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Abstract. LiTGen is an easy to use and tune open-loop traffic genera-
tor that statistically models wireless traffic on a per user and application
basis. We first show how to calibrate the underlying hierarchical model,
from packet level capture originating in an ISP wireless network. Using
wavelet and semi-experiments analysis, we then prove LiTGen’s abil-
ity to reproduce accurately the captured traffic burstiness and internal
properties over a wide range of timescales. In addition the flexibility of
LiTGen enables us to investigate the sensitivity of the traffic structure
with respect to the possible distributions of the random variables in-
volved in the model. Finally this study helps understanding the traffic
scaling behaviors and their corresponding internal structure.
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1 Introduction

The limited resources of wireless access networks, the users’ contracts diversity
and mobility are particularities that greatly impact the design of traffic mod-
els. Traffic generators proposed in the past years modeled primarily web traffic.
[1] and [2] proposed hierarchical models, but did not validate them against real
traffic traces. Recently, [3] is an effort to generate representative traffic for mul-
tiple and independent applications. The model underlying this generator is not
designed to specify the packet level dynamics neither to capture the traffic scal-
ing structure. In [4], the authors argue that network characteristics must be
emulated to reproduce the burstiness observed in captured traffic. Their traffic
generator relies then on a third party, link and network layers emulator (requir-
ing the use of 11 cutting-edge computers). Thus, this opaque emulator makes
the investigation of the obtained traffic scaling structure more complex.

In this paper, we present LiTGen, a “Light Traffic Generator” that statis-
tically models wireless traffic. LiTGen relies on a simple hierarchical description
of traffic entities, most of them modeled by uncorrelated random variables and
renewal processes. The confrontation of LiTGen to real traces captured on an
operational wireless network1 proves its ability to reproduce accurately, not only
1 This study would not have been conducted without the support of Sprint Labs. The

authors would like to thank Sprint Labs for giving access to the wireless traffic traces
and particularly Ashwin Sridharan for his support.



the observed traffic scaling behaviors over a wide range of timescales, but also
the intrinsic properties of the traffic. This design does not require to consider
network or protocol characteristics (e.g. RTT, link capacities, TCP dynamics. . . )
and allows fast computation executed on a commonplace computer. To the best
of our knowledge, we are the first ones to produce synthetic wireless traffic that
accurately reflects the first two orders of the packets arrivals time series.

In the rest of this paper, section 2 describes LiTGen, its underlying model
and how it generates synthetic traces. Section 3 validates LiTGen’s ability to
reproduce the complexity of the original traffic correlation structure, for both
mail and peer-to-peer (P2P) traffics. We then investigate in section 4, the sen-
sitivity of the traffic structure with respect to the distributions of the random
variables involved in the underlying model. Finally we conclude this paper with
a summary of our findings and directions for future work.

2 Building a lightweight generator

2.1 Underlying Model

Earlier works identified three possible causes of correlation in IP traffic: the pres-
ence of heavy-tailed distributions [5], the superimposition of independent traffic
sources [6] and the inherent structure and interactions of protocol layers [7].
These two last assumptions call on the conception of our traffic generator to
be based on a user-oriented approach and a hierarchical model. This model is
made of several semantically meaningful levels, each of them characterized by a
specific traffic entity. For each traffic entity, we define a set of random variables
either related to a time or a size characterization.
Session level. We assume each user undergoes an infinite succession of session
and inter-session periods. During a session, a user makes use of the network
resources by downloading a certain number of objects. We define two random
variables to characterize this level: Nsession, the session size, i.e. the number of
objects downloaded during a session and, Tis, the inter-session duration.
Object level. A session is made of one or several objects. Indeed, a session is
split up into a set of requests (sent by user) and responses (from the server),
where responses gather the session’s objects. In the case of web, objects may be
web pages’ main bodies (HTML skeletons) or embedded pictures [8]2. In the case
of mail, objects may be servers responses to clients requests (e.g. e-mails, clients
accounts meta-data. . . ). In the case of P2P, objects may be files or chunks of
files. The description of this level requires the definition of two random variables:
Nobj , the object size, i.e. the number of IP packets in an object and, IAobj , the
objects inter-arrival times in a session.
Packet level. Finally, each object is made of a set of packets. The arrival process
of packets in an object can be described by giving the successive inter-arrival
times between packets, characterized by random variables IApkt.
2 In this previous study applied to web traffic, the underlying model was made of

four levels, including web pages level. This extra level, not described here, is not
relevant in the context of mail and P2P, but is kept for the generation of web traffic.
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Fig. 1. Steps for filtering P2P traffic and identifying per-user traffic entities.

