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Editor’s preface
A “polytope” is a generalised figure in n dimensions, including polygons in two dimensions, 
polyhedra in three,  polycells or polychora in four,  and so on.  Abstract polytopes are an 
important modern development.  Based in part on this theoretical background, Johnson has 
developed  the  idea  of  real  polytopes,  as  a  significant  step  towards  reconciling  the 
inconsistencies  between  abstract  polytopes,  our  intuitive  ideas  of  what  polygons  and 
polyhedra are (and what polytopes might be), and established geometric ideas about lines, 
planes and other figures as sets of points in space.

This  note  began  life  as  a  series  of  messages  from  Norman  Johnson,  during 
conversations on a mailing list  between 12 May 2003 and 18 April  2004.  Although his 
theory was still a little rough around the edges, these messages provided the first available 
description both  of  his  theory of  real  polytopes  and of  his  improved formulation  of  the 
underlying abstract polytopes. I felt it worthwhile to gather the material into a coherent form, 
and this is the result.

Others  on  the  list  contributed  occasional  ideas  and  corrections,  including  Wendy 
Krieger,  Don Hatch, Jonathan Bowers,  myself,  Christine Tuveson, John Conway and Jeff 
Tupper.   These  were  for  the  most  part  absorbed  into  Norman’s  replies,  though  I  have 
nonetheless  had to  do  a  good deal  of  cutting,  stitching and tidying  to  create  a  readable 
narrative.  Norman has also made a few corrections and improvements to my draft.  Beyond 
this I have touched his words as little as possible; I have even left  his diagrams in their 
original “ASCII art” state, not least as a reminder of this note's origin.

Guy Inchbald, February 2008.
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Introduction
How one defines a polytope is a subjective matter: what we can define polytopes to be 

is more or less a case of what we are prepared to deal with.  But it does not follow that it is 
futile  to  try  to  formalize  one's  notions.   Of  course,  different  notions  require  different 
definitions,  and the  lack  of  a  standard  definition  may have  indirectly  contributed  to  the 
present richness of polytope studies.  Nevertheless, "polytope" is not a primitive concept that 
ought to be left undefined.

Euclid shouldn't have defined "point," "line," or "straight," but he did.  ("A point is that 
which has no part." "A line is breadthless length."  "A straight line is a line which lies evenly 
with the points on itself.")  On the other hand, Euclid should have defined "polyhedron," but 
he didn't.

Branko Grünbaum has called it the "original sin" in the theory of polyhedra that, going 
back to Euclid, geometers have freely discussed regularity and other polyhedral properties 
without ever saying what a polyhedron is.  His own definitions of polygons and polyhedra 
provide the desired rigor but open the doors to figures that most subscribers to this List would 
probably find too peculiar to accept as legitimate polygons or polyhedra.  For example, what 
looks like a triangle ABC may actually be a hexagon ABCDEF with three pairs of coincident 
vertices -- A and D, B and E, C and F.

It is not too hard to formulate a satisfactory definition of a convex polytope.  Extensions 
to spheroidal and toroidal polytopes are likewise fairly straightforward.  But as soon as we 
choose to admit star polytopes, we need to be careful.  Even the great Ludwig Schläfli, who 
pioneered the study of higher-dimensional polytopes, refused to recognize the validity of two 
of the four Kepler-Poinsot polyhedra and six of the ten regular star polychora, because they 
do  not  satisfy  Euler's  Formula.   In  his  book  of  that  name,  Coxeter  gave  appropriate 
definitions for regular polytopes, which apply to both convex and starry figures.  But less 
symmetric  figures,  even  those  with  as  much  symmetry as  uniform polytopes,  may have 
features that raise new questions and call for a refined definition.

Abstract polytopes
The important  concept  of "abstract  polytopes" was developed by Danzer  & Schulte 

(1982,  pp.  296-298),  McMullen (1989, pp.  39-40;  1993,  pp.  100-102),  and McMullen & 
Schulte (2002, pp. 22-31).  This makes it possible to separate the combinatorial properties of 
a polytope from the geometric properties associated with its being embedded in some space. 

Ludwig Danzer, Egon Schulte, and Peter McMullen define an abstract n-polytope as a 
partially ordered set of elements or "j-faces," subject to conditions that ensure that it is monal, 
so that no two j-faces coincide, that it is dyadic, so that a 1-face (edge) joins just two 0-faces 
(vertices)  and  just  two  (n-1)-faces  (facets)  meet  at  any  (n-2)-face  (ridge),  and  that  it  is 
properly connected, so that it does not split into a compound of two or more n-polytopes.

The  properties  that  define  an  abstract  polytope  are  combinatorial  in  nature.   The 
incidence of elements of a polytope is thus an abstract property, independent of how it is 
realized geometrically.

The properties  that  determine whether  and how a  given abstract  n-polytope  can be 
realized  as  a  geometric  figure  in  Euclidean  (or  non-  Euclidean)  n-space  involve  the 
interpretation of its j-faces as points, line segments, and other suitable point sets.

