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STATIONARITY AND STABILITY OF FORK-JOIN NETWORKS

PANAGIOTIS KONSTANTOPOULOS AND
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Abstract

We consider a fork-join network with arrival and service times forming a station-
ary and ergodic process. The usual stability condition, namely that the input rate is
strictly less than all the service rates, is proved to be valid in this general case. Finally
we extend the result to the case where there is random routing.

STATIONARY POINT PROCESSES; PALM TRANSFORMATION; QUEUEING NETWORKS

1. Introduction

Fork-join networks are queueing networks without feedback. When a job arrives at the
1nput, it splits into several parts which are serviced in different subnetworks and then
joined together again to form the output. Each of the parts may be served in one or more
queues in tandem or split again into more subparts, and so on. The network consists
therefore of three elements:

1. Queues: They are assumed 10 be FCFS with one server and infinite waiting space.

2. Forks: Upon arrival at a fork, a job is split into as many parts as there are outgoing
links and this is an instantaneous process.

3. Joins: The operation of a join is to merge subparts of the same part. Subparts wait ,
at the join until the last one arrives and then they merge and leave instantaneously. Thus
the departure time from a join is the maximum of the arrival times of the parts.

From the description of the network we see that the number of joins is equal to the
number of forks and in fact each join has a corresponding fork.. It is assumed that the
network has a unique arrival and a unique departure stream. For another description of
the fork-join networks see Baccelli and Massey (1986).

For n €Z. let T, denote the arrival time of the nth Jjob into the network (7, <0< T))
and g, = (g, €J) the vector of service times, where J is the set of queues of the
network. We assume that (7,,q,:n€ Z} are random variables defined on a common
probability space (Q, F, P). The random variable T, is considered as the nth point
and o, as the nth mark of a stationary and ergodic marked point process. Stationarity
and ergodicity are with respect to some semigroup {6,,/ER} of the space Q (see
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Appendix 1). If we take as Q the space of realizations of the marked point process then 6,
is exactly the left-shift-by-¢ operator. (For the relevant theory see Franken et al. (1 982),
Neveu (1977), Baccelli and Brémaud (1987), Walrand (1988) and the brief discussion in
Appendix 1.)

Let P° denote the Palm transformation of P with respect to the arrival point process
{T.} and E° the expectation with respect to P°. Let 1 = [EXT,., — T,)] ! be the rate of
the input and y; = (E° ) ~! the service rate at queue j. We assume 0 < 4, y; < o for all
JE€J. As a description of the network we take the vector W, = (Wi, j€&€J) of workloads
at time ¢.

In Section 2 we show that, under the assumption 4 < min,e, 4, there is a unique finite
stationary workload process { W/, t ER} and that W, converges in law to the distribu-
tion of the latter. In Section 3 we consider the possibility of random routing and show
that the same results hold under a more relaxed condition (which is also almost
necessary) for a more general class of networks. Finally we give some important special
cases in Section 4. '

The problem that we consider in this paper is not new. The first paper on stability for
G/G/1 queues with ergodic inputs was that of Loynes (1962). See also the monograph of
Baccelli and Brémaud (1987) and also Baccelli and Massey (1986) and Baccelli et al.
(1987a) for special cases. The existence part of the problem of the fork-join network has
been given in Baccelli and Massey (1986) and relies on the fact that there is a global
description (namely the collection of the delays experienced by a job from the time of its
arrival until the beginning of its service in queue J, for all j €J). We show that this is not
necessary and actually not feasible in certain cases as in the case of random routing. The
main result that we use is that of the stability of a single queue (see Appendix 2).

2. Stability of fork-join networks

Since our proof is going to be inductive we define a sequence of stages (i.e., sets of
links) as follows. As a first stage we take the set of links which are immediately accessible
from the external input. Suppose now that the ; th stage has been defined. Then a link of
the (i 4+ 1)th stage is either a link of the previous stage or is connected to a link of it via a
queue, a fork or a join (see Figure 1), Assuming that all the stages are distinct and that the
network has only a finite number of elements it is clear that the network can be exhausted
with a finite number of stages.

