

- 4. Particle separation in a fluid flow
 - 4.1 Single particle flow in a fluid and flow-around pattern
 - 4.1.1 Stationary particle sedimentation
 - 4.1.2 Uniformly accelerated particle sedimentation
 - 4.1.3 Swarm confinement of particles clusters
 - 4.1.4 Fluid flow through particle beds
 - 4.2 Micro- and macroturbulence
 - 4.3 Particle diffusion in a dispersion medium
 - 4.4 Dynamics of particle transport in turbulent fluids (turbulent particle dispersion or diffusion)
 - 4.5 Particle separation efficiency in a turbulent flow field
 - 4.5.1 Separation function of turbulent cross flow separation
 - 4.5.2 Separation function of counter-current separation
 - 4.5.3Multistage cross-flow separation model
 - 4.5.3.1 Separation function, cut point and separation efficiency
 - 4.5.3.2 Utilization of separation stages
 - 4.5.3.3 Examples of zigzag air separator
 - 4.6 Machines and apparatuses of particle classification
 - 4.7 Apparatuses of dust collection

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Figure 4.2

Flow-around Pattern of Smooth Spheres

2. Flow-around ranges

Prerequisites: uniform, laminar and stationary onflow of smooth sphere at rest

I) Viscous flow-around pattern, Re < 0.25, STOKES

Re = $\mathbf{u} \cdot \mathbf{d} \cdot \rho_{f} / \eta$ particle REYNOLDS number $c_{w} = \frac{24}{Re}$ drag coefficient

 $F_w = c_w \cdot A_p \cdot \rho_f \cdot u^2/2$ drag force, generally

 $F_{w,lam} = 3 \cdot \pi \cdot \eta \cdot d \cdot u$ drag force, laminar

II) Transition regime, $0.25 < \text{Re} < 10^3$

IIa) Laminar flowing eddies, 24 < Re < 130

IIb) <u>Eddy separation</u> (separation point A), instationary eddy shedding, vortex street 130 < Re < 1000

III) Square range of inertia, $10^3 < \text{Re} < 2 \cdot 10^5$, NEWTON

IV) Range of turbulent boundary layer flow at onflow (transition point U):

 $2 \cdot 10^5 < \text{Re} < 4 \cdot 10^5$ $c_w = 0.07 \text{ to } 0.3$

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Figure 4.4

To 4.1.1: Equivalent Falling Classes of Particles

- ➢ balance of the forces of buoyancy, weight and fluid resistance
- correlation between particle size d and the quasi-stationary settling velocity v_s in the field of gravity g:

$$\mathbf{v}_{s}^{2} = \frac{2}{\mathbf{c}_{W}} \cdot \frac{\boldsymbol{\rho}_{s} - \boldsymbol{\rho}_{f}}{\boldsymbol{\rho}_{f}} \cdot \frac{\mathbf{V}_{p}}{\mathbf{A}_{p}} \cdot \mathbf{g}$$
(1)

- A_p onflow cross-sectional area of the particle
- c_W drag coefficient of the fluid flow pattern around the particle
- V_p particle volume
- ρ_f , $\rho_s~$ fluid and solid density
- for constant particle shape, "large" (i+1) and "lightweight" (L) particles settle just as fast as "small" (i) and "heavy" (S) particles.

$$v_{s}(d_{i+1}, \rho_{s,L}) = v_{s}(d_{i}, \rho_{s,S})$$
 (2)

> Depending on the particle flow-around patterns $V_s \propto d^{\alpha}$ and with

$$c_{\rm W} \propto {\rm Re}^{rac{1-2\cdot\alpha}{3}}$$
 (3)

 $Re = v_s \cdot d \cdot \rho_f / \eta_f$ particle Reynolds number

Equivalent-falling condition dependent on the particle flow-around pattern

Exponent α	$\alpha + 1$	Flow pattern	Reynolds number	Drag coeffi-
	$3 \cdot \alpha$			cient
2	1/2	laminar (Stokes)	Re < 1	$c_w \propto Re^{-1}$
$1/2 < \alpha < 2$	1/2 1	transition	$1 < \text{Re} < 10^3$	$c_w \propto Re^{-10}$
1/2	1	turbulent (Newton)	$10^3 < \text{Re} < (2 - 4)^{-1}10^5$	$c_w \propto Re^0$
$\frac{d_{i+1}}{d_{i}} = \left(\left \frac{\rho_{s,S} - \rho_{s,L}}{\rho_{s,L}} - \frac{\rho_{s,S}}{\rho_{s,L}} \right \right)$	$\frac{\left \rho_{\rm f}\right }{\left \rho_{\rm f}\right }$	or $\frac{\mathbf{v}_{s}}{\mathbf{v}_{sT}} = \left(\frac{\mathbf{d}}{\mathbf{d}_{T}}\right)^{\alpha} = \left(\frac{\mathbf{d}}{\mathbf{d}_{T}}\right)^{\alpha}$	$\frac{\rho_{\rm s} - \rho_{\rm f}}{\rho_{\rm s,T} - \rho_{\rm f}} \bigg \bigg)^{\frac{\alpha + 1}{3}}$	(4)

Figure 4.6

Flow-around Pattern of Smooth Spheres

Page 3

4. Influence of turbulence intensity of particle onflow on the drag coefficient c_w of moving spheres or spheres at rest

Page 4

Figure 4.7

6. Particle shape coefficient k_{ψ} of stationary settling velocity $v_{s,\psi} = k_{\psi} v_{s, \text{ sphere}}$

body shape	equival. sphere diameter	shape factor	shape coeffic	shape coefficients	
	d _v	$\Psi_{\rm A}$	$k_{\psi,St}$	$k_{\psi,N}$	
sphere	d	I	1	1	
cube	1,241 a	0,806	0,92	0,56	
parallel epiped					
ax ax2a	1,563 a	0,767	0,90	0,52	
ax2ax2a	1,970 a	0,761	0,89	0,51	
ax2ax3a	2,253 a	0,725	0,88	0,48	
ax ax0,1a	0,576 a	0,435	0,70	0,30	
ax ax0,01a	0,267 a	0,110	0,19	0,15	
cylinder					
h = 2 d	1,442 d	0,831	0,93	0,58	
h= d	1,145 d	0,875	0,95	0,64	
h = 0,5 d	0,909 d	0,826	0,93	0,58	
h = 0,15 d	0,608 d	0,570	0,79	0,38	
h = 0,01d	0,247 d	0,120	0,22	0,15	

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Dimensionless Groups and their Significance

Name	Sym- bol	Formula		Physical interpretation	Comments	
Archimedes	Ar	$g \cdot d^3(\rho_p - \rho_f) \cdot \rho_f$ inertial force		inertial force · buoyancy force	Particle settling	
number		η^2		$\overline{(\text{viscous force})^2}$		
Bingham num-	Bm	$\tau_0 \cdot d$		yield stress	Flow of Bingham fluids = yield number	
ber		η·u		viscous force		
Bingham Rey-	Re _B	$d \cdot u \cdot \rho_{\rm f}$		inertial force	Flow of Bingham fluids	
nolds number		η		viscous force	(i.e. viscoplastics)	
Blake number	В	$u \cdot \rho_{\rm f}$		inertial force	Flow through particle	
		$\eta \cdot (1 - \varepsilon) \cdot d$		viscous force	beds	
Bond number	Bo	$(\rho_1 - \rho_g) \cdot d^2$	٠g	gravitational force	Atomization = Eotvos	
		σ_{lg}		surface tension force	number, Eo	
Capillary num-	Ca	η·u		viscous force	Two-phase flow, free sur-	
ber		$\sigma_{ ext{lg}}$		surface tension force	face flow	
Cauchy number	С	$\rho_{\rm f} \cdot u^2$		inertial force	Compressible flow, hy-	
		β		compressibility force	draulic transients	
Cavitation	σ	$p - p_c$		excess pressure above vapor pressure	Cavitation	
number		$\overline{\rho_{1}\cdot u^{2}/2}$		velcocity head		
Centrifuge	Z	a $\mathbf{R} \cdot \boldsymbol{\omega}^2$		centrifugal force	Centrifugal fields,	
number		 g	-	gravity force	= Froude number	
Dean number	De	Re		Re ynolds number - inertial force	Flow in curved channels	
		$(\mathbf{D}_{c} / \mathbf{D}_{R})^{1/2}$	2	centrifugal force		
Deborah num-	De	$t_{relax} \cdot \omega$		fluid relaxation time	Viscoelastic flow	
ber				flow characteristic time		
Degree of tur-	Tu	$\sqrt{\mathbf{u'}^2}$ <u>ro</u>	ot mea	n squared of flow rate fluctuations	Turbulence intensity	
bulence		 u		fluid flow rate		
Drag coeffi-	c _W	F _w		fluid drag force	Flow-around objects, par-	
cient		$A_{p} \cdot \rho_{f} \cdot u^{2}$ /	2	projected area · velocity head	ticle settling	
Elasticity num-	El	$t_{relax} \cdot \eta$		elastic force	Viscoelastic flow	
ber		$\rho_{\rm f}\cdot u^2$		inertial force		
Euler number	Eu	Δp		frictional pressure loss	Fluid friction in conduits	
		$ ho_{ m f}\cdot u^2$		2 · velocity head		
Fanning friction	f	$D_{\rm B} \cdot \Delta p$ _	$2\cdot\tau_{\rm w}$	wall shear stress	Fluid friction in conduits,	
factor		$2 \cdot \rho_{\rm f} \cdot u^2 \cdot d$	$\rho_{\rm f} \cdot u^2$	velocity head	Darcy friction factor = $4^{\circ}f$	
Froude number	Fr	u ²		inertial force	Often defined as	
		$\overline{\mathbf{g}\cdot\mathbf{R}}$		gravity force	$Fr = u / \sqrt{g \cdot R}$	
Densometric	Fr	$\rho_{\rm f} \cdot u^2$		inertial force	Fr'- u	
Froude number		$\overline{\left(\rho_{P}-\rho_{f}\right)}\cdot g$	· d	gravity force	$\int dr = \frac{1}{\sqrt{\left(\rho_{\rm P} - \rho_{\rm f}\right) \cdot g \cdot d / \rho_{\rm f}}}$	

OTTO-VON-GUERICKE-UNIVERSITY MAGDEBURG PROCESS ENGINEERING DEPARTMENT Mechanical Process Engineering

