
Grassmann’s Legacy 
 

David Hestenes 
 

Department of Physics, Arizona State University 
 
 

In a previous conference honouring Hermann Grassmann’s profound 
intellectual contributions (Schubring 1996), I cast him as a central figure in the 
historical development of a universal geometric calculus for mathematics and 
physics (Hestenes 1996). Sixteen years later I am here to report that impressive 
new applications in this tradition are rapidly developing in computer science and 
robotics as well as physics and mathematics. Especially noteworthy is the 
emergence of Conformal Geometric Algebra as an ideal tool for computational 
geometry, as it fulfils at last one of Grassmann’s grandest goals and confirms the 
prescience of his mathematical insight. Geometric Calculus has finally reached 
sufficient maturity to serve as a comprehensive geometric language for the whole 
community of scientists, mathematicians and engineers. Moreover, its simplicity 
recommends it as a tool for reforming high school mathematics and physics, as 
Grassmann had envisioned. 

My purpose here is threefold: to extend my previous account of Grassmann’s 
pivotal role in the evolution of Geometric Algebra to place him in a broad 
historical context; to survey landmarks in the recent development of Geometric 
Calculus that demonstrate its current vigour and broad applicability; to explain 
precisely what extensions of Grassmann’s system were needed to meet his 
ambitious goals. 

 
Evolution of Geometric Algebra and Calculus 

 
 For present purposes, ‘Geometric Algebra’ and ‘Geometric Calculus’ can be 

regarded as synonymous, with algebra regarded as a tool for calculation. (I use 
capitals to emphasize specific meanings for the terms ‘geometric algebra and 
calculus’ employed here.) Technically speaking, ‘Geometric Calculus’ is the 
broader term, referring to an extension of ‘Geometric Algebra’ to differentiation 
and integration, including differential geometry and differential forms (Hestenes 
and Sobczyk 1984). However, our main interest here is the underlying algebraic 
structure. 

A family tree of major steps in the evolution of Geometric Algebra is laid out 
in Fig. 1. We have space here for only a few comments about it. The main line 
proceeds directly from Euclid through Grassmann and Clifford to the beginning 
of Geometric Calculus (Hestenes 1966). Perhaps Descartes should be included in 
this sequence, because analytic geometry was surely a crucial input to 
Grassmann’s thinking, though Grassmann drew directly on Euclid to create a 
coordinate-free algebra of geometric concepts. 
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I have included Boole in an unconnected bubble in Fig. 1 as a reminder that 

extracting logical structure from natural language has much in common with 
Grassmann’s program to put synthetic geometry in algebraic form. 

A branch of Grassmann followers including Peano, Whitehead and Forder 
has been pruned from the Family Tree, because they did not significantly advance 
Grassmann’s agenda or contribute to the emergence of Geometric Algebra. 

Ironically, W. K. Clifford (1878), the mathematician exhibiting the deepest 
understanding of Grassmann’s system and advancing it in a major way, is seldom 
mentioned as a follower of Grassmann in historical accounts, though Clifford 
himself could not have been more explicit or emphatic in his claim to be 
following Grassmann in developing what he called “geometric algebra!” 
Mathematicians too have overlooked Clifford’s link to Grassmann, and, to this 
day, treat Clifford algebra as a completely separate algebraic system. 

 
                                             Figure 1 
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Elie Cartan (1922) incorporated Grassmann’s outer product into his calculus 
of differential forms. Though it put Grassmann’s name into the mathematics 
mainstream, it so diluted his ideas that Engel called it “Cartanized Grassmann.” In 
another irony, Cartan (1968) also employed a matrix form of Clifford algebra in 
his “theory of spinors,” but he failed to recognize its relation to Grassmann 
algebra and differential forms.  

In physics, Clifford algebra was rediscovered in the matrix algebras of Pauli 
and Dirac where it plays an essential role in quantum mechanics. Finally, in 1959 
the many threads in Fig. 1 converged to a rebirth of Grassmann’s vision of a 
universal geometric algebra with powerful applications to physics. The midwife 
of the rebirth was a set of lecture notes by Marcel Riesz (1958). Let me describe 
briefly what happened. 

