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Abstract: Derivatives (or gradients) are important for both sensitivity analysis and optimization, and in simulation models, these
can often be estimated efficiently using various methods other than brute-force finite differences. This article briefly summarizes
the main approaches and discusses areas in which the approaches can most fruitfully be applied: queueing, inventory, and finance.
In finance, the focus is on derivatives of another sort. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 723–736, 2008
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1. INTRODUCTION

Math programmers are of course primarily interested in
optimization and also in sensitivity analysis. The availability
of derivatives for sensitivity analysis is taken for granted in
the traditional linear programming community. Similarly, for
convex optimization and more general nonlinear program-
ming approaches that incorporate gradient-based search,
derivatives are key. Although researchers on the stochas-
tic side of operations research are aware of the central role
that derivatives play in traditional optimization, determinis-
tic optimizers may not be aware of derivative (or gradient)
estimation techniques in simulation. However, they often
employ simulation in their research, so in conducting sen-
sitivity analysis for a simulation model, they would simply
use “brute-force” resimulation of the model by varying the
values of the parameters of interest. If there are a lot of
parameters, such an approach can clearly become highly inef-
ficient and prohibitively expensive in terms of computational
cost. Furthermore, in optimization applications, numerical
inaccuracies (bias) in finite difference estimates can lead
to slower convergence rates. The purpose of this article is
to raise awareness of the vast array of tools available for
estimating derivatives in a stochastic simulation that can be
orders of magnitude more efficient than the “brute-force”
finite difference approach.

The word “derivatives” in the title of this article has two
meanings. The primary usage is the usual calculus defini-
tion, but the pricing and hedging of financial derivatives (a
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financial asset whose value is “derived” from some other
underlying assets or entities) is one of the most successful
applications for the techniques discussed in this article, so
examples from that domain will be covered.

Here is something you should know about financial deriv-
atives: They were designed to be used for hedging to reduce
risk, but they can also be used for speculation (leveraging
your bets) that can increase risk. Thus, the benefits and risks
of financial derivatives are controversial, as evidenced by the
following opinions featured on the front page of the Business
section of the March 6, 2003, Washington Post [3], from two
of the most prominent figures in the business world.

Warren Buffet: “Derivatives are financial weapons
of mass destruction, carrying dangers that, while now
latent, are potentially lethal. . . . We view them as time
bombs, both for the parties that deal in them and the
economic system.”

Alan Greenspan: “These increasingly complex finan-
cial instruments have especially contributed, particu-
larly over the past couple of stressful years, to the
development of a far more flexible, efficient and resilient
financial system than existed just a quarter-century
ago.”

The pricing and hedging of financial derivatives is the pri-
mary goal of financial engineering, and the two most widely
utilized numerical techniques are Monte Carlo simulation and
partial differential equations methods. To hedge a financial
derivative, one takes positions (buying and selling/shorting)
in other assets (which could include other financial deriva-
tives) to offset the risk in the currently held or sold financial
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instrument. For example, for a mortgage-backed security (a
type of financial derivative based on holding a basket of mort-
gages), the primary risks are associated with interest rates
and default (which are usually correlated). To hedge when
using simulation, price sensitivity (calculus) derivatives—
which we will call price sensitivities for short when used
in the context of financial derivatives—play the central role
in quantifying and managing risk. Therefore, the ability to
estimate them efficiently in simulation is critical, as stated
emphatically in the Lancaster Prize-winning book, Monte
Carlo Methods in Financial Engineering [29, p. 377]:

“Whereas the prices themselves can often be observed
in the market, their sensitivities cannot, so accurate cal-
culation of sensitivities is arguably even more important
than calculation of prices.”

However, the state of widespread knowledge in 2000
regarding simulation and both types of derivatives is exem-
plified by the following prescription in the 4th edition of a
very popular textbook on derivatives pricing [41, p. 410]:

“Suppose that we are interested in the partial deriva-
tive of f with q, where f is the value of the derivative
and q is the value of an underlying variable or a para-
meter. First, Monte Carlo simulation is used in the usual
way to calculate an estimate, f , for the value of the
derivative. A small increase, !q, is then made in the
value of q, and a new value for the derivative, f ∗, is cal-
culated. An estimate for the hedge parameter is given
by

f ∗ − f

!q

In order to minimize to [sic] standard error of the esti-
mate of the Greek letter, the number of time intervals,
N , the random number streams, and the number of tri-
als, M , should be the same for estimating both f and
f ∗.”

In contrast to this brief recipe, all of Chapter 7 of
Glasserman [29] is devoted to the topic.

Another important application of simulation and (calcu-
lus) derivatives is supply chain management. In the October
30, 2000 issue of Fortune Magazine, an article entitled, “New
Victories in the Supply-Chain Revolution” [54] describes “a
classic distribution challenge: how to avoid lost sales without
incurring the cost of carrying extra inventory” when Caterpil-
lar, the “world’s largest builder of construction equipment. . .
posed daunting supply chain questions” regarding the distri-
bution of a new line of “compact” construction machines. A
team from Carnegie-Mellon led by Sridhar Tayur and Alan
Scheller-Wolf came up with a solution to “determine the
appropriate inventory levels for the U.S., the most important
market. . . Among the techniques the Carnegie-Mellon group

used to attack this complex problem was so-called infini-
tesimal perturbation analysis. . .” Infinitesimal perturbation
analysis (IPA) is one of the derivative estimation techniques
discussed in detail in this article.

These two examples provide a glimpse at the opportu-
nity provided by the availability of derivatives in the context
of simulation. The rest of this article presents a high-level
overview of three main approaches for estimating derivatives
in simulation (see Fu [13], upon which most of the mater-
ial in the next section is based, for more technical details):
perturbation analysis (PA), the likelihood ratio/score func-
tion (LR/SF) method, and weak derivatives (WD); along
with some further descriptions of three main application
areas: queueing, inventory, and finance. For more details
regarding simulation optimization applications and issues,
see Fu [14].

2. OVERVIEW OF MAIN APPROACHES

Let J (θ) denote the real-valued performance measure of
interest, where θ is the parameter with which we would like
to estimate the derivative dJ

dθ
. In the optimization context,

θ would generally be referred to as a decision variable and
comprise a vector, and a constraint set would also be spec-
ified. Here, for expositional ease, we will assume that θ is
scalar. Examples of performance measures are expected wait-
ing time in a queueing system, expected costs in an inventory
control system, and a stock option price in financial engi-
neering. Possible parameters could be mean service time
in a queueing system, a reorder point in an inventory con-
trol system, and the current stock price in the option pricing
problem.

