A Random Walk Through Astrometry

Astrometry: The Second Oldest Profession

George H. Kaplan
Astronomical Applications Department
Astrometry Department
U.S. Naval Observatory

Random Topics to be Covered

- Astronomical reference frames
- Units
- Angles: Arcseconds
- Brightness: Magnitudes (and star density)
- Moving from the optical into the infrared

Astrometry: What is it? Why do it?

- What:

The science of measuring the positions and motions of celestial objects and interpreting the results

- Why:
- Many practical applications, involving navigation (broadly interpreted) and timekeeping
- Sets the fundamental distance scale of the universe
- Established the universality of gravitational law
- Provides information on the evolution of the solar system and galaxy

DoD Uses for Astrometric Data

- Astro-inertial navigation systems ICBM guidance
- Azimuth calibration
- Deflection of the vertical determination
- Satellite attitude control / sensor orientation
- Ground-based satellite tracking, orbit determination
- Near Earth object (NEO) detection
- Standard celestial navigation
- Determining astronomical time and Earth orientation for GPS

These applications generally involve* measuring something against a

- background of stars. . .
\therefore that is, motions of objects are measured within a celestial reference frame

What is an Astronomical Reference Frame?

An ensemble of coordinate values (and their rates of change) assigned to specific astronomical objects for a given epoch

For example, the data in a star catalog
This is completely analogous to the establishment of a geodetic reference system using an ensemble of Earth-fixed benchmarks whose coordinates are have been determined

순（2．37，＋26．1）

人 (-1.21, +22.8)

$$
\begin{aligned}
& \text { 人 (0.89, +18.4) } \\
& \text { \% (1.32, +5.9) }
\end{aligned}
$$

人（3．10，＋1．7）
خ (-2.05, -1.7)

소（1．52，－3．4）

Types of Astronomical Reference Frames

- Extragalactic

Fiducial points are quasars or nuclei of galaxies

- Constructed from radio λ observations (VLBI)
- No assumed angular motions - too far away
- But ...radio sources often variable
- Galactic (Stellar)

Fiducial points are stars

- Lots of energy
- Energy in λ bands of practical use
- But ... stars move, sometimes in complex ways
- Dynamical

Fiducial points are planets or other orbiting bodies in the solar system (natural or artificial)

Complications

- Problem is over-determined: really only need two stars (3 coordinates) to define a reference frame
- Therefore, for N stars in a catalog, $\sim \mathrm{N}^{2} / 2$ independent reference frame definitions - which will not, in general, be consistent due to errors in coordinate values
- Not a bad problem as long as errors are random
- If errors are a function of position on the sky, the reference frame is warped (systematic distortions)
- Also problematic if errors are a function of magnitude or color

순（2．37，＋26．1）

r(-1.21, +22.8)

$$
\begin{aligned}
& \text { 人 (0.89, +18.4) } \\
& \text { \% (1.32, +5.9) }
\end{aligned}
$$

人（3．10，＋1．7）
خ (-2.05, -1.7)

소（1．52，－3．4）

$$
\begin{aligned}
& \text { (2.37, +26.1) } \\
& \begin{array}{lll}
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 & 1 \\
1 & 2
\end{array} \\
& \text { 人 }(0.89,+18.4) \\
& \text { 눈(3.10, +1.7) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (1.52, -3.4) }
\end{aligned}
$$

Why star positions, and the reference frames they define, degrade with time

You are here

Stars are part of an inherently non-inertial system!

Desirable Features of Astronomical Reference Frames

- Should define a local inertial reference system (no rotations)
- Should be isotropic (no distortions)
- Should be accurate
- Should have a suitable density of fiducial points
- Should have fiducial points detectable by relevant sensors (sufficient flux in sensor bandpass)

Issues in Constructing Reference Frames

- Stars part of galaxy, inherently a non-inertial system
- Stars often part of binary or multiple systems
- If resolved, orbital motions of components must be determined
- If unresolved, photocenter may move or be $f(\lambda)$
- Parallax (distance) of stars must be determined
- Quasars and AGNs have time-variable flux and structure
- Aligning reference frames from different λ regimes difficult - objects bright in one regime faint in the other