I was a graduate student in 1959 intensively studying the alternative 
mathematical systems used in physics, including the Feynmann trace calculus in 
quantum electrodynamics and tensor calculus in general relativity. I was lucky to 
get a thorough introduction to differential forms, including its intuitive origins, in 
a course on differential geometry by Barret O’Neil, as there was no good book on 
the subject in English at the time. I was consciously concerned with questions 
relating the structure of these mathematical systems to the structure of the 
physical world. One day Riesz’s notes appeared on the new-book shelf of the 
UCLA library. The impact on me was immediate and striking! By the time I was 
half way through the first chapter I was convinced that Clifford algebra was the 
key to unifying mathematical physics. During the next few years I worked out the 
framework for a fully geometric unification. The result was published in my book 
Space Time Algebra (1966).  

Fortunately, my book was widely distributed, and it helped me establish 
many fruitful contacts throughout the world in subsequent years. However, I 
believe its impact would have dissipated had I not followed it up with years of 
further research, lectures and publications. Also, I believe that the significance of 
Riesz’s notes would have remained unrecognized without the citation in my book, 
which eventually led to publication (Riesz 1993). 

Though the book launched me on a program to unify mathematical physics, I 
refrained from proclaiming the product as a universal Geometric Algebra and 
Calculus until subsequent research convinced me that was fully justified. I was 
well aware that its roots were in the work of Grassmann, but it was not until the 
English translations of the Ausdehnungslehre (Grassmann 1995, 2000) by Lloyd 
Kannenberg that I realized how deep those roots were.  

Independently, I had rederived most of Grassmann’s algebraic identities (as 
have others), for they are universal algebraic truths. That was better than getting 
results directly from Grassmann, for it enhanced my appreciation of his 
groundbreaking work and helped me see it from a different perspective. All the 
same, Grassmann still has much to teach us. 

 
Recent Developments in Geometric Algebra  

 
The Geometric Algebra/Calculus bubble in Fig. 1 is unpacked in Fig. 2 to 

outline major developments including a recent surge in applications. Let me 
explain the significance of each box with reference to a key publication from 
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which the literature can be traced. The reader is invited to correlate my 
explanations with the figure as I proceed. 

To fulfil the promise of Geometric Calculus as a comprehensive 
mathematical language for all of physics, my book Space Time Algebra launched 
me along three main lines of research and development that were clearly 
demarcated and consolidated within the next two decades. 

The first line was a straightforward reformulation of classical physics in 
terms of geometric algebra. It produced the first comprehensive coordinate-free 
treatment of Newtonian mechanics, including rotational dynamics (Hestenes 
1985). Both Grassmann and Clifford had a similar goal, but comparison with their 
work shows what a difference a century of science can make. A similar 
reformulation of classical electrodynamics was equally straightforward and 
enlightening (Baylis 1999). 

The second line of research emerged from reformulating the Dirac equation 
in terms of Geometric Algebra. This revealed a hidden geometric structure in 
quantum mechanics, including a hitherto unrecognized geometric interpretation 
for the unit imaginary relating it unequivocally to electron spin (Hestenes 1967). I 
call the reformulation of quantum mechanics in these terms Real Quantum 
Mechanics. Though it has not yet been recognized in the physics mainstream, 
research on its implications is still underway (Hestenes 2009b). 

The third line of research and development was to produce a self-contained 
system of mathematical tools sufficient for addressing any problem in physics 
without resorting to alternative mathematical formalisms. The result was a book 
that defines the domain of Geometric Calculus (Hestenes and Sobczyk 1984). The 
most innovative features of this book are, perhaps, its concepts of vector 
manifold, vector derivative and geometric integration theory (which generalizes 
Cartan’s differential forms). 
 

 
 

Figure 2. Development of Geometric Algebra and Calculus 
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Only a handful of people worked with Geometric Algebra until Roy 
Chisholm (1984) organized an international conference on “Clifford Algebras and 
their Applications to Physics” that brought together a wide range of 
mathematicians and physicists with overlapping interests. In particular, it revealed 
a strong connection between Geometric Calculus and an emerging new branch of 
mathematics called Clifford Analysis. The conference (with its published 
proceedings) was so successful that it has been repeated every four years and is 
still going strong. 

