
Heurac: A heuristic-based tool for extracting refactoring data from
open-source software versions

Deepak Advani and Youssef Hassoun,

School of Computer Science, Birkbeck, University of London,
Malet Street, London, WC1E 7HX.

Steve Counsell, Department of Information Systems and Computing,

Brunel University, Uxbridge, Middlesex. UB8 3PH.

ABSTRACT

Refactoring is considered as a means to enhance software quality and maintainability. In
pursuit of investigating trends in changes made via refactorings, this paper focuses on
building a tool for detecting various refactorings performed on Java software. The tool
automates the identification of refactorings as program transformations between consecutive
software releases. For each release, Java source is parsed and key information about class
entities is collected and saved as XML document. The XML tree representations
corresponding to consecutive releases are compared according to a selected set of criteria,
which define the refactorings to be identified. In doing so, our tool allows for empirical
analysis of software development and aging from the perspective of refactorings
transformations.

1 INTRODUCTION

Change is imminent to almost any Software system whether that is in the name of covering
extra requirements, fixing bugs, improving performance, improving comprehension or for any
other reason. However, changing the software haphazardly may adversely affect the software
in which case the quality of the software gets degraded. At its best, the adverse effects could
well be loss of comprehension caused by complicating the design and at worse unknowingly
introducing new bugs, which sits like time bomb all set to blow up any moment. Refactorings
[2, 5, 6] can be conceived as program transformations applied to existing software during its
maintenance phase to prevent new bugs from creeping in. At the same, time refactorings aim
at enhancing the design of software to improve its compression or perhaps apply standard
practices.

Fowler [2] defines refactoring as “the process of changing a software system in such a way
that it does not alter the external behaviour of the code yet improves its internal structure”.
Modifying the internal structure amounts to program transformations, however, these
transformations preserve the external behaviour. When transformations are applied on the
source code from this perspective, the motivation is either to improve the comprehension or
perhaps apply standard practices. The former relates to increasing the human
comprehensibility of a given source code while the later describes modifying source code in a
certain way that is believed to be a best practise by the development community. Whatever be
the reason, there has been a major hoo-ha in the developer community in regards to
refactoring. Through this research, we intend to prove or disprove the extent to which
refactoring technique is being applied to the software systems. As a part of our research, in
this paper, we present a tool for detecting refactoring transformations in Java software
systems.

In this paper, we present a tool for automating refactorings detection as software systems
grow during the maintenance phase. The motivations behind analysing the growth of software
systems from refactorings perspective are diverse. Automation allows us to address at
empirically high scales many questions about the software growth and aging in relation to
refactorings. For example, as refactorings aim at enhancing software comprehension and
performance by improving the internal structure, the question is whether “more” refactorings
means better software quality (in terms of cohesion, coupling, reuse etc.).

2 THE UNDERLYING MODEL

The underlying model of the tool is based on the concept of sets and can be described as
follows. A Java software system is a collection of programming units (i.e. classes or
interfaces). Each unit is viewed as a set containing various elements such as fields, methods,
constructors, subclasses and superclasses. A field element is a set of two values that capture
field's name and field’s type. A method element is also a set of values such as method's access
label (public, private or protected), return type, name and the method's parameter set. The
constructor is modelled as set of values such as its name, access label and constructor’s
parameter set. As fields, methods and constructors are themselves modelled as sets of values,
it follows that a class is a modelled as a set of higher order. Program transformations are then
interpreted as changes in the set structure.

The set of values of the entire program are represented as an XML tree consisting of
sequences of (sub) trees representing the individual types. Using this representation, XML
data that appears to have been refactored can be identified by applying appropriate set of rules
or criteria, which differs from one refactoring to another. The tool compares different releases
of the same industrial software system according to a set of criteria thereby identifying the
corresponding refactoring. Software system releases are direct result of bug-fixing and/or
program re-structuring for the purpose of either maintenance or incorporating new features.
Changes corresponding to refactoring transformations are sorted out by applying appropriate
criteria.