With each link / of the network we associate a point process N/ of arrivals of (parts of)
Jobs at this link. The objective of this section is to show that each of these processes will
coincide in finite time with a stationary (under measure P) point process N with rate 4.
That is, there is a finite (random) time such that, after this time the points of N/ coincide
with the points of N'. So the input to each queue j will eventually be stationary. This
stationary input is used consequently for the construction of the stationary regime W/
for the workload of this queue.

Theorem 1. Ifi< min,e, 4 the point process N/ associated with a link / coincides in
finite time with a P-stationary and ergodic point process N/ with rate A.
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Proof. Suppose that the initial workload W, is some finite (random) non-negative
vector. The statement is trivially true for the links of the first stage since their point
processes are replicas of the stationary arrival stream {T.,}.

Suppose now, for the sake of induction, that each point process N/ (with points, say,
T!, where T{ <0< T'!), for all links / prior to stage i, coincides, in finite time, with a
P-stationary process N' (with points, say, 7, where Té=0=T!) with rate A. This
process is defined on the original probability space (Q, F, P) and is stationary with
respect to the semigroup {6.}. We shall prove that the same thing happens for the next
stage. Consider the three different possibilities (see Figure 1).

! link i

1 .

: N\ L

! queue /_:_,

: —n >

! fork \,_.

P\ :
——— -+

i/ join :

' ith stage ' (i + I)th stage

Figure 1. The definition of stages

Case 1. A certain link of stage / is joined to a link of stage i + 1 only through a single
queue j. We assumed that the point process N’ (with points T%) entering queue j
coincides, in finite time, with a stationary point process N (with points 7T ) with rate 4.
Consider ' ™~Im transforiaation P’ of P with respect to the point process N/, We can
easily see that the marked point process with points 7} and marks ¢/ is P/ -synchronous.
(This can be seen either directly or by applying the result of Appendix 3.) Since 4 (therate
of N/) is strictly smaller than #;(which is, due to the previous remark, equal to (E‘g})~!
we can apply the results of Appendix 2 and use N’ to construct a finite stationary regime
W/ for the workload of queue J. Clearly {W| = W6, tER} is P-stationary and
ergodic. If W denotes the workload of queue j at time T, we can easily see by the
induction hypothesis and the results of Appendix 2 that W coincides, after a finite time,
with W/. (The latter is, by definition, the value of W/ at the time ¢ = 7%.) The
departure time of the nth arrival from this queue is S} = T + W) + o} and, because
of the previous statement, it coincides after a finite time with 5{; =T + Wi+ al.
Noting that the marked point process with points S’ and marks (Wi, gl) is
PJ-synchronous (and P- stationary) with rate A, we can apply Campbell’s formula to pass
from P to P’ (see Appendix 1) and deduce that
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rateof (S} =E ¥ I(S;€[0,1)=E 3 KTy + Wi +af €]0, 1))

nel n€l

= JE f It + W) + I €[0, 1))dt = 4.
R

Case 2. Alink/of stage i is joined to several links of stage / + 1 through a fork. Here
the hypothesis is trivially true since the outgoing point processes are replicas of the
ingoing one.

Case 3. Several links of stage i are joined to a link of stage i + 1 through a join a.
Clearly, there is a corresponding fork s prior to a4, as in Figure 2. Let N* ={T3}},
N?={T}} be the point processes corresponding to the link prior to s and after a,
respectively. By the induction hypothesis, all processes inside the subnetwork between s
and a couple with P-stationary processes in finite time. In particular, N* = {T } couples
with N* = (T} having rate 1. Let P* denote the Palm transformation with respect to
N*. Since the delay d, of the nth Jjob from the time of its arrival at s until its exit time
from a is a certain deterministic function of the workloads and the service times of the
queues inside the subnetwork, which couple with P*-stationary ones, it follows that {d,}
couples with a P*stationary sequence {d, ). Hence 7% = T¢ +d,, couples with 7% =
T +d, in finite time. The point process N® = {72} is clearly P-stationary. We can also
verify that it has the correct rate A by writing a calculation similar to that of Case 1 above
using Campbell’s formula.

