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Abstract

The question of whether there is a logic that captures
polynomial time is the central open problem in descrip-
tive complexity theory. In my talk, I will review the ques-
tion and the early, mostly negative results that were ob-
tained until the mid 1990s, and then move on to positive
results about capturing polynomial time on specific classes
of graphs. This will include recent results on definability in
fixed-point logic and graph structure theory. Finally, I will
dicuss stronger logics and propose directions for further re-
search.

The purpose of this accompanying note is to give the ba-
sic definitions in detail, state the main results, mention some
open problems, and give a list of references.

Introduction

The question for a logic capturing polynomial time origi-
nates in database theory. After Aho and Ullman [2] had re-
alized that SQL, the standard query language for relational
databases, cannot express all database queries computable
in polynomial time, in a fundamental paper on the com-
plexity and expressiveness of query languages, Chandra and
Harel [9] asked for a recursive enumeration of the class of
all queries computable in polynomial time. In the context
of descriptive complexity theory, Gurevich [28] later asked
whether there is a logic in which precisely the properties
of finite structures decidable in polynomial time can be de-
fined. In database terminology, Gurevich’s question asks for
a query language in which precisely the queries computable
in polynomial time can be expressed. The advantages of
such a language are obvious: On the one hand, syntactical
restrictions, which can be checked by a compiler, guaran-
tee that only queries admitting efficient evaluation can be
asked. On the other hand, all queries that can be evaluated
efficiently can be asked in the language.1 It turned out that

1Of course it is questionable to use “polynomial time computable” as
a synonym for “efficiently computable”. However, the questions studied
here are highly theoretical, and I do believe that PTIME is a reasonable and
robust mathematical model for the class of efficiently computable prob-

Chandra and Harel’s question for a recursive enumeration of
the PTIME queries is equivalent to Gurevich’s question for
a “logic for PTIME”, up to a minor technical detail which
will be discussed later.

Logics capturing PTIME

The exact formulation of the question for a “logic for
PTIME” is subtle. We shall give the definition below, as-
suming some basic terminology from logic and finite model
theory (for background, see [15, 21, 36, 40]).

In descriptive complexity theory, algorithmic problems
are viewed as Boolean queries, that is, classes of finite
structures of the same vocabulary that are closed under iso-
morphism. A logic L consists of:
(L1) a decidable set L[τ], whose elements we call L-

sentences, for each vocabulary τ;

(L2) a binary relation |=L between finite structures and L-
sentences such that for each τ and each ϕ ∈ L[τ], the
class Qϕ of all τ-structures A with A |=L ϕ is closed
under isomorphism.

Hence for every L-sentence ϕ the class Qϕ is a Boolean
query, which we call the query defined by ϕ . A Boolean
query is definable in L if it is defined by some L-sentence.
A logic L captures PTIME if for every vocabulary τ:
(C1) Every Boolean query that is decidable in PTIME is

definable in L.

(C2) There is a computable function that associates with
every L-sentence ϕ ∈ L[τ] a polynomial p(X) and an
algorithm M such that M decides the query Qϕ in
time p(n), where n is the size of the input structure.

Now the precise formulation of Gurevich’s question is: Is
there a logic that captures PTIME? This question is equiva-
lent to Chandra and Harel’s question for a recursive enumer-
ation of all PTIME queries, except that condition (C2) needs
to be replaced by the following slight modification:
(C2’) There is a computable function that associates with

every L-sentence ϕ ∈ L[τ] an algorithm M such that
M decides the query Qϕ in polynomial time.

lems.



