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Abstract

Once upon a time (actually in 1928) a polynomial was born, and it was named ‘Alexan-
der’ after its creator. It caused much excitement, being the first object of its kind to appear in
knot theory, and was universally loved and admired by anyone who had the fortune to use
it. The more people studied it, the more interesting it became. UNTIL... One day, far away in
the deepest darkness of operator algebras and statistical mechanics, another knot polynomial
was born. Named the ‘Jones polynomial’, it quickly became the new favourite for its abilities
to distinguish more knots and for its esoteric beginnings. Disaster struck again a year later
(1985) with the birth of ‘HOMFLY’ which achieved the great feat of generalising both previous
polynomials.

In this talk I would like to pay a tribute to the greatness of the first ever knot polynomial,
and to show that we should not underestimate its continued usefulness in the world of knot
theory.
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1 Penetrating the mists of knotty beginnings

What are knots, and how can we work with them?

1.1 Formalities

Before we go gallavanting into definitions of knot polynomials, we should first be clear in our
minds of the objects we are working with. We all have an intuitive idea of what a knot should be:
a closed loop of string in R3. We also are happy with saying that two knots are the same if one can
be wiggled around, stretched and bent (but not cut or glued) until it coincides with the other one.
Lastly, we are all quite contented to draw 2-dimensional projections of knots and not feel that we
are losing information by doing so. These notions all have to be made rigorous before we can do
anything more interesting.

Definition 1.1 (take 1). We define a knot K as an embedding of S1 in R3, and we say that two
knots are equivalent if there is an isotopy between them (i.e. a homotopy which is an embedding
at every step).

Unfortunately this definition means that any knot is equivalent to the unknot by just pulling the
string tighter and tighter until the knot disappears!

Figure 1: A reason why ’isotopy’ is the wrong notion of equivalence.

Definition 1.2 (take 2). We say two knots K1, K2 are equivalent if they are ambient isotopic, which
means there is a homotopy of (orientation-preserving) homeomorphisms ft : R3 → R3 so that f0

is the identity and f1 carries K1 to K2.

So an ambient isotopy is like an isotopy, except that instead of distorting the embedding we are
distorting all of the ambient space as well. This is enough to take care of bad case we had before
in Figure 1, but we still have a problem with wild knots which have infinitely complicated knotting
going on (Figure 2).

Definition 1.3 (we got there eventually!). A knot is a subset of R3 homeomorphic to S1 and ex-
pressible as a disjoint union of finitely many points (vertices) and open straight arc-segments
(edges). Two knots are equivalent iff they are ambient isotopic.
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Figure 2: A wild knot.

Since a knot can only be made up of finitely many straight-line segments, this eliminates the kind
of ’wildness’ we see in Figure 2.
Now we shall just say a few words on projections of knots.

Definition 1.4. For a knot K in R3, its projection π(K) ⊂ R2 is the projection along the z-axis onto
the xy-plane. The projection is called regular if the preimage of a point of π(K) consists of either
one or two points of K, in the latter case neither being a vertex of K.

Definition 1.5. A regular projection of a knot, together with information about which arc crosses
over/under at each crossing, is called a knot diagram. It is possible to reconstruct the 3-dimensional
knot uniquely from this information.

Fact: If a knot has an irregular projection then it is possible to perturb it by an arbitrarily small
amount to make the projection regular. Thus every knot has a knot diagram.

Generalisations:

• If we consider embeddings Sn ⊂ Sn+2 then we are looking at n-dimensional knots.

• An embedding of a disjoint union of circles into R3 is called a link, and all the following
theory goes through for links of more than one component unless otherwise stated.

1.2 Reidemeister Moves

Something which may have occurred to you on reading about knot diagrams is that there are
many different way one can represent the same knot. For example, the humble trefoil knot can be
drawn in two common ways (see Figure 1.2.
How can we tell if two different diagrams represent the same knot? Actually this is the ultimate
question in knot theory and there is no algorithm for finding the answer to it! But Kurt Reidemeis-
ter (1893-1971) made a good start on the problem by proving that two diagrams representing the
same knot are always related by a sequence of three special moves.
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Figure 3: The humble trefoil.