Hedstrom num-	He	$d^2 \cdot \tau_0 \cdot \rho_f$	Bingham Reynolds number Bing-	Flow of Bingham fluids
ber		η^2	ham number	(viscoplastics)
Hodgson num-	Н	$V \cdot \omega \cdot \Delta p$	time constant of system	Pulsating gas flow
ber		$\overline{\overline{\dot{V}}} \cdot \overline{p}$	period of pulsation	
Ljaŝĉenco	Lj	$v_s^3 = \rho_f^2$	(inertial force) ²	Particle settling,
Number		$\eta \cdot g \rho_p - \rho_f$	viscous force · fluid drag force	$=\frac{4 \cdot \text{Re}}{3 \cdot \text{c}_{\text{W}}}$
Mach number	М	<u>u</u>	fluid velocity	Flow of compressible flu-
		c _s	sonic velocity	ids
Newton number	Ne	F _w	fluid drag force	Flow-around of particles,
		$\overline{\rho_{f}\cdot A_{p}\cdot u^{2}}$	inertial force	$= c_W$ fluid drag coefficient
Ohnesorge	Ζ	η	viscous force	Atomiztion =
number		$(\rho_{\rm f} \cdot \mathbf{d} \cdot \sigma_{\rm lg})^{1/2}$	(inertial force \cdot surface tension force) ^{1/2}	Webernumber
				Re ynolds number
Peclet number	Pe	$D_{B} \cdot u$	convective transport	Heat, mass transfer, mix-
		D	diffusive transport	ing, = Bodenstein number Bo
D' 1'	D			XX7 / ((1))
Pipeline pa-	Pn	$\mathbf{v} \cdot \mathbf{u}_{o}$	max imum water – hammer pressure rise	Water "hammer"
Pipeline pa- rameter	Pn	$\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}$	$\frac{\text{max imum water} - \text{hammer pressure rise}}{2 \cdot \text{static pressure}}$	Water "hammer"
Pipeline pa- rameter Power number	Pn CP	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\mathbf{P}}$	$\frac{\text{max imum water - hammer pressure rise}}{2 \cdot \text{static pressure}}$ $\frac{\text{impeller drag force}}{2 \cdot \text{static pressure}}$	Agitation
Pipeline pa- rameter Power number	Pn c _P	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{P}{\rho_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$	$\frac{\frac{\text{max imum water - hammer pressure rise}}{2 \cdot \text{static pressure}}}{\frac{\text{impeller drag force}}{\text{inertial force}}$	Agitation
Pipeline pa- rameter Power number Prandtl velocity	Pn c _P u ⁺	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\rho_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction ve-	Agitation Turbulent flow near a
Pipeline pa- rameter Power number Prandtl velocity ratio	Pn c _P	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{P}{\rho_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{u}{(\tau_{w} / \rho_{f})^{1/2}}$	max mum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity	Agitation Turbulent flow near a wall, friction velocity =
Pipeline pa- rameter Power number Prandtl velocity ratio	Pn c _P u ⁺	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{P}{\rho_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{u}{(\tau_{w} / \rho_{f})^{1/2}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity	Water "nammer" Agitation Turbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num-	Pn c _P u ⁺ Re	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{P}{\rho_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{u}{(\tau_{w} / \rho_{f})^{1/2}}$ $\underline{d \cdot u \cdot \rho_{f}}$	max mum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity inertial force inertial force	Water "nammer" Agitation Turbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flow
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber	Pn c _P u ⁺ Re	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{P}{\rho_{f} \cdot n^{3} \cdot D_{A}^{5}}}$ $\frac{\frac{u}{(\tau_{w} / \rho_{f})^{1/2}}}{\frac{d \cdot \mathbf{u} \cdot \rho_{f}}{\eta}}$	max mum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity inertial force viscous force	Water "nammer"AgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flow
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num-	$\frac{c_{P}}{u^{+}}$ Re Sc	$ \frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}} $ $ \frac{\mathbf{u}}{(\mathbf{\tau}_{W} / \mathbf{\rho}_{f})^{1/2}} $ $ \frac{\mathbf{d} \cdot \mathbf{u} \cdot \mathbf{\rho}_{f}}{\mathbf{\eta}} $ $ \frac{\mathbf{D}_{t}}{\mathbf{u}} $	max imum water – hammer pressure rise 2·static pressure impeller drag force inertial force velocity normalized by friction velocity locity inertial force viscous force diffusive transport	Water "nammer" Agitation Turbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flow Turbulent Schmidt num-
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber	Pn c _P u ⁺ Re Sc	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{\mathbf{u}}{(\mathbf{\tau}_{W} / \mathbf{\rho}_{f})^{1/2}}$ $\frac{\mathbf{d} \cdot \mathbf{u} \cdot \mathbf{\rho}_{f}}{\mathbf{\eta}}$ $\frac{\mathbf{D}_{t}}{\mathbf{v}}$	max mum water – hammer pressure rise 2·static pressure impeller drag force inertial force velocity normalized by friction velocity inertial force viscous force diffusive transport viscous friction	Water "nammer"AgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flowTurbulent Schmidt number
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber Stokes number	$\frac{Pn}{c_P}$ u^+ Re Sc St	$ \frac{\frac{\mathbf{v}\cdot\mathbf{u}_{o}}{2\cdot\mathbf{g}\cdot\mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f}\cdot\mathbf{n}^{3}\cdot\mathbf{D}_{A}^{5}}} $ $ \frac{\mathbf{u}}{(\mathbf{\tau}_{W}/\mathbf{\rho}_{f})^{1/2}} $ $ \frac{\mathbf{d}\cdot\mathbf{u}\cdot\mathbf{\rho}_{f}}{\mathbf{\eta}} $ $ \frac{\mathbf{D}_{t}}{\mathbf{v}} $ $ \mathbf{C}\mathbf{u}\cdot\frac{\mathbf{d}^{2}\cdot\mathbf{u}\cdot\mathbf{\rho}_{s}}{\mathbf{v}} $	max imum water – hammer pressure rise 2·static pressure impeller drag force inertial force velocity normalized by friction velocity locity inertial force viscous force diffusive transport viscous friction particle inertial force	Water "nammer"AgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flowTurbulent Schmidt numberParticle impact in fluid
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber Stokes number	$\frac{c_{P}}{u^{+}}$ Re Sc St	$\frac{\frac{\mathbf{v}\cdot\mathbf{u}_{o}}{2\cdot\mathbf{g}\cdot\mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f}\cdot\mathbf{n}^{3}\cdot\mathbf{D}_{A}^{5}}}$ $\frac{\frac{\mathbf{u}}{(\mathbf{\tau}_{W}/\mathbf{\rho}_{f})^{1/2}}}{\frac{\mathbf{d}\cdot\mathbf{u}\cdot\mathbf{\rho}_{f}}{\eta}}$ $\frac{\frac{\mathbf{D}_{t}}{\mathbf{v}}}{\mathbf{C}\mathbf{u}\cdot\frac{\mathbf{d}^{2}\cdot\mathbf{u}\cdot\mathbf{\rho}_{s}}{18\cdot\eta\cdot\mathbf{D}}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity locity inertial force viscous force diffusive transport viscous friction particle inertial force fluid drag force	Water "nammer" Agitation Turbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flow Turbulent Schmidt num- ber Particle impact in fluid flow against tool
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber Stokes number	Pn c _P u ⁺ Re Sc St St	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{\mathbf{u}}{(\mathbf{\tau}_{W} / \mathbf{\rho}_{f})^{1/2}}$ $\frac{\mathbf{d} \cdot \mathbf{u} \cdot \mathbf{\rho}_{f}}{\mathbf{\eta}}$ $\frac{\mathbf{D}_{t}}{\mathbf{v}}$ $C\mathbf{u} \cdot \frac{\mathbf{d}^{2} \cdot \mathbf{u} \cdot \mathbf{\rho}_{s}}{18 \cdot \mathbf{\eta} \cdot \mathbf{D}}$ $\frac{\mathbf{f} \cdot \mathbf{D}_{R}}{\mathbf{u}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity inertial force viscous force diffusive transport viscous friction particle inertial force fluid drag force vortex shedding frequency char-	Water "nammer"AgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flowTurbulent Schmidt numberParticle impact in fluid flow against toolVortex shedding, von
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber Stokes number Strouhal num- ber	Pn c_{P} u^{+} Re Sc St St	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{\mathbf{u}}{(\mathbf{\tau}_{W} / \mathbf{\rho}_{f})^{1/2}}$ $\frac{\mathbf{d} \cdot \mathbf{u} \cdot \mathbf{\rho}_{f}}{\mathbf{\eta}}$ $\frac{\mathbf{D}_{t}}{\mathbf{v}}$ $C\mathbf{u} \cdot \frac{\mathbf{d}^{2} \cdot \mathbf{u} \cdot \mathbf{\rho}_{s}}{18 \cdot \mathbf{\eta} \cdot \mathbf{D}}$ $\frac{\mathbf{f} \cdot \mathbf{D}_{R}}{\mathbf{u}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity locity inertial force viscous force diffusive transport viscous friction particle inertial force fluid drag force vortex shedding frequency · characteristic flow time scale	Water "nammer"AgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flowTurbulent Schmidt numberParticle impact in fluid flow against toolVortex shedding, von Karman vortex streets
Pipeline pa- rameter Power number Prandtl velocity ratio Reynolds num- ber Schmidt num- ber Stokes number Strouhal num- ber Weber number	Pn c_{P} u^{+} Re Sc St St We	$\frac{\frac{\mathbf{v} \cdot \mathbf{u}_{o}}{2 \cdot \mathbf{g} \cdot \mathbf{H}}}{\frac{\mathbf{P}}{\mathbf{\rho}_{f} \cdot \mathbf{n}^{3} \cdot \mathbf{D}_{A}^{5}}}$ $\frac{\mathbf{u}}{(\mathbf{\tau}_{W} / \mathbf{\rho}_{f})^{1/2}}$ $\frac{\mathbf{d} \cdot \mathbf{u} \cdot \mathbf{\rho}_{f}}{\mathbf{\eta}}$ $\frac{\mathbf{D}_{t}}{\mathbf{v}}$ $C\mathbf{u} \cdot \frac{\mathbf{d}^{2} \cdot \mathbf{u} \cdot \mathbf{\rho}_{s}}{18 \cdot \mathbf{\eta} \cdot \mathbf{D}}$ $\frac{\mathbf{f} \cdot \mathbf{D}_{R}}{\mathbf{u}}$ $\frac{\mathbf{\rho}_{f} \cdot \mathbf{u}^{2} \cdot \mathbf{d}}$	max imum water – hammer pressure rise 2 · static pressure impeller drag force inertial force velocity normalized by friction velocity locity inertial force viscous force diffusive transport viscous friction particle inertial force fluid drag force vortex shedding frequency · characteristic flow time scale inertial force	Water ThammerAgitationTurbulent flow near a wall, friction velocity = $\sqrt{\tau_w / \rho_f}$ Fluid flowTurbulent Schmidt numberParticle impact in fluid flow against toolVortex shedding, von Karman vortex streetsBubble, drop formation

Nomenclature		SI Units
a	Acceleration	m/s ²
A _p	Projected particle area	m
c _s	Sonic velocity	m/s
d	Characteristic particle dimension (diameter)	μm
D _A	Diameter of agitator	m

Figure 4.10

STATE INTEREST	
\sim	

		U
D _B	Characteristic width of flow channel	m
D _R	Diameter of pipe or process chamber	m
Dc	Diameter of flow channel curvature	m
D	Diffusivity	m²/s
D _t	Turbulent Diffusion coefficient	m²/s
f	Vortex shedding frequency	1/s
F_W	Drag force	Ν
g	Acceleration of gravity	m/s
Н	Static head (height of isostatic pressure)	m
n	Rotational speed or number of revolutions	1/s
р	Pressure	Ра
$p_{\rm v}$	Vapor pressure	Pa
$\overline{\mathbf{p}}$	Average static pressure	Pa
Δp	Frictional pressure drop	Pa
Р	Power	W
R	Radius of process chamber or apparatus	m
t _{relax}	Fluid relaxation time	S
u	Local fluid velocity	m/s
\overline{u}	Characteristic or average fluid velocity	m/s
V	Wave propagation speed	m/s
Vs	Particle settling velocity	m/s
V	Volume of process chamber	m ³
V_p	Particle volume	m ³
$\overline{\overline{V}}$	Average volumetric flow rate	m³/s
β	Bulk compression modulus	Pa
3	Porosity, void fraction	m^{3}/m^{3}
η	(dynamic) fluid viscosity	Pa · s
η_p	Infinite shear viscosity (Bingham fluid, $\dot{\gamma} \rightarrow \infty$)	Pa · s
v	Kinematic fluid viscosity	m²/s
$ ho_{ m f}$	Fluid density	kg/m ³
$\rho_{\rm g}, \rho_{\rm l}$	Gas, liquid densities	kg/m ³
ρ _p	Particle or dispersed phase density	kg/m ³
$\sigma_{ m lg}$	Surface tension	N/m
$ au_0$	Yield shear stress of Bingham fluid	Ра
ω	Characteristic frequency or reciprocal time	1/s
	scale of flow	

