L)⊥ = {w ∈ E : ω(v, w) = 0,∀v ∈ L}.

For any subspaceΛ = |L| ⊂ |E|, let

iω(Λ) = |Lω|.

It is clear that[v ∧ w] ∈ G belongs toCω if and only if ω(v, w) = 0. Thus

Cω = {` ∈ G : ` ⊂ iω(`)}. (10.16)

Clearly iω(Λ) contains the centerSω = |Ker(αω)| of Cω. Its dimension is
equal ton− dim Λ + dim Λ ∩ Sω.

Sinceω is skew-symmetric, for any pointx ∈ |E|,

x ∈ iω(x).

Whenω is nonsingular, we obtain a bijective correspondence between points
and hyperplanes classically known as anull-system.

In the special case whenn = 3 andSω = ∅, this gives thepolar duality
between points and planes. The planeΠ(x) corresponding to a pointx is called
thenull-planeof x. The pointtΠ corresponding to a planeΠ is called thenull-
point of Π. Note thatx ∈ Π(x) andxΠ ∈ Π. Also in this case the lines̀and
iω(`) are calledpolar lines. They never intersect unless they coincide.

We also have a correspondence between lines inP3

iω : G1(P3)→ G1(P3), ` 7→ iω(`).
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Note that the lines̀ andiω(`) are always skew or coincide. The set of fixed
points ofiω onG1(P3) is equal toCω. SinceC is nonsingular, the polec of
V (ω) with respect to the Klein quadricG does not belong toG. It is easy to
see thatiω is the deck transformation of the projection ofG in P5 from the
point c. Thus

G/(iω) ∼= P4.

The hyperplane〈Cω〉 is the polar hyperplanePc(G). The ramification divisor
of the projectionG→ P4 is the linear complexCω = Pc(G) ∩G. The branch
divisor is a quadric inP4.

If C is singular, then it coincides with the Schuber varietyΩ(`), where` =
Sω. For any` 6= Sω, we haveiω(`) = Sω andiω(Sω) = P3.

Proposition 10.2.3 LetCω be a nonsingular linear line complex inG1(Pn).
Let ` be a line inPn. Then any linè ′ ∈ Cω intersecting` also intersects
iω(`). The linear line complexCω consists of lines intersecting the line` and
the codimension 2 subspaceiω(`).

Proof Let x = ` ∩ `′. Sincex ∈ `′, we havè ′ ⊂ iω(`′) ⊂ iω(x). Since
x ∈ `, we haveiω(`) ⊂ iω(x). Thusiω(x) contains̀ ′ andiω(`). SinceCω is
nonsingular,dim iω(x) = n− 1, hence the linè′ intersects the(n− 2)-plane
iω(`).

Conversely, supposè′ intersects̀ at a pointx and intersectsiω(`) at a
pointx′. Thenx, x′ ∈ iω(`′) and hencè′ = xx′ ⊂ iω(`′). Thus`′ belongs to
Cω.

Definition 10.2.1 A linear line complexCω in |
∧2

E| is calledapolarto a
linear line complexCω∗ in |

∧2
E∨| if ω∗(ω) = 0.

In the casen = 3, we can identify|
∧2

E| with |
∧2

E∨| by using the po-
larity defined by the Klein quadric. Thus we can speak about apolar linear line
complexes inP3. In Plücker coordinates, this gives the relation

a12b34 + a34b12 − a13b24 − a24b13 + a14b23 + a23b14 = 0. (10.17)

Lemma 10.2.4 Let Cω andCω′ be two nonsingular linear complexes inP3.
ThenCω andCω′ are apolar to each other if and only ifg = ω−1◦ω′ ∈ GL(E)
satisfiesg2 = 1.

Proof Take two skew lines̀, `′ in the intersectionCω ∩ Cω′ . Choose coordi-
nates inE such that̀ and`′ are two opposite edges of the coordinate tetrahe-
dronV (t0t1t2t3), say` : t0 = t2 = 0, and`′ : t1 = t3 = 0. Then the linear
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line complexes have the following equations in Plücker coordinates

Cω : ap12 + bp34 = 0; Cω′ : cp12 + dp34 = 0.

The condition thatCω andCω′ are apolar isad + bc = 0. The linear maps
ω, ω′ : E → E∨ are give by the matrices

A =


0 a 0 0
−a 0 0 0
0 0 0 b

0 0 −b 0

 , B =


0 c 0 0
−c 0 0 0
0 0 0 d

0 0 −d 0

 .

This gives

A−1B =


c/a 0 0 0
0 c/a 0 0
0 0 d/b 0
0 0 0 d/b

 =
a

c


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 .

This shows that(A−1B)2 defines the identical transformation of|E|. It is easy
to see that conversely, this implies thatad+ bc = 0.

In particular, a pair of nonsingular apolar linear line complexes defines an
involution of |E|. Any pair of linear line complexes defines a projective trans-
formation of |E| as follows. Take a pointx, define its null-planeΠ(x) with
respect toω and then take its null-pointy with respect toω′. For apolar line
complexes we must get an involution. That is, the null-plane ofy with respect
to ω must coincide with the null-plane ofx with respect toω′.

Since any set of nonsingular mutually apolar linear line complexes is lin-
early independent, we see that the maximal number of mutually apolar linear
line complexes is equal to 6. If we choose these line complexes as coordinates
zi in

∧2
E, we will be able to write the equation of the Klein quadric in the

form

Q =
5∑
i=0

z2
i .

Since each pair of apolar linear line complexes defines an involution in|
∧2

E|,
we obtain 15 involutions. They generate an elementary abelian group(Z/2Z)4

of projective transformations inP3. The action of this group arises from a linear
representation inC4 of the non-abelian groupH2 (a Heisenberg group) given
by a central extension

1→ µ2 → H2 → (Z/2Z)4 → 1.
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We denote the subgroup of PGL(3) generated by the 15 involutions defined
by 6 mutually apolar line complexes byH′2.

An example of six mutually apolar linear line complexes is the set

(p12 + p34, i(p34 − p12), p13 − p24,−i(p24 + p13), p14 + p23, i(p23 − p14)),

wherei =
√
−1. These coordinates in the Plücker space are called theKlein

coordinates.
A set of six mutually apolar linear line complexes defines a symmetric

(166)-configurationof points and planes. It is formed by 16 points and 16
planes inP3 such that each point is a null-point of 6 planes, each with respect
to one of the six line complexes. Also each plane is a null-plane of 6 points with
respect to one of the six line complexes. To construct such a configuration one
can start from any pointp1 = [a0, a1, a2, a3] ∈ P3 such that no coordinate is
equal to zero. Assume that our six apolar line complexes correspond to Klein
coordinates. The first line complex isp12 + p34 = e∗1 ∧ e∗2 + e∗3 ∧ e∗4. It trans-
forms the pointp1 to the plane−a1t0 + a0t1 + a3t2 − a2t3 = 0. Taking other
line complexes we get 5 more null-planes

a1t0 − a0t1 + a3t2 − a2t3 = 0,

a2t0 − a3t1 − a0t2 + a1t3 = 0,

a2t0 + a3t1 − a0t2 − a1t3 = 0,

a3t0 + a2t1 − a1t2 − a0t3 = 0,

−a3t0 + a2t1 − a1t2 + a0t3 = 0.

Next we take the orbit ofp1 with respect to the Heisenberg groupH2. It con-
sists of 16 points. Computing the null-planes of each point, we find altogether
16 planes forming with the 16 points a(166)-configurations. The following
table gives the coordinates of the 16 points.

a0, a1, a2, a3 a1, a0, a3, a2 a0,−a1, a2,−a3 a1,−a0, a3,−a2

a2, a3, a0, a1 a3, a2, a1, a0 a2,−a3, a0,−a1 a3,−a2, a1,−a0

a0, a1,−a2,−a3 a1, a0,−a3,−a2 a0,−a1,−a2, a3 a1,−a0,−a3, a2

a2, a3,−a0,−a1 a3, a2,−a1,−a0 a2,−a3,−a0, a1 a3,−a2,−a1, a0

A point (α, β, γ, δ) in this table is contained in 6 planesat0 + bt1 + ct2 +
dt3 = 0, where(a, b, c, d) is one of the following

(δ,−γ, β,−α), (δ, γ,−β,−α), (γ, δ,−α,−β),

(−γ, δ, α,−β), (−β, α, δ,−γ), (β,−α, δ,−γ).

Dually, a planeαt0 + βt1 + γt2 + δt3 = 0 contains 6 points[a, b, c, d], where
(a, b, c, d) is as above.
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One checks directly that the six null-points of each of the 16 planes of the
configuration lie on a conic. So we have a configuration of 16 conics inP3

each contains6 points of the configuration. Also observe that any two conics
intersect at 2 points.

There is a nice symbolic way to exhibit the(166)-configuration. After we
fix an order on a set of 6 mutually apolar linear line complexes, we will be
able to identify the groupH′2 with the groupE2 defined by 2-element sub-
sets of the set{1, 2, 3, 4, 5, 6} (see section5.2.2). A subset of two elements
{i, j} corresponds to the involution defined by a pair of apolar line complexes.
We take the ordered set of apolar linear line complexes defined by the Klein
coordinates. First we match the orbit of the point[a0, a1, a2, a3] from the ta-
ble from above with the first of the following tables. To find the 6 planes
which contain a point from the(ij)-th spot we look at the same spot in the
second of the following tables. Take the involutions in thei-th row andj-
th column but not at the(ij)-spot. These involutions are matched with the
planes containing the point. As always we identify a planea0t0 + a1t1 +
a2t2 + a3t3 with the point[a0, a1, a2, a3]. For example, the point∅ is con-
tained in 6 planes(15), (13), (26), (46), (24), (35). Conversely, take a plane
corresponding to the(ij)-th spot in the second table. The point contained in
this plane can be found in the same row and the same column in the first ta-
ble excluding the(ij)-th spot. For example, the plane∅ contains the points
(45), (34), (35), (16), (12), (26).

∅ (45) (34) (35)
(16) (23) (25) (24)
(12) (36) (56) (46)
(26) (13) (15) (14)

(14) (15) (13) (26)
(46) (56) (36) (12)
(24) (25) (23) (16)
(35) (34) (45) ∅

.

Another way to remember the rule of the incidence is as follows. A point cor-
responding to an involution(ab) is contained in a plane corresponding to an
involution (cd) if and only if

(ab) + (cd) + (24) ∈ {∅, (16), (26), (36), (46), (56)}.

Consider a regular mapP3 → P4 defined by the polynomials

t40 + t41 + t42 + t43, t
2
0t

2
3 + t21t

2
2, t

2
1t

2
3 + t20t

2
2, t

2
2t

2
3 + t20t

2
1, t0t1t2t3.

Observe that this map is invariant with respect to the action of the Heisenberg
groupH2. So, it defines a regular map

Φ : P3/H′2 → P4.
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Proposition 10.2.5 The mapΦ defines an isomorphism

P3/H2
∼= X,

whereX is a quartic hypersurface inP4 given by the equation

z2
0z2

4 − z0z1z2z3 + z2
1z2

2 + z2
2z2

3 + z2
1z2

3 − 4z2
4(z2

1 + z2
2 + z2

3) + z4
4 = 0. (10.18)

Proof Since the map is given by 5 polynomials of degree 4, the degree of
the map times the degree of the image must be equal to43. We know that its
degree must be multiple of 16, this implies that either the image isP3 or a
quartic hypersurface. Since the polynomials are linearly independent the first
case is impossible. A direct computation gives the equation of the image.

Note that the fixed-point set of each non-trivial element of the Heisenberg
groupH2 consists of two skew lines. For example, the involution

(12) : [a0, a1, a2, a3] 7→ [a0, a1,−a2,−a3]

fixes pointwise the linest0 = t1 = 0, and t2 = t3 = 0. Each line has a
stabilizer subgroup of index 2. Thus the images of the 30 lines form the set of
15 double lines onX. The stabilizer subgroup acts on the line as the dihedral
groupD4. It has 6 points with non-trivial stabilizer of order 2. Altogether we
have30 × 6 = 180 such points which form 15 orbits. These orbits and the
double lines form a(153)-configuration. The local equation ofX at one of
these orbits isv2 + xyz = 0.

We will prove later that the orbit spaceX = P3/H2 is isomorphic to the
Castelnuovo-Richmond quartic.

10.2.2 6 lines

We know that any 5 lines inP3, considered as points in the PlückerP5, are
contained in a linear line complex. In fact, in a unique linear complex when
the lines are linearly independent. A set of 6 lines is contained in a linear line
complex only if they are linearly dependent. The6 × 6 matrix of its Pl̈ucker
coordinates must have a nonzero determinant. An example of 6 dependent lines
is the set of lines intersecting a given line`. They are contained in the singular
line complex which coincides with the Schubert varietyΩ(`). We will give a
geometric characterization of a set of 6 linearly dependent lines which contains
a subset of 5 linearly independent lines.

Lemma 10.2.6 Let σ : P1 → P1 be an involution. Then its graph is an
irreducible curveΓg ⊂ P1×P1 of bidegree(1, 1) such thatι(Γg) = Γg, where
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ι is the automorphism(x, y) 7→ (y, x). Conversely, any curve onP1 × P1 with
these properties is equal to the graph of some involution.

Proof This is easy and left to the reader.

Corollary 10.2.7 Letσ, τ be two different involutions ofP1. Then there exists
a unique common orbit{x, y} with respect toσ andτ .

We will need the following result of M. Chasles.

Theorem 10.2.8(M. Chasles) LetQ be a nondegenerate quadric inP3 andσ
be an automorphism of order 2 ofQ which is the identity on one of the rulings.
Then the set of lines inP3 which are either contained in this ruling or intersect
an orbit of lines in the second ruling form a linear complex. Conversely, any
linear line complex is obtained in this way from some pair(Q, σ).

Proof Consider the setX of lines defined as in the first assertion of the Theo-
rem. Take a general planeΠ and a pointx ∈ Π. Consider the Schubert variety
Ω(x,Π). It is a line in the Pl̈ucker space. The plane interesectsQ along a conic
C. Each line fromΩ(x,Π) intersectsC at two points. This defines an involu-
tion onC. Each line from the second ruling intersectsC at one point. Hence
σ defines another involution onC. By Corollary10.2.7there is a unique com-
mon orbit. Thus there is a unique line fromΩ(x,Π) which belongs toX. Thus
X is a linear line complex.

Let `1, `2, `3 be any three skew lines in a line complexX = Cω. LetQ be
a quadric containing these lines. It is obviously nonsingular. The lines belong
to some ruling ofQ. Take any linè from the other ruling. Its polar linè′ =
iω(`) intersects̀ 1, `2, `3 (because it is skew tòor coincides with it). Hence
`′ lies onQ. Now we have an involution on the second ruling defined by the
polarity with respect toX. If m ∈ X and is not contained in the first ruling,
thenm intersect a linè from the second ruling. By Proposition10.2.3, it also
intersects̀ ′. This is the description ofX from the assertion of the Theorem.

Remark10.2.2 LetC be the curve inG(2, 4) parameterizing lines in a ruling
of a nonsingular quadricQ. Take a general linè in P3. ThenΩ(`) contains
two lines from each ruling, the ones which pass through the pointsQ∩ `. This
implies thatC is a conic in the Pl̈ucker embedding. A linear line complexX
either intersects each conic at two points and contains two or one line from the
ruling, or containsC and hence contains all lines from the ruling.

Lemma 10.2.9 Let ` be a line intersecting a nonsingular quadricQ in P3

at two different pointsx, y. Let Tx(Q) ∩ Q = `1 ∪ `2 and Ty(Q) ∩ Q =
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`′1 ∪ `′2, where`1, `′1 and`2, `′2 belong to the same ruling. Then the polar line
`⊥Q intersectsQ at the pointsx′ = `1 ∩ `′2 andy′ = `2 ∩ `′1.

Proof Each line onQ is self-polar to itself. ThusPx(Q) is the tangent plane
Tx(Q) and, similarly,Py(Q) = Ty(Q). This shows that̀ ⊥Q = Tx(Q) ∩
Ty(Q) = x′y′.

Lemma 10.2.10 let `1, `2, `3, `4 be four skew lines inP3. Suppose not all of
them are contained in a quadric. Then there are exactly 2 lines which intersect
all of them. These lines may coincide.

Proof This is of course well-known. It can be checked by using the Schubert
calculus sinceσ4

1 = # ∩4
i=1 Ω(`i) = 2. A better geometric proof can be given

as follows. LetQ be the quadric containing the first 3 lines. Then`4 intersects
Q at two pointsp, q which may coincide. The lines through these points be-
longing to the ruling not containing̀1, `2, `3 intersect̀ 1, . . . , `4. Conversely,
any line intersecting̀1, . . . , `4 is contained in this ruling (because it intersects
Q at 3 points) and passes through the points`4 ∩Q.

Theorem 10.2.11 Let (`1, . . . , `6) be a set of 6 lines and let(`′1, . . . , `
′
6) be

the set of polar lines with respect to some nonsingular quadricQ. Assume
that the first five lines are linearly independent in the Plücker space. Then
(`1, . . . , `6) belong to a nonsingular linear line complex if and only if there
exists a projective transformationT such thatT (`i) = `′i. This condition does
not depend on the choice ofQ.

Proof First let us check that this condition does not depend on a choice of
Q. For each linè let `⊥Q denote the polar line with respect toQ. Suppose
A(`) = `⊥Q for some projective transformationA. LetQ′ be another nonsin-
gular quadric. We have to show that`⊥Q′ = B(`) for some other projective
transformationB depending only onA but not on`. Let us identifyE with
Cn+1 and a quadricQ with a nonsingular symmetric matrix. ThenA(`) = `⊥Q
means thatxQAy = 0 for any vectorsx, y in `. We have to find a matrixB
such thatxQ′By = 0. We have

xQAy = xQ′(Q′−1QA)y = xQ′By,

whereB = Q′−1QA. This checks the claim.
Suppose the set(`1, . . . , `6) is projectively equivalent to(`′1, . . . , `

′
6), where

`′i are polar lines with respect to some quadricQ. ReplacingQ with a quadric
containing the first 3 lines̀1, `2, `3, we may assume that`′i = `i, i = 1, 2, 3.
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We identifyQ with P1 × P1. If `j ∩ Q = (aj , bj), (a′j , b
′
j) for j = 4, 5, 6,

then, by Lemma10.2.9, `′j ∩Q = (aj , b′j), (a
′
j , bj). Supposè′i = A(`i). Then

A fixes 3 lines in the first ruling hence sendsQ to itself. It is also identical
on the first ruling. It acts on the second ruling by switching the coordinates
(bi, b′j), j = 4, 5, 6. ThusA2 has 3 fixed points onP1, henceA2 is the iden-
tity. This shows thatA = σ as in Chasles’ Theorem10.2.8. Hence the lines
`i, `

′
i, i = 1, . . . , 6, belong to the linear complex.

Conversely, assumè1, . . . , `6 belong to a nonsingular linear line complex
X = Cω. Applying Lemma10.2.10, we find two lines`, `′ which intersect
`1, `2, `3, `4 (two transversals). By Proposition10.2.3, the polar line`′ =
iω(`) intersects̀ 1, `2, `3, `4. Hence it must coincide with either` or `′. The
first case is impossible. In fact, if̀ = `′, then` ∈ X. The pencil of lines
through` ∩ `1 in the plane〈`, `1〉 spanned bỳ , `1 is contained inX. Sim-
ilarly, the lineΩ(` ∩ `2, ``2) is contained inX. Let Π be the plane of lines
spanned by these two lines inG. It is contained inX. ThusΠ cuts out inG a
pair of lines. ThusX is singular at the point of intersections of these two lines.
A contradiction.

Thus we see that̀, `′ is a pair of polar lines. Now the pair of transversals
τ, τ ′ = iω(τ) of `1, `2, `3, `5 is also a pair of polar lines. Consider the quadric
Q spanned bỳ1, `2, `3. The four transversals are the four lines from the sec-
ond ruling ofQ. We can always find an involutionσ onQ which preserves the
first ruling and such thatσ(`) = `′, σ(n) = n′. Consider the linear line com-
plexX ′ defined by the pair(Q, σ). Since`1, . . . , `5 belong toX, and any line
complex is determined by 5 linearly independent lines, we have the equality
X = X ′. Thus`6 intersectsQ at a pair of lines in the second ruling which are
in the involutionσ. But σ is defined by the polarity with respect toX (since
`1, `2, `3 ∈ H and the two involutions share two orbits corresponding to the
pairs(l, l′), (τ, τ ′). This implies(`1, . . . , `6) = σ(`′1, . . . , `

′
6), where`′i = `⊥i .

Corollary 10.2.12 Let `1, . . . , `6 be 6 skew lines on a nonsingular cubic
surfaceS. Then they are linearly independent in the Plücker space.

Proof We first check that any 5 lines among the six lines are linearly inde-
pendent. Assume that`1, . . . , `5 are linearly dependent. Then one of them, say
`5, lies in the span of̀1, `2, `3, `4. Let (`′1, . . . , `

′
6) is the set of six skew lines

which together with(`1, . . . , `6) form a double-six. Theǹ1, `2, `3, `4 lie in
the linear line complexΩ(`′5), hence`5 lies in it too. But this is impossible
becausè5 is skew tò ′

5.
We know that there exists the unique quadricQ such that̀ ′i are polar to

Q with respect toQ (the Schur quadric). But(`′1, . . . , `
′
6) is not projectively
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equivalent to(`1, . . . , `6). Otherwise,S and its imageS′ under the projective
transformationT will have 6 common skew lines. It will also have common
transversals of each subset of 4. Thus the degree of the intersection curve is
larger than 9. This shows that the cubic surfacesS andS′ coincide andT is an
automorphism ofS. Its action on Pic(S) is a reflection with respect to the root
corresponding to the double-six. It follows from Theorem 2.5.15 thatS does
not admit such an automorphism.

Remark10.2.3 The group SL(4) acts diagonally on the Cartesian product
G6. Consider the sheafL on G6 defined as the tensor product of the sheaves
p∗iOG(1), wherepi : G6 → G is the i-th projection. The group SL(4) acts
naturally in the space of global sections ofL and its tensor powers. Let

R =
∞⊕
i=0

H0(G6,Li)SL(4).

This is a graded algebra of finite type and its projective spectrum Proj(R) is the
GIT-quotientG6//SL(4). The varietyG6 has an open invariant Zariski subset
U which is mapped toG6//SL(4) with fibres equal to SL(4)-orbits. This im-
plies thatG6//SL(4) is an irreducible variety of dimension 9. Given6 ordered
general lines inP3 their Pl̈ucker coordinates make a6 × 6 matrix. Its deter-
minant can be considered as a section from the first graded pieceR1 of R.
The locus of zeros of this section is a closed subvariety ofG6 whose general
point is a 6-tuple of lines contained in a linear line complex. The image of this
locus inG6//SL(4) is a hypersurfaceF . Now the duality of lines by means
of a nondegenerate quadric defines an involution onG6. Since it does not de-
pend on the choice of a quadric up to projective equivalence, the involution
descends to an involution ofG6//SL(4). The fixed points of this involution is
the hypersurfaceF . One can show that the quotient by the duality involution is
an open subset of a certain explicitly described 9-dimensional toric varietyX

(see [199]).

Finally, observe that a nonsingular cubic surface together with a choice of
its geometric marking defines a double-six, which is an orbit of the duality
involution inG6//SL(4) and hence a unique point inX which does not belong
to the branch locus of the double coverG6//SL(4) → X. Thus we see that
the 4-dimensional moduli space of geometrically marked nonsingular cubic
surfaces embeds in the 9-dimensional toric varietyX.
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10.2.3 Linear systems of linear line complexes

LetW ⊂
∧2

E∨ be a linear subspace of dimensionr+1. After projectivization
and restriction toG(2, E) ∼= G1(Pn), it defines anr-dimensional linear system
|W | of linear line complexes. Let

CW = ∩ω∈WCω ⊂ G(2, E).

be the base scheme of|W |. It is a subvariety ofG(2, E) of dimension2n −
3− r. Its canonical class is given by the formula

ωCW
∼= OCW

(r − n). (10.19)

In particular, it is a Fano variety ifr < n, a Calabi-Yau variety ifr = n and a
variety of general type ifr > n.

We also define thecenter varietySW

SW =
⋃
ω∈W

Sω.

It is also called thesingular varietyof W .
For anyx = [v] ∈ SW , there existsω ∈ W such thatω(v, v′) = 0 for all

v′ ∈ E, or, equivalently, the linè = xy is contained inCω for all y. This
implies that the codimension ofΩ(x)∩ CW in Ω(x) is≤ r, less than expected
numberr+ 1. Conversely, sinceΩ(x) is irreducible, if the codimension of the
intersection≤ r, thenΩ(x) must be contained in someCω, and hencex ∈ Sω.
Thus we have proved the following.

Proposition 10.2.13

SW = {x ∈ |E| : dim Ω(x) ∩ CW ≥ n− r − 1}

= {x ∈ |E| : Ω(x) ⊂ Cω for someω ∈W}.

For any linear subspaceΛ in |E| we can define thepolar subspacewith
respect to|W | by

iW (Λ) =
⋂
ω∈W

iω(Λ).

Sincex ∈ iω(x) for any linear line complexCω, we obtain that, for any
x ∈ |E|,

x ∈ iW (x).

It is easy to see that

dim iW (x) = n− r + dim |{ω ∈W : x ∈ Sω}|. (10.20)

Now we are ready to give examples.



590 Geometry of Lines

Example10.2.1 A pencil |W | of linear line complexes inP3 = |E| is defined
by a line in the Pl̈ucker spaceP5 = |

∧2
E∨|which intersects the Klein quadric

G(2, E∨) at two points or one point with multiplicity 2. The intersection points
correspond to special linear line complexes intersecting a given line. Thus,
the base locus of a general pencil of linear line complexes consists of lines
intersecting two skew lines. It is a nonsingular congruence of lines inG1(P3)
of order and degree equal to 1. It is isomorphic to a nonsingular quadric inP3.
It may degenerate to the union of anα-plane and aβ-plane if the two lines are
coplanar or to a singular quadric if the two lines coincide.

