
Programming in IDRIS: a tutorial

Edwin Brady
eb@cs.st-andrews.ac.uk

March 7, 2012

Contents

1 Introduction 2
1.1 Intended Audience . 3
1.2 Example Code . 3

2 Getting Started 3
2.1 Prerequisites . 3
2.2 Downloading and Installing . 3
2.3 The interactive environment . 4

3 Types and Functions 4
3.1 Primitive Types . 4
3.2 Data Types . 6
3.3 Functions . 6
3.4 Dependent Types . 8

3.4.1 Vectors . 8
3.4.2 The Finite Sets . 9
3.4.3 Implicit Arguments . 9
3.4.4 “using” notation . 10

3.5 I/O . 10
3.6 “do” notation . 11
3.7 Useful Data Types . 11

3.7.1 List and Vect . 11
3.7.2 Maybe . 12
3.7.3 Tuples and Dependent Pairs . 13

3.8 so . 14
3.9 More Expressions . 14
3.10 Dependent Records . 16

4 Type Classes 17
4.1 Default Definitions . 18
4.2 Extending Classes . 18
4.3 Monads and do-notation . 19
4.4 Idiom brackets . 20

4.4.1 An error-handling interpreter . 21

1

eb@cs.st-andrews.ac.uk

5 Modules and Namespaces 22
5.1 Export Modifiers . 23
5.2 Explicit Namespaces . 23

6 Example: The Well-Typed Interpreter 24
6.1 Unit testing . 28

7 Views and the “with” rule 29
7.1 Dependent pattern matching . 29
7.2 The with rule — matching intermediate values . 29

8 Theorem Proving 30
8.1 Equality . 30
8.2 The Empty Type . 30
8.3 Simple Theorems . 31
8.4 Interactive theorem proving . 31
8.5 Totality Checking . 33

9 Provisional Definitions 34
9.1 Provisional definitions . 35
9.2 Suspension of Disbelief . 36
9.3 Example: Binary numbers . 37

10 Syntax Extensions 38
10.1 syntax rules . 38
10.2 dsl notation . 39

11 Miscellany 40
11.1 Auto implicit arguments . 40
11.2 Literate programming . 41
11.3 Foreign function calls . 41
11.4 Cumulativity . 42

12 Further Reading 43

1 Introduction

In conventional programming languages, there is a clear distinction between types and values. For example,
in Haskell [9], the following are types, representing integers, characters, lists of characters, and lists of any
value respectively:

• Int, Char, [Char], [a]

Correspondingly, the following values are examples of inhabitants of those types:

• 42, ’a’, "Hello world!", [2,3,4,5,6]

In a language with dependent types, however, the distinction is less clear. Dependent types allow types to
“depend” on values — in other words, types are a first class language construct and can be manipulated
like any other value. The standard example is the type of lists of a given length1, Vect a n, where a is the
element type and n is the length of the list and can be an arbitrary term.

1Typically, and perhaps confusingly, referred to in the dependently typed programming literature as “vectors”

2

When types can contain values, and where those values describe properties (e.g. the length of a list) the
type of a function can begin to describe its own properties. For example, concatenating two lists has the
property that the resulting list’s length is the sum of the lengths of the two input lists. We can therefore give
the following type to the app function, which concatenates vectors:

app : Vect a n -> Vect a m -> Vect a (n + m)

This tutorial introduces IDRIS, a general purpose functional programming language with dependent types.
The goal of the IDRIS project is to build a dependently typed language suitable for verifiable systems pro-
gramming. To this end, IDRIS is a compiled language which aims to generate efficient executable code. It
also has a lightweight foreign function interface which allows easy interaction with external C libraries.

1.1 Intended Audience

This tutorial is intended as a brief introduction to the language, and is aimed at readers already familiar
with a functional language such as Haskell or OCaml. In particular, a certain amount of familiarity with
Haskell syntax is assumed, although most concepts will at least be explained briefly. The reader is also
assumed to have some interest in using dependent types for writing and verifying systems software.

1.2 Example Code

This tutorial includes some example code, which has been tested with IDRIS version 0.9.2. The files are
available in the IDRIS distribution, so that you can try them out easily, under tutorial/examples. How-
ever, it is strongly recommended that you type them in yourself, rather than simply loading and reading
them.

2 Getting Started

2.1 Prerequisites

Before installing IDRIS, you will need to make sure you have all of the necessary libraries and tools. You
will need:

• A fairly recent Haskell platform. Version 2010.1.0.0.1 is currently sufficiently recent.

• The Boehm-Demers-Weiser garbage collector library. This is available in all major Linux distribu-
tions, or can be installed from source, available from http://www.hpl.hp.com/personal/Hans_
Boehm/gc/. Installing from source is painless on MacOS.

• The GNU multiprecision arithmetic library, GMP, available from MacPorts and all major Linux distri-
butions.

2.2 Downloading and Installing

The easiest way to install IDRIS, if you have all of the prerequisites, is to type:

cabal update; cabal install idris

This will install the latest version released on Hackage, along with any dependencies. If, however, you
would like the most up to date development version, you can find it on GitHub at https://github.
com/edwinb/Idris-dev.

To check that installation has succeeded, and to write your first IDRIS program, create a file called
“hello.idr” containing the following text:

3

http://www.hpl.hp.com/personal/Hans_Boehm/gc/
http://www.hpl.hp.com/personal/Hans_Boehm/gc/
https://github.com/edwinb/Idris-dev
https://github.com/edwinb/Idris-dev

module main

main : IO ()
main = putStrLn "Hello world"

If you are familiar with Haskell, it should be fairly clear what the program is doing and how it works, but
if not, we will explain the details later. You can compile the program to an executable by entering idris
hello.idr -o hello at the shell prompt. This will create an executable called hello, which you can
run:

$ idris hello.idr -o hello
$./hello
Hello world

Note that the $ indicates the shell prompt! Some useful options to the idris command are:

• -o prog to compile to an executable called prog.

• --check type check the file and its dependencies without starting the interactive environment.

2.3 The interactive environment

Entering idris at the shell prompt starts up the interactive environment. You should see something like
the following:

$ idris
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.2

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Idris>

This gives a ghci-style interface which allows evaluation of expressions, as well as type checking expres-
sions, theorem proving, compilation, editing and various other operations. :? gives a list of supported
commands, as shown in Figure 1. Figure 2 shows an example run in which hello.idr is loaded, the type
of main is checked and then the program is compiled to the executable hello.
Type checking a file, if successful, creates a bytecode version of the file (in this case hello.ibc) to speed
up loading in future. The bytecode is regenerated if the source file changes.

3 Types and Functions

3.1 Primitive Types

IDRIS defines several primitive types: Int, Integer and Float for numeric operations, Char and String
for text manipulation, and Ptrwhich represents foreign pointers. There are also several data types declared
in the library, including Bool, with values True and False. We can declare some constants with these
types. Enter the following into a file prims.idr and load it into the IDRIS interactive environment by
typing idris prims.idr:

4

Idris version 0.9.2

Command Arguments Purpose

<expr> Evaluate an expression
:t <expr> Check the type of an expression
:total <name> Check the totality of a name
:r :reload Reload current file
:e :edit Edit current file using $EDITOR or $VISUAL
:m :metavars Show remaining proof obligations (metavariables)
:p :prove <name> Prove a metavariable
:a :addproof Add last proof to source file
:c :compile <filename> Compile to an executable <filename>
:exec :execute Compile to an executable and run
:? :h :help Display this help text
:q :quit Exit the Idris system

Figure 1: Interactive environment commands

module prims

x : Int
x = 42

foo : String
foo = "Sausage machine"

bar : Char
bar = ’Z’

quux : Bool
quux = False

An IDRIS file consists of an optional module declaration (here module prims) followed by an optional list
of imports (none here, however IDRIS programs can consist of several modules, and the definitions in each
module each have their own namespace, as we will discuss in Section 5) and a collection of declarations
and definitions. Each definition must have a type declaration (here, x : Int, foo : String, etc).
Indentation is significant — a new declaration begins at the same level of indentation as the preceding
declaration. Alternatively, declarations may be terminated with a semicolon.

A library module prelude is automatically imported by every IDRIS program, including facilities for
IO, arithmetic, data structures and various common functions. The prelude defines several arithmetic and
comparison operators, which we can use at the prompt. Evaluating things at the prompt gives an answer,
and the type of the answer. For example:

*prims> 6*6+6
42 : Int

*prims> x == 6*6+6
True : Bool

All of the usual arithmetic and comparison operators are defined for the primitive types. They are over-
loaded using type classes, as we will discuss in Section 4 and can be extended to work on user defined
types. Boolean expressions can be tested with the if...then...else construct:

5

$ idris hello.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.2

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./hello.idr

*hello> :t main
main : IO ()

*hello> :c hello

*hello> :q
Bye bye
$./hello
Hello world

Figure 2: Sample interactive run

*prims> if x == 6 * 6 + 6 then "The answer!" else "Not the answer"
"The answer!" : String

3.2 Data Types

Data types are declared in a similar way to Haskell data types, with a similar syntax. Natural numbers and
lists, for example, can be declared as follows:

data Nat = O | S Nat -- Natural numbers
-- (zero and successor)

data List a = Nil | (::) a (List a) -- Polymorphic lists

The above declarations are taken from the standard library. Unary natural numbers can be either zero (O -
that’s a capital letter ’o’, not the digit), or the successor of another natural number (S k). Lists can either be
empty (Nil) or a value added to the front of another list (x :: xs). In the declaration for List, we used
an infix operator ::. New operators such as this can be added using a fixity declaration, as follows:

infixr 10 ::

Functions, data constructors and type constuctors may all be given infix operators as names. They may be
used in prefix form if enclosed in brackets, e.g. (::). Infix operators can use any of the symbols:

:+-*/=_.?|&><!@$%ˆ˜.