3 SAMPLE DATA AND REFACTORINGS CONSIDERED

The tool was applied to seven different open source Java software systems of industrial
standards chosen on random basis to cover a range of application domains including
computer games (MegaMek and Tyrant), template engines (Velocity), compiler construction
(Antlr), SQL databases (HSQLDB), documentation support (JasperReports) and PDF file
manipulation (PDFBox). We applied the tool and followed the growth of each of these
systems through the different releases. The systems considered are (with release identifiers
between parenthesis):

1. MegaMek (MegaMek 029s1- s2, s3, s6, s7, s8, s9 & 029s10)
2. Tyrant (Tyrant 0309-10, 11, 12, 13, 14, 15, 16, 17 & 0318)
3. Velocity (Velocity 1.0- 1.0.1, 1.1, 1.2.rc3, 1.2, 1.3.rc1, 1.3, 1.3.1.rc2, 1.3.1 & 1.4)
4. Antlr (Antlr 2.6.0- 2.7.0, .1, .2, .3, .4 & 2.7.5rc3)
5. HSQLDB (HSQLDB 1.6.1- 1.7.0, 1.71, 1.7.2.11 & 1.7.3.1)
6. JasperReports (JasperReports 1.6.0- .1, .2 & 1.6.3)
7. PDFBox (PDFBox 0.6.1- .2, .3, .4, .5, .6 & 0.7a)

Detection of refactorings depends on the set-theoretic model described in the previous
section. It also depends on a set of rules (or criteria), each of which defines a refactoring. At
present, the model covers at least fifteen different refactorings ranging from simple (easy to
implement) to more complex refactorings (require major changes). In the present version, the
tool can detect the following refactorings: “Add Parameter”, “Encapsulate Downcast”, “Hide

Method”, “Rename Method”, “Remove Parameter”, “Encapsulate Field”, “Move Method”,
“Move Field”, “Rename Field”, “Push Down Field”, “Push Down Method”, “Pull Up Field”,
“Pull Up Method”, “Extract Subclass” and “Extract Superclass”. Fowler [2] divides
refactorings into different groups according to the activity employed in transforming the
system. According to Fowler’s classification, our refactorings are chosen from the groups:
“Making Method Calls Simpler”, “Organising Data”, “Moving Features among Objects” and
“Dealing with Generalisation”.

We note that some of the named refactorings are easier to implement than others. For
example, renaming and hiding of fields and/or methods are relatively simple and do not
require major program changes. Other refactorings, such as extracting sub- and/or
superclasses are more complex and require structural changes involving class hierarchy.

4 IMPLEMENTATION OF TOOL

A software system, implemented in Java, consists of classes distributed over several packages
underlying a hierarchy structure. Moreover, a class set can be represented as a tree where
fields, methods, constructors, subclasses as well as superclasses denote either nodes or leaves;
depending on whether an element is structured (has children) or simple (has no children).
XML format has a tree structure and, therefore, it is natural to choose XML format to study
the transformation between software systems releases using this format. Each program release
is represented as an XML document file with the main package occupying the root. Each
class is represented as a subtree having the name of the class and its classification (class or
interface), in form of attributes1. Fields, methods, constructors, subclasses and superclasses
constitute tree elements themselves.

Figure 1 displays the functionality of the tool in sequential order of execution. Phase-1
produces an XML document file in one-go for each release of each software system (referred
to as API). Once any two consecutive releases of an API are parsed into XML files, we are
ready for phase-2. In pahse-2, consecutive releases of all API’s are compared (one by one).
Once all the consecutive releases of each and every API are compared, we are ready for
phase-3. Phase-3 involves gathering statistics about how many refactorings have been
performed.

Parsing involves extracting data that is relevant for detecting any of the fifteen refactorings
(discussed above), formatting the data and saving it in an XML file. The resulting files are
compared according to a particular type of refactoring, which dictates the criteria. The result
of the comparison is reported (in XML format) if a refactoring appears to have been
performed on the source code. The process can be repeated arbitrarily for different
consecutive versions and for certain types of refactorings’. Theoretically, all refactorings can
be detected using this approach. At present, however, our parser is hard coded to produce a
limited XML repository, which can only serve the purpose of detecting above-mentioned 15
refactorings.