Example10.2.2 Assumer = 1 andn = 2k and |W | does not intersect
the set of linear line complexes with corank> 1 (the variety of such linear
line complexes is of codimension3 in |

∧2
E∨|). Then we have a map|W | ∼=

P1 → P2k which assigns to[ω] ∈ |W | the centerSω of Cω. The map is given
by the pfaffians of the principal minors of a skew-symmetric matrix of size
(n + 1) × (n + 1), so the center varietySW of |W | is a rational curveRk of
degreek in P2k. By Proposition10.2.13any secant line ofRk is contained in
CW . For example, takingn = 4, we obtain that the center variety is a conic in
a plane contained inCW .

Now assume thatr = 2. We obtain thatSW is a projection of the Veronese
surfaceV2

k and the variety of trisecant lines of the surface is contained inCW .
We have seen it already in the casek = 2 (see Chapter 2, 2.1.3).

Example10.2.3 Let r = 3 andn = 4 so we have a web|W | of linear line
complexes inP9 = |

∧2
E∨|. We assume that|W | is general enough so that

it intersects the Grassmann varietyG∗ = G(2, E∨) in finitely many points.
We know that the degree ofG(2, 5) is equal to 5, thus|W | intersectsG∗ at 5
points. Consider the rational map|W | = P3 99K SW ⊂ P4 which assigns to
[ω] ∈ |W | the center ofCω. As in the previous examples, the map is given by
pfaffians of skew-symmetric matrices of size4×4. They all vanish at the set of
5 pointsp1, . . . , p5. The preimage of a general line inP4 is equal to the residual
set of intersections of three quadrics, and hence consists of three points. Thus
the map is birational map onto a cubic hypersurface. Any line joining two of
the 5 points is blown down to a singular point of the cubic hypersurface. Thus
the cubic is isomorphic to the Segre cubic primal. Observe now thatCW is a
del Pezzo surface of degree 5 and the singular variety of|W | is equal to the
projection of the incidence variety{(x, `) ∈ P4 × CW : x ∈ `} to P4. It
coincides with the center varietySW .

One can see the center varietySW of |W | as the degeneracy locus of a map
of rank 3 vector bundles over|E|. First, we identifyH0(|E|,Ω1

|E|(2)) with
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E∨. To do this, we use the dual Euler sequence twisted byO|E|(2)

0→ Ω1
|E|(2)→ E∨ ⊗O|E|(1)→ O|E|(2)→ 0. (10.21)

Passing to the global sections, we obtain an isomorphism

H0(|E|,Ω1
|E|(2)) ∼= Ker(E∨ ⊗ E∨ → S2E∨) ∼=

2∧
E∨.

The composition of the inclusion mapW →
∧2

E∨ and the evaluation map∧2
E∨ → Ω1

|E|(2) defines a morphism of vector bundles

σ : W ⊗O|E| → Ω1
|E|(2).

The degeneracy locus of this morphism consists of pointsx ∈ |E| such that the
compositionE ⊗O|E|(−1) → T 1

|E|(−2) and the dual mapσ∨ : T 1
|E|(−2) →

W∨ ⊗ O|E | is not of full rank atx. For anyx = [v] ∈ |E|, the map of fibres
φ(x) sends a vectorv′ to the linear function onW defined byω 7→ ω(v, v′).
This linear function is equal to zero if and only if the line[v][v′] intersectsCW .
Applying Proposition10.2.13, we obtain that the degeneracy locus of point
x = [v] for which the rank ofφ(x) is smaller thanr + 1 must be equal toSW .

If we choose coordinates and take a basis ofW defined byr + 1 skew-
symmetric bilinear formsωk =

∑
a
(k)
ij dti ∧ dtj , then the matrix is

∑n
s=0 a

(1)
1,sts . . .

∑n
s=0 a

(1)
n,sts

...
...

...∑n
s=0 a

(r+1)
1,s ts . . .

∑n
s=0 a

(r+1)
n,s ts

 ,

whereakij = −akji.
The expected dimension of the degeneracy locus is equal ton− r. Assume

that this is the case. It follows from Example 14.3.2 in [253] that

deg SW = deg cn−r(Ω1
|E|(2)) =

n−r∑
i=0

(−1)i
(
n− i
r

)
. (10.22)

Example10.2.4 Assumen + 1 = 2k. If ω ∈ W is nondegenerate, then
Sω = ∅. Otherwise,dim Sω ≥ 1. Thus the varietiesSW is ruled by linear
subspaces. For a generalW of dimension1 < r < n, the dimensions of these
subspaces is equal to1 and each point inSW is contained in a unique lineSω.
In other words,SW is a scroll with 1-dimensional generators parameterized by
the subvarietyB of |W | of degenerateω’s. ThusB is equal to the intersection
of |W | with a pfaffian hypersurface of degreek in |Λ2E∨|. The scrollsSW are
calledPalatini scrolls. If n = 3, the only Palatini scroll is a quadric inP3 and
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B is a conic. InP5 we get a 3-dimensional Palatini scroll of degree 7 defined
by a web|W | of linear line complexes. The family of generatorsB is a cubic
surface in|W |. We refer to [459] for the study of this scroll. There is also a
Palatini ruled surface of degree 6 defined by a net of linear line complexes.
Its generators are parameterized by a plane cubic curve. If we takeW with
dimW = 5, we get a quartic hypersurface inP5.

10.3 Quadratic line complexes

10.3.1 Generalities

Recall that a quadratic line complexC is the intersection of the Grassmannian
G = G(2, E) ⊂ |

∧2
E|with a quadric hypersurfaceQ. SinceωG ∼= OG(−n−

1), by the adjunction formula

ωC
∼= OC(1− n).

If C is nonsingular, i.e. the intersection is transversal, we obtain thatC is a Fano
variety of indexn− 1.

Consider the incidence varietyZC together with its natural projectionspC :
ZC → Pn and qC : ZC → K. For each pointx ∈ Pn the fibre ofpC is
isomorphic to the intersection of the Schubert varietyΩ(x) with Q. We know
that Ω(x) is isomorphic toPn−1 embedded in|

∧2
E| as a linear subspace.

Thus the fibre is isomorphic to a quadric inPn−1. This shows thatC admits a
structure of aquadric bundle, i.e. a fibration with fibres isomorphic to a quadric
hypersurface. The important invariant of a quadric bundle is itsdiscriminant
locus. This is the set of points of the base of the fibration over which the fibre
is a singular quadric or the whole space. In our case we have the following
classical definition.

Definition 10.3.1 Thesingular variety∆ of a quadratic line complex is the
set of pointsx ∈ Pn such thatΩ(x)∩Q is a singular quadric inΩ(x) = Pn−1

or Ω(x) ⊂ Q.

We will need the following fact from linear algebra which is rarely found in
modern text-books on the subject.

Lemma 10.3.1 LetA = (aij), B = (bij) be two matrices of sizesk×m and
m× k with k ≤ m. Let |AI |, |BI |, I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ m,

be maximal minors ofA andB. For anym×m-matrixG = (gij)

|A ·G ·B| =
∑
I,J

gIJ |AI ||BJ |,
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wheregIJ = gi1j1 · · · gikjk .

Proof Consider the product of the following block-matrices(
A ·B A

0mk Im

)
·
(
Ik 0km
−B Im

)
=
(

0kk A

−B Im

)
, (10.23)

where0ab is the zero matrix of sizea × b andIa is the identity matrix of size
a × a. The determinant of the first matrix is equal to|A · B|, the determinant
of the second matrix is equal to 1. Applying the Laplace formula, we find that
the determinant of the product is equal to

∑
|AI ||BI |. Now we apply (10.23),

replacingA withA ·G,. Write anj-th column ofA ·G as the sum
∑m
i=1 gijAi.

Then

|(A ·G)j1,...,jk | =
∑

1≤i1<...<ik≤m

gi1j1gi2j2 · · · gikjk |Ai1,...,ik |.

This proves the assertion.

Suppose we have a bilinear formb : E × E → K on a vector spaceE over
a fieldK. LetG =

(
b(ei, ej)

)
be the matrix of the bilinear form with respect

to a basise1, . . . , em. Let L be a subspace ofE with basisf1, . . . , fk. Then
the matrixGL =

(
b(fi, fj)

)
is equal to the producttA ·G ·A, where thefj =∑

aijei. It follows from the previous Lemma that|GL| =
∑
I,J gIJ |AI ||AJ |.

If we extendb to
∧k

E by the formula

b(v1, . . . , vk;w1, . . . , wk) = det
(
b(vi, wj)

)
,

then the previous formula gives an explicit expression forb(f1 ∧ . . .∧ fk, f1 ∧
. . . ∧ fk). If E = Rn and we takeb to be the Euclidean inner-product, we get
the well-known formula for the area of the parallelogram spanned by vectors
f1, . . . , fk in terms of the sum of squares of maximal minors of the matrix
with columns equal tofj . If m = 3 this is the formula for the length of the
cross-product of two vectors.

Proposition 10.3.2 ∆ is a hypersurface of degree2(n− 1).

Proof Consider the map

i : |E| → |
2∧
E|, x 7→ Ω(x). (10.24)

If x = [v0], the linear subspace of
∧2

E corresponding toΩ(x) is the image of
E in

∧2
E under the mapv 7→ v ∧ v0. This is an-dimensional subspaceΛ(x)

of
∧2

E. Hence it defines a point in the Grassmann varietyG(n,
∧2

E). If we
write v0 =

∑n
i=0 aiei, where we assume thatan 6= 0, thenΛ(x) is spanned by
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the vectorsei∧v0 =
∑
j 6=i ajei∧ej , i = 0, . . . , n. Thus the rows of the matrix

of Plücker coordinates of the basis are linear functions in coordinates ofv0. Its
maximal minors are polynomials of ordern+1. Observe now that each(in)-th
column containsan in thei-th row and has zero elsewhere. This easily implies
that all maximal minors are divisible byan. Thus the Pl̈ucker coordinates of
Λ(x) are polynomials of degreen − 1 in coordinates ofv0. We see now that
the mapi is given by a linear system of divisors of degreen− 1. Fix a quadric
Q in |

∧2
E| which does not vanish onG. For anyn − 1-dimensional linear

subspaceL of |
∧2

E|, the intersection ofQ with L is either a quadric or the
wholeL. Let us consider the locusD of L’s such that this intersection is a
singular quadric. We claim that this is a hypersurface of degree2.

Let b : E × E be a nondegenerate symmetric bilinear form on a vector
spaceE of dimensionn + 1. The restriction ofb to a linear subspaceL ⊂
E with a basis(f1, . . . , fk) is a degenerate bilinear form if and only if the
determinant of the matrix

(
b(fi, fj)

)
is equal to zero. If we writefi =

∑
aijej

in terms of a basis inE, we see that this condition is polynomial of degree2k
in coefficientsaij . By the previous Lemma, this polynomial can be written as
a quadratic polynomial in maximal minors of the matrix(aij). Applying this
to our situation we interpret the maximal minors as the Plücker coordinates of
L and obtain thatD is a quadric hypersurface.

It remains to use that∆ = i−1(D), wherei is given by polynomials of
degreen.

Let

∆k = {x ∈ ∆ : corankQ ∩ Ω(x) ≥ k}.

These are closed subvarieties of∆k.
Let

∆̃ = {(x, `) ∈ ZC : rankdpC
(x, `) < n}. (10.25)

In other words,̃∆ is the locus of points inZC where the projectionpC : ZC →
Pn is not smooth. This set admits a structure of a closed subscheme ofZC

defined locally by vanishing of the maximal minors of the Jacobian matrix of
the mappC. Globally, we have the standard exact sequence of the sheaves of
differentials

0→ p∗CΩ1
Pn

δ−→ ΩZC
→ Ω1

ZC/Pn → 0, (10.26)

and the support of̃∆ is equal to the set of points whereΩ1
ZC/Pn is not locally

free. Locally the mapδ is given by a matrix of sizen × (2n − 2). Thus∆̃ is
given locally byn× n minors of this matrix and is of dimensionn.

Tensoring (7.31) with the residue fieldκ(p) at a pointp = (x, `) ∈ ZC,
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we see that̃∆ is equal to the degeneracy locus of points where the mapδp :
(p∗CΩ1

Pn)p → (Ω1
ZC

)p is not injective. UsingThom-Porteous formula(see

[253]), we can express the class of∆̃ in H∗(ZC,Z).

Definition 10.3.2 Let C be a line complex of degreed in G1(Pn). A line `
in C is calledsingularif ` is a singular point of the intersectionΩ(x) ∩ C for
somex ∈ Pn or any point onΩ(x) if Ω(x) ⊂ C. The locusS(C) of singular
lines is called thesingular varietyof C.

Proposition 10.3.3 Assumen + 1 = 2k and C is nonsingular. Then the
singular varietyS(C) of C is equal to the intersection ofC with a hypersurface
of degreek(d− 1).

Proof Let ` be a singular line ofC = G ∩ X, whereX is a smooth hy-
persurface of degreed. We haveΩ(x) ⊂ T`(C) = T`(G) ∩ T`(X). Thus
Ω(x) ⊂ T`(X)∩G. By Proposition10.2.3, the linear line complexT`(X)∩G
consists of lines intersecting a line and its polar(n− 2)-plane unlessC is sin-
gular. SinceΩ(x) is not contained in the Schubert variety of lines intersecting
a codimension 2 linear subspace, we obtain thatC is singular. This shows that
the singular varietyS(C) of C consists of lines inΩ such thatT`(X) coincides
with a tangent hyperplane ofG. In other words,

S(C) = γ−1(G∨), (10.27)

whereγ : C → X∨ is the restriction of the Gauss mapX → X∨ to C. Since
C is nonsingular,X is nonsingular at any point ofX ∩G, and henceγ is well-
defined. It remains to use thatγ is given by polynomials of degreed − 1, the
partials ofX.

Letn = 3 and letC be a line complex defined by a hypersurfaceX = V (Φ)
of degreed in the Pl̈ucker space. The equation of the singular surfaceS(C)
in Plücker coordinates is easy to find. LetΦij = ∂Φ

∂pij
(l), where[l] = `. The

tangent hyperplane toX at the point̀ is given by the equation∑
1≤i<j≤4

Φij(l)pij = 0.

Since the dual quadricG∗ is given by the same equation asG, we obtain the
equation ofS(C) in G:

Φ12Φ34 − Φ13Φ24 + Φ14Φ23 = 0.
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10.3.2 Intersection of 2 quadrics

Let Q1, Q2 be two quadrics inPn andX = Q1 ∩ Q2. We assume thatX is
nonsingular. It follows from the proof of Proposition8.6.2that this is equiv-
alent to the condition that the pencilP of quadrics spanned byQ1, Q2 has
exactlyn + 1 singular quadrics of corank 1. This set can be identified with a
set ofn+ 1 pointsp1, . . . , pn+1 in P1 ∼= P.

If n = 2g + 1, we get the associated nonsingular hyperelliptic curveC of
genusg, the double cover ofP1 branched atp1, . . . , p2g+2.

The varietyX is a Fano variety of degree 4 inPn, n ≥ 3, of dimensionn−2.
Its canonical class is equal to−(n− 3)h, whereh is the class of a hyperplane
section. Whenn = 4 it is a quartic del Pezzo surface.

Theorem 10.3.4(A. Weil) Assumen = 2g + 1. LetF (X) be the variety of
g−1-dimensional linear subspaces contained inX. ThenF (X) is isomorphic
to the Jacobian variety of the curveC and also to the intermediate Jacobian
ofX.

Proof We will restrict ourselves only with the caseg = 2 leaving the general
case to the reader. For each` ∈ F (X) consider the projection mapp` : X ′ =
X \ ` → P3. For any pointx ∈ X not on`, the fibre overp`(x) is equal to
the intersection of the planèx = 〈`, x〉 withX ′. The intersection of this plane
with a quadricQ from the pencilP is a conic containing̀ and another line
`′. If we take two nonsingular generators ofP, we find that the fibre is the
intersection of two lines or the wholè′ ∈ F (X) intersecting̀ . In the latter
case, all points oǹ′ \ ` belong to the same fibre. Since all quadrics from the
pencil intersect the plane〈`, `′〉 along the same conic, there exists a unique
quadricQ`′ from the pencil which contains〈`, `′〉. It belongs to one of the two
rulings of planes onQ`′ (or a unique family if the quadric is singular). Note
that each quadric from the pencil contains at most one plane in each ruling
which contains̀ (two members of the same ruling intersect along a subspace
of even codimension). Thus we can identify the following sets:

• pairs(Q, r), whereQ ∈ P, r is a ruling of planes inQ,
• B = {`′ ∈ F (X) : ` ∩ `′ 6= ∅}.

If we identify P3 with the set of planes ofP3 containing̀ , then the latter set is
a subset ofP3. LetD be the union of̀ ′’s fromB. The projection mapp` maps
D toB with fibres isomorphic to〈`, `′〉 \ {`}.

Extendingp` to a morphismf : X̄ → P3, whereX̄ is the blow-up ofX
with center at̀ , we obtain thatf is an isomorphism outsideB and the fibres
over points inB are isomorphic toP1. Observe thatX̄ is contained in the
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blow-up P̄5 of P5 along`. The projectionf is the restriction of the projection
P̄5 → P3 which is a projective bundle of relative dimension2. It is known how
the intermediate Jacobian behaves under blowing up of a smooth subvariety.
From this it follows that Jac(X) ∼= Jac(B).

The crucial observation now is thatB is isomorphic to our hyperelliptic
curveC. In fact, consider the incidence variety

X = {(Q, `) ∈ P ×G(2, 6) : ` ⊂ Q}.

Its projection toP has fibre overQ isomorphic to the rulings of planes inQ. It
consists of two connected components outside of the set of singular quadrics
and one connected component over the set of singular quadrics. Taking the
Stein factorization, we get a double cover ofP = P1 branched along6 points.
It is isomorphic toC.

Now the projection mapp` maps each linè′ intersecting̀ to a point inP3.
We will identify the set of these points with the curveB. A general plane in
P3 intersectsB at d = degB points. The preimage of the plane under the
projectionp` : X 99K P3 is isomorphic to the complete intersection of 2
quadrics inP4. It is a del Pezzo surface of degree 4, hence it is obtained by
blowing up 5 points inP2. Thusd = 5. An easy argument using Riemann-
Roch shows thatB lies on a unique quadricQ ⊂ P3. Its preimage under the
projectionX̄ → P3 is the exceptional divisorE of the blow-upX̄ → X. One
can show that the normal bundle of` inX is trivial, soE ∼= P1×P1 and hence
Q is a nonsingular quadric. Thus(X, `) defines a biregular modelB ⊂ P3

of C such thatB is of degree5 and lies on a unique nonsingular quadricQ.
One can show that the latter condition is equivalent to that the invertible sheaf
OB(1)⊗ ω−2

B is not effective. It is easy to see thatB is of bidegree(2, 3).
Let us construct an isomorphism between Jac(C) andF (X). Recall that

Jac(C) is birationally isomorphic to the symmetric squareC(2) of the curve
C. The canonical mapC(2) → Pic2(C) defined byx + y 7→ [x + y] is an
isomorphism over the complement of one point represented by the canonical
class ofC. Its fibre overKC is the linear system|KC |. Also note that Pic2(C)
is canonically identified with Jac(X) by sending a divisor classξ of degree 2
to the classξ −KC .

Each linè ′ skew to` is projected to a secant line ofB. In fact,〈`, `′〉∩X is a
quartic curve in the plane〈`, `′〉 ∼= P3 that contains two skew line components.
The residual part is the union of two skew linesm,m′ intersecting both̀ and
`′. Thus`′ is projected to the secant line joining two points onC which are the
projections of the linesm,m′. If m = m′, then`′ is projected to a tangent line
of B. Thus the open subset of lines inX skew to` is mapped bijectively to an
open subset ofC(2) represented by “honest” secants ofC, i.e. secants which
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are not 3-secants. Each line`′ ∈ F (X) \ {`} intersecting̀ is projected to a
point b of B. The linef of the ruling ofQ intersectingB with multiplicity 3
and passing through a pointb ∈ B defines a positive divisorD of degree 2
such thatf ∩ B = b + D. The divisor class[D] ∈ Pic2(C) is assigned tò′.
So we see that each trisecant line ofB (they are necessary lie onQ) defines
three lines passing through the same point of`. By taking a section ofX by
a hyperplane tangent toX at a pointx ∈ X, we see thatx is contained in
4 lines (taken with some multiplicity). Finally, the linèitself corresponds to
KC . This establishes an isomorphism between Pic2(C) andF (X).

Note that we have proved thatX is a rational variety by constructing an
explicit rational map fromX to P3. This map becomes a regular map after we
blow up a line` onX. The image of the exceptional divisor is a quadric. This
map blows down the union of lines onX that intersect̀ to a genus 2 curveC
of degree 5 lying on the quadric. The inverse mapP3 99K X ⊂ P5 is given
by the linear system of cubic hypersurfaces through the curveC. It becomes a
regular map after we blow-upC. Since any trisecant line ofC defined by one
of the rulings of the quadric blows down to a point, the image of the proper
transform of the quadric is the linèonX. The exceptional divisor is mapped
to the union of lines onX intersecting̀ .

10.3.3 Kummer surfaces

We consider the casen = 3. The quadratic line complexC is the intersection
of two quadricsG ∩ Q. We shall assume thatC is nonsingular. LetC be the
associated hyperelliptic curve of genus 2.

First let us look at the singular surface∆ of C. By Proposition10.3.2, it is
a quartic surface. For any pointx ∈ ∆, the conicCx = C ∩ Ω(x) is the union
of 2 lines. A line inG is always equal to a one-dimensional Schubert variety.
In fact,G is a nonsingular quadric of dimension 4, and hence contains two 3-
dimensional families of planes. These are the families realized by the Schubert
planesΩ(x) andΩ(Π). Hence a line must be a pencil in one of these planes,
which shows thatCx = Ω(x,Π1) ∪ Ω(x,Π2) for some planesΠ1,Π2 in P3.
Any line in C is equal to someΩ(x,A) and hence is equal to an irreducible
component of the conicCx. Thus we see that any line inC is realized as an
irreducible component of a conicCx, x ∈ C. It follows from Theorem10.3.4
that the variety of linesF (C) in C is isomorphic to the Jacobian variety ofC.

Proposition 10.3.5 The varietyF (C) of lines inC is a double cover of the
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quartic surface∆. The cover ramifies over the set∆1 of points such that the
conicCx = p−1

C (x) is a double line.

Let x ∈ ∆ andCx = Ω(x,Π1) ∪ Ω(x,Π2). A singular point ofCx repre-
senting a line inC is called asingular lineof C. If x 6∈ ∆1, thenCx has only
one singular point equal toΩ(x,Π1) ∩ Ω(x,Π2). Otherwise, it has the whole
line of them.

Let S = S(C) be the singular surface ofC. By Proposition10.3.3, S is a
complete intersection of three quadrics.

By adjunction formula, we obtainωS ∼= OS . The assertion thatS is nonsin-
gular follows from its explicit equations (10.28) given below. ThusS is a K3
surface of degree 8.

Theorem 10.3.6 The set of pairs(x, `), where` is a singular line containing
x is isomorphic to the varietỹ∆ ⊂ ZC, the locus of points where the morphism
pC : ZC → P3 is not smooth. It is a nonsingular surface with trivial canonical
class. The projectionpC : ∆̃ → ∆ is a resolution of singularities. The projec-
tion qC : ∆̃→ S is an isomorphism. The surfaceS is equal toC∩R, whereR
is a quadric inP5.

Proof The first assertion is obvious since the fibres ofpC : ZC → P3 are
isomorphic to the conicsCx. To see thatqC is one-to-one we have to check
that a singular linè cannot be a singular point of two different fibresCx and
Cy. The planesΩ(x) andΩ(y) intersect at one point̀ = xy and hence span
P4. If Q is tangent to both planes at the same point`, then the two planes
are contained inT`(Q) ∩ T`(G), henceC = Q ∩ G is singular at̀ . This
contradicts our assumption onC. Thus the projectioñ∆ → S is one-to-one.
Since the fibres ofqC : ZC → C are projective lines, this easily implies that the
restriction ofqC to ∆̃ is an isomorphism ontoS.

Theorem 10.3.7 The set∆1 consists of 16 points, each point is an ordinary
double point of the singular surface∆.

Proof LetA = F (C) be the variety of lines inC. We know that it is a double
cover of∆ ramified over the set∆1. Since∆ is isomorphic toS outside∆1,
we see thatA admits an involution with a finite setF of isolated fixed points
such that the quotient is birationally isomorphic to a K3 surface. The open set
A \ F is an unramified double cover of the complement ofs = #F projective
lines in the K3 surfaceS. For any varietyZ we denote byec(Z) the topological
Euler characteristic with compact support. By the additivity property ofec, we
getec(A−S) = e(A)− s = 2(es(S)− 2s) = 48− 4s. Thuse(A) = 48− 3s.
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SinceA ∼= Jac(C), we havee(A) = 0. This givess = 16. Thus∆ has 16
singular points. Each point is resolved by a(−2)-curve onS. This implies that
each singular point is a rational double point of typeA1, i.e. an ordinary double
point.

Definition 10.3.3 For any abelian varietyA of dimensiong the quotient of
A by the involutiona 7→ −a is denoted byKum(A) and is called theKummer
varietyofA.

Note that Kum(A) has22g singular point locally isomorphic to the cone over
the Veronese varietyvg(Pg−1). In the caseg = 2 we have 16 ordinary double
points. It is easy to see that any involution with this property must coincide
with the negation involution (look at its action in the tangent space, and use
thatA is a complex torus). This gives

Corollary 10.3.8 The singular surface ofC is isomorphic to the Kummer
surface of the Jacobian variety of the hyperelliptic curveC of genus 2.