3.3 Functions

Functions are implemented by pattern matching, again using a similar syntax to Haskell. The main differ-
ence is that IDRIS requires type declarations for all functions, using a single colon : (rather than Haskell’s
double colon ::). Some natural number arithmetic functions can be defined as follows, again taken from
the standard library:

6

-- Unary addition
plus : Nat -> Nat -> Nat
plus O y = y
plus (S k) y = S (plus k y)

-- Unary multiplication
mult : Nat -> Nat -> Nat
mult O y = O
mult (S k) y = plus y (mult k y)

The standard arithmetic operators + and * are also overloaded for use by Nat, and are implemented using
the above functions. Unlike Haskell, there is no restriction on whether types and function names must
begin with a capital letter or not. Function names (plus and mult above), data constructors (O, S, Nil and
::) and type constructors (Nat and List) are all part of the same namespace.

We can test these functions at the IDRIS prompt:

Idris> plus (S (S O)) (S (S O))
S (S (S (S O))) : Nat
Idris> mult (S (S (S O))) (plus (S (S O)) (S (S O)))
S (S (S (S (S (S (S (S (S (S (S (S O))))))))))) : Nat

Like arithmetic operations, integer literals are also overloaded using type classes, meaning that we can also
test the functions as follows:

Idris> plus 2 2
S (S (S (S O))) : Nat
Idris> mult 3 (plus 2 2)
S (S (S (S (S (S (S (S (S (S (S (S O))))))))))) : Nat

You may wonder, by the way, why we have unary natural numbers when our computers have perfectly
good integer arithmetic built in. The reason is primarily that unary numbers have a very convenient struc-
ture which is easy to reason about, and easy to relate to other data structures as we will see later. Neverthe-
less, we do not want this convenience to be at the expense of efficiency. Fortunately, IDRIS knows about the
relationship between Nat (and similarly structured types) and numbers, so optimises the representation
and functions such as plus and mult.

where clauses

Functions can also be defined locally using where clauses. For example, to define a function which reverses
a list, we can use an auxiliary function which accumulates the new, reversed list, and which does not need
to be visible globally:

reverse : List a -> List a
reverse xs = revAcc [] xs where

revAcc : List a -> List a -> List a
revAcc acc [] = acc
revAcc acc (x :: xs) = revAcc (x :: acc) xs

Indentation is significant — functions in the where block must be indented further than the outer function.
Scope: Any names which are visible in the outer scope are also visible in the where clause (unless

they have been redefined, such as xs here). However, names which appear in the type are not in scope. In
particular, in the above example, the a in the top level type and the a in the auxiliary definifion revAcc are
not the same. If this is the required behaviour, the a can be brought into scope as follows:

7

reverse : List a -> List a
reverse {a} xs = revAcc [] xs where

revAcc : List a -> List a -> List a
...

3.4 Dependent Types

3.4.1 Vectors

A standard example of a dependent type is the type of “lists with length”, conventionally called vectors in
the dependent type literature. In IDRIS, we declare vectors as follows:

data Vect : Set -> Nat -> Set where
Nil : Vect a O
(::) : a -> Vect a k -> Vect a (S k)

Note that we have used the same constructor names as for List. Ad-hoc name overloading such as this is
accepted by IDRIS, provided that the names are declared in different namespaces (in practice, normally in
different modules). Ambiguous constructor names can normally be resolved from context.

This declares a family of types, and so the form of the declaration is rather different from the simple
type declarations above. We explicitly state the type of the type constructor Vect — it takes a type and a
Nat as an argument, where Set stands for the type of types. We say that Vect is parameterised by a type,
and indexed over Nat. Each constructor targets a different part of the family of types. Nil can only be used
to construct vectors with zero length, and :: to construct vectors with non-zero length. In the type of ::,
we state explicitly that an element of type a and a tail of type Vect a k (i.e., a vector of length k) combine
to make a vector of length S k.

We can define functions on dependent types such as Vect in the same way as on simple types such as
List and Nat above, by pattern matching. The type of a function over Vect will describe what happens
to the lengths of the vectors involved. For example, ++, defined in the library, appends two Vects:

(++) : Vect A n -> Vect A m -> Vect A (n + m)
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ ys

The type of (++) states that the resulting vector’s length will be the sum of the input lengths. If we get the
definition wrong in such a way that this does not hold, IDRIS will not accept the definition. For example:

(++) : Vect a n -> Vect a m -> Vect a (n + m)
(++) Nil ys = ys
(++) (x :: xs) ys = x :: xs ++ xs -- BROKEN

$ idris vbroken.idr --check
vbroken.idr:3:Can’t unify Vect a (S (plus k k)) with Vect a (S (plus k m))

Specifically:
Can’t unify k with m

This error message suggests that there is a length mismatch between two vectors — we needed a vector
of length (S (k + m)), but provided a vector of length (S (k + k)). Note that the terms in the error
message have been normalised, so in particular n + m has been reduced to plus n m.

8

3.4.2 The Finite Sets

Finite sets, as the name suggests, are sets with a finite number of elements. They are declared as follows
(again, in the prelude):

data Fin : Nat -> Set where
fO : Fin (S k)
fS : Fin k -> Fin (S k)

fO is the zeroth element of a finite set with S k elements; fS n is the n+1th element of a finite set with S
k elements. Fin is indexed by a Nat, which represents the number of elements in the set. Obviously we
can’t construct an element of an empty set, so neither constructor targets Fin O.

A useful application of the Fin family is to represent bounded natural numbers. Since the first n natural
numbers form a finite set of n elements, we can treat Fin n as the set of natural numbers bounded by n.

For example, the following function which looks up an element in a Vect, by a bounded index given as
a Fin n, is defined in the prelude:

index : Fin n -> Vect a n -> a
index fO (x :: xs) = x
index (fS k) (x :: xs) = index k xs

This function looks up a value at a given location in a vector. The location is bounded by the length of the
vector (n in each case), so there is no need for a run-time bounds check. The type checker guarantees that
the location is no larger than the length of the vector.

Note also that there is no case for Nil here. This is because it is impossible. Since there is no element of
Fin O, and the location is a Fin n, then n can not be O. As a result, attempting to look up an element in
an empty vector would give a compile time type error, since it would force n to be O.

3.4.3 Implicit Arguments

Let us take a closer look at the type of index:

index : Fin n -> Vect a n -> a

It takes two arguments, an element of the finite set of n elements, and a vector with n elements of type a.
But there are also two names, n and a, which are not declared explictly. These are implicit arguments to
index. We could also write the type of index as:

index : {a:Set} -> {n:Nat} -> Fin n -> Vect a n -> a

Implicit arguments, given in braces {} in the type declaration, are not given in applications of index; their
values can be inferred from the types of the Fin n and Vect a n arguments. Any name which appears as
a parameter or index in a type declaration, but which is otherwise free, will be automatically bound as an
implicit argument. Implicit arguments can still be given explicitly in applications, using {a=value} and
{n=value}, for example:

index {a=Int} {n=2} fO (2 :: 3 :: Nil)

In fact, any argument, implicit or explicit, may be given a name. We could have declared the type of index
as:

index : (i:Fin n) -> (xs:Vect a n) -> a

It is a matter of taste whether you want to do this — sometimes it can help document a function by making
the purpose of an argument more clear.

9

3.4.4 “using” notation

Sometimes it is necessary to provide types of implicit arguments where the type checker can not work
them out itself. This can happen if there is a dependency ordering — obviously, a and n must be given as
arguments above before being used — or if an implicit argument has a complex type. For example, we will
need to state the types of the implicit arguments in the following definition, which defines a predicate on
vectors:

data Elem : a -> Vect a n -> Set where
here : {x:a} -> {xs:Vect a n} -> Elem x (x :: xs)
there : {x,y:a} -> {xs:Vect a n} -> Elem x xs -> Elem x (y :: xs)

An instance of Elem x xs states that x is an element of xs. We can construct such a predicate if the
required element is here, at the head of the vector, or there, in the tail of the vector. For example:

testVec : Vect Int 4
testVec = 3 :: 4 :: 5 :: 6 :: Nil

inVect : Elem 5 testVec
inVect = there (there here)

If the same implicit arguments are being used a lot, it can make a definition difficult to read. To avoid this
problem, a using block gives the types and ordering of any implicit arguments which can appear within
the block:

using (x:a, y:a, xs:Vect a n)
data Elem : a -> Vect a n -> Set where

here : Elem x (x :: xs)
there : Elem x xs -> Elem x (y :: xs)

3.5 I/O

Computer programs are of little use if they do not interact with the user or the system in some way. The
difficulty in a pure language such as IDRIS — that is, a language where expressions do not have side-effects
— is that I/O is inherently side-effecting. Therefore in IDRIS, such interactions are encapsulated in the type
IO:

data IO a -- IO operation returning a value of type a

We’ll leave the definition of IO abstract, but effectively it describes what the I/O operations to be executed
are, rather than how to execute them. The resulting operations are executed externally, by the run-time
system. We’ve already seen one IO program:

main : IO ()
main = putStrLn "Hello world"

The type of putStrLn explains that it takes a string, and returns an element of the unit type () via an I/O
action. There is a variant putStr which outputs a string without a newline:

We can also read strings from user input:

getLine : IO String

A number of other I/O operations are defined in the prelude, for example for reading and writing files,
including:

10

data File -- abstract
data Mode = Read | Write | ReadWrite

openFile : String -> Mode -> IO File
closeFile : File -> IO ()

fread : File -> IO String
fwrite : File -> String -> IO ()
feof : File -> IO Bool

readFile : String -> IO String

3.6 “do” notation

I/O programs will typically need to sequence actions, feeding the output of one computation into the input
of the next. IO is an abstract type, however, so we can’t access the result of a computation directly. Instead,
we sequence operations with do notation:

greet : IO ()
greet = do putStr "What is your name? "

name <- getLine
putStrLn ("Hello " ++ name)

The syntax x <- iovalue executes the I/O operation iovalue, of type IO a, and puts the result, of type
a into the variable x. In this case, getLine returns an IO String, so name has type String. Indentation
is significant — each statement in the do block must begin in the same column. The return operation
allows us to inject a value directly into an IO operation:

return : a -> IO a

As we will see later, do notation is more general than this, and can be overloaded.