The tool makes use of recoder API [7]– an open source, object based, Java source code
transformation tool – to parse java source code (Phase 1). Recoder API in turn depends on the
JavaCC [3] compiler tool, which is customised to be used as a part of recoder API. The tool
also makes use of JDOM API [4] to parse XML documents, build the java based XML
documents and to traverse the XML tree structure (Phases 2 & 3).

1 In XML, attributes are used to describe elements or to provide additional information about the
elements.

PHASE1

HSQLDB 1.7.1

Java Source
Parser

1.
 In

pu
t

HSQLDB 1.7.0
1.1

. O
utp

ut

2.
 In

pu
t

2.1. Output

3.1 Input

3.2 Input

PHASE2

Refactoring Detector

3.
3

O
u t

pu
t

PHASE3

Result Accumulator

4.
1

In
pu

t

RenameMethod
 Antlr : 5
 MegaMek : 10
 …..
 …..
 Velocity : 25

4.2. Output

Hsqldb170.xml

Hsqldb171.xml

Hsqldb170VS171.xml

Figure 1: Pictorial representation of the tool

4.1 THREE DIFFERENT PROCESSING PHASES

The first phase consists of parsing the code of consecutive software releases and generating
XML representations. Data is extracted from the source code includes: root package, package
name, type (class or interface) name, whether the type is an interface, the set of fields (if there
are any) each with its name, type and visibility, constructors, their names, visibility and
parameters, and lastly, methods with their names, visibility, return type and the set of
parameters. Figures 2 and 3 show extracts of the of the XML tree generated by parsing 1.7.0
release and 1.7.1 releases of HSQLDB software, respectively.

Figure 2: A partial imprint of parsed HSQLDB API release 1.7.0.

The second phase deals with comparing the resulting representations according to a particular
refactoring. The result of this phase is an XML file containing specific information about
class entity and the refactoring. For example, if a “Remove Parameter” has occurred, the
XML tree structure looks like Figure 4.

Figure 3: A partial imprint of parsed HSQLDB API release 1.7.1.

Figure 4: Results of comparison between the two releases of HSQLDB
API for “Remove Parameter” refactoring.

The third phase amounts to reading the XML files generated in the second phase and printing
out the number of refactorings that took place.

To achieve high flexibility, configuration files are used to store parameter values needed for
the processing of source code. The set of parameters include information about the paths of
the system releases to be analysed, names of XML output files and name of the refactoring to
be detected and so on. Specifically, in the first phase, we need to provide the parser with three
parameters:

a) path to the location where the source code of a particular release of a software system
or API (for example, HSQLDB’s release 1.7.0) is saved;

b) the starting package name of the API that we want to inspect;
c) the absolute path and name of XML file, where we want the parsed contents to go.

In the second phase, we need four parameters. The first two parameters are absolute path
names of the two XML source files that were produced by executing the first phase twice (the
first time to parse a lower release and the second time to parse higher release of the same
software system). For example, the first time we executed phase 1, we parsed HSQLDB’s
release 1.7.0 and the second time to parse release 1.7.1. The third parameter is the absolute
path name of XML output file and the fourth is the refactoring that we want to detect. Finally,
to execute phase 3, we need two parameters. The first is absolute location to where the
hardcoded 43 XML files (containing results) must exist in each folder (resembling the

refactoring name) and the second is either 1 refactoring name or “ALL” to indicate whether
we want to collect statistics for 1 refactoring or all.

4.2 CODE PROCESSING AND ANALYSIS

The tool parses consecutive software releases implemented in Java and provides information
about the number of fifteen different refactorings that has occurred during the transition from
one release to the next. The processing of source code leading to the extraction of the number
of refactorings that have taken place passes through three different phases, as depicted in the
previous section.

4.2.1 PARSING PROBLEMS AND DEPENDANCIES

Parsing requires the availability of all dependencies of the given source code that is about to
be parsed. Dependencies can be expressed as internal or external dependencies. Internal
dependencies are auxiliary packages containing utility classes that are normally delivered
with the software relaese. External dependencies are that on which a software system depends
to get some work done but it is not a physical part of the software system. Such dependencies
are normally available in form of jars. Both the internal and external dependencies are passed
to the parser via a configuration file, which is again written in XML format. Various samples
of the software systems investigated showed (as expected) increase in size and (consequently)
increase in the number of dependencies. These dependencies must be identified before
parsing can begin.