In simulation, it is assumed that the performance mea-
sure must be estimated. Again, for expositional ease, we
will assume that the performance measure is an expectation,
which covers most quantities of interest including probabil-
ities, but does not include quantiles or the mode. Thus, we
write J = E[L], where L will be referred to as the sample
performance, because the idea of Monte Carlo simulation (or
stochastic simulation, or in this article, just simulation) is
that by taking a large number of usually independent simula-
tion samples, one can get a good estimate of the performance
measure of interest (by the law of large numbers). Thus, the
problem is to estimate

dE[L]
dθ

(1)

using simulation.
A “brute-force” finite difference estimate is obtained by

doing additional simulations at parameter value (θ + !θ),
subtracting from these samples of L the simulation estimates
of L at the original parameter value θ , and then dividing by
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the perturbation !θ . However, if the number of parameters
is large (e.g., large number of decision variables in an opti-
mization problem), then this could entail a large number of
additional simulations. Furthermore, one has to select a value
of !θ , which usually entails a trade-off between variance
and bias, where larger !θ generally means lower variance
but higher bias when the goal is to estimate (1). The order
of the bias can be decreased by using symmetric differences,
i.e., simulate at both (θ + !θ) and (θ − !θ), but the down-
side is that this would require basically double the number of
simulations.

The central message of this article is that research over
the last three decades has resulted in many more accurate
and efficient ways to estimate derivatives from simulation.
The methods specifically discussed in this article fall into
two main approaches, which depend on where the θ depen-
dence appears. To be specific, we express the expectation as
follows:

E[L(X)] =
∫

ydFL(y) =
∫

L(x)dFX(x), (2)

where X is a vector of all the input random variables used in
the simulation, FL is the distribution of L, FX is the (joint) dis-
tribution of X, and the second integral is multidimensional
(corresponding to the dimension of the vector X). In most
cases, FL is not known explicitly; else, simulation would not
be needed. However, in the simulation setting FX is known,
because it must be used to generate the input process to the
simulation model. In a queueing system, FX would include all
the interarrival times, service times, routing indicators, and
other randomness in the system. Note that we have not put
the parameter θ anywhere in the expression. The dependence
on θ is the crux of the derivative estimation problem.

We consider two cases on where the θ dependence occurs:
though the input random variables X themselves or in the
distribution (measure) of the input random variables FX, cor-
responding to the left-most or right-most side of Eq. (2),
respectively:

E[L(X)] =
∫ 1

0
[L(X(θ ; u))du, (3)

and

E[L(X)] =
∫ ∞

−∞
L(x)f (x; θ)dx, (4)

where in the first case the underlying randomness is a vector
of random numbers that generate the input random variables
X depending on the parameter θ , and the second case assumes
the existence of a (joint) density f of all of the input random
variables corresponding to the distribution FX (in the discrete
case, the integral would be replaced by a sum, and the proba-
bility density function by a probability mass function). Note
that the integrals should be multidimensional in both cases.

To illustrate the ideas more concretely, we begin with a
specific example involving just two input random variables,
assumed to be generated independently, with X1 ∼ exp(θ)

and X2 ∼ U(0, 1), i.e., the first random variable is exponen-
tially distributed with mean θ and the second is uniformly
distributed over [0,1]. Then Eqs. (3) and (4) are written,
respectively, as

E[L(X)] =
∫ 1

0

∫ 1

0
L(X1(u1; θ), u2)du1du2, (5)

where X1(u; θ) = −θ ln u is the usual way to generate an
exp(θ) random variate, and

E[L(X)] =
∫ 1

0

∫ ∞

0
L(x1, x2)

1
θ
e−x1/θdx1dx2. (6)

Differentiating Eqs. (5) and (6) assuming that the differ-
entiation operator can be brought inside the integral—which
can be verified directly in the second case, but depends on
the specific form of L in the first case—we get for the first
case:

dE[L(X)]
dθ

=
∫ 1

0

∫ 1

0

∂L(X1(u1; θ), u2)

∂X1

dX1(θ ; u1)

dθ
du1du2,

(7)

and for the second case, we further split into two different
expressions:

dE[L(X)]
dθ

=
∫ 1

0

∫ ∞

0
L(x1, x2)

[
1
θ

(x1

θ
− 1

)]

× 1
θ
e−x1/θdx1dx2 (8)

= 1
θ

{∫ 1

0

∫ ∞

0
L(x1, x2)

x1

θ2
e−x1/θdx1dx2

−
∫ 1

0

∫ ∞

0
L(x1, x2)

1
θ
e−x1/θdx1dx2

}
, (9)

with respective estimators corresponding to Eqs. (7)–(9):

∂L(X1, X2)

∂X1

dX1

dθ
, L(X1, X2)

[
1
θ

(
X1

θ
− 1

)]
,

1
θ
{L(X∗

1 , X2) − L(X1, X2)},

where in the third estimator, X∗
1 has an Erlang distribu-

tion with shape parameter 2, denoted by Erl(2, θ ). The key
points to note for each of the three estimators are as fol-
lows. To finalize the first estimator requires some knowledge
of the specific form of L (to calculate the first term) and
also defining what is the derivative of a random variable
with respect to a parameter (to calculate the second term);
intuitively, though, differentiating X1(u; θ) = −θ ln u gives
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dX1(u;θ)
dθ

= − ln u = X1(u;θ)
θ

. The second estimator can be
implemented without any further knowledge or simulation
over what is required to estimate the original performance
measure by L(X1, X2), i.e., the original performance mea-
sure estimator is simply multiplied by a “weight” function.
The third estimator is the difference of two quantities, one of
which requires an additional simulation at a different setting
of the first input random variable. This simple example con-
tains the main ingredients of the general case for the three
derivative estimation approaches that we consider.