The Kummer variety of a Jacobian variety of a nonsingular curve is called
jacobian Kummer variety.

Proposition 10.3.9 The surfaceS contains two sets of 16 disjoint lines.

Proof The first set is formed by the linesqC(p−1
C (zi)), wherez1, . . . , z16 are

the singular points of the singular surface. The other set comes from the dual
picture. We can consider the dual incidence variety

ŽC = {(Π, `) ∈ (P3)∨ × C : ` ⊂ Π}.

The fibres of the projection to(P3)∨ are conics. Again we define the singular
surface∆̌ as the locus of planes such that the fibre is the union of lines. A line
in the fibre is a pencil of lines in the plane. These pencils form the set of lines
in C. The lines are common to two pencils if lines are singular lines ofC. Thus
we see that the surfaceS can be defined in two ways using the incidenceZC

or ŽC. As before we prove thať∆ is the quotient of the abelian surfaceA and
is isomorphic to the Kummer surface ofC. The lines inS corresponding to
singular points of̌∆ is the second set of 16 lines.

Choosing six mutually apolar linear line complexes we write the equation of
the Klein quadric as a sum of squares. The condition of nondegeneracy allows
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one to reduce the quadricQ to the diagonal form in these coordinates. Thus
the equation of the quadratic line complex can be written in the form

5∑
i=0

t2i =
5∑
i=0

ait
2
i = 0. (10.28)

SinceC is nonsingular,ai 6= aj , i 6= j. The parameters in the pencil corre-
sponding to 6 singular quadrics are(t0, t1) = (−a0, 1), i = 0, . . . , 5. Thus the
hyperelliptic curveC has the equation

t22 = (t1 + a0t0) · · · (t1 + a5t0),

which has to be considered as an equation of degree6 in the weighted plane
P(1, 1, 3).

To find the equation of the singular surfaceS of C, we apply (10.27). The
dual of the quadricV (

∑
ait

2
i ) is the quadricV (

∑
a−1
i u2

i ). Its preimage under
the Gauss map defined by the quadricV (

∑
t2i ) is the quadricV (

∑
a−1
i x2

i ).
After scalingti 7→ aiti, we obtain that the surfaceS, a nonsingular model, of
the Kummer surface, is given by the equations

5∑
i=0

t2i =
5∑
i=0

ait
2
i =

5∑
i=0

a2
i t

2
i = 0. (10.29)

We know that the surface given by the above equations contains 32 lines.
Consider 6 lines̀i in P2 given by the equations

X0 + aiX1 + a2
iX2 = 0, i = 0, . . . , 5. (10.30)

Since the points(1, ai, a2
i ) lie on the conicX0X2 − X2

1 = 0, the lines̀ i are
tangent to the conic.

Lemma 10.3.10 LetX ⊂ P2k−1 be a variety given by complete intersection
of k quadrics

qi =
2k−1∑
j=0

aijt
2
j = 0, i = 1, . . . , k.

Consider the groupG of projective transformations ofP2k−1 that consists of
transformations

[t0, . . . , t2k−1] 7→ [ε0t0, . . . , ε2k−1t2k−1],

whereεi = ±1 andε0 · · · ε2k−1 = 1. ThenX/G is isomorphic to the double
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cover ofPk−1 branched along the union of2k hyperplanes with equations
explicitly given below in(10.31).

Proof LetR = C[t0, . . . , t2k−1]/(q1, . . . , qk) be the ring of projective coor-
dinates ofX. Then the subring of invariantsRG is generated by the cosets of
t20, . . . , t

2
2k−1 andt0 · · · t2k−1. Since(t0 · · · t2k−1)2 = t20 · · · t22k−1, we obtain

that

RG ∼= C[t0, . . . , t2k−1, t]/I,

whereI is generated by

2k−1∑
j=0

aijtj , i = 1, . . . , k, t2 − t0 · · · t2k−1.

Let A = (aij) be the matrix of the coefficientsaij . Its rank is equal tok.
Choose new coordinatest′i in C2k such thatt′i+k−1 =

∑2k−1
j=0 aijtj , i =

1, . . . , k. Write

ti =
k−1∑
j=0

bijt
′
j mod (t′k, . . . , t

′
2k−1), i = 0, . . . , 2k − 1.

Then

X/G ∼= ProjRG ∼= Proj(C[t′0, . . . , t
′
k−1, t])/(t

2 −
2k−1∏
i=0

k−1∑
j=0

bijt
′
j).

ThusX/G is isomorphic to the double cover ofPk−1 branched along the hy-
perplanes

k−1∑
j=0

bijzj , j = 0, . . . , 2k − 1. (10.31)

Corollary 10.3.11 Suppose the set of2k points

[a00, . . . , ak0], . . . , [a0 2k−1, . . . , ak 2k−1]

in Pk−1 is projectively equivalent to an ordered set of points on a Veronese
curve of degreek − 1. ThenX/G is isomorphic to the double cover ofPk−1

branched along the hyperplanes

a0jz0 + . . .+ ak−1jzk−1 = 0, i = 0, . . . , 2k − 1.
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Proof Choose coordinates such that the matrixA = (aij) has the form

A =


1 1 . . . 1
α1 α2 . . . α2k

...
...

...
...

αk−1
1 αk−1

2 . . . αk−1
2k

 .

Let

Dj =
∏

1≤ilek,i 6=j

(αj − αi)

and

f(x) = (x− α1) · · · (x− αk) = a0 + a1x+ . . .+ akx
k,

fj(x) =
f(x)

Dj(x− αj)
= a0j + a1jx+ . . .+ ak−1jx

k−1, j = 1, . . . , k.

We have

B =


1 1 . . . 1
α1 α2 . . . αk
...

...
...
...

αk−1
1 αk−1

2 . . . αk−1
k


−1

=


a01 a11 . . . ak−11

a02 a12 . . . ak−12

...
...

...
a0k a1k . . . ak−1k

 .

Multiplying A byB on the left we obtain

B ·A =


1 0 0 . . . 0 f1(αk+1) . . . f1(α2k)
0 1 0 . . . 0 f2(αk+1) . . . f2(α2k)
...

...
...

...
...

...
...

...
0 0 0 . . . 1 fk(αk+1) . . . fk(α2k)



=


f1(α1) . . . f1(αk) f1(αk+1) . . . f1(α2k)
f2(α1) . . . f2(αk) f2(αk+1) . . . f2(α2k)

...
...

...
...

...
...

fk(α1) . . . fk(αk) fk(αk+1) . . . fk(α2k)

 .

The polynomialsf1(x), . . . , fk(x) form a basis in the space of polynomials of
degree≤ k− 1. Thus we see that the columns of the matrixB ·A can be taken
as the projective coordinates of the images of points[1, α1], . . . , [1, α2k] ∈ P1

under a Veronese map. Under the projective transformation defined by the ma-
trix B, the ordered set of columns of matrixA is projectively equivalent to
the set of points defined by the column of the matrixB · A. Write the ma-
trix B · A in the block-form[Ik C]. Then the null-space of this matrix is the
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columns space of the matrix[−C Ik]. It defines the same set of points up to a
permutation.

The following Lemma is due to A. Verra.

Lemma 10.3.12 LetX be the base locus of a linear systemN of quadrics of
dimensionk − 1 in P2k−1. Suppose that

• N contains a nonsingular quadric;

• X contains a linear subspaceΛ of dimensionk − 2;

• X is not covered by lines intersectingΛ.

ThenX is birationally isomorphic to the double cover ofN branched over the
discriminant hypersurface ofN .

Proof Let Λ be a linear subspace of dimensionk − 2 contained inX. Take
a general pointx ∈ X and consider the spanΠ = 〈Λ, x〉. By our assumption
x is not contained in any line. The restriction of the linear systemN to Π is a
linear system of quadrics inΠ ∼= Pk−1 containingΛ andx in its base locus.
The residual components of these quadrics are hyperplanes inΠ containingx.
The base locus of this linear system of hyperplanes consists only ofx since
otherwisex will be contained in a line onX intersectingΛ. Our assumption
excludes this. Thus the dimension of the restriction ofN to Π is equal tok−2.
This implies that there exists a unique quadric inN containingΠ. This defines
a rational mapX 99K N . A general member ofN is a nonsingular quadric in
P2k−1. It contains two rulings of(k−1)-planes. Our(k−1)-planeΠ belongs to
one of the rulings. The choice of a ruling to whichΠ belongs, defines a rational
map to the double coverY → N branched along the discriminant variety of
N parameterizing singular quadrics. The latter is constructed by considering
the second projection of the incidence variety

{(Π, Q) ∈ Gk(P2k−1)×N : Π ∈ N}

and applying the Stein factorization. Now we construct the inverse rational map
Y 99K X as follows. Take a nonsingular quadricQ ∈ N and choose a ruling
of (k− 1)-planes inQ. If Q = V (q), thenΠ = |L|, whereL is an isotropick-
dimensional linear subspace of the quadratic formq, hence it can be extended
to a unique maximal isotropic subspace ofq in any of the two families of such
subspaces. ThusΛ is contained in a unique(k − 1)-planeΠ from the chosen
ruling. The restriction ofN to Π is a linear system of quadrics of dimension
k − 2 with Λ contained in the base locus. The free part of the linear system is
a linear system of hyperplanes through a fixed pointx. This point belongs to
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all quadrics inN , hence belongs toX. So this point is taken to be the value of
our map at the pairQ plus a ruling.

Applying this Lemma to the case when the linear system of quadrics consists
of diagonal quadrics, we obtain that the discriminant hypersurface inN is the
union of hyperplanes

k∑
i=0

aijti = 0, j = 0, . . . , 2k + 1.

This shows that in the case when the hyperplanes, considered as points in the
dual space, lie on a Veronese curve, the base locusX of N is birationally
isomorphic to the quotientX/G.

This applies to our situation, and gives the following.

Theorem 10.3.13 The surfaceS given by equation(10.3.14) is birationally
isomorphic to the double cover ofP2 branched along the six lines̀i = V (z0 +
aiz1 + a2

i z2). It is also birationally isomorphic to the quotientS/G, whereG
consists of involutions[t0, . . . , t5] 7→ [ε0t0, . . . , ε5t5] with ε0 · · · ε5 = 1.

Remark10.3.1 Consider the double coverF of P2 branched over 6 lines
`1, . . . , `6 tangent to an irreducible conicC. It is isomorphic to a hypersurface
in P(1, 1, 1, 3) given by the equationz2 − f6(t0, t1, t2), whereV (f6) is the
union of 6 lines. The restriction off6 to the conicC is the divisor2D, where
D is the set of points where the lines are tangent toC. SinceC ∼= P1 we can
find a cubic polynomialg(t0, t1, t2) which cuts outD in C. Then the preimage
ofC in F is defined by the equationz2−g2

3 = 0 and hence splits into the union
of two curvesC1 = V (z − g3) andC2 = V (z + g3) each isomorphic toC.
These curves intersect at 6 points. The surfaceF has 15 ordinary double points
over the pointspij = `i ∩ `j . Let F̄ be a minimal resolution ofF . It follows
from the adjunction formula for a hypersurface in a weighted projective space
that the canonical class ofF is trivial. ThusF̄ is a K3 surface. SinceC does
not pass through the pointspij we may identifyC1, C2 with their preimages in
F̄ . SinceC1

∼= C2
∼= P1, we haveC2

1 = −2. Consider the divisor classh on
F̄ equal toC1 + L, whereL is the preimage of a line inP2. We have

h2 = C2
1 + 2C1 · L+ L2 = C2

1 + (C1 + C2) · L+ L2 = −2 + 4 + 2 = 4.

We leave to the reader to check that the linear system|H| mapsF̄ to a quartic
surface inP3. It blows down all 15 exceptional divisors of̄F → F to double
points and blows downC1 to the sixteenth double point.

Conversely, letY be a quartic surface inP3 with 16 ordinary double points.
Projecting the quartic from a double pointq, we get a double cover ofP2
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branched along a curve of degree6. It is the image of the intersectionR of Y
with the polar cubicPq(Y ). Obviously,R the singular points ofY are projected
to 15 singular points of the branch curve. A plane curve of degree 6 with 15
singular points must be the union of 6 lines`1, . . . , `6. The projection of the
tangent cone atq is a conic everywhere tangent to these lines.

Theorem 10.3.14 A Kummer surface is projectively isomorphic to a quartic
surface inP3 with equation

A(x4 + y4 + z4 + w4) + 2B(x2y2 + z2w2) (10.32)

+2C(x2z2 + y2w2) + 2D(x2w2 + z2y2) + 4Exyzw = 0,

where

A(A2 + E2 −B2 − C2 −D2) + 2BCD = 0. (10.33)

The cubic hypersurface defined by the above equation is isomorphic to the
Segre cubic primal.

Proof Choosing apolar linear line complexes, we transform the Klein quadric
to the formt21 + . . . + t26 = 0. Consider the Heisenberg group with nonzero
elements defined by involutions associated to a pair of apolar linear line com-
plexes. The Heisenber group is induced by transformations ofP3 listed in sec-
tion 10.2.1. In these coordinates the equation of the Kummer surface must be
invariant with respect to these transformations. It is immediately checked that
this implies that the equation must be as in (10.32). It remains to check the con-
ditions on the coefficients. We know that a Kummer surface contains singular
points. Taking the partials, we find

Ax3 + x(By2 + Cz2 +Dw2) + Eyzw = 0,

Ay3 + y(Bx2 + Cw2 +Dz2) + Exzw = 0,

Az3 + z(Bw2 + Cx2 +Dy2) + Exyw = 0,

Aw3 + w(Bz2 + Cy2 +Dx2) + Exyz = 0.

Multiplying the first equation byy and the second equation byx, and adding
up the two equations, we obtain

(A+B)(x2 + y2) + (C +D)(z2 + w2) = α
x2 + y2

x2y2
, (10.34)

whereα = −Exyzw. Similarly, we get

(C +D)(x2 + y2) + (A+B)(z2 + w2) = α
z2 + w2

z2w2
. (10.35)
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Dividing the first equation byx2 + y2, the second equation byz2 + w2, and
adding up the results, we obtain

2(A+B) + (C +D)
(z2 + w2

x2 + y2
+
z2 + w2

x2 + y2

)
= α

( 1
x2y2

+
1

z2w2

)
. (10.36)

Multiplying both sides of equations (10.34) and (10.35), and dividing both
sides by(x2 + y2)(z2 + w2), we obtain

(A+B)2 + (C +D)2 + (A+B)(C +D)
(z2 + w2

x2 + y2
+
z2 + w2

x2 + y2

)
= E2.

Now, we multiply equation (10.35) byA + B, and, after subtracting equation
(10.36) from the result, we obtain

(A+B)2 − (C +D)2 + E2 = α(A+B)(
1

x2y2
+

1
z2w2

).

Similarly, we get

(A−B)2 − (C −D)2 + E2 = −α(A−B)(
1

x2y2
+

1
z2w2

),

hence,
(A+B)2 − (C +D)2 + E2

(A−B)2 − (C −D)2 + E2
+
A+B

A−B
= 0.

From this we easily derive (10.33).
Equation (10.33) defines a cubic hypersurface inP4 isomorphic to the Segre

cubic primalS3 given by equation (9.47). After substitution

A = z0 + z3, (10.37)

B = z0 + 2z2 + 2z4 + z3,

C = z0 + 2z1 + 2z4 + z3,

D = −z0 − z1 − 2z2 − z3,
E = −2z0 + 2z3,

we obtain the equation

z3
0 + z3

1 + z3
2 + z3

3 + z3
4 − (z0 + z1 + z2 + z3 + z4)3 = 0.

Since Kummer surfaces depend on 3 parameters, and the Segre cubic is irre-
ducible, we obtain that a general point on the Segre cubic corresponds to a
Kummer surface.

LetV = H0(P3,OP3(4))H2 ∼= C5 with coordinatesA,B,C,D,E. The lin-
ear system|V | ⊂ |OP3(4)| defines a mapΦ : P3 → |V |∨ ∼= P4 whose image
isomorphic to the orbit spaceX = P3/H2 from (10.18). The preimage of a
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hyperplane inP4 is singular if and only if it does not intersectX transversally.
This implies that the dual of the hypersurfaceX is equal to the Segre pri-
mal cubicS3, and, by Proposition9.4.15, it is isomorphic to the Castelnuovo-
Richmond quartic.

A tangent hyperplane ofCR4 at its nonsingular point is a quartic surface with
16 nodes, fifteen come from the 15 singular lines of the hypersurface and one
more point is the tangency point. It coincides with the surface corresponding
to the point on the dual hypersurface. In this way we see a moduli-theoretical
interpretation of the set of nonsingular points ofCR4. They correspond to the
Kummer surfaces of abelian surfaces equipped with some additional data. Re-
call that that we have chosen Klein coordinates in the Plücker space which
allowed us to write the equation of a Kummer surface inH2-invariant form.
The double plane construction model of the Jacobian Kummer surface comes
with the order on the set of six lines defining the branch curve. This is the
same as the order on 6 Weierstrass points of the corresponding curve of genus
2. As we saw in Chapter 5, the order on the Weierstrass point is equivalent to
a choice of a symplectic basis in the group of 2-torsion points of the Jacobian
variety. In this way we see that a Zariski open subset ofCR4 can be identified
with the moduli space of Jacobian abelian surfaces with full level 2 structure
defined by a choice of a symplectic basis in the group of 2-torsion points. It
turns out that the whole hypersurfaceCR4 is isomorphic to a certain natural
compactificationA2(2) of the moduli space of abelian surface with full level
2 structure. This was proven by J. Igusa in [348], who gave an equation of the
quarticCR4 in different coordinates. The quartic hypersurface isomorphic to
CR4 is often referred in modern literature as anIgusa quartic(apparently, the
book [192] is responsible for this unfortunate terminology).

The sixteen singular points of the Kummer surfaceY given by (10.32) form
an orbit ofH2. As we know this orbit defines a(166)-configuration. A plane
containing a set of 6 points cuts out onY a plane quartic curve with 6 singular
points, no three of them lying on a line. This could happen only if the plane is
tangent to the surface along a conic. This conic, or the corresponding plane, is
called atrope. Again this confirms the fact that in any generalH2-orbit a set
of coplanar 6 points from the(166)-configuration lies on a conic.

On a nonsingular model ofY isomorphic to the octavic surfaceS in P5

the exceptional curves (the singular lines of the quadratic complex) of the
16 singular points and the proper transforms of 16 tropes form the(166)-
configuration of lines.

Consider the Gauss map fromY to its dual surfaceY ∨ given by cubic par-
tials. Obviously, it should blow down each trope to a singular point ofY ∨.
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ThusY ∨ has at least 16 singular points. It follows from Plücker-Teissier for-
mulas (1.2.5) that each ordinary double point decreases the degree of the dual
surface by 2. Thus the degree of the dual surfaceY ∨ is expected to be equal to
36− 32 = 4. In fact we have the following beautiful fact.

Theorem 10.3.15 A Kummer surface is projectively isomorphic to its dual
surface.

Proof In the proof of Theorem10.3.14we had computed the partial cubics
of equation (10.32). The linear system of the partial cubics is invariant with
respect to the action of the Heisenberg groupH2 and defines an isomorphism
of projective representations. If we choose a basis appropriately, we will be
able to identifyH2-equivariantly the dual of the linear system with the origi-
nal spaceP3. We know that the image of the surface is a quartic surface with
16 singular points. Since the tropes of the original surfaces are mapped to sin-
gular points of the dual surface, we see that the two surfaces share the same
configurations of nodes and tropes. Thus they share 16 conics, and hence co-
incide (since the degree of intersection of two different irreducible surfaces is
equal to 16).

Remark10.3.2 One can see the duality also from the duality of the quadratic
line complexes. If we identify the spaceE = C4 with its dual space by means
of the standard basise1, e2, e3, e4 and its dual basise∗1, e

∗
2, e

∗
3, e

∗
4, then the

Plücker coordinatespij = e∧i e
∗
j in

∧2
E can be identified with the Plücker

coordinatesp∗ij = ei ∧ ej in
∧2

E∨. The Klein quadrics could be also identi-
fied. Now the duality isomorphismG(2, E) → G(2, E∨), ` 7→ `⊥, becomes
compatible with the Plücker embeddings. The quadratic line complex given in
Klein coordinates by two diagonal quadrics (10.28) is mapped under the dual-
ity isomorphism to the quadratic line complex given by two diagonal quadrics∑
y2
i = 0,

∑
a−1
i y2

i = 0, the dual quadrics. However, the intersection of these
two pairs of quadrics is projectively isomorphic under the scaling transforma-
tion yi 7→

√
aiyi. This shows that, under the duality isomorphism, the singular

surfaces of the quadratic line complex and its dual are projectively isomorphic.
It follows from the definition of the duality that the tropes of the Kummer sur-
face correspond toβ-planes that intersect the quadratic line complex along the
union of two lines.

The Kummer surface admits an infinite group of birational automorphisms.
For a general one, the generators of this group have been determined in modern
works of J. Keum [369] and S. Kond̄o [385]. We give only examples of some
automorphisms.



610 Geometry of Lines

• Projective automorphisms defined by the Heisenberg group. They corre-
spond to translations by 2-torsion points on the abelian surface cover.

• Involutions defined by projections from one of 16 nodes.

• Switches defined by choosing a duality automorphism and composing it
with elements of the Heisenberg group.

• Cubic transformations given in coordinates used in equation (10.32) by

(x, y, z, w) 7→ (yzw, xzw, xyw, xyz)

.

• Certain automorphisms induces by Cremona transformations of degree 7.

10.3.4 Harmonic complex

Consider a pair of irreducible quadricsQ1 andQ2 in Pn. A harmonic line
complexor aBattaglini complexis the closure inG1(Pn) of the locus of lines
which intersectQ1 andQ2 at two harmonically conjugate pairs. Let us see that
this is a quadratic line complex and find its equation.

LetA = (aij), B = (bij) be two symmetric matrices defining the quadrics.
Let ` = xy, wherex = [v], y = [w] for somev, w ∈ C4. Let ` = [sv + tw]
be a parametric equation of`. Then the restriction ofQ1 to ` is a binary form
in s, t defined by(vAv)s2 + 2(vAw)st + (wAw)t2 and the restriction ofQ2

to ` is defined by the bilinear form(vBw)s2 + 2(vBw)st + (wBw)t2. By
definition, the two roots of the binary forms are harmonically conjugate if and
only if

(vAv)(wBw) + (wAw)(vBv)− 2(vAw)(vBw) = 0.

Let [vw] be the matrix with two columns equal to the coordinate vectors ofv

andw. We can rewrite the previous expression in the form

det
(
t[vw][AvBw]

)
+ det

(
t[v, w][BvAw]

)
= 0. (10.38)

The expression is obviously a quadratic form on
∧2 Cn+1 and also a symmet-

ric bilinear form on the space of symmetric matrices. Take the standard basis
Eij + Eji, Eii, 1 ≤ i ≤ j ≤ n + 1, of the space of symmetric matrices and
compute the coefficients of the symmetric bilinear forms in terms of coordi-
nates ofv andw. We obtain

aij;kl = 4(xixjykyl + xkxlyiyj)− 2(xkyl + xlyk)(xjyi + xiyj)

= 2(pikpjl + pilpjk),
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wherepab = −pba if a > b. Thus (10.38) is equal to∑
(aijbkl + aklbij)(pikpjl + p′ilpjk) = 0. (10.39)

This is an equation of a quadratic complex. If we assume thataij = bij = 0 if
i 6= j, then the equation simplifies∑

(aiibjj + ajjbii)p2
ij = 0. (10.40)

Consider a pencilP of quadricsλQ1 + µQ2. Let us assume, for simplicity,
that the equations of the quadrics can be simultaneously diagonalized. Then a
line ` is tangent to quadric fromP if and only if∑

(λaii + µbii)(λajj + µbjj)p2
ii

=
∑

(λ2aiiajj + λµ(aiibjj + ajjbii) + µ2biibjj)p2
ij = 0.

The restriction of the pencil tò is a linear seriesg1
2 unless̀ has a base point

in which case the line intersects the base locus of the pencil. The two quadrics
which touch` correspond to the points[λ, µ] ∈ P which satisfy the equation
in above. Denote byA, 2B,C the coefficients atλ2, λµ, µ2. The map

G1(Pn)→ P2, ` 7→ [A,B,C]

is a rational map defined on the complement of codimension 3 subvariety of
G1(Pn) given by the equationsA = B = C = 0. Its general fibre is the
loci of lines which touch a fixed pair of quadrics in the pencil. It is given by
intersection of two quadratic line complexes. In casen = 3, we recognize a
well-known fact that two conics have four common tangents. The preimage of
a lineAt0 + 2Bt1 + Ct2 = 0 with AC − B2 = 0 is a line complex such that
there is only one quadric in the pencil which touches the line. Hence it equals
the Chow form of the base locus, a hypersurface of degree 4 inG(2, n).

Let us consider the casen = 3. In this case a harmonic line complex is a
special case of a quadratic line complex given by two quadrics

q1 = p12p34 − p13p24 + p14p23 = 0,

q2 = a12p
2
12 + · · ·+ a34p

2
34 = 0.

We assume thatq2 is a nonsingular quadric, i.e. allaij 6= 0. It is easy to see
that the pencilλq1 + µq2 = 0 has 6 singular quadrics corresponding to the
parameters

[1,±
√
a12a34], [1,±

√
a13a24], [1,±

√
a14a23].
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Thus we diagonalize both quadrics to reduce the equation of the quadratic line
complex to the form

t20 + . . .+ t25 = 0,

k1(t20 − t21) + k2(t22 − t23) + k3(t24 − t25) = 0.