3.7 Useful Data Types

IDRIS includes a number of useful data types and library functions (see the lib/ directory in the distribu-
tion). This chapter describes a few of these. The functions described here are imported automatically by
every IDRIS program, as part of prelude.idr.

3.7.1 List and Vect

We have already seen the List and Vect data types:

data List a = Nil | (::) a (List a)

data Vect : Set -> Nat -> Set where
Nil : Vect a O
(::) : a -> Vect a k -> Vect a (S k)

Note that the constructor names are the same for each — constructor names (in fact, names in general) can
be overloaded, provided that they are declared in different namespaces (see Section 5), and will typically
be resolved according to their type. As syntactic sugar, any type with the constructor names Nil and ::
can be written in list form. For example:

11

• [] means Nil

• [1,2,3] means 1 :: 2 :: 3 :: Nil

The library also defines a number of functions for manipulating these types. map is overloaded both for
List and Vect and applies a function to every element of the list or vector.

map : (a -> b) -> List a -> List b
map f [] = []
map f (x :: xs) = f x :: map f xs

map : (a -> b) -> Vect a n -> Vect b n
map f [] = []
map f (x :: xs) = f x :: map f xs

For example, to double every element in a vector of integers:

intVec : Vect Int 5
intVec = [1, 2, 3, 4, 5]

double : Int -> Int
double x = x * 2

You’ll find these examples in usefultypes.idr in the examples/ directory:

*usefultypes> show (map double intVec)
"[2, 4, 6, 8, 10]" : String

For more details of the functions available on List and Vect, look in the library, in prelude/list.idr
and prelude/vect.idr respectively. Functions include filtering, appending, reversing, and so on. Also
remember that IDRIS is still in development, so if you don’t see the function you need, please feel free to
add it and submit a patch!

Aside: Anonymous functions and operator sections

There are actually neater ways to write the above expression. One way would be to use an anonymous
function:

*usefultypes> show (map (\x => x * 2) intVec)
"[2, 4, 6, 8, 10]" : String

The notation \x => val constructs an anonymous function which takes one argument, x and returns the
expression val. Anonymous functions may take several arguments, separated by commas, e.g. \x, y, z
=> val. Arguments may also be given explicit types, e.g. \x : Int => x * 2, and can pattern match,
e.g. \ (x, y) => x + y. We could also use an operator section:

usefultypes> show (map (2) intVec)
"[2, 4, 6, 8, 10]" : String

(*2) is shorthand for a function which multiplies a number by 2. It expands to \x => x * 2. Similarly,
(2*) would expand to \x => 2 * x.

3.7.2 Maybe

Maybe describes an optional value. Either there is a value of the given type, or there isn’t:

12

data Maybe a = Just a | Nothing

Maybe is one way of giving a type to an operation that may fail. For example, looking something up in a
List (rather than a vector) may result in an out of bounds error:

list_lookup : Nat -> List a -> Maybe a
list_lookup _ Nil = Nothing
list_lookup O (x :: xs) = Just x
list_lookup (S k) (x :: xs) = list_lookup k xs

The maybe function is used to process values of type Maybe, either by applying a function to the value, if
there is one, or by providing a default value:

maybe : Maybe a -> |(default:b) -> (a -> b) -> b

The vertical bar | before the default value is a laziness annotation. Normally expressions are evaluated
before being passed to a function. This is typically the most efficient behaviour. However, in this case,
the default value might not be used and if it is a large expression, evaluating it will be wasteful. The |
annotation tells the compiler not to evaluate the argument until it is needed.

3.7.3 Tuples and Dependent Pairs

Values can be paired with the following built-in data type:

data Pair a b = MkPair a b

As syntactic sugar, we can write (a, b) which, according to context, means either Pair a b or MkPair
a b. Tuples can contain an arbitrary number of values, represented as nested pairs:

fred : (String, Int)
fred = ("Fred", 42)

jim : (String, Int, String)
jim = ("Jim", 25, "Cambridge")

Dependent Pairs

Dependent pairs allow the type of the second element of a pair to depend on the value of the first element:

data Exists : (A : Set) -> (P : A -> Set) -> Set where
Ex_intro : {P : A -> Set} -> (a : A) -> P a -> Exists A P

Again, there is syntactic sugar for this. (a : A ** P) is the type of a pair of A and P, where the name a
can occur inside P. (a ** p) constructs a value of this type. For example, we can pair a number with a
Vect of a particular length.

vec : (n : Nat ** Vect Int n)
vec = (2 ** [3, 4])

The type checker could of course infer the value of the first element from the length of the vector. We can
write an underscore in place of values which we expect the type checker to fill in, so the above definition
could also be written as:

vec : (n : Nat ** Vect Int n)
vec = (_ ** [3, 4])

13

We might also prefer to omit the type of the first element of the pair, since, again, it can be inferred:

vec : (n ** Vect Int n)
vec = (_ ** [3, 4])

One use for dependent pairs is to return values of dependent types where the index is not necessarily
known in advance. For example, if we filter elements out of a Vect according to some predicate, we will
not know in advance what the length of the resulting vector will be:

filter : (a -> Bool) -> Vect a n -> (p ** Vect a p)

If the Vect is empty, the result is easy:

filter p Nil = (_ , [])

In the :: case, we need to inspect the result of a recursive call to filter to extract the length and the
vector from the result. To do this, we use with notation, which allows pattern matching on intermediate
values:

filter p (x :: xs) with (filter p xs)
| (_ ** xs’) = if (p x) then (_ ** x :: xs’) else (_ ** xs’)

We will see more on with notation later.

3.8 so

The so data type is a predicate on Bool which guarantees that the value is true:

data so : Bool where
oh : so True

This is most useful for providing a static guarantee that a dynamic check has been made. For example, we
might provide a safe interface to a function which draws a pixel on a graphical display as follows, where
so (inBounds x y) guarantees that the point (x,y) is within the bounds of a 640x480 window:

inBounds : Int -> Int -> Bool
inBounds x y = x >= 0 && x < 640 && y >= 0 && y < 480

drawPoint : (x : Int) -> (y : Int) -> so (inBounds x y) -> IO ()
drawPoint x y oh = unsafeDrawPoint x y

3.9 More Expressions

let bindings

Intermediate values can be calculated using let bindings:

mirror : List a -> List a
mirror xs = let xs’ = rev xs in

app xs xs’

We can do simple pattern matching in let bindings too. For example, we can extract fields from a record
as follows, as well as by pattern matching at the top level:

14

data Person = MkPerson String Int

showPerson : Person -> String
showPerson p = let MkPerson name age = p in

name ++ " is " ++ show age ++ " years old"

List comprehensions

IDRIS provides comprehension notation as a convenient shorthand for building lists. The general form is:

[expression | qualifiers]

This generates the list of values produced by evaluating the expression, according to the conditions given
by the comma separated qualifiers. For example, we can build a list of Pythagorean triples as follows:

pythag : Int -> List (Int, Int, Int)
pythag n = [(x, y, z) | z <- [1..n], y <- [1..z], x <- [1..y],

x*x + y*y == z*z]

The [a..b] notation is another shorthand which builds a list of numbers between a and b. Alternatively
[a,b..c] builds a list of numbers between a and c with the increment specified by the difference between
a and c. This works for any numeric type, using the count function from the prelude.

case expressions

Another way of inspecting intermediate values of simple types is to use a case expression. The following
function, for example, splits a string into two at a given character:

splitAt : Char -> String -> (String, String)
splitAt c x = case break (== c) x of

(x, y) => (x, strTail y)

break is a library function which breaks a string into a pair of strings at the point where the given function
returns true. We then deconstruct the pair it returns, and remove the first character of the second string.

A case expression can match several cases, for example, to inspect an intermediate value of type Maybe
a. Recall list lookup which looks up an index in a list, returning Nothing if the index is out of bounds.
We can use this to write lookup default, which looks up an index and returns a default value if the index
is out of bounds:

lookup_default : Nat -> List a -> a -> a
lookup_default i xs def = case list_lookup i xs of

Nothing => def
Just x => x

If the index is in bounds, we get the value at that index, otherwise we get a default value:

*usefultypes> lookup_default 2 [3,4,5,6] (-1)
5 : Int

*usefultypes> lookup_default 4 [3,4,5,6] (-1)
-1 : Int

Restrictions: The case construct is intended for simple analysis of intermediate expressions to avoid the
need to write auxiliary functions, and is also used internally to implement pattern matching let and
lambda bindings. It will only work if:

15

• Each branch matches a value of the same type, and returns a value of the same type.

• The type of the result is “known”. i.e. the type of the expression can be determined without type
checking the case-expression itself.

3.10 Dependent Records

Records are data types which collect several values (the record’s fields) together. IDRIS provides syntax for
defining records and automatically generating field access and update functions. For example, we can
represent a person’s name and age in a record:

record Person : Set where
MkPerson : (name : String) ->

(age : Int) -> Person

fred : Person
fred = MkPerson "Fred" 30

Record declarations are like data declarations, except that they are introduced by the record keyword,
and can only have one constructor. The names of the binders in the constructor type (name and age) here
are the field names, which we can use to access the field values:

*record> name fred
"Fred" : String

*record> age fred
30 : Int

*record> :t name
name : Person -> String

We can also use the field names to update a record (or, more precisely, produce a new record with the given
fields updates).

*record> record { name = "Jim" } fred
MkPerson "Jim" 30 : Person

*record> record { name = "Jim", age = 20 } fred
MkPerson "Jim" 20 : Person

The syntax record { field = val, ... } generates a function which updates the given fields in a
record.