Returning to the more general settings of Eqs. (3) and
(4), again differentiating each, assuming an interchange of
integration and differentiation is permissible,

dE[L(X)]
dθ

=
∫ 1

0

dL(X(θ ; u))

dθ
du, (10)

and

dE[L(X)]
dθ

=
∫ ∞

−∞
L(x)

∂f (x; θ)
dθ

dx. (11)

For expositional ease in introducing the approaches, we begin
by assuming that the parameter only appears in X1, which is
generated independently of the other input random variables.
So for the case of (10), we use the chain rule to write

dE[L(X)]
dθ

=
∫ 1

0

dL(X1(θ ; u1), X2, . . .)
dθ

du

=
∫ 1

0

∂L

∂X1

dX1(θ ; u1)

dθ
du (12)

In other words, the estimator takes the same general form as
before:

∂L(X)

∂X1

dX1

dθ
, (13)

where the parameter appears in the transformation from
random number to random variate, and the derivative is
expressed as the product of a sample path derivative and
derivative of a random variable. The issue of what constitutes
the latter will be taken up shortly, but this approach is called
infinitesimal perturbation analysis (IPA). For a first-come,
first-served single-server queue, the sample path derivative
could be derived using Lindley’s equation, relating the time
in system of a customer to the service times (and interarrival
times, which are not a function of the parameter). It is just as
simple for multi-server queues and the natural extension to
queueing networks; however, depending on other character-
istics of the network, the resulting IPA estimator may or may
not be biased.

Assume that X1 has marginal p.d.f. f1(·; θ) and that the
joint p.d.f. for the remaining input random variables (X2, . . .)
is given by f−1, which has no (functional) dependence on θ .

Then the assumed independence gives f = f1f−1, and the
expression (11) involving differentiation of a density (mea-
sure) can be further manipulated using the product rule of
differentiation to yield the following:

dE[L(X)]
dθ

=
∫ ∞

−∞
L(x)

∂f1(x1; θ)
∂θ

f−1(x2, . . .)dx (14)

=
∫ ∞

−∞
L(x)

∂ ln f1(x1; θ)
∂θ

f (x)dx. (15)

In other words, the likelihood ratio or score function (LR/SF)
estimator takes the form

L(X)
∂ ln f1(X1; θ)

∂θ
, (16)

where the second term in (16) is called the score function
in statistics, hence one of the monikers for this method.
The other name is due to differentiating the likelihood ratio
function given by

f1(·; θ)
f1(·; θ0)

,

with respect to θ to obtain

∂f1(·; θ)/∂θ
f1(·; θ0)

,

which also equals the second term in (16) for θ0 = θ .
On the other hand, if instead of expressing the right-hand

side of (14) as (15), the density derivative is written as

∂f1(x1; θ)
∂θ

= c(θ)
(
f

(2)
1 (x1; θ) − f

(1)
1 (x1; θ)

)
,

where f
(2)
1 and f

(1)
1 are probability density functions, then

the following relationship is obtained:

dE[L(X)]
dθ

= c(θ)

(∫ ∞

−∞
L(x)f

(2)
1 (x1; θ)f−1(x2, . . .)dx

−
∫ ∞

−∞
L(x)f

(1)
1 (x1; θ)f−1(x2, . . .)dx

)
. (17)

Any such (nonunique) triple (c(θ), f (2)
1 , f (1)

1 ) constitutes a
weak derivative (WD) for f1, giving the corresponding WD
estimator

c(θ)
(
L

(
X

(2)
1 , X2, . . .

)
− L

(
X

(1)
1 , X2, . . .

))
, (18)

where X
(1)
1 ∼f

(1)
1 , X(2)

1 ∼f
(2)
1 , and it is assumed that common

random numbers is used for the other input random variables,
in which a single realization of X2, X3, . . ., is used in both
simulation estimates of L (note that Eq. (17) only implies that
they have the same joint distribution f−1). The term “weak”
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derivative comes about from the possibility that ∂f1(·;θ)
∂θ

in (14)
may not be proper, but its integral may be well-defined, e.g.,
it might involve delta-functions (impulses), corresponding to
mass functions of discrete distributions. In other words, it is
Eq. (17) that defines the WD approach and not Eq. (14).

The IPA estimator (13) requires the notion of a derivatives
of a random variable, which intuitively coincides with the
definition in the usual sense by defining the limiting differ-
ence on a common probability space and fixing the sample
outcome; see [13, 28, 29] for technical details. Here, we will
consider a couple of useful cases.

The first case assumes the existence of a density, for which
we have

dX(θ)

dθ
= −∂F (x; θ)/∂θ

∂F (x; θ)/∂x

∣∣∣∣
x=X

, (19)

where F is the cumulative distribution function of X, so that
the denominator is simply the probability density function.

Another useful case in practice is when the parameter
is a location, scale, or generalized scale parameter, defined
as follows in terms of the random variable (rather than the
distribution, as is often done, cf. [13]):

• θ is a scale parameter for X if there exists a ran-
dom variable Z that has no dependence on θ such
that X = Zθ with probability 1.

• θ is a location parameter for X if there exists a ran-
dom variable Z that has no dependence on θ such that
X = Z + θ with probability 1.

• θ is a generalized scale parameter for X if there exist a
constant θ̄ and a random variable Z that has no depen-
dence on θ such that X = θ̄ + Zθ with probability
1.

Then one can use the following sample derivatives for the
three respective cases (location, scale, generalized scale):

dX

dθ
= 1,

dX

dθ
= X

θ
,

dX

dθ
= X − θ̄

θ
.

An example is the exponential distribution, for which the
mean is a scale parameter, verifying the result dX

dθ
= X

θ
that

was intuitively derived earlier through direct differentiation
of the expression X(u, θ) = −θ ln u, and which could also
be derived using Eq. (19). Nearly every distribution has at
least one parameter that is location or (generalized) scale,
and many have both (e.g., normal, Cauchy, Gumel, logistic,
general uniform).

To illustrate the ideas concretely, we consider two sample
performance functions of two random variables, but this time
we do not specify the actual distributions.

EXAMPLE 1: L(X) = X1 + X2.

• IPA estimator:

dX1

dθ
+ dX2

dθ
,

regardless of any dependence between X1 and X2.
• LR/SF estimators:

(X1 + X2)
∂ ln f (X1, X2; θ)

∂θ
,

for the general bivariate case, and

(X1 + X2)

(
∂ ln f1(X1, θ)

∂θ
+ ∂ ln f2(X2, θ)

∂θ

)
,

for the independent case.
• WD estimators:

c(θ)
((

X
(2)
1 + X

(2)
2

)
−

(
X

(1)
1 + X

(1)
2

))
,

where (X
(1)
1 , X(1)

2 ) ∼ f (1), (X
(2)
1 , X(2)

2 ) ∼ f (2) for the
general bivariate case with WD (c(θ), f (2), f (1)), and

c1(θ)
((

X
(2)
1 + X2

)
−

(
X

(1)
1 + X1

))

+ c2(θ)
((

X1 + X
(2)
2

)
−

(
X1 + X

(1)
2

))
,

where X
(1)
1 ∼ f

(1)
1 , X

(2)
1 ∼ f

(2)
1 , X

(1)
2 ∼ f

(1)
2 ,

X
(2)
2 ∼ f

(2)
2 for the independent case with WDs

(c1(θ), f
(2)
1 , f (1)

1 ) and (c2(θ), f
(2)
2 , f (1)

2 ).