In: Perry, R.H., Green, D.W., Maloney, J.O., Perry's Chemical Engineers' Handbook (CD version), pp. 6-49, McGraw-Hill, New York (1999)

4.1.2 Survey about Models of Uniformly Accelerated Particle Sedimentation (TOMAS 2010)

Microproccess variables	Laminar Flow-around of Particles	Turbulent Flow-around of Particles
Reynolds number, c _W	$Re_{St} < 0.25 - 1, c_W = 24/Re_{St}$	$10^3 < \text{Re}_{\text{N}} < \text{Re}_{\text{c}} = 2 \cdot 10^5$, $c_{\text{W}} = 0.44$
Stationary Settling Ve- locity	$v_{s,St} = \frac{(\rho_s - \rho_f) \cdot d^2 \cdot g}{18\eta}$	$\mathbf{v}_{s,N} = \sqrt{\frac{4 \cdot (\rho_s - \rho_f) \cdot \mathbf{d} \cdot \mathbf{g}}{3 \cdot \mathbf{c}_W \cdot \rho_f}}$
Particle Size Range	$d_{St} \leq \sqrt[3]{\frac{18 \cdot \eta^2 \cdot Re_{St}}{\rho_f \cdot (\rho_s - \rho_f) \cdot g}}$	$d_{\rm N} \ge \sqrt[3]{\frac{3 \cdot c_{\rm W} \cdot \eta^2 \cdot Re_{\rm N}^2}{4 \cdot \rho_{\rm f} \cdot (\rho_{\rm s} - \rho_{\rm f}) \cdot g}}$
Differential Equation	$\frac{dv(t)}{dt} = g \cdot \left(1 - \frac{v}{v_s}\right)$	$\frac{dv(t)}{dt} = g \cdot \left(1 - \frac{v^2}{v_s^2}\right)$
Velocity-Time Law	$\mathbf{v}(t) = \mathbf{v}_{s} \cdot \left[1 - \exp\left(-\frac{t}{t_{63, v_{s}}}\right) \right]$	$v(t) = v_{s} \cdot \tanh\left(\frac{t}{t_{76, vs}}\right)$
Characteristic Settling Time	$t_{63,v_s} = \frac{v_s}{g} = \frac{(\rho_s - \rho_f) \cdot d^2}{18 \cdot \eta}$	$t_{76,vs} = \frac{v_s}{g} = \sqrt{\frac{4 \cdot (\rho_s - \rho_f) \cdot d}{3 \cdot c_W \cdot \rho_f \cdot g}}$
Characteristic Settling	$v(t = t_{63,vs}) = v_s \cdot [1 - exp(-1)] = 0.63 \cdot v_s$	$\mathbf{v}(\mathbf{t} = \mathbf{t}_{76}) = \mathbf{v}_{s} \cdot \tanh(1) = 0.76 \cdot \mathbf{v}_{s}$
Velocities	$v(t_{95} = 3 \cdot t_{63,vs}) = v_s \cdot [1 - exp(-3)] = 0.95 \cdot v_s$	$v(t_{96} = 2 \cdot t_{76,vs}) = v_s \cdot tanh(2) = 0.964 \cdot v_s$
Differential Equation	$\frac{\mathrm{ds}(\mathrm{t})}{\mathrm{dt}} = \mathrm{v}_{\mathrm{s}} \cdot \left[1 - \exp\left(-\frac{\mathrm{t}}{\mathrm{t}_{63,\mathrm{v}_{\mathrm{s}}}}\right)\right]$	$\frac{\mathrm{ds}(\mathrm{t})}{\mathrm{dt}} = \mathrm{v}_{\mathrm{s}} \cdot \tanh\left(\frac{\mathrm{t}}{\mathrm{t}_{76,\mathrm{vs}}}\right)$
Distance-Time Law	$\mathbf{s}(t) = \mathbf{v}_{s} \cdot \left\{ t - t_{63, \mathbf{v}_{s}} \cdot \left[1 - \exp\left(-\frac{t}{t_{63, \mathbf{v}_{s}}}\right) \right] \right\}$	$s(t) = v_{s} \cdot t_{76, vs} \cdot \ln \left \cosh \left(\frac{t}{t_{76, vs}} \right) \right $
Characteristic Accelera-	$s(t = t_{63,v_s}) = 0.37 \cdot v_s \cdot t_{63,v_s} = 0.37 \cdot v_s^2 / g$	$s(t_{76}) = 0.433 \cdot v_s \cdot t_{76,vs} = 0.433 \cdot v_s^2 / g$
tion Distances	$s(t_{95} = 3 \cdot t_{63,v_s}) = 2.05 \cdot v_s \cdot t_{63,v_s} = 2.05 \cdot v_s^2 / g$	$s(t_{96}) = 1.33 \cdot v_s \cdot t_{76,vs} = 1.33 \cdot v_s^2 / g$

7. Swarm confinement at sedimentation of particle cluster

Flow-around of Particles - Swarm Confinement

a) Free flow-around of particle swarm b) Confined flow field, permeation of

fluid drag coefficient $c_w \downarrow$ settling velocity $v_s \uparrow$

8. Zone sedimentation of particle bed

Sedimentation and permeation (flow-through) of comparatively dense, agglomerated particle layers

Figure 4.12

settling velocity $v_s \downarrow = f(\phi_s)$

Page 5

Flow-around of Particles - Swarm Confinement b) as function of particle volume fraction φ_{ϵ} for 2 size fractions with $\varphi_{s,G} = \varphi_{s,F}$ and d_G/d_F as (acc. to Brauer and Thiele) parameter (acc. to Brauer and Thiele) G coarse 1.0 particles ,k_G 0.8 ratio of settling velocities $v_{s\phi}/v_s$ 0.4 \mathbf{k}_{T} 0 V_{so} / V_{s} 8 -0.4 0.1 0.2 0.3 0.4 0.5 0.6 0 particle volume fraction φ_s -0.8 F fine particles -1.6 egregation -1.8 0.2 0.4 0 0.6 particle volume fraction φ_s

	No.	Authors	flow- around range
-	1	DICHADDSON & Zaki	STOKES
	2		NEWTON
-	3	STEINOUR	STOKES
	4	BRAUER & Mitarb.	STOKES
).6	5	fit curve of various experimental values	STOKES

Page 6

Figure 4.13

a) as function of particle volume fraction φ_s in a monodisperse suspension (k_g countercurrent factor, k_T swarm turbulence factor)

Force Balance of Particle Sedimentation in a static Fluid at **uniform** (stationary)

Onflow and (Statistically) Homogeneous Flow-Around and Flow-Through

Forces	Microscopic Particle Flow-	Macroscopic Particle Bed Flow-through	
	around		
Particle model	Smooth sphere	Statistically homogeneous particle bed	
Sink model	Single particle sedimentation	Zone sedimentation	
	F _F F _F F _T F _A F _G	$ \begin{array}{c} F_{F} & A \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	
Gravity	$F_{G} = \rho_{s} \cdot V_{p} \cdot g$	$\frac{F_{G}}{A} = \rho_{Tr} \cdot g \cdot dy$	
Buoyancy	$F_{A} = \rho_{f} \cdot V_{p} \cdot g$	$\frac{F_{A}}{A} = \rho_{f} \cdot g \cdot dy$	
Fluid drag	$F_{W} = c_{W}(Re(u_{r})) \cdot \rho_{f} \cdot A_{p} \cdot \frac{u_{r}^{2}(t)}{2}$	$\Delta p = \frac{F_{W}}{A} = Eu(Re(u_{r})) \cdot \rho_{f} \cdot \frac{u_{r}^{2}(t)}{2}$	
Inertia	$F_{\rm T} = \overline{\rho_{\rm s} \cdot V_{\rm p} \cdot \dot{\rm v}(t)}$	$\frac{F_{\rm T}}{A} = \rho_{\rm Tr} \cdot \dot{v}(t) \cdot dy$	

Figure 4.15

Fluid Flow through Particle Beds

1. Darcy's law (development of water purification process, model: laminar permeation of groundwater through sand, Re $< 0.5 \dots 20$):

$$u \propto \text{grad} p \implies u = k \cdot \text{grad} p$$
 or (1)
 $\dot{V} = k \cdot A \cdot \text{grad} p$ (2)

original Darcy (1856):

grad
$$p = \frac{\Delta h_w}{\Delta h_b}$$
 (3)

$$\dot{\mathbf{V}} = \mathbf{k}_{\mathrm{f}} \cdot \mathbf{A} \cdot \frac{\Delta \mathbf{h}_{\mathrm{w}}}{\Delta \mathbf{h}_{\mathrm{b}}}$$
 (4a)

or
$$u = k_{f} \cdot \frac{\Delta h_{w}}{\Delta h_{b}}$$
 (4b)

 $k_{\rm f}$ – permeability

2. Permeability according to Carman and Kozeny:

$$u = \frac{\varepsilon^{3}}{K_{CK} \cdot \eta \cdot A_{S,V}^{2} \cdot (1 - \varepsilon)^{2}} \cdot \text{grad } p$$

$$k_{f} = \frac{\varepsilon^{3} \cdot \rho_{f} \cdot g}{K_{CK} \cdot \eta \cdot A_{S,V}^{2} \cdot (1 - \varepsilon)^{2}} = \frac{\varepsilon^{3} \cdot \rho_{f} \cdot g \cdot d_{ST}^{2}}{36 K_{CK} \cdot \eta \cdot (1 - \varepsilon)^{2}}$$
(6)

3. Reference values of permeability and flow behaviour (flow function ff_c):

k _f 1) in m/s	permeability	soil behaviour	$\mathbf{ff}_{c} = \mathbf{\sigma}_{1}/\mathbf{\sigma}_{c}$	flowability	$\approx d_{ST}^{2)}$ in μm
0 - 10 ⁻⁹ 10 ⁻⁹ - 10 ⁻⁷	practically imper- meable (- 3.15 cm/a) very low (- 26 cm/mon)	very binding	0 - 2	very cohesive	0 - 0,5 0.5 - 5
10 ⁻⁷ - 10 ⁻⁵	low (- 86 cm/d)	low binding	2 - 4	cohesive	5 - 50
10 ⁻⁵ - 10 ⁻³ 10 ⁻³ - 1	medium (- 3.6 m/h) high	non binding	>4	easy to free flowing	50 - 500 500 -15 mm

¹⁾ according to Terzaghi / Peck

²⁾
$$K_{CK} = 5$$
 (spheres), $\rho_f = 10^3$ kg/m³, $\eta = 10^{-3}$ Pa.s, $\epsilon = 0.38$