The definition of an abstract polytope given by Peter McMullen and Egon Schulte in 
their recent book Abstract Regular Polytopes is spread over several paragraphs, interrupted 
by definitions  and preliminary results.   My definition of  an abstract  n-polytope is  stated 
differently  but  is  entirely  equivalent  to  the  definitions  given  by  Danzer,  Schulte,  and 
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McMullen.  It is a more concise, but logically equivalent, restatement of the definition in 
recursive form and makes a distinction between j-faces and j-facials.  The word "j-facial" is 
my  own  invention,  but  the  notion  itself  is  implicit  in  the  Danzer-Schulte-McMullen 
formulation.

The "j-faces" of an n-polytope are its elements of rank j. Its "j-facials" are j-polytopes 
comprising a given j-face and all the elements of lower rank incident with it: a "j-facial" <J> 
is a j-subpolytope whose elements are all the i-faces incident with J for i <= j.

Thus  I  regard  a  triangle  as  a  2-polytope  whose  elements  consist  of  one  (-1)-face, 
3 0-faces, 3 1-faces, and one 2-face.  Geometrically, the (-1)-face or "nullity" is the empty set, 
the 0-faces or "vertices" are points, the 1-faces or "sides" are line segments, and the 2-face or 
"body" is a planar region.  None of these are polytopes.  A 1-facial, which is a polytope, is a 
partially ordered set consisting of a particular 1-face (side), the two 0-faces (vertices) incident 
with it, and the (-1)-face (empty set).

In many treatments the face/facial distinction is not strictly maintained, and elements 
are conflated with subpolytopes.  For the most part, this does no great harm, as each j-face 
corresponds  to  a  unique  j-facial.   But  in  discussing  geometric  polytopes  with  self-
intersections the distinction is quite useful.  One can say that the sides of a convex  polygon 
are  pairwise  disjoint,  while  those  of  a  star  polygon  are  not,  but  only  if  the  sides  are 
understood as not including their end points.  The question of coincident elements can be 
addressed in the same manner.

The monal,  dyadic,  and properly connected properties (also my terminology) are all 
exhibited  in  the  Hasse  diagram  of  an  abstract  n-polytope,  which  consists  of  nodes 
(representing  j-faces)  at  n+2  levels  (corresponding  to  ranks  -1  to  n),  with  nodes  on 
consecutive levels joined by a branch when  the associated j-faces are incident.

For example, a 2-polytope <H> = {E; F1, F2, F3; G12, G13, G23; H} is  represented by 
the following diagram:

                                 o H
                               / | \
                             /   |   \
                           /     |     \
                         o G12   o G13   o G23
                         | \   /   \   / |
                         |   X       X   |
                         | /   \   /   \ |
                         o F1    o F2    o F3
                           \     |     /
                             \   |   /
                               \ | /
                                 o E

The polytope, which can be realized as a triangle, has one (-1) face E; three 0-faces F1, F2, 
F3; three 1-faces G12, G13, G23; and one 2-face H.  It also has one (-1)-facial <E>; three 
0-facials <F1>, <F2>, <F3>; three  1-facials <G12>, <G13>, <G23>; and one 2-facial <H>. 
An n-polytope also  has "sections" of various ranks.  For example, the abstract 1-polytope 
H/F1 = {F1; G12, G13; H} is a section of rank 1, the cofacial of F1.

The difference between j-faces and j-facials is that a j-face is  represented by a single 
node, e.g., G12, while a j-facial is the Hasse subdiagram topped by a given node, e.g. <G12> 
=  {E;  F1,  F2;  G12}.   The  definition  of  an  abstract  n-polytope  includes  a  completeness 
property: there is just one (-1)-face and just one n-face.  In the diagram this means that there 
is just one bottom node and just one top node.
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The monal property is the abstract property that relates each j-face of an n-polytope to a 
unique j-facial (its "span"), as well as to a unique j-cofacial (its "cospan") that includes the 
j-face and all the k-faces incident with it for k > j.  In the diagram this means that  no node 
can be the top (or bottom) of two different subdiagrams each representing a valid j-facial (or 
j-cofacial).  In other words, one node cannot be superimposed on another.

The dyadic property says that every 1-face is incident with just two 0-faces and every 
(n-2)-face is incident with just two (n-1)-faces.  In the diagram this means that if there is a 
path joining a pair of nodes I and K two levels apart, then there are just two such paths, 
{I; J1; K} and  {I; J2; K}.

The property of proper connectedness says that no proper subset of the j-faces has all 
the  previous  properties.   In  the  diagram this  means  that  no  proper  subset  of  nodes  and 
branches is itself the Hasse diagram of a valid n-polytope.  This implies that neither the 
polytope nor any of its sections splits.

If  we  stipulate  that  a  geometric  n-polytope  must  first  of  all  qualify  as  an  abstract 
n-polytope,  then we require that it  be properly connected.  This rules out polytopes with 
compound vertex figures and the like.