Records, and fields within records, can have dependent types. Updates are allowed to change the type
of a field, provided that the result is well-typed, and the result does not affect the type of the record as a
whole. For example:

record Class : Set where
ClassInfo : (students : Vect Person n) ->

(className : String) ->
Class

It is safe to update the students field to a vector of a different length because it will not affect the type of
the record:

16

addStudent : Person -> Class -> Class
addStudent p c = record { students = p :: students c } c

*record> addStudent fred (ClassInfo [] "CS")
ClassInfo (prelude.vect.:: (MkPerson "Fred" 30) (prelude.vect.Nil)) "CS"

: Class

4 Type Classes

We often want to define functions which work across several different data types. For example, we would
like arithmetic operators to work on Int, Integer and Float at the very least. We would like == to work
on the majority of data types. We would like to be able to display different types in a uniform way.

To achieve this, we use a feature which has proved to be effective in Haskell, namely type classes. To de-
fine a type class, we provide a collection of overloaded operations which describe the interface for instances
of that class. A simple example is the Show type class, which is defined in the prelude and provides an
interface for converting values to Strings:

class Show a where
show : a -> String

This generates a function of the following type (which we call a method of the Show class):

show : Show a => a -> String

We can read this as “under the constraint that a is an instance of Show, take an a as input and return a
String.” An instance of a class is defined with an instance declaration, which provides implementations
of the function for a specific type. For example, the Show instance for Nat could be defined as:

instance Show Nat where
show O = "O"
show (S k) = "s" ++ show k

Idris> show (S (S (S O)))
"sssO" : String

Only one instance of a class can be given for a type — instances may not overlap. Instance declarations
can themselves have constraints. For example, to define a Show instance for vectors, we need to know that
there is a Show instance for the element type, because we are going to use it to convert each element to a
String:

instance Show a => Show (Vect a n) where
show xs = "[" ++ show’ xs ++ "]" where

show’ : Vect a n’ -> String
show’ Nil = ""
show’ (x :: Nil) = show x
show’ (x :: xs) = show x ++ ", " ++ show’ xs

Remark: The type of the auxiliary function show’ is important. The type variables a and n which are
part of the instance declaration for Show (Vect a n) are fixed across the entire instance declaration. As
a result, we do not have to constrain a again. Furthermore, it means that if we use n in the type, it refers to
the (fixed) length of the outermost list xs. Therefore, we use a different name for the length n’ in show’.

17

4.1 Default Definitions

The library defines an Eq class which provides an interface for comparing values for equality or inequality,
with instances for all of the built-in types:

class Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

To declare an instance of a type, we have to give definitions of all of the methods. For example, for an
instance of Eq for Nat:

instance Eq Nat where
O == O = True
(S x) == (S y) = x == y
O == (S y) = False
(S x) == O = False

x /= y = not (x == y)

It is hard to imagine many cases where the /= method will be anything other than the negation of the result
of applying the == method. It is therefore convenient to give a default definition for each method in the
class declaration, in terms of the other method:

class Eq a where
(==) : a -> a -> Bool
(/=) : a -> a -> Bool

x /= y = not (x == y)
y == y = not (x /= y)

A minimal complete definition of an Eq instance requires either == or /= to be defined, but does not require
both. If a method definition is missing, and there is a default definition for it, then the default is used
instead.

4.2 Extending Classes

Classes can also be extended. A logical next step from an equality relation Eq is to define an ordering
relation Ord. We can define an Ord class which inherits methods from Eq as well as defining some of its
own:

data Ordering = LT | EQ | GT

class Eq a => Ord a where
compare : a -> a -> Ordering

(<) : a -> a -> Bool
(>) : a -> a -> Bool
(<=) : a -> a -> Bool
(>=) : a -> a -> Bool
max : a -> a -> a
min : a -> a -> a

The Ord class allows us to compare two values and determine their ordering. Only the compare method
is required; every other method has a default definition. Using this we can write functions such as sort,

18

a function which sorts a list into increasing order, provided that the element type of the list is in the Ord
class. We give the constraints on the type variables left of the fat arrow =>, and the function type to the
right of the fat arrow:

sort : Ord a => List a -> List a

Functions, classes and instances can have multiple constraints. Multiple constaints are written in brackets
in a comma separated list, for example:

sortAndShow : (Ord a, Show a) => List a -> String
sortAndShow xs = show (sort xs)

4.3 Monads and do-notation

So far, we have seen single parameter type classes, where the parameter is of type Set. In general, there
can be any number (greater than 0) of parameters, and the parameters can have any type. If the type of the
parameter is not Set, we need to give an explicit type declaration. For example:

class Monad (m : Set -> Set) where
return : a -> m a
(>>=) : m a -> (a -> m b) -> m b

The Monad class allows us to encapsulate binding and computation, and is the basis of do-notation intro-
duced in Section 3.6. Inside a do block, the following syntactic transformations are applied:

• x <- v; e becomes v >>= (\x => e)

• v; e becomes v >>= (\ => e)

• let x = v; e becomes let x = v in e

IO is an instance of Monad, defined using primitive functions. We can also define an instance for Maybe, as
follows:

instance Monad Maybe where
return = Just

Nothing >>= k = Nothing
(Just x) >>= k = k x

Using this we can, for example, define a function which adds two Maybe Ints, using the monad to encap-
sulate the error handling:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = do x’ <- x -- Extract value from x

y’ <- y -- Extract value from y
return (x’ + y’) -- Add them

This function will extract the values from x and y, if they are available, or return Nothing if they are not.
Managing the Nothing cases is achieved by the >>= operator, hidden by the do notation.

*classes> m_add (Just 20) (Just 22)
Just 42 : Maybe Int

*classes> m_add (Just 20) Nothing
Nothing : Maybe Int

19

Monad comprehensions

The list comprehension notation we saw in Section 3.9 is more general, and applies to anything which is an
instance of MonadPlus:

class Monad m => MonadPlus (m : Set -> Set) where
mplus : m a -> m a -> m a
mzero : m a

In general, a comprehension takes the form [exp | qual1, qual2, ..., qualn] where quali
can be one of:

• A generator x <- e

• A guard, which is an expression of type Bool

• A let binding let x = e

To translate a comprehension [exp | qual1, qual2, ..., qualn], first any qualifier qual which is
a guard is translated to guard qual, using the following function:

guard : MonadPlus m => Bool -> m ()

Then the comprehension is converted to do notation:

do { qual1; qual2; ...; qualn; return exp; }

Using monad comprehensions, an alternative definition for m add would be:

m_add : Maybe Int -> Maybe Int -> Maybe Int
m_add x y = [x’ + y’ | x’ <- x, y’ <- y]

4.4 Idiom brackets

While do notation gives an alternative meaning to sequencing, idioms give an alternative meaning to ap-
plication. The notation and larger example in this section is inspired by Conor McBride and Ross Paterson’s
paper ”Applicative Programming with Effects” [8].

First, let us revisit m add above. All it is really doing is applying an operator to two values extracted
from Maybe Ints. We could abstract out the application:

m_app : Maybe (a -> b) -> Maybe a -> Maybe b
m_app (Just f) (Just a) = Just (f a)
m_app _ _ = Nothing

Using this, we can write an alternative m add which uses this alternative notion of function application,
with explicit calls to m app:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = m_app (m_app (Just (+)) x) y

Rather than having to insert m app everywhere there is an application, we can use idiom brackets to do the
job for us. To do this, we use the Applicative class, which captures the notion of application for a data
type:

20

infixl 2 <$>

class Applicative (f : Set -> Set) where
pure : a -> f a
(<$>) : f (a -> b) -> f a -> f b

Maybe is made an instance of Applicative as follows, where <$> is defined in the same way as m app
above:

instance Applicative Maybe where
pure = Just

(Just f) <$> (Just a) = Just (f a)
_ <$> _ = Nothing

Using idiom brackets we can use this instance as follows, where a function application [| f a1 ... an
|] is translated into pure f <$> a1 <$> ... <$> an:

m_add’ : Maybe Int -> Maybe Int -> Maybe Int
m_add’ x y = [| x + y |]

4.4.1 An error-handling interpreter

Idiom notation is commonly useful when defining evaluators. McBride and Paterson describe such an
evaluator [8], for a language similar to the following:

data Expr = Var String -- variables
| Val Int -- values
| Add Expr Expr -- addition

Evaluation will take place relative to a context mapping variables (represented as Strings) to integer
values, and can possibly fail. We define a data type Eval to wrap an evaluator:

data Eval : Set -> Set where
MkEval : (List (String, Int) -> Maybe a) -> Eval a

Wrapping the evaluator in a data type means we will be able to make it an instance of a type class later. We
begin by defining a function to retrieve values from the context during evaluation:

fetch : String -> Eval Int
fetch x = MkEval (\e => fetchVal e) where

fetchVal : List (String, Int) -> Maybe Int
fetchVal [] = Nothing
fetchVal ((v, val) :: xs) = if (x == v) then (Just val) else (fetchVal xs)

When defining an evaluator for the language, we will be applying functions in the context of an Eval, so it
is natural to make Eval an instance of Applicative:

21

instance Applicative Eval where
pure x = MkEval (\e => Just x)

(<$>) (MkEval f) (MkEval g) = MkEval (\x => app (f x) (g x)) where
app : Maybe (a -> b) -> Maybe a -> Maybe b
app (Just fx) (Just gx) = Just (fx gx)
app _ _ = Nothing

Evaluating an expression can now make use of the idiomatic application to handle errors:

eval : Expr -> Eval Int
eval (Var x) = fetch x
eval (Val x) = [| x |]
eval (Add x y) = [| eval x + eval y |]

runEval : List (String, Int) -> Expr -> Maybe Int
runEval env e = case eval e of

MkEval envFn => envFn env

5 Modules and Namespaces

An IDRIS program consists of a collection of modules. Each module includes an optional module decla-
ration giving the name of the module, a list of import statements giving the other modules which are to
be imported, and a collection of declarations and definitions of types, classes and functions. For example,
Figure 3 gives a module which defines a binary tree type BTree (in a file btree.idr) and Figure 4 gives a
main program (in a file bmain.idr which uses the bst module to sort a list.

module btree

data BTree a = Leaf
| Node (BTree a) a (BTree a)

insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = app (toList l) (v :: toList r)

toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Figure 3: Binary Tree module

The same names can be defined in multiple modules. This is possible because in practice names are qualified
with the name of the module. The names defined in the btree module are, in full:

22

module main

import btree

main : IO ()
main = do let t = toTree [1,8,2,7,9,3]

print (toList t)

Figure 4: Binary Tree main program

• btree.BTree, btree.Leaf, btree.Node, btree.insert, btree.toList and btree.toTree.