Stressing and Flow of Wet Particle Dispersions

	particle in liquid di	spersion (suspension) 🗲	➡ paste ◀➡➡ liquid	in particle packing
	diluted	concentrated	liquid saturated	moist packing
suspension and particle flow pattern	$y = \frac{du_x}{dy}$	→ T → U → U → U → V		o ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
flow function	τ shear rate $\dot{\gamma}$	$\tau \neq f(\sigma)$ $\dot{\gamma}$	τ σ γ	$\tau \neq f(\dot{\gamma})$ normal stress σ
cubical cell packing model $\frac{\phi_{s}}{\varepsilon_{s,0}} = \left(1 + \frac{a}{d}\right)^{-3}$				
particle separation	$\frac{a}{d} > 1$	$0 < \frac{a}{d} < 0.2$	$\frac{a}{d} = 0$ contact	$-0.01 < \frac{a}{d} < 0$ contact deformation
particle volume fraction	Φ _s < 0.066	$0.3 < \varphi_{\rm s} < \frac{\pi}{6}$	$\varepsilon_{s,0} = \frac{\pi}{6}$ pore saturation S = 1	$\frac{\varepsilon_{\rm s} > \frac{\pi}{6}}{\rm S} < 1$
particle friction	$\phi_i = 0$	$\phi_i = 0$	$\phi_i \ge 0$	$\phi_i > 30^\circ$

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Figure 4.18

Vortex Flow of Fluids

Figure 4.19

Turbulent Eddies in Fluids

Thermokinetic Particle Diffusion in Dispersion Medium

Prerequisites:

External field forces = 0 Fluid drag = 0 Fluid flow rates $u_x = u_y = u_z = 0$ One-dimensional model $\frac{\delta}{\delta y} = \frac{\delta}{\delta z} = 0$

a) Vessel with separation membrane

Boundary and initial conditions:

- $\begin{array}{l} \text{for } t=0,\,x<0,\,c_{\rm p}=c_{\rm p,0}\\ \text{for } t=0,\,x>0,\,c_{\rm p}=c_{\rm p,1}=0\\ \text{for } t=\infty, \qquad c_{\rm p,E}=\left(c_{\rm p,0}+c_{\rm p,1}\right)/2 \end{array}$
- b) Time and spatial function of the particle concentration c_p

$$c_{p}(x, t) = c_{p,0} - (c_{p,0} - c_{p,1}) \cdot \phi(x,t)$$
(4)
$$\phi(x, t) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} exp\left(-\frac{x^{2}}{4D_{p} \cdot t}\right) dx$$

$$\phi(x < 0, t = 0) = 0$$

$$\phi(x = 0, t) = \phi(x, t = \infty) = 0,5$$

$$\phi(x = \infty, t) = 1$$

characteristic diffusion distance or standard deviation

$$\sigma_{x} = x_{i} - x_{0} = \sqrt{2 \cdot D_{p} \cdot t_{i}}$$
(4a)
ation gradient grad c $\approx \frac{\delta c_{p}}{2}$

c) Time and spatial function of the particle concentration gradient grad $c_p \approx \frac{\delta c_p}{\delta x}$

$$\frac{\delta c_{p}}{\delta x} = \frac{c_{p,0} - c_{p,1}}{\sqrt{4\pi D_{p} \cdot t}} \exp\left(-\frac{x^{2}}{4 \cdot D_{p} \cdot t}\right)$$
(3)

$$D_{p} = \frac{(c_{p,0} - c_{p,1})^{2}}{4\pi t \cdot (\delta c_{p}/\delta x)^{2}_{max}}$$
(3a)

$$\frac{d(m_{\rm p}/M_{\rm p})}{dt} = -D_{\rm p} \cdot A \cdot \frac{\delta c_{\rm p}}{\delta x}$$
(1)

d) Time and spatial function of the slope of particle concentration gradient

 $\frac{\delta \mathbf{c}_{p}}{\delta t} = \mathbf{D}_{p} \cdot \frac{\delta^{2} \mathbf{c}_{p}}{\delta x^{2}}$ (2)

Figure 4.21

Particle Transport in Turbulent Fluid Flow

- a) Schematic graph of turbulent transport by eddies
- b) To derive the transport equation of particles (2-dimensional plane flow)

c) Particle concentration in a homogeneous turbulence field

characteristic $\frac{c_n}{c_{n\,0}} = \exp\left[-z v_s / D_{t,z}\right]$ concentration distribution equilibrium state 1. Sedimentation in non-(1) $\frac{s \cdot z}{D_{t,z}} > 100$ turbulent suspension $D_{t,z} = 0, v_s > 0$ 2. Sedimentation of coarse or heavy particles in turbulent suspension height z/H $D_{tz} > 0, v_s >> 0$ (2)1. $v_s = 0$, if $\rho_s = \rho_f$ $\frac{\mathbf{v}_{\mathrm{s}}\cdot\mathbf{H}}{\mathbf{D}_{\mathrm{t,z}}}\!\rightarrow\!\mathbf{0}$ ບ[ື]ບ ບິ 2. $v_s \rightarrow 0$, if $d \rightarrow 0$ E 3. high turbulence intensity 0 height z/H (3)1. Moderate turbulence $0.1 < \frac{\mathbf{v}_{\mathrm{s}} \cdot \mathbf{z}}{\mathbf{D}_{\mathrm{t,z}}} < 100$ intensity $D_{t_7} > 0$ 2. wide distribution of particle $c^{\rm n}$ settling velocity $v_s > 0$ 3. Exponential height height z/H distribution of particles

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Turbulent Particle Separation Apparatuses

1. Cross flow separation	REYNOLDS	degree of	turb. diffusion coef-	BODENSTEIN
apparatus	number	turbulence	ficient in $(cm)^2/s$	number
	$\operatorname{Re} = u \cdot D / v$	$Tu = \sqrt{u'^2} / u$	$D_t = \Lambda \cdot \sqrt{u'^2}$	$Bo = v \cdot L / D_{t,s}$
1.1 screw classifier	$\frac{n_{s} \cdot D_{s}^{2}}{\nu}$	0.05 - 0.15	$0.014 \cdot n_{\rm S} \cdot D_{\rm S}^2 + \frac{0.48 \cdot \dot{\rm V}_{\rm F}}{\rm B}$	$n_{s} \cdot D_{s}^{2} \rightarrow 100$
ØD _s V B	$Re_{crit} \approx 10^4$ $10^4 - 5 \cdot 10^5$		$\approx (2)^2 - (7)^2$	$\overline{D_t} \approx 100$
1.2 rake classifier $L_R \downarrow n_R$ \dot{V}_F \dot{B}	$\frac{n_{R} \cdot L_{R}^{2}}{\nu}$ $10^{4} - 5 \cdot 10^{4}$	-	$0.31 \cdot n_{R} \cdot L_{R}^{2} + \frac{0.48 \cdot \dot{V}_{F}}{B}$ 30 - 100 $\approx (5.5)^{2} - (10)^{2}$	$\frac{n_{R} \cdot L_{R}^{2}}{D_{t}} \approx 1.5 - 3$
1.3 cyclones	$\mathbf{u} \cdot \mathbf{D}_{\mathbf{C}}$	0.01 - 0.05	water:	
\dot{V}	v $Re_{crit} \approx 10^{3}$ $10^{5} - 10^{6}$	≈ 0.1 at in- put	$8 \cdot 10^{-4} \cdot \mathbf{u} \cdot \mathbf{D}_{\mathrm{C}}$ air: $0.0035 \cdot \mathbf{u} \cdot \mathbf{D}_{\mathrm{C}}$ 1 - 20	$\frac{\mathbf{u} \cdot \mathbf{D}_{\mathrm{C}}}{\mathbf{D}_{\mathrm{t}}} \approx 10^3$
V₽∕ ↓ v _g			$\approx (1)^2 - (4.5)^2$	
1.4 zigzag apparatus*	u∙b			
ν _L		D _t	$(0.11 - 0.13) \cdot u \cdot b$	$\mathbf{u} \cdot \mathbf{b}$
	$10^4 < 10^5$	$1 u \approx \frac{1}{u \cdot b} \approx$	2000 - 4000	$\overline{D_t} \approx 1 - 13$
	10 - 0.10	0.11 - 0.13	$\sim (45)^2 (63)^2$	
v _s v _y u			~ (43) - (03)	
2. counter-current separatio	on apparatus			
2.1 counter- $\dot{v}_{F_{+},u}$	$\underline{\mathbf{u} \cdot \mathbf{D}}$	-	$0.02 \cdot u \cdot D$	
	ν		200 - 2000	0.5 - 50
classifier	$10^3 - 10^6$		$\approx (14)^2 - (45)^2$	

in Schubert, H.: Aufbereitung fester mineralischer Rohstoffe, Verlag für Grundstoffindustrie Leipzig 1989 * Back-calculated from separation tests