The genus 2 curve corresponding to the intersection of the two quadrics is a
special one. Its branch points are[1,±k1], [1,±k2], [1,±k3]. The involution of
P1 defined by[t0, t1] 7→ [t0,−t1] leaves the set of branch points invariant and
lifts to an involution of the genus 2 curve. It follows from the description of
binary forms invariant under a projective automorphism of finite order given
in section8.8.4that there is only one conjugacy class of involutions of order 2
and each binary sextic whose set of zeros is invariant with respect an involution
can be reduced to the form(t20− t21)(t20−αt21)(t20−βt21). Thus we see that the
harmonic line complexes form a hypersurface in the moduli space of smooth
complete intersections of two quadrics inP5. It is isomorphic to the hypersur-
face inM2 formed by isomorphism classes of genus 2 curves admitting two
commuting involutions.

Proposition 10.3.16 The singular surface of a harmonic line complex is pro-
jectively isomorphic to a quartic surface given by equation(10.32) with coef-
ficientE equal to 0.

Proof We use that, in Klein coordinates, our quadratic line complex has ad-
ditional symmetry defined by the transformation

(t0, t1, t2, t3, t4, t5) 7→ (−it1, it0,−it3, it2,−it5, it4).

Here we may assume thatt0 = i(p14 − p23), t1 = p14 + p23, etc. The trans-
formation ofP3 that induces this transformation is defined by[x, y, z, w] 7→
[−x, y, z, w]. Equation (10.32) shows that the Kummer surface is invariant
with respect to this transformation if and only if the coefficientE is zero.

Note that under the isomorphism from the cubic (10.33) to the Segre cubic
primal given by formulas (10.37), the coefficientE is equal to−z0 + z3. This
agrees with a remark before Lemma9.4.9.

Consider the Kummer surfaceS given by equation (10.32) with E = 0.
Intersecting the surface with the planex = 0 we obtain the plane quartic with
equationQ(x2, y2, z2) = 0 whereQ = A(s2 + u2 + v2) + 2Bsu + 2Csv +
2Duv. Its discriminant is equal toA(A2−B2−C2−D2)+2BCD. Comparing
it with equation (10.33), we find that the quadratic form is degenerate. Thus the
plane section of the Kummer surface is the union of two conics with equations
(ax2 + by2 + cz2)(a′x2 + b′y2 + c′z2) = 0. The four intersection points of
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these conics are singular points ofS. This easily follows from the equations
of the derivatives of the quartic polynomial definingS. Thus we see that the
16 singular points of the Kummer surface lie by four in the coordinate planes
x, y, z, w = 0. Following A. Cayley [76], a Kummer surface with this property
is called aTetrahedroid.

Note the obvious symmetry of the coordinate hyperplane sections. The co-
ordinates of 16 nodes can be put in the following symmetric matrix:

0 ±a12 ±a13 ±a14

±a21 0 ±a23 ±a24

±a31 ±a32 0 ±a34

±a41 ±a42 ±a43 0

 .

The complete quadrangle formed by four nodesp1, . . . , p4 in each coordinate
plane has the property that the linespipj andpkpl with {i, j, } ∩ {k, l} = ∅
intersect at the vertices of the coordinate tetrahedron. One can also find the
16 tropes. Take a vertex of the coordinate tetrahedron. There will be two pairs
of nodes, not in the same coordinate plane, each pair lying on a line passing
through the vertex. For example,

[0, a12, a13, a14], [0, a12,−a13, a14], [0, a21, 0, a23, a24], [0, a21, 0,−a23, a24].

The plane containing the two pairs contains the third pair. In our example,
the third pair is[a41,−a42, a43, 0], [a41,−a42,−a43, 0]. This is one of the 16
tropes. Its equation isa24x+a14y−a12w = 0. Similarly, we find the equations
of all 16 tropes

±a34y ± a42z ± a23w = 0,

±a34x± a41z ± a13w = 0,

±a24x± a41y ± a12w = 0,

±a23x± a31y ± a12z = 0.

Remark10.3.3 For experts on K3 surfaces, let us compute the Picard lattice
of a general Tetrahedroid. Letσ : S̃ → S be a minimal resolution ofS. Denote
by h the class of the preimage of a plane section ofS and byei, i = 1, . . . , 16,
the classes of the exceptional curves. Letc1 andc2 be the classes of the proper
transforms of the conicsC1, C2 cut out by one of the coordinate plane, say
x = 0. We have

c1 + c2 = h− e1 − e2 − e3 − e4.

Obviously,c1 ·c2 = 0 andh·ci = 2 andc2i = −2. Consider another coordinate
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plane and another pair of conics. We can write

c3 + c4 = h− e5 − e6 − e7 − e8.

This shows that the classes of the eight conics can be expressed as linear com-
binations of classesh, ei andc = c1. It is known that the Picard group of a gen-
eral Kummer surface is generated by the classesei and the classes of tropes
ti satisfying2ti = h − ei1 − . . . − ei6 . The Picard group of a Tetrahedroid
acquires an additional classc.

The Jacobian variety of a genus 2 curveC with two commuting involutions
contains an elliptic curve, the quotient ofC by one of the involutions. In the
symmetric productC(2) it represents the graph of the involution. Thus it is
isogenous to the product of two elliptic curves.

Note that the pencil of quadrics passing through the set of 8 points(C1 ∩
C2)∪ (C3 ∩C4) defines a pencil of elliptic curves oñS with the divisor class

2h− e1 − e2 − e3 − e4 − e5 − e6 − e7 − e8 = c1 + c2 + c3 + c4.

Sincec1 ·c2 = c3 ·c4 = 0, Kodaira’s classification of fibres of elliptic fibrations
shows thatc1, c2, c3, c4 are the classes of irreducible components of a fibre of
typeI4. This implies that the four intersection points(C1 ∪ C2) ∩ (C3 ∪ C4)
lie on the edges of the coordinate tetrahedron.

The parametersA,B,C,D used to parameterize Tetrahedroid surfaces have
be considered as points on the cubic surface

A(A2 −B2 − C2 −D2) + 2BCD = 0.

One can write an explicit rational parameterization of this surface using the
formulas

A = 2abc, B = a(b2 + c2), C = b(a2 + c2), D = c(a2 + b2).

The formulas describe a rational mapP2 99K P3 of degree 2 given by the linear
system of plane cubics with 3 base pointsp1 = [1, 0, 0], p2 = [0, 1, 0], p3 =
[0, 0, 1]. It extends to a degree 2 map from a del Pezzo surface of degree 6
onto a 4-nodal cubic surface. In fact, if one considers the standard Cremona
involution [a, b, c] 7→ [a−1, b−1, c−1], then we observe that the map factors
through the quotient by this involution. It has 4 singular points corresponding
to the fixed points

[a, b, c] = [1, 1, 1], [−1, 1, 1], [1,−1, 1], [1, 1,−1].

of the Cremona involution. The corresponding singular points are the points
[1, 1, 1, 1], [1, 1,−1,−1], [1,−1, 1,−1], [1,−1,−1, 1].
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If we change the variablesX2 = bcx2, Y 2 = acy2, X2 = abx2,W = w,
the equation

A(x4 + y4 + z4 + w4) + 2B(x2w2 + y2z2) + 2C(y2w2 + x2z2)

+2D(z2w2 + x2y2) = 0

is transformed to the equation

(X2 + Y 2 + Z2)(a2X2 + b2Y 2 + c2Z2)−

[a2(b2+c2)X2W 2+b2(c2+a2)Y 2W 2+c2(a2+b2)Z2W 2]+a2b2c2W 4 = 0,

or, equivalently,

a2x2

x2 + y2 + z2 − a2w2
+

b2y2

x2 + y2 + z2 − b2w2
+

c2z2

x2 + y2 + z2 − c2w2
= 0.

(10.41)
Whena, b, c are real numbers, the real points(x, y, z, 1) ∈ P3(R) on this sur-
face describe the propagation of light along the interface between two different
media. The real surface with equation (10.41) is called aFresnel’s wave sur-
face. It has 4 real nodes

(±c
√
a2 − b2
a2 − c2

, 0,±a
√
b2 − c2
a2 − c2

, 1),

where we assume thata2 > b2 > c2. It has four real tropes given by planes
αx+ βy + γz + w = 0, where

(α, β, γ, 1) = (± c

b2

√
a2 − b2
a2 − c2

, 0,± a

b2

√
b2 − c2
a2 − c2

, 1).

One of the two conics cut out on the surface by coordinate planes is a circle. On
the planew = 0 at infinity one of the conics is the ideal conicx2+y2+z2 = 0.

10.3.5 The tangential line complex

When we considered the harmonic line complex defined by two quadricsQ1

andQ2 we did not need to assume that the quadrics are different. In the case
whenQ1 = Q2 = Q, the definition of a harmonic self-conjugate pair implies
that the two points in the pair coincide, i.e. the line is tangent to the quadric.
This is a special case of the harmonic complex, the locus of tangent lines to a
quadric.
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Equation (10.39) gives us the equation of the tangential line complex of a
quadricQ defined by a symmetric matrixA = (aij):∑

aijakl(p′ikp
′
jl + p′ilp

′
jk) = 0. (10.42)

Proposition 10.3.17 The tangential quadratic line complexXQ associated to
a nonsingular quadric surfaceQ in Pn is singular along the varietyOG(2, Q)
of lines contained inQ.

Proof It is easy to see that a lineP in G = G1(Pn) is a pencil of lines
in some planeΠ in Pn. The planeΠ intersectsQ in a conic. If the line is
general, then the conic is nonsingular, and the pencilP contains two points
represented by line inΠ which are tangent to the conic. This confirms thatXQ

is a quadratic complex. Now, assume that` is contained inQ. A general lineP
in G containing̀ contains only one point represented by a line inPn tangent to
Q, namely the linè . This shows thatP is tangent toXQ at the point̀ . Since
P was a general line inG, it shows that the tangent space ofXQ at` coincides
with the tangent space ofG at `. This implies thatXQ is singular at̀ . Since
XQ is a quadratic complex,̀is point of multiplicity 2 inXQ.

Let TQ be the tangent bundle ofQ andσ : |TQ| → Q be its projectivization.
The fibre of|TQ| at a pointx ∈ Q consists of lines tangent toQ at x. This
defines a natural birational morphism

π : P(T ∨Q )→ XQ

which is a resolution of singularities of the tangential complex. It is easy to see
that OG(2, Q) is of codimension 2 inXQ. Thus the exceptional divisor ofπ is
isomorphic to aP1-bundle over OG(2, Q).

Remark10.3.4 One can identify
∧2 Cn+1 with the Lie algebraso(n + 1)

of the special orthogonal group SO(n + 1) of the spaceCn+1 equipped with
the dot-product symmetric bilinear form and the associated quadratic formq.
The orthogonal group SO(n + 1) acts naturally on its Lie algebraso(n + 1)
by means of the adjoint representation. One can speak about adjoint orbits
of SO(n + 1) in |so(n + 1)|. The variety OG(2, Q) of lines inQ = V (q) is
identified with the variety of 2-dimensional isotropic linear subspaces inCn+1.
It is known that this variety is the unique closed orbit. It is called theminimal
adjoint orbit. The adjoint orbits are ordered with respect to the relation that one
orbit is contained in the closure of another orbit. The tangential line complex
XQ is a supminimal adjoint orbitin the sense that the minimal orbit is the
only orbit contained in the boundary of its closure. Such an orbit is unique.
Considered as linear operators, points in OG(2, E) are operatorsA of rank 2
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satisfyingA2 = 0, and points ofXQ are operators of rank 2 satisfyingA3 = 0
(see, for example, [32]). In particular, we see that the variety OG(2, Q) can be
given by quadratic equations expressing the condition that the square of the
matrix (pij) is equal to 0.

Thus both orbits arenilpotent orbits, i.e. they are contained in the subvariety
of nilpotent linear operators. We refer for the classification of nilpotent orbits to
[135]. For classical Lie algebrassln+1, son+1, son+1, the nilpotent orbits are
classified by partition ofn+ 1 defining the Jordan form of the linear operator.
Thus the minimal orbit OG(2, Q) corresponds to the partition(2, 2, 1, . . . , 1)
and the supminimal orbit corresponds to the partition(3, 1, . . . , 1).

Replacing the Lie algebraso(E) by any simple complex lie algebrag we
obtain an analog of the tangential line complexXQ and its singular locus
OG(2, E). The latter becomes the unique minimal adjoint orbit in|g|, the for-
mer becomes the unique supminimal adjoint orbit. Both of these orbits are
nilpotent orbits, i.e. they are contained in the subvariety of nilpotent elements
of the Lie algebra. An algebraic variety isomorphic to a minimal adjoint orbit
for some simple Lie algebrag is called aadjoint variety. The adjoint vari-
eties, and in particular, the line complexes OG(2, E) of lines in a nonsingular
quadric are Fano contact varieties. Recall that a complex manifoldM is called
a contact manifoldif its tangent bundleTM contains a corank subbundleF
such that the bilinear formF × F → TM/F defined by the Lie bracket is
nondegenerate. It is conjectured that any Fano contact variety is isomorphic to
an adjoint variety (see [35]).

10.3.6 Tetrahedral line complex

Consider the union of 4 planes inP3 which define a coordinate tetrahedron in
the space. Letq1, q2, q3, q4 be its vertices,̀ ij = qiqj be its edges andπi =
qjqkql be its faces. Let[A,B] ∈ P1 andC be the closure of the set of lines
in P3 intersecting the four faces at 4 distinct points with the cross ratio equal
to [A,B]. Here we assume that the vertices of the tetrahedron are ordered in
some way. It is easy to see thatC is a line complex. It is called atetrahedral
line complex.

Proposition 10.3.18 A tetrahedral line complexC is of degree 2. Ifpij are the
Plücker coordinates with respect to the coordinates defined by the tetrahedron,
thenC is equal to the intersection of the Grassmannian with the quadric

Ap12p34 −Bp13p24 = 0. (10.43)

Conversely, this equation defines a tetrahedral line complex.
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Proof Let ` be a line spanned by the points[a1, a2, a3, a4] and[b1, b2, b3, b4].
It intersects the faceπi at the point corresponding to the coordinates on the line
[s, t] = [bi,−ai], i = 1, . . . , 4. We assume that̀ does not pass through one
of the vertices. Theǹ intersects the faces at four points not necessary distinct
with cross ratio equal to[p12p34, p13p24], wherepij are the Pl̈ucker coordinates
of the line. So, the equation of the tetrahedral line complex containing the line
is [p12p34, p13p24] = [a, b] for some[a, b] ∈ P1.

Note that any tetrahedral line complexC contains the set of points inG(2, 4)
satisfyingpis = pit = pik = 0 (the lines in the coordinate planeti = 0). Also,
any line containing a vertex satisfiespij = pjk = pik = 0 and hence also is
contained inC. Thus we obtain thatC contains 4 planes from one ruling of the
Klein quadric and 4 planes from another ruling. Each plane from one ruling
intersects three planes from another ruling along a line and does not intersect
the fourth plane.

Observe that the tetrahedral line complex is reducible if and only if the cor-
responding cross ratio is equal to0, 1,∞. In this case it is equal to the union of
two hyperplanes representing lines intersecting one of the two opposite edges.
An irreducible tetrahedral line complex has 6 singular points corresponding to
the edges of the coordinate tetrahedron. Their Plücker coordinates are all equal
to zero except one.

Proposition 10.3.19 The singular surface of an irreducible tetrahedral line
complexC is equal to the union of the faces of the coordinate tetrahedron.

Proof We know that the degree of the singular surface is equal to 4. So, it
suffices to show that a general point in one of the planes of the tetrahedron
belongs to the singular surface. The lines in this plane belong to the complex.
So, the lines in the plane passing through a fixed pointp0 is an irreducible
component of the conicΩ(p0) ∩ C. This shows thatp0 belongs to the singular
surface ofC.

From now on we consider only irreducible tetrahedral line complexes. There
are different geometric ways to describe a tetrahedral complex.

First we need the following fact, known as thevon Staudt’s Theorem(see
[587].

Theorem 10.3.20(G. von Staudt) Let ` be a line belonging to a tetrahe-
dral line complexC defined by the cross ratioR. Assume that̀ does not pass
through the vertices and consider the pencil of planes through`. Then the cross
ratio of the four planes in the pencil passing through the vertices is equal toR.

Proof Let e1, e2, e3, e4 be a basis inE = C4 corresponding to the vertices of
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the tetrahedron. Choose the volume formω = e1∧e2∧e3∧e4 and consider the
star-dualityin

∧2
E defined by(α, β) = (α ∧ β)/ω. Under this duality(ei ∧

ej , ek ∧ el) = 1(−1) if (i, j, k, l) is an even (odd) permutation of(1, 2, 3, 4)
and0 otherwise. Letγ =

∑
1≤i<j≤4 pijei ∧ ej be the 2-form defining the line

` andγ∗ =
∑
p′ijei ∧ ej define the dual linè∗, whereei ∧ ej is replaced with

(ei ∧ ej , ek ∧ el)ek ∧ ei, wherei, j, k, l are all distinct. The linè (resp.`∗)
intersects the coordinate planes at the points represented by the columns of the
matrix

A =

0B@ 0 p12 p13 p14

−p12 0 p23 p24

−p13 −p23 0 p34

−p14 −p24 −p34 0

1CA , resp.B =

0B@ 0 p34 −p24 p23

−p34 0 p14 −p13

p24 −p14 0 p12

−p23 p13 −p12 0

1CA .

We haveA ·B = B ·A = 0. It follows from the proof of the previous Proposi-
tion that the cross ratio of the four points on`∗ is equal to(p′13p

′
24, p

′
12p

′
34) =

(p24p13, p24p13). Thus` and`∗ belong to the same tetrahedral line complex.
Now a plane containing̀ can be identified with a point oǹ∗ equal to the
intersection point. A plane containinge1 and` is defined by the 3-form

e1 ∧ γ = p23e1 ∧ e2 ∧ e3 + p24e1 ∧ e2 ∧ e4 + p34e1 ∧ e3 ∧ e4

and we check thate1 ∧ γ ∧ (−p34e2 + p24e3 − p23e4) = 0 sinceB · A = 0.
This means that the plane containinge1 intersects̀ ∗ at the first point oǹ ∗

defined by the first column. Thus, under the projective map from the pencil of
planes through̀ to the line`∗, the plane containinge1 is mapped to the inter-
section point of̀ ∗ with the opposite face of the tetrahedron defined byt0 = 0.
Similarly, we check that the planes containing other vertices correspond to in-
tersection points of̀∗ with the opposite faces. This proves the assertion.

Proposition 10.3.21 A tetrahedral line complex is equal to the closure of
secants of rational cubic curves inP3 passing through the vertices of the coor-
dinate tetrahedron.

Proof Let R be one of those curves andx ∈ R. Projecting fromx we get
a conicC in the plane with four points, the projections of the vertices. Let
` = xy be a secant ofR. The projection̄y of y is a point on the conicC and
the pencil of lines through̄y is projectively equivalent to the pencil of planes
through the secant̀. Under this equivalence the planes passing through the
vertices of the tetrahedron correspond to the lines connecting their projection
with ȳ. Applying von Staudt’s Theorem, we conclude the proof.

Consider the action of the torusT = (C∗)4 onP3 by scaling the coordinates
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in E = C4. Its action on
∧2

E is defined by

(t1, t2, t3, t4) : (p12, . . . , p34) 7→ (t1t2p12, . . . , t3t4p34).

It is clear that the Klein quadric is invariant with respect to this action. This
defines the action ofT on the Grassmannian of lines. It is also clear that the
equations of a tetrahedral line complexC are also invariant with respect to
this action, soT acts on a tetrahedral complex. If` ∈ C has nonzero Plücker
coordinates (a general line), then the stabilizer of` is equal to the kernel of the
action ofT in P3, i.e. equal to the diagonal group of(z, z, z, z), z ∈ C∗. Hence
the orbit of` is 3-dimensional, and sinceC is irreducible and 3-dimensional, it
is a dense Zariski subset ofC. Thus we obtain thatC is equal to the closure of
a general line inG(2, 4) under the torus action. Since any general line belongs
to a tetrahedral line complex, we get an equivalent definition of a tetrahedral
line complex as the closure of a torus orbit of a line with nonzero Plücker
coordinates.

Here is another description of a tetrahedral complex. Consider a projective
automorphismφ : P3 → P3 with four distinct fixed points and letC be the clo-
sure of linesxφ(x),wherex is not a fixed point ofφ. Let us see thatC is an irre-
ducible tetrahedral complex. Choose the coordinates inC4 such that the matrix
of φ is a diagonal matrix with 4 distinct eigenvaluesλi. ThenC is the closure
of lines defined by 2-vectorsγ = A · v ∧ v, v ∈ C4. A straightforward compu-
tation shows that the Plücker coordinates ofγ are equal topij = titj(λi−λj),
where(t1, . . . , t4) are the coordinates of the vectorv. Thus, if we takev with
nonzero coordinates, we obtain thatC contains the torus orbit of the vector
with nonzero Pl̈ucker coordinatespij = λi − λj . As we explained in above,C
is an irreducible tetrahedral complex.

It is easy to see that the map which assigns to a pointx ∈ P3 the linexφ(x)
defines a birational transformationΦ : P3 99K C with fundamental points at
the fixed points ofφ. It is given by quadrics. The linear system of quadrics
through 4 general points inP3 is of dimension 5 and defines a rational map
from P3 to P5. The preimage of a general plane is equal to the intersection
of 3 general quadrics in the linear system. Since there are 4 base points, we
obtain that the residual intersection consists of 4 points. This implies that the
linear system defines a map of degree 2 onto a quadric inP5 or a degree 1 map
onto a threefold of degree 4. Since a tetrahedral line complex is obtained in
this way and any 4 general points inP3 are projectively equivalent, we see that
the image must be projectively isomorphic to a tetrahedral complex. Observe,
that the 6 lines joing the pairs of fixed points ofφ are blown down to singular
points of the tetrahedral complex. Also, we see the appearance of 8 planes, four
of these planes are the images of the exceptional divisors of the blow-up ofP3
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at the fixed points, and the other four are the images of the planes spanned by
three fixed points. We see that the blow-up ofP3 is a small resolution of the
tetrahedral complex.

There is another version of the previous construction. Take a pencilQ of
quadrics with nonsingular base curve. Consider a rational mapP3 99K G1(P3)
which assigns to a pointx ∈ P3 the intersection of the polar planesPx(Q), Q ∈
Q. This is a line inP3 unlessx is a singular point of one of quadrics inQ.
Under our assumption on the pencil, there are exactly 4 such points which we
can take as the points[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]. Thus we see
that the rational map is of the same type as in the previous construction and its
image is a tetrahedral complex.

10.4 Ruled surfaces

10.4.1 Scrolls

A scroll or aruled varietyis an irreducible subvarietyS of Pn such that there
exists an irreducible familyX0 of linear subspaces of dimensionr sweepingS
such that a general point ofS lies in unique subspace from this family. We will
also assume that each point is contained only in finitely many generators. This
will exclude cones. Following the classical terminology, the linear subspaces
are calledgenerators. Note that the condition that any point lies in finitely
many generators excludes cones.

We identifyX0 with its image in the Grassmann varietyG = Gr(Pn). For
anyx ∈ X0 let Λx denote the generator defined by the pointx. The universal
family

{(x, p) ∈ X0 × Pn : p ∈ Λx}

is isomorphic to the incidence varietyZX0 overX0. The projectionZX0 → Pn
is a finite morphism of degree 1 which sends the fibres of the projective bundle
ZX0 → X0 to generators. For any finite morphismν : X → X0 of degree
1, the pull-backE = ν∗(S∨X0

) defines the projective bundleP(E) and a finite
morphismν̃ : P(E) → ZX0 such that the compositionf : P(E) → ZX0 → S

is a finite morphism sending the fibres to generators. Recall that the projection
ZG → Pn = |E| is defined by a surjection of locally free sheaveα : E∨ ⊗
OG → S∨G . Thus the morphismf : P(E)→ S ⊂ PN is defined by a surjection

ν∗(α) : E∨ ⊗OX → E .

In particular, the morphismf is given by a linear system|E∨| ⊂ |OP(E)(1)|.
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Thus we see that any scroll is obtained as the image of a birational morphism

f : P(E)→ |E|

defined by a linear subsystem of|OP(E)(1)|. The linear system can be identified
with the image ofE∨ → H0(X, E) under the surjective mapE∨ ⊗OX → E .
This map also gives a finite mapν : X → X0 ⊂ G. The baseX of the
projective bundleπ : P(E) → X can be always assumed to be a normal
variety. Thenν : X → X0 is the normalization map.

A scroll defined by the complete linear system|OP(E)(1)| is a linearly nor-
mal subvariety ofPn. It is called anormal scroll. Any scroll is a projection of a
normal scroll. Note that in many text-books a normal scroll is assumed to be a
nonsingular variety. We have already classified smooth rational normal scrolls
of dimension 2 in Chapter 8.

A surjective map of locally free sheavesE → F defines a closed embedding
P(F) ↪→ P(E). If rank F = r′ + 1, the image ofP(F) under the mapf :
P(E)→ Pn is ar′-directrix of the scroll, a closed subvariety intersecting each
generator along ar′-plane. If r′ = 0, we get a section ofP(E). Its image
is directrix of the scroll, a closed subvariety of the scroll that intersects each
generator at one point. Note that not every directrix comes from a section, for
example a generator could be a directrix.

SupposeE → E1 andE → E2 are two surjective maps of locally free sheaves
on a smooth curveX. LetE → E1⊕E2 be the direct sum of the maps andE ′ be
the image of this map which is locally free sinceX is a smooth curve. Assume
that quotient sheaf(E1 ⊕ E2)/E ′ is a skyscraper sheaf. Then the surjection
E → E ′ corresponds to a closed embeddingj : P(E ′) ↪→ P(E). We call the
projective bundleP(E ′) the join of P(E1) and P(E2). We will denote it by
〈P(E1),P(E2)〉. The compositionsE → E ′ → Ei are surjective maps, hence
the projectionsE ′ → Ei are surjective and therefore define closed embedding
P(Ei) ↪→ 〈P(E1),P(E2)〉.