If names are otherwise unambiguous, there is no need to give the fully qualified name. Names can be
disambiguated either by giving an explicit qualification, or according to their type.

There is no formal link between the module name and its filename, although it is generally advisable
to use the same name for each. An import statement refers to a filename, using dots to separate directo-
ries. For example, import foo.bar would import the file foo/bar.idr, which would conventionally
have the module declaration module foo.bar. The only requirement for module names is that the main
module, with the main function, must be called main (though its filename need not be main.idr).

5.1 Export Modifiers

By default, all names defined in a module are exported for use by other modules. However, it is good
practice only to export a minimal interface and keep internal details abstract. IDRIS allows functions, types
and classes to be marked as public, abstract or private:

• public means that both the name and definition are exported. For functions, this means that the
implementation is exported (which means, for example, it can be used in a dependent type). For data
types, this means that the type name and the constructors are exported. For classes, this means that
the class name and method names are exported.

• abstract means that only the name is exported. For functions, this means that the implementation
is not exported. For data types, this means that the type name is exported but not the constructors.
For classes, this means that the class name is exported but not the method names.

• private means that neither the name nor the definition is exported.

If any definition is given an export modifier, then all names with no modifier are assumed to be private.
For our btree module, it makes sense for the tree data type and the functions to be exported as abstract,
as we see in Figure 5.
Finally, the default export mode can be changed with the %access directive, for example:

%access abstract

In this case, any function with no access modifier will be exported as abstract, rather than left private.

5.2 Explicit Namespaces

Defining a module also defines a namespace implicitly. However, namespaces can also be given explicitly.
This is most useful if you wish to overload names within the same module:

23

module btree

abstract data BTree a = Leaf
| Node (BTree a) a (BTree a)

abstract
insert : Ord a => a -> BTree a -> BTree a
insert x Leaf = Node Leaf x Leaf
insert x (Node l v r) = if (x < v) then (Node (insert x l) v r)

else (Node l v (insert x r))

abstract
toList : BTree a -> List a
toList Leaf = []
toList (Node l v r) = app (toList l) (v :: toList r)

abstract
toTree : Ord a => List a -> BTree a
toTree [] = Leaf
toTree (x :: xs) = insert x (toTree xs)

Figure 5: Binary Tree module, with export modifiers

module foo

namespace x
test : Int -> Int
test x = x * 2

namespace y
test : String -> String
test x = x ++ x

This (admittedly contrived) module defines two functions with fully qualified names foo.x.test and
foo.y.test, which can be disambiguated by their types:

*foo> test 3
6 : Int

*foo> test "foo"
"foofoo" : String

6 Example: The Well-Typed Interpreter

In this section, we’ll use the features we’ve seen so far to write a larger example, an interpreter for a
simple functional programming language, with variables, function application, binary operators and an
if...then...else construct. We will use the dependent type system to ensure that any programs which
can be represented are well-typed. First, let us define the types in the language. We have integers, booleans,
and functions, represented by Ty:

24

data Ty = TyInt | TyBool | TyFun Ty Ty

We can write a function to translate these representations to a concrete IDRIS type — remember that types
are first class, so can be calculated just like any other value:

interpTy : Ty -> Set
interpTy TyInt = Int
interpTy TyBool = Bool
interpTy (TyFun A T) = interpTy A -> interpTy T

We’re going to define a representation of our language in such a way that only well-typed programs can
be represented. We’ll index the representations of expressions by their type and the types of local variables
(the context), which we’ll be using regularly as an implicit argument, so we define everything in a using
block:

using (G:Vect Ty n)

The full representation of expressions is given in Figure 6. They are indexed by the types of the local
variables, and the type of the expression itself:

data Expr : Vect Ty n -> Ty -> Set

Since expressions are indexed by their type, we can read the typing rules of the language from the defini-
tions of the constructors. Let us look at each constructor in turn.

data HasType : (i : Fin n) -> Vect Ty n -> Ty -> Set where
stop : HasType fO (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

data Expr : Vect Ty n -> Ty -> Set where
Var : HasType i G t -> Expr G t
Val : (x : Int) -> Expr G TyInt
Lam : Expr (a :: G) t -> Expr G (TyFun a t)
App : Expr G (TyFun a t) -> Expr G a -> Expr G t
Op : (interpTy a -> interpTy b -> interpTy c) -> Expr G a -> Expr G b ->

Expr G c
If : Expr G TyBool -> Expr G a -> Expr G a -> Expr G a

Figure 6: Expression representation

We use a nameless representation for variables — they are de Bruijn indexed. Variables are represented by
a proof of their membership in the context, HasType i G T, which is a proof that variable i in context G
has type T. This is defined as follows:

data HasType : (i : Fin n) -> Vect Ty n -> Ty -> Set where
stop : HasType fO (t :: G) t
pop : HasType k G t -> HasType (fS k) (u :: G) t

We can treat stop as a proof that the most recently defined variable is well-typed, and pop n as a proof that,
if the nth most recently defined variable is well-typed, so is the n+1th. In practice, this means we use
pop to refer to the most recently defined variable, pop stop to refer to the next, and so on, via the Var
constructor:

25

Var : HasType i G t -> Expr G t

So, in an expression \x. \y. x y, the variable x would have a de Bruijn index of 1, represented as
pop stop, and y 0, represented as stop. We find these by counting the number of lambdas between the
definition and the use.
A value carries a concrete representation of an integer:

Val : (x : Int) -> Expr G TyInt

A lambda creates a function. In the scope of a function of type a -> t, there is a new local variable of type
a, which is expressed by the context index:

Lam : Expr (a :: G) t -> Expr G (TyFun a t)

Function application produces a value of type t given a function from a to t and a value of type a:

App : Expr G (TyFun a t) -> Expr G a -> Expr G t

We allow arbitrary binary operators, where the type of the operator informs what the types of the arguments
must be:

Op : (interpTy a -> interpTy b -> interpTy c) -> Expr G a -> Expr G b ->
Expr G c

Finally, if expressions make a choice given a boolean. Each branch must have the same type:

If : Expr G TyBool -> Expr G a -> Expr G a -> Expr G a

When we evaluate an Expr, we’ll need to know the values in scope, as well as their types. Env is an
environment, indexed over the types in scope. Since an environment is just another form of list, albeit
with a strongly specified connection to the vector of local variable types, we use the usual :: and Nil
constructors so that we can use the usual list syntax. Given a proof that a variable is defined in the context,
we can then produce a value from the environment:

data Env : Vect Ty n -> Set where
Nil : Env Nil
(::) : interpTy a -> Env G -> Env (a :: G)

lookup : HasType i G t -> Env G -> interpTy t
lookup stop (x :: xs) = x
lookup (pop k) (x :: xs) = lookup k xs

interp : Env G -> Expr G t -> interpTy t
interp env (Var i) = lookup i env
interp env (Val x) = x
interp env (Lam sc) = \x => interp (x :: env) sc
interp env (App f s) = interp env f (interp env s)
interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

Figure 7: Intepreter definition

Given this, an interpreter (Figure 7) is a function which translates an Expr into a concrete IDRIS value with

26

respect to a specific environment:

interp : Env G -> Expr G t -> interpTy t

To translate a variable, we simply look it up in the environment:

interp env (Var i) = lookup i env

To translate a value, we just return the concrete representation of the value:

interp env (Val x) = x

Lambdas are more interesting. In this case, we construct a function which interprets the scope of the lambda
with a new value in the environment. So, a function in the object language is translated to an IDRIS function:

interp env (Lam sc) = \x => interp (x :: env) sc

For an application, we interpret the function and its argument and apply it directly. We know that inter-
preting f must produce a function, because of its type:

interp env (App f s) = interp env f (interp env s)

Operators and interpreters are, again, direct translations into the equivalent IDRIS constructs. For opera-
tors, we apply the function to its operands directly, and for If, we apply the IDRIS if...then...else
construct directly.

interp env (Op op x y) = op (interp env x) (interp env y)
interp env (If x t e) = if interp env x then interp env t

else interp env e

We can make some simple test functions. Firstly, adding two inputs \x. \y. y + x is written as fol-
lows:

add : Expr G (TyFun TyInt (TyFun TyInt TyInt))
add = Lam (Lam (Op (+) (Var stop) (Var (pop stop))))

More interestingly, we can write a factorial function. First, we write a lazy version of the App constructor,
so that the recursive branch will only be evaluated if necessary:

app : |(f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
app = \f, a => App f a

Then fact (i.e. \x. if (x == 0) then 1 else (fact (x-1) * x)) is written as follows:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1) (Op (*) (app fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

To finish, we write a main program which interprets the factorial function on user input:

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (interp [] fact (cast x))

Here, cast is an overloaded function which converts a value from one type to another if possible. Here, it
converts a string to an integer, giving 0 if the input is invalid. An example run of this program at the IDRIS

27

interactive environment is shown in Figure 8.

$ idris interp.idr
____ __ _

/ _/___/ /____(_)____
/ // __ / ___/ / ___/ Version 0.9.2

/ // // / / / (__) http://www.idris-lang.org/
/___/__,_/_/ /_/____/ Type :? for help

Type checking ./interp.idr

*interp> :exec
Enter a number: 6
720

*interp>

Figure 8: Running the well-typed interpreter

Aside: cast

The prelude defines a type class Cast which allows conversion between types:

class Cast from to where
cast : from -> to

It is a multi-parameter type class, defining the source type and object type of the cast. It must be possible
for the type checker to infer both parameters at the point where the cast is applied. There are casts defined
between all of the primitive types, as far as they make sense.