Apart from dependecies, the root location and the root package must be passed to the parser in
the first phase. Root location is an absolute path, which represents the tip of root package. The
root package is a package whose source code we want to parse. It may internally depend on
auxiliary packages. Additionally, a root package may also depend on external other APIs.
Finally, the output folder is used to store the tree representation of the system release in XML
format.

Figure 5 depicts an example of parsing Antlr 2.6.0. which has internal dependencies but no
external dependencies. Similarly, for each release of each API these inputs are to be
determined before parsing can be carried out. The table A1 in Appendix A shows exactly
what is required for each release of all sample software systems in order to parse.

Root Location

Root Package

Dependency

XMLOutputFolder

External
Dependencies

Figure 5: Illustrating inputs required by Parser.

We encountered some problems whilst parsing individual releases. These problems were
either due to the offending statements that which the JavaCC parser (embedded in Recoder
API) couldn’t deal with or unupdated bytecodes in the external dependencies. For example,

Tyrant 0.3.1.3 release and later are susceptible to an offending statement found in a class
called “Scripts”. The statement is as follows:

String sn=new String[] {"skill", "strength", …, "craft"} [Being.statIndex(stat)] ;

A work around involved modifying the source code to parenthesize it in following manner:

String sn=(new String[] {"skill", "strength", …, "craft"}) [Being.statIndex(stat)] ;

Another example from parsing Velocity software releases 1.0, 1.01. and 1.1 which depend on
jdom-b6.jar. The parser failed to process some of the bytecodes in jdom-b6.jar. These
bytecodes must be replaced with its original source code, which is downloadble from jdom
archives (available on www.jdom.org). The list of bytecodes that need to be replaced, belong
to org.jdom, org.jdom.input and org.jdom.output packages are: Attribute, CDATA, Comment,
DocType, Document, Element, Entity.class, IllegalAddException, IllegalDataException,
IllegalNameException, JDOMException, SAXBuilder, SAXOutputter, XMLOutputter and
ProcessingInstruction.

Similar parsing problems exist with Velocity software specifically with releases starting from
1.2-rc3 to 1.3.1. Only this time, the problems are related to jdom-b7.jar instead of jdom-
b6.jar. However, the same solution can be applied as with jdom-b6.jar.

4.2.2 REFACTORING DETECTION CRITERIA: EXAMPLES

Each refactoring transformation is defined through a set of rules or criteria. In the second
phase, XML tree representations of two consecutive releases are traversed and evaluated
according to different criteria defining different refactorings. For example, to detect whether
“Move Field” refactoring has taken place in the transition from one release to the next, the
tool checks whether:

1. A field (name, type) that appears in a class type (belonging to older version) but
appears to be missing i.e. dropped from the corresponding type (belonging to later
version); and

2. the field (name, type) must not appear in any superclass or subclass of the original
type; and

3. a similar field (name, type) appears to have been added to another type (belonging
to later version); and

4. whose corresponding type in former version, if there is any, must not contain the
field in question.

If entire criteria (clauses 1 to 4) is met for a field, under investigation, than the tool reports
each such field as a “Move Field”. Each such field along with its type information qualifies
as a part of results in XML format (See Figure 4 for an example of generated XML file on
“Remove Parameter”). The criteria for “Move Method” refactoring are similar bearing in
mind that a method representation includes (access label, name, return type, parameter list).

The criteria for “Extract Superclass” is as follows:

1. A class type whose unaccounted fields or methods are pulled up into a newly created
superclass (that does not exists in former release) becomes an extracted superclass;
and

2. the class from which this superclass was extracted becomes the base type.

The reported XML file includes the base class name with all the fields and methods that have
been pulled up to define the new superclass in the later version. The criteria for
“Extract Subclass” are same as that of “Extract Superclass” except that instead of pulling the
fields or methods up the hierarchy, they are pushed down the hierarchy. In this case, we
consider the source type as a source of extracted subclass.

