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Abstract

We display the first two moment functions of the Logitnormal(µ, σ2) family of distribu-

tions, conveniently described in terms of the Normal mean, µ, and the Normal signal-to-noise

ratio, µ/σ, parameters that generate the family. Long neglected on account of the numerical

integrations required to compute them, awareness of these moment functions should aid the

sensible interpretation of logistic regression statistics and the specification of “diffuse” prior

distributions in hierarchical models, which can be deceiving. We also use numerical integra-

tion to compare the correlation between bivariate Logitnormal variables with the correlation

between the bivariate Normal variables from which they are transformed.
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1 Introduction and background

An analytic characterisation of the Logitnormal family of distributions first appeared in

the pathbreaking paper of Johnson (1949a). The features of this important family of dis-

tributions are unknown to many practicing statisticians because they are classified under

the minimally informative name of SB distributions. Following a suggestion of Edgeworth,

Johnson characterised these distributions in terms of a “system of curves” constructed from

transformations of variables that are distributed Normal. This development occurred in the

tradition of the Pearson system and the Charlier system of curves, which were already cur-

rent at the time. The appellation SB family is due to the fact that these distributions have

a “bounded domain”, which distinguishes them from other families. In the case of the Log-

itnormal distributions, the domain is [0,1], while a four-parameter specification of the family

allows the endpoints to vary. While distinguishing this family from others characterised over

unbounded or partially bounded domains, the nomenclature disguises the relevance of the

details of this family to many important areas of applied statistics.

While the Lognormal Distribution is accorded a Chapter in the classic compilation of

Johnson, Kotz and Balakrishnan (1994), the Logitnormal is found within a sub-subsection

of (General) results in Chapter 12. The Logitnormal does not appear in any form in the

popular Wikipedia, nor are its important properties mentioned in the widely-used text of

Agresti (1996) in the relevant Chapter on Logistic Regression.

In the Appendix to his original article, Johnson (1949a, p. 174) remarked that while the

moments of this family of distributions are complicated in form, their numerical computation

is “straightforward though tedious.” A few computations were displayed in a Table.

Our present note merely augments Johnson’s extensive accomplishments of research on

this family of distributions that have been known for more than half a century. The minimal

theoretical detail we review serves only for background. We provide a graphical display of the

first two moment functions over the parameter space, conveniently specified in terms of the

signal-to-noise ratio, µ/σ, and the standard deviation, σ, of the Normal family from which

the Logitnormal distributions are derived. The systematic numerical integrations that pro-

vide these Figures and their constant contours are readily programmed using R or MATLAB

or any number of software systems.
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2 The Logitnormal density and its moments

A variable X is distributed Logitnormal (µ, σ2) over the interval [0, 1] if its logit transfor-

mation, log[X/(1 − X)], is distributed Normal (µ, σ2). The density function for X can be

derived from the Normal density for log[X/(1−X)] using standard transformation methods.

If X ∼ Logitnormal(µ, σ2) then its density function is

f(x) =
1√

2π σ x (1− x)
exp{−1

2
[

log ( x
1−x )− µ

σ
] 2} for x ∈ ( 0, 1 ) . (1)

This density function for X is not symmetric unless µ = 0, in which case E(X) = 1/2.

Generally, the expectation and variance for X are determined by functions of the Normal

parameters, M(µ, σ2) and V (µ, σ2), that do not have algebraic solutions in closed form.

However, we can easily compute values for these functions using numerical integration.

The left side of Figure 1 displays the mean of the Logitnormal(µ, σ2) densities as a

function of the signal to noise parameter, µ/σ, and σ; the right side of the Figure displays

the variances of Logitnormal densities using the same arguments. The left side of Figure 2

displays contours of (µ/σ, σ) pairs that support constant values of the mean at E(X) =

0.6, 0.75, and 0.9, while the right side shows contours supporting values of the variance at

V (X) = 0.01, 0.04, and 0.10. This display is limited to non-negative values of µ/σ due to

the obvious result that if X ∼ Logitnormal(µ, σ2), then (1 − X) ∼ Logitnormal(−µ, σ2).

The functions E(X) = M(µ, σ2) and V (X) = V (µ, σ2) are invertible, so that a specification

of E(X) would determine a contour of supporting (µ/σ, σ) pairs as shown in the left side of

Figure 2, and a specification of V (X) would then identify the appropriate single (µ/σ, σ) pair,

selected from this contour. In applications involving the specification of a prior distribution,

once E(X) is specified, it is usually easier to specify V (X) by examining an array of densities

that support this mean value, as we shall now see.