. N, |~
> SUBNETWORK ——— >
s E / "E
f Pt

Figure 2. A join

We have therefore shown, by examining all possible cases, that the point processes
associated with stage i + | couple with stationary ones with rate A. Therefore the
theorem is true.

Conclusions

1. The collection of all stationary regimes W = (W, j€J), which have been con-
structed on the same probability space (Q, F, P) gives rise to a stationary workload
process W, = W o 6, which is finite since each component is by construction finite (see
Appendix 2).

2. The previous theorem shows that any finite workload process {W,} coincides in
finite time with {W,}. The usual coupling argument shows that
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P(W,€4)—~P(WEA) ast—o, for all Borel sets 4 C [0, o)
or, from a job point of view,
PAW,EA)—=P(WEL) asn— w, for all Borel sets 4 C [0, o).

In fact the convergence is uniform in 4 (i.e., we have convergence in total variation).
The following theorem shows that the process {W,} is unique.

Theorem 2. The process {W,} is the unique stationary finite workload process for
the fork-join network.

Proof. Let {V,} be another finite stationary workload process on
(Q, F, P, {6,, t ERY}). Then, passing on to Paim, W, —V,—0as n— o, P'as. (since
the two processes coincide in finite number of steps) where W, = Wy, and V, = V..
Notice that P(| W, — V, | > ¢) = PY(| W, — Vol > &) for all n, by stationarity. Therefore
the latter probability is equal to zero for all ¢ > 0. This shows that P(W, = V) = 1 and
hence PX(W, =V, for all n)=1. Consequently, P(W, =V, for all t)=1 and the
theorem is proved.

Note. The condition 4 <min,e, #;1s easily seen to be almost necessary for stability in
the sense that if there is a j €/ such that > p; then W, converges almost surely to
infinity. Indeed, let j be the smallest index (in the sense of the partial ordering of the
network) such that the above happens. Then, as the proof of Theorem 1 shows, the input
to this queue j will eventually coincide with a stationary process with rate i which,
however, exceeds the service rate #;. From the instability part of the results for a single
queue (see Appendix 1) we see that W converges almost surely to infinity.

3. Pseudo-fork-join networks with random routing

The networks considered in the previous section have the property that a cut made at a
Join a and its corresponding fork s (as in Figure 2) results in twc disjoint pieces. That is,
the subnetwork between sand ¢ does not interact with the rest of the network except via s
and a. We find however that we can drop this property and consider a more general
network whose graph is any acyclic graph. This type of network we call a pseudo-fork-join
network. For instance, consider the network of Figure 3. Here we can no longer separate
the subnetwork between 4, and $, or between a, and s,.

By the graph of such a network we mean a graph whose vertices are the set of queues
together with one source and one destination point. Further, there is an edge between

Figure 3. A pseudo-fork-join network
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source ) destination

X L

Figure 4. Graph of the network of Figure 3

two vertices if there is a direct connection between them or a connection through a fork
or a join. By source point we mean a point without any ingoing edges and by destination
point we mean a point without any outgoing edges. For example, the graph of the
network of Figure 3 is shown in Figure 4. It is also clear how to construct the network,
given an acyclic graph as in Figure 4: the source point represents the input which, in case
it has more than one outgoing edge, is replaced by a fork. The destination point
represents the output and is replaced by a join, if it has more than one ingoing edge.
Simularly, if a vertex j has more than one outgoing edge then we replace j by a queue
followed by a fork, and if a vertex j has more than one ingoing edge then we replace jby a
queue preceded by a join.