Obviously, (C2) implies (C2’); it is an open question
whether the converse also holds (in the presence of (L1),
(L2), and (C1)). Let me remark that there is also a slightly
modified version of a “recursive enumeration of all PTIME
queries” that is precisely equivalent to the existence of logic
satisfying (C2) (together with (L1), (L2), and (C1)). One
might be tempted to replace (C2) or (C2’) by the yet weaker
and seemingly more natural condition:
(C2”) Every Boolean query definable in L is decidable in

polynomial time.
Note that, at least for the database application mentioned
above, condition (C2”) is too weak: It is not enough to know
that a query given to the database system can be answered
efficiently by some algorithm, the system also needs to be
able to to find such an algorithm. This is what condition
(C2’) guarantees. Surprisingly, there is a logic that satisfies
(C1) and (C2”), as the following example shows:

Example ([28, 43]). Let τ be a vocabulary and ≤τ a bi-
nary relation symbol not contained in τ . Let us say that a
sentence ϕ of vocabulary τ ∪{≤τ} is order invariant on a
τ-structure A if for any two linear orders ≤1, ≤2 on A we
have

(A,≤1) |= ϕ ⇐⇒ (A,≤2) |= ϕ.

Here (A,≤i) denote the expansion of the τ-structure A to
a τ ∪{≤τ}-structure where ≤τ is interpreted by the linear
order ≤i.

I assume that the reader is familiar with fixed-point logic
FP. The precise definition of the logic does not really mat-
ter here. I prefer to work with inflationary fixed point logic
in this context, because it has the most straightforward ex-
tension to a logic that has the ability to count, but for this
example, it is safe to think of the more familiar least fixed
point logic.

We define a logic OFP with OFP[τ] := FP[τ ∪{≤τ}] for
all vocabularies τ . Let us denote the the cardinality of the
universe of a structure A by |A|. We define the relation
|=OFP as follows: For all τ-structures A and all ϕ ∈ OFP[τ]
we let

A |=OFP ϕ :⇐⇒ ϕ is order invariant on all τ-structures
B with |B| ≤ |A| and (A,≤) |=FP ϕ for
some (and hence for all) linear orders
≤ of A.

OFP satisfies (L1) and (L2) because the logic FP does. The
logic OFP satisfies (C1) by the Immerman-Vardi Theorem
stated below. It also follows from the Immerman-Vardi The-
orem that OFP satisfies (C2”). The key argument is that if a
sentence ϕ ∈ FP[τ ∪{≤τ}] is not order invariant then there
are only finitely many τ-structures A such that A |=OFP ϕ .

Remarkably, it is still an open question whether the logic
OFP satisfies (C2) or (C2’).

Gurevich conjectured that there is no logic for PTIME.
I am not sure if I share this conjecture, but in any case it
will be very difficult to prove it: By Fagin’s Theorem [18],
existential second-order logic captures NP. Hence if there is
no logic capturing PTIME, then PTIME 6= NP.

Capturing PTIME on classes of structures

The main positive results in the area state that certain logics
capture PTIME on certain classes of structures. Let C be
a class of structures, which we assume to be closed under
isomorphism. Then a logic L captures PTIME on C if it
satisfies the following two conditions for every vocabulary
τ:
(C1)C For every Boolean query Q decidable in PTIME

there is an L-sentence ϕ such that for all structures
A ∈ C it holds that A |= ϕ if and only if A ∈Q.

(C2)C There is a computable function that associates with
every L-sentence ϕ ∈ L[τ] a polynomial p(X) and an
algorithm M such that given a τ-structure A ∈ C , the
algorithm M decides if A |=L ϕ in time p(|A|).

Note that if the class C is decidable in PTIME, then (C1)C
is equivalent to the simpler condition stating that every
Boolean query Q ⊆ C that is decidable in PTIME is de-
finable in L. In all known example, the class C is decidable
in PTIME.

An ordered structure is a structure A whose vocabulary
contains the binary relation symbol ≤, such that ≤ is inter-
preted in A by a linear order of the universe of A.

Immerman-Vardi Theorem ([34, 48]). Fixed-point logic
FP captures PTIME on the class of all ordered structures.