In 1988 a group of theoretical physicists at Cambridge University picked up 
the threads of Real Quantum Mechanics and Geometric Calculus. The most 
important result was a new approach to Einstein’s General Relativity called 
Gauge Theory Gravity (Lasenby, Doran and Gull 1998). One byproduct was 
extension of the geometric algebra approach to Lie Groups (Hestenes and 
Sobczyk 1984) to spin representations for all the classical groups (Doran et.al. 
1993). The single most comprehensive treatment of Geometric Algebra for 
physics is now available in the book (Doran and Lasenby 2003). 

A resurgence in applications of Geometric Algebra was ignited when I 
pointed out the unique advantages of Conformal Geometric Algebra for 
computational geometry (Hestenes 2001). It led directly to more conferences and 
innovative applications in crystallography (Hestenes and Holt 2007), computer 
science (Dorst, Fontijne and Mann 2007) and robotics (Bayro-Corrochano and 
Scheuermann 2009). A compact review of current state of the art is given in 
(Hestenes 2009a). 

Conformal GA appears to be the ideal framework for Classical Geometry as 
envisaged by Felix Klein (1925). We describe some of its surprising new insights 
below to complete and vindicate Grassmann’s approach to geometry. Currently, 
Conformal GA is at the center of an ambitious research program to master the 
complexities in advanced geometric reasoning (Li 2008). This is intimately 
related to a branch of mathematics called invariant theory (Barnabei, Brini and 
Rota 1985), and we can anticipate a fruitful interaction if not a merging of these 
mathematical domains in the future. 

Finally, it is worth mentioning that Grassmann’s objective to reform the 
elementary mathematics curriculum is more feasible now than ever before 
(Hestenes 2002). Steps in this direction are underway, but this is not the place to 
discuss the complexities of education reform. 

 
Products in Geometric Algebra 

 
Geometric Algebra (GA) today is very close to Grassmann’s original 

algebraic system. To make the connection, we establish the correspondence of 
current notation, nomenclature and definitions with Grassmann’s in his second 
Ausdehnungslehre (1862). It suffices to consider multiplication. Grassmann’s 
various products were so well conceived that they are still in use today, and, as 
we shall see, they can all be reduced to the fundamental geometric product in GA. 

We begin with an n-dimensional real vector space
  
V

n
= a,b, c,…{ } , as 

defined by Grassmann in perfect accord with the modern concept. As I believe 
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Grassmann would have it, we use the term “vector” only in this strict algebraic 
sense. Geometric interpretation will be addressed as a separate matter. 

Grassmann’s antisymmetric outer product of two vectors (sometimes called 
the join) is denoted by  

a ! b = "b ! a      !      ab[ ] = ! ba[ ] , 

with the modern notation on the left corresponding to Grassmann’s notation on 
the right. The outer product of k vectors produces a k-blade or k-vector A: 

 
a
1
! a

2
!…! a

k
" A # a

1
a
2
…a

k[ ] " A[ ] . 

The integer k is called the grade of A.  
The outer product of n vectors generates a pseudoscalar: 

 
a
1
! a

2
!…! a

n
= "I    !    

 
a
1
a
2
…a

n[ ] = ! , 

where λ is a scalar and I is the unit pseudoscalar, which has the properties 
I ! 0, a " I = 0  for every vector a. Here we see a subtle design flaw in 
Grassmann’s system, for he identifies pseudoscalars with scalars. This is not a 
logical mistake, but it complicates the rest of his system (as we see below) and 
may have kept him from discovering the ultimate simplification with the 
geometric product. 

Grassmann’s regressive product, sometimes called the meet (Brini and 
Teolis 1996, Zaddach 1996, Hestenes and Zeigler 1991) is defined for arbitrary 
blades A and B in Grassmann’s ingenious way by 

A ! B = (A
"
# B

*
)
*

$ A | B[ ] = | | A | B[ ] , 

where the dual A* corresponding to Grassmann’s supplement |A is defined by 

 A
*
! !A " I = !AI      !      |A , 

with the reverse of A defined by  

 

!A = a
1
! a

2
!…! a

k( )
~

= a
k
!…! a

2
! a

1
= ("1)

k (k"1)/2
A . 