It follows from (1.33) that

ωP(E)/X
∼= π∗(det E)(−r − 1). (10.44)

If X admits a canonical sheafωX , we get

ωP(E)
∼= π∗(ωX)⊗ π∗ det E)(−r − 1). (10.45)

Let ξ = c1(OP(E)(1)). Recall that the Chern classesci(E) can be defined by
using the identity inH∗(P(E),Z) (see [311], Appendix A):

(−ξ)r+1 + π∗(c1(E))(−ξ)r + . . .+ π∗(cr+1(E)) = 0.
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Let d = dimX. Multiplying the previous identity byξd−1, we get

ξd+r =
r+1∑
i=1

(−1)iπ∗(c1(E))ξd+r−i. (10.46)

Assume thatd = dimX = 1. Thenci(E) = 0 for i > 1 andc1(E) can be
identified with the degree ofdet E (the degree ofE). Sinceξ intersects the
class of a general fibre with multiplicity 1, we obtain

ξr+1 = deg E . (10.47)

Since|OP(E)(1)| gives a finite map of degree 1, the degree of the scrollS =
f(P(E)) is equal toξr+1. Also E = ν∗(S∨G), hence

deg E = ν∗(c1(S∨G)) = ν∗(σ1) = deg ν(X) = degX0,

where the latter degree is taken in the Plücker embedding ofG. This gives

degS = degX0. (10.48)

The formula is not anymore true ifd = dimX > 1. For example, ifd = 2,
we get the formula

degS = ξr+2 = π∗(c1(E))ξr+1 − π∗(c2(E))ξr

= π∗(c1(E)2 − c2(E))ξr = c21(E)− c2(E) = ν∗(σ2),

whereσ2 is the special Schubert class.

Example10.4.1 Exercise 19.13 from [307] asks to show that the degree ofSX
may not be equal todegX0 if dimX0 > 1. An example is the scrollS of lines
equal to the Segre varietys2,1(P2 × P1) ⊂ P5. Its degree is equal to 3. If we
identify the spaceP5 with the projective space of one-dimensional subspaces
of the space of matrices of size2 × 3, the Segre variety is the subvariety of
matrices of rank 1. If we take homogeneous coordinatest0, t1, t2 in P2 and
homogeneous coordinatesz0, z1 in P1, thenS is given by

rank

(
t0z0 t1z0 t2z0
t0z1 t1z1 t2z1

)
≤ 1.

When we fix(t0, t1, t2), the parametric equation of the corresponding line in
P5 is z0[t0, t1, t2, 0, 0, 0]+ z1[0, 0, 0, t0, t1, t2]. The Pl̈ucker coordinates of the
line are equal topi4+j = titj , 0 ≤ i ≤ j ≤ 2, with other coordinates equal
to zero. Thus we see that the varietyX parameterizing the generators ofS
spans a subspace of dimension 5 inP9 and is isomorphic to a Veronese surface
embedded in this subspace by the complete linear system of quadrics. This
shows that the degree ofX is equal to 4.
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From now on we shall assume thatX = C is a smooth curveC so that
the mapν : C → C0 ⊂ Gr(Pn) is the normalization map of the curveC0

parameterizing generators.
Let S1 andS2 be two scrolls in|E| corresponding to vector bundlesE1 and
E2 of ranksr1 andr2 and surjectionsE∨ ⊗ OX → E1 andE∨ ⊗ OX → E2.
Let 〈P(E1),P(E2)〉 be the join inP(E∨ ⊗ OX) = X × |E| andS be the
projection of the join to|E| = P(E∨). It is a scroll in|E| whose generators
are the joins of the corresponding generators ofS1 andS2. Let {x1, . . . , xm}
be the support of the sheafE1 ⊕E2/E ′ andhi be the dimension of the quotient
at the pointxi. Two generators corresponding to a pointx 6∈ {x1, . . . , xm}
span a linear subspace of expected dimensionr1 + r2 + 1. The generators
corresponding to a pointxj span a subspace of dimensionr1 + r2 − h1. The
scrollS is denoted by〈S1, S2〉 and is called thejoin of scrollsS1 andS2. Since
deg E ′ = deg E1 + deg E2, we obtain

deg〈S1, S2〉 = degS1 + degS2 −
m∑
i=1

hi. (10.49)

Let us consider some special examples.

Example10.4.2 Let E∨i ⊗ OC → Ei define scrollsSi in |Ei|, i = 1, 2.
Consider the surjectionE∨ ⊗OC = (E∨1 ⊕E∨2 )⊗OC → E1 ⊕ E2. It defines
the scroll equal to the join of the scrollS1 ⊂ |E1| ⊂ |E| and the scrollS2 ⊂
|E2| ⊂ |E|. Its degree is equal todegS1 + degS2. For example, letEi be
an invertible sheaf onC defining a closed embeddingτi : C ⊂ |Ei| so that
Si = τi(C) are curves of degreeai spanningEi. Then the join ofS1 andS2 is
a surface of degreea1 + a2 with generators parameterized byC. Specializing
further, we takeC = P1 andEi = OP1(ai) with a1 ≤ a2. The scroll〈S1, S2〉
is the rational normal scrollSa1,a1+a2−1. Iterating this construction we obtain
rational normal scrollsSa1,...,ak,n ⊂ Pn, wheren = a1 + . . .+ ak − k + 1.

Example10.4.3 Suppose we have two scrollsS1 andS2 in Pn = |E| defined
by surjectionsαi : E∨ ⊗ OCi

→ Ei, where rankEi = ri + 1. Let Γ0 ⊂
C1 × C2 be a correspondence of bidegree(α1, α2) andµ : Γ → Γ0 be its
normalization map. Letpi : Γ→ Ci be the composition ofµ and the projection
mapsC1×C2 → Ci. Consider the surjectionsp∗i (αi) : E∨⊗OΓ → p∗i Ei. Let
〈P(p∗1E1),P(p∗1E1)〉 be the corresponding join in|E|. LetS be the image of the
join in |E|. We assume that it is a scroll whose generators are parameterized
by an irreducible curveC0 ⊂ Gr1+r2−1(|E|) equal to the closure of the image
of the mapφ : Γ → Gr1+r2−1(|E|) defined byφ(z) = ν1(p1(z)), ν2(p1(z)).
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Let a be the degree of this map. Then

degS =
1
a
(α1 degS1 + α2 degS2 − h),

where

h = h0(Coker(µ∗(E∨ ⊗OΓ → p∗1E1 ⊕ p∗2E2))).

Here are some special examples. We can take forS1 andS2 two isomor-
phic curves inPn of degreesd1 andd2 intersecting transversally atm points
x1, . . . , xm. Let Γ be the graph of an isomorphismσ : S1 → S2. Let h be the
number of pointsx ∈ S1 such thatσ(x) = x. Obviously, these points must
be among the pointsxi’s. Assume thatx1 andσ(t1) do not lie on a common
trisecant for a general pointx1 ∈ S1. Thenh0 = 1 and the scrollS is a scroll
of lines of degreed1 + d2 − h. We could also takeS1 = S2 andσ be an auto-
morphism ofS1 with h fixed points. Then the degree of the scrollS is equal to
2d− h if σ2 is not equal to the identity and12 (2d− h) otherwise.

10.4.2 Cayley-Zeuthen formulas

From now on, until the end of this Chapter, we will be dealing only with scrolls
with one-parameter familyC0 of generators. A two-dimensional scroll is called
a ruled surface. This classical terminology disagrees with the modern one,
where a ruled surface means aP1-bundleP(E) over a smooth projective curve
(see [311]). Our ruled surfaces are their images under a degree 1 morphism
given by a linear system in|OP(E)(1)|.

Let ν : C → C0 be the normalization map andE = ν∗(S∨C0
). The projective

bundleP(E) is isomorphic to the normalization of the ruled surfaceS defined
by the curveC0 ⊂ G1(Pn).

Let us remind some well-known facts about projective1-bundlesX = P(E)
over smooth curves which can be found in [311], Chapter V,§2.

After tensoringE with an appropriate invertible sheaf we may assume that
E is normalizedin the sense thatH0(C, E0) 6= {0} butH0(C, E0 ⊗ L) = {0}
for any invertible sheafL of negative degree. In this case the integere =
−deg E ≥ 0 is an invariant of the surface and the tautological invertible sheaf
OP(E)(1) is isomorphic toOX(E0), whereE2

0 = −e. If e < 0 the curve
E0 is the unique curve onX with negative self-intersection. It is called the
exceptional section.

Let σ0 : C → X be the section ofπ : X → C with the image equal to
E0. Thenσ∗0OX(E0) ∼= OC(e). If we identify E0 andC by means ofσ0,
thenOC(e) ∼= OX(E0) ⊗ OE0 so thatdeg e = e. A sectionσ : C → X is



626 Geometry of Lines

equivalent to a surjection of locally free sheavesE → L ∼= σ∗OX(σ(C)). In
particular,degL = σ(C)2. The canonical class ofX is given by the formula

KX ∼ −2E0 + π∗(KC + e) (10.50)

which is a special case of (1.33).
Let |H| be a complete linear system of dimensionN > 2 on P(E) defined

by an ample sectionH. Sinceπ∗(OX(H)) = E ⊗ L for some invertible sheaf
L, we can write

H ∼ E0 + π∗(a)

for some effective divisor classa on C of degreea. SinceH is irreducible,
intersecting both sides withE0 we find thata ≥ e. Using the Moishezon-
Nakai criterion of ampleness it is easy to see thatH is ample if and only if
a > e. We shall assume thatH is ample. Assume also thata is not special in
the sense thatH1(C,OC(a)) = 0 and|e + a| has no base points onC. Then
the exact sequence

0→ OX(π∗(a))→ OX(H)→ OE0(H)→ 0

shows that the restriction of|H| to E0 is a complete linear system without
base points. It is clear that any possible base point of|H| must lie onE0,
hence under the above assumptions|H| has no base points. It defines a finite
mapf : X → S ⊂ PN . The surfaceS is a linearly normal surface inPN swept
by lines, the images of fibres. The family of lines is defined by the image ofC

in G1(PN ). The next Proposition shows that the map is of degree 1, henceS

is a ruled surface.

Proposition 10.4.1 Let |H| be an ample section onX = P(E) and |V | be a
linear system in|H| that defines a finite mapf : P(E) → S ⊂ PN . Then the
degree of the map is equal to 1.

Proof Supposef(x) = f(y) for some general pointsx, y ∈ X. Let Fx and
Fy be the fibres containingx andy. Since|H| has no base points, its restriction
to any fibre is a linear system of degree 1 without base points. Suppose the
degree of the map is greater than 1. Take a general fibreF , then, for any general
pointx ∈ F , there is another fibreFx such thatf(Fx) andf(F ) are coplanar.
This implies that there exists a divisorH(x) ∈ |H − Fx − F |. We can write
H(x) = Fx + F + R(x) for some curveR(x) such thatR(x) · Fx = R(x) ·
F = 1. When we movex alongF we get a pencil of divisorsH(x) contained
in |H − F |. The divisors of this pencil look likeFx + R(x) and hence all
have singular point atR(x) ∩ Fx. Since the fibreFx moves withx, we obtain
that a general member of the pencil has a singular point which is not a base
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point of the pencil. This contradicts Bertini’s Theorem on singular points [311],
Chapter 3, Corollary 10.9.

Corollary 10.4.2 Let S be an irreducible surface inPN containing a one-
dimensional irreducible family of lines. SupposeS is not a cone. ThenS is a
ruled surface equal to the image of projective bundleP(E) over a smooth curve
C under a birational morphism given by a linear subsystem in|OP(E)(1)|.

Proof Let C0 ⊂ G1(Pn) be the irreducible curve parameterizing the family
of lines andν : C → C0 be its normalization. The preimage of the univer-
sal familyZC0 → C0 is a projective bundleP(S∨C0

) overC. SinceS is not
a cone, the mapf : P(E) → S is a finite morphism. The map is given by
a linear subsystem of|OP(E)(1)|. Sincef is a finite morphism, the line bun-
dleOP(E)(1) = f∗(OP(SC0 )∨(1)) is ample. It remains to apply the previous
Proposition.

An example of a nonsingular quadric surface seems contradicts the previous
statement. However, the variety of lines on a nonsingular quadric surface is
not irreducible and consists of two projective lines embedded inG1(P3) as the
union of two disjoint conics. So the surface has two systems of rulings, and it
is a two-way scroll.

It follows from (10.48) that the degree of the ruled surfaceS = f(P(E))
is equal to the degree ofC in the Pl̈ucker space. It is also equal to the self-
intersectionH2 of the tautological line bundle onP(E). The latter is equal to
H2 = (E0 + aF )2 = 2a− e. The genus ofC is called thegenusof the ruled
surface.

Proposition 10.4.3 Let S = f(P(E)) ⊂ Pn be a projection of a minimal
ruled surfaceP(E) embedded in projective space by a linear system|H|, where
H ∼ E0 + π∗(a). Let D be a directrix onS which is not contained in the
singular locus ofS. Then

deg D ≥ deg a− e.

The equality takes place if and only if the preimage ofD onP(E) is in the same
cohomology class asE0.

Proof The assumption onD implies thatdeg D = H · E, whereE is the
preimage ofD on P(E). Intersecting withH we getH · E = E · E0 + a. If
E 6= E0, thenH · E ≥ a, if [E] = [E0], thenE · E0 = a − e. The equality
takes place if and only ifE · E0 = 0 ande = 0. SinceE is a section, we can
write [E] = [E0] +m[F ], and intersecting withE0, we getm = 0.
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Sincef : P(E)→ S is of degree 1, the ruled surface is non-normal at every
point over which the map is not an isomorphism.

Recall thedouble-point formulafrom [253], 9.3. Let f : X → Y be a
morphism of nonsingular varieties of dimensionsm andn, respectively. LetZ
be the blow-up of the diagonal ofX ×X andR be the exceptional divisor. We
think about points inR as points inX together with a tangent directiontx atx.
Let D̃(f) be the proper transform inZ of the fibred productX×Y X ⊂ X×X.
One can view points iñD(f) as either pointsx ∈ X such that there exists
x′ 6= x with f(x) = f(x′), or as points(x, tx) such thatdfx(tx) = 0. Let
D(f) be the image of̃D(f) under one of the projectionsX ×Y X → X. This
is called thedouble-point setof the morphismf . Define thedouble point class

D(f) = f∗f∗[X]− (c(f∗TY )c(TX)−1)n−m∩ [X] ∈ Hn−m(X,Q), (10.51)

wherec denotes the total Chern class[X] + c1 + . . .+ cm of a vector bundle.
In caseD(f) has the expected dimension equal to2m− n, we have

D(f) = [D(f)] ∈ Hn−m(X,Z).

Assume now thatf : X → S is the normalization map andS is a surface
in P3. SinceS is a hypersurface, it does not have isolated non-normal points.
This implies thatD(f) is either empty, or of expected dimension2m−n = 1.
The double point class formula applies, and we obtain

[D(f)] = f∗(S) + f∗(KY )−KX . (10.52)

In fact, it follows from the theory of adjoints (see [395]) that the linear equiv-
alence class ofD(f) is expressed by the same formula.

We say that a surfaceS in Pn hasordinary singularitiesif its singular locus
is a double curveΓ onS. This means that the completion of the local ring of
S at a general point ofΓ is isomorphic toC[[z1, z2, z3]]/(z1z2). The curveΓ
may have alsopinch pointslocally isomorphic toC[[z1, z2, z3]]/(z2

1 − z2z3)
and also triple points locally isomorphic toC[[z1, z2, z3]]/(z1z2z3). The curve
Γ is nonsingular outside triple points, the curveD(f) is nonsingular outside
the preimages of the triple points. It has3 double points over each triple point.

Under these assumptions, the mapD̃(f) → D(f) → Γ is of degree 2. It is
ramified at pinch points only, and the preimage of a triple point consists of 6
points.

Assume thatS is a surface inP3 with ordinary singularities. Letf : X → S

be the normalization map, andΓ be the double curve ofS. The degree of any
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curve onX, is the degree with respect tof∗(OP3(1)). Let us introduce the
following numerical invariants in their classical notation:

• µ0 = the degree ofS;
• µ1 = the rank ofS, the class of a general plane section ofS;
• µ2 = the class ofS;
• ν2 = the number of pinch-points onS;
• t = the number of triple points onS;
• ε0 = deg Γ;
• ε1 = the rank ofΓ, the number of tangents toΓ intersecting a general line

in P3;
• ρ = theclass of immersionof Γ equal to the degree of the image ofD(f)

under the Gauss mapG : X → S
γ→ (P3)∨, whereγ is the Gauss map.;

• g(Γ) = the genus ofΓ;
• c = the number of connected components ofΓ;
• κ = the degree of the ramification divisorp : X → P2, wherep is the

composition off and the general projection ofS.

The following Theorem summarizes different relations between the listed
invariants ofS. These relations are called theCayley-Zeuthen formulas.

Theorem 10.4.4 The following relations hold:

(i) µ1 = µ0(µ0 − 1)− 2ε0;
(ii) ε0(µ0 − 2) = ρ+ 3t;
(iii) µ1(µ0 − 2) = κ+ ρ;
(iv) 2g(Γ)− 2c = ε1 − 2ε0;
(v) ν2 = 2ε0(µ0 − 2)− 6t− 2ε1;
(vi) 2ρ− 2ε1 = ν2;
(vii) µ2 = µ0(µ0 − 1)2 + (4− 3µ0)ε1 + 3t− 2ν2;
(viii) 2ν2 + µ2 = µ1 + κ.

Proof (i) A general plane section ofS is a plane curve of degreeµ0 with ε0
ordinary double points as singularities. Thus (i) is just the Plücker formula.
Note also thatµ1 is equal to the degree of thecontact curve, the closure of
smooth pointsp ∈ S such that a general pointq ∈ P3 is contained inTp(S),
or, equivalently, the residual curve toΓ of the intersection ofS and the first
polarPq(S). Taking a general planeH and a general pointq ∈ H, we obtain
thatdeg ∆ is equal to the class ofH ∩ S.

(ii) The numberρ is equal to the number of tangent planes toS at points
in Γ which pass through a general pointq in P3. Here a tangent plane to a
singular pointp ∈ Γ means the tangent plane to one of the two branches ofS
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atq, or, equivalently, the image of a preimage ofp onX under the Gauss map.
Consider the intersection of the second polarPq2 with the contact curveΓ. It
follows from subsection1.1.3thatPq2(S) ∩ S is equal to the locus of points
p such that the linepq intersectsS atp with multiplicity ≥ 3. This means that
Pq2(S)∩Γ consists oft triple points and points such thatq belongs to a tangent
plane ofS atp. The latter number is equal toρ. As we observed in subsection
1.1.3, Pq2 has a point of multiplicity3 atp, hence each triple point enters with
multiplicity 3 in the intersection ofpq with Γ. It remains to use that the degree
of the second polar is equal toµ0 − 2.

(iii) Now let us consider the intersection of the second polarPq2(S) with the
contact curve∆. This intersection consists of the linesqp such thatp is either
one ofκ ramification points of the projection of the surface fromq or p is one
of ρ points onΓ ∩∆, where the tangent plane containsp. In fact, these points
lie on the intersection of∆ andΓ.

(iv) - (vi) Let π = h1(OD(f)) be the arithmetic genus of the curveD(f) and
s be the number of connected components ofD(f). Applying (10.52), we get

−2χ(D(f),OD(f)) = 2π − 2c = (D(f) +KX) ·D(f)

= (µ0 − 4) degD(f) = 2ε0(µ0 − 4).

The curveD(f) has3t ordinary double points and the projection from the
normalization ofD(f) to Γ is a degree 2 cover ramified atν2 points. Applying
the Hurwitz formula, we obtain2π−2c−6t = 2(2g(Γ)−2c)+ν2. Projecting
Γ from a general line defines a degreeε0 map from the normalization ofΓ to
P1. The number of ramification points is equal toε1. Applying the Hurwitz
formula again, we get2g(Γ)− 2c = −2ε0 + ε1. This gives (iv) and also gives

ν2 = 2ε0(µ0 − 4)− 6t− 2(2g(Γ)− 2c) = 2ε0(µ0 − 4)− 6t− 2ε1 + 4ε0

= 2ε0(µ0 − 2)− 6t− 2ε1.

This is equality (v). It remains to use (ii) to get (vi).
(vii) The formula for the class of a non-normal surface with ordinary singu-

larities has a modern proof in [253], Example 9.3.8. In our notation, it gives
(vii).

(viii) We have

µ2 = µ0(µ0 − 1)2 + (4− 3µ0)ε1 + 3t.

Using this and (i), we get

µ2 + 2ν2 = (µ0 − 1)(µ1 + 2ε0) + 4ε0 − 3µ0ε0
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= µ0µ1 − µ1 + 2ε0 + ρ− ε0µ0 + 3t.

It remains to use (ii) and (iii).

Corollary 10.4.5 LetS be a surface inP3 with ordinary singularities andX
be its normalization. Then

(i) K2
X = µ0(µ0 − 4)2 − (3µ0 − 16)ε0 + 3t− ν2;

(ii) c2(X) = µ0(µ2
0 − 4µ0 + 6)− (3µ0 − 8)ε0 + 3t− 2ν2;

(iii) χ(X,OX) = 1 +
(
µ0−1

3

)
− 1

2 (µ0 − 4)ε0 + 1
2 t−

1
4ν2.

Proof (i) Applying (10.52), we get

KX = (µ0 − 4)H −D(f), (10.53)

whereH ∈ |f∗(OP3(1))|. The first polar ofS with respect to a general point
cuts out onS the union ofΓ and∆. Taking the preimages onX, we get

(µ0 − 1)H = D(f) + f∗(∆).

It follows from the local computation thatΓ and∆ intersect simply atν2 pinch
points andρ additional points (see the proof of (iii) in Theorem10.4.4). This
gives

D(f)2 = (µ0 − 1)H ·D(f)− ρ− ν2 = 2ε0(µ0 − 1)− ρ− ν2

= 2ε0(µ0 − 1)− ε0(µ0 − 2) + 3t− ν2 = ε0(µ0 − 2) + 3t− ν2.

Hence

K2
X = (µ0 − 4)2µ0 − 4(µ0 − 4)ε0 +D(f)2

= (µ0 − 4)2µ0 − (3µ0 − 16)ε0 + 3t− ν2.

(ii) The preimage of a pinch point onX is a point inX such that the rank of
the tangent mapTX → f∗(TP3) drops by 2. According to the modern theory
of degeneracy loci (see [253]), this set is given by the relative second Chern
classc2(f∗(TP3)/TX). Computing this Chern class, we find

ν2 = c1(X)2 − c2(X) + 4KX ·H + 6µ0.

Applying (10.53), we get

ν2 = K2
X − c2(X) + 4(µ0 − 4)µ0 − 8ε0 + 6µ0. (10.54)

Together with (i) we get (ii). Formula (iii) follows from theNoether formula

12χ(X,OX) = K2
X + c2(X).
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Next we apply the Cayley-Zeuthen formulas to the case whenS is a ruled
surface inP3 with ordinary singularities andX = P(E). We know thatµ0 is
equal to the degreed of C0 in its Plücker embedding. The next Theorem shows
that all the numerical invariants can be expressed in terms ofµ0 andg.

Theorem 10.4.6 Let S be a ruled surface inP3 of degreeµ0 and genusg.
Assume thatS has only ordinary singularities. Then

(i) ε0 = 1
2 (µ0 − 1)(µ0 − 2)− g;

(ii) ν2 = 2(µ0 + 2g − 2);
(iii) µ1 = 2µ0 − 2 + 2g;
(iv) µ2 = µ0 = µ0;
(v) κ = 3(µ0 + 2g − 2);
(vi) ρ = (µ0 − 2)(2µ0 − 5) + 2g(µ0 − 5);
(vii) t = 1

6 (µ0 − 4)[(µ0 − 2)(µ0 − 3)− 6g];
(viii) ε1 = 2(µ0 − 2)(µ0 − 3) + 2g(µ0 − 6);
(ix) 2g(Γ)− 2s = (µ0 − 5)(µ0 + 2g − 2).

Proof A general plane section ofS is a plane curve of degreed with k =
deg Γ ordinary singularities. This gives (i).

The canonical class formula gives

KP(E) = −2H + π∗(KC̄ + d), (10.55)

whereOC̄(d) ∼= ν∗(OC0(1)) is of degreed = µ0.
Comparing it with formula (10.50), we find that

H ∼ E0 + π∗(f), (10.56)

where2f = d− e. In particular,e+ d is always an even number.
Applying (10.55), we getK2

P(E) = 4µ0 − 4(2g − 2 + µ0). Topologically,

P(E) is the product ofP1 andC. This givesc2(X) = 2(2 − 2g). Applying
(10.54), we find

ν2 = 4µ0−4(2g−2+µ0)−2(2−2g)+4(µ0−4)µ0−4(µ0−1)(µ0−2)−8g+6µ0

= 2(µ0 + 2g − 2).

From (i) of Theorem10.4.4, we get (iii).
To prove (iv) we have to show that the degree ofS is equal to the degree of

its dual surface. The image of a generator ofS under the Gauss map is equal
to the dual line in the dualP3, i.e. the set of hyperplanes containing the line.
SinceS has only finitely many torsor generators, the Gauss map is a birational
map, this shows thatS∗ is a ruled surface. IfS is defined by the vector bundle
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E = S∨G⊗OC0 , then the dual ruled surface is defined by the bundleQG⊗OC0 ,
whereOG is the universal quotient bundle. Exact sequence (10.1) shows that
detQG ⊗ OC0

∼= detS∨G ⊗ OC0 . In particular, the degrees of their inverse
images underν : C → C0 are equal. Thus the degrees ofS andS∗ are equal.