Realizing abstract polytopes
The definition of an abstract polytope is not to be tinkered with, but abstract polytopes 

can be realized as  geometric  figures  in a  variety of ways.  Which of  the many possible 
realizations are deemed acceptable depends entirely on what objectives one has in mind.  In 
some investigations only convex figures may be relevant.  In other cases, such as Grünbaum's 
"Polyhedra with hollow faces" (1993), vertices and edges may coincide.

Branko and I are in agreement both with each other and with Danzer,  Schulte,  and 
McMullen (whom I have also cited) as to what constitutes an abstract polytope.  We are also 
in agreement that there are many ways of realizing an abstract polytope as a geometric figure 
and that there is no one "right" way.  The combinatorial structure of a geometric polytope is 
an abstract property.  Other properties, such as edge lengths, angles, and symmetry, depend 
on the space in which the polytope is realized and on how abstract "j-faces" are represented 
as geometric entities.

A realization of an abstract polytope P is a mapping P --> P' taking each j-face of P into 
an entity (i.e., some set of points) that can be construed as an element (a vertex, an edge, etc.) 
of a geometric polytope P' in some space, provided that incident abstract elements of P are 
mapped to incident geometric elements of P'.  It is necessary to have some criteria for the 
incidence of geometric elements; e.g., it would be reasonable to regard a vertex (point) as 
incident with an edge (line segment) only if the vertex is one of the edge's end points.

A realization P --> P' is  faithful if the correspondence between abstract elements of P 
and geometric elements of P' is one to one.  In a faithful realization elements of P' must be 
distinct  geometric  entities.   This  rules  out  coincident  vertices  and  the  like  but  does  not 
prohibit intersecting or overlapping edges, faces, etc.

If a realization is not faithful then it is degenerate.  Grünbaum does not wish to restrict 
himself to faithful realizations.  The (mainly Euclidean) geometric polytopes he has described 
may well  have  coincident  elements,  even  to  the  extreme of  every  0-face  of  an  abstract 
polytope being mapped to the same geometric point.  Branko does not dispute that his doubly 
wound regular polygon {6/2} is not a faithful realization of an abstract hexagon.  (He does 
object to such figures being termed "degenerate"; I have proposed calling them "reductive.") 
Because his {6/2} "looks like" a triangle {3}, it is necessary to provide labels to indicate the 
order in which the vertices are visited.
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Grünbaum's figures  are  genuine geometric realizations of abstract  polytopes.   He is 
quite  specific  as  to  what  conditions his geometric  polytopes  must  satisfy,  and the theory 
underlying the study of these figures is perfectly sound.  The important thing is that whatever 
class of "polytopes" you care to investigate, you should be clear about the rules you are 
playing by.

Because of the efforts of people like Branko Grünbaum, considerable rigor has been 
introduced into the once hazy notions of polyhedra and polytopes.  Admittedly, not all the 
confusion  has  been  dispelled.   For  readers  who  are  concerned  about  definitions,  let  me 
suggest a few useful principles.

(1) Any geometric figure that is to be called a "polytope" should have the combinatorial 
structure of an abstract polytope.  That is, a geometric polytope should be a realization 
of some abstract polytope.  (Even here there are exceptions.  G.  C.  Shephard's "regular 
complex  polytopes,"  not  generally  being  dyadic,  are  not  realizations  of  abstract 
polytopes in the Danzer-Schulte-McMullen sense.)

(2) Whether a geometric polytope should be a faithful realization of an abstract polytope is 
a matter of taste.  Do you want to allow coincident vertices or not? Must your figures be 
labeled to be correctly understood?

(3) Any other geometric conditions should be clearly spelled out.  Do you want to allow 
digons?  What  about  dihedra  and  hosohedra?  Do  you  want  to  exclude  protruding 
whiskers and interlocked faces? Can adjacent faces be coplanar?

(4) In any case, if you claim to have a different way to define a polytope, say what you 
mean.

Grünbaum wants  to  entertain  the  possibility  of  two j-faces  having  the  same image 
(coincident  vertices  and  edges)  or  of  j-faces  having  no  image  (polyhedra  with  "hollow" 
faces).   One  might  also  want  to  allow  skew  polygons  and  skew  polyhedra  or  other 
generalisations.  These are all perfectly legitimate alternatives but are not what I had in mind. 
My goal was to formulate a definition of a "real" polytope that includes, for example, all the 
uniform polyhedra described in the 1954 paper of Coxeter, Longuet-Higgins, and Miller but 
does not force one to accept anomalous figures like Skilling's "polyhedron" with twelve faces 
at each vertex, let alone Grünbaum's generalisations.

I  prefer  to  concentrate  on faithful  realizations that  have a  few additional  geometric 
properties to exclude certain anomalous cases.  These include all the classical uniform and 
co-uniform polytopes and honeycombs in spherical, Euclidean, hyperbolic, and elliptic space. 
Without implying that no other figures deserve recognition, I call these "real" polytopes and 
honeycombs. My chief interest lies with uniform figures, and this motivated the provisions I 
built into my definition of a "real" polytope or honeycomb.