Theorem 1.6 (Reidemeister’s Theorem). Two knots K1, K2 with diagrams D1, D2 are equivalent
if and only if their diagrams are related by a finite sequence of intermediate diagrams such that
each differs from its predecessor by one of the following three Reidemeister moves:

Type I - Untwist Type II - Pull Apart

Type III - Slide

Figure 4: The Reidemeister Moves

We won’t give a proof of the theorem as it is a bit tedious and not very enlightening. But having
this theorem makes it much easier to find invariants of knots based on diagrams. To check that it
is an invariant, we would only need to show that it doesn’t change under any single Reidemeister
move.
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2 Discovering (and rediscovering) the Alexander polynomial

Definition 2.1. A knot invariant is any function φ of knots which takes the same value on their
equivalence classes. So if φ(K1) 6= φ(K2) then we know that K1 is not equivalent to K2.

It is a pretty cool idea to associate an invariant polynomial with a knot, but how on earth should
we go about doing it? In 1928, James Alexander came up with the first idea.

2.1 Alexander’s Method

1. Take an oriented diagram of a knot K with n crossings, c1, . . . , cn. By Euler’s theorem there
are n + 2 regions, which we label r1, . . . , rn+2.

2. Create an n× (n + 2) matrix where the (i, j)th entry corresponds to the cth
i crossing and the

rth
j region. If a region does not touch a crossing, the entry is zero. Around the crossing we

have the following configurations:

r
i

r
l

r
k

r
j r

l

r
k

r
j

r
i

which correspond to entries
Region ri rj rk rl

Matrix entry t −t 1 −1

3. Remove any two columns which correspond to adjacent regions.

4. Find the determinant of the remaining matrix. This is the Alexander polynomial ∆K(t).

Of course there is going to be some ambiguity in the answer because of the choice we had to make
in Step 3 of columns to delete, but it is easily shown that the answer will only fluctuate by a factor
of ±tm.

2.2 Conway’s Skein Relation

In 1969 John Conway became famous in knot theory for discovering a polynomial which satisfied
a skein relation (we will see what this is in a minute). Unfortunately for him, it turned out that he
had only rediscovered the Alexander polynomial, and not only that, but Alexander himself had
discovered the same thing in the ‘Miscellaneous’ section of his original paper! Nevertheless, it
was a very important paper as it paved the way for the discovery of the Jones polynomial 15 years
later.
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Definition 2.2. The Alexander polynomial for an oriented link L is the Laurent polynomial ∆L(t) ∈
Z[t−1/2, t1/2] given by the following skein relation:

• ∆unknot(t) = 1.

• ∆L+(t)−∆L−(t)− (t1/2 − t−1/2)∆L0(t) = 0, where

??__

L+

??__

L−

__ ??

L0

Example 2.3. Find the Alexander polynomial of the disjoint union of two unknots, i.e. ∆(©©).
We picture this link as L0 and then use the skein relation:
0 = ∆(L+)−∆(L−) + (t1/2 − t−1/2)∆(L0)

= ∆( ) + ∆( ) + (t1/2 − t−1/2)∆(L0)
= ∆(©)−∆(©) + (t1/2 − t−1/2)∆(L0)
= (t1/2 − t−1/2)∆(L0)

⇒ ∆(L0) = 0.

Example 2.4. Find the Alexander polynomial of the Hopf link, i.e. ∆( ).
We picture this link as L+ and use the skein relation (on the top crossing), along with the result
from Example 2.3:

0 = ∆(L+)−∆(L−) + (t1/2 − t−1/2)∆(L0)

= ∆(L+)−∆( ) + (t1/2 − t−1/2)∆( )
= ∆(L+)− 0 + (t1/2 − t−1/2)∆(©)
= ∆(L+) + (t1/2 − t−1/2)

⇒ ∆( ) = t−1/2 − t1/2

Exercise: Find the Alexander polynomial of the trefoil and check that it agrees with your answer
using Alexander’s method!

Remark 2.5. The Alexander polynomial for a knot found using this method will always be a poly-
nomial in Z[t, t−1].