Relations to isomorphism testing and canonisation

As an abstract question, the question for a logic capturing
polynomial time is linked to the graph isomorphism and
canonisation problem. In particular, if there is a polyno-
mial time computable canonisation mapping for a class C
of graphs or structures, then there is a logic that captures
polynomial time on this class C . This follows from the
Immerman-Vardi Theorem. To explain this, let us consider
graphs and assume that we represent them by their adja-
cency matrices. A canonisation mapping gets as argument
some adjacency matrix representing a graph and returns a
canonical adjacency matrix for this graph, that is, it maps
isomorphic adjacency matrices to equal adjacency matrices.
As an adjacency matrix for a graph is completely fixed once
we specify the ordering of the rows and columns of the ma-
trix, we may view a canonisation as a mapping associating
with each graph a canonical ordered copy of the graph. Now
we can apply the Immerman-Vardi Theorem to this ordered
copy.

Clearly, if there is a polynomial time canonisation map-



ping for a class of graphs (or other structures) then there
is a polynomial time isomorphism test for this class. It is
open whether the converse also holds. It is an open ques-
tion whether the existence of a logic for polynomial time
implies the existence of a polynomial time isomorphism test
or canonisation mapping.

Polynomial time canonisation mappings are known for
many natural classes of graphs, for example planar graphs
[33, 32], graphs of bounded genus [19, 42], graphs of
bounded degree [4, 41], and graphs of bounded tree
width [7]. For background, I refer the reader to Köbler’s
recent survey [38].

Most known capturing results are proved by showing that
there is a canonisation mapping that is definable in some
logic. Specifically, most of these results are for fixed-point
logic with counting FP+C; they will be discussed in the
next section. It was observed by Cai, Fürer, and Immerman
[8] that for classes C of structures which admit a canoni-
sation mapping definable in FP+C, a simple combinatorial
algorithm known as the Weisfeiler-Leman (WL) algorithm
[16, 17] can be used as a polynomial time isomorphism test
on C . This approach was used in [24, 26] to prove that the
WL-algorithm correctly decides isomorphism on classes of
graphs of bounded genus and on classes of bounded tree
width. Recently, a refined version of the same approach
was used by Verbitsky and others [27, 39, 49] to even ob-
tain parallel isomorphism tests running in polylogarithmic
time for planar graphs and graphs of bounded tree width.

Fixed-point logic with counting

We have seen in the previous section that for many natural
classes of graphs there are logics capturing PTIME. How-
ever, the logics obtained through canonisation hardly qual-
ify as natural logics. If a logic is to contribute to our un-
derstanding of the complexity class PTIME— and from my
perspective this is the main reason for being interested in
such a logic — we have to look for natural logics that de-
rive their expressiveness from clearly visible basic princi-
ples like inductive definability, counting or other combina-
torial operations, and maybe fundamental algebraic opera-
tions like computing the rank or the determinant of a matrix.
If such a logic captures polynomial time on a class of struc-
tures, then this shows that all polynomial time properties of
structures in this class are based on the principles underly-
ing the logic.

A natural logic that was considered a candidate for a
logic capturing PTIME for a while is fixed-point logic with
counting, FP+C. The logic was first introduced, somewhat
informally, by Immerman [35]. The formal definition that
we use today, which is based on inflationary fixed-point
logic, is due to Grädel and Otto [22]. Eventually, Cai, Fürer,
and Immerman [8] gave an example of a Boolean query that
is decidable in PTIME, but not definable in FP+C. Let us

call this query the CFI-query in the following. The CFI-
query witnesses that FP+C does not capture PTIME on the
class of all graphs. Nevertheless, FP+C does capture PTIME
on many interesting classes of structures, among them trees
[37], planar graphs [23], all classes of structures of bounded
tree width [26], and graphs that do not contain the complete
5-vertex graph as a minor [25]. Recall that a minor of graph
G is a graph obtained from G by deleting edges, deleting
vertices, and contracting edges. All classes C just listed
can be defined by excluded minors, that is, there is a family
F of graphs such that C is the class of all graphs that do not
contain any graph in F as a minor. It is an awkward time
for me to write this note, because I believe that I can prove
that FP+C captures PTIME on any class of graphs defined
by excluded minors. But I have not worked out all details
of the proof yet, so at the time of writing this remains a
conjecture.

As a matter of fact, FP+C captures PTIME on almost all
structures. This statement was made precise and proved by
Hella, Kolaitis, and Luosto [30].