So far, we made no assumption concerning the random variables correlation
structure. Indeed, inter-dependence mechanisms can be taken into account by
introducing correlations between random variables. Of course, the objective here
is to remain as simple as possible and to introduce dependencies only if neces-
sary, as discussed in section 3. Note that one can equivalently remove from the
hierarchy the session level by including the inter-session durations in the objects
inter-arrivals distribution. Nevertheless, it would make the characterization of
IAobj more complex and LiTGen less easy to use in practice.

2.2 Wireless Trace Analysis

In order to calibrate and validate LiTGen underlying model, we benefit from data
traces captured on the Sprint PCS CDMA-1xRTT access network. Traces have
been captured on an OC-3 collecting link spanning a large geographical area and
so tens of wireless access cells. The traffic capture consists in two unidirectional
24 hours long traces, captured simultaneously. Each of them is composed of a
collection of IP packets with accurate timestamps and entire TCP/IP headers.
Thus, we have access to the well-known 5-tuple: {IP destination, IP source, port
destination, port source, transport protocol}. These traces have already been
used in a previous study [9] that gives more details on the raw characteristics of
this data traffic and its differences with wireline traffic.

Because of its small representation (less than 10%) in the traces and to narrow
down the analysis, we exclude the UDP traffic from our study and focus on
TCP traffic. Moreover, we are not interested in the modeling of the interactions
between the upload and the download traffics. Indeed, we want to keep a very
simple underlying model which do not rely on a network or TCP emulator.
Finally, we focus on the traffic intended to the wireless terminals (download
path). As a matter of fact, the upload wireless traffic contains mostly connection
requests and ACKs, while the download wireless path is richer and has more
importance from an operational point of view.

The model calibration requires to identify the characteristics of the traffic
entities from the captured set of packets. To do so, we first filter traffic corre-
sponding to a given application and then identify per-user traffic entities based
on the 5-tuple associated to each packet (see Figure 1).
Packet Level. A filter based on a source port number selection retains traffic
specific to a given application (e.g. 110, 143, 220 for the mail traffic). A user’s
packets share the same destination IP address and are then grouped into subsets
of a given {IP source, port destination} pair, corresponding typically to the server
IP address contacted and the port opened on the user’s side. All resulting subsets



of a given user correspond then to all flows he requested (considering the given
application).
Object Level. After applying the application and user filters, packets subsets are
grouped to identify objects by means of the method presented in [10]. Based on
the analysis of the TCP headers, this method observes the TCP flags (SYN, FIN,
etc) to differentiate objects within packets subsets (characterized by a rupture
in the acknowledgment number series).
Session Level. Finally, we aggregate objects into sessions. The definition of the
sessions relies on active periods during which one or several objects are being
downloaded. Those periods are separated by inactive periods. We use a temporal
clustering method (also used in [1, 2, 10] for the retrieving of web pages) to infer
the sessions’ boundaries. An inactive period that lasts for more than a predefined
threshold determines the precedent session termination. We fixed empirically the
threshold to 300 seconds3.

2.3 Traffic Generation

Contrarily to the trace analysis, LiTGen generates traffic from upper level en-
tities (sessions) to lower ones (packets). LiTGen is used for the generation of
traffic corresponding to different user’s applications. For each kind of traffic, we
first fix the number of users of the corresponding application. LiTGen generates
then traffic for each user independently. The final synthetic trace is obtained by
superimposing synthetic traffic of all users and all applications. For validation
purposes we can extract the proportion and the number of users of each appli-
cation from the captured trace. In an operational network these statistics can
be derived from operator’s knowledge of customer’s subscribes services4.