Figure 3 displays graphs of three Logitnormal densities that support E(X) = .60, to

indicate what members of this family of densities can look like. (The three densities in

Figure 3 correspond to the three parameter pairs identified by small circles along the E(X) =

.6 contour on the left side of Figure 2.) It is interesting to see how the Logitnormal densities

are different from the Beta family of densities. When σ2 is small, the densities are unimodal

and look similar to the Beta(α, β) densities when α and β both exceed 1. However the
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Logitnormal densities always converge to 0 as x → 0+ and as x → 1−. In this way they

differ markedly from the family of Beta(α, β) densities when α and β are both less than

1. These Beta densities have unbounded asymptotes at 0+ and at 1−. The Logitnormal

family contains no members that resemble the Beta(α, β) densities when α ≤ 1 and β ≥ 1,

or vice versa. These characteristics feature in Appendix B of the wider-ranging book of

Kotz and van Dorp (2004). The authors allude to the difficulty of evaluating the moment

integrals. However, their discussion focuses largely on moment estimation procedures which

are similarly cumbersome.

Depending on the size of σ2, a Logitnormal density may be unimodal or bimodal. Large

values of σ2 in the Logitnormal (µ, σ2) specification characterise bimodal distributions for

X with a large variance; small values of σ2 specify unimodal distributions with a small

variance. Specifically, if X ∼ Logitnormal(µ, σ2) then the derivative of the density equals 0

at solutions to the transcendental equation

log ( x
1−x ) = σ2 (2x− 1) + µ .

There are either one or three solutions for x depending on the relative sizes of µ and σ2.

When there are three, the first and third support modal points while the second supports a

relative minimum of the density. This characterisation of bimodality is explicit in Johnson

(1949a, pp. 158-159).

Two of the three example densities with E(x) = 0.6 displayed in Figure 3 are unimodal

with small values of σ. Logitnormal densities become bimodal when σ is large enough. The

scales of the variances for these three densities (noted next to their graphs) are recognisable

from the variance contours and the position of the same three density identifying points

which are circled on the right side of Figure 2.

The extreme values for the variance of a logitnormal density with expectation M are 0 and

M(1−M). The upper bound variance agrees with the variance of a Bernoulli distribution.

The Bernoulli arises as the limit of the Logitnormal family as σ2 →∞. Interestingly, in this

form the limiting density displays adherent masses (agglutinated masses) at 0 and 1. This

analytic concept was developed in de Finetti (1955).
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3 Bivariate Logitnormal Correlations

The bivariate SBB distribution was also introduced in Johnson (1949b), defining a bivari-

ate Logitnormal distribution. A vector of variables (X1, X2, ...XN ) is distributed Logit-

normal (µ,Σ) if the vector of their logit transformations is distributed Multivariate Nor-

mal (µ,Σ). Our contribution here is merely to compare the numerical relation between

the correlation of two Logitnormal variables with the correlation between their bivariate

Normal transformations. Our specific computations pertain to exchangeable bivariate dis-

tributions, having two equal means and variances. This is the context in which we have

recently applied the distribution, and this serves to exemplify a feature of extendible ex-

changeable distributions. We again used numerical integration to identify the correlation

between the two variables X1 and X2 when their joint distribution is specified as bivariate

Logitnormal(µ1 = µ2 ≡ µ, σ2
1 = σ2

2 ≡ σ2, σ12 = ρσ2).

The exchangeable bivariate density function for X1 andX2 was printed in Quintana and

Newton (1998). It has the form

g(x1, x2) =
exp{− Q/ 2 }

2π σ2(1− ρ2)1/2 x1 x2 (1− x1) (1− x2)
for (x1, x2) ∈ ( 0, 1 )2 (2)

where

Q = (σ2 (1−ρ2))−1 [(logit(x1)−µ)2 +(logit(x2)−µ)2 − 2 ρ (logit(x1)−µ)(logit(x2)−µ)] .

This result is easily derived from the quadratic form of the bivariate Normal density of the

joint Logitnormal, along with the Jacobian of the transformation.

There are specific constraints on the correlation between two variables with an exchange-

able bivariate normal distribution that need to be considered. When the covariance matrix

of a K-variate Normal distribution is expressed in the form Σ = a I + b1 where I and 1 are

the identity matrix and a matrix of 1’s, respectively, then it is required that b ≥ − a/K in

addition to the positivity of a and a+b. (See Lad, 1996, p. 387). This implies that the corre-

lation between any two components of the K-variate Normal vector must exceed −1/(K−1).