The definition of a "real" n-polytope has to be carefully framed if we want it to include 
those figures that conform to our notions of what a polytope should be while excluding those 
figures  that  do  not.   Our  notions  may  prove  to  be  incompatible  or  have  unintended 
consequences and so may need to be revised.  We may well want to go beyond the limitations 
of convex figures but may not want to go as far as Grünbaum in allowing polygons to have 
coincident vertices or allowing the faces of a polyhedron to be "hollow," without interiors.

My approach is based on the idea that a realization of an abstract polytope is a mapping 
of  abstract  j-faces  into real  points,  line  segments,  and other  geometric  objects.   I  define 
certain sets of points that I call entities, which can be assembled in appropriate ways to form 
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real polytopes or honeycombs ("improper" polytopes).  Each entity is an open region or union 
of open regions of some n-space.  An entity has both a dimension and a rank and may be 
characterized as either  proper or  improper.  The rank of a proper entity is the same as its 
dimension; the rank of an improper entity is one more than its dimension.  Improper entities 
(e.g. an entire n-space) are of interest primarily in connection with honeycombs.

Note that I only use the terms "proper" and "improper" in discussing my two kinds of 
entities.  This usage is parallel to the notion of proper and improper integrals in calculus.  The 
term "improper"  is  in  no way pejorative,  and my usage does  not  apply to  anyone else's 
figures.

An improper entity is relevant only to honeycombs.  An entire n-space is one example 
of an improper entity.  The categories of proper and improper entities are not quite mutually 
exclusive.  A hyperbolic line, which can be a side of an asymptotic polygon, is a proper entity 
of dimension and rank 1.  But as an entire 1-space, a hyperbolic line can be the scope of a 
partition (1-dimensional  honeycomb)  and is  thus  an  improper  entity of  dimension 1  and 
rank 2.

A region of n-space is a set of points containing a connected open set and contained in 
its closure.  A region may be open, closed, or somewhere in between.  An open region is a 
connected open set.   The empty set counts as an open region of any n-space.   A  proper 
convex region is a convex region of n-space whose closure contains (0) no antipodal points, 
(1)  at  most  a  countable  number  of  lines,  and  (2)  no  branch  of  an  equidistant  curve. 
(Antipodal points occur only in spherical space; equidistant curves occur only in hyperbolic 
space.)  In a Euclidean n-space any bounded convex region is a proper convex region.

The empty set is a proper entity of dimension and rank -1.  A point is a proper entity of 
dimension and rank 0.  For n > 0, a proper entity of dimension and rank n is an open region or 
union of open regions of an n-space, having a connected closure that is contained in a proper 
convex region, an exterior (the complement of its closure) that is connected if n > 1, and a 
boundary  that  is  the  union  of  a  countable  number  of  proper  j-dimensional  entities 
(0 <= j <= n-1).

In  the  realization  of  an  abstract  polytope  as  a  geometric  figure,  each  j-face  is 
represented by an "entity" of rank j.  By the dimension of an entity I mean the dimension of 
the subspace in which the entity is an open set.  For a proper entity the rank is the same as the 
dimension.  A real polytope involves only proper entities.  An "improper" entity of dimension 
j-1 and rank j is an open set in a (j-1)-dimensional space that functions as a j-face of a real 
honeycomb.  For instance, a plane tessellation like {4, 4} has for its elements the empty set 
plus infinitely many vertices, edges, and faces but no body.  Instead it has a scope, the entire 
plane, which counts as its only 3-face (an improper entity of dimension 2 and rank 3).

Entities  do  not  have  to  be  disjoint,  but  they  cannot  coincide.   This  is  not  true  of 
degenerate  realizations  like  those  favored  by  Grünbaum.   Thus  monality  is  an  abstract 
property that  implies  the  geometric  property of  noncoincidence of  elements  in  a  faithful 
realization.

Real polytopes
All of the foregoing provides the necessary foundation for the following
DEFINITION.  A real n-polytope P is an abstract n-polytope whose j-faces are proper 

entities of rank j in some real Euclidean or non-Euclidean n-space and whose j-facials of 
lower rank are real j-polytopes.  The (-1)-face of P is the empty set, and the n-face of P is a 
proper entity of rank n, its body.  The body is disjoint from each of the other j-faces, but its 
closure has a nonempty intersection with each j-face for j > -1, and its boundary is contained 
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in the union of the j-faces for j < n.  Moreover, for -1 < j < n, all the elements common to any 
pair of j-facials lie in a single (j-1)-space.

Note  some of  the  implications  of  this  definition.   A real  polygon is  an abstract  2-
polytope whose j-faces are real entities.  The (-1)-face, or  nullity, is the empty set; each 0-
face, or vertex, is a point; each 1-face, or side, is an open interval of a line; and the 2-face, or 
body, is one or more open regions of a plane.  The vertices of a polygon are thus distinct 
points, and its sides are distinct (but not necessarily disjoint) segments the ends of which are 
vertices.  The body is an open set with a connected closure consisting of one or more regions 
bounded by the vertices and sides.  The rest of the plane, the exterior of the polygon's body, is 
a connected open set.