Now (i) and (viii) of Theorem10.4.4and our formula (i) give (v). Using (iii)
and (ii) of the same Theorem, we get formulas (vi) and (vii). Finally, (vi) of
the Theorem gives formulas (viii) and (ix).

The double-point formula gives

OP(E)(D(f)) ∼ OP(E)(µ0 − 2)⊗ π∗(ωC(1)).

A general point ofΓ is contained in two rulings and formula (10.52) implies
that a general ruling intersectsµ0 − 2 other rulings. Consider a symmetric
correspondence onC defined by

T = {(x, y) ∈ C × C : |H − `x − `y| 6= ∅}.

A point (x, x) ∈ T corresponds to a generator which is called atorsal genera-
tor. The plane inP3 cutting out this generator with multiplicity≥ 2 is tangent
to the ruled surface at any smooth point of the generator. For a general point
x, we have#T (x) = d − 2. Since all generators̀y, y ∈ T (x), intersect the
same linè x the pointsy ∈ T (x) lie in the tangent hyperplane ofG1(P3) at the
point x. This implies that the divisor2x + T (x) belongs to the linear system
|OC(1)| and, in particular,T has valence equal to 2. Applying the Cayley-Brill
formula from Corollary5.5.2, we obtain the following

Proposition 10.4.7 The number of torsal generators of a ruled surface inP3

with ordinary singularities is equal to2(µ0 + 2g − 2).

Comparing with Theorem10.4.6, we find that the number of torsal genera-
tors is equal to the numberν2 of pinch points.

Whenn = 4 we expect that a ruled surface has only finitely many singular
non-normal points and forn = 5 we expect that it is nonsingular.

We have already encountered in Example7.2.2with a ruled surfaceS of
degree 8 with a triple curveC as its singular curve. A general plane section
of this surface is a plane curve of degree 8 of genus 3 with 6 triple points.
Applying formula (10.52) we see that the linear equivalence class of the curve
D(f) is equal to2H − π∗(KC + d) for some divisord of degreed. However,
the curveD(f) comes with multiplicity 2, so the curveC in S is the image of
a curveC̃ on ZC from the linear system|H − π∗(f)|, where2f ∼ KC + d.
So, each generator intersects it at 3 points, as expected. One can show that
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d ∼ KC + 2a so thatf ∼ KC + a. Note that the curvẽC defines a(3, 3)-
correspondence on the curveC with the projectionspC andqC toC. Its genus
is equal to19 and each projection is a degree 3 cover ramified at 24 points. In
the case when the divisora is an even theta characteristic, the curveC̃ is the
Scorza correspondence which we studied in section5.5.2.

Next example shows that the double curve of a ruled surface may be discon-
nected.

Example10.4.4 Consider three nonsingular nondegenerate curvesXi, i =
1, 2, 3, in P3 with no two having common points. LetS be the set of lines
intersecting each curve. Let us show that these lines sweep a ruled surface of
degree2d1d2d3, wheredi = degCi. Recall that the set of lines intersecting
a curveX of degreeX is a divisor inG1(P3) of degreed. This is theChow
form of C (see [264]). Thus the set of lines intersecting 3 curves is a com-
plete intersection of three hypersurfaces inG1(P3), hence a curve of degree
2d1d2d3. If we assume that the curves are general enough so that the intersec-
tion is transversal, we obtain that the ruled surface must be of degree2d1d2d3.
The set of lines intersecting two curvesX1 andX2 is a surfaceW in G1(P3)
of degree2d1d2. Its intersection with the Schubert varietyΩ(Π), whereΠ is
a general plane, consists ofd1d2 lines. It follows from the intersection the-
ory onG1(P3) that the intersection ofW with theα-planeΩ(p) is of degree
d1d2. Thus we expect that in a general situation the number of generators of
S passing through a general point onX3 is equal tod1d2. This shows that a
general point ofX3 is a singular point of multiplicityd1d2. Similarly, we show
thatX1 is a singular curve of multiplicityd2d3 andX2 is a singular curve of
multiplicity d1d3.

Remark10.4.1 According to [164], the double curveΓ is always connected
if µ0 ≥ g + 4. If it is disconnected, then it must be the union of two lines.

10.4.3 Developable ruled surfaces

A ruled surface is calleddevelopableif the tangent planes at nonsingular points
of any ruling coincide. In other words, any generator is a torsal generator. One
expects that the curve of singularities is a cuspidal curve. In this subsection we
will give other characterizations of developable surfaces.

Recall the definition of the vector bundle ofprincipal parts on a smooth
varietyX. Let ∆ be the diagonal inX ×X andJ∆ be its sheaf of ideals. Let
p andq be the first and the second projections toX from the closed subscheme
∆m defined by the ideal sheafJm+1

∆ . For any invertible sheafL onX one
defines the sheaf ofm-th principal partsPm(L) of L as the sheafPmX (L) =



10.4 Ruled surfaces 635

p∗q
∗(L) onX. Recall that them-th tensor power of the sheaf of 1-differentials

Ω1
X can be defined asp∗(Jm∆ /Jm+1

∆ ) (see [311]). The exact sequence

0→ Jm∆ /Jm+1
∆ → OX×X/Jm+1

∆ → OX×X/Jm∆ → 0

gives an exact sequence

0→ (Ω1
X)⊗m ⊗ L → PmX (L)→ Pm−1

X (L)→ 0. (10.57)

We will be interested in the case whenX0 = C0 is an irreducible curve of
genusg andX = C is its normalization. By induction, the sheafPmC (L) is a
locally free sheaf of rankm+ 1, and

degPmC (L) = (m+ 1) degL+m(m+ 1)(g − 1). (10.58)

For any subspaceV ⊂ H0(C,L), there is a canonical homomorphism

V → H0(∆m, q∗L) = H0(C, p∗q∗L) = H0(C,PmC (L))

which defines a morphism of locally free sheaves

αm : VC := OC ⊗ V → PmC (L). (10.59)

Note that the fibre ofPmC (L) at a pointx can be canonically identified with
L/mm+1

C,x L and the mapαm at a pointx is given by assigning to a section

s ∈ V the elements mod mm+1
C,x L. If m = 0, we getPmC (L) = L and the

map is the usual map given by evaluating a section at a pointx.
Suppose that(V,L) defines a morphismf : C → P(V ) such that the in-

duced morphismf : C → f(C) = C0 is the normalization map. We have
L = f∗(OP(1)). LetPm ⊂ PmC (L) be the image ofαm. Since the composi-
tion of α1 with the projectionP1

C → L is generically surjective (becauseC0

spansP(V )), the mapα1 is generically surjective. Similarly, by induction, we
show thatαm is generically surjective for allm. SinceC is a smooth curve,
this implies that the sheavesPm are locally free of rankm+1. They are called
theosculating sheaves. Let

σm : C → G(m+ 1, V ∨)

be the morphisms defined by the surjectionαm : VC → Pm. The morphism
σm can be interpreted as assigning to each pointx ∈ C them-th osculating
planeof f(C) at the pointf(x). Recall that it is am-dimensional subspace of
P(V ) such that it has the highest order contact with the branch ofC0 defined
by the pointx ∈ C. One can always choose a system of projective coordi-
nates inP(V ) ∼= Pn such that the branch ofC0 corresponding tox can be
parameterized in the ring of formal power series by

t0 = 1, ti = ti+s1+...+si + highest order terms, i = 1, . . . , n, (10.60)
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wheresi ≥ 0. Then the osculating hyperplane is given by the equationtn = 0.
The codimension 2 osculating subspace is given bytn−1 = tn = 0 and so
on. A pointx ∈ C (or the corresponding branch off(C)) with s1 = . . . =
sn = 0 is called anordinary point, other points are calledhyperosculatingor
stationarypoints . It is clear that a pointx is ordinary if and only if the highest
order of tangency of a hyperplane atx is equal ton. For example, for a plane
curve, a point is ordinary if the corresponding branch is nonsingular and not
an inflection point.

The imageσm(C) in Gm(Pn) is called them-th associated curve. Locally,
the mapσm is given by assigning to a pointx ∈ C the linear subspace ofCn+1

generated bỹf(x), f̃ ′(x), . . . , f̃ (m)(x), wheref̃ : C → Cn+1 is a local lift of
the mapf to a map to the affine space, andf̃ (k) are its derivatives (see [295],
Chapter II,§4).

Let P(Pm) → C × P(V ) be the morphism corresponding to the surjection
αm. The projection of the image toP(V ) is called them-th osculating devel-
opableof (C,L, V ) (or of C0). Form = 1 it is a ruled surface, called the
developable surfaceor tangential surfaceof C0.

Let rm be the degree ofPm. We have already observed that the composi-
tion of the mapσm with the Pl̈ucker embedding is given by the sheafdetPm.
Thus rm is equal to the degree of them-th associated curve ofC0. Also,
we know that the degree of a curve in the GrassmannianG(m + 1, V ∨) is
equal to the intersection of this curve with the Schubert varietyΩ(A), where
dimA = n − m − 1. Thusrm is equal to them-rankof C0, the number of
osculatingm-planes intersecting a general(n−m− 1)-dimensional subspace
of P(V ). Finally, we know that the 1-rankr1 (called therank of C0), divided
by the number of tangents through a general point on the surface, is equal to
the degree of the tangent surface. More generally,rm is equal to the degree of
them-th osculating developable (see [478]). The (n − 1)-rankrn−1 is called
theclassof C0. If we consider the(n− 1)-th associated curve inG(n, n+ 1)
as a curve in the dual projective space|V |, then the class ofC0 is its degree.
The (n − 1)-th associated curveC∨ is called thedual curveof C0. Note that
the dual curve should not be confused with the dual variety ofC0. The latter
coincides with the(n− 2)-th osculating developable of the dual curve.

Proposition 10.4.8 Let r0 = degL = deg f(C). For any pointx ∈ C let
si(x) = si, where thesi’s are defined in(10.60), andki =

∑
x∈C si(x). Then

rm = (m+ 1)(r0 +m(g − 1))−
m∑
i=1

(m− i+ 1)ki
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and
n∑
i=1

(n− i+ 1)ki = (n+ 1)(r0 + n(g − 1)).

In particular,

r1 = 2(r0 + g − 1)− k1.

Proof Formula (10.58) gives the degree of the sheaf of principal partsPmC (L).
We have an exact sequence

0→ Pm → PmC (L)→ F → 0,

whereF is a skyscraper sheaf whose fibre atx ∈ C is equal to the cokernel
of the mapαm(x) : V → L/mC,xL. It follows from formula (10.60) that
dimF(x) is equal tos1+(s1+s2)+. . .+(s1+. . .+sm) =

∑m
i=1(m−i+1)si.

The standard properties of Chern classes give

degPm = degPmC (L)−h0(F) = (m+1)(r0+m(g−1))−
m∑
i=1

(m−i+1)ki.

The second formula follows from the first one by takingm = n in which case
rn = 0 (the surjection of bundles of the same rankVC → Pn must be an
isomorphism).

Adding uprm−1 andrm+1 and subtracting2rm, we get

Corollary 10.4.9

rm−1 − 2rm + rm+1 = 2g − 2− km+1, m = 0, . . . , n− 1, (10.61)

wherer−1 = rn = 0.

The previous formulas can be viewed as thePlücker!formulasfor space
curves. Indeed, letn = 2 andC is a plane curve of degreed and classd∨.
Assume that the dual curveC∨ hasδ ordinary nodes andκ ordinary cusps.
Applying Plücker’s formula, we have

d = d∨(d∨−1)−2δ−3κ = 2d∨+(d∨(d∨−3)−2δ−2κ)−κ = 2d∨+2g−2−κ.

In this cased∨ = r1, d = r0 andκ = k1, so the formulas agree.

Example10.4.5 If Rn is a rational normal curve inPn, then it has no hy-
perosculating hyperplanes (since no hyperplane intersects it with multiplicity
> n). Sorm = (m + 1)(n −m) = rn−m−1. Its dual curve is a rational nor-
mal curve in the dual space. Its tangential surface is of degreer1 = 2(n − 1)
and the(n− 1)-th osculating developable is the discriminant hypersurface for
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binary forms of degreen. For example, forn = 3, the tangential surface of
R3 is a quartic surface with equationQ0Q1 + Q2

2 = 0, whereQ0, Q1, Q2

are some quadrics containingR3. To see this one considers a rational map
P3 99K N∨ ∼= P2 defined by the netN of quadrics containingR3. After we
blow-upP3 alongR3, we obtain a regular mapY → P2 which blows down the
proper transform of the tangential surface to a conic inP2. Its equation can be
chosen in the formt0t1 + t22 = 0. The preimage of this conic is the quartic sur-
faceQ0Q1 +Q2

2 = 0. It containsR3 as its double curve. Also, it is isomorphic
to the discriminant hypersurface for binary forms of degree 3.

Conversely, assume thatC has no hyperosculating hyperplanes. Then all
ki = 0, and we get

n−1∑
m=0

(n−m)(rm−1 − 2rm + rm+1) = −(n+ 1)r0 (10.62)

=
n−1∑
m=0

(n−m)(2g − 2) = n(n+ 1)(g − 1).

This impliesg = 0 andr0 = n.

The computation from the previous example (10.62) can be used to obtain
the formula for the numberW of osculating points of a curveC embedded in
Pn by a linear series of degreed (see also [309], Lemma 5.21).

Proposition 10.4.10 The number of hyperosculating points, counting with
multiplicities, is equal to

W = (n+ 1)(d+ n(g − 1)). (10.63)

Proof Applying (10.61), we obtain

W =
∑
x∈C

n∑
i=1

(s1(x) + . . .+ si(x)) =
n∑
i=0

(n− i+ 1)ki =
n−1∑
i=0

(n− i)ki+1

=
n−1∑
i=0

(n− i)(2g − 2)−
n−1∑
i=0

(n− i)(ri−1 − 2ri + ri+1)

= (n+ 1)n(g − 1) + (n+ 1)d = (n+ 1)(d+ n(g − 1)).

The number
∑n
i=1(s1(x)+ . . .+si(x)) should be taken as the definition of the

multiplicity of an osculating pointx. A simple hyperosculating point satisfies
si(x) = . . . = sn−1(x) = 0, sn(x) = 1.
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Example10.4.6 Let C be an elliptic curve embedded inPn by a complete
linear system|(n + 1)x0|, wherex0 is a point onC. Then the degree ofE is
equal ton + 1 and formula (10.63) givesW = (n + 1)2. This is equal to the
number of(n+1)-torsion points ofC in the group law defined by the choicex0

as the zero point. Of course, each such pointx satisfies(n+1)x ∈ |(n+1)x0|,
and hence is an osculating point. The formula shows that there are no other
osculating points.

In particular, we see thatki = 0 for i < n, hence the degreer1 of the
tangential surface is equal to2(n+ 1). Also, if n > 2, the dual ofC is a curve
of degreer2 = 3(n + 1). It has(n + 1)2 singular points corresponding to
(n+ 1)2 hyperosculating planes.

Example10.4.7 AssumeC is a canonical curve inPg−1. Recall that aWeier-
strass pointof a smooth curve of genusg > 1 is a pointx such that

g∑
i=1

(h0(x) + . . .+ h0(ix)− i) > 0.

Let ai = h0(x) + . . . + h0(ix). We havea1 = 1 andai = i if and only
if h0(x) = . . . = h0(ix) = 1. By Riemann-Roch, this is equivalent to that
h0(KC − ix) = g − i, i.e. the pointx imposes the expected number of condi-
tions for a hyperplane to have a contact withC of orderi atx. A point x is a
Weierstrass point if and only if there existsi ≤ g such that the number of such
conditions is less than expected by the amount equal toai − i. With notation
(10.60), this shows that

s1 + . . .+ si−1 = ai − i, i = 2, . . . , g.

In particular, the pointx is hyperosculating if and only if it is a Weierstrass
point. Applying formula (10.63), we obtain the number of Weierstrass points

W = g(g2 − 1). (10.64)

Sinceh0(2x) = 1 for all points onC (becauseC is not hyperelliptic), we get
k1 = 0. Applying Proposition10.4.4, we obtain that the rankr1 of C is equal
to 6(g − 1).

Assume thatC is general in the sense that all Weierstrass pointsx are simple,
i.e.W (x) = 1. It follows from (7.11) thatsi(x) = 0, i < g−1, andsg−1(x) =
1. Thuskm = 0,m < n, andkn = W = g(g2 − 1). Applying Corollary
7.11, we obtainr1 = 6(g − 1). Also, it follows from the Corollary thatrm =
(m + 2)(m + 1)(g − 1) for 1 ≤ m < g − 2 andrg−2 = g(g − 1)2. The
latter number coincides with the class ofC. For example, ifg = 3, we get
r1 = 12 and the 24 Weiersrass points are cusps ofC. If g = 4, we getr1 = 18
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andr2 = 36. We have 60 hyperosculating planes at Weierstrass points. The
linear system of cubics throughC defines a birational map fromP3 to a cubic
hypersurface inP4 with an ordinary double point. The image of the tangential
surface is the enveloping cone at the node, the intersection of the cubic with
its first polar with respect to the node. Its degree is equal to 6, so the tangential
surface is the proper inverse image of the cone under the rational map.

We refer for the proof of the following Proposition to [478].

Proposition 10.4.11 Letf∨ : C → (Pn)∨ be the normalization of then− 1-
th associated curve off : C → Pn, the dual curve off(C). Then

(i) rm(f∨(C)) = rn−m−1(f(C));
(ii) (f∨)∨ = f ;

(iii) ki(f∨) = ki(f).

Recall from Chapter 1 that the dual variety ofC0 is the closure in(Pn)∨ of
the set of tangent hyperplanes to smooth points ofC0. If t0 = f(x) is a smooth
point, the set of tangent hyperplanes atx is a codimension 2 subspace of the
dual space equal to(n − 2)-th developable scroll of the dual curve. By the
duality, we obtain that the dual of the(n− 2)-th developable scroll of a curve
C0 is the dual curve ofC0. In particular, ifn = 3, we obtain that the dual of
the tangential surface to a nondegenerate curveC0 in P3 is the dual curve of
C0, and the dual of a nondegenerate curveC0 in P3 is the tangential surface of
its dual curve.

Proposition 10.4.12 LetS be a ruled surface inP3. The following properties
are equivalent:

(i) S is a developable surface;

(ii) S is a tangential surface corresponding to some curveC0 lying onS;

(iii) the tangent lines of the curveC0 ⊂ G1(P3) parameterizing the rul-
ings are contained inG1(P3).

Proof (i) ⇒ (ii). Consider the Gauss mapγ : S → (P3)∨ which assigns to a
smooth pointx ∈ S the embedded tangent planeTx(C). Obviously,γ blows
down generators ofS, hence the image ofS is a curveČ0 in the dual space.
This curve is the dual variety ofS. Its dual variety is our surfaceS, and hence
coincides with the tangential surface of the dual curveC0 of Č0.

(ii) ⇒ (iii) Let qC : ZC → C be the projection from the incidence variety
andD ∈ |OZC

(1)|. The tangent plane at points of a ruling`x cuts out the
ruling with multiplicity 2. Thus the linear system|D − 2`x)| is non-empty (as
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always, we identify a ruling with a fibre ofqC). The exact sequence

0→ OZC
(D − 2`x)→ OZC

(D − `x)→ O`x(D − `x)→ 0

shows thath0(Olx(D−`x)) = 1, i.e.|D−`x| has a base pointy(x) on`x. This
means that all plane sections ofS containing`x have residual curves passing
through the same pointy(x) on `x. Obviously, this implies that the pointy(x)
is a singular point ofS and the differential of the projectionpC : ZC → S at
y(x) is not surjective. Applying Proposition10.1.10, we obtain that the tangent
line Tx(C) is contained in theα-planeΩ(y(x)) ⊂ G1(P3).

(iii) ⇒ (i) Applying Proposition10.1.10, we obtain that each̀x has a point
y(x) such that its image inS is a singular point and the differential ofpC at
y(x) is not surjective. This implies thaty(x) is a base point of the linear system
|D − `x| on `x. As above, this shows that|D − 2`x| is not empty and hence
there exists a plane tangent toS at all points of the ruling̀x.

The set of pointsy(x) ∈ `x, x ∈ C is a curveC0 onS such that each ruling
`x is tangent to a smooth point onC0. SoS is the tangential surface ofC0. The
curveC0 is called thecuspidal edgeof the tangent surface. It is a curve onS
such that at its general points the formal completion ofOS,s is isomorphic to
C[[z1, z2, z3]]/(z2

1 + z3
2).

10.4.4 Quartic ruled surfaces inP3

Here we will discuss the classification of quartic ruled surfaces inP3 due to
A. Cayley and L. Cremona. Note that we have already classified ruled surfaces
of degree 3 in Chapter 9. They are non-normal cubic surfaces and there are
two kinds of them. The double curveΓ is a line and the mapD(f) → Γ is an
irreducible (reducible) degree 2 cover. The surfaceZC is isomorphic toF1 =
P(OP1 ⊕OP1(−1)). The linear system|h| which gives the mapf : F1 → P3

is equal to|e0 + 2f|, wheree0 is the divisor class of the exceptional sectionE0

andf is the class of a fibre. The curveD(f) ∈ |h − f| = |e0 + f|. In the first
case the surfaceS has ordinary singularities andD(f) is an irreducible curve.
In the second caseD(f) ∈ |h| and consists of the exceptional section and a
fibre. Now let us deal with quartic surfaces. We do not assume that the surface
has only ordinary singularities. We start with the following.

Proposition 10.4.13 The genus of a ruled quartic surface is equal to0 or 1.

Proof A general plane sectionH of S is a plane quartic. Its geometric genus
g is the genus ofS. If g = 3, the curveH is nonsingular, henceS is normal
and therefore nonsingular. SinceKS = 0, it is not ruled. Ifg = 2, the singular
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curve ofS is a line. The plane sections through the line form a linear pencil
of cubic curves onS. Its preimage on the normalizationX of S is a pencil
of elliptic curves. SinceX is a P1-bundle over a curve of genus2, a general
member of the pencil cannot map surjectively to the base. This contradiction
proves the assertion.

So, we have two classes of quartic ruled surfaces: rational ruled surfaces
(g = 0) andelliptic ruled surfaces(g = 1). Each surfaceS is defined by some
curveC0 of degree 4 inG1(P3). We denote byX the minimal ruled surface
P(E) obtained from the universal familyZC0 by the base changeν : C →
C0, whereν is the normalization map. We will denote byE0 an exceptional
section ofX defined by choosing a normalized vector bundleE0 with P(E0)
isomorphic toX.

We begin with classification of rational quartic ruled surfaces.

Proposition 10.4.14 A rational quartic ruled surface is a projection of a
rational normal scrollS2,5 or S1,5 of degree4 in P5.

Proof Let |h| be the linear system of hyperplane sections on the quartic ra-
tional normal scrollSa,n ∼= Fe. We have|h| = |e0 + kf, wherek > e. Since
h2 = 4, we get2k + e = 4. This gives two solution(e, k) = (0, 2), (2, 1). In
the first case we get the scrollS2,5

∼= F0, in the second case we get the scroll
S1,5
∼= F2.

Let D(f) be the double-point divisor class. We know that the singular curve
Γ on S is the image of a curveD(f) from D(f) onX, whereX = S2,5 or
S1,5. Applying (10.52), this gives

D(f) ∼ 2h− 2f =

{
2e0 + 2f if X = S2,5,

2e0 + 4f if X ∼= S1,5.

Since a general plane section ofS is a rational curve,D(f) andΓ consists of
at most three irreducible components. The linear system

|h| =

{
|e0 + 2f| if X = S2,5,

|e0 + 3f| if X = S1,5,

maps a componentDi of D(f) to an irreducible componentΓi of Γ of degree
di = 1

mi
H ·Di, wheremi is the degree of the mapDi → Γi. The numbermi

is equal to the multiplicity of a general point onΓi as a singular point of the
surface unlessΓi is a curve of cusps. In the latter casemi = 1 butDi enters in
D with multiplicity 2. A fibreFx = π−1(x) could be also a part ofD. In this
caseΓ has a singular point atν(x). If it is an ordinary double point, the fibre
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component enters with multiplicity 1, if it is a cusp, it enters with multiplicity
2. Other cases will not occur. Finally, we use thatdim |h − Di| > 0 if Γi is
contained in a plane, i.e. a line or a conic.

This gives us the following cases making a “rough classification” according
to possible singular locus of the surface.

1. X = S2,5 :

(i) D(f) = D1, d1 = 3;
(ii) D(f) = D1 +D2, D1 ∈ |e0|, D2 ∈ |e0 + 2f|, d1 = 1, d2 = 2;
(iii) D(f) = D1 +D2 + F1 + F2, D1, D2 ∈ |e0|, d1 = d2 = 1;
(iv) D(f) = 2D1, D1 ∈ |e0 + f|, d1 = 1;
(iv)’ D(f) = 2D1, D1 ∈ |e0 + f|, d1 = 3;
(v) D(f) = 2D1 + 2F1, D1 ∈ |e0|, d1 = 1;
(vi) D(f) = 2D1 + F1 + F2, D1 ∈ |e0|, d1 = 2;
(vi)’ D(f) = 2D1 + 2F1, D1 ∈ |e0|, d1 = 2.

2. X = S1,5 :

(i) D(f) = D1, d1 = 3;
(ii) D(f) = E0 +D1 + F,D1 ∈ |e0 + 3f|, d1 = 1, d2 = 2;
(iii) D(f) = 2E0 + 2F1 + 2F2, d1 = 1;
(iv) D(f) = 2D1, D1 ∈ |e0 + 2f|, d1 = 1.

Theorem 10.4.15 There are 12 different types of rational quartic ruled sur-
faces corresponding to 12 possible cases from above.

Proof It suffices to realize all possible cases from above. By Proposition
10.4.14, the different types must correspond to different choices of the cen-
ter of the projection inP5.

Let us introduce some special loci inP5 which will play a role for choosing
the center of the projection.