Lemma 2.6. It is always possible to transform a knot diagram into the unknot by changing a finite
number of crossings (and therefore the skein relation given above is sufficient to allow ∆L to be
computed for any knot (and link)).
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Proof. One way to discover a set of changes that will create the unknot is as follows: start at an
arbitrary point P on the knot projection and pretend you are an ant walking over the knot. You
will encounter each crossing twice, so change the crossings so that on the first encounter you are on
the overpass and on the second encounter you are on the underpass. Now use your imagination
once more to imagine a z-axis running into the page. Starting at P , which we give z-coordinate
z = 1, and following the path along the modified knot you will always be decreasing the value
of the z-coordinate, until you are almost back at P . This means you have drawn the unknot in
3-space, completing the proof. �

Remark 2.7. The minimum number of crossing changes required, computed over all possible
diagrams of the knot, is called the unknotting number of the knot.

The polynomial given by this skein relation is often called the ‘Conway-normalised Alexander
polynomial’ because it gives a polynomial uniquely without ambiguity of sign or powers of t.

2.3 Seifert’s Surfaces

This next method of finding the Alexander polynomial may require the most advanced mathe-
matics that we have seen so far, but the rewards are very high. This method is easily generalisable
to knots of higher dimension, and it also yields many more invariants than just the Alexander
polynomial.
What we are going to do is associate a surface with a knot/link and compute a matrix which
contains information about the linking of the homology generators of the surface. A certain deter-
minant of this matrix will then yield the polynomial we want.

Definition 2.8. A Seifert surface of a knot (or link) is an oriented surface whose boundary coincides
with that of the knot.

Theorem 2.9 (Frankl, Pontrjagin, 1930). Every knot is the boundary of an orientable surface.

Proof. (Seifert, 1934)

1. Fix an oriented diagram for the knot.

2. At each crossing of the projection, two strands come in and two go out. Eliminate the cross-
ings by swapping which incoming strand is connected to which outgoing strand. The result
is a set of non-intersecting oriented topological circles called Seifert circles, which, if they
are nested, we imagine being at different heights perpendicular to the plane with the z-
coordinate changing linearly with the nesting.

3. Fill in the circles, giving discs. Now connect the discs together by attaching twisted bands
where the crossings used to be. The twist corresponds to the direction of the crossing in the
knot.
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Clearly this gives us a surface with the knot as its boundary. It remains to prove that it is orientable,
i.e. that it has two distinct sides. Give each Seifert circle the orientation that it inherits from the
knot. If it is clockwise, we paint its upward face blue and its downward face red; vice versa for
an anticlockwise orientation. If two discs are adjacent then they will have opposite orientations,
and the twists in the bands allow us to extend the painting consistently. If one disc is contained in
another, then they have the same orientation and one is above the other (in 3D-space), so the twist
in the bands still allows the colouring to be extended consistently. �

Remark 2.10. The result of this algorithm is sometimes a little hard to visualise for people ap-
proaching the subject for the first time. Thankfully there is an excellent program available on
the web called Seifertview [11] which draws Seifert surfaces obtained using Seifert’s algorithm.
(Requires Windows to run. Check out the ‘rollarcoaster’ function under the Miscellaneous tab!)

Of course, the Seifert surface of a link is not unique in any way, and even Seifert’s algorithm
applied to different link projections will result in different surfaces. Since the surface itself cannot
be an invariant of the link, we need to look for other information given in the Seifert surface.

Definition 2.11. Suppose we have an oriented link L of more than one component, with D a
corresponding diagram. Assign to each crossing of D a sign according to the following rule:

??__

+1

??__

−1

The linking number lk(D) is half of the sum of the signs of the crossings at which the strands are
from different components of the link.

Definition 2.12. Let L be an oriented link of n components and Σ a Seifert surface for L. Take a
basis {[fi]} for H1(Σ; Z). The orientation of Σ determines a normal direction, which we will think
of as being the ‘top’ of the surface. Now, given any simple oriented curve f on Σ, we can form the
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Figure 5: A standard basis for a genus g surface with n boundary components.

positive push off of f , denoted f+, which runs parallel to f and lies just above F . The Seifert matrix
of L is the integer matrix M with (i, j)th entry

mij = lk(fi, f
+
j ).