Figure 4.23

Selected Flow Separation Models

	Separation Function	Cut Size	Separation Efficiency	Rem.
	T(d) =	$d_{50} = d_T(T = 0,5) =$	$\kappa = d_{25}/d_{75} = \text{ or } T' =$	
KAISER	1	-	$\kappa_{} \approx \kappa_{-}^{1/z}$	CCS
1963	$1 + (1/T_z - 1)^z$		-ges -z	z
	1	18 · η	$dT = 1 + u \cdot H / D_{ax}$	200
1067/60	$1 + \frac{\mathbf{u}}{\mathbf{u}} \cdot \exp\left[-\frac{(\mathbf{v}_{s}(\mathbf{d}) - \mathbf{u}) \cdot \mathbf{H}}{\mathbf{D}}\right]$	$\sqrt{k_{\varphi} \cdot (\rho_{s} - \rho_{f}) \cdot a} \cdot u$	$\frac{d(d/d_T)}{d(d/d_T)} = \frac{1}{4}$	000
1907/09	$V_{s}(d) \begin{bmatrix} D_{ax} \end{bmatrix}$			
NEESSE	$1 - \exp\left[-\frac{V_s(d) \cdot H_G}{D}\right]$	$\sqrt{\frac{18 \cdot \eta}{(0, -0,) \cdot 2}} \cdot \frac{D_t}{H} \cdot F\left(\frac{V_F}{\dot{V}}\right)$	-	CFS
SCHUBERT	$\frac{\left(\begin{array}{c} \mathbf{D}_{t} \end{array}\right)}{\left(\begin{array}{c} \mathbf{u} & (\mathbf{d}) \\ \mathbf{U} \end{array}\right)}$	$(P_s P_f)^{\alpha} \Pi (V_G)$		
1969/73	$1 - \exp\left[-\frac{V_s(\mathbf{a}) \cdot \mathbf{H}}{D}\right]$			
splitting				
SCHUBERT,	1	$18 \cdot \eta \cdot \frac{D_t}{ln} \cdot ln \left(\frac{\dot{V}_F}{l} \right)$	$\left[\frac{1}{1} \left(\dot{\mathbf{y}} / \dot{\mathbf{y}} \right) \right] \ln 2 \left[\frac{1}{2} \left(\dot{\mathbf{y}} - \dot{\mathbf{y}} \right) \right]$	CFS
NEESSE	$\dot{V}_{F} = v_{s}(d) \cdot H$	$ \sqrt{(\rho_{\rm s} - \rho_{\rm f})} \cdot a H \stackrel{\rm Im}{=} \left(\dot{V}_{\rm g} \right) $	$\left \frac{\operatorname{III}(\mathbf{v}_{\mathrm{F}} / \mathbf{v}_{\mathrm{G}}) - \operatorname{III} \mathbf{S}}{1 (\mathbf{v}_{\mathrm{F}} / \mathbf{v}_{\mathrm{G}}) - 1 - 2} \right ^{2}$	
1973	$1 + \frac{\dot{V}_{G}}{\dot{V}_{G}} + \frac{\dot{V}_{G}}{D_{t}}$	$Bo = \frac{u \cdot H}{D} \equiv ln \left(\frac{\dot{V}_F}{\dot{V}_F} \right)$	$\left[\ln \left(V_{\rm F} / V_{\rm G} \right) + \ln 3 \right]$	
tanning		$D_t (V_G)$		
SENDEN	T. 1-p _A	+ K		МО
SENDEN	$I_{L,0} =$	$\left(\left(\begin{array}{c} p_{I} \end{array} \right)^{A} \right)$		IVIP
1979	$1 (p_{I})^{A} (1-p)^{A}$	$\left \frac{1-\left(\frac{1}{1-p_s}\right)}{1-p_s} \right $		z
	$\frac{1}{p_{S(0,0)}} \cdot \left(\frac{1}{1-p_s}\right) + \left(\frac{1}{1-p_s}\right)$	$\left \frac{1}{s}\right \cdot \left \frac{1}{1}\left(\frac{p_{L}}{p_{L}}\right)\right + K$		
		$\left(\frac{1-\left(\frac{1-p_{s}}{1-p_{s}} \right) \right)$		
			$\left(1-p_{s}\right)^{Z-A-2}$	
	$\mathbf{K} = \frac{1}{\mathbf{H}} + \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot \mathbf{p}_{\mathrm{S}}}{\mathbf{h}} \right) \cdot \left(\frac{1}{\mathbf{H}} + \frac{(1 - \mathbf{p}_{\mathrm{L}}) \cdot $	$\left(\frac{1-p_s}{p_s}\right)^{Z-A-1} + \frac{p_s \cdot (2-p_L-p_s)}{p_s \cdot (2-p_L-p_s)}$	$\frac{1-\left(\frac{p_L}{p_L}\right)}{1-\left(\frac{p_L}{p_L}\right)}$	
	$\mathbf{p}_{\mathrm{S}} (\mathbf{p}_{\mathrm{L}}(\mathbf{Z},\mathbf{Z}) 1-\mathbf{p}_{\mathrm{S}})$	p_L p_L	$1 - \left(\frac{1 - p_s}{p_L}\right)$	
BÖHME	1		(ccs
1986	$\left(\frac{\mathbf{u}-\mathbf{v}_{s}}{\mathbf{v}_{s}}+1\right)\cdot\exp\left(-\frac{(\mathbf{u}-\mathbf{v}_{s})\cdot\mathbf{v}_{s}}{\mathbf{v}_{s}}\right)$	$\left(\frac{H_{G}}{H_{G}}\right) - 1$	$T' = \frac{\alpha}{4} \cdot \frac{u \cdot H}{D} \left 1 + \frac{1}{1 + 1$	
1000	$1 + \frac{(k_G \cdot u)}{(k_G \cdot u)} = \frac{D_t}{(k_G \cdot u)}$		$4 D_t = 1 + k \frac{\mathbf{u} \cdot \mathbf{H}}{\mathbf{D}}$	
	$1 + \left(\frac{u - v_s}{k - u} - 1\right) \cdot \exp\left(-\frac{(u - v_s)}{u}\right)$	$\left(\frac{V_{s} \cdot H_{F}}{2}\right)$		
	<u>κ</u> _F ·u) (1	,)		
HUSEMANN	$\frac{1}{\left(\dot{m}_{0}\cdot(u-v_{c})\right)}\left(\dot{u}\right)$	$(-v_s) \cdot R_c \cdot (R_s - R_c)$		CCS
1990	$\left \frac{1}{k \cdot v_{s} \cdot \dot{m}_{A}} + 1 \right \cdot \exp \left(-\frac{1}{(u)} \right)$	$\frac{1}{1 + v_u \cdot R_s \cdot (s_{ss} + a_{ss})} - 1$		а
	$\begin{bmatrix} 1 + & & \\ & A_{Q,S} \end{bmatrix} \begin{pmatrix} u - v_s & A_{Q,S} \end{pmatrix}$	$n\left(-\frac{(u-v_s)\cdot(R_s-R_F)}{(u-v_s)\cdot(R_s-R_F)}\right)$		
	$\frac{1}{A_{M,S}} + \left(\frac{1}{u} - \frac{1}{A_{M,S}} \right) \cdot ex$	$P\left(-\frac{(u+v_u)\cdot R_F}{(u+v_u)\cdot R_F}\right)$		

CFS cross flow separation; z number of separation stages; CCS counter-current separation; MP MARKOFF process; a acceleration; $\alpha = 2$ STOKES; $\alpha = 0.5$ NEWTON

2. Separation model of laminar cross-flow hydroclassification

3. Particle number concentration $c_{n,i}$ of size fraction i versus apparatus height H at counter-current classification

Fig MPE 4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Prerequisites for Turbulent Cross Flow Separation Model

(1) **Particle hold-up probability distribution** (concentration per number $c_{n,i,j}$) versus height y independent each other, i.e., for every particle size fraction i as well as density fraction j the FOKKER-PLANCK Eq. is valid:

$$\frac{\partial \mathbf{c}_{\mathbf{n},i,j}}{\partial t} = -(-\mathbf{v}_{\mathbf{s},i,j}) \cdot \frac{1}{1!} \cdot \frac{\partial \mathbf{c}_{\mathbf{n},i,j}}{\partial y} + \mathbf{D}_{\mathbf{t},\mathbf{s}} \cdot \frac{1}{2!} \cdot \frac{\partial^2 \mathbf{c}_{\mathbf{n},i,j}}{\partial y^2} - \dots + \dots$$
(1)

(2) For a homogeneous field of turbulence in the process chamber turbulent diffusion coefficient $D_t \approx D_{t,s}$ particle diffusion coefficient, i.e. turbulence intensification by free turbulent particle flow pattern > turbulence damping by particle concentration

$$\Lambda \cdot \sqrt{\overline{u_x'^2}} \approx \text{const.} = D_t$$
⁽²⁾

- (3) Macro dimension of turbulence (diameter of largest eddies d_{W,max} = Λ/2), ≡ characteristic dimension of a turbulence generating tool, here channel width b ≈ 0.2 m,
 Λ ∝ b
- (4) The root mean square (RMS) of turbulent flow rate fluctuations across principal flow direc-

tion ∞ eddy circumferential speed $u_{\phi} \equiv$ charact. flow rate, **channel flow rate averaged u**

$$\sqrt{\mathbf{u}_{\mathrm{x}}^{\prime 2}} \propto \mathbf{u}_{\varphi} \propto \overline{\mathbf{u}} \tag{4}$$

- (5) Particle size small compared with macro dimension of turbulence, i.e. channel width $d < 0.1 \cdot \Lambda < b$
- (6) Particle size small compared with micro dimension of turbulence (d_{W,min} diameter of small-est eddys with circular laminar flow), here not valid

$$d < d_{W,min} \approx 10 \cdot l_D \approx 0.3 mm$$

KOLMOGOROV dimension $l_{\rm D} = (v^3 / \epsilon)^{\frac{1}{4}} = (15^3 \cdot 10^{-18} / 4 \,{\rm W} / g)^{\frac{1}{4}} \approx 30 \,\mu{\rm m}$

(7) For steady-state condition $\partial c_{n,i,j} / \partial t = 0$ (at bottom y = 0, $c_{n,i,j} = c_{n,0,i,j}$) an exponential particle concentration distribution versus height h is valid

$$\frac{\mathbf{c}_{\mathrm{n,i,j}}}{\mathbf{c}_{\mathrm{n,0,i,j}}} = \exp\left(-\frac{\mathbf{v}_{\mathrm{s,i,j}}}{\mathbf{D}_{\mathrm{t,s}}} \cdot \mathbf{h}\right)$$
(7)

(5)

(6)

a) dilute flow segr.

b) dense flow segr.

egr. c) combined dilute/dense flow

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Model of Counter-current Particle Separation

Particle number concentration profile in the process chamber:

	Coarse (G)	Equilibrium particle	Fines (F)
Particle absolute velocity	$v_{s} > u$ $v_{a,G} < 0$	$\mathbf{v}_{\mathrm{s,T}} = \mathbf{u}$ $\mathbf{v}_{\mathrm{a,T}} = 0$	$v_{s} < u$ $v_{a,F} > 0$
0. Feed y= 0	$\mathbf{c}_{n,0} = \mathbf{c}_{n,1} \left[1 + \frac{\mathbf{k}_1 \cdot \mathbf{u}_G}{\mathbf{D}_{t,s}} \cdot \mathbf{y}_1 \right]$		$\mathbf{c}_{\mathbf{n},0} = \mathbf{c}_{\mathbf{n},2} \left[1 + \frac{\mathbf{k}_2 \cdot \mathbf{u}}{\mathbf{D}_{\mathbf{t},s}} \cdot \mathbf{y}_2 \right]$
I. Underflow y ₁ < y < 0	$c_{n,1} = \frac{c_{n,1}}{v_a} \cdot \left\{ k_1 \cdot u_G + (v_a + k_1 \cdot u_G) \cdot exp\left[\frac{v_a}{D_{t,s}} \cdot (y + y_1) \right] \right\}$	$\mathbf{c}_{n} = \mathbf{c}_{n,i} \left[1 + \frac{\mathbf{k}_{1} \cdot \mathbf{u}_{G}}{\mathbf{D}_{t,s}} \cdot (\mathbf{y} + \mathbf{y}_{1}) \right]$	$c_{n,I} = \frac{c_{n,1}}{v_a} \cdot \left\{ k_1 \cdot u_G + (v_a + k_1 \cdot u_G) \cdot ex_I \left[\frac{v_a}{D_{t,s}} \cdot (y + y_1) \right] \right\}$
II_Oherflow 0 < y < y ₂	$\mathbf{c}_{n,\mathrm{II}} = \frac{\mathbf{c}_{n,2}}{\mathbf{v}_{a}} \cdot \left\{ -\mathbf{k}_{2} \cdot \mathbf{u} + (\mathbf{v}_{a} - \mathbf{k}_{2} \cdot \mathbf{u}) \cdot \mathbf{v}_{a} \cdot (\mathbf{v}_{a} - \mathbf{k}_{2} \cdot \mathbf{u}) \cdot \mathbf{v}_{a} \cdot (\mathbf{v}_{a} - \mathbf{v}_{a} \cdot $	$\mathbf{c}_{n} = \mathbf{c}_{n,2} \left[1 + \frac{\mathbf{k}_{2} \cdot \mathbf{u}}{\mathbf{D}_{t,s}} \cdot (\mathbf{y}_{2} - \mathbf{y}) \right]$	$c_{n,II} = \frac{c_{n,2}}{v_a} \cdot \left\{ -k_2 \cdot u + (v_a \cdot k_2 \cdot u) \cdot exp\left[\frac{v_a}{D_{t,s}} \cdot (y_2 \cdot y) \right] \right\}$
Discharge	$\mathbf{y} = \mathbf{y}_1$: $\mathbf{\dot{n}}_G = \mathbf{k}_1 \cdot \mathbf{u}_G \cdot \mathbf{c}_{n,1}$		$\mathbf{y} = \mathbf{y}_2$: $\dot{\mathbf{n}}_{\mathrm{F}} = \mathbf{k}_2 \cdot \mathbf{u} \cdot \mathbf{c}_{\mathrm{n},2}$