Other logics

Not too many other logics have been studied as candidates
for capturing polynomial time. One of the few is choiceless
polynomial time with counting, CPT+C, a language based
on Gurevich’s abstract state machines. The language has
been introduced by Blass, Gurevich, and Shelah in [5] and
further studied in [6, 14]. In particular, Dawar, Richerby,
and Rossman [14] proved that the CFI-query is definable in
CPT+C. It is still open whether CPT+C captures PTIME.

Recent results by Atserias, Bulatov, and Dawar [3] nicely
demonstrate that at the core of the inexpressibility results
for FP+C is the logic’s inability to define certain linear al-
gebraic invariants that can easily be computed in polyno-
mial time by Gaussian elimination. With my student Bas-
tian Laubner, I am currently studying extensions of fixed-
point logic by operators that express such algebraic invari-
ants. Preliminary results are promising. For example, it is
not hard to prove that a logic with an operator for the row
rank of definable matrices can define the CFI-query.

Early on, a number of results regarding the possibility of
capturing polynomial time by adding Lindström quantifiers
to first-order logic or fixed-point logic were obtained. Hella
[29] proved that adding finitely many Lindström quantifiers
(or infinitely many of bounded arity) to fixed-point logic
does not suffice to capture polynomial time (also see [12]).
Dawar [11] proved that if there is a logic capturing polyno-
mial time, then there is such a logic obtained from fixed-
point logic by adding one vectorized family of Lindström
quantifiers.

Another family of logics that have been studied in this
context are extensions of fixed-point logic with nondeter-
ministic choice operators [1, 13, 20].



Instead of capturing all PTIME queries contained in a
specific class of structures, Otto [44, 45, 46] studied the
question of capturing all PTIME queries satisfying cer-
tain invariance conditions. Most notably, he proved that
bisimulation-invariant Boolean queries are decidable in
polynomial time if and only if they are definable in the
higher-dimensional µ-calculus.

Open problems

Several open problems were mentioned throughout this
note. I would like to close by mentioning a few more:

Problem 1. Find a natural logic that captures PTIME on
classes of graphs of bounded degree.

Remarks. It follows from the results on polynomial time
isomorphism testing and canonisation of bounded degree
graphs due to Babai and Luks [4, 41] that there is a logic
capturing PTIME on these classes, so the emphasis is on
“natural”. It is known that FP+C does not capture PTIME
on the class of graphs of degree 3, because the CFI-query is
actually a query on graphs of degree 3.

Problem 2. Find a logic that captures PTIME on classes of
graphs of bounded rank width.

Remarks. Rank width is a graph invariant similar to tree
width that was introduced by Oum and Seymour [47]; it is
closely related to clique width [10]. In particular, a class of
graphs has bounded rank width if and only if it has bounded
clique width.

No polynomial time isomorphism test for graphs of
bounded rank width is known. It is conceivable that FP+C
captures PTIME on classes of bounded rank width.

Problem 3. Find a logic that captures all constraint sat-
isfaction problems in PTIME. More precisely, find a logic
L satisfying (L1), (L2), and (C2) such that for every con-
straint satisfaction problem P = CSP(B), if P is decidable
in PTIME then there is there is an L-sentence ϕ that defines
P .

Remarks. Constraint satisfaction problems can be defined
as homomorphism problems for finite structures. For every
τ-structure B, we let CSP(B) be the class of all τ-structures
A such that there is a homomorphism from A to B. Hence
CSP(B) is a Boolean query

Problem 4. Prove that CPT+C does not capture polyno-
mial time.

Remarks. I think it would already be interesting to find a
query in NP that is not definable in CPT+C. In general, for
logics more expressive than FP+C it seems worthwhile to
first separate them from NP. This may be viewed as a pro-
gram of separating NP from larger and larger fragments of
PTIME.
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laitis, Bastian Laubner, Martin Otto, and Victor Vianu for
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[21] E. Grädel, P. Kolaitis, L. Libkin, M. Marx, J. Spencer,
M. Vardi, Y. Venema, and S. Weinstein. Finite Model Theory
and Its Applications. Springer-Verlag, 2007.
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