The dual is often defined without the reverse, which contributes only a sign. The 
reverse is included here to agree with Grassmann’s definition. The definition of 
dual employs the inner product (denoted by a center dot), or better, the geometric 
product, both of which are defined below. Grassmann’s supplement is based on a 
concept of orthogonality that amounts to presuming a Euclidean inner product. 

For a pair of vectors, Grassmann’s scalar-valued inner product is expressed 
by 

a !b = b !a " a | b[ ] = b | a[ ] . 

Similarly, Grassmann’s regressive product defines a scalar-valued inner product 
for any pair of blades with the same grade. 

Now let us start all over again to define Geometric Algebra. Like Grassmann, 
we introduce an associative (and, of course, distributive) product on the vector 
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space 
  
V

n
= a,b, c,…{ } , but now we define it by the simple rule that the square 

of every vector is a scalar. Explicitly, we write 

a
2
= aa = ! | a |

2 , 

where scalar | a |! 0  is called the magnitude of a, and its signature ε is positive (ε 
= 1), negative (ε = –1) or null (if | a |= 0 ). For any two vectors, we now define 
the inner product by  

a !b " 1
2
(ab + ba) = b !a . 

It is easy to prove that this symmetric product is scalar-valued and is the usual 
Euclidean inner product if both vectors have positive signature. We also assume 
that the inner product is non-degenerate, which means that every vector has a 
non-vanishing inner product with some other vector. 

Now we define the outer product by  

a ! b " 1
2
(ab # ba) = #b ! a . 

Adding the last two equations, we see inner and outer products as symmetric and 
antisymmetric parts of a single geometric product 

ab = a !b + a " b . 

The definition of the outer product is easily generalized to the antisymmetrized 
geometric product of any number of vectors to give us k-blades, precisely 
equivalent to those defined above. The inner product can also be generalized to 
give us 

aA = a ! A + a " A . 

This decomposes the geometric product of a vector with a k- blade into a (k–1)-
blade a ! A  and a (k+1)-blade a ! A . In other words, the inner product is a grade-
lowering operation complementary, or better, dual to the grade-raising outer 
product. That symmetry is perfectly expressed by the (easily proved) identity 

a ! (AI ) = (a " A)I . 

Thus, duality interchanges the roles of inner and outer products. 
Now we can formulate the meet as A ! B = A " B

* , the inner product of one 
blade with the dual of another. This has been used to formulate projective 
geometry in terms of geometric algebra (Hestenes and Zeigler 1991). That 
approach is remarkably similar to Grassmann’s treatment of projective geometry, 
but a better approach is described below.  

From the vector space
 
V

n  the geometric product generates a Geometric 
Algebra 

 
Gn

= G(Vn
) . Defining the outer product introduces a grading in the 

algebra that decomposes it into a sum of linear subspaces 
 
G
k

n  of homogeneous 
grade: 
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Gn
= G(Vn

) = G
k

n

k=0

n

! , 

 
including the scalars 

 
G
0

n
= R  as a 1-dimensional subspace. The geometric 

product also induces a signature (r,s) on the vector space that expresses 
decomposability into an r-dimensional subspace of vectors with positive signature 
and an s-dimensional subspace of vectors with negative signature, so that n = r + 
s. This is incorporated in the notation for the algebra by writing 

 
Gr , s

= G(V r , s
) . 

Further details about Geometric Algebra are available in publications already 
mentioned. My purpose here has been to show how perfectly GA incorporates 
Grassmann’s ideas for an Algebra of Extension. Indeed, I submit that GA is a next 
step, perhaps a final step in the evolution of a universal geometric calculus first 
envisaged by Leibniz (Crowe 1967, Grassmann 1995b). Let me summarize the 
value added by this last step to GA. 