We will identify curves onF0 with their images inS2,5. A conic directrix is
a curveE ∈ |e0|. Consider the union of planes spanning theE’s. It is a scroll
Σ1 of dimension 3 parameterized by|e0| ∼= P1. Let us compute its degree.
Fix two generatorsF1 andF2 of F0. Then |h − F1 − F2| = |e0|. If we fix
three pairs of generatorsF (i)

1 , F
(i)
2 , i = 1, 2, 3, each spanning aP3, then we

can establish a correspondenceΓ of tridegree(1, 1, 1) on |e0|× |e0|× |e0| such
that the point(x, y, z) ∈ Γ corresponds to three hyperplanes from each linear
system|h − F (i)

1 − F (i)
2 | which cut out the same curveE ∈ |e0|. The three

hyperplanes intersect along the plane spanningE. This shows that our scroll is
the join of three disjoint lines in the dualP5 which can be identified with the
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sameP1. Applying formula (10.49), we obtain that the degree ofΣ1 is equal
to 3.

The next scroll we consider is the unionΣ2 of 3-dimensional spaces spanned
by tangent planes ofS2,5 along points on a fixed generator. This 3-dimensional
space is spanned by the tangent lines of two fixed conic directrices at the points
where they intersect the generator. Thus our scroll is the join of the tangential
scroll of the two directrices with respect to the correspondence between the
directrices defined by the generators. The degree of this scroll is given by the
formula in Example10.4.3. Since the tangent lines of a conic are parameterized
by the conic, and the two conics are disjoint, the degree ofΣ2 is equal to 4.
Obviously,Σ1 is a2-directrix ofΣ2. Since the tangent plane toS2,5 at a point
x is spanned by the generator passing through this point and the tangent line
of the conic directrix passing through this point, we obtain thatΣ2 coincides
with the tangential scroll ofS2,5.

One more scroll is constructed as follows. Consider directrices ofS2,5 de-
fined by the images of curvesΓ3 ∈ |e0 + f|. We identify them with the images.
These are directrices of degree 3. LetΣ3 be the union of tangent planes toS2,5

at the points ofΓ3. These tangent planes can be obtained as joins of tangent
lines ofΓ3 at pointsx ∈ Γ3 and the pointsx′ on a conic directrixE such that
the pointsx, x′ lie on the same generator. ThusΣ3 is obtained by construction
from Example10.4.3as the join of the tangential scroll ofΓ3 and the conic.
The degree of the tangential scroll has been computed there; it is equal to 4.
Thus the degree ofΣ3 is equal to4+2−1 = 5, where we subtracted 1 because
the conic andΓ3 meet at one point dropping the dimension of the join by 1.

Let p` : S2,5 → S be the projection map from a linè. We will use that
any two pointsx1, x2 in the double locusD(f) which are projected to the
same point must lie on a secant ofD(f) which passes through these points and
intersects̀ . The secant becomes a tangent line ifx1 = x2 is a critical point of
p`.

• Type 1 (i).

Take a linè in P5 which intersects the quartic scrollΣ2 at four distinct points
and is not contained in any 3-dimensional space spanned by a cubic directrix
Γ3 ∈ |e0 + f|. LetD be an irreducible component ofD(f) andx be a general
point of D. We know from the classification of all possible components of
D(f) that the degree of the projection map must be 2 or 3. If the degree is
equal to 3, thenD ∈ |e0 + f| is a cubic directrix and its projection is a line.
This implies that̀ belongs to the linear span ofD. By assumption oǹ this
does not happen. So the degree is equal to 2. The map which assigns to a point
x ∈ D the intersection point of̀and the secant passing throughx is a degree 2
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mapD → `. The intersection points of̀with Σ2 are the branch points of this
map. By Hurwitz’s formula, the normalization ofD is a genus 1 curve, hence
the arithmetic genus is≥ 1. The classification of possibleD’s shows that this
could happen only ifD is a nonsingular curve from|2e0 + 2f|. So this realizes
Type 1(i).

The quartic scrollS can be described as follows. Consider a normal ra-
tional cubic curveR3 in P3 and letS be the set of its secants contained in
a non-special linear line complex. The set of secants ofR3 is a surface in
G = G1(P3) of degree 4 in its Plücker embedding. This can be seen by com-
puting its cohomology class inG. A generalα-planeΩ(p) contains only one
secant. A generalβ-planeΩ(Π) contains three secants. This shows that the
degree of the surface of secants is equal to 4. The surface must be a Veronese
surface inP5 because it does not contain lines. The intersection of the sur-
face with a general linear line complex is a curveC of degree 4. It defines a
quartic ruled surfaceSC . Take a pointp ∈ R3 and consider the set of secants
`x, x ∈ C such thatp ∈ `x. The intersection of the Schubert planeΩ(p,P3)
with the Veronese surface is a conic. Its intersection with the linear line com-
plex must consist of 2 lines. Thus each point ofR3 lies on two generators of
the surfaceSC . The curveR3 is the double curve ofS.

• Type 1 (ii).

In this case we takè intersectingΣ1 at some pointx0 in the plane spanned
by some conic directrixD ∈ |e0|. The projection ofD is a line and the map
is 2:1. Note that in this case the pointx0 is contained in two tangents toD so
two of the four intersection points of` andΣ2 coincide. It also shows thatΣ1

is contained in the singular locus ofΣ2. The remaining two points iǹ∩ Σ2

are the branch points of the double coverE′ → `, whereD′ ∈ |e0 + 2f| is
the residual component ofD(f). Arguing as above we see thatD′ is a smooth
rational curve of degree 4. Its projection is a conic.

• Type 1 (iii).

This time we takè intersectingΣ1 at two pointsp1, p2. These points lie in
planesΠ1 andΠ2 spanned by directrix conicsE1 andE2. The projection from
` maps these conics to disjoint double lines ofS. Let us now find two gen-
eratorsF1 andF2 which are projected to the third double line. Consider the
pencilPi of lines in the planeΠi with base pointpi. By intersecting the lines
of the pencil with the conicEi, we define an involution onEi and hence an
involutionγi on the pencil|f| ∼= P1 (interchanging the generators intersecting
Ei at two points in the involution). Now we have two involutions on|f| whose
graphs are curves of type(1, 1). They have two common pairs in the involution
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which give us two generators onS2,5 intersectingEi at two points on a linèi
throughpi. The3-dimensional subspace spanned by`, `1 and`2 contains the
two generators. They are projected to a double line ofS.

• Type 1 (iv).

The image ofD1 onS2,5 is a rational normal cubicR3 spanning a3-planeM
of P5. We project from a general line contained inM . The restriction of the
projection toD1 is a degree 3 map. So the projection ofD1 is a triple line of
S.

Another possibility here is to project from a line directrix` of the tangen-
tial scroll Σ3. Each point oǹ lies in a tangent plane to a cubic directrix
Γ3 ∈ |E0 + F |. So the projection from̀ mapsΓ3 to a rational curveR3

of degree 3 and maps the tangent lines toΓ3 to tangent lines toR3. Thus the
scrollS is a developable quartic surface considered in Example10.4.5. Let us
find a line directrix onΣ3. We know thatΣ3 is equal to the image of a pro-
jective bundleP(E), whereE is a vector bundle overP1 of rank 3 and degree
5. Thusdeg E∨(1) = −5 + 3 = −2, and applying Riemann-Roch, we obtain
h0(E∨(1)) ≥ deg E∨(1) + 3 > 0. This implies that there is a non-trivial map
of sheavesE → OP1(1). Let L be the image of this map. It defines a section
σ : P1 → P(E) such thatσ∗(OP(E)(1)) ∼= L. Thus the restriction ofOP(E)(1)
to D = σ(P1) is of degree≤ 1. SinceΣ3 is a scroll in our definition, the sheaf
OP(E)(1) is ample, hence the degree must be equal to 1. So, the image ofD in
Σ3 is a line directrix.

• Type 1 (v).

This is a degeneration of the previous case. The rational normal cubic degen-
erates into the union of a directrix conic and a generator. The projection is a
degree 2 map on the conic and degree 1 on the line. The double curveΓ is a
triple line. It is a generator and a directrix at the same time. Through each point
on Γ passes two generators other than itself. As in the previous case a plane
containingΓ contains only one of other generators.

• Type 1 (vi).

Consider a hyperplane sectionL ∩ Σ1, whereL contains two generatorsF1

andF2 of S2,5. The quartic curveL ∩ S2,5 consists of the two generators
and a directrix conicD from |e0|. Thus the cubic surfaceL ∩ Σ1 contains a
plane, and the residual surface is a quadricQ containingD. Take a linè in
the 3-dimensional subspaceM spanned byF1 andF2 which is tangent to the
quadricM ∩ Q. The projection from̀ mapsS2,5 to a quartic ruled surface
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with double line equal to the image of the two generatorsF1 andF2 and the
cuspidal conic equal to the image of the directrix conicD.

• Type 1 (vi)’.

The same as in the previous case but we chooseL to be tangent along a gener-
atorF1. The double locus is a reducible cuspidal cubic.

• Type 2 (i).

Type 2 corresponds to projection of the rational normal quartic scrollS1,5
∼=

F2 in P5. The exceptional sectionE0 is a line directrix onS1,5. The curves
from the linear system|e0 +2f| are cubic directrices. The analog of the tangen-
tial scrollΣ2 here is the joinΣ′2 of the tangential surface of a cubic directrixD

with the lineE0. It is the union of 3-dimensional spaces spanned by a tangent
line to D andE0. We know that the degree of the tangential scroll of rational
normal cubic is of degree 4. Thus the degree ofΣ′2 is equal to 4. The rest of
the argument is the same as in case 1 (i). We take` intersectingΣ′2 at 4 distinct
points and not contained in a 3-space spanned by a cubic directrix. The double
curve is a smooth elliptic curve of degree 6 from|2e0 + 4f|.

• Type 2 (ii).

This time we takè intersecting the planeΠ spanned byE0 and a generator
F . We also do not take it in any 3-plane spanned by a cubic directrix. ThenE0

andF will project to the same line onS, the double line. The residual part of
the double locus must be a curveE from |e0 + 3f|. Since no cubic directrix
is a part of the double locus, we see thatE is an irreducible quartic curve. Its
image is a double conic onS.

• Type 2 (iii).

We choose a linè intersecting two planes as in the previous case. Since the
two planes have a common lineE0, they span a 3-dimensional subspace. It
contains 3 lines which are projected to the same line onS, a triple line ofS.

• Type 2 (iv).

Take a cubic curve from|e0+2f| and a line in the 3-dimensional space spanned
by the cubic. The cubic is projected to a triple line.

Remark10.4.2 We have seen that a developable quartic surface occurs in case
1 (iv). Let us see that this is the only case when it may occur.
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The vector bundle of principal partsP1
C(L) must be given by an extension

0→ Ω1
C ⊗ L → P1

C(L)→ L → 0, (10.65)

whereC is a rational cubic inP3 andL = OC(1) ∼= OP1(3). It is known that
the extension

0→ Ω1
C → P1

C → OC → 0,

from which the previous extension is obtained by twisting withL, does not
split. Its extension class is defined by a non-zero element in Ext1(OC ,Ω1

C) ∼=
H1(C,Ω1

C) ∼= C (this is the first Chern class of the sheafOP1(1)). After ten-
soring (10.65) with OP1(−2) we get an extension

0→ OP1(−1)→ P1
P1(L)(−2)→ OP1(1)→ 0.

The locally free sheafE = P1
C(L)(−2) has 2-dimensional space of global sec-

tions. Tensoring withOP1(−1) and using that the coboundary homomorphism

H0(P1,OP1)→ H1(P1,OP1(−2))

is non-trivial, we obtain thatE(−1) has no non-zero sections, henceE is a
normalized vector bundle of degree 0 defining the ruled surfaceP(E). There is
only one such bundle overP1, the trivial bundleOP1 ⊕OP1 . UntwistingE , we
obtain that the sheafP1

R(L) is isomorphic toOP1(2)⊕OP1(2), soP(P1
R(L)) ∼=

F0 and the complete linear system defined by the tautological invertible sheaf
corresponding toP1

R(L) embedsF0 in P5 as the rational normal scrollS2,5.
The double locus classD(f) must be divisible by 2 and the only case when it
happens is case 1 (iv)’.

We can also distinguish the previous cases by a possible embedding of
the quartic curveC0 parameterizing generators ofS in G = G1(P3). Since
degC0 = 4 in the Pl̈ucker embedding, the curve is always contained in a hy-
perplaneL on P5. If furthermore,C0 lies in a codimension 2 subspace, then
this subspace is either contained in one tangent hyperplane ofG or is equal to
the intersection of two tangent hyperplanes (because the dual variety ofG is a
quadric). So we have the following possibilities:

I C0 is a rational normal quartic contained in a hyperplaneL which is not
tangent toG;

II C0 is a rational normal quartic contained in a hyperplaneL which is tangent
to G at a pointO not contained inC0;

III C0 is a rational normal quartic contained in a hyperplaneL which is tangent
to G at a pointO contained inC0;
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IV C0 is a rational quartic curve contained in the intersection of two different
tangent hyperplanes ofG;

V C0 is a rational quartic curve contained in a 3-dimensional subspace through
which passes only one tangent hyperplane ofG. The tangency point is an
ordinary node ofC0.

A quartic surface of type 1 (i) or 1 (iv)’ from Theorem10.4.15belongs to
type I. Following W. Edge [218] we redenote types 1 (i) and 1 (iv)’ with I.

In type 1 (ii) the line component of the double curve is a directrix, so all
generators belong to a linear complex tangent toG1(P3) at the pointO rep-
resenting this directrix. This is Edge’s type II. Through any pointp on the
directrix passes two generators, the pointO belongs to a secant ofC0 formed
by the lineΩ(p,Π), whereΠ is the plane spanned by the two generators. It is
a nonsingular point ofC0. We have Edge’s type II (C).

In case 1(iii) we have two directrices which are not generators. This means
thatC is contained in the intersection of two special linear line complexes tan-
gent toG1(P3) at two points. This is type IV (B). The tangency points corre-
spond to the line directrices onS. The curveC0 is contained in the intersection
of two special linear line complexes which is a nonsingular quadric. The curve
C0 has an ordinary node at the point corresponding to two generators mapped
to a double line onF .

In case 1 (iv), the triple line is a directrix ofS, so we are again in case II
but in this case the pointO intersects theα-planeΩ(p) at three non-collinear
points and intersects theβ-planeΩ(Π) at one point. This is Edge’s type II (A).

In case 1 (v) the double curve is a triple line. One of the generatorsF is
contained inD(f) with multiplicity 2 and is mapped to the triple line. ThusS
is contained in a unique special line complex which is tangent toG at a cusp
of C0. SinceC0 is singular, it is contained in a 3-dimensional space. SoC is
contained in a quadric cone equal to the intersection ofG1(P3) with two linear
line complexes. The singular point of this cone is the singular point ofC0. This
is Edge’s Type III (A).

In case 1 (vi) two generators onS2,5 are projected to a double generator of
S. The curveC0 has an ordinary double point, hence it lies in two linear line
complexes. The double generator is the only line directrix onS. Thus there is
only one special linear line complex containingS and its tangency point is an
ordinary double point ofC0. This is Edge’s Type V (A). In case 1 (vi)’, we
also have Type V (A), only this time the singular point ofC0 is a cusp.

In case 2 (i) the line directrix̀ corresponding toE0 defines a line complex
containingC. Thus we are in case II. The Schubert planeΩ(p,P3), p ∈ `,
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contains only one point, theα-planeΩ(π), ` ⊂ π, contains three points. This
is Edge’s type II (B).

In case 2 (ii) we have a line directrix which is at the same time a generator
g. This shows that we are in case III. The curveC has a cuspidal singularity at
the pointO corresponding to the generatorg. The curveC intersects any plane
Ω(p,P3), p ∈ g, in one point and every planeΩ(π,P3), g ⊂ π, at two points.
This is Edge’s type III (B).

In case 2 (iii) we have a triple line onS formed by the projection of the
line directrixE0 of S2,5 and its two generators. We are in case V, where the
singular point ofC is the singular point of the quadric cone. This is Edge’s
type V (B).

In case 2 (iv) we have a triple line projected from a rational cubic curve. We
have two line directrices ofS, one is a triple line. The curveC is nonsingular.
This is type IV (A) of Edge.

Next, we have to classify elliptic ruled quartic surfaces inP3. Let π : X →
C be a minimal ruled surface with a baseC. We writeX in the formX =
P(E0), whereE0 is a normalized rank 2 locally free sheaf. SinceKC = 0 in
our case, the canonical class formula (1.33) gives

KX = −2e0 + π∗(a). (10.66)

By adjunction formula,0 = E2
0 +KX ·E0 = −E2

0 +deg a. Thus,a = deg a =
e20 ≤ 0.

Let |h| be the linear system onX which defines the normalization mapf :
X → S. We can writeh ≡ e0 + mf, wheref is the class of a fibre. Sinceh
is ample, intersecting both sides withe0, we getm + a > 0. We also have
h2 = 2m+ a = 4. This gives two possibilitiesa = 0,m = 2 anda = −2 and
m = 3. In the second caseh · e0 = 1, hence|h| has a fixed point onE0. This
case is not realized (it leads to the case whenS is a cubic cone). The formula
for the double-point locus givesD(f) ≡ 2h − π∗(d), whered = deg d = 4.
Thus we obtain

H ≡ e0 + 2f, e20 = 0, D(f) ≡ 2e0.

By Riemann-Roch,dim |h| = 3. Sincedim |h−e0| = dim |2f| = 1, we obtain
that the image ofE0 is a line. Since the restriction of|h| to E0 is a linear
series of degree 2, the image ofE0 is a double line. We have two possibilities:
D(f) consists of two curvesE0 + E′0 orD(f) is an irreducible curveD with
h ·D = 4. Since|h−D| = ∅, we obtain that the image ofD is a space quartic,
so it cannot be the double locus. This leaves us with two possible casesD(f)
is the union of two disjoint curvesE0 + E′0 orD(f) = 2E0.
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In the first caseH ·E0 = H ·E′0 = 2 anddim |h−E0| = dim |h−E′0| =
dim |2f| = 1. This shows that the images ofE0 andE′0 are two skew double
lines onS. The curveC is a nonsingular elliptic curve inG1(P3). It spans
a 3-dimensional subspace equal to the intersection of two special linear line
complexes.

SinceX = P(E) has two disjoint sections with self-intersection0, the sheaf
E splits into the direct sumL1 ⊕ L2 of invertible sheaves of degree0. This
easily follows from [311], Chapter V, Proposition 2.9. One of them must have
a nonzero section, i.e. must be isomorphic toOC . So we obtain

X ∼= P(OC ⊕OC(a)),

wheredeg a = 0. Note thatX cannot be the direct productC × P1 because in
this case the image of anyC × {x} must be a double line, in other words, in
this case|H| defines a degree 2 map. So, we havea ∼ 0.

In the second case two double lines come together forming the curve of
tacnodes. In this case the curveC lies only in one special linear line complex.
The pencil of hyperplanes containingC intersects the dual Klein quadric at
one point.

Let σ : E → OC(e) be the surjective map of sheaves corresponding to the
sectionE0. Sincedeg E = deg a = 0, we havedeg Ker(σ) = 0. ThusE can
be given as an extension of invertible sheaves

0→ OC(b)→ E → OC(a)→ 0,

wheredeg b = 0. Suppose this extension splits, thenX has two disjoint sec-
tions with self-intersection zero. By the above, we see that the map defined by
the linear system|h|maps each section to a double line ofS. This leads to the
first case. So in our case, there are no disjoint sections, and hence the extension
does not split. This implies that Ext1(OC(a),OC(b)) = H1(C,OC(e−b)) 6=
{0}. This is possible only ifb ∼ a. SinceE has a non-zero section, we also
haveH0(C,OC(a)) 6= {0}, i.e. e ∼ 0. Thus we obtain thatE is given by a
non-split extension

0→ OC → E → OC → 0.

In fact, it is known that any elliptic ruled surface withe20 = 0 which corre-
sponds to a non-split vector bundle, must be isomorphic to the ruled surface
P(E), whereE is defined by the above extension (see [311], Chapter V, Theo-
rem 2.15).

Let us summarize our classification with the following Table10.1.
HereR3 denotes a curve of degree 3,L denotes a line,K is a conic andG

is a generator.
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Type Double cuve Edge Cremona Cayley Sturm
I (i),(iv)’ R3 I 1 10 III

I (ii) L+K II (C) 2 7 V
I (iii) L+L’+G IV (B) 5 2 VII
I (v) 3L II (A) 8 9 IX
I (iv) 3L III (A) 3 - XI

I (vi),(vi)’ 2L+G V (A) 6 5 VIII

II (i) R3 II (B) 7 8 IV
II (ii) L+K III (B) 4 - VI
II (iii) 3L V (B) 10 6 XII
II (iv) 3L IV (A) 9 3 X

g = 1 L+L’ VI(A) 11 1 I
g = 1 2L VI(B) 12 4 II

Table 10.1Quartic ruled surfaces

A finer classification of quartic ruled surfaces requires to describe the pro-
jective equivalence classes. We refer to [493] for a modern work on this. Here
we only explain, following [52], the fine classification assuming that the dou-
ble curve is a Veronese cubicR3. First, by projective transformation we can
fix R3 which will leave us only with 3-dimensional subgroupG of PGL(4)
leavingR3 invariant. It is isomorphic to PSL(2).

LetN be the net of quadrics inP3 that containsR3. It defines rational map
α : P3 99K N∨. The preimage of a points in N∨, i.e. a pencil inN , is the
base locus of the pencil. It consists of the curveR3 plus a line intersectingR3

at two points. This makes an identification between points inN∨ ∼= P2 and
secants ofR3. The preimage of a conicK in N∨ is a quartic surface which
is the union of secants ofR3. It is a quartic ruled surface. Conversely, every
quartic ruled surfaceS containingR3 as its double curve is obtained in this
way. In fact, we know thatS is the union of secants ofR3 and hence the linear
system of quadrics containingR3 should blow down each secant to a point in
N∨. The preimage of a general line in the plane is a quadric that cuts out onS

a curve of degree8 that consists of the curveR3 taken with multiplicity 2 and
two lines. This shows that the image ofS is a conic. Thus we find a bijection
between quartic surfaces with double curveR3 and conics in the plane. The
groupG is naturally isomorphic to the group of projective transformations
of N∨. It is well-known that the projective representation of PSL(2) in P2

leaves a nonsingular conicC invariant. The quartic surface corresponding toC

is the only quartic surface invariant underG. This is of course the developable
quartic ruled surface (see Example10.4.5). In this way our classification is
reduced to the classification of orbits in the space of nonsingular conicsP5
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under the action of the group PSL(2) of projective automorphisms leavingC
invariant. The orbit space is of dimension2. LetK be a conic different from
C. There are 5 possible cases for the intersectionK ∩ C: 4 distinct points, one
double coincidence, two double coincidences, one triple coincidence and one
quartuple coincidence. Together withC it gives 6 different types. The first type
has two parameters, the cross ratio of 4 points and a point in the pencil of
conics with the same cross ratio. The second type is a one-parameter family.
All other types have finitely many orbits. We refer for explicit equations to
[493] and [52].

There are many direct geometric constructions of quartic ruled surfaces. The
first historical one uses Cayley’s construction of a ruled surface as the union
of lines intersecting three space curves (see Example10.4.4). For example,
taking (d1, d2, d3) = (2, 2, 1) and(a12, a13, a23) = (2, 0, 1) gives a quartic
ruled surface with a double conic and a double line which intersect at one
point. Another construction is due to L. Cremona. It is a special case of the
construction from Example10.4.3, where we take the curvesC1 andC2 of
degree 2. If the two conics are disjoint, a correspondence of bidegree(1, 1)
gives a quartic ruled surface. In the next section we will discuss a more general
construction due to B. Wong [658].

Finally, we reproduce equations of quartic ruled surfaces (see [218], p. 69).

I : Q(xz − y2, xw − yz, yw − z2) = 0,

whereQ =
∑

1≤i≤j≤3

aijtitj is a nondegenerate quadratic form;

II(A) : zy2(ay + bx) + wx2(cy + dx)− ex2y2 = 0;

II(B) : same as in (I) witha2
22 + a22a13 − 4a12a23 + a11a33 = 0;

II(C) : (cyz + bxz + axy + zw − wx)2 − xz(ax− by + cz)2 = 0;

III(A) : ax2y2 − (x+ y)(x2w + y2z) = 0;

III(B) : (xw + yz + azw)2 − zw(x+ y)2 = 0;

IV (A) : x(az + bw)w2 − y(cz + dw)z2 = 0;

IV (B) : y2z2 + axyzw + w2(bz + cx)x = 0,

(yz − xy + awx)2 − xz(x− z + bw)2 = 0;

V (A) : : (yz − xy + axw)2 − xz(x− z)2 = 0;

V (B) : (az2 + bzw + cw2)(yz − xw)− z2w2 = 0;

V I(A) : ax2w2 + xy(bz2 + czw + dw2) + ey2z2 = 0;

V I(B) : (xw − yz)2 + (ax2 + bxy + cy2)(xw − yz) +

(dx3 + ex2y + fxy2 + gy3)x = 0.
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10.4.5 Ruled surfaces inP3 and the tetrahedral line complex

Fix a pencilQ of quadrics inP3 with nonsingular base curve. The pencil con-
tains exactly four singular quadrics of corank 1. We can fix coordinate systems
to transform the equations of the quadrics to the diagonal forms

3∑
i=0

aiti = 0,
3∑
i=0

biti = 0.

The singular points of four singular quadrics in the pencil are the reference
pointsp1 = [1, 0, 0, 0], p2 = [0, 1, 0, 0], p3 = [0, 0, 1, 0], p4 = [0, 0, 0, 1]. For
any point not equal to one of these points, the intersection of polar planes
Px(Q), Q ∈ Q, is a line in P3. This defines a rational mapf : P3 99K
G1(P3) ⊂ P5 whose image is a tetrahedral line complexK (see the end of
section10.3.6). The Pl̈ucker coordinatespij of the linef([t0, t1, t2, t3]) are

pij = (aibj − ajbi)titj .