EXAMPLE 2: L(X) = max(X1, X2).

• IPA estimator:

dX1

dθ
1{X1 > X2} + dX2

dθ
1{X1 ≤ X2},

regardless of any dependence between X1 and X2.
• LR/SF estimators:

max(X1, X2)
∂ ln f (X1, X2; θ)

∂θ
,

for the general bivariate case, and

max(X1, X2)

(
∂ ln f1(X1, ; θ)

∂θ
+ ∂ ln f2(X2, ; θ)

∂θ

)
,

for the independent case.
• WD estimators:

c(θ)
(

max
(
X

(2)
1 , X(2)

2

)
− max

(
X

(1)
1 , X(1)

2

))
,
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where (X
(1)
1 , X(1)

2 ) ∼ f (1), (X
(2)
1 , X(2)

2 ) ∼ f (2) for the
general bivariate case with WD (c(θ), f (2), f (1)), and

c1(θ)
(

max
(
X

(2)
1 , X2

)
− max

(
X

(1)
1 , X1

))

+ c2(θ)
(

max
(
X1, X(2)

2

)
− max

(
X1, X(1)

2

))
,

where X
(1)
1 ∼ f

(1)
1 , X

(2)
1 ∼ f

(2)
1 , X

(1)
2 ∼ f

(1)
2 ,

X
(2)
2 ∼ f

(2)
2 for the independent case with WDs

(c1(θ), f
(2)
1 , f (1)

1 ) and (c2(θ), f
(2)
2 , f (1)

2 ).

In Example 1, IPA also has linearly increasing variance;
however, most sample performances are not just simple sums,
but involve other operations, such as the maximum oper-
ation, as in Example 2. In both examples, notice that the
LR/SF and WD estimators do not depend on the form of the
sample performance, but on the number of random variables
involved. Also, the simple examples illustrate that where the
parameter appears is in some sense under the control of the
modeler/analyst. So a service-time parameter can be viewed
as a parameter of the underlying distribution generating the
service time random variate, or it can be viewed as a parame-
ter directly influencing the value of the service time random
variable itself, where the underlying uncertainty is simply
a stream of random numbers. In some cases, the parameter
could even appear in both places at the same time [44].

Generalizing these two examples leads to the following
general forms of estimators, where the parameter can pos-
sibly occur in every input random variable (otherwise, that
term is simply zero):

• IPA estimator:

∑

i

∂L(X)

∂Xi

dXi

dθ
,

• LR/SF estimators: (multivariate, independent)

L(X)
∂ ln f (X; θ)

∂θ
, L(X)

∑

i

∂ ln fi(Xi ; θ)
∂θ

,

• WD estimators: (multivariate, independent)

c(θ)(L(X(2)) − L(X(1))),
∑

i

ci(θ)
(
L

(
X1, . . . , X(2)

i , . . .
)
−L

(
X1, . . . , X(1)

i , . . .
))

,

where X(1) ∼ f (1), X(2) ∼ f (2) for the general multi-
variate case with WD (c(θ), f (2), f (1)), and {X(1)

i ∼
f

(1)
i , X(2)

i ∼ f
(2)
i }, for the independent case with WDs

{(ci(θ), f
(2)
i , f (1)

i )}.

Table 1, taken from Fu [13], provides specific expressions
needed to implement the IPA, WD, or LR/SF estimators
for many common input distributions, both continuous and
discrete.

2.1. Guidelines

In this section, we provide brief guidelines on the chal-
lenges and implementation issues that face each of the
approaches, and then conclude with some general remarks
on the research literature.

2.1.1. Challenges

• Both the LR/SF and WD approaches are likely to
encounter computational challenges in the case where
the same parameter recurs, e.g., if the simulation
model involves i.i.d. input random variables where θ

is a parameter in the common distribution. Examples
include service times or interarrival times in queue-
ing and customer demands in inventory control. More
details are provided below when implementation is
discussed.

• The main requirement for IPA to succeed is that the
sample performance be continuous with respect to
the parameter of interest. Although technically this
is only a sufficient and not necessary condition (i.e.,
it is not difficult to construct examples where IPA
works for discontinuous sample performances), for
all practical purposes this is also a necessary condi-
tion. In practice, a discontinuity manifests itself in
two principal forms: inherently discontinuous sample
performances, e.g., probability performance measures
(where the sample performances are indicator func-
tions) or any performance measure whose sample
performance is discrete-valued (except in the trivial
case where it is constant as a function of the parame-
ter of interest); and simulation models where small
changes in the parameter of interest could cause an
abrupt change in system behavior such as a different
event to occur, e.g., a customer in a queueing system
balking rather than being served; one way of checking
the latter is the “commuting condition” [28].

• LR/SF and WD may encounter difficulties in han-
dling nondistributional parameters, such as inventory
control parameters, although a change of variables
sometimes can be used to move the parameter into
a distribution. The ability to move the parameter into
or out of the underlying input distributions are referred
to as “push-out” and “push-in” methods in the SF
literature [45].

• The LR/SF method cannot handle parameters that
change the underlying support of the distribution. The
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Table 1. Derivatives for some common/simple input distributions.