In the first place, we have seen that GA reduces the algebraic structure to a 
single geometric product that mixes grades. Grassmann himself recognized that 
such a product is needed to incorporate quaternions into his algebraic system, but 
he did not push his analysis far enough to recognize its fundamental role 
(Hestenes 1996). Indeed, the geometric product is essential not only to 
incorporate quaternions (Hestenes 1999), but the whole theory of spinors and spin 
representations in group theory (Doran et. al. 1993). Below, we see a simple 
application of the geometric product to congruence.  

But what about the strong claim to universality!? How can that be justified? 
Matrix algebra already plays the role of a universal “arithmetic for higher 
mathematics.” Indeed, from its beginning in the middle of the nineteenth century, 
matrix algebra was a major competitor to Grassmann’s system, and it soon 
swamped his voice. Over the next century matrix algebra was cultivated by 
legions of mathematicians and physicists to become the dominant mathematical 
tool in use today. From his Ausdehnungslehre of 1862 it is clear that Grassmann 
understood the issue deeply (he had already declared his aim to suppress the use 
of coordinate systems in geometry), but instead of critiquing matrix theory, he set 
out to show how to handle linear transformations without coordinates. The 
significance of Grassmann’s approach to linear algebra went largely 
unrecognized, but GA has reinvigorated it with new tools and fully assimilated 
matrix algebra and all its capabilities (Hestenes 1991, Hestenes and Sobczyk 
1984). Without delving into details, it is worth noting that every element of a real 
matrix can be expressed as the inner product of a pair of vectors; thus 

aij = ai !bj , 

so the inner product plays an essential role in matrix representation. Contrary to 
common opinion, though, the inner product in GA does not limit its applicability 
to metric spaces. Rather, it serves the general role of contraction (in the sense of 
that term in tensor algebra). For example, every linear form, that is, every linear 
mapping ϕ  of vectors into scalars, can be expressed as a contraction; thus  

! :a " !(a) = a #b . 



 

 9 

Of course, this does not preclude one from the very useful practice of defining a 
metric tensor by  

g(a,b) = a !b . 

One last point about matrices: We could “generalize” to complex matrices by 
introducing complex numbers as scalars. However, that is not advisable, because 
GA has better (geometrically significant) ways to deal with “complex structure.” 

As to other algebraic systems, it is well known that every associative algebra 
has a matrix representation. With matrix algebra incorporated into GA, it follows 
that every associative algebra can be represented in GA. Even non-associative 
products can be represented in GA. This has been demonstrated explicitly for the 
octonian product (Lounesto 1997). If there is an algebraic system that cannot be 
neatly represented in GA as it stands, then it is likely that GA can be generalized 
to include it.  

Perhaps the ultimate justification for a universality claim is the fact that GA 
has by far the broadest range of applications to physics and engineering of any 
single mathematical system (Hestenes 2003), as amply documented by the review 
in this paper. Furthermore, that review supports an important observation about 
GA as a language. The discussion of multiplication in the present Section is 
essentially about defining the grammar of GA. But there is far more to a language 
than its grammar! You need to know how to express important ideas in the 
language. Thus, creation of GA as a language required development of a huge 
superstructure of definitions, constructions, proofs and calculations to cover 
classical physics, quantum mechanics. general relativity and engineering 
applications. Some of it came by insightful translation from other mathematical 
systems. Some of it involved genuine new insights from exploiting the unique 
features of GA.  

No one has ever been more attuned to the relation of grammar to language 
than Grassmann. He refined and extracted the geometric structure inherent in 
synthetic geometry and expressed it in algebraic form. Then he separated the 
algebra from geometric interpretation to create a general theory of algebraic 
structures with unlimited dimensions. Besides freeing algebraic structures from 
the limitations of geometric intuition, Grassmann realized that the same structures 
can be given many different geometric interpretations. In the following we 
examine one of the most striking examples of that fact. It involves all the crucial 
features of GA that have been added to Grassmann’s original system: the 
geometric product, the pseudoscalar, signature and null vectors. 

