

1

Architecture for Massively Parallel
HDL Simulations

Rich Porter

Art of Silicon

2

Art of Silicon

● Founded in 2005
● Bristol based
● Multimedia centric Silicon IP
● Bespoke IP creation
● Consultancy

3

It's all about MONEY

● Engineer productivity is key to success
– Employment cost is $$$s
– Tooling cost
– Computers

● Makes good business sense to improve
productivity

– Less time per chip
– More chips per man year

● Productive engineers are happy
engineers!

4

Coding Time

● Engineers do NOT spend all their time
writing code

– 5% writing code
– 95% debugging code

● Thinking & waiting for waves, regressions

● Highly desirable to quantify the effect of
any design delta

– As quickly & as easily as possible
– For all engineers & management

5

Minimizing Idle Time

● Scalable test engine
– 40+ instances per engineer
– Up to as many as they can use

● Large compute farm of dense elements

– 8, 12, 16, 24 core boxes
● Reduce iterations during the day

● Provide full regression bandwidth at night,
weekends

● So how do I do this?

6

Verilator

● Used to generate standalone license-free
test executable

● Execute as many as your compute
infrastructure can support

● Deliver to other teams
– Architecture
– Systems
– Toolchain
– Customer

7

Signoff

● Event driven simulators are gold standard
for signoff

– Gate level simulations

● HAVE to run in this environment too
● Spending engineer time to create 2

environments costs $s
– Gratuitous creation of extra work

8

Architecture

● Single testbench architecture
– Ease of maintanence
– Issue replication
– Portable to silicon

● It is essential that test stimulus and cycle
level behaviour is identical across
platforms

– Even though one platform is event driven
and the other is cycle based

9

What AoS did

● Stimulus & checker
– in C++
– Identical code

● 'Gaskets' used
– Provides uniform I/F
– interface>signal = value;

– value =
interface>signal>signed();

● All design code in regular verilog

DUV

model

checker

10

Example – verilog
initial begin
`ifdef verilator
 $c("aos_simctrl_init(&", rst_cnt,
 ", &", cycles,
 ", &", std_simctrl_finish_r, ");"
);
`else
 $aos_simctrl_init(
 rst_cnt,
 cycles,
 std_simctrl_finish_r
);
`endif
end

always @(posedge clk1)
`ifdef verilator
 $c("aos_simctrl_clk();");
`else
 $aos_simctrl_clk;
`endif

DUV

model

checker

11

Autogeneration

● Single sourced from SPIRIT XML
description
– Verilog

● module declarations
● grey box instantiation
● verilog side gasket instantiation

– C++
● headers
● port descriptions (name, size, direction)
● PLI wrappers

12

Test Configuration

● Tests were configured at execution using
plusargs

– +argument=value

● Scanning code was identical for both
– To ensure consistency

● Regression script
– Created these configurations
– Passed them to batch scheduler
– Collated results for web presentation

13

Logging

● Unified logging interface
– Consistent output
– Captured in markup to preserve semantics
– No cludgy parsing of text post mortem

that varies from platform to platform

● Test fail produces identical logs across
platforms

– No problems with spaces, split lines,
mixed streams, output ordering

14

Triage

● Group messages by content, code, file,
line

– Placing most numerous first

● Order by cycles within
– Increasing cycle count to failure

● Failure at the top is debug candidate
● Web I/F can provide rich set of

filters/collation options

15

Performance

● Performance has steadily increased

● Memory footprint remains low
– No simulation kernel

X3430 @ 2400MHz

X5472 @ 3000MHz

E5345 @ 2333MHz

E5405 @ 2000MHz

0 50 100 150 200

kHz

16

Key Features

● Single testbench providing cycle accurate
stimulus

● Autogeneration from single source
● Single test configuration
● Unified logging

17

Conclusion / AoS Experience

● Little spent waiting for simulations
– 60 wide queue gave 6MHz effective
– Engineers spent time really debugging

● Small amount of time spend bringing up
each simulator

– Not much, but was very early on

● Verilator proved robust
● See no reason why cannot scale to 1000s

of simulations

18

Recommendations

● Get a compute farm
● Use a queue
● Replace CPUs regularly
● Prioritize high value jobs

– $ licenses
– interactive jobs

● Evaluate what verilator can do for you
● Profile, record and report

19

Questions

● Questions

Rich Porter

rich.porter@artofsilicon.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