Units! The Secret Code

- Arcseconds
- Magnitudes

Angular Units: Arcseconds

Application:	Surface Nav	LEO	Geosync
Distance:	$1 \mathrm{R}_{\oplus}$	500 km	35k km
Angle			
$1 \mathrm{arcsec}=4.8$ rad	31 m	2.4 m	170 m
$0.1 \mathrm{arcsec}=0.48 \mu \mathrm{rad}$	3.1 m	24 cm	17 m
$1 \mathrm{mas}=4.8 \mathrm{nrad}$	3.1 cm	2.4 mm	17 cm
$1 \mu \mathrm{as}=4.8$ prad	$31 \mu \mathrm{~m}$	$2.4 \mu \mathrm{~m}$	0.17 mm

The Magnitude Scale

- Goes back to Hipparcus (~150 BC), who divided naked eye stars into 6 categories of brightness 1 to 6 , from brightest to faintest
- Quantified in the 19th century:

5 magnitudes $=$ factor of 100 in brightness
$\Rightarrow 1$ magnitude $=$ factor of 2.512 in brightness

- Now calibrated to absolute measures of energy received within a given wavelength band:

$$
\mathrm{U}, \mathrm{~V}, \mathrm{~B}, \mathrm{R}, \mathrm{I}, \mathrm{~J}, \mathrm{H}, \mathrm{~K}, \mathrm{~L}, \mathrm{u}, \mathrm{v}, \mathrm{~b}, \mathrm{y} \text {, etc. }
$$

- Most common band $\mathrm{V}=\mathrm{m}_{\mathrm{V}}=$ visual magnitude

UBVRIJHKL Photometric Bands

The passbands of the UBVRI/HKL system, plotted as functions of the wavelength in mm.

Scale of Visual Magnitude

-4 Venus
-1.5 Sirius
0 to 6 most naked-eye stars
5
~8
9-10 faintest stars in binoculars
12
12
14
19.5 Palomar
19.5 Palomar Sky Survey V limit (Palomar QV, 1980s)
~24 old photo plate limit with 200" telescope
29 current limit?

Density of Astronomical Objects on the Sky

- The volume of space enclosed by a radius d goes up as d ${ }^{3}$
- The apparent brightness L of an object at distance d falls off as d2
\Rightarrow The total number of objects brighter than apparent brightness L is proportional to $L^{-3 / 2}$
\Rightarrow The total number of objects brighter than magnitude m is 3.98 times the number brighter than $\mathrm{m}-1$

Star Numbers vs. Magnitude

Star Counts from Tycho-2

m_{v} limit	no. stars	
5.0	1,658	
6.0	5,713	3.44
7.0	18,183	3.18
8.0	54,192	2.98
9.0	154,656	2.85
10.0	417,769	2.70
11.0	$1,083,253$	1.59
12.0	$2,158,589$	

Data courtesy Rob Olling

Moving from the Optical into the Infrared (IR)

- Why do it?
- Issues

Moving into the IR — Why?

- Provides sensitivity to objects cooler than the surface of the Sun ($\sim 5800 \mathrm{~K}$). For example, peak radiation at:

$0.7 \mu \mathrm{~m}$ for 4000 K	$1 \mu \mathrm{~m}$ for 2900 K
$1.5 \mu \mathrm{~m}$ for 1900 K	$10 \mu \mathrm{~m}$ for 300 K

- For astronomy, provides info on cool stars, brown dwarfs, "hot Jupiters", star formation, interstellar dust, and highly redshifted galaxies
- For DoD applications, provides sensitivity to rocket plumes, detonations of various kinds, and, at very long $\lambda(\sim 10 \mu \mathrm{~m})$, to ordinary objects in equilibrium with ambient sunlight

Moving into the IR — Why Not?

- Detectors less well developed - can't use CCDs (silicon) beyond above $1.1 \mu \mathrm{~m}$
- Less resolution for given aperture size
- Atmosphere opaque to IR except in certain windows Observations best from space
- Bright background:
- 1-2.5 $\mu \mathrm{m}$ atmospheric emissivity, mainly due to OH
- >2.5 $\mu \mathrm{m}$ emissivity of everything else - telescope, optics

Atmospheric Transmittance

Catalog Issues

- More stars!
- Interstellar absorption less as λ increases - see more stars
- Galaxy contains more cool stars than hot
- Can use optical data for stars in near IR, but ...
- Extrapolating IR magnitudes from visual very tricky
- Completeness in visual to a certain magnitude in no way implies completeness in IR to similar magnitude
- At magnitudes > 20, see many more galaxies very distant ones redshifted into the IR