6.1 Unit testing

Recall the so data type:

data so : Bool where
oh : so True

This requires its parameter to be a True value. One simple application of this is to perform unit testing of
functions at compile time. For example, we know that 4! = 24 so we can set up a test case as follows:

unitTestFac : so (interp [] fact 4 == 24)
unitTestFac = oh

For the program the compile, the test case must pass. If we change 24 to 25, say, we will get an error
message like the following:

Type checking ./interp.idr
interp.idr:64:Can’t unify so True with so False

Specifically:
Can’t unify True with False

28

7 Views and the “with” rule

7.1 Dependent pattern matching

Since types can depend on values, the form of some arguments can be determined by the value of others.
For example, if we were to write down the implicit length arguments to (++), we’d see that the form of the
length argument was determined by whether the vector was empty or not:

(++) : Vect a n -> Vect a m -> Vect a (n + m)
(++) {n=O} [] [] = []
(++) {n=S k} (x :: xs) ys = x :: xs ++ ys

If n was a successor in the [] case, or zero in the :: case, the definition would not be well typed.

7.2 The with rule — matching intermediate values

Very often, we need to match on the result of an intermediate computation. IDRIS provides a construct for
this, the with rule, inspired by views in EPIGRAM [7], which takes account of the fact that matching on a
value in a dependently typed language can affect what we know about the forms of other values. In its
simplest form, the with rule adds another argument to the function being defined, e.g. we have already
seen a vector filter function, defined as follows:

filter : (a -> Bool) -> Vect a n -> (p ** Vect a p)
filter p [] = (_ ** [])
filter p (x :: xs) with (filter p xs)

| (_ ** xs’) = if (p x) then (_ ** x :: xs’) else (_ ** xs’)

Here, the with clause allows us to deconstruct the result of filter p xs. Effectively, it adds this value
as an extra argument, which we place after the vertical bar.

If the intermediate computation itself has a dependent type, then the result can affect the forms of other
arguments — we can learn the form of one value by testing another. For example, a Nat is either even or
odd. If it’s even it will be the sum of two equal Nats. Otherwise, it is the sum of two equal Nats plus one:

data Parity : Nat -> Set where
even : Parity (n + n)
odd : Parity (S (n + n))

We say Parity is a view of Nat. It has a covering function which tests whether it is even or odd and
constructs the predicate accordingly.

parity : (n:Nat) -> Parity n

We’ll come back to the definition of parity shortly. We can use it to write a function which converts a
natural number to a list of binary digits (least significant first) as follows, using the with rule:

natToBin : Nat -> List Bool
natToBin O = Nil
natToBin k with (parity k)

natToBin (j + j) | even = False :: natToBin j
natToBin (S (j + j)) | odd = True :: natToBin j

The value of the result of parity k affects the form of k, because the result of parity k depends on k.
So, as well as the patterns for the result of the intermediate computation (even and odd) right of the |, we
also write how the results affect the other patterns left of the |. Note that there is a function in the patterns

29

(+) and repeated occurrences of j — this is allowed because another argument has determined the form of
these patterns.

We can test this function at the prompt. 42 is 101010 in binary. The binary digits are reversed with
natToBin:

*views> show (natToBin 42)
"[False, True, False, True, False, True]" : String

8 Theorem Proving

8.1 Equality

IDRIS allows propositional equalities to be declared, allowing theorems about programs to be stated and
proved. Equality is built in, but conceptually has the following definition:

data (=) : a -> b -> Set where
refl : x = x

Equalities can be proposed between any values of any types, but the only way to construct a proof of
equality is if values actually are equal. For example:

fiveIsFive : 5 = 5
fiveIsFive = refl

twoPlusTwo : 2 + 2 = 4
twoPlusTwo = refl

8.2 The Empty Type

There is an empty type, | , which has no constructors. It is therefore impossible to construct an element of
the empty type, at least without using a partially defined or general recursive function (see Section 8.5 for
more details). We can therefore use the empty type to prove that something is impossible, for example zero
is never equal to a successor:

disjoint : (n : Nat) -> O = S n -> _|_
disjoint n p = replace {P = disjointTy} p ()

where
disjointTy : Nat -> Set
disjointTy O = ()
disjointTy (S k) = _|_

There is no need to worry too much about how this function works — essentially, it applies the library
function replace, which uses an equality proof to transform a predicate. Here we use it to transform
a value of a type which can exist, the empty tuple, to a value of a type which can’t, by using a proof of
something which can’t exist.

Once we have an element of the empty type, we can prove anything. FalseElim is defined in the
library, to assist with proofs by contradiction.

FalseElim : _|_ -> a

30

8.3 Simple Theorems

When type checking dependent types, the type itself gets normalised. So imagine we want to prove the
following theorem about the reduction behaviour of plus:

plusReduces : (n:Nat) -> plus O n = n

We’ve written down the statement of the theorem as a type, in just the same way as we would write the
type of a program. In fact there is no real distinction between proofs and programs. A proof, as far as we
are concerned here, is merely a program with a precise enough type to guarantee a particular property of
interest.

We won’t go into details here, but the Curry-Howard correspondence [6] explains this relationship. The
proof itself is trivial, because plus O n normalises to n by the definition of plus:

plusReduces n = refl

It is slightly harder if we try the arguments the other way, because plus is defined by recursion on its first
argument. The proof also works by recursion on the first argument to plus, namely n.

plusReducesO : (n:Nat) -> n = plus n O
plusReducesO O = refl
plusReducesO (S k) = cong (plusReducesO k)

cong is a function defined in the library which states that equality respects function application:

cong : {f : t -> u} -> a = b -> f a = f b

We can do the same for the reduction behaviour of plus on successors:

plusReducesS : (n:Nat) -> (m:Nat) -> S (plus n m) = plus n (S m)
plusReducesS O m = refl
plusReducesS (S k) m = cong (plusReducesS k m)

Even for trival theorems like these, the proofs are a little tricky to construct in one go. When things get even
slightly more complicated, it becomes too much to think about to construct proofs in this ’batch mode’.
IDRIS therefore provides an interactive proof mode.

8.4 Interactive theorem proving

Instead of writing the proof in one go, we can use IDRIS’s interactive proof mode. To do this, we write the
general structure of the proof, and use the interactive mode to complete the details. We’ll be constructing the
proof by induction, so we write the cases for O and S, with a recursive call in the S case giving the inductive
hypothesis, and insert metavariables for the rest of the definition:

plusReducesO’ : (n:Nat) -> n = plus n O
plusReducesO’ O = ?plusredO_O
plusReducesO’ (S k) = let ih = plusReducesO’ k in

?plusredO_S

On running IDRIS, two global names are created, plusredO O and plusredO S, with no definition. We
can use the :m command at the prompt to find out which metavariables are still to be solved (or, more
precisely, which functions exist but have no definitions), then the :t command to see their types:

*theorems> :m
Global metavariables:

[plusredO_S,plusredO_O]

31

*theorems> :t plusredO_O
plusredO_O : O = plus O O

*theorems> :t plusredO_S
plusredO_S : (k : Nat) -> (k = plus k O) -> S k = S (plus k O)

The :p command enters interactive proof mode, which can be used to complete the missing definitions.

*theorems> :p plusredO_O

---------------------------------- (plusredO_O) --------
{hole0} : O = plus O O

This gives us a list of premisses (above the line; there are none here) and the current goal (below the line;
named {hole0} here). At the prompt we can enter tactics to direct the construction of the proof. In this
case, we can normalise the goal with the compute tactic:

-plusredO_O> compute

---------------------------------- (plusredO_O) --------
{hole0} : O = O

Now we have to prove that O equals O, which is easy to prove by refl. To apply a function, such as refl,
we use refine which introduces subgoals for each of the function’s explicit arguments (refl has none):

-plusredO_O> refine refl
plusredO_O: no more goals

Here, we could also have used the trivial tactic, which tries to refine by refl, and if that fails, tries to
refine by each name in the local context. When a proof is complete, we use the qed tactic to add the proof
to the global context, and remove the metavariable from the unsolved metavariables list. This also outputs
a trace of the proof:

-plusredO_O> qed
plusredO_O = proof {

compute;
refine refl;

}

*theorems> :m
Global metavariables:

[plusredO_S]

The :addproof command, at the interactive prompt, will add the proof to the source file (effectively in an
appendix). Let us now prove the other required lemma, plusredO S:

*theorems> :p plusredO_S

---------------------------------- (plusredO_S) --------
{hole0} : (k : Nat) -> (k = plus k O) -> S k = S (plus k O)

In this case, the goal is a function type, using k (the argument accessible by pattern matching) and ih (the
local variable containing the result of the recursive call). We can introduce these as premisses using the
intro tactic twice (or intros, which introduces all arguments as premisses). This gives:

32

k : Nat
ih : k = plus k O

---------------------------------- (plusredO_S) --------
{hole2} : S k = S (plus k O)

We know, from the type of ih, that k = plus k O, so we would like to use this knowledge to replace
plus k O in the goal with k. We can achieve this with the rewrite tactic:

-plusredO_S> rewrite ih

k : Nat
ih : k = plus k O

---------------------------------- (plusredO_S) --------
{hole3} : S k = S k

-plusredO_S>

The rewrite tactic takes an equality proof as an argument, and tries to rewrite the goal using that proof.
Here, it results in an equality which is trivially provable:

-plusredO_S> trivial
plusredO_S: no more goals
-plusredO_S> qed
plusredO_S = proof {

intros;
rewrite ih;
trivial;

}

Again, we can add this proof to the end of our source file using the :addproof command at the interactive
prompt.