4.2.3 RESULTS

In this section, we present a sample of results obtained from applying the tool. These results
constitute part of the output of the third and final phase where refactorings are counted after
they were detected and reported. Due to space restrictions we refrain from presenting full
details and refer the reader to [1] where we give full account of results in different formats.

Table 1 shows the frequencies of refactorings occurred when comparing consecutive releases
of the HSQLDB software. The first column refers to refactorings identified in the transition
from release version 1.6.1 into 1.7.0. The next column to those identified in the changes
occurred in transforming 1.7.0 into 1.7.1. The third and fourth columns follow the same
pattern showing the number of refactorings between consecutive releases. We note the high
frequency of simple refactorings such as “Rename Method” and “Rename Field” and
relatively lower occurrences of more complex refactorings such as “Extract Subclass” and
“Extract Superclass”. Remarkable is the absence of any of the fifteen refactorings in the last
transition between 1.7.2 and 1.7.3. We notice a pattern of decline in the number of
refactorings after reaching a “peak” (here, in 1.7.0 1.7.1 and 1.7.1 1.7.2) over all the
software systems studied in this research.

HSQLDB 1.6.1 1.7.0 1.7.0 1.7.1 1.7.1 1.7.2 1.7.2 1.7.3
Encapsulate Downcast 0 0 0 0
Encapsulate Field 0 0 0 0
Hide Method 3 4 1 0
Rename Method 16 3 57 0
Rename Field 30 7 121 0
Move Method 13 1 25 0
Move Field 6 37 57 0
PushDown Method 0 0 0 0
PushDown Field 0 16 3 0
PullUp Method 0 0 4 0
PullUp Field 0 1 3 0
AddMeth. Parameter 9 6 24 0
RemoveMeth. Param. 3 1 3 0
Extract Superclass 0 1 6 0
Extract Subclass 0 2 3 0

Table 1. Refactorings identified between consecutive releases of HSQLDB

The frequencies of fifteen refactorings occurring over all the releases in the seven software
systems are depicted in Table 2. A trend noticed in the HSQLDB software persists here,
namely, the high number of simple refactorings compared to the number of more complex
refactorings.

 Mega
Mek

Jasper
Reports

Antlr Tyrant PDF
Box

Velocity HSQL
DB

Encapsulate Downcast 0 0 0 0 0 0 0
Encapsulate Field 0 0 0 2 1 9 0
Hide Method 0 0 0 1 0 4 8
Rename Method 1 1 8 12 14 55 76
Rename Field 0 7 7 9 5 23 158
Move Method 0 0 6 3 16 27 39
Move Field 0 2 6 0 6 21 100
PushDown Method 0 0 0 0 0 6 0
PushDown Field 0 0 0 0 0 7 19
PullUp Method 0 0 5 1 0 55 4
PullUp Field 0 0 0 0 0 10 4
AddMeth. Parameter 0 5 10 17 10 18 39
RemoveMeth. Param. 1 1 8 12 14 55 76
Extract Superclass 0 0 0 15 0 1 7
Extract Subclass 0 0 0 1 0 0 5

Table 2. Refactorings frequencies of all software systems over all releases

5 CONCLUSION AND FUTURE WORK

Refactoring transformations are meant to improve software comprehension and reduce
software aging. This paper presents a tool for automating the analysis of software systems
developments from refactorings perspective. Studying the refactorings trends as software
systems grow, gives us a clue of the systems’ quality. At present, the underlying model and
consequently the tool cover a limited number of refactgorings. We are planning to extend to
the scope of the tool to cover more refactorings. We are also interested in wrapping the tool in
a GUI interface to make the investigation of refactoring trends in software development
easier.