Consider the figure

                                     C
                                     o
                                    / \
                                   /   \
                                  /     \
                                 /       \
                                o---------o
                               A           B

This familiar 2-polytope has as elements
one (-1)-face, the empty set @;
three 0-faces, or vertices, the points A, B, C;
three 1-faces, or sides, the line segments AB, BC, CA;
one 2-face, or body, the plane region ABC.

It likewise has as subpolytopes
one (-1)-facial, the nullitope or (-1)-polytope

<@> = {@};
three 0-facials, the monons (0-polytopes)

<A> = {@; A},  <B> = {@, B},  <C> = {@; C};
three 1-facials, the ditels (1-polytopes)

<AB> = {@; A, B; AB},  <BC> = {@; B, C; BC},  <CA> = {@; C, A; CA};
one 2-facial, the triangle

<ABC> = {@; A, B, C; AB, BC, CA; ABC}.
All of the figures below qualify as real quadrangles:

                                   C      D               D
               D    C               o----o                o
               o----o                \  /                / \
              /      \                \/                /   \
             /        \               /\               /     \
            /          \             /  \             /       \
           o------------o           o----o           o----o----o
          A              B         A      B         A     B     C

(Nothing prohibits two sides of a polygon from intersecting or says that three vertices cannot 
be collinear.)  
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A crucial provision in my definition of a real n-polytope is that the closure of the body 
of a polytope is the union of all the elements, and its boundary is the union of the elements of 
lower rank.  Thus the body of a triangle <ABC> is the open region ABC, whose closure 
consists of the region ABC together with the segments AB, BC, and CA plus the points A, B, 
and C, and we can always throw in the empty set.

It is this provision that prevents the figure

                                   D
                                   o
                                  / \
                                 /   \
                                /     \
                               /       \
                              o---------o------o
                             A          C       B

from being a valid polygon.  Here the vertices are the points A, B, C, and D; the sides are the 
segments AB, BC, CD, and DA; and the body can only be the open region ACD.  The trouble 
is  not  that  sides  AB and BC overlap but  that  vertex B and side BC are not  part  of  the 
boundary of the body.  The closure of the region ACD consists of the body ACD together 
with the sides CD and DA and part of the side AB, the vertices A, C, and D, and the empty 
set.   The vertex B and the side BC are not included in the boundary.   In general,  a real 
polygon  may  not  have  a  protruding  "whisker,"  and  a  real  polyhedron  may  not  have  a 
protruding "membrane."

Some of a polygon's vertices, and even entire sides, can be hidden inside its body.  For 
example, the figure at the right is a legitimate hexagon.  In this case the body is a single 
region formed by the interior of the concave pentagon ACDEF with a slit formed by the 
points B and C and the segment BC.  The boundary of the body is the union of the six 
vertices and the six sides.

                   E
                   o
                  / \
                 /   \
                /  B  \
               /   o   \
              /    |    \
           F o   C o-----o D
              \    |
               \   |
                \  |
                 \ |
                  \|
                   o
                   A

A real polytope is monomorphic when its realization (i.e., a mapping of the j-faces of an 
abstract  polytope  into  entities  of  rank  j  in  some  Euclidean  or  non-Euclidean  space)  is 
pointwise one to one,  i.e.  its  elements are  pairwise disjoint.  All  spheroidal polytopes are 
monomorphic.   A  polytope  that  is  not  monomorphic  is  polymorphic.   A  polytope  is 
monomorphic if and only if its elements are pairwise disjoint.  

A star polytope is a polytope in which two nonadjacent facets have points in common or 
in which any of its facets is itself starry, i.e. star polytopes are polymorphic.  The hexagon 
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just discussed shows that a polymorphic polytope is not necessarily starry.  (The only two 
sides that intersect or overlap are the adjacent sides AB and BC.)  A crossed quadrilateral is 
the simplest star polygon.  A pentagram is the simplest regular star polygon.

The body of a star polygon generally consists of two or more distinct regions taken as a 
single entity.  The body of a regular pentagram, for example, comprises a pentagonal core and 
five triangular extensions.  This is still an open set but not an open region.  Vertices in pairs 
are end points of (but do not belong to) the sides, and each vertex or side is part of the 
boundary of the  body.

It may not be clear to everyone, but the hexagon should be seen as a transitional stage 
between the figures on the left and on the right below.

              E                      E                      E
              o                      o                      o
             / \                    / \                    / \
            /   \                  /   \                  /   \
           /  B  \                /  B  \                /  B  \
          /   o   \              /   o   \              /   o   \
         /    |\   \            /    |    \            /   /|    \
      F o     | o---o        F o   C o-----o D      F o   o-+-----o
         \    |  C   D          \    |                 \  C | P    D
          \   |                  \   |                  \   |
           \  |                   \  |                   \  |
            \ |                    \ |                    \ |
             \|                     \|                     \|
              o                      o                      o
              A                      A                      A

In all three cases the vertices are the points A, B, C, D, E, and F, and the sides are the 
segments AB, BC, CD, DE, EF, and FA.  The body of the first figure is a connected open 
region ABCDEF.  The body of the second figure is a connected open region ACDEF with a 
slit from C to B.  The body of the third figure is the union of two open regions, BCP and 
APCBPDEF.  The point P is a "false vertex."  In all three cases the boundary of the body is 
the union of the sides, the vertices, and the empty set.  It is no more problematic that the 
second figure has an internal whisker than that the third one has a hidden side.