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Turbulent Counter-current Separation Model

(1) Particle absolute velocity $v_a(d)$ in locally fixed coordinates of the approximate $v_a(d)$

paratus:

$$\vec{\mathbf{v}}_{a}(\mathbf{d}) = \vec{\mathbf{u}} - \vec{\mathbf{v}}_{s}(\mathbf{d}) \tag{1}$$

(2) Separation function: $T_i = \frac{\dot{n}_{G,i}}{\dot{n}_{A,i}} = \frac{1}{1 + \dot{n}_{F,i} / \dot{n}_{G,i}}$

$$T(v_{a}(d)) = \frac{1}{1 + \left(1 + \frac{v_{a,I}}{k_{1} \cdot u_{G}}\right) \cdot \exp\left[\frac{v_{a,I}}{D_{t,s}} \cdot y_{1}\right]}$$

$$1 + \frac{1 + \left(\frac{v_{a,II}}{k_{2} \cdot u} - 1\right) \cdot \exp\left[-\frac{v_{a,II}}{D_{t,s}} \cdot y_{2}\right]}$$
(2)

(3) Mean residence time: $\tau_m = \frac{1}{\dot{n}_A} \cdot \int_{-y_1}^{y_2} c_n(y) dy$

$$\tau_{\rm m} = \frac{1}{v_{\rm a}} \cdot \left[T \cdot \left(y_1 - \frac{D_{\rm t,s}}{k_1 \cdot u_{\rm G}} \right) + (1 - T) \cdot \left(y_2 + \frac{D_{\rm t,s}}{k_2 \cdot u} \right) \right]$$
(3)

(4) Incremental separation sharpness (slope for $d \rightarrow d_T$) instead using κ :

$$\frac{d[T(d/d_T)]}{d(d/d_T)}\Big|_{d\to d_T} = \frac{\alpha}{4} \cdot \frac{u \cdot H}{D_{t,s}} \cdot \left(1 + \frac{1}{1 + k \cdot \frac{u \cdot H}{D_{t,s}}}\right)$$
(4)

for large BODENSTEIN numbers (mainly convective transport):

$$Bo = \frac{\mathbf{u} \cdot \mathbf{H}}{\mathbf{D}_{t,s}} >> 1 \tag{5}$$

$$\frac{d[T(d/d_T)]}{d(d/d_T)} = \frac{\alpha}{4} \cdot Bo \cdot \left(1 + \frac{1}{1 + k \cdot Bo}\right) \approx \frac{\alpha}{4} \cdot Bo$$
(6)

Figure 4.28

Evaluation of Turbulent Counter-current Hydroclassification

Separation function T(v_s(d)) and medium residence time τ_m(v_s(d)) versus stationary settling velocity v_s(d) for k₁ = k₂ = 1; H₁ = H₂ = 1 m
 a) Different counter-flow rates u for BODENSTEIN-number Bo = u H/D₁ = 10

b) Different BODENSTEIN-numbers Bo =u H/D_t for u = 0.5 m/s and H = 1 m

2. Separation function T(v_s(d)) versus stationary settling velocity v_s(d) for u = 0.5 m/s; H = 1 m; \Rightarrow Bo = 10

a) Different heights of separation chamber for $k_1 = k_2 = 1$ b) Different discharge coefficients for $H_1 = H_2 = 1 \text{ m}$ c) Different height ratios H_1/H_2 of separation sub-chambers for $H_1 + H_2 = 2.5$ m and $k_1 = k_2 = 1$

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Principles of Particle Separation in an Air Stream

1. Counter-current separation

a) in a gravity field

b) in a centrifugal force field

Figure 4.30

2. Cross flow separation (force of gravity and force of inertia)

a) horizontal cross flow separator

b) cross flow u-turn separator

VA G U

c) vertical cross flow separator

d) cross flow jet separator

Mehrstufige Querstrom-Partikeltrennung in einem Zick-Zack-Kanal

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Model of Multistage Turbulent Cross Flow Aeroseparation

1. Volume flow rate impact on separation function

total separation sharpness:

$$\kappa_{\text{tot}} = \left[\frac{z \cdot \ln\left(\dot{V}_{\text{L}}/\dot{V}_{\text{S}}\right) - \ln 3}{z \cdot \ln\left(\dot{V}_{\text{L}}/\dot{V}_{\text{S}}\right) + \ln 3}\right]^{2}$$

Figure 4.33

effective number of stages:

$$z_{e} = \frac{\left(1 + \sqrt{\kappa_{tot,mes}}\right) \cdot \ln 3}{\left(1 - \sqrt{\kappa_{tot,mes}}\right) \cdot \ln\left(\dot{V}_{L}/\dot{V}_{S}\right)}$$

separation stage utilization:

$$\eta_{\rm Tr} = \frac{2 \cdot z_{\rm e} - 1}{n_{\rm apparatus}}$$

Figure 4.34

Separation Sharpness versus Stage Number and Volume Flow Rate Ratios

10

15

5

stage number z

0

0

Assessment characteristics for multistage cross-flow separation in a symmetrical apparatus with $z_0 = z_m = z$ number of separation stages

<u>-0 -u</u>			
process goal	Separation function	Cut characteristic	Separation sharpness
	$T_{tot}(\xi/\xi_T) =$	$\xi_{\rm T} = \xi_{50}({\rm T}_{\rm tot} = 0.5) =$	$\kappa_{\rm tot} = \xi_{25} / \xi_{75} =$
Fluid flow separa-	1	$2 \cdot (\rho_{\rm sT} - \rho_{\rm f}) \cdot V_{\rm PT} \cdot g$	$z \cdot \ln(\dot{V}_{0} / \dot{V}_{1}) - \ln 3$
tion	$(\dot{\mathbf{V}}) \left[1 - \frac{\mathbf{v}_{s}(\mathbf{d}, \boldsymbol{\rho}_{s})}{\mathbf{v}_{sT}(\mathbf{d}_{T}, \boldsymbol{\rho}_{sT})} \right] \cdot \mathbf{z}$	$V_{sT} = \sqrt{\frac{(3 + 1)^{2} + (1 + 1)^{2}}{c_{wT} \cdot c_{s} \cdot A_{pT}}}$	$\overline{z \cdot \ln(\dot{V}_{a} / \dot{V}_{u}) + \ln 3}$
$\xi = v_s$	$1 + \left(\frac{\mathbf{v}_{o}}{\dot{\mathbf{V}}_{u}}\right)^{L}$	V W ,1 P 1 - P ,1	
Classification	1	$\mathbf{p}_{\mathrm{c}} \begin{bmatrix} \mathbf{p}_{\mathrm{c}} & (\dot{\mathbf{V}}_{\mathrm{c}}) \end{bmatrix}^2$	$\left[\frac{1}{\alpha} + \ln(\dot{\mathbf{V}} / \dot{\mathbf{V}}) - \ln 3 \right]_{\alpha}^{\frac{1}{\alpha}}$
$\xi = d$	$\left(\dot{\mathbf{V}} \right) \left[1 - \left(\frac{d}{d_T} \right)^{\alpha} \right] z$	$\left \mathbf{d}_{\mathrm{T}} \approx \frac{\mathbf{P}_{\mathrm{T}}}{3 \cdot \mathbf{\rho}_{\mathrm{s}} \cdot \mathbf{g}} \right = \frac{1 \cdot \mathbf{s}}{\mathbf{h}} \cdot \ln \left(\frac{1 \cdot \mathbf{F}}{\mathbf{V}_{\mathrm{G}}} \right)$	$\left \frac{2 \cdot \ln(\dot{\mathbf{V}}_{\rm F} / \dot{\mathbf{V}}_{\rm G}) - \ln 3}{2 \cdot \ln(\dot{\mathbf{V}}_{\rm F} / \dot{\mathbf{V}}_{\rm G}) + \ln 3} \right ^{2}$
$\rho_s = \text{const.}$	$1 + \left(\frac{\mathbf{v}_{\mathrm{F}}}{\dot{\mathbf{V}}_{\mathrm{G}}}\right)^{\mathrm{L}}$	for spheres $c_W = 0.44$	
Gravity separation	1	$\rho_{f} \left[D_{t,s} \left(\dot{V}_{L} \right) \right]^{2}$	$\left[\left[z \cdot \ln(\dot{V}_{z} / \dot{V}_{z}) - \ln 3 \right]^{\frac{3}{\alpha+1}} \right]$
$\xi = \rho_s$	$\left(\dot{\mathbf{V}} \right) \left 1 - \left(\frac{\rho_{s,j} - \rho_f}{\rho_{s,j} - \rho_f} \right)^{\frac{\alpha+1}{3}} \right \cdot \mathbf{z}$	$\rho_{\rm sT} \approx \frac{1}{3 \cdot d \cdot g} \left[\frac{1}{h} \cdot \ln \left(\frac{1}{\dot{V}_{\rm s}} \right) \right]$	$\left \frac{z \cdot \ln(v_L / v_S) - \ln z}{z \cdot \ln(\dot{V}_L / \dot{V}_S) + \ln 3} \right $
d = const.	$\left[1 + \left(\frac{\mathbf{v}_{\mathrm{L}}}{\dot{\mathbf{V}}_{\mathrm{S}}}\right)\right] = \left[\frac{(\mathbf{v}_{\mathrm{S},\mathrm{I}} - \mathbf{v}_{\mathrm{I}})}{\dot{\mathbf{V}}_{\mathrm{S}}}\right]$	for spheres $c_W = 0.44$	

 $\dot{V}_{o}, \dot{V}_{F}, \dot{V}_{L}$ overflow, fine or lightweight particle suspension volume flow rates, $\dot{V}_{u}, \dot{V}_{G}, \dot{V}_{S}$ underflow, coarse or heavy particle volume flow rates $\alpha = 2$ laminar (Stokes), $\alpha = 0.5$ turbulent (Newton) flow pattern acc. to $v_{s} \propto d^{\alpha}$

PI-Flow Chart of the Test Rig "Aeroseparation"

Installation Plan of Zigzag Aeroseparator

Classification of Log. Normal Distributed Glas Beads

particle size d in mm

particle fraction $d_{u,i}$ - $d_{o,i}$ in mm	2 - 16
channel velocity u in m/s	13
particle settling velocity $v_{sT}(d_{u,i})$ in m/s	18.2
mass flow rate m _s in t/h	0.12
specific mass flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	3.0
particle concentration $\mu_{s,g}$ in g/kg	82
cut size d _T in mm	5.4
separation sharpness κ	0.89
$n = 7$, effective separation stages n_e	5.8
utilisation of separation stages η_{Tr} in %	83
pressure drop Δp_{ZZ} in Pa	440
specific energy consumption W _{m,ZZ} in kWh/t	1.25

		•	•
channel velocity u in m/s	7.5	8	10
particle settling velocity $v_{sT}(d_T)$ in m/s	11.5	15.6	18.7
mass flow rate m _s in t/h	0.34	0.12	0.16
specific mass flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	8.5	3	4
particle concentration $\mu_{s,g}$ in g/kg	262	82	94
cut size d _T in mm	2.1	4.6	6.6
separation sharpness κ	0.75	0.7	0.7
$n = 7$, effective separation stages n_e	1.8	1.2	1.2
utilisation of separation stages η_{Tr} in %	26	17	17
pressure drop Δp_{ZZ} in Pa	440	440	700
specific energy consumption $W_{m ZZ}$ in kWh/t	0.39	1.25	1.72