Remark 2.13. For a link of n components and a Seifert surface of genus g the size of M will be
2g + n − 1. In particular, for a knot we get a 2g × 2g matrix. Imagine a genus g surface with one
boundary component. Around each of the g ‘holes’ there are two homology generators, because a
torus is generated by two circles S1 × S1. Then for each boundary component we add in, we get
an extra homology generator. (See Figure 5.)

So the Seifert matrix encapsulates much of the information of how the knot twists about itself. It is
not an invariant because it depends on the surface chosen for the knot, and also on the homology
basis used in calculating the matrix. But knot theorists know how these actions influence the
resulting matrix (e.g. see [6] pg 81) and so it is easy to construct real invariants from it. The first
of these is our much beloved polynomial.

Definition 2.14. The Alexander polynomial of a link L with Seifert matrix M coming from a con-
nected Seifert surface is given by the formula

∆L(t) .= det(M − tMT )

where MT denotes the transpose of M , and “ .=” means equal up to multiplication by ±tn. For a
link which has a disconnected Seifert surface we define the Alexander polynomial to be zero.

There are still more definitions of the Alexander polynomial, one involving elementary ideals of
presentation matrices and another using a kind of formal calculus on the fundamental group of
the knot complement. But we shall content ourselves with these three for now and see what we
can learn about knots from them.

3 Pretty Properties

In this section we’ll quickly look at some of the nice things that make the Alexander polynomial
so much better than the average run-of-the-mill polynomial.
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Proposition 3.1. (i) ∆K(1) = ±1 for any knot K.

(ii) ∆L(t) .= ∆L(t−1) for any link L.

Proof.

(i) Consider the standard homology basis for a genus g Seifert surface as shown in Figure 5 (with
n = 1). Now (M −MT )ij = lk(fi, f

+
j ) − lk(fj , f

+
i ), and a small amount of calculation will

show you that (M − MT ) consists of blocks of
(

0 1
−1 0

)
along the diagonal and zeros

elsewhere. Thus ∆K(1) = ±det(M −MT ) = ±1.

(ii) Suppose M is an n× n Seifert matrix for L. Then

∆L(t) .= det(M − tMT ) = det(MT − tM) = (−t)n det(M − t−1MT ) .= ∆L(t−1)

�

Actually we can get a unique Alexander polynomial for each knot by insisting that ∆K(1) = 1 and
∆K(t) = ∆K(t−1).

A kind of converse to Proposition 3.1 is the following.

Proposition 3.2. Given any polynomial p ∈ Z[t, t−1] satisfying p(t) = p(t−1) and p(1) = ±1, we
can find a knot K such that p = ∆K .

Proof. Look in, for example [2], Theorem 8.13 (pg 113). �

Proposition 3.3. The Alexander polynomial is multiplicative under connected sum of knots. I.e.
∆K1+K2(t)

.= ∆K1(t)∆K2(t).

Proof. If M1 and M2 are Seifert matrices for K1 and K2 respectively, then
(

M1 0
0 M2

)
is a Seifert

matrix for K1 + K2. �

So, for example, to find the Alexander polynomial of the granny knot (composite of two left-
handed trefoils), we just square the polynomial of the trefoil.

The Alexander polynomial has some nice properties when applied to alternating knots. These are
knots which have a diagram whose crossings alternate between ‘over’ and ‘under’ as you follow
it around.

Proposition 3.4. The Alexander polynomial of an alternating knot is alternating, i.e. the signs of
the coefficients alternate between ‘+’ and ‘-’.
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Proposition 3.5. For an alternating knot, the breadth of the Alexander polynomial (i.e. the differ-
ence between the largest and smallest powers of t) is equal to twice the genus of the knot. Here
the genus of a knot is the minimal genus of all possible Seifert surfaces of the knot.

These last two propositions are quite deep and proofs will not be generally found in textbooks on
knot theory. They were proved by R. Crowell in 1959.