For any space curveC of degreem not passing through the reference points,
its image under the mapf is a curve of degreed = 2m in the tetrahedral
complex. It defines a ruled surfaceSC in P3 of degree2d, the union of lines
f(x), x ∈ C. If we consider the graphGf ⊂ P3 ×G1(P3) of f , its projection
toG1(P3) is the universal familyZC . Its projection toP3 is our ruled surface.

Let Π be a plane inP3 not containing any of the pointspi. The restriction of
f to Π is given by the complete linear system of conics. Thus, its imagef(Π)
is a Veronese surface embedded inG1(P3) as a congruence of secant lines of
a rational normal curveRΠ in P3. The curveRΠ is the image of the map

φΠ : Q ∼= P1 → P3 (10.67)

which assigns to a quadricQ ∈ Q the intersection of polarsPx(Q), x ∈ Π.
For any line` in Π, the ruled surfaceS` is a quadric containingRΠ. So, one
can identify the net of quadrics containingRΠ with the dual planeΠ∨. More
generally, for any curveC in Π of degreem, the ruled surfaceSC is a surface
of degree2m containingRΠ. Consider a pointx ∈ Π as the intersection point
of two lines`1 and`2 in Π. Then the linef(x) is contained in the intersection
of the two quadricsS`1 andS`2 . Hence it coincides with a secant of the curve
RΠ. Thus, we obtain that generators ofSC are secants ofRΠ. If m = 2, this
gives thatf(C) is the intersection of a Veronese surface with a linear line
complex, a general choice ofΠ gives us quartic surfaces of type I (i).

Take a line` in Π. The quadricS` comes with a ruling on the quadrics
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whose generators are secants ofRΠ. The set of lines inΠ which parameter-
izes singular quadrics containingRΠ is a conic inΠ∨. The dual conicC in Π
parameterizes pencils of quadrics containingRΠ and its line tangent. The cor-
responding ruled quartic surface is the developable quartic surface, a special
case of type I (iii). The points on the line are pencils of quadrics containing
Q`. If ` is tangent toC, then the tangency point is a pencil of quadrics which
all tangent toR3(Π) at one point. The point is the singular point of a unique
singular quadric in the pencil.

The linesf(x), x ∈ `, are generators of the quadricS` which intersectRΠ

at two points. If̀ is tangent toC thenS` is a singular quadric and all the lines
f(x), x ∈ `, pass through its singular point. The curveRΠ also passes through
this point. In this case, the linèintersects a curveC of degreem in Π atm
points different fromC, all the generators ofSC corresponding to these points
must pass through one point onRΠ. The converse is also true, if the generators
f(x), x ∈ C, all pass through the same point onRΠ, then these points lie on
a line tangent toC. Thus we obtain thatRΠ is m-multiple curve onSC . This
agrees with case1(i) of quartic ruled surfaces. Also note thatC intersectsC at
2m points corresponding to generators tangent toRΠ. If m = 2, we get four
torsal generators.

Now, let us see what happens if we choose special planeΠ. For example, let
us takeΠ passing through one of the pointsp1, . . . , p4, sayp1. Then the map
φΠ defined in (10.67) is not anymore of degree 3. In fact, it is not defined at
the quadricQ which hasp1 as its singular point. The map extends to a map of
degree 2. Thus the cubicRΠ degenerates to a conic. The lines inΠ correspond
to quadrics containing the conicRΠ and some line intersecting the conic. This
is a degeneration of the singular curve to the union of a conic and a line.

Finally, let us see how elliptic quartic surfaces arise. TakeΠ passing through
the pointsp1 andp2. Take a nonsingular cubicC in the plane which passes
throughp1 andp2. The linear system of quadrics defining the rational mapf

has two of its base points onC. Thus its image inG1(P3) is a quartic elliptic
curve. We see that a ruled surface o degree 6 which corresponds to a general
cubic degenerates in this case to the union of a quartic surface and two planes
(the images of the blow-ups ofp1 andp2). The cubicRΠ degenerates to a line,
one of the two double lines ofS. A quadric corresponding to a line through
p1 or p2 degenerates to a plane with a choice of a pencil of lines in it. This
plane does not depend on the line, only the pencil of lines in the plane does.
The line passing throughp1 andp2 is blown down underf to a point inG1(P3)
defining the second double line ofSC . This is the intersection line of the planes
corresponding top1 andp2.
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Exercises

10.1Let Pn ⊂ C[t] be the space of polynomials of degree≤ n. Let f0, . . . , fm be a
basis of a subspaceL of Pn of dimensionm + 1. Consider theWronskianof the set
(f0, . . . , fm)

W (f0, . . . , fm) = det

0BBB@
f0 f1 . . . fm

f ′0(t) f ′1(t) . . . f
′
m(t)

...
...

...
...

f
(m)
0 (t) f

(m)
1 (t) . . . f

(m)
m (t)

1CCCA .

Show that the map

Gm(Pn) → P(m+1)(n−m), L 7→ [W (f0, . . . , fm)]

is well defined and is a finite map of degree equal to the degree of the Grassmannian in
its Plücker embedding.

10.2Show that anỳ n+1
2

´
− 1 lines in G1(Pn), n ≥ 3, lie in a linear line complex.

Using this, prove that one can choose coordinates inPn so that any linear line complex
can be given by Plücker equationsp12 + λp34 = 0, whereλ = 0 if and only if the line
complex is special.

10.3Show that the tangent lines of any smooth curve of genusg and degreed in Pn is
contained in a linear line complex if2(d + g − 1) <

`
n+1

2

´
.

10.4Show that anyk-planeΛ of Gr(Pn) coincides with the locus ofm-planes con-
taining a fixed(m− 1)-plane and contained in a fixed(m + k)-plane or with the locus
of m-planes contained in a fixed(k + 1)-plane and containing a fixed(k −m)-plane.
Identify these loci with appropriate Schubert varieties.

10.5Using the previous exercise, show that any automorphism ofGr(Pn) arises from
a unique projective automorphism ofPn unlessn = 2r + 1 in which case PGL(n + 1)
is isomorphic to a subgroup of index 2 of Aut(Gr(Pn)).

10.6How many lines intersect a set ofm generalk-planes inPn?

10.7Show that Seck(G1(Pn)) is equal to the set of singular points of Seck+1(G1(Pn))
for all k = 0, . . . , [n−3

2
].

10.8Using Schwarzenberger vector bundles prove that the projective plane embedded
in G1(Pn) as the surface of secants of a normal rational curve of degreed in Pd is
isomorphic to the Veronese surfaceV2

n−1.

10.9Let Q1andQ2 be two nonsingular quadrics inP3 with a choice of a ruling of lines
on each of them. Any general linèintersectsQ1 ∪ Q2 at four lines, two from each
ruling. Together with̀ , these lines span four planes in the pencil of planes through`.
Show that the closure of the locus of lines` such that the four planes is projectively
equivalent to the four intersection points of` with Q1 andQ2 form a Battaglini line
complex. Also show that any general Battaglini line complex can be obtained in this
way [572].

10.10Show that the linear system of quadrics inP4 passing through a normal rational
quartic curveR4 defines a rational mapsΦ : P4 99K P5 whose image is a nonsingular
quadric inP5 identified with the Klein quadricG(2, 4). Show that:

(i) the secant varietyS1(R4) is mapped to a Veronese surface;
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(ii) the mapΦ extends to a regular map of the blow-up ofP4 alongR4 which maps
the exceptional divisor to a ruled hypersurface of degree6 which is singular along
the Veronese surface;

(iii) the image of a hyperplane inP4 is a tetrahedral line complex;
(iv) the image of a plane inP4 not intersectingR4 is a Veronese surface;
(v) the image of a trisecant plane ofR4 is a plane inG(2, 4). Show that planes from

another family of planes are the images of cubic ruled surfaces singular alongR4.

10.11Show that four general lines inP4 determine the unique fifth one such that the
corresponding points inG1(P4) ⊂ P9 lie in the same three-dimensional subspace. Any
plane which meets four lines meets the fifth line (called theassociated line).

10.12Show that two linear line complexesCω andXω′ in G1(P3) are apolar to each
other if and only ifiω(Xω′) = Cω.

10.13Show that a general web of linear line complexes inG1(P4) contains five special
line complexes.

10.14Let Cω andXω∗ be two apolar linear line complexes inP5. Show that

10.15Show that the projection of the Segre cubic primal from its nonsingular point is
a double cover with branch locus isomorphic to a Kummer surface.

10.16Using the Schubert calculus, show that the variety of lines contained in a cubic
hypersurface inP4 with isolated singularities is a surface of degree 45 in the Plücker
embedding ofG1(P4). Show that the variety of lines contained in the Segre cubic pri-
mal S3 is a surface of degree 45 which consists of 15 planes and 6 del Pezzo surfaces
of degree 5.

10.17LetN be a general 2-dimensional linear system of quadrics inP3. Show that the
union of lines contained in quadricsQ ∈ N is parameterized by a cubic line complex
(called aMontesano line complex)[433].

10.18Let p1, . . . , pnd+1 points inPn in general linear position. Amonoidal line com-
plexconsists of all codimension2 linear subspacesΠ of Pn for which exists a monoidal
hypersurface with singular locus containing toΠ. Using the isomorphismGn−2(Pn) ∼=
G1(Pn), we consider it as a line complex. Show that the degree of a monoidal line
complex is equal to1

2
3d(d− 1) and it coincides with a Montesano line complex when

n = d = 3 [195].

10.19Consider a smooth curveC of degreed and genusg in P3 and choose two general
lines` and`′. Find the degree of the scroll of lines that intersectC, ` and`′.

10.20Let F be a surface of degree 6 inP3 which has the edges of the coordinate
tetrahedron as its double lines. Find an equation ofF and show that its normalization
is an Enriques surface.

10.21Show that the Hessian of a developable quartic ruled surface is equal to the sur-
face itself taken with multiplicity 2. The Steinerian in this case is the whole space [640].

10.22Consider the embedding of the Klein quartic curve of genus 3 inP3 given by the
linear system|3θ|, whereθ is the unique even theta characteristic invariant with respect
to the group of automorphisms of the curve. Show that each hyperosculating point is of
multiplicity 2 and is equal to the image of an inflection point.

10.23Show that a generator intersecting the double curve of a ruled surface at a pinch
point is a torsal generator.

10.24Classify all ruled surfaces inP3 which have two line directrices.
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10.25For each type of a quartic ruled surface find the type of its dual quartic ruled
surface.

10.26Find projective equivalence classes of quartic ruled surfaces with a triple line.

Historical Notes

The main sources for these notes are [402], [409], [571], [473], and [665].
Line Geometry originates from J. Plücker who was the first to consider lines
in the 3-space as elements of a new four-dimensional space. These ideas had
appeared first in [486] and the details were published much later in [488]. The
study of lines inP3 was very much motivated by mechanics and optics. An
early differential geometrical treatment of line geometry can be found in works
of E. Kummer [389] and [390]. The six Pl̈ucker coordinatespij of a line were
first introduced by H. Grassmann in 1844 [288] in a rather obscure notation.
Unaware of the work of Grassmann, in 1859 A. Cayley introduces the coor-
dinates in its modern form as six determinants of a2 × 4-matrix and exhibits
the quadric equation satisfied by the coordinates [83]. In the subsequent paper,
under the same title, he introduced, what is now called, the Chow form of a
space curve. The notions of a linear line complex of lines and a congruence
of lines (the intersection of two linear line complexes) are due to Plücker and
the first proofs of some of his results were given by G. Battaglini [30]. Among
other earlier contributers to theory of general line complexes we cite M. Pash
[474].

Plücker began the study of quadratic line complexes by introducing its sin-
gular quartic surface with 16 nodes. Although in a special case, many Plı̈cker’s
results about quadratic line complexes were independently obtained by Battaglini.
In his dissertation and later published paper [374], Klein introduced the coor-
dinate system determined by six mutually apolar linear line complexes and
showed that the singular surface can be identified with a Kummer surface. The
notion of the singular surface of a quadratic complex is due to Klein. We refer
to [340] and [354] for the history of Kummer surfaces and their relationship
with Line Geometry. We followed [354] in deriving the equation of a Kummer
surface in Klein coordinates.

Plücker defined a linear complex as we understand it now, i.e. as a set of lines
whose coordinates satisfy a linear equation. The set of lines in a linear complex
passing through a pointx lie in a planeΠ(x), this defines a linear correlation
from the space to the dual space. The correlations arising in this way satisfy
the propertyx ∈ Π(x). They were first considered by G. Giorgini [271] and A.
Möbius [432] and were called Nullsystems by von Staudt ([587], p. 191). The
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notions of a null-line and a null-plane belong to Möbius. Chasles’ Theorem
10.2.8gives a purely geometric definition of a Nullsystem [99]. Linear systems
of linear line complexes were extensively studied in Sturm’s book [601].

In 1868, in his Inauguraldissertation at Bonn published later in [374], [377],
F. Klein pointed out that Weierstrass’s theory of canonical forms for a pair of
quadratic forms can be successfully used for the classification of quadratic line
complexes. This was accomplished later by A. Weiler (see also [644], [566]).
The classification consists of 49 different types of line complexes correspond-
ing to different Segre symbols of the pencil of quadrics. As we have already
noticed earlier, the Segre symbol was first introduced by A. Weiler [650] and
Segre acknowledges this himself in [566]. In each case the singular surface
is described. For example, some of the ruled quartic surfaces can be obtained
as singular surfaces of a degenerate quadratic complex. A full account of the
classification and the table can be found in Jessop’s book [354]. Many special
quadratic line complexes were introduced earlier by purely geometric means.
Among them are the tetrahedral line complexes and Battaglini’s harmonic line
complexes [31] considered in the present Chapter. A complete historical ac-
count of tetrahedral line complexes can be found in Lie’s book [402]. Its
general theory is attributed to T. Reye [504] and even they are often called
Reye line complexes. However, in different disguises, tetrahedral line com-
plexes appear in much earlier works, for example, as the locus of normals to
two confocal surfaces of degree 2 [42] (see a modern exposition in [574], p.
376), or as the locus of lines spanned by an argument and the value of a projec-
tive transformation [103], or as the locus of secants of twisted cubics passing
through the vertices of a tetrahedron [443]. We refer to [527] and [314] for the
role of tetrahedral line complexes in Lie’s theory of differential equations and
groups of transformations.

The modern multi-linear algebra originates in Grassmann’s work [287], [288].
We refer to [53] for the history of multi-linear algebra. The editorial notes for
the English translation of [288] are very helpful to understand Grassmann’s
work. As a part of Grassmann’s theory, a linear k-dimensional subspace of a
linear space of dimensionn corresponds to a decomposablek-vector. Its co-
ordinates can be taken as the coordinates of the linear subspace and of the
associated projective subspace ofPn−1. In this way Grassmann was the first
to give a higher-dimensional generalization of the Cayley-Plücker coordinates
of lines inP3. The equations (10.3) of Grassmann varieties could not be found
in his book. The fact that any relation between the Plücker coordinates follow
from these relations was first proven by G. Antonelli [9] and much later by W.
Young [659]. In [551] and [552] H. Schubert defines, what we now call, Schu-
bert varieties, computes their dimensions and degrees in the Plücker embed-
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ding. In particular, he finds the formula for the degree of a Grassmann variety.
A modern account of Schubert’s theory can be found in Hodge-Pedoe’s book
[333], v. II and Fulton’s book [253].

The study of linear line complexes in arbitrary[n] (the classical notation[n]
for Pn was introduced by Schubert in [551]) was initiated in the work of S.
Kantor [364], F. Palatini [465] and G. Castelnuovo [71] (in casen = 4). Pala-
tini scroll was first studied in [466] and appears often in modern literature on
vector bundles (see, for example, [460]). Quadratic line complexes inP4 were
extensively studied by B. Segre [560]. Although ruled surfaces were stud-
ied earlier (more from differential point of view), A. Cayley was the fist who
laid the foundations of the algebraic theory of ruled surfaces [78], [86], [87].
The term scroll belongs to Cayley. The study of non-normal surfaces inP3,
and, in particular, ruled surfaces, began by G. Salmon [533], [534]. Salmon’s
work was extended by A. Cayley [92]. The formulas of Cayley and Salmon
were revised in a long memoir of H. Zeuthen [663]. The fact that the class of
a ruled surface is equal to its degree is due to Cayley. The degree of a ruled
surface defined by three directrices from Examples10.4.4was first determined
by G. Salmon [532]. Cubic ruled surfaces were classified by A. Cayley in [87],
Part II, and, independently, by L. Cremona [154]. The classification of quartic
ruled surfaces were started by A. Cayley [87], Parts II and III. However he had
missed two types. A complete classification was given later by L. Cremona
[160]. An earlier attempt for this classification was made by M. Chasles [103].
The classification based on the theory of tetrahedral line complexes was given
by B. Wong [658]. Ruled surfaces of degree 5 were classified by H. Schwarz
[554]. Much later this classification was extended to surfaces of degree 6 by
W. Edge [218]. Edge’s book and Sturm’s book [600], vol. 1, give a detailed
exposition of the theory of ruled surfaces. The third volume of Sturm’s book
contains an extensive account of the theory of quadratic line complexes.
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mona, Ann. Sci.École Norm. Sup. (4)3 (1970), 507–588.

[181] O. Dersch,Doppeltangenten einer Curventer Ordnung, Math. Ann.7 (1874),
497–511.

[182] L. Dickson,Determination of all polynomials expressible as determinants with
linear elements, Trans. Amer. Math. Soc.,22 (1921), 167–179.

[183] L. Dickson,A fundamental system of covariants of the ternary cubic form, Ann.
Math.,23 (1921), 76-82.

[184] J. Dixmier,On the projective invariants of quartic plane curves, Adv. Math.64
(1987), 279–304.

[185] A. Dixon, Note on the reduction of a ternary quartic to a symmetric determi-
nant, Proc. Cambridge Phil. Soc.2 (1902), 350–351.

[186] A. Dixon, T. Stuart,On the reduction of the ternary quintic and septimic to
their canonical forms, Proc. London Math. Soc. (2)4 (1906), 160–168.

[187] A. Dixon, The bitangents of a plane quartic, Quaterly J. Math.41 (1910), 209–
213.



670 References

[188] A. Dixon, On the lines on a cubic surface, Schur quadrics, and quadrics
through six of the lines, J. London Math. Soc. (1)1 (1926), 170–175.

[189] A. Dixon, A proof of Schl̈afli’s Theorem about the double-six, J. London Math.
Soc. (1)11 (1936), 201–202.

[190] I. Dolgachev,Rational surfaces with a pencil of elliptic curves. (Russian) Izv.
Akad. Nauk SSSR Ser. Mat.301(1966), 1073–1100.

[191] I. Dolgachev,Weighted projective varieties, Group actions and vector fields
(Vancouver, B.C., 1981)’, 34–71, Lecture Notes in Math., 956, Springer, Berlin,
1982.

[192] I. Dolgachev, D. Ortland,Point sets in projective spaces and theta functions,
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HautesÉtudes Sci. Publ. Math.36 (1969), 111–125.

[311] R. Hartshorne,Algebraic geometry, Graduate Texts in Mathematics, No. 52.
Springer-Verlag, New York-Heidelberg, 1977.

[312] R. Hartshorne,Stable reflexive sheaves, Math. Ann.254(1980), 121–176.
[313] B. Hassett,Stable log surfaces and limits of quartic plane curves, Manuscripta

Math.100(1999), 469–487.
[314] T. Hawkins,Line geometry, differential equations and the birth of Lie’s the-

ory of groups. The history of modern mathematics, Vol. I (Poughkeepsie, NY,
1989), 275–327, Academic Press, Boston, MA, 1989.

[315] A. Henderson,The twenty-seven lines upon the cubic surface, Cambridge,
1911.



676 References
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Villars, 1870.
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[412] J. Lüroth, Einige Eigenschaften einer gewissen Gattung von Curven vierten
Ordnung, Math. Ann.1 (1869), 37–53.

[413] F. S. Macaulay,The algebraic theory of modular systems, Cambridge tracts in
mathematics and mathematical physics,19, Cambridge Univ. Press. 1916.

[414] C. MacLaurin,Geometria organica sive descriptivo linearum curvarum uni-
versalis, London, 1720.

[415] C. MacLaurin,De linearum geometricarum proprietatibus generalibus tracta-
tus, Appendix toTreatise of algebra, London, 1748.

[416] L. Magnus,Sammlung von Aufgaben und Lehrsätze aus Analytische Geometrie
des Raumes, Berlin, 1833.

[417] Yu. I. Manin, Cubic forms: algebra, geometry, arithmetic. Translated from
Russian by M. Hazewinkel. North-Holland Mathematical Library, Vol. 4.
North-Holland Publishing Co., 1986.



References 681

[418] R. Mathiews,Cubic curves and desmic surfaces, Trans. Amer. Math. Soc.28
(1926), 502–522.

[419] R. Mathiews,Cubic curves and desmic surfaces. II. Trans. Amer. Math. Soc.
30 (1928), 19–23.

[420] M. Mella, Singularities of linear systems and the Waring problem, Trans.
Amer. Math. Soc.358(2006), 5523-5538.

[421] M. Mella, Base loci of linear systems and the Waring problem, Proc. Amer.
Math. Soc.137(2009), 91-98.

[422] F. Melliez, Duality of (1,5)-polarized abelian surfaces, Math. Nachr.253
(2003), 55–80.

[423] F. Melliez, K. Ranestad,Degenerations of(1, 7)-polarized abelian surfaces,
Math. Scand.97 (2005), 161–187.

[424] J. Mérindol, Les singularit́es simples elliptiques, leurs déformations, les sur-
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Angew. Math.,82 (1976), 1–21.

[508] T. Reye,Ueber lineare Systeme und Gewebe von Flächen zweiten Grades, J.
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Tyurin. Universiẗatsverlag G̈ottingen, G̈ottingen, 2008, pp. 176–213.

[621] J. Todd,Polytopes associated with the general cubic surface, Proc. London
Math. Soc.7 (1932), 200–205.

[622] J. Todd,A note on two special primals in four dimension, Quart. J. Math.6
(1934), 129–136.

[623] J. Todd,On a quartic primal with forty-five nodes, in space of four dimensions,
Quart. J. Math.7 (1936), 169–174.

[624] J. Todd,Combinants of a pencil of quadric surfaces, Proc. Cambridge Phil.
Soc.43 (1947), 475–490;44 (1948), 186–199.



References 691

[625] J. Todd,The complete irreducible system of two quaternary quadratics, Proc.
London Math. Soc.52 (1950), 73–90.

[626] J. Todd,Projective and analytical geometry, Pitnam Pub., New York, 1947.
[627] E. Togliatti,Alcuni esempi di superficie algebriche degli iperspazi che rappre-

sentano un’equazione di Laplace,Comm. Math. Helv.1 (1929), 255–272.
[628] G. Trautmann,Decomposition of Poncelet curves and instanton bundles, An.
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group,323
ring, 570

Ciani, E.,306, 310
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conic
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conics,267
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of degreed− 1, 266
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of a canonical curve,210

manifold,617
contravariant,25, 152
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of a pair of conics,117
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symmetric,351
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355, 383, 472, 562, 572, 653, 660
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determinantal,48, 55, 431
fourfold, 436
in P6, 432
pfaffian,576
symmetroid,447
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absolute invariant,128
canonical equation,131
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dual curve,143
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harmonic,129
Hesse equation,131
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its Hessian curve,139
Legendre equations,129
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in P3, 495
in P4, 495

cubic surface,99
4-nodal,614
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Cremona’s hexahedral equations,518
cyclic, 492, 515
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Eckardt point,491
lines on it,482
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cubic symmetroid,508
cuspidal edge,641
cyclide

curve,445
degenerate surface,445
Dupont surface,471
quartic surface,445

D’Almeida, J.,634
d(ϑ), 243
D(A; u, v), 171
D(f), 628
Dψ , 2
dk, 195
Dr(φ), 180
Dale, M.,46
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its secant variety,432
lines on it,426
marked,395
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Dickson, L.,161, 207, 473, 564
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discrepancy divisor,198
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hypersurface,34
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Durège, H.,161
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dual,357

Euler formula,7
exceptional

curve,390
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fd, 311
Fano variety,72, 123, 292, 293, 395, 559, 589,
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Hacking, P.,537
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Hankel matrix,55
Hankel, H.,55
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conic-locus,126
conjugate,80, 118, 123, 124
cubic curve,129
line complex,610
polar line,131
polynomial

as a pfaffian,67
of degree 2,109

quadruple,118
tensor,64
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Hawkins, T.,659
Heisenberg group,549, 552, 581, 582, 606,
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Henderson, A.,562
Hermite

contravariant,157
covariant,157
curve,159

Hermite, Ch.,157
Hesse

arrangement of lines,131
dual,132

canonical equation
of plane cubic,131

form
of a plane cubic curve,127

group,134
pencil,133
quadrilateral,123
Theorem,123

Hesse, O.,75, 123, 126, 131, 160, 171, 308
Hesse-Salmon configuration,158
Hessian

determinant,4
hypersurface,15
matrix,15
of a binary quartic,69
surface,73
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Hilbert modular surface,558
Hilbert scheme
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of lines,293
of projective plane,90, 123, 144, 146
of projective space,53
punctual,44

Hilbert, D.,53, 76, 504
Hilbert-Birch Theorem,562
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Hoskin, M.,340, 343
Hosoh, T.,564
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and Kummer surface,601
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Iano-Fletcher, A.,214
Iarrobino, A.,41, 45, 53, 57, 76, 344
icosahedron

fundamental set,557
icosahedral set,559

Igusa quartic,608
Iliev, A., 54
incidence variety,568
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automorphisms,609
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