Gravity Separation of Partially Liberated Aggregate Fragments of a

B 35 Concrete

particle fraction $d_{u,i}$ - $d_{o,i}$ in mm	• 6.3 - 8	♦ 8 - 10	X 10 - 12
channel velocity u in m/s	13.6	15.5	16.5
particle settling velocity $v_{sT}(d_{u,i})$ in m/s	18.2	21.1	23.0
particle flow rate \dot{m}_s in t/h	0.12	0.17	0.13
specific particle flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	3.1	4.2	3.3
particle concentration $\mu_{s,g}$ in g/kg	52	62	45
cut density $\rho_{s,T}$ in g/cm ³	2.2	2.4	2.3
separation sharpness κ	0.66	0.94	0.84
$n = 15$, effective separation stages n_e	1	13	3
utilisation of separation stages η_{Tr} in %	7	87	20
misplaced product $\mu_{LS}(\rho_s < 2.3 \text{ g/cm}^3)$	0.19	0.27	0.11
pressure drop Δp_{ZZ} in Pa	1500	1600	1900
spec. energy consumption $W_{m,ZZ}$ kWh/t	6.9	5.5	9.5

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

particle fraction $d_{u,i}$ - $d_{o,i}$ in mm	8 - 12
channel velocity u in m/s	14
particle settling velocity $v_{sT}(d_{u,i})$ in m/s	20.3
mass flow rate \dot{m}_s in t/h	0.12
specific mass flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	3.0
particle concentration $\mu_{s,g}$ in g/kg	50
cut density $\rho_{s,T}$ in g/cm ³	2.1
separation sharpness κ	0.7 - 0.9
$n = 15$, effective separation stages n_e	1 - 7
utilisation of separation stages η_{Tr} in %	7 - 47
pressure drop Δp_{ZZ} in Pa	1600
specific energy consumption W _{m,ZZ} in kWh/t	8.0

particle fraction $d_{u,i}$ - $d_{o,i}$ in mm	8 - 10
channel velocity u in m/s	12.5
particle settling velocity $v_{sT}(d_{u,i})$ in m/s	21.7
mass flow rate m _s in t/h	0.15
specific mass flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	3.7
particle concentration $\mu_{s,g}$ in g/kg	68
cut density $\rho_{s,T}$ in g/cm ³	2.4
separation sharpness κ	0.86
$n = 7$, effective separation stages n_e	3.8
utilisation of separation stages η_{Tr} in %	54
pressure drop Δp_{ZZ} in Pa	815
specific energy consumption $W_{m,ZZ}$ in kWh/t	2.75

Gravity Separation of a Concrete-Brick-Rubber-Mixture

particle density ρ_{s} in g/cm³

particle fraction $d_{u,i}$ - $d_{o,i}$ in mm	• 4 - 5	▲ 5 - 6.3
channel velocity u in m/s	8.5	8.5
particle settling velocity $v_{sT}(d_{u,i})$ in m/s	14.3	14.9
mass flow rate m _s in t/h	0.15	0.63
specific mass flow rate $\dot{m}_{s,A}$ in t/(m ² ·h)	3.7	15.8
particle concentration $\mu_{s,g}$ in g/kg	98	417
cut density $\rho_{s,T}$ in g/cm ³	2.1	1.8
separation sharpness κ	0.80	0.78
$n = 7$, effective separation stages n_e	3	3.4
utilisation of separation stages η_{Tr} in %	43	49
pressure drop Δp_{ZZ} in Pa	350	350
specific energy consumption W _{m,ZZ} in kWh/t	0.83	0.19

Assessment characteristics for multistage cross-flow separation in a symmetrical apparatus with $z_0 = z_0 = z$ number of separation stages

	or separation stages				
process goal	Separation function	Cut characteristic	Separation sharpness		
	$T_{tot}(\xi/\xi_T) =$	$\xi_{\rm T} = \xi_{50}({\rm T_{tot}} = 0.5) =$	$\kappa_{\rm tot} = \xi_{25} / \xi_{75} =$		
Fluid flow separa-	1	$\sqrt{2 \cdot (\rho_{sT} - \rho_f) \cdot V_{PT} \cdot g}$	$z \cdot \ln(\dot{V}_{0} / \dot{V}_{11}) - \ln 3$		
tion	$\left(\dot{\mathbf{V}} \right) \left[1 - \frac{\mathbf{v}_{s}(\mathbf{d}, \boldsymbol{\rho}_{s})}{\mathbf{v}_{sT}(\mathbf{d}_{T}, \boldsymbol{\rho}_{sT})} \right] \mathbf{z}$	$V_{sT} = \sqrt{\frac{(r \cdot sT + r)^{-1} \cdot r}{C_{sT} \cdot C_{s} \cdot A_{s} \cdot T}}$	$\overline{z \cdot \ln(\dot{V}_{a} / \dot{V}_{a}) + \ln 3}$		
$\xi = v_s$	$\left 1 + \left(\frac{\mathbf{v}_{o}}{\dot{\mathbf{V}}_{u}}\right)^{L}\right = \left 1 + \left(\frac{\mathbf{v}_{o}}{\mathbf$	W,T Pf TP,T	(0		
Classification	1	$\mathbf{D} \left[\mathbf{D} \left(\dot{\mathbf{V}} \right) \right]^2$	$\begin{bmatrix} -\pi & \ln(\dot{\mathbf{y}} / \dot{\mathbf{y}}) & \ln 2 \end{bmatrix}_{\alpha}^{\frac{1}{\alpha}}$		
$\xi = d$	$\left[\begin{array}{c} \mathbf{\dot{V}}_{\mathrm{T}} \end{array} \right] \left[1 - \left(\frac{\mathrm{d}}{\mathrm{d}_{\mathrm{T}}} \right)^{\alpha} \right] \cdot \mathbf{z}$	$ \left \mathbf{d}_{\mathrm{T}} \approx \frac{\rho_{\mathrm{f}}}{3 \cdot \rho_{\mathrm{s}} \cdot \mathrm{g}} \left[\frac{\mathcal{D}_{\mathrm{f},\mathrm{s}}}{h} \cdot \ln \left(\frac{\mathbf{v}_{\mathrm{F}}}{\dot{\mathrm{V}}_{\mathrm{G}}} \right) \right] \right $	$\left[\frac{2 \cdot \ln(\mathbf{V}_{\rm F} / \mathbf{V}_{\rm G}) - \ln 3}{2 \cdot \ln(\dot{\mathbf{V}}_{\rm F} / \dot{\mathbf{V}}_{\rm G}) + \ln 3}\right]^{\alpha}$		
$\rho_s = \text{const.}$	$1 + \left(\frac{\dot{V}_{F}}{\dot{V}_{G}}\right)^{L}$	for spheres $c_W = 0.44$			
Gravity separation	1	$\rho_{f} \left[D_{f_{s}} \left(\dot{V}_{I} \right) \right]^{2}$	$\left[\frac{1}{2} \cdot \ln(\dot{V} / \dot{V}) - \ln 3 \right]^{\frac{3}{\alpha+1}}$		
$\xi = \rho_s$	$\left(\dot{\mathbf{V}}_{-}\right)^{1-\left(\frac{\rho_{s,j}-\rho_{f}}{\rho_{s,T}-\rho_{f}}\right)^{\frac{\alpha+1}{3}}} \mathbf{z}$	$\left \rho_{sT} \approx \frac{1}{3 \cdot d \cdot g} \left[\frac{1}{h} \cdot \ln \left(\frac{1}{\dot{V}_s} \right) \right] \right $	$\left[\frac{z \cdot \ln(\dot{V}_{\rm L} / \dot{V}_{\rm S}) - \ln 3}{z \cdot \ln(\dot{V}_{\rm L} / \dot{V}_{\rm S}) + \ln 3}\right]$		
d = const.	$\left 1 + \left(\frac{\mathbf{v}_{\mathrm{L}}}{\dot{\mathbf{V}}_{\mathrm{S}}} \right)^{\mathrm{L}} \right ^{\mathrm{COVEV}} \right $	for spheres $c_W = 0.44$			
\dot{V}_{o} , \dot{V}_{F} , \dot{V}_{L} overflow, fine or lightweight particle suspension volume flow rates, \dot{V}_{u} , \dot{V}_{G} , \dot{V}_{S} underflow, coarse or heavy particle vol-					

ume flow rates, $\alpha = 2$ laminar (Stokes), $\alpha = 0.5$ turbulent (Newton) flow pattern acc. to $v_s \propto d^{\alpha}$

Summary and Conclusions

- 1) The separation efficiency of multistage turbulent cross flow process principle of zigzag apparatus could be proved to be
 - > good to very good separation sharpness $\kappa = 0.67 0.9$,
 - > sufficient to good utilisation of separation stages $\eta_{Tr} = 17$ to 54 %,
 - ➤ small specific energy consumption down to 0.2 kWh/t,
 - ➤ variability of apparatus geometry,

for fragments with small density differences $\rho_{s,L}/\rho_{s,S} = 1.7/2.6 = 0.65$ or in terms of classification with a sharp particle cut size.

- 2) Light weight material $\rho_{s,L} \le 1.2 \text{ g/cm}^3$ can be completely separated.
- 3) Suitable separation of **partially liberated aggregate fragments** $\kappa = 0.74 0.94$ with sufficient to good utilisation of separation stages 27 to 87 % after successful liberation in an impact crusher.
- 4) These practically essential results will be pointed out here by the adaptability of **multistage turbulent dispersion model** being suitable for **apparatus design** in order to develop a **full-scale recycling process**.

Color, appearance, conductivity, reflectance

FIG. 19-1 Particle-size range as a guide to the range of applications of various solid-solid operations.

TABLE 19-8 The Major Types of Classifiers

Chaufar	(type*)	Description	Size (m) Width Diaraster Max Jorgth	Limiting size Iran, field size)	Food ras Warl	Vol. % solids Fased overflow underflow	Potros Generi	Suitability and applications
Stoping rank chaniller opting rades drag on 0 ⁴	94-50	Classification contra near deep end of itoping, olonguad pool. Spind, rake or drag nechanism life sands from pool.	0.3 no 7.0 2.4 (spiral) 14	1 mm 10-43 µm 23 mm	3 to 530	Nor entrical 2 to 20 43 to 53	0.4 to 110	Used for closed circuit grinding washing and devenoring, dealan- ing, particularly where show dry underflow in important. (Trag- closed) circuit grinzling durfurgs mechanism (spiraling durfurgs) may give sensigly life to eliminate party.
a. "	34.50	Ensentially append channillor with painline replacing the spiral.	0.5 to 2.0 0.5 to 1.1 4.5 to 11	(103 mm)	40 to 450		7.5 to 60	Used for sough separations such as someving much, day from said. Also to menow or broak down aggiomerane.
Ecolomier *0 / 10 *0 / 10 0	34.50	Ensension of doping tank classi- fiers, with astilling occurring in large strater production of interpretating mechanism to accepte much insured loar- warking flow Reading to the charge rules or spiral.	0.5 m 6.0 1.2 m 15 12	130 µm to 43 µm 112 mmi	8 10 225	Not orbitcal 0.4 to 5 20 to 60 128 to 23 in Rev I Dealton)	Levi. 0.75 to 7.5 Islav. 0.75 to 20	Used for closed circuit grinding [particularly regrind closette) where close underforw in access way Larger pool allows finer separations. Rowit Dealtor has larger pool and capacity. Robinitely superative.
Hydraile bowl classifier	(M-1)	Resically a hydraulic bowl choodfae. Witnung pluso rophose toraing rawhanian in pool. Hydraulic wane passes through perforations in pluso and indicate surch.	-4.2 to 3.7 1.2 to 4.1 12	l mon no 100 µm li2 moni	310225	Not critical 2 to 15 30 to 50	Vib. 22m 7.8 1 day. 3.7 m 15	Cityee yoy closen tands and has nelatively low hydraulic water sequences (50.5 tr) underford. One of the most officient tingle- ange-closed citetic grinding and wash- ing. Robitively on paralyse.
Ophedrical task chauther	(M-3)	Effectively an overleaded field- oract Roming take feeds ands to assiral underflow	5m45 	130 µm to 43 µm 15 mm)	310.025	Not entiteal 0.4 to 5 13 to 23	0.78 to 11	Simple, but gives relatively ineffi- cient separation. Used for pri- mary deveaseing where the separation invoke large field volumes, and underflow drainings is not orbical.