3 Validation

LiTGen is evaluated on its ability to reproduce the complexity of the traffic
correlation structure in the captured packet traces. For this purpose, we use an
energy spectrum comparison method to match the packets arrivals time series
extracted from the original and corresponding synthetic traces. Since the 24-hour
trace is not stationary, the analysis is performed on a one-hour period extracted
from the entire trace. The results presented here correspond to a given one-hour
period; similar results were obtained for other one-hour extracted traces.

3.1 Wavelet analysis

We use the Logscale Diagram Estimate or LDE [11] to perform analysis based on
discrete wavelet transform. For a given time series of packets arrivals, the LDE
produces a logarithm plot of the data wavelet spectrum estimates. Although the
LDE has the ability to identify correlation structures in the data trace [12], we
mainly use it to assess the accuracy of the synthetic traces produced by LiTGen.
3 Note that the value of this threshold does not impact significantly the results.
4 Such a finite assumption is typically used for network planning to predict the active

population that will be served during a given time.
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Fig. 2. Model evaluation and comparison of the mail, P2P and web spectra.

We first focus on web, mail and P2P traffic and generate three independent
synthetic traces using a simple version of our generator. With this so called ba-
sic LiTGen, all traffic entities are generated from renewal processes using the
empirical distributions extracted from the captured trace. No other additional
dependency is introduced between the random variables. The three synthetic
traces are then merged into a single one and compared to the filtered captured
traffic composed of the same three applications. Figure 2(a) shows the result-
ing LDE spectra. Clearly, the synthetic trace produced by basic LiTGen (thin
curve) does not match the captured traffic spectrum (thick gray curve). This
simple version of LiTGen’s underlying model does not succeed in reproducing
the captured traffic scaling structure with a good accuracy.

Previous studies (e.g. [9]) pointed out that a great part of the LDE energy
was due to the organization of packets within flows. This leads to refine LiT-
Gen’s model by introducing a dependency between the arrival process of packets
within an object and the corresponding object’s size. Note that this dependency
may reflect the impact of TCP on packets inter-arrival times in objects of dif-
ferent sizes. In this extension, referred to as extended LiTGen, the arrival of
packets within objects is still modeled by renewal processes, but for an object
of a given size s, the inter-arrival random variables IAs

pkt now depends on the
object size. In order to evaluate extended LiTGen, we derive size-dependent em-
pirical distributions of in-objects packets inter-arrivals, from the captured trace.
When generating traffic, the packets inter-arrivals in an object of size s are taken
from the corresponding IAs

pkt distribution. The spectra obtained with extended
LiTGen (circle curve in figure 2(a)) is barely distinguishable from the captured
one. As a first result, the introduction of a simple dependency between the ob-
jects sizes and the packets inter-arrivals succeeds in reproducing accurately the
traffic correlation structure, without taking into account network characteristics
(such as TCP dynamics, RTT, loss rates). It thus appear that we do not need to
introduce more complex non-renewal processes in the model, leading to a much
simpler generator than the one developed in [4].

These three kinds of traffic, however, do not appear in the same proportions
in the captured trace: while carrying 92.7% of the packets and 95.6% of the
flows, web is the dominant application; mail carries 6.8% of the packets and



488mus 0.002 0.0078 0.031 0.12 0.5 2s 8s 32s 128s 512s

−11 −9 −7 −5 −3 −1 1 3 5 7 9
2

6

10

14

18

scale j

lo
g 2 V

ar
ia

nc
e(

j)

Captured trace
Synthetic trace using "basic" LiTGen
Synthetic trace using "extended" LiTGen

(a) Mail traffic

488mus0.002 0.0078 0.031 0.12 0.5 2s 8s 32s 128s 512s 2048s

−11 −9 −7 −5 −3 −1 1 3 5 7 9 11
−1

3

7

11

15

scale j

lo
g 2 V

ar
ia

nc
e(

j)

Captured trace
Synthetic trace using "basic" LiTGen
Synthetic trace using "extended" LiTGen

(b) P2P traffic

Fig. 3. Model evaluation: “basic” VS “extended” LiTGen in mail and P2P traffic

3.9% of the flows; P2P carries 0.5% of the packets and 0.5% of the flows. Fig-
ure 2(b) clearly indicates the differences between the three applications spectra
in the captured trace that calls for studying each application independently. Fig-
ures 2(a) and 2(b) also show that our extended model accurately models the web
traffic, conclusion reinforced by our previous study [8]. In the following, we thus
focus on the mail and P2P traffics, which have been hidden by the predominant
web traffic so far.