[The allowing of slits but forbidding of whiskers prompted a lively discussion – Ed.]
If we attached an inward-directed line before turning a sphere inside out a la Smale (see 

later), we would end up with a sphere with an outward-directed line.  But so what?  Smale's 
operation  interchanges  the  outer  and  inner  surfaces  of  the  sphere,  along  with  any finite 
attachments.  It does not interchange the sphere's bounded interior and unbounded exterior. 
Indeed, it is the fact that we can tell the inside and the outside apart that makes the operation 
so remarkable.  Far from being "pretty much the same," a bounded figure's inside and outside 
are fundamentally different.  There is no reason that the same rules should apply to both.

Certain  polyhedra  such  as  semicupolas  and sesquicupolas  have  membranes.   Some 
categories of uniform polychora include pairs of isomorphic figures, one with a membrane, 
the other without.  What characterizes a membrane is that part of the face does not touch the 
body of the polyhedron at all.  My definition allows polyhedra with membranes, since it 
requires any face of a polyhedron to have a nonempty intersection with the closure of the 
body but not that every part of the face be in contact with the body.

Another crucial provision in my definition of a real n-polytope is that, for 0 < j < n, all 
the elements common to any pair of j-facials lie in a common (j-1)-space.  This prevents two 
j-facials from being rigidly locked together by their common elements.  To illustrate this 
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provision, as well as to emphasize another point, let me use a three-dimensional toroid as an 
example.

                                 o---------o
                                /         /|
                               /         / |
                              o---------o  |
                              |         |  |
                              | o-----o |  |
                              | | |   | |  |
                              | | o---| |  |
                              | |/    | |  o
                              | o-----o | /
                              |         |/
                              o---------o

The regions with holes are not proper entities, because their exteriors are not connected. 
So this is not a real polyhedron at all.  It does not even qualify as an abstract polyhedron 
because it is not properly connected.  It splits abstractly into a compound of two rectangular 
prisms; and compounds are not polytopes.

However, there is a remedy.  Each of the illegal ring-shaped regions can be divided into 
two coplanar hexagonal regions, which are proper entities, by drawing two new edges:

                                 o---------o
                                /         /|
                               /         / |
                              o---------o  |
                              |\        |  |
                              | o-----o |  |
                              | | |   | |  |
                              | | o---| |  |
                              | |/    | |  o
                              | o-----o | /
                              |        \|/
                              o---------o

There is no prohibition against coplanar faces, but we must make sure that the two new 
edges dividing each ring-shaped region are collinear.  This ensures that if the two new face 
polygons are taken by themselves the line of their common edges can function as a hinge; 
otherwise, they would be rigidly locked together in one plane.  (If we had divided each ring-
shaped  region  into  three  or  four  regions,  this  issue  would  not  arise.)   We  now  have  a 
legitimate polyhedron, with 16 vertices, 28 edges, and 12 faces.  Note that V - E + F = 0, 
which is the right value for a toroid of genus 1.

As  another  illustration  of  this  requirement  of  "dyadic  flexibility,"  consider  the 
compound of a (small) icosahedron and a great dodecahedron with the same vertices and 
edges or the conjugate compound of a small stellated dodecahedron and a great icosahedron. 
These figures are sometimes called the "small complex icosidodecahedron" and the "great 
complex icosidodecahedron."  There is no problem with either of these compounds, as they 
do not purport to be single polyhedra.  But some of the figures in Jonathan Bowers' lists of 
uniform polychora have cell polyhedra that form such compounds.  The vertices and edges 
common to a pair of polyhedra in one of these compounds do not all lie in a common plane, 
and the polyhedra are therefore rigidly locked together.  Since they lack dyadic flexibility, I 
do not count such figures as real polychora.

10
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As I have defined it,  a "real" n-polytope is an abstract n-polytope whose j-faces are 
proper  entities  of  rank  j  in  some n-space  and  whose  j-facials  of  lower  rank  are  real  j-
polytopes.  This requires the j-faces to be distinct (though not necessarily disjoint) entities. 
Thus a real polytope may not have coincident vertices, and while its edges may cross or even 
overlap, they may not coincide.  The figure below demonstrates what can happen when the 
vertices of a polygon are allowed to coincide.