4 Sure it looks pretty, but how useful is it?

The Alexander polynomial had great success on its inception, being able to distinguish all knots
of eight crossings or less. Nowadays we can tabulate all knots of up to 16 crossings, and although
it’s still a pretty good invariant there are classes of knots which it cannot distinguish.

Firstly, and quite importantly, the Alexander polynomial cannot distinguish between knots and
their mirror images.

Lemma 4.1. Let L be an oriented link. Then L and rL, the reflection and reverse of L, have the
same Alexander polynomial. (The reflection of a knot is obtained by changing all over-crossings
to under-crossings and vice versa; the reverse is obtained by changing the orientation of the knot.)

Proof. If M is a Seifert matrix for L, then −M is a matrix for L and MT is a matrix for rL. �

Thus, for example, the Alexander polynomial cannot distinguish between the granny knot (two
left handed trefoils) and the reef knot (one right and one left handed trefoil).

More seriously, there exist non-trivial knots with Alexander polynomial 1, so that the Alexander
polynomial cannot distinguish the unknot. A famous example of such a knot is the Kinoshita-
Terasaka knot, which is actually inscribed on the gates of the Maths department in Cambridge.

Figure 6: The Kinoshita-Terasaka knot, which has 11 crossings and trivial Alexander polynomial.

A more general problem is the phenomenon of mutation. This does not mean that knots morph
into strange evil monsters, but that they differ from each other only in a very tiny way.
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Definition 4.2. Given a diagram of a knot D, draw a disc in the diagram whose boundary inter-
sects the knot in exactly four places. If the part of the knot inside the disc is rotated or reflected,
then the resulting knot is called a mutant of the original knot.

Example 4.3. Here is an example of mutation of the Kinoshita-Terasaka knot. The mutant is called
the Conway knot.

Figure 7: Mutation!

Theorem 4.4. Any knots which are related by mutation have the same Alexander polynomial.

5 Bigger and better polynomials?

We will end by having a look at the other polynomials which appeared in the 1980’s, stealing the
limelight from poor Alexander.
Recall again the skein relation for the Alexander polynomial:

Definition 5.1. The Alexander polynomial for links L is distinguished by the following relations:

• ∆unknot(t) = 1.

• ∆L+(t)−∆L−(t)− (t1/2 − t−1/2)∆L0(t) = 0

The skein relation for the Jones polynomial looks so similar that you may wonder why (a) it took
so long to discover, and (b) why it is so much better!

Definition 5.2. For oriented links L, the Jones polynomial VL ∈ Z[t1/2, t−1/2] is given by the follow-
ing skein relation:

• Vunknot(t) = 1.

• t−1VL+(t)− tVL−(t)− (t1/2 − t−1/2)VL0(t) = 0
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The Jones polynomial has the great advantage over Alexander that it can distinguish knots from
their mirror images. It is also better at distinguishing knots in general, and it is an open problem
whether there exist any non-trivial knots with Jones polynomial 1.

A year after the Jones polynomial arrived on the scene, a group of knot theorists got together and
completely generalised it to a two-variable polynomial. It was named HOMFLY, after the initials
of its creators: Hoste, Ocneanu, Millett, Freyd, Lickorish, and Yetter.

Definition 5.3. For oriented links L, the HOMFLY polynomial P (L) ∈ Z[l±1,m±1] is given by the
following skein relation:

• P (unknot) = 1.

• lP (L+)− l−1P (L−)−mP (L0) = 0

We can recover our other polynomials from HOMFLY as follows:

• ∆L(t) = P (L)(l = 1,m = t1/2 − t−1/2)

• VL(t) = P (L)(l = t, m = t1/2 − t−1/2)

Sadly, even the mighty HOMFLY cannot distinguish mutant knots, and so it not a perfect knot in-
variant. The search is on to find something even better! In the meantime, we should not forget the
important role that the Alexander polynomial has had in shaping knot theory for the past 90 years.

Stay tuned for the next instalment of Geometry Club Knot Theory! Next semester I will talk about
either Braid Theory or Slice Knots & Knot Cobordism, depending on which one I have learnt the
most about over the summer...
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