Figure 3(a) presents the mail traffic spectra. The reference spectrum (thick
gray curve) corresponds to the captured mail traffic only. The basic LiTGen’s
underlying model (thin curve) reproduces in quite a good way the mail traffic
spectrum. Extended LiTGen improves the results showing LiTGen’s good ability
to model mail traffic. Figure 3(b) shows the case of P2P traffic. Basic LiTGen
fails to reproduce the captured traffic correlation structure for the scales above
j = 0. The dip of reference spectrum at scales around j = 2 indicates a possible
periodic behavior which we do not capture. Although the structural dependency
introduced between Nobj and IApkt in extended LiTGen does not lead to the
same improvement when dealing with P2P traffic, it allows the corresponding
spectra to match the reference one (except over scales comprised between j = 0
and j = 5). Due to space limitation, we do not provide here the investigation
required to capture this apparent periodic behavior and leave it as future work.

While LiTGen exhibits good results on the overall spectra, we need a further
advanced methodology to validate the internal properties of the synthetic traffic.

3.2 Semi-experiments method

Semi-experiments have been introduced in [13] and consist in an arbitrary but
insightful manipulation of internal parameters of the time series studied. The
comparison of the energy spectrum before and after the semi-experiment leads
to conclusions about the importance of the role played by the parameters mod-
ified by the semi-experiment. We apply the same set of semi-experiments to the
captured traces and the synthetic traces generated by extended LiTGen. We
then compare the impact of the internal manipulations to the two time series
for the mail (Fig.4) and the P2P (Fig.5) traffic.
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Fig. 4. Semi-experiments: mail trace
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Fig. 5. Semi-experiments: P2P trace

T-Pkt is a Truncation manipulation that allows to examine the objects
arrival process by keeping only the first packet of each object. Removing packets
decreases the energy of the spectrum that takes smaller values. As shown in
figures 4 and 5, T-Pkt has a similar impact on the captured and the synthetic
traces, for both mail and P2P traffic.

The S-Thin manipulation allows to test for the independence of objects.
It randomly Selects objects with some probability, here equal to 0.9. When
applying S-Thin, the spectra of the captured and synthetic trace, for the mail
as well as P2P traffic, keep the same shape but drop by a small amount close to
log2(0.9) = −0.15.

A-Pois allows to examine the interactions between objects. This manipu-
lation repositions the objects Arrival times according to a Poisson process and
randomly permutes the objects order (while preserving the internal packet struc-
ture of objects). While A-Pois is a drastic manipulation, it has very little (and
similar) effect on the spectra of all traces, indicating the negligible contribution
of object arrival process in comparison to packets arrival.

P-Uni confirms this conclusion since it allows to examine the impact of in-
objects packets burstiness. P-Uni uniformly distributes arrival times of packets
in each object while preserving packets count and object duration. This manip-
ulation flattens the spectrum from scales j = −11 to j = −5 for mail (resp. from
scales j = −11 to j = 2 for P2P) in a comparable manner for the captured and
synthetic traces.
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Fig. 6. Mail: test for the memoryless hypothesis

As a conclusion, the captured and synthetic traces spectra present simi-
lar reactions to each semi-experiment manipulation. This indicates that LiT-
Gen captured the key internal properties of the traffic highlighted by the semi-
experiments, i.e. the object arrival process has few influence on the traffic bursti-
ness; the objects can be considered as independent and the packets arrival pro-
cess within objects contributes mostly to the energy spectrum. Note that the
simple structure of our traffic description, which still relies on renewal processes,
is sufficient to reproduce these traffic internal properties.