                           H    G,D    C
                           o-----o-----o
                          /     / \     \
                         /     /   \     \
                        /     o-----o     \
                       /     E       F     \
                      /                     \
                     o-----------------------o
                    A                         B

This figure, as a set of points, line segments, etc., can be regarded as the image in the 
Euclidean plane of an abstract 2-polytope <ABCDEFGH>.  However, because 0-faces D and 
G are mapped into the same point, it is not a "faithful" image.  In other words, the figure does 
not itself qualify as an abstract 2-polytope and so is not a real polygon.  It can still be treated 
as a degenerate polygon.  Aided by the labeling, we could deduce that there are 8 vertices (A, 
B,  C,  D,  E,  F,  G,  H)  and  8  sides  (AB,  BC,  CD,  DE,  EF,  FG,  GH,  HA),  with  a  body 
ABCDEFGH consisting of two polygonal regions.  But, apart from alphabetical order, there 
is no way to tell whether, in making a circuit of the vertices and sides, we are supposed to 
visit vertex E or F first, i.e. how the loop DEF = EFG should be oriented.  We could just as 
well see the body as a single region ABCDFEGH surrounding a hole.

Remarkably, no such ambiguity ever arises with polytopes satisfying the conditions in 
my definition.  Once we have specified the individual entities, there is only one way they can 
be interpreted as the j-faces of a real polytope, and there can be no argument as to what 
polytope we are looking at.  If the separate pieces are not entities or if there is no way to 
assemble them consistent with the definition, then whatever we have may be geometrically 
interesting, but it is not a real polytope.  No real polytope ever needs to be labeled (though 
labeling may be helpful in discussing it).

My definition of a "real" polytope is broad enough to cover polytopes in both Euclidean 
and  non-Euclidean  (spherical,  hyperbolic,  or  elliptic)  spaces,  to  include  both  convex 
polytopes and star polytopes, to include both orientable and nonorientable figures, and to 
include both finite polytopes and Euclidean or hyperbolic apeirotopes.  A slightly modified 
definition covers Euclidean and non-Euclidean honeycombs.  This is not by any means the 
only way that one can define polytopes and honeycombs, but it does seem to be compatible 
with the kind of figures that people are generally interested in.  Anyone should feel free to 
investigate figures whose properties do not satisfy my criteria, but in doing so one should be 
aware that not every imaginable polytope-like figure can be supported by a consistent theory.

Holes
[We have seen that a toroidal polytope has external holes – Ed.]
I now consider whether it makes sense to regard some polytopes as having  internal  

cavities as  "holes."  The best  answer  is  not at  all  obvious,  and the question needs to be 
considered in the context of a satisfactory general definition of "polytope."

One aspect of the problem can be illustrated by the following pairs of polygons:
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                                               o--------o
      o--------o    o--------o                /        /
      |        |    |        |               /   o----/---o
      |        |    |        |              /     \  /     \
      |        |    |        |             /       \/       \
      |        |    |        |            /        /\        \
      |        o----o        |           /        /  \        \
      |                      |          /        o----o        \
      |                      |         /                        \
      o----------------------o        o--------------------------o

                                               o--------o
      o--------o    o--------o                /        /
      |        |    |        |               /   o----/---o
      |        |    |        |              /     \  /     \
      |        |    |        |             /       \/       \
      |        |    |        |            /        /\        \
      |        |    |        |           /        /  \        \
      |        o    o        |          /        o    o        \
      |         \  /         |         /          \  /          \
      |          \/          |        /            \/            \
      |          /\          |       /             /\             \
      |         /  \         |      /             /  \             \
      o--------o    o--------o     o-------------o    o-------------o

In each case the left-hand figure can be continuously deformed into the right-hand one. 
For the top pair, it seems plausible that the polygon on the right has a triangular hole that was 
formerly part of the exterior.  For the bottom pair, the polygon on the right would likewise 
seem to have a rhombic hole.  But what about the hidden triangular region?  Should it be 
regarded as  a  doubly covered region or  do the  two overlapping parts  cancel  out,  giving 
another hole?

At least polygons are orientable, so such questions make sense.  But polyhedra and 
higher-dimensional polytopes can be nonorientable, making it unclear just what is inside or 
outside.  And our intuition may not be reliable even with orientable figures.

If one were to form a prism with either of these star polygons as a base, then the "hole" 
would appear to be one end of a tunnel through a toroid.  Now, unlike the holey polygon, the 
exterior of such a prism would be connected in three-space.  Does this not show that the hole 
is significant after all?  No, because the face polygons of a real polyhedron must be real 
polygons, and holey bases do not qualify.  So we must fill in all the bounded regions of the 
star polygon, which then forces us to plug up the tunnel.

Stephen  Smale  famously  showed  that  a  sphere  can  be  turned  inside  out,  i.e., 
continuously deformed so that what was its outer surface becomes its inner surface and vice 
versa.  If this can be done with a sphere, it could presumably be done with a spheroidal 
polyhedron having sufficiently many faces.  And try to distinguish the solid parts from the 
"holes" at some of the intermediate stages!