Input dist WD IPA LR/SF

X ∼ F (c, F (2), F (1))
dX

dθ

∂ ln f (X; θ)
∂θ

Ber(θ ; a, b) (1, a, b) NA
1
θ

1{X = a}

− 1
1 − θ

1{X = b}
Ber(p; θ , b) NA 1{X = θ} NA

geo(θ)

(
1
θ

, geo(θ), negbin(2, θ)
)

NA
1
θ

+ 1 − X

1 − θ

bin(n, θ) (n, 1 + bin(n − 1, θ), bin(n − 1, θ)) NA
X

θ
− n − X

1 − θ

Poi(θ) (1, 1 + Poi(θ), Poi(θ)) NA
X

θ
− 1

N(θ , σ 2)

(
1√

2πσ
, θ + Wei

(
2,

1
2σ 2

)
, θ − Wei

(
2,

1
2σ 2

))
1

X − θ

σ 2

N(µ, θ2)

(
1
θ

, Mxw(µ, θ2), N(µ, θ2)

)
X − µ

θ

1
θ

[(
x − µ

θ

)2

− 1

]

U(0, θ)
(

1
θ

, θ , U(0, θ)
)

X

θ
NA

U(θ − γ , θ + γ )

(
1

2γ
, θ + γ , θ − γ

)
1 NA

U(µ − θ , µ + θ)

(
1
θ

, Ber(0.5; µ − θ , µ + θ), U(µ − θ , µ + θ)

)
X − µ

θ
NA

exp(θ)

(
1
θ

, Erl(2, θ), exp(θ)

)
X

θ

1
θ

(
X

θ
− 1

)

Wei(α, θ)
(α
θ

, F ∗(α, θ), Wei(α, θ)
) X

θ

1
θ

[(
X

θ

)α

− α

]

gam(α, θ)
(α
θ

, gam(α + 1, θ), gam(α, θ)
) X

θ

1
θ

(
X

θ
− α

)

Par(α, θ)
(α
θ

, Par(α, θ), θ
) X

θ
NA

“NA” = not applicable, indicating that the estimator cannot be implemented for that particular distribution and corresponding parameter;
“Ber” = Bernoulli; “geo” = geometric; “bin” = binomial; “negbin” = negative binomial; “Poi” = Poisson; “exp” = exponential; “Wei”
= Weibull; “gam” = gamma; “Par” = Pareto; “Mxw” = Maxwell; “Erl” = Erlang; please refer to Fu [13] for the specifics of the actual
parameterization of each distribution and also for the definition of the two-parameter distribution indicated by F ∗.

three uniform distribution cases in Table 1 illustrate
this.

• For discrete distributions, IPA works if the parame-
ter occurs in the support values, whereas LR/SF and
WD work if the parameter occurs in the support
probabilities. Examples of this can be seen in the first
five lines of Table 1.

• Higher derivative estimates are usually easiest to
derive using LR/SF, but even then the variance of the
resulting estimators may be problematic. A combina-
tion of two approaches might lead to the estimator
with the best variance properties, e.g., IPA for the
first derivative and then LR/SF for the derivative of
that, or vice versa (see [29] for specific examples and
numerical comparisons of performance in the finance
setting).

2.1.2. Implementation Issues

• Implementation of the LR/SF estimator is usually the
most straightforward. How ever, if the input process
involves an oft-repeated (e.g., i.i.d.) random variable
whose common distribution depends on the parameter
of interest, then the straightforward estimator should
not be used, because the variance of the estimator will
grow linearly with the number of times the input ran-
dom variable that contains the parameter is used in the
simulaton, so the estimator will quickly become prac-
tically useless. This can be mitigated by batching. For
example instead of averaging over 1000 customers,
take an average of 100 samples of 10 customers each.
Using regenerative cycles is another way around the
problem (see Fu [13] and the queueing example in the
next section).
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• Implementation of a WD estimator is also relatively
straightforward, but will generally require additional
simulations, and again if the input process involves
a repeated random variable, then the number of
additional simulations will grow linearly with the
number of times the random variable is used; however,
this does not necessarily result in any degradation in
the variance of the estimator, but it will increase the
computational burden. Because a weak derivative is
not unique, a WD estimator involves the choice of the
WD representation for the probability density/mass
function derivative; Table 1 provides one possibility
for many commonly encountered distributions, but see
Fu [13] and the references therein for further guidance.

• Implementation of the IPA estimator generally
requires further knowledge of the dynamics of the sys-
tem, essentially to be able to implement the ∂L/∂Xi

portion of the chain rule, where Xi is the input random
variable on which the parameter dependence enters.
In many cases of practical interest, this is not diffi-
cult to implement, and the additional computational
burden is often relatively minimal.

2.1.3. Research Notes and Further Reading

• What is often referred to as “perturbation analysis”
(PA) is just one of an array of methods (see Fu [13,15]
for more details and references), the main idea being to
study the effect on a performance measure of interest
when a parameter value is perturbed slightly. In most
of the PA methods, the parameter is never actually
changed in either the analysis or in the simulation. The
analysis usually entails the limit as the size of the per-
turbation vanishes. This is also called the “pathwise”
method when applied in finance [29]. Two classic
books that treat IPA are Ho and Cao [36] and Glasser-
man [28]; however, since they are both nearly two
decades old now, the examples are queueing systems
(see also Cao [7]). The book by Fu and Hu [24] focuses
on IPA and smoothed perturbation analysis (SPA),
which is described in Section 2.3, and includes exam-
ples in inventory control and finance. Perhaps the only
textbook that includes an entire chapter on PA is Cas-
sandras and Lafortune [8], covering IPA, SPA, and
finite PA.

• The LR/SF method was introduced by Reiman and
Weiss [51], Rubinstein [52], Glynn [31] and is treated
in depth by Rubinstein and Shapiro [53], which also
includes some discussion of IPA (Chapter 5 on the
“push in” method); see also Melamed and Rubinstein
[45]. In the finance setting, Chaper 7 in Glasserman

[29] includes a discussion of both IPA (known as the
pathwise method) and the LR/SF method.

• The WD method was introduced by Pflug [46, 47].
More recently, it has been put into a more general
framework of “measure-valued differentiation” [35].

2.2. Validity of Interchange

Validating the exchange of limit and expectation operators
required in Eqs. (10) or (11) can be equated with the concept
of uniform integrability, which is a necessary and sufficient
condition (see Glasserman [28, 29]); however, it is difficult
to verify in practical applications and will not be discussed
here. In practice, the key result used in the theoretical proofs
of unbiasedness is the (Lebesgue) dominated convergence
theorem:

(DOMINATED CONVERGENCE THEOREM): If a
sequence of random variables {Yn} converges to a random
variable Y with probability 1, where |Yn| ≤ M ∀n with
probability 1 and E[M] < ∞, then limn→∞ E[Yn] = E[Y ].

The dominated convergence theorem is used to justify (10)
and (11), by taking !θ → 0 for n → ∞, and taking

Y!θ = L(θ + !θ) − L(θ)

!θ
,

Y!θ = L(x)
f (x; θ + !θ) − f (x; θ)

!θ
,

for IPA and LR/SF, respectively, with Y the corresponding
derivative estimator, and then finding a bound corresponding
to the random variable M . The required technical conditions
for the WD approach involve the existence of a weak deriv-
ative satisfying the defining relationship of the form of Eq.
(17).