6 REFERENCES

[1] D. Advani, Y. Hassoun and S. Counsell “Refactoring trends across N versions of N Java
open source systems: an empirical study”, Technical Report BBKCS-05-02, Birkbeck
College, School of Computer Science and Information Systems, 2005.
[2] M. Fowler (1999), K. Beck, J. Brant, W. Opdyke and D. Roberts (1999), Refactoring:
Improving the design of existing code, Addison Wesley, 1999.
[3] JavaCC, JavaCC Parser, Available [ONLINE] from [https://javacc.dev.java.net/], Last
Accessed 22nd August 2004.
[4] JDOM, JDOM API, Available [ONLINE] from [http://www.jdom.org], Last Accessed on
23rd August 2004.
[5] W. Opdyke. Refactoring object-oriented frameworks, Ph.D. Thesis, University of Illinois.
1992.
[6] L. Tokuda and D. Batory. Evolving object-oriented designs with refactorings. Automated
Software Engineering, 8:89-120, 2001.
[7] Recoder, Recoder API, Available [ONLINE] from [http://recoder.sourceforge.net/], Last
Accessed on 23rd August 2004.

Appendix A – Release wise internal and external dependencies

 Release Internal

Dependencies.
External Dependencies

1 Antlr 2.6.0 \cpp None
2 Antlr 2.7.0-.1,.2,.3,.4 &

.5rc3
\lib None

3 HSQLDB1.6.1 \lib junit.jar
4 HSQLDB1.7.0, .1 None servlet.jar,junit.jar
5 HSQLDB1.7.2.11 &

.3.1
None servlet.jar,junit.jar,jsse.jar

6 JasperReports 1.6.0, .1,
.2 & .3

None ant-1.5.1.jar, bsh-1.3.0.jar, commons-
beanutils-1.5.jar, commons-collections-
2.1.jar, commons-digester-1.3.jar,
commons-logging-1.0.2.jar, commons-
logging-api-1.0.2.jar, hsqldb-1.61.jar,
itext-1.01.jar, poi-2.0-final-20040126.jar,
servlet.jar, xalan.jar, xercesImpl.jar,
xmlParserAPIs.jar

7 MegaMek029s1-s2, s3,
s6, s7, s8, s9 & s10

None collections.jar;Tinyxml.jar

8 PDFBox0.6.1, .2, .3, .4,
.5, .6 & .7a

None ant.jar, junit.jar, log4j.jar,lucene-1.2.jar,
lucene-demos-1.2.jar

9 Velocity1.0 None ant-1.3-optional.jar, antlr-runtime.jar,
fop-bin-0_17_0.jar, JavaClass.jar, jdom-
b6.jar, junit-3.2.jar, log.jar, log4j-
1.0.4.jar, log4j-core-1.0.4.jar, oro.jar,
servlet.jar, w3c.jar, werken.xpath.jar,
xalan-2.0.0.jar, xerces-1.3.0.jar

10 Velocity1.0.1 None // same as above plus ant-1.3.jar
11 Velocity1.1 None Antlr-runtime.jar, commons-

collections.jar, fop-bin-0_17_0.jar,
JavaClass.jar, jdom-b6.jar, junit-3.2.jar,
log.jar, log4j-1.0.4.jar, log4j-core-
1.0.4.jar, oro.jar, servlet.jar, w3c.jar,
werken.xpath.jar, xalan-2.0.0.jar, xerces-
1.3.0.jar

12 Velocity1.2.rc3 &
Velocity1.2

None // as above with xalan-2.0.0.jar & xerces-
1.3.0.jar missing

13 Velocity1.3.rc1- 1.3,
1.3.1.rc2, 1.3.1

None antlr-runtime.jar, bcel-5.0rc1.jar,
commons-collections.jar, fop-bin-
0_17_0.jar, jdom-b7.jar, junit-3.7.jar,
log4j-1.1.3.jar, log4j-core-1.1.3.jar,
logkit-1.0.1.jar, oro.jar, servlet.jar,
w3c.jar, velocity-dep-1.3.jar,
werken.xpath.jar

14 Velocity1.4 None // as above with jdom-b9.jar & velocity-
dep-1.4.jar replacing jdom-b7.jar &
velocity-dep-1.3.jar, resp.

15 Tyrant0309-10, 11, 12,
13, 14, 15

None None

16 Tyrant0316-17, 18 None junit.jar
Table A1: Internal and external dependencies of the chosen software systems