Jonathan Bowers says that he doesn't have a precise definition of a hole yet but usually 
punches them out where it  seems obvious.  This leads him to identify twelve cavities or 
"holes" inside Groh, with a roundabout way of determining the density of its internal regions, 
even though this polyhedron is nonorientable.  Perhaps we need a Potter Stewart rule for what 
counts  as  a  hole ("I  know it  when I  see  it"),  but  I  don't  think we can ever  formulate  a 
consistent formal definition.
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This  brings me back to my original  position, which is  that all  the enclosed regions 
bounded by the j-faces of an n-polytope (j < n) must be regarded as part of its body; there are 
no holes.

There is a close analogy between the problem of classifying enclosed regions created by 
the facets of a self-intersecting polytope and the problem of determining areas and volumes 
of bounded regions in the plane or in space.  In each case some things that seem obviously 
true turn out to be false and what works in two dimensions turns out not to work in three.

There  is  a  well-established  theory of  dissection  of  plane  polygons.   Any non-self-
intersecting polygon can be dissected into a finite number of pieces that can be reassembled 
to form any other polygon of the same area.  More generally, area of arbitrary regions is 
preserved under dissection and rearrangement.  It has even been shown that it is possible to 
dissect a circular disk into a finite number of pieces that can be reassembled to form a square 
of the same area.  The number of pieces required is quite large and some of the pieces have 
strange shapes, but it can be done.

The third in the famous list of problems posed by David Hilbert at the International 
Congress of Mathematicians at Paris in 1900 asked whether there exist "two tetrahedra of 
equal bases and equal altitudes which can in no way be split up into congruent tetrahedra." 
Within a year Max Dehn showed that a regular tetrahedron cannot be dissected into a finite 
number of pieces that can be reassembled to form a cube of the same volume.  From this one 
readily obtains two tetrahedra of equal bases and altitudes that are not equidecomposable.  So 
there is no dissection theory for polyhedra comparable to the one that works so nicely for 
polygons.

And that is not all.  In 1924 Stefan Banach and Alfred Tarski proved what has come to 
be known as the Banach-Tarski Paradox.  It is possible to dissect a solid sphere into six pieces 
that can be reassembled to form two solid spheres, each of the same volume as the original. 
Of course, the pieces are extremely complicated, so complicated that they do not even have 
volumes.   Whereas  areas  of  plane  figures  are  preserved  under  all  dissections  and 
rearrangements, this is not the case with volumes of solid figures.

For an interesting account of these and other results, see Stewart (1992, Chapter 13).
There is likewise a well-established theory of the enclosed regions of the plane formed 

by an oriented polygon with no coincident vertices or overlapping edges.  Each region can be 
assigned an integer value that is the difference between the number of left-pointing and right-
pointing sides that one crosses in going from a point inside the region to a point completely 
outside the polygon.

Any oriented polygon can be continuously deformed into various other polygons.  In 
the  process  angles  and  lengths  of  sides  can  change,  provided  that  no  two  vertices  ever 
coincide and no two sides ever overlap.  All continuous deformations preserve the "winding 
number" of the polygon, the net number of counterclockwise revolutions made in traversing 
the vertices and sides in the direction of the orientation.

The invariance of the winding number makes it possible to classify the enclosed regions 
formed by oriented  polygons.   It  is  consistent  with  this  classification to  regard  a  region 
labelled  '0'  as  belonging  to  the  exterior  of  the  polygon.   In  other  words,  some oriented 
polygons can be said to have "holes."  By these lights, the right-hand figure of the first pair of 
polygons depicted in my initial message has one hole and the right-hand figure of the second 
pair has two.

A similar analysis,  taking into account the fact that the core of a regular pentagram 
{5/2} is a region of density 2, allows one to show that the regular star polyhedra {5/2, 5} and 
{5, 5/2} have a core density of 3, while {5/2, 3} and {3, 5/2} have a core density of 7.  The 
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density of any orientable uniform polyhedron none of whose faces pass through the center 
can be similarly calculated.

So it might appear that the theory that allows us to classify the enclosed regions of 
oriented star polygons could be extended to apply to star polyhedra and that in some cases 
enclosed regions should logically be regarded as holes.  But in fact this cannot be done, for 
two  reasons  that  I  have  previously  alluded  to.   The  first  is  that  not  all  polytopes  are 
orientable, and there is no consistent way to classify the regions formed by the facets of a 
nonorientable polytope.  The second is that, as shown by the possibility of turning a sphere 
inside  out,  there  is  no  property  of  an  oriented  polyhedron,  invariant  under  continuous 
deformation, comparable to the winding number of an oriented polygon.

Since the idea of a polytopal "hole" cannot be successfully extended from the plane to 
spaces of three or more dimensions, there is not much point in trying to fit it into a general 
definition of "polytope."  In fact, if we insist on doing so for self-intersecting figures other 
than polygons, the resulting theory will inevitably lead to contradictions.

My  definition  of  a  "real"  polytope  may  not  satisfy  everyone's  notions  of  what  a 
polytope ought to be, but it takes in a lot of territory while still imposing a few reasonable 
restrictions.  (At least I consider them reasonable; others may differ.)  It avoids the danger of 
relying too much on one's intuition.  Most important, for my purposes, it provides a basis for 
a consistent theory of uniform polytopes.
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