A Random Walk Through Astrometry

Astrometry: The Second Oldest Profession

George H. Kaplan

Astronomical Applications Department Astrometry Department U.S. Naval Observatory

Random Topics to be Covered

Astronomical reference frames

• Units

- Angles: Arcseconds
- Brightness: Magnitudes (and star density)
- Moving from the optical into the infrared

Astrometry: What is it? Why do it?

• What:

The science of measuring the positions and motions of celestial objects and interpreting the results

- Why:
 - Many practical applications, involving navigation (broadly interpreted) and timekeeping
 - Sets the fundamental distance scale of the universe
 - Established the universality of gravitational law
 - Provides information on the evolution of the solar system and galaxy

DoD Uses for Astrometric Data

- Astro-inertial navigation systems
 ICBM guidance
- Azimuth calibration
- Deflection of the vertical determination
- Satellite attitude control / sensor orientation
- Ground-based satellite tracking, orbit determination
- Near Earth object (NEO) detection
- Standard celestial navigation
- Determining astronomical time and Earth orientation for GPS

These applications generally involve measuring something against a background of stars...

... that is, motions of objects are measured within a *celestial* reference frame

What is an Astronomical Reference Frame?

An ensemble of coordinate values (and their rates of change) assigned to specific astronomical objects for a given epoch

For example, the data in a star catalog

This is completely analogous to the establishment of a geodetic reference system using an ensemble of Earth-fixed benchmarks whose coordinates are have been determined

Types of Astronomical Reference Frames

- Extragalactic
 - Fiducial points are quasars or nuclei of galaxies
 - Constructed from radio λ observations (VLBI)
 - No assumed angular motions too far away
 - But ... radio sources often variable
- Galactic (Stellar)
 - Fiducial points are stars
 - Lots of energy
 - Energy in λ bands of practical use
 - But ... stars move, sometimes in complex ways
- Dynamical

Fiducial points are planets or other orbiting bodies in the solar system (natural or artificial)

Complications

- Problem is over-determined: really only need two stars (3 coordinates) to define a reference frame
- Therefore, for N stars in a catalog, ~N²/2 independent reference frame definitions — which will not, in general, be consistent due to errors in coordinate values
- Not a bad problem as long as errors are random
- If errors are a function of position on the sky, the reference frame is warped (systematic distortions)
- Also problematic if errors are a function of magnitude or color

Why star positions, and the reference frames they define, degrade with time

You are here

Stars are part of an inherently non-inertial system!

Desirable Features of Astronomical Reference Frames

- Should define a local *inertial* reference system (no rotations)
- Should be isotropic (no distortions)
- Should be accurate
- Should have a suitable *density* of fiducial points
- Should have fiducial points *detectable* by relevant sensors (sufficient flux in sensor bandpass)

Issues in Constructing Reference Frames

- Stars part of galaxy, inherently a non-inertial system
- Stars often part of binary or multiple systems
 - If resolved, orbital motions of components must be determined
 - If unresolved, photocenter may move or be $f(\lambda)$
- Parallax (distance) of stars must be determined
- Quasars and AGNs have time-variable flux and structure
- Aligning reference frames from different λ regimes difficult objects bright in one regime faint in the other

Units! The Secret Code

- Arcseconds
- Magnitudes

Angular Units: Arcseconds

	Application: S		Surface Nav	LEO	Geosync
	Distance:		1 R⊕	500 km	35k km
Angle					
1 arc	csec	= 4.8 µrad	31 m	2.4 m	170 m
).1 a	arcsec	= 0.48 µrad	3.1 m	24 cm	17 m
1 ma	as	= 4.8 nrad	3.1 cm	2.4 mm	17 cm
1 µa	S	= 4.8 prad	31 µm	2.4 μm	0.17 mm

The Magnitude Scale

- Goes back to Hipparcus (~150 BC), who divided naked eye stars into 6 categories of brightness
 1 to 6, from brightest to faintest
- Quantified in the 19th century: 5 magnitudes = factor of 100 in brightness ⇒ 1 magnitude = factor of 2.512 in brightness
- Now calibrated to absolute measures of energy received within a given wavelength band: U, V, B, R, I, J, H, K, L, u, v, b, y, etc.
- Most common band $V = m_V = visual magnitude$

UBVRIJHKL Photometric Bands

from *The Astronomy and Astrophysics Encyclopedia*, ed. S. P. Maran (1992)

Scale of Visual Magnitude

-4	Venus		
-1.5	Sirius		
0 to 6	most naked-eye stars		
5	Andromeda galaxy		
~8	magnitude at which there is 1 star / degree ²		
9-10	faintest stars in binoculars		
12	faintest stars in small (3-inch) telescope		
12	brightest quasar (most are 15 and fainter)		
14	Pluto		
19.5	Palomar Sky Survey V limit (Palomar QV, 1980s)		
~24	old photo plate limit with 200" telescope		
29	current limit?		

Density of Astronomical Objects on the Sky

- The volume of space enclosed by a radius d goes up as d³
- The apparent brightness L of an object at distance d falls off as d²
 - \Rightarrow The total number of objects brighter than apparent brightness L is proportional to L^{-3/2}
 - ⇒ The total number of objects brighter than magnitude m is 3.98 times the number brighter than m–1

Star Numbers vs. Magnitude

Data courtesy Rob Olling

Moving from the Optical into the Infrared (IR)

- Why do it?
- Issues

Moving into the IR — Why?

- Provides sensitivity to objects cooler than the surface of the Sun (~5800K). For example, peak radiation at:
 0.7 μm for 4000K
 1 μm for 2900K
 1.5 μm for 1900K
 10 μm for 300K
- For astronomy, provides info on cool stars, brown dwarfs, "hot Jupiters", star formation, interstellar dust, and highly redshifted galaxies
- For DoD applications, provides sensitivity to rocket plumes, detonations of various kinds, and, at very long λ (~10 μm), to ordinary objects in equilibrium with ambient sunlight

Moving into the IR — Why Not?

- Detectors less well developed can't use CCDs (silicon) beyond above 1.1 μm
- Less resolution for given aperture size
- Atmosphere opaque to IR except in certain windows Observations best from space
- Bright background:
 - 1-2.5 μm atmospheric emissivity, mainly due to OH
 - >2.5 μm emissivity of everything else telescope, optics

Atmospheric Transmittance

from Astrophysics: The Atmospheres of the Sun and Stars, L. H. Aller (1963)

Catalog Issues

- More stars!
 - Interstellar absorption less as λ increases see more stars
 - Galaxy contains more cool stars than hot
- Can use optical data for stars in near IR, but ...
 - Extrapolating IR magnitudes from visual very tricky
 - Completeness in visual to a certain magnitude in no way implies completeness in IR to similar magnitude
- At magnitudes > 20, see many more galaxies

very distant ones redshifted into the IR