A further generalization, regarding the routing of incoming jobs, can also be made.
Consider a situation where, upon arrival to a fork, a job is not necessarily split into as
many parts as there are outgoing links, but instead, it chooses a random subset of them to
pass through. For instance, it can toss a die and choose some links independently of
everything else. To make the situation as general as possible we assume that the nth
external arrival carries, as a mark, besides its service requirements g, , the subnetwork
D, which it will follow. That is, D, is a random variable taking values in the collection of
all subnetworks of the given network. By subnetwork we mean a pseudo-fork-join
network whose graph is a subgraph of the given one and has the same input and output.

Our assumption this time is that the marked point process (m.p.p.) ® = {(T,; a,, D,),
n €7} is stationary on (Q, F, P, {6,, t €R)). Intuitively, since the network is not fully
utilized as before, we expect that 1 <y, for all j €J, is still a sufficient condition for
stability. However, we can relax this condition and we claim that an exact condition (see
Note below) for stability is:

(1 E%/I(jED)<E° foralljEJ

where I(-) denotes indicator function, ¢/ = gf, D = D,, t = 1,. (One more word about
notation: by saying j€D we mean that queue ;j belongs to the subnetwork D; same
convention holds for other elements of the network.)

Because our model has random routing, we associate with a certain link / a marked
point process ®'. The underlying point process associated with @' is, as before, the point
process of arrival times of (parts of) jobs at link / and is still denoted by N'. The mark
corresponding to a typical arrival time consists of the subnetwork, to be followed, and
the service times that are required. That is, the mark contains all the necessary
information for the future path.
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The main difference between a pseudo-fork-join network with random routing and an
ordinary fork-join network is that the order of arrivals may not be preserved throughout
the network. For instance, in Figure 3, if the nth arriving job chooses to pass through
queues 1 and 4 spending time d, until it gets to join g, while the (n + 1)th arriving job
chooses to pass through queue 2 spending time d, ,, <d,, then, upon arrival at queue 5,
the order of these two jobs is switched. However, if we look at the arrivals in front of
queue 5 as a marked point process and show that it eventually coincides with a
stationary marked point process with mean service time less than mean interarrival
time, then this is all we need for queue 5 to have a stable regime.

We prove the claim by proving a theorem analogous to Theorem 1. Because of the
acyclicity of a pseudo-fork-join network we can define a sequence of stages, starting from
the source and ending at the destination point.

Theorem 3. 1If(1)holds then the m.p.p. @' associated with a link / coincides in finite
time with a P-stationary and ergodic m.p.p. &' with rate AP/ ED).

Proof.  Suppose, as before, that we start the network with a finite workload vector W,
We follow the method of stages. For a link lof stage 1 we have immediately that &/ =
is already stationary since it is simply a thinning of the input m.p.p. To find the rate we
apply Campbell’s formula (see Appendix 1) to:

N!(B)=Y I(T,€B,/€D,) for all Borel subsets B of R

neZ
where N'is the underlying point process of & and we get:

EN‘(B)=AE°f1(:&3,1en)¢s=u3|maen)
R

where | B | denotes the Lebesgue measure of the set B. Hence the rate of &/ is AP°(/ €D).
Now assume that, as before, all processes prior to stage i/ couple (in finite time) with
stationary ones and have the claimed rates. We prove that the same is true for the next
stage. Clearly, the case of a fork presents no extra difficulty.
Assume first that a certain queue j joins a link of stage 7 with a link of stage / + 1. By
the induction hypothesis, the Input m.p.p. to queue j couples with a stationary one
denoted by &/ which has rate AP’(jED). If P/ denotes the Palm transformation of P

-~

with respect to N the condition for stability is (according to Appendix 2)
(2) APY(jED) < (E'g’)"!,

The argument is similar to that of Case 1 of Theorem 1, provided that we show that (2) is
equivalent to (3):

(3) E%II(jED) < E°.