8.5 Totality Checking

If we really want to trust our proofs, it is important that they are defined by total functions — that is,
a function which is defined for all possible inputs and is guaranteed to terminate. Otherwise we could
construct an element of the empty type, from which we could prove anything:

-- making use of ’hd’ being partially defined
empty1 : _|_
empty1 = hd [] where

hd : List a -> a
hd (x :: xs) = x

-- not terminating
empty2 : _|_
empty2 = empty2

Internally, IDRIS checks every definition for totality, and we can check at the prompt with the :total
command. We see that neither of the above definitions is total:

33

*theorems> :total empty1
possibly not total due to: empty1#hd

not total as there are missing cases

*theorems> :total empty2
possibly not total as it is not well founded

Note the use of the word “possibly” — a totality check can, of course, never be certain due to the un-
decidability of the halting problem. The check is, therefore, conservative. It is also possible (and indeed
advisable, in the case of proofs) to mark functions as total so that it will be a compile time error for the
totality check to fail:

total empty2 : _|_
empty2 = empty2

Type checking ./theorems.idr
theorems.idr:25:empty2 is possibly not total as it is not well founded

Reassuringly, our proof in Section 8.2 that the zero and successor constructors are disjoint is total:

*theorems> :total disjoint
Total

The totality check is currently very conservative. To be recorded as total, a function must:

• Cover all possible inputs

• Be well-founded — i.e. each recursive call must have a decreasing argument

• Not call any non-total functions

• Not use any data types which are not strictly positive

• (In version 0.9.2) Not be mutually recursive

The last of these conditions may be relaxed in the future.

9 Provisional Definitions

Sometimes when programming with dependent types, the type required by the type checker and the type
of the program we have written will be different (in that they do not have the same normal form), but
nevertheless provably equal. For example, recall the parity function:

data Parity : Nat -> Set where
even : Parity (n + n)
odd : Parity (S (n + n))

parity : (n:Nat) -> Parity n

We’d like to implement this as follows:

34

parity : (n:Nat) -> Parity n
parity O = even {n=O}
parity (S O) = odd {n=O}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even = even {n=S j}
parity (S (S (S (j + j)))) | odd = odd {n=S j}

This simply states that zero is even, one is odd, and recursively, the parity of k+2 is the same as the parity
of k. Explicitly marking the value of n in even and odd is necessary to help type inference. Unfortunately,
the type checker rejects this:

views.idr:12:Can’t unify Parity (plus (S j) (S j)) with
Parity (S (S (plus j j)))

The type checker is telling us that (j+1)+(j+1) and 2+j+j do not normalise to the same value. This is
because plus is defined by recursion on its first argument, and in the second value, there is a successor
symbol on the second argument, so this will not help with reduction. These values are obviously equal —
how can we rewrite the program to fix this problem?

9.1 Provisional definitions

Provisional definitions help with this problem by allowing us to defer the proof details until a later point.
There are two main reasons why they are useful.

• When prototyping, it is useful to be able to test programs before finishing all the details of proofs.

• When reading a program, it is often much clearer to defer the proof details so that they do not distract
the reader from the underlying algorithm.

Provisional definitions are written in the same way as ordinary definitions, except that they introduce the
right hand side with a ?= rathar than =. We define parity as follows:

parity : (n:Nat) -> Parity n
parity O = even {n=O}
parity (S O) = odd {n=O}
parity (S (S k)) with (parity k)

parity (S (S (j + j))) | even ?= even {n=S j}
parity (S (S (S (j + j)))) | odd ?= odd {n=S j}

When written in this form, instead of reporting a type error, IDRIS will insert a metavariable standing for
a theorem which will correct the type error. IDRIS tells us we have two proof obligations, with names
generated from the module and function names:

*views> :m
Global metavariables:

[views.parity_lemma_2,views.parity_lemma_1]

The first of these has the following type:

*views> :p views.parity_lemma_1

---------------------------------- (views.parity_lemma_1) --------
{hole0} : (j : Nat) -> (Parity (plus (S j) (S j))) -> Parity (S (S (plus j j)))

-views.parity_lemma_1>

35

The two arguments are j, the variable in scope from the pattern match, and value, which is the value we
gave in the right hand side of the provisional definition. Our goal is to rewrite the type so that we can use
this value. We can achieve this using the following theorem from the prelude:

plusSuccRightSucc : (left : Nat) -> (right : Nat) ->
S (plus left right) = plus left (S right)

After applying intro twice, we have:

-views.parity_lemma_1> intro

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole2} : Parity (S (S (plus j j)))

Then we apply the plusSuccRightSucc rewrite rule, symmetrically, to j and j, giving:

-views.parity_lemma_1> rewrite sym (plusSuccRightSucc j j)

j : Nat
value : Parity (S (plus j (S j)))

---------------------------------- (views.parity_lemma_1) --------
{hole3} : Parity (S (plus j (S j)))

sym is a function, defined in the library, which reverses the order of the rewrite:

sym : l = r -> r = l
sym refl = refl

We can complete this proof using the trivial tactic, which finds value in the premisses. The proof of the
second lemma proceeds in exactly the same way.

9.2 Suspension of Disbelief

IDRIS requires that proofs be complete before compiling programs (although evaluation at the prompt is
possible without proof details). Sometimes, especially when prototyping, it is easier not to have to do this.
It might even be beneficial to test programs before attempting to prove things about them — if testing finds
an error, you know you had better not waste your time proving something!

Therefore, IDRIS provides a built-in coercion function, which allows you to use a value of the incorrect
types:

believe_me : a -> b

Obviously, this should be used with extreme caution. It is useful when prototyping, and can also be ap-
propriate when asserting properties of external code (perhaps in an external C library). The “proof” of
views.parity lemma 1 using this is:

views.parity_lemma_2 = proof {
intro;
intro;
exact believe_me value;

}

36

The exact tactic allows us to provide an exact value for the proof. In this case, we assert that the value we
gave was correct.

9.3 Example: Binary numbers

Previously, we implemented conversion to binary numbers using the Parity view. Here, we show how
to use the same view to implement a verified conversion to binary. We begin by indexing binary numbers
over their Nat equivalent. This is a common pattern, linking a representation (in this case Binary) with a
meaning (in this case Nat):

data Binary : Nat -> Set where
bEnd : Binary O
bO : Binary n -> Binary (n + n)
bI : Binary n -> Binary (S (n + n))

bO and bI take a binary number as an argument and effectively shift it one bit left, adding either a zero or
one as the new least significant bit. The index, n + n or S (n + n) states the result that this left shift then
add will have to the meaning of the number. This will result in a representation with the least significant
bit at the front.

Now a function which converts a Nat to binary will state, in the type, that the resulting binary number
is a faithful representation of the original Nat:

natToBin : (n:Nat) -> Binary n

The Parity view makes the definition fairly simple — halving the number is effectively a right shift after
all — although we need to use a provisional definition in the odd case:

natToBin : (n:Nat) -> Binary n
natToBin O = bEnd
natToBin (S k) with (parity k)

natToBin (S (j + j)) | even = bI (natToBin j)
natToBin (S (S (j + j))) | odd ?= bO (natToBin (S j))

The problem with the odd case is the same as in the definition of parity, and the proof proceeds in the
same way:

natToBin_lemma_1 = proof {
intro;
intro;
rewrite sym (plusSuccRightSucc j j);
trivial;

}

To finish, we’ll implement a main program which reads an integer from the user and outputs it in binary.

main : IO ()
main = do putStr "Enter a number: "

x <- getLine
print (natToBin (fromInteger (cast x)))

For this to work, of course, we need a Show instance for Binary n:

37

instance Show (Binary n) where
show (bO x) = show x ++ "0"
show (bI x) = show x ++ "1"
show bEnd = ""

10 Syntax Extensions

IDRIS supports the implementation of Embedded Domain Specific Languages (EDSLs) in several ways [4].
One way, as we have already seen, is through extending do notation. Another important way is to allow
extension of the core syntax. In this section we describe two ways of extending the syntax: syntax rules
and dsl notation.

10.1 syntax rules

We have seen if...then...else expressions, but these are not built in — instead, we define a function
in the prelude. . .

boolElim : (x:Bool) -> |(t : a) -> |(f : a) -> a;
boolElim True t e = t;
boolElim False t e = e;

. . . and extend the core syntax with a syntax declaration:

syntax if [test] then [t] else [e] = boolElim test t e;

The left hand side of a syntax declaration describes the syntax rule, and the right hand side describes its
expansion. The syntax rule itself consists of:

• Keywords — here, if, then and else, which must be valid identifiers

• Non-terminals — included in square brackets, [test], [t] and [e] here, which stand for arbitrary
expressions. To avoid parsing ambiguities, these expressions cannot use syntax extensions at the top
level (though they can be used in parentheses).

• Symbols — included in quotations marks, e.g. ":="

The limitations on the form of a syntax rule are that it must include at least one symbol or keyword, and
there must be no repeated variables standing for non-terminals. Rules can use previously defined rules, but
may not be recursive. The following syntax extensions would therefore be valid:

syntax [var] ":=" [val] = Assign var val;
syntax [test] "?" [t] ":" [e] = if test then t else e;
syntax select [x] from [t] where [w] = SelectWhere x t w;
syntax select [x] from [t] = Select x t;

Syntax macros can be further restricted to apply only in patterns (i.e., only on the left hand side of a pattern
match clause) or only in terms (i.e. everywhere but the left hand side of a pattern match clause) by being
marked as pattern or term syntax rules. For example, we might define an interval as follows, with a
static check that the lower bound is below the upper bound using so:

data Interval : Set where
MkInterval : (lower : Float) -> (upper : Float) ->

so (lower < upper) -> Interval

38

We can define a syntax which, in patterns, always matches oh for the proof argument, and in terms requires
a proof term to be provided:

pattern syntax "[" [x] "..." [y] "]" = MkInterval x y oh
term syntax "[" [x] "..." [y] "]" = MkInterval x y ?bounds_lemma

In terms, the syntax [x...y] will generate a proof obligation bounds lemma (possibly renamed).

10.2 dsl notation

The well-typed interpreter in Section 6 is a simple example of a common programming pattern with de-
pendent types, namely: describe an object language and its type system with dependent types to guarantee
that only well-typed programs can be represented, then program using that representation. Using this ap-
proach we can, for example, write programs for serialising binary data [1] or running concurrent processes
safely [2].