 
Conformal Geometric Algebra 

 
The Conformal Geometric Algebra 

 
C!E n

)  for the n-dimensional Euclidean 
space  E

n  is defined by 
 
C!E n

) ! G(Vn+1,1
) . The points of  E

n  are represented by 
null vectors in  V

n+1,1 . Remarkably, the remaining vectors in  V
n+1,1  represent the 

hyperplanes and hyperspheres of  E
n , and their geometric products generate the 

entire group of conformal transformations on  E
n , including the Euclidean Group 

of rigid displacements and rotations. An example is given in the next Section. 
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To demonstrate the power and convenience of Conformal GA, we consider 
the simplest case of the Euclidean plane  E

2  with its algebra 

 
C!E 2

) ! G(V 3, 1
) . 

Immediately we encounter an astounding fact: The vector space  V
3, 1  is precisely 

the standard Minkowski model for spacetime, and 
 
G(V 3, 1

)  is (except for a trivial 
difference in sign) precisely the Spacetime Algebra that has been so extensively 
applied to characterize spacetime geometry and physics (Doran and Lasenby 
2003, Hestenes 1966).  

Thus, the Conformal Algebra of the Euclidean plane is isomorphic to the 
Geometric Algebra of Spacetime! They differ only in geometric interpretation –– 
and a wider difference in interpretation one can hardly imagine! Before 
describing the geometric interpretation of 

 
C!E 2

)  in the next Section, let us 
examine the skeleton of the algebra. 

Let e
0
, e

1
, e

2
, e

3{ }  be an orthonormal basis  

in  V
3, 1 . The inner product specifies the signature 

by:  
e
0

2
= !1, e

1

2
= e

2

2
= e

3

2
= 1 ,  

and orthogonality by:   eµ ! e" = 0 for  µ # " . 
The cone of null vectors is depicted in Fig. 3. 

The outer product generates a basis of  
six bivectors:  

          e
1
e
0
, e

2
e
0
, e

3
e
0
, e

1
e
2
, e

2
e
3
, e

3
e
1

, 

four pseudovectors:    e
0
I , e

1
I , e

2
I , e

3
I ,  

and a unit pseudoscalar:    I = e
0
e
1
e
2
e
3
. 

The ladder of subspaces in 
 
G(V 3, 1

)  is 
depicted in Fig. 4, with dots indicating the 
dimension of each k-vector subspace. 
 

The Algebra of ruler and compass 
 

As envisioned by Leibniz and conceived by Grassmann, the ultimate goal of 
geometric calculus is perfect correspondence between algebraic structures, 
synthetic descriptions in natural language and construction of geometric figures, 
as summarized by: 
 

Algebraic forms ⇔ Synthetic descriptions ⇔ Geometric figures 
 
Grassmann came close to meeting this goal, but he was roundly criticized by two 
of his strongest supporters among mathematicians, Friederich Engel and Felix 
Klein, for an inadequate treatment of projective infinity and ideal (imaginary) 

 
          Figure 3. 

 
        Figure 4. 
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figures (Klein 1939). My purpose here is to show how Conformal GA surpasses 
all expectations in completing Grassmann’s program and answering his critics. It 
is sufficient to consider representations of geometric forms in the algebra of the 
Euclidean plane. Some elementary calculations will be omitted to concentrate on 
interpretation of results. 

Every point p is a null vector, p2 = 0  with weight ! p " # = 1 , where the 
symbol ∞ designates the point at infinity, with !

2
= 0 . The inner product 

determines the distance d
21

between two points: 

d
21

2
= p

2
! p

1( )
2

= !2p
2
" p

1
# 0 , 

which vanishes if the points coincide, thus justifying the representation of points 
by null vectors. Grassmann himself made an intuitive distinction between points 
and the difference between points like p

2
! p

1
 (Grassmann 1995b). Now the 

distinction is encoded as an algebraic difference between two kinds of vectors, 
null and non-null. We shall see that this distinction has some surprising new 
implications. Before continuing, though, it may be worth confirming the familiar 
properties of a Euclidean triangle determined by points p

1
, p

2
, p

3
. The sides of 

the triangle can be represented by vectors pij = p
i
! p

j , which implies the triangle 
equation p

21
+ p

32
+ p

13
= 0 , whence the familiar law of cosines 

p
21

2
+ p

32

2
+ 2p

21
! p

32
= p

13

2 . 