For IPA, a sufficient condition is that the sample perfor-
mance be continuous with respect to the parameter, which
translates into requirements on the form of the performance
measure and on the dynamics of the underlying stochastic
system. A nice set of sufficient conditions that is often used
requires Lipschitz continuity (see Glasserman [29]). In the
framework of generalized semi-Markov processes (GMSPs)
as a model for stochastic discrete-event simulation, Glasser-
man [28] provides a useful set of structural conditions for
checking the underlying system.

For the LR/SF method, the bound is applied to the (joint)
density (or mass) function, where the bound is for f (x; θ)
with respect to the parameter θ and not its usual argument x.
This is more intuitively viewed as a requirement of absolute
continuity of f (·; θ + !θ) with respect to f (·; θ), whereby
for all x, if f (x; θ) = 0, then f (x; θ +!θ) = 0 (Glasserman
[29]).
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The previous examples can be used to show in very
simple cases where difficulties arise. Consider the U(0, θ)
probability density function

f (x; θ) = 1
θ

1{0 < x < θ},

where the LR/SF method does not apply. In this case, f

viewed as a function of θ for fixed x has a discontinuity
at θ = x; in terms of absolute continuity, for !θ > 0, at the
point x = θ+!θ/2, the function fails to be absolutely contin-
uous, since f (θ+!θ/2; θ) = 0, but f (θ+!θ/2; θ+!θ) =
1/(θ + !θ). Similarly, for probability performance mea-
sures, the sample performance is an indicator function, which
generally implies a discontinuity that leads to a biased IPA
estimator.

2.3. Another Related Approach

When IPA fails, many extensions have been proposed, so
“perturbation analysis” actually refers to all of these differ-
ent approaches and not just IPA; see Fu [15] for more details
and references. Here, we will just briefly discuss perhaps
the most developed extension called smoothed perturbation
analysis (SPA), which is based on conditional Monte Carlo,
a well-known variance reduction technique in simulation.
Specifically, the idea is to choose a random variable (or set
of random variables), represented here by Z, such that

(a) E[L|Z] is easily computable;
(b) Var(E[L|Z]) is small.

In variance reduction applications, it can be shown that
Var(E[L|Z]) ≤ VarL, so conditional Monte Carlo estima-
tors are guaranteed to do no worse in terms of variance (this
does not consider the additional computation that might be
required).

Analogously, the main idea of SPA is to choose Z such
that

(a) d
dθ

E[L|Z] is easily computable;
(b) E[ d

dθ
E[L|Z]] = d

dθ
E[E[L|Z]] = dE[L]

dθ
.

Thus, the main challenges in applying SPA are (i) the choice
of what to condition on and (ii) how to compute (estimate)
the resulting conditional expectation. Challenge (i) is some-
what analogous to the WD representation choice. Challenge
(ii) may lead to many additional simulations. The book of Fu
and Hu [24] treats SPA (introduced by Gong and Ho [32] and
Suri and Zazanis [55]) in detail.

We can demonstrate how this works for the two simple
examples by taking as the performance measure a probabil-
ity, i.e., P(L(X) ≤ x) for some fixed x. In this case, IPA fails

because the sample performance is an indicator function. For
simplicity of exposition, take the case where the two random
variables are independent and assume θ enters into the distrib-
ution of the first random variables X1. For L(X) = X1 +X2,
noting that P(X1 + X2 ≤ x) = E[1{X1 + X2 ≤ x}], we
simply condition on the other random variable:

E[1{X1 + X2 ≤ x}|X2] = P(X1 ≤ x − X2|X2)

= F1(x − X2; θ),

where F1 is the cumulative distribution function for X1.
Differentiating gives the density as the SPA estimator:

d

dθ
E[1{X1 + X2 ≤ x}|X2] = f1(x − X2; θ).

Similarly, for the other sample performance L(X) =
max(X1, X2), we have

E[1{max(X1, X2) ≤ x}|X2] = P(X1 ≤ x|X2 ≤ x)

1{X2 ≤ x} + 0 · 1{X2 > x} = F1(x; θ)1{X2 < x},

and differentiating gives the SPA estimator:

f1(x; θ)1{X2 ≤ x}.

3. APPLICATIONS

We discuss the three main application areas of derivative
estimation in simulation and provide some simple illustra-
tive examples for each. The first application area, starting
in the 1970s, was queueing systems, which dominated the
research focus for almost two decades; the most important
subsequent application areas over the past decade or so have
been inventory control and financial engineering.

3.1. Queueing

Because queueing networks can be used to model so many
different classes of large-scale systems, including commu-
nications networks, manufacturing systems, supply chains,
or transportation network/systems, queueing network simu-
lation models cover a huge range of applications. We start
with estimating the sensitivity to a single random variable in
the system, e.g., a service time, an interarrival time, or a rout-
ing probability. In this setting, it is easy to apply an LR/SF
estimator, as long as the parameter of interest does not violate
the prescriptions in the previous section, e.g., U(0, θ) would
not work. The estimator would require no additional simula-
tions, and the variance properties should be reasonably good,
especially if there are a lot of other input random variables
in the simulation. It is also easy to apply a WD estimator in
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this setting, but it will generally require two additional sim-
ulations, although for some distributions only one additional
simulation is required, e.g., for U(0, θ) and exp(θ). Again,
the variance properties should be good for even a large sys-
tem. Lastly, IPA could be easily implemented, requiring no
additional simulation and having perhaps the best variance
properties of all, but following the caveats of the previous
section concerning the sample performance and the structure
of the system, e.g., if the parameter is in a routing proba-
bility, then a small change could cause a customer to switch
from one destination queue to another, leading to an IPA
estimator that is biased. Multiclass queueing networks can
present such problems for IPA. In these cases, SPA can be
applied, which requires more work, in the sense that the esti-
mators may require some additional simulation. The books
[28, 36, 53] all have many examples of queueing systems for
IPA and LR/SF, whereas developing corresponding WD esti-
mators is straightforward for the distributions given in Table
1, as described in Fu [13].

Along the lines just discussed, we illustrate using the sim-
plest queueing example—a first-come, first-served single-
server queue, taking the performance measure as the expected
waiting time (in queue) of the nth customer (n > 1), denoted
by E[Wn], with the parameter θ in the service time distribu-
tion, where Xi denotes the service time of the ith customer.
To be concrete, we take θ as the mean of an exponential dis-
tribution, and thus also illustrate the use of the corresponding
line for exp(θ) in Table 1.