In the case of a bivariate distribution that is not exchangeably extendible, the correlation

coefficient is not constrained further than the usual constraint that | ρ | ≤ 1. However, if it

were specified further that the bivariate distribution be exchangeably extendible to dimen-
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sion K, then the bivariate correlation is still constrained by ρ ≥ − 1/(K − 1). Infinitely

extendible exchangeable distributions must have non-negative correlations.

To study the correlations between the two variables themselves, we have computed the

value of Cor(X1, X2) for an array of (µ/σ, σ) parameters, while specifying various values

of ρ, the correlation between the logits of X1 and X2. Numerical results for three (µ, σ)

configurations supporting EX = 0.6 appear in Table 1. For each configuration of (µ, σ)

pairs, the values of ρ entertained were -0.3 through +0.8 in gradations of 0.1. We choose

this range because in the application that motivated this work, the bivariate distribution

was exchangeably extendible to dimension 3.

Notice that when the correlation between the logits of X1 and X2 equals 0, the corre-

Table 1: Correlations between X1 and X2 computed by numerical integrations when the

logits of X1 and X2 are distributed exchangeably bivariate Normal with the specified values

of µ and σ displayed in the headings of columns 2-4, and the correlation value ρ specified in

column 1 of each row.

ρ µ = .77851, σ = 2.5 µ = .509, σ = 1 µ = .4528, σ = .4

-.3 -0.266 -0.292 -0.299

-.2 -0.177 -0.195 -0.199

-.1 -0.089 -0.097 -0.100

0 0 0 0

.1 0.089 0.098 0.100

.2 0.179 0.196 0.199

.3 0.270 0.294 0.299

.4 0.363 0.393 0.399

.5 0.458 0.492 0.499

.6 0.556 0.592 0.599

.7 0.657 0.692 0.699

.8 0.764 0.794 0.799
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lation between X1 and X2 is also 0. This is evident from equation 2 when ρ = 0, noticing

that this function is then a product of two functions in the form of equation 1. Although the

transformations of the variables Xi to their logits is not linear, the correlations between X1

and X2 and between their logit transforms are quite close over a broad range of µ, σ and ρ

parameters. The fact that the correlations between the Logitnormal variables never exceeds

the correlation between the Normal variables from which they are transformed exemplifies a

theorem of Gebelein, as reported by Koyak (1987, pp. 1215-1216). That is, the maximal

correlation between all possible transformations of two Normal random variables

is the simple correlation between the variables themselves. This is not true of all

bivariate random variables. General multivariate results of this type have been

developed in the theory of maximal canonical correlation coefficients.

4 Remarks

The Logitnormal distribution has been used in hierarchical Bayesian modelling as early as

Leonard (1972) and in many applications such as that of Kass and Steffey (1989). In these

cases it was applied in the form of the Normal distribution for the logit transformation of

a variable in the unit interval, rather than directly in the form of a distribution over that

interval. The direct analysis of the moments using numerical integration yields a clear under-

standing of the possible choice of a family member as a mixing distribution in applications,

avoiding misrepresentations. For example, it is common to select a large value of σ2 for a

Logitnormal specification, supposedly to represent diffuse prior information. To the contrary,

in many cases such a choice would represent rather strong prior information that the relevant

proportion is very likely to be close to 0 or to 1, as has been exhibited here. Caution and

understanding are important in this regard.

Another useful aspect of the results presented here pertains to general applications of

logistic regression. The use of statistical results for subsequent forecasting would benefit

from a graphical display of the conditional forecasting distributions that are appropriate to

estimated regression coefficients and the variance.

We have had reason to study the Logitnormal distribution on account of its relevance

to the problem of combining information elicited from experts in the form of probabilities.
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This research is reported in DiBacco, Frederic, and Lad (2003).
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Figure 1: The graph at left depicts values of E(X) as a function of the Logitnormal µ/σ and

σ parameters. At right appears the Variance of X as a function of these same parameters.
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Figure 2: The graph at left shows contours of (µ/σ, σ) combinations that support constant

values of E(X) at 0.6, 0.75, and 0.9. The mean E(X) = .5 whenever µ/σ = 0. At right

appear contours of constant values of the variance, V (X), at 0.01, 0.04 and 0.10.
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Figure 3: Logitnormal (µ, σ2) densities with expectation E(X) = 0.60 are specified by

various (µ, σ) pairs. The largest values of σ specify a bimodal Logitnormal density.
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