To this end. we use the cycle formula (see Appendix 1) to compare the measures P° and
PJ. This gives

AE°0I(jED) = APGED)E' § o IGEDY(TH<T,=TY)

nel
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where T4 and T are two typical successive points of the point process N/. Noting that
the last factor of the above expression is equal to £’/ (because the indicator function
I(jE€D,) is equal to 1 for exactly one # on the set (T4<T, =T }) we get

Eigi = E0IGED)

PYjED)
which proves that (2) is equivalent to (3). Therefore, as before, the output of j will reach
stationarity in finite time,

Suppose next that several links of stage i are joined to a link of stage / + | through a
Jjoin a. We assume that all m.p.p.’s prior to stage { reach stationarity in finite time. We
must show that the m.p.p. @ at the output of a join a also reaches stationarity in finite
time. This can be done as follows. Observe that a job arriving in the system at time T,
will reach the join a at time T, + d,, say, if a €D,, or will not reach a at all if @ &D,.Due
to the induction hypothesis, the sequence {d,} couples with a P°-stationary sequence
{d,}. Define & using {d, }. Clearly @* couples with #*. We can now show that ¢ is
stationary and has rate AP%a €D) by considering the subsystem from the source up to
the join a (i.e., this subsystem contains ail paths starting from the source and ending at
the join a) as a ‘G/G/ o system with deaths’ (see Appendix 3) and apply the Lemma of
Appendix 3. The theorem is now proved.

Reasoning now as before, we conclude that we have constructed a stationary workload
process { W,} which is finite and unique among the class of finite workload processes.

Note. We can easily see that condition (1) is also almost necessary for stability. For,
if it is violated for some queue j, then the workload vector converges almost surely to
infinity.

4. Final comments

(a) The origin of the method of our proof goes back to Loynes (1962) where the result
is proved for a system of FCFS tandem queues which is, of course, a special fork-join
network.

(b) Another important special case fitting in the framework of Section 3 is that of k
parallel queues where the arriving job chooses one ‘at random’. If this selection is done
independently of its service requirements, the stability condition (1) becomes:

AD; <

where p, is the probability that queue ; is chosen by the incoming job.

(c) The case of parallel queues where each time one or more of them is chosen is
treated by Baccelli et al. (1987a).

(d) Finally, we note that there is no extra difficulty in applying the method of the
previous section to acyclic networks constructed by joining pseudo-fork-join networks in
series and/or in parallel provided that we have a single arrival stream. (For instance, we
can have two copies of the network of Figure 3 in tandem.) We summarize by saying that
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a stability condition (ensuring convergence towards a unique stationary regime) has
been found for a general class of acyclic networks.

Appendix 1

For reference only we give some results from the theory of stationary point processes
(see Neveu (1977), Franken et al. ( 1982), Baccelli and Brémaud (1987) and Walrand
(1988)). Let (2, F,P) be a probability space and {6, t€R} a P-invariant semigroup
(flow) on Q. A point process N defined on Q is a measurable mapping from Q into the
space M of counting measures on R where M is equipped with the o-field generated by
cylinder sets. If 7, denotes the left shift by ¢ in M (ie., ,(B)=¢B +1t), pEM,Ba
Borel set in R, t €ER) then N is, by deﬁnition, P-stationary if and only if No§, = T, N.
The rate A of N is defined as EN(0, 1], i.e. the mean number of points of & in the unit
interval (0, 1). The Palm transformation P° of P with respect to NV is a probability
measure on Q defined by:

|
PYA) = —— EfI °O,N(d), AEF.
) =157 £ J, lae6.N@)
Under P°, N is synchronous, namely its interarrival times w=1,.,,—T,,nEZforma
Pl-stationary random sequence. Let now Z, be any random element of some measurable
space S such that Z, = Z; 0;,. Then Campbell’s formula says:

E 3 AT, 2)=2£ [ fis, z)ds
n€el R

for any non-negative, measurable. bounded function f. Given two stationary point

processes N', V? on the same (Q. F, P, {6,, tER}) and letting P', P? be the Paim

transformations of P with respect to N! and N?, respectively, the cycle formula (whose

validity for two jointly stationary point processes was established by Neveu (1976))

relates them as follows: ‘ ‘
AP A)=HLE' ¥ I,<6,10<T) =T?

nel

where 4,, 4, are the rates of N*' and V?; respectively.