We first consider the case where the parameter θ affects
only a single service time, specifically Xn−1 ∼ exp(θ), for
which we have the following estimators for dE[Wn]

dθ
:

• IPA

dXn−1

dθ
1{Wn > 0} = Xn−1

θ
1{Wn > 0},

which reflects the notion that the service time of a
customer only affects the waiting times of subsequent
customers in the same busy period, where the con-
dition Wn > 0 implies that the nth and (n − 1)st
customer are in the same busy period.

• LR/SF

Wn

θ

(
Xn−1

θ
− 1

)
.

• WD

1
θ

[
Wn

(
X∗

n−1

)
− Wn(Xn−1)

]
,

where X∗
n−1 ∼ Erl(2, θ) and only the dependence on

the (n−1)st service time is displayed for Wn, with the
other service times and interarrival times assumed the

same in both expressions. Note that this would require
one additional simulation.

Now consider the case where the parameter affects all of
the service times, i.e., θ is the common mean for the i.i.d.
exponentially distributed service times {Xi}, which leads to
the following estimators for dE[Wn]

dθ
:

• IPA
∑

n∗≤i<n

dXi

dθ
=

∑

n∗≤i<n

Xi

θ
,

where n∗ denotes the index of the customer that begins
the busy period of customer n, so the sum is empty if
customer n begins the busy period.

• LR/SF

Wn

θ

∑

i<n

(
Xi

θ
− 1

)
,

which basically has variance proportional to n.
• WD

1
θ

∑

i<n

[
Wn

(
X∗

i

)
− Wn(Xi)

]
,

where X∗
i ∼ Erl(2, θ) (i.i.d.) and only the dependence

on the different (ith) service time is displayed for
Wn, with the other service times and interarrival times
assumed the same in both expressions. The number of
additional simulations is basically proportional to n.

Although the straightforward LR/SF estimator is computa-
tionally prohibitive for large n, by utilizing the independence
of Wn from service times before the start of customers n’s
busy period, which is done implicitly in the IPA estimator,
the variance problem can be ameliorated. In other words, for
i < n∗, E[WnXi] = E[Wn]E[Xi] ⇒ E[Wn(Xi/θ−1)] = 0,
so a much improved LR/SF estimator with the same expected
value is given by

Wn

θ

∑

n∗≤i<n

(
Xi

θ
− 1

)
.

This illustrates one way regeneration can be used to mitigate
potential variance problems in LR/SF estimators.

3.2. Inventory

Inventory control is the second class of applications to
which derivative estimation has been successfully applied.
The first application to inventory systems was Fu [16] for
(s, S) policies, where both IPA and SPA estimators are
derived; see also Fu and Hu [22] and Bashyam and Fu [1]. The
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Figure 1. IPA is easy for (s, S) inventory system for the derivative
with respect to s, assuming q held fixed, because the distance of the
inventory position from the reorder point is the same in the per-
turbed (lighter) and the original (bolder) sample paths, as indicated
by arrows.

Caterpillar supply chain success story described in the intro-
duction used IPA estimators for base-stock policies along
the lines of Glasserman and Tayur [30], as detailed in the
Operations Research OR Chronicle article [50]; see also
Kapuscinski and Tayur [42]. Other inventory optimization
examples described in Fu et al. [19] include the follow-
ing, which all use PA estimators: Fu and Healy [20, 21]
consider the classical unconstrained cost minimization for-
mulation, comparing a stochastic approximation algorithm
with a “retrospective optimization” algorithm; Bashyam and
Fu [2] minimize expected holding and ordering costs sub-
ject to a service level constraint that also requires simulation
to estimate; Zhang and Fu [57] add a pricing decison vari-
able to the unconstrained optimization problem. For these
types of inventory systems, where the parameter of inter-
est is one of the decision variables, the LR/SF and WD
estimators cannot be applied in the usual manner, because
the parameters do not occur naturally in any distribution;
however, Pflug and Rubinstein [48] used a change of vari-
ables and conditioning argument to come up with unbiased
estimators for the simplest periodic review (s, S) inventory
system.

When simulating inventory control systems utilizing base-
stock policies, IPA estimators can be easily implemented,
which we will illustrate with a simple example. Because the
sample performance is generally continuous with respect to
the base-stock level, the resulting IPA estimators are unbi-
ased. Difficulties arise when setup costs are included in the
model, requiring a two-parameter order policy with a reorder
point and order quantity or order-up-to level, because small
changes in one of the parameters can cause discontinuities in
the sample path, as we shall demonstrate graphically on an
(s, S) inventory control example. Here, s is the reorder point
and S is the order-up-to point. Instead of the parameters s and
S, we will consider the parameters s and q = S − s, where

the latter can be viewed as the (approximate) order quantity.
The sample paths will show intuitively the continuity with
respect to changes in s for q held constant, whereas there
are discontinuities with respect to changes in q with s held
constant. As a result, IPA estimators will be unbiased for per-
formance measures with respect to s (with q held constant),
whereas they would be biased for performance measures
with respect to q, and SPA estimators would be required, as
in [1, 16, 22].

Figure 1 shows two sample paths of the inventory position,
where the vertical lines indicate the order decision points at
the end of each period. Thus, if the inventory position is below
the reorder point s, then an order up to S is placed. The bolder
path is the original sample path—called the nominal path—in
PA literature, whereas the lighter path—called the perturbed
path—is the path after the perturbation by !s with q held
constant, which results in S also being increased by !s. The
key in the sample path analysis is that discontinuities in going
from the nominal path to the perturbed path can only occur
at the reorder points if an order decision becomes a no-order
decision or vice versa. In Fig. 1, there is an order placed at
the end of period n in the nominal path, and there is also
an order placed at the end of period n in the perturbed path.
Most importantly, the distance of the inventory position from
the reorder point is unchanged before and after the perturba-
tion, regardless of the size (and sign) of the perturbation, and
thus the perturbed path is simply the nominal path changed
by !s.

Figure 2 shows two analogous sample paths when s is kept
constant, but q is increased by !q > 0. In the case shown,
!q is sufficiently large so that the perturbed path ends up
not ordering at the end of period n, which results in a drastic
divergence from the original (nominal) sample path, result-
ing in a discontinuity in a sample performance defined on the
process.