This can be regarded as an implicit definition for the cosine of the included angle, 
where p

12
! p

32
= d

12
d
32
cos"

13
. Less familiar is the fact that the trigonmetric law 

of sines is expressed by  

p
21
! p

32
= p

32
! p

13
= p

13
! p

21
, 

with directed area A for the triangle given by 

2A ! p
12
" p

32
= (p

1
# p

2
)" (p

3
# p

2
)

= p
1
" p

3
# p

1
" p

2
+ p

3
" p

2
= (p

1
" p

2
" p

3
) $ %,

 

and magnitude specified by 

4 A
2
= (p

12
! p

32
) " (p

32
! p

12
) = p

2

32
p
2

12
# (p

12
" p

32
)
2
= d

2

32
d
2

12
sin

2
$
13

. 

Now things get more interesting. 
A circle S is generated by the product of three points: S = p

1
! p

2
! p

3
. This 

algebraic form can be interpreted as an instruction for drawing a circle through 
three given points, as depicted in Fig. 5. Each line L is a circle through ∞, as 
expressed by L = p

1
! p

2
! " and also depicted in Fig. 5. Circles and lines are 

oriented, as expressed by a change in sign induced by interchanging the order of 
points; thus,  !S = p

3
" p

2
" p

1
  and  !L = p

2
" p

1
" # . An orientation for the 
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circle, but not the line, is indicated in Fig. 5. In many applications, such as 
projective geometry, the orientation is not of interest, so the sign can be ignored.  

It is often more convenient to represent geometric objects by their duals. The 
dual forms for both lines and circles are non-null vectors. In particular, the dual of 
line L is the normal for the line l = L! = LI . The normal for a line is distinguished 
from other vectors by being orthogonal to the point at infinity; that is, 

L ! " = 0 # l $ " = 0 . 

This property implies that the normal can be expressed as the difference between 
two points: l = q

2
! q

1
, as depicted in Fig. 6. Conversely, the vector difference 

between any two points is the “perpendicular bisector” of the line through those 
points. The line has a magnitude given by 

L
2
= p

2
! p

1( )
2

= l
2
= q

2
! q

1( )
2

> 0 , 

where the points are those depicted in Figs. 5 & 6. Consequently, L can be 
interpreted as a line segment, though it does not specify a location of the segment 
along the line. 

The dual of circle S is a vector  

S
!
= s = c " 1

2
#2$ , 

which, like the normal for a line, is the difference between points; but, in this 
case, one point is the center of the circle c, while the other is the weighted point at 
infinity. Indeed, it is readily verified that c2 = 0  and s2 = !2 . To verify that 
scalar ρ is the radius of the circle, note that the condition for a point p to lie on the 
circle is  

p ! S = 0 " p # s = 0 . 

The usual equation for a circle then follows easily: 

p ! c( )
2

= !2p " c = #2 . 

Thus we have discovered the surprising fact that the specification of a circle by its 
center and radius (in Fig. 7) is dual to its specification by three points (in Fig. 5). 

 

 
          Figure 5.                       Figure 6.                       Figure 7. 
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One advantage of Conformal GA is that projective geometry is fully 
integrated with metrical geometry. For example, the incidence relations among 
points and lines are expressed directly by the meet product. Thus, the incidence 
(intersection) of a point p with line L is expressed by   

p ! L = p " L
#
= p " l = 0 , 

as depicted in Fig. 8. Parallelism of lines depicted in Fig. 9 is expressed by  

L
1
! L

2
= 0 " l

1
# l

2
= 0 . 

The intersection of lines at a point depicted in Fig. 10 is expressed by 

p ! (L
1
! L

2
) = p " (l

1
# l

2
) = 0 . 

The projective incidence relations for intersecting objects generalize 
automatically to metrical relations for objects in arbitrary positions. This could be 
called metric incidence. Thus, as depicted in Fig. 11, the distance δ between a 
point and a line is given by  

p ! l̂ = ±" , l̂
2
= 1 , 

where the sign depends on the orientation of the line, so it distinguishes on which 
side of the line the point lies. 