4 Impact of traffic entities properties

We first investigate if “well-known” distributions can accurately approximate
the empirical ones. To this aim, we use statistical quality of fit tests (e.g. KS-
test) and compute indices of goodness of fit (e.g. Sum of Squares due to Error,
R-Square. . . ) to determine the “best” approximation. We led to similar conclu-
sions for mail and P2P traffic. First, heavy-tailed distributions approximate well
the random variables Nsession and Nobj (Pareto distributions) as well as IAobj

(Weibull distributions) and IApkt (close to lognormal distributions). Then ex-
ponential distributions approximate well TIS .

The flexibility of extended LiTGen enables us to investigate the sensitivity
of the traffic correlation structure with regards to the random variable distri-
butions. To this aim, we replace individually the experimental distribution of
each random variable by a memoryless distribution (exponential or geometric)
of same mean. We thus create five synthetic traces, each one corresponding to
a given random variable (Nsession, TIS , Nobj , IAobj and IApkt). We then com-
pare these traces to the reference synthetic trace generated by extended LiTGen
calibrated with the experimental distributions.

Observing first the mail traffic, figure 6(a) shows that modeling the random
variables IAobj , TIS and Nsession by memoryless distributions has a very small
impact on the spectra of the LDE. On the contrary, modeling IApkt and Nobj by
memoryless distributions widely impacts the spectra, as shown in figure 6(b). As
an example, modeling IApkt by an exponential distribution completely erases the
correlation existing between packets inter-arrivals and flattens the spectrum at
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Fig. 7. P2P: test for the memoryless hypothesis

scales below j = −3. This confirms the results obtained by the semi-experiments
methodology that designated the in-object packets inter-arrival structure as the
main source of energy in the spectrum. As shown in figure 7 similar conclusions
can be drawn for P2P traffic.

For both P2P and mail, we observe that modeling IAobj , Tis and Nsession

by memoryless distributions is a realistic assumption that leads to an extremely
small loss of accuracy compared to the reference spectrum. On the contrary,
modeling IApkt and Nobj by memoryless distributions is far from realistic and
indicates the need to model these random variables more carefully.

This investigation leads then to very interesting results illustrated by the
number of objects within sessions Nsession and their arrival process IAobj . Al-
though the experimental distributions of these random variables are closely ap-
proximated by heavy-tailed distributions, we show that both distributions have
negligible influence on the scaling behaviors in traffic. The presence of heavy-
tailed distributions does not compulsorily imply a presupposed scaling behavior.

Nevertheless, the internal structure of objects has a strong influence on the
spectra. In both mail and P2P traffic, the investigation concerning the packets
inter-arrival distribution clearly points it out as the source of correlation in traffic
at small scales.

5 Conclusion

This paper describes LiTGen, a per-user oriented traffic generator. LiTGen
has the benefit to reproduce accurately the traffic scaling properties at small
and large time scales, while using a very simple underlying hierarchical model.
Thanks to LiTGen, we investigated the impact of the random variables distribu-
tions describing the IP traffic structure. This investigation is important for two
reasons. First it helps understanding the sensitivity of the traffic, with regards
to the distributions involved in its description, and then identify crucial param-
eters. It also gives insights to anyone willing to provide accurate traffic models.
Most analytical models rely on simple Markovian hypothesis and one must be
careful about their impact. Whenever useful to improve accuracy, one should
replace some of them (the proper ones) by more appropriate assumptions. As



an example, the exact original wireless traffic spectrum, can not be reproduced
without 1) taking into account the organization of packets within objects 2) the
use of heavy-tailed distributions to model objects size (in number of packets)
and respective packet inter-arrivals. Moreover, our study demonstrated that the
presence of heavy-tailed distributions in traffic does not necessarily implies the
correlation, some of them can be modeled by memoryless distributions without
impacting the traffic scaling properties.

This study also demonstrated the ability of a hierarchical model to repro-
duce accurately the characteristics of classes of traffic. The exhibition of results
corresponding to other datasets is part of our ongoing works. Precise classes
of applications (e.g. web and mail together, the main contributors to wireless
traffic) will be defined soon to specify the utilization domain of the hierarchical
model. While the results of LiTGen are proper for the P2P traffic, a more ac-
curate but simple model for P2P traffic and other classes of application is still
to be defined. This will become particularly important when mobile users will
massively adopt new services and decrease the domination of web application in
the overall traffic.
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