Appendix 2

The main result used in the present paper is that of the stability of a G/G/1 queue. We
give an outline of that result. (See Loynes (1962).)

Let {T,, n€Z) be the arrival times and {0,, n €Z} the service times at a G/G/1
queue. It is assumed that the marked point process {(7,; ,), n €Z} is P-stationary (or,
what is equivalent, P°-synchronous) and ergodic. Lett, =T, ,, ~ T,, - =(E°1,)"!, and
u=(E%,)"". It is assumed that 0 <A <u < x. Lindley’s equation is a recursive
equation for the workload W, at the nth arrival instant:

4) Woir=(W,+a,—1,)", ne’z.
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A stationary regime is a random variable W such that
(5) Wo=(W+o—1)*

where 0 =0, oc=0, t=71, Clearly, if such a stationary regime exists, then
{W, =W o0, nE€Z} is a P*stationary solution of (4). Denoting by M, the workload
W, given that W_, =0 we observe that M, is non-decreasing and so we let W =
lim,_ . M,. An ergodic argument shows that W satisfies (5), is finite and is the unique
solution of (5). Another ergodic argument shows that any finite solution W, of (4)
coincides in finite time with W,, P%a.s. and this fact is used in Theorems 1 and 3. The
workload process can be extended in continuous time to form a P-stationary process (see
Franken et al. (1982)).

Finally, if A > u it can be shown that any solution of (4) converges almost surely to
infinity, whereas we need more information to be able to say what happens in the critical
" case (see Loynes (1962)).

Appendix 3

The system we describe here we call G/G/~ system with deaths. Assume that particles
arrive in a room at times T, ordered according to n, carrying marks r,, d,, Z, where r,
takes only two values, 0 or 1, d, takes real non-negative values and Z, is fairly arbitrary.
If r, = O the particle dies immediately. If r, = 1 the particle stays for a period of length d,
and exists at time T, + d, carrying its mark Z, which can be thought of as some
characteristic of the particle. Let & denote the input m.p.p. with points 7, and marks 7,
d,, Z, and ®* the output m.p.p. with points 7, + d, and marks Z,, provided that r,=1.
Observe that the points 7, + d, are not ordered according to n, in general. Nevertheless,
®* is well-defined. Observe also that we do not need to have the variables d,, Z, defined
if r, = 0 since any such point is not contained in ®*. We now prove the following result.

Lemma. If ® is a stationary random m.p.p. on some probability space
(Q,F, P, {6, t€R)}) then ®* is also stationary with rate AP°(r = 1). If P, P* are the
Palm transformations of P with respect to ®, ®* respectively, then

PXZ,E4)=PYZ,E1|r, = 1).

Proof. Observe that the system maps the input m.p.p. deterministically to the output
m.p.p. That is, knowledge of a particular realization of the input vields the correspond-
ing realization of the output. Consider now the m.p.p. {(T, +¢;1,,d,,Z,), nE€Z} as
input. (This is the translation of the original input by ¢.) Then the corresponding output
is ((T,+d,+t;Z,),n €Z} (keeping only those indices n for which r, = 1). Since the
distribution of the former does not depend on ¢ it follows, due to the previous
observation, that the distribution of the latter is also independent of ¢. This shows that
* is stationary. The rate of O* is:

A*=E ¥ KT, +d,€[0,1],r, = 1)

which, according to Campbell’s formula, is
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* =us°f I(t + d€[0, 1)I(r = 1)dt = AP°(r = 1),
R

To prove the last claim, we apply the formula relating P* and P:
PHZEA)=A*"'E ¥ I(Z,€4,T, +d,€[0,1),r,=1)

followed by Campbell’s formula:

PHZ E4) = A*—11ED f HZEMI(E +dE[0, 1DI(r = 1)t
R
= A UEN(ZEI(r = 1) f I0=s = 1)ds
R
=P(ZEA|r=1).
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