As depicted in Fig. 12, the distance between a point and a circle is given by 

s ! p= c ! p + 1
2
"2 = 1

2
"2 # d 2$% &' , 

where d is the distance from the point to the center of the circle. Clearly, the sign 
of s ! p  specifies whether the point is inside or outside the circle. It is therefore a 
topological property expressing relative orientation. More generally, if signs are 
retained but magnitudes are ignored, we have a generalization of projective 
geometry to include orientation that is very useful in geometric computation 
(Stolfi 1991). 
 
 
 
 
 
 
 
 
 

 
   Figure 8.                       Figure 9.                     Figure 10. 

 
    Figure 11.                             Figure 12. 
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Since a point can be regarded as a circle with zero radius, we have the 
obvious generalization to a distance between two circles: 

s ! "s = (c # 1
2
$2%) ! ( "c # 1

2
"$ 2%) = 1

2
($2 + "$ 2 # d 2 ) . 

Now we are prepared to give a response to the critique of Engel and Klein 
that Grassmann’s algebra cannot handle ideal geometric forms. The sum of two 
points gives us something that we not seen before: 

s ! 1
2
(p

1
+ p

2
) = c + 1

2
"2# . 

This can be regarded as an imaginary circle, because s 2 = !"2 . Imaginary circles 
arose first as complex solutions of quadratic equations, and then demanded a 
geometric interpretation (Klein 1939). We have here a new possibility. 

It is an old idea that lines can be regarded as points at infinity. Accordingly, 
we can represent lines by their normals, and define a circle at infinity as the join 
of two normals with the circle s defined before: 

S = l
1
! l

2
! s = (l

1
! l

2
)s . 

Its dual form is the vector s = S ! . Since S 2 = (l
1
! l

2
)
2
s
2 , we can normalize with 

(l
1
! l

2
)
2
= "1 , so s  has the same center c and radius ρ as the real circle s. 

Though the circle center is a real point (a null vector), there can be no real 
point p on the imaginary circle, because the equation s ! p = c ! p " #2 / 2 = 0  has 
no null vector solutions. However, the equation s ! l = c ! l = 0  does have 
imaginary points as its solution. Indeed, the solution set consists of all lines with 
weight ρ passing through the circle center. Thus, we see that an imaginary circle 
is just a representation of a real circle by the family of lines through its center.   

As far as I know, this is a completely new perspective on imaginary circles, 
and it illustrates how Conformal GA can provide spectacular rejoinders to 
objections by Grassmann’s critics. 
 
 
 
 
 
 
 
 
 
 

All the geometric constructions so far have involved only inner and outer 
products. It remains to demonstrate advantages of using the geometric product 
directly. Let n be the unit normal for a given line. Then it is easy to prove 
(Hestenes 2002) that the reflection of every point p (hence every geometric 
object) across that line is specified by the transformation 

 
          Figure 13.                                          Figure 14. 
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p ! !p = "npn , 

as shown in Fig. 13. Following this with a second reflection across a line with 
unit normal m, the net result is a rigid displacement:  

 
p ! !!p = Dp "D  

where D = mn  with reverse  
!D = nm . If the two lines are parallel, the 

displacement is a translation through twice the distance δ  between the lines (Fig. 
13). If the lines intersect at a point, the displacement is a rotation about that point 
through twice the angle between the lines (Fig. 14). Thus, the well-known 
synthetic description of translations and rotations in terms of reflections through 
lines (or planes in  E

3 ) has been reduced to the simple geometric product of 
vectors. One consequence is considerable simplification in the treatment of 
crystallographic symmetries (Hestenes and Holt 2007). 

The present formulation for rigid displacements, hence of congruence, 
applies without change in form to symmetries in  E

n . In  E
3  it provides the 

foundation for powerful engineering applications. For example, in rigid body 
dynamics it unifies translational and rotational equations (Newton’s and Eulers 
Laws) into a single equation of motion (Hestenes 2009a).  

I believe Grassmann would be greatly pleased!! 
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