*M. Machasical transport of tandars thickarge of underflow N. Noran educated ignative or presented discharge of underflow S. Sadmacrazion dustifier P. Thaidaed bed dustifier Prior Kelley, E. G. and D. J. Spontewood, *Introduction or Nitronal Processing*, John Wiley & Sona, New York, 1982, pp. 200–201, with permission.

Classifier	(Type*)	Issoription	Size (m) Width Diameter Max Jorgth	Limiting size (row, field size)	Reed rate fate	Vol. S solids Feed overflow underflow	Petrose (kont)	Suitability and applications
Hydraite cyladrical rank classifier	(M-1)	Hydraudic form of overloaded thickense: Sphere Size (9: 7) uses appear to the charge tradeflow incosed of recaring take.	1.0m40 	1.4 mm to 43 µm 23 mm	1 10 120	Nor crisical 0.4 to 12 20 to 50	0.78 to 11	Two-product davice giving very clean underflow. Exquires inducted line hadronic water 12 at molich feedl. Used for wash- ing destinating, and closed circuit grinding.
Conscionalise	82.00	Similar to sylindited rank das- tilier, ni sept tank in conical to eliminarie naved for rales.	0.5 to 1.7	800 µm 184 3 µ m 6 mm)	2 to 100	Nor original 5 to 30 33 to 50	None	Low con 'simple enough to be made locally, and simplicity can justify relatively inefficient sepa- mion. Used for destinating and primary desumeting. Solids buildup can be a problem.
Bydraile core classifier	(M-17)	Open cylindrical upper aserica with control lower aserica constrainty alowly retaining mechanism.	0.8 m 1.8 —	400 µm to 100 µm 16 mm ³	10 по 120	Nor critical 2 to 15 30 to 20	3 to 7.8	Used prinnerily in closed circuit grinding to achanily hydro- cyclone underflow.
Hydrosyckow V	ෂය	Pumped pasarso feed gener- ase contributed action to give high separating forces, and discharge.	0.01 to 12	200 μm το 5 μm (1400 μm το 45 μm)	to 20 m² min	4 to 35 2 to 15 30 to 50	25 to 400 k50m Priseurs head	Sensil champ davice, widely used for closed clicute granking. Given rel- arizely a ficient negativitien of fine particles in diano suppor- sions.
Air separator	82.80	Similar singse to bydrosyclone, bur ligtae incluide angle Internal ingeller indexes merydewsifiin dassifier	05m73 —	1 mm 10 70 µm	to 2100		4 10 200	Used where solids must be loop day, such as concerning plasting. Air classifiers may be integrated into grading solliers came
	19-20							

TABLE 19-8 The Major Types of Classifiers (Coversided)

OTTO-VON-GUERICKE- UNIVERSITY MAGDEBURG / FRG Fakulty for Process and Systems Engineering

Mechanical Process Engineering

	(M-S)	Power generators high noting forms. Shary countinged again: scaling book, and measured by above routing hole:al across conveyor within how!	0.3 to 1.4 1.5	74 µm to 1 µm 6 mm2	0.04 m 2.5 m ³ / min	2 m 25 0.4 m 20 5 m 30	11 to 110	Refacively as persive, has high capacity for a given floor space, used for finer separation.
	(M-S)	Essentially a rorating drum mounted on slight indias.	15 to 13 5 to 10	(489 mm)	na 700		1 m 55	Similar applications to log washed, but legions action. Tranblug 1976: critical speed) provideo arrition to sea one day from and. Also reserves trads.
	(M-11)	One form haued on semibles, another on spiral chanifar. They have wash want added to flow exemption threaten and the semi-single structure on underflow which is conveyed and remapsed by toras form of spiral.	– bpiral type) 12 bpiral type)	2 mm το 40 μm	3 10 800	Nor critical 2 to 15 20 to 50	0.1 m 19	Vory dears coarse product, but iolatively low capacity for a given size.
ilimitor	N-F	Restally a rule with hydrastic water for hoar borren to produce kindnot userling. Dadarflow withdrawn through talwar base. Col- ram rawy be filled with rae- work to inten our flow.	12m4J 	24 mm to 100 µm 175 mm	4 to 120	13 to 33 0.4 to 5 20 to 33	0.75 for valvat	Simple and solutively officient sep- strator. Normally a two-product dwise but rare be operand in some of the a range of size frac- tions.
Pocker chanifier	[N-F]	A series of damilication pock- ex, with dicreasing quant- tios of hydraulic water in each, pockation a mage of product sizes.	0.5 m 0.0 	2.4 mm to 100 µm 10 mm	410120	13 to 33 0.4 to 5 20 to 33		Efficient separations, but requires 3 thydrouite warse't solide feed. Und to produce second couly clean underflow fractioned into narrow size runges.

ng. 19-20 Bydrosydons. (Courting Reds Engineers.)

AND THE WINNERS

Flow Classification - Gravitational Force Hydroclassifier - Horizontal or Cross-Flow Classifiers Page 1

1. Horizontal or cross-flow classifier, schematic: a) Cone classifier b) Multi-chamber cross-flow classifier

13

- 6 Basic cone
- 7 Discharge launder of fine product
- 8 Lever & rod mechanism
- 9 Ball support
- 10 Underflow ball valve for coarse product
- 11 Adjustable mass
- 12 Spring
- 13 Discharge obstacle (disk)

12

Flow Classification - Gravitational Force Hydroclassifier - Horizontal or Cross-Flow Classifiers

- 3. Cross-flow classifier with mechanical discharge device of coarse product (mechanical classifier), schematic:
- a) Rake classifier

4. Screw classifier, version SKET

n_s, D_s, V_A V_G, V_F

b) Screw classifier

- 1 Sheet metal trough
- 2 Suspension level
 - 3 Adjustable overflow sill
 - 4 Feed launder
- 5 Discharge of coarse
- 6 Screw conveyor
- 7 Drive motor
- 8 Gear
- 9 Drive pinion
- 10 Gear of discharge screw
- 11 Lift mechanism
- 5. Arrangement of horizontal or cross-flow classifiers, version Rheax a) Counter-current arrangement b) "Phalanx" arrangement

AND A DECEMBER OF THE OWNER OWNER

Page 3

Flow Classification - Gravitational Force Hydroclassifier - Upstream or Counter-Current Classifiers

1. Upstream or counter-current classifiers (hydrosizers) of different versions:

a) Rheax

b) Sogreah (Lavoflux) c) Hydrosort (with fluidized bed)

d) Rheax (zigzag classifier) d) Hydrofors

e) Larox

FIG. 20-41 Typical contrifugal separator.

Screw clas-

sifier

Version Wemco S-H 78 in a closed milling circuit of St. Joseph Lead Co., Indian Creek Plant

<u>Counter-current</u> <u>classifier</u>

Version TAK Amberger Kaolinwerke for sand, cut size: above 200 - 500 µm

- F feed
- K_1 coarse product
- K₂ fine product
- Fl fluid

h

Counter-current Control in Counter-current Classifiers

F feed, K₁ coarse product,
1 pump control by revolution number
3 feed valve

coarse product,K2fine product,F1fluidevolution number2 height adjustable diving cone insert4 walls to separate segments

Particle Flow Separation by Hydrocyclone

Schematic view of fluid Oblique or horizontal built-in is flow possible

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Particle Flow Separation by Hydrocyclone

Version TAK Amberger Kaolinwerke

Multi-cyclones, Cyclone Batteries

- pre-processing or replacement of thickeners
- separation of clay and solid, non-soluble constituents
- thickening/cleaning of suspensions
- multistage cyclone arrangements
- washing by cyclones

Feed vessel during assembly

Multi-cyclones, Cyclone Batteries

Feed distribution vessel of cyclone battery with wear-resistant lining by ceramics

<image>

Dust Separation

Crude gas volume flow rates to vacuum for dust separation

Locations of vacuum	crude gas volume flow rate \dot{V} in m ³ /min
Transfer of belt conveyors	10 40
Bucket elevators	10 40
Bunkers	10 30
Comminution machines	15 150
Magnetic separators	30 40

Process application data of dust separation

Process data	Centrifugal	Electrical	Filtration	Wet sepa-
	separation	separation		ration
High separation function (fraction	> 10	>1	> 0,5	> 0,1
separation efficiency) $T_i \rightarrow 1$ at par-				
ticle sizes d_i in μm				
Crude gas dust concentration c _{s,g,roh}	< 1000	< 50	< 100	< 10
in g/m ³				
Achieved clean gas dust concentra-	100 - 200	< 50	< 30	50 - 100
tion $c_{s,g,rein}$ in mg/m ³				
Pressure drop Δp in Pa	300 - 2500	50 - 150	500 - 1500	100 - 1000
max. gas temperature θ_g in °C	450	450 (1000)	140 (350)	300
Range of crude gas volume flow	3000 -	10 000 -	1000 -	3000 -
rate \dot{V} in m ³ /h	200,000	300,000	100,000	100,000

FAKULTY FOR PROCESS AND SYSTEMS ENGINEERING Mechanical Process Engineering

Dust Separation

page 1

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011

Dust Separation

page 2

Mechanical Process Engineering

Aerocyclones

page 3

6. Various designs of aerocyclones

separation function:

$$T(d) = \left[1 + 2 \cdot \left(\frac{d}{1, 3 \cdot d_{T}} \right)^{-3,564} \right]^{-1,22}$$

cut size:

$$d_{T} = 1,3 \cdot \sqrt{\frac{9 \cdot \eta}{\pi \cdot (\rho_{s} - \rho_{g})} \cdot \frac{A_{i}^{2}}{H_{o}} \cdot \left(\frac{D_{o}}{D}\right)^{2n} \cdot \frac{1}{\dot{V}}}$$

dust concentration of clean gas:

$$\mu_{s,g,rein} = \mu_{s,g,roh} \cdot (1 - R_m) = \mu_{s,g,G} \cdot Q_3 (1,3 \cdot d_T)$$

pressure drop:

$$\Delta p = \xi_{ges} \frac{\rho_g}{2} u_o^2 = 8\xi_{ges} \rho_g \frac{\dot{V}^2}{\pi^2 D_o^4}$$

power consumption:

$$\mathbf{P} = \Delta \mathbf{p} \cdot \dot{\mathbf{V}} = 8\xi_{ges} \rho_g \frac{\dot{\mathbf{V}}^3}{\pi^2 D_o^4}$$

7. Experiences to design tangential aerocyclones

Fig_MPE_4.doc © Prof. Dr. J. Tomas Mechanical Process Engineering - Particle Technology 28.02.2011