Unfortunately, the form of object language programs makes it rather hard to program this way in prac-
tice. Recall the factorial program in Expr for example:

fact : Expr G (TyFun TyInt TyInt)
fact = Lam (If (Op (==) (Var stop) (Val 0))

(Val 1) (Op (*) (app fact (Op (-) (Var stop) (Val 1)))
(Var stop)))

Since this is a particularly useful pattern, IDRIS provides syntax overloading [4] to make it easier to program
in such object languages:

dsl expr
lambda = Lam
variable = Var
index_first = stop
index_next = pop

A dsl block describes how each syntactic construct is represented in an object language. Here, in the
expr language, any IDRIS lambda is translated to a Lam constructor; any variable is translated to the Var
constructor, using pop and stop to construct the de Bruijn index (i.e., to count how many bindings since
the variable itself was bound). It is also possible to overload let in this way. We can now write fact as
follows:

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) (app fact (Op (-) x (Val 1))) x))

In this new version, expr declares that the next expression will be overloaded. We can take this further,
using idiom brackets, by declaring:

(<$>) : |(f : Expr G (TyFun a t)) -> Expr G a -> Expr G t
(<$>) = \f, a => App f a

pure : Expr G a -> Expr G a
pure = id

Note that there is no need for these to be part of an instance of Applicative, since idiom bracket notation
translates directly to the names <$> and pure, and ad-hoc type-directed overloading is allowed. We can
now say:

39

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => If (Op (==) x (Val 0))

(Val 1) (Op (*) [| fact (Op (-) x (Val 1)) |] x))

With some more ad-hoc overloading and type class instances, and a new syntax rule, we can even go as far
as:

syntax IF [x] THEN [t] ELSE [e] = If x t e

fact : Expr G (TyFun TyInt TyInt)
fact = expr (\x => IF x == 0 THEN 1 ELSE [| fact (x - 1) |] * x)

11 Miscellany

In this section we discuss a variety of additional features: auto implicit and default arguments, literate
programming, interfacing with external libraries through the foriegn function interface, and the universe
hierarchy.

11.1 Auto implicit arguments

We have already seen implicit arguments, which allows arguments to be omitted when they can be inferred
by the type checker, e.g.

index : {a:Set} -> {n:Nat} -> Fin n -> Vect a n -> a

In other situations, it may be possible to infer arguments not by type checking but by searching the context
for an appropriate value, or constructing a proof. For example, the following definition of head which
requires a proof that the list is non-empty

isCons : List a -> Bool
isCons [] = False
isCons (x :: xs) = True

head : (xs : List a) -> (isCons xs = True) -> a
head (x :: xs) _ = x

If the list is statically known to be non-empty, either because its value is known or because a proof already
exists in the context, the proof can be constructed automatically. Auto implicit arguments allow this to
happen silently. We define head as follows:

head : (xs : List a) -> {auto p : isCons xs = True} -> a
head (x :: xs) = x

The auto annotation on the implicit argument means that IDRIS will attempt to fill in the implicit argument
using the trivial tactic, which searches through the context for a proof, and tries to solve with refl if
a proof is not found. Now when head is applied, the proof can be omitted. In the case that a proof is not
found, it can be provided explicitly as normal:

head xs {p = ?headProof}

More generally, we can fill in implicit arguments with a default value by annotating them with default.
The definition above is equivalent to:

40

head : (xs : List a) ->
{default proof { trivial; } p : isCons xs = True} -> a

head (x :: xs) = x

11.2 Literate programming

Like Haskell, IDRIS supports literate programming. If a file has an extension of .lidr then it is assumed to
be a literate file. In literate programs, everything is assumed to be a comment unless the line begins with a
greater than sign >, for example:

> module literate

This is a comment. The main program is below

> main : IO ()
> main = putStrLn "Hello literate world!\n"

An additional restriction is that there must be a blank line between a program line (beginning with >) and
a comment line (beginning with any other character).

11.3 Foreign function calls

For practical programming, it is often necessary to be able to use external libraries, particularly for interfac-
ing with the operating system, file system, networking, etc. IDRIS provides a lightweight foreign function
interface for achieving this, as part of the prelude. For this, we assume a certain amount of knowledge of C
and the gcc compiler. First, we define a datatype which describes the external types we can handle:

data FTy = FInt | FFloat | FChar | FString | FPtr | FUnit

Each of these corresponds directly to a C type. Respectively: int, float, char, char*, void* and void.
There is also a translation to a concrete IDRIS type, described by the following function:

interpFTy : FTy -> Set
interpFTy FInt = Int
interpFTy FFloat = Float
interpFTy FChar = Char
interpFTy FString = String
interpFTy FPtr = Ptr
interpFTy FUnit = ()

A foreign function is described by a list of input types and a return type, which can then be converted to an
IDRIS type:

ForeignTy : (xs:List FTy) -> (t:FTy) -> Set

A foreign function is assumed to be impure, so ForeignTy builds an IO type, for example:

Idris> ForeignTy [FInt, FString] FString
Int -> String -> IO String : Set

Idris> ForeignTy [FInt, FString] FUnit
Int -> String -> IO () : Set

41

We build a call to a foreign function by giving the name of the function, a list of argument types and the
return type. The built in function mkForeign converts this description to a function callable by IDRIS

data Foreign : Set -> Set where
FFun : String -> (xs:List FTy) -> (t:FTy) ->

Foreign (ForeignTy xs t)

mkForeign : Foreign x -> x

For example, the putStr function is implemented as follows, as a call to an external function putStr
defined in the run-time system:

putStr : String -> IO ()
putStr x = mkForeign (FFun "putStr" [FString] FUnit) x

Include and linker directives

Foreign function calls are translated directly to calls to C functions, with appropriate conversion between
the IDRIS representation of a value and the C representation. Often this will require extra libraries to be
linked in, or extra header and object files. This is made possible through the following directives:

• %lib "x" — include the libx library, equivalent to passing the -lx option to gcc.

• %include "x.h" — use the header file x.h.

• %link "x.o" — link with the object file x.o.

11.4 Cumulativity

Since values can appear in types and vice versa, it is natural that types themselves have types. For example:

*universe> :t Nat
Nat : Set

*universe> :t Vect
Vect : Set -> Nat -> Set

But what about the type of Set? If we ask IDRIS it reports

*universe> :t Set
Set : Set

It appears that Set is its own type. This would lead to an inconsitency due to Girard’s paradox [5], so
internally there is a hierarchy of types (or universes):

Set : Set 1 : Set 2 : Set 3 : ...

Universes are cumulative, that is, if x : Set n we can also have that x : Set m, as long as n < m.
The typechecker generates such universe constraints and reports an error if any inconsistencies are found.
Ordinarily, a programmer does not need to worry about this, but it does prevent (contrived) programs such
as the following:

myid : (a : Set) -> a -> a
myid _ x = x

idid : (a : Set) -> a -> a
idid = myid _ myid

42

The application of myid to itself leads to a cycle in the universe hierarchy — myid’s first argument is a Set,
which cannot be at a lower level than required if it is applied to itself.

12 Further Reading

Further information about IDRIS programming, and programming with dependent types in general, can be
obtained from various sources:

• The IDRIS web site (http://idris-lang.org/) and by asking questions on the mailing list.

• The IRC channel #idris, on chat.freenode.net.

• Examining the prelude and exploring the samples in the distribution.

• Various papers (e.g. [1, 3, 4]). These mostly describe older versions of IDRIS.

References

[1] E. Brady. Idris — systems programming meets full dependent types. In Programming Languages meets
Program Verification (PLPV 2011), pages 43–54, 2011.

[2] E. Brady and K. Hammond. Correct-by-construction concurrency: Using dependent types to verify
implementations of effectful resource usage protocols. Fundamenta Informaticae, 102(2):145–176, 2010.

[3] E. Brady and K. Hammond. Scrapping your inefficient engine: using partial evaluation to improve
domain-specific language implementation. In ICFP ’10: Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming, pages 297–308, New York, NY, USA, 2010. ACM.

[4] E. Brady and K. Hammond. Resource-safe systems programming with embedded domain specific
languages. In Practical Applications of Declarative Languages 2012, LNCS. Springer, 2012. To appear.

[5] J.-Y. Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre supérieur. PhD
thesis, Université Paris VII, 1972.

[6] W. A. Howard. The formulae-as-types notion of construction. In J. P. Seldin and J. R. Hindley, editors,
To H.B.Curry: Essays on combinatory logic, lambda calculus and formalism. Academic Press, 1980. A reprint
of an unpublished manuscript from 1969.

[7] C. McBride and J. McKinna. The view from the left. Journal of Functional Programming, 14(1):69–111,
2004.

[8] C. McBride and R. Paterson. Applicative programming with effects. J. Funct. Program., 18:1–13, January
2008.

[9] S. Peyton Jones et al. Haskell 98 language and libraries — the revised report. Available from
http://www.haskell.org/, December 2002.

43

http://idris-lang.org/
chat.freenode.net

	Introduction
	Intended Audience
	Example Code

	Getting Started
	Prerequisites
	Downloading and Installing
	The interactive environment

	Types and Functions
	Primitive Types
	Data Types
	Functions
	Dependent Types
	Vectors
	The Finite Sets
	Implicit Arguments
	``using'' notation

	I/O
	``do'' notation
	Useful Data Types
	List and Vect
	Maybe
	Tuples and Dependent Pairs

	so
	More Expressions
	Dependent Records

	Type Classes
	Default Definitions
	Extending Classes
	Monads and do-notation
	Idiom brackets
	An error-handling interpreter

	Modules and Namespaces
	Export Modifiers
	Explicit Namespaces

	Example: The Well-Typed Interpreter
	Unit testing

	Views and the ``with'' rule
	Dependent pattern matching
	The with rule — matching intermediate values

	Theorem Proving
	Equality
	The Empty Type
	Simple Theorems
	Interactive theorem proving
	Totality Checking

	Provisional Definitions
	Provisional definitions
	Suspension of Disbelief
	Example: Binary numbers

	Syntax Extensions
	syntax rules
	dsl notation

	Miscellany
	Auto implicit arguments
	Literate programming
	Foreign function calls
	Cumulativity

	Further Reading