Figure 2. IPA fails for (s, S) inventory system for the derivative
with respect to q (or S), assuming s held fixed, because a positive
perturbation can cause an order decision in the original (bolder) path
to become a no-order decision in the perturbed (lighter) path.
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3.3. Finance

Probably the most flourishing research in derivative esti-
mation these days is happening in financial engineering,
where derivatives of derivatives are used for pricing and hedg-
ing, as mentioned in the introduction. Since simulation is
widely applied, the techniques discussed in this article can
be used to obtain estimates of the sensitivities with respect
to various parameters without resimulation, i.e., estimates of
the so-called “Greeks,” which include for example the delta
(!), which is the sensitivity with respect to the underly-
ing stock price, and the vega, which is the sensitivity with
respect to the volatility. This is described in detail in Chapter
7 of Glasserman [29]. In both pricing and hedging, the final
problem usually comes down to an optimization problem.
For hedging, one usually tries to minimize some deviation
from a target payoff (or path of payoffs), whereas for pric-
ing, the optimization problem is generally to maximize the
expected payoff in a classical optimal stopping problem. A
hedging example for mortgage-backed securities demonstrat-
ing orders of magnitude savings in simulation effort was
reported in Chen and Fu [9]. In terms of pricing, the 1993
edition of one of the most popular textbooks for derivatives
in finance proclaimed, “Monte Carlo simulation can only be
used for European-style options” [40, p.363]. However, this
was soundly refuted by a flurry of subsequent simulation
research (see Fu et al. [27]), and one simulation approach
for pricing American-style options uses gradient-based sto-
chastic optimization, where the decision of whether or not
to exercise an option is made according to a decision rule
that is defined by a parameterized exercise boundary, and
thus gradients with respect to the parameters are central to
the method; see Fu and Hu [23], Heidergott [34], Wu and Fu
[56] for examples of SPA and WD estimators.

We illustrate the ease with which these estimators can be
implemented by considering a simple European call stock
option, whose payoff (sample performance) is given by

(ST − K)+,

where St denotes the stock price at time t , T is the expiration
time of the option, and K is the strike price. The option price
is given by the expectation of the discounted payoff, where
we assume discounting by a constant risk-free continuous
interest rate r . The delta of this option is the sensitivity with
respect to the current stock price S0, i.e., we wish to estimate

d

dS0
E[e−rT (ST − K)+].

The IPA estimator is straightforward to obtain, although the
final form will depend on the form of underlying stock price
model. To apply the LR/SF and WD approaches, the “para-
meter” of interest S0 has to be incorporated into the under-
lying distribution of ST . How this is done also depends on

the underlying stock price model. Under the Black-Scholes
(geometric Brownian motion process, lognormally distrib-
uted) stock price model with volatility σ , we would have the
following estimators:

• IPA [23]

e−rT ST

S0
1{ST > K},

the form of which holds for many other stock price
models in which the current stock price acts as a
scale parameter for the future stock price (see Glasser-
man [29] for many other examples and Fu [18]
for simulation of the variance-gamma asset pricing
process).

• LR/SF [5]

e−rT (ST − K)+
Z

S0σ
√

T
,

where Z ∼ N(0, 1) is the standard normal ran-
dom variate used to generate ST from S0 via ST =
S0e

(r−σ 2/2)T +σ
√

T Z .
• WD

1
S0

[e−rT (ST − K)+ − e−rT (S∗
T − K)+],

where S∗
T is generated from a complicated density not

written out explicitly here.

3.4. Other Areas

Although queueing, inventory, and finance are the most
prominent application areas, there have been many others, of
which the following is a small sample:

• stochastic activity networks (Rubinstein and Shapiro
[53] for the LR/SF method, Bowman [4] for IPA, and
Fu [17] for SPA and WD);

• preventive maintenance (Fu et al. [26]; Heidergott [33,
34]);

• statistical process control (Fu and Hu [25]);
• revenue management (Karaesmen and van Ryzin

[43]), where LR/SF estimators were used in simula-
tion optimization; and

• traffic light signal control (Howell and Fu [39]).

4. CONCLUSIONS AND FINAL THOUGHTS

The main message of this article is that sensitivity analysis
and optimization in simulation can be done quite efficiently
using the methods discussed here that have been developed
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over the past few decades. We have attempted to explain
the intuition behind each of the three approaches and pro-
vide guidance as to which approach is most appropriate for a
particular setting and what the actual implementation of the
corresponding derivative estimator would likely entail. Sim-
ple examples and a range of application domains were used
to illustrated the wide applicability of the approaches. We
conclude with some final comments and thoughts on various
topics of current interest.

Derivatives for quantiles, which do not fit in the problem
framework of (1), were not discussed here, and have only
been treated recently. Perturbation analysis estimators are
discussed in Hong [37]; see also Hong and Liu [38]. These
performance measures are used in service systems as an alter-
native or complement to probability performance measures,
and are one of the risk measures used (often required by gov-
ernment regulation agencies) in financial risk management,
under the name of Value at Risk (VaR).

In finance, the underlying models are generally continuous
time, whereas the derivative estimation techniques discussed
here originated from discrete-event simulation models such
as those arising in queueing, where sample paths do not gen-
erally change continuously in time. The use of Malliavin
calculus involves stochastic processes in continuous time
(Wiener process, or Brownian motion), and application of
results from this field was initiated mainly by physicists as
another approach to estimating derivatives in stochastic sim-
ulation for finance (see Fournié et al. [11, 12]). Ultimately,
however, implementation must be done using some sort of
discretization of the continuous time processes, and Chen and
Glasserman [10] explain the connection between that stream
of research and some of the methods discussed here.

In many operations management models, much of the
analysis goes into proving the structure of optimal policies,
which often reduce to a few parameters to be optimized. In
many cases, such as when Markov decision process (MDP)
models are used, even after such structure is found, it is not
easy to find the optimal policy using other numerical tech-
niques, so simulation optimization is employed, and this is
aided greatly by the availability of derivatives. Connections
between MDPs, simulations, and derivatives are included in
the recent books by Cao [6] and Powell [49]. Oftentimes, sam-
ple path analysis is used to establish such structural results,
and similar analysis can be applied to derive derivative esti-
mators using perturbation analysis. Thus, not only do we
hope to reach deterministic optimizers who happen to use
some simulation in their work, but also applied probabilists
whose expertise in sample path analysis could be fruitfully
applied to enhance derivative estimation research.

Finally, one question that naturally comes to mind is: Why
haven’t the commercial software vendors implemented any
efficient gradient estimation into their offerings? We hope
that this article has also conveyed the message that it would

not be very difficult to implement many of the estimators
described here in simulation software.
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