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Abstract.

An additive magic cube is a cubical array containing di�erent natural numbers

such that the sum of the numbers along every row and every diagonal is

the same. A multiplicative magic cube is cubical array containing mutually

di�erent natural numbers such that the product of the numbers along each

row and diagonal is the same. In this paper we give several ways to construct

additive and multiplicative magic cubes.

1. Introduction

Magic squares have fascinated people for centuries. An n × n additive magic

square contains the natural numbers 1, 2, . . . , n2, such that the sum of every

rows, column and diagonal is the same. Figure 1 depicts a 3 × 3, a 4 × 4 and

a 5× 5 table each containing a di�erent set of natural numbers in such a way

that the product of the numbers in every row, column and diagonal is the

same. (In the �rst table the product is 63, in the second one is 7! and in the

third one is 9!.) Such tables are called multiplicative magic squares (See [3]).

12 1 18
9 6 4
2 36 3

1 24 14 15
21 10 4 6
20 7 18 2
12 3 5 28

1 15 42 16 36
14 32 9 3 30
27 6 10 28 8
20 7 24 54 2
48 18 4 5 21

Fig. 1. Multiplicative magic squares
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A magic cube is a natural generalization of a magic square. (In this paper

we will call it an additive magic cube.) The �rst magic cube probably appeared

about 1640 in a letter of Pierre de Fermat (see [1, p. 365]). Information and

many interesting results about magic squares and cubes can be found in the

references and web-pages.

An additive magic cube of order n is a cubical array (3-dimensional matrix

of order n)
Mn = |mn(i, j, k); 1 ≤ i, j, k ≤ n|

containing natural numbers 1, 2, 3, . . . , n3 such that the sum of the numbers

along every row and diagonal is the same, i.e.
n(n3+1)

2 . By a row of a magic

cube we mean an n-tuple of elements having the same coordinates in two

places. (Note: We use the same term for a row or a column or a pilar.)

Every additive magic cube of order n has exactly 3n2 rows and 4 diagonals

connecting the eight corners of the cube.

In [4] there are depicted additive magic cubes M3 and M4.

A multiplicative magic cube of order n is a cubical array

Qn = |qn(i, j, k); 1 ≤ i, j, k ≤ n|
containing n3 mutually di�erent natural numbers such that the product of the

numbers along each row and every one of its four diagonals is the same. We

call this product the magic constant and denote σ(Qn).
Figure 2 shows Q3 with the magic constant (2.3.5)3. The element m3(1, 1, 1) =

18 is contained in the rows {18, 20, 75}, {18, 300, 5}, {18, 60, 25} and in the

diagonal {18, 30, 50}.

Fig. 2. Multiplicative magic cube Q3

In [4] it is proved that an additive magic cube Mn of order n exists for

every n �= 2. If we know a construction of Mn = |mn(i, j, k)|, then we can

easily make a multiplicative magic cube

Qn = |qn(i, j, k) = 2mn(i,j,k)−1; 1 ≤ i, j, k ≤ n|
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with the magic constant σ(Qn) = 2
n(n3−1)

2 . This paper contains formulas

for construction of magic cubes Mn and Qn for all n �= 2. Moreover, the

constructed cubes Qn have a signi�cantly smaller magic constant than cubes

constructed using (1).

We construct an additive magic cube Mn = |mn(i, j, k); 1 ≤ i, j, k ≤ n| of
order n and a multiplicative magic cube Qn = |qn(i, j, k); 1 ≤ i, j, k ≤ n| of
order n for all n �= 2 using the following formulas. We consider three cases (n
is an odd integer; if n is an even integer, then we distinguish whether n is or

is not divisible by four.) The correctness of formulas for additive magic cubes

follow immediately from the proofs in [4, 6].

We use the following notation:

x (mod n) is the remainder in the division of x by n,

x = n + 1 − x,

x∗ = min{x, x},

x̃ =

{
0 for 1 ≤ x ≤ n

2 ,

1 for n
2 < x ≤ n.

1. If n ≡ 1 (mod 2), then

mn(i, j, k) = αn2 + βn + γ + 1, (1.1)

qn(i, j, k) = 2α.3β .5γ , (1.2)

where

α = (i − j + k − 1) (mod n),
β = (i − j − k) (mod n),
γ = (i + j + k − 2) (mod n).

99 182 300 408 16
1456 75 102 4 792
600 816 1 198 364
204 8 1584 91 150
2 396 728 1200 51

26 540 952 80 33
135 238 20 264 208
1904 5 66 52 1080
40 528 13 270 476
132 104 2160 119 10

180 136 144 77 130
34 36 616 1040 450
9 154 260 360 272

1232 65 90 68 72
520 720 17 18 308

1st layer 2nd layer 3rd layer

680 48 11 234 420
12 88 1872 105 170
22 468 840 1360 3
117 210 340 24 176
1680 85 6 44 936

112 55 78 60 1224
440 624 15 306 28
156 120 2448 7 110
30 612 56 880 39
153 14 220 312 240

4th layer 5th layer

Fig. 3. Multiplicative magic cube Q5
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If n �≡ 0 (mod 3), then in every row and also in every diagonal Qn con-

structed by (1.2) there is exactly one number which is divisible by the zth
power but is not divisible by the (z + 1)th power of the number 2 (3 or

5, respectively). We obtain a multiplicative magic cube Qn with a smaller

magic constant σ(Qn) if in formula (1.2) we replace powers of 3 by the num-

bers (2β + 1) for β = 1, 2, . . . , n − 1 and the powers of 5 by the numbers

(2n + 2γ − 1) for γ = 1, 2, . . . , n − 1. Figure 3 shows �ve layers of Q5. (By

a di�erent substitution we can obtain a Q5 with a smaller magic constant).

2. If n ≡ 0 (mod 4), then

mn(i, j, k) =

{
(i − 1) n2 + (j − 1) n + k if F(i, j, k) = 1,
(i − 1) n2 + (j − 1) n + k if F(i, j, k) = 0;

(2.1)

qn(i, j, k) =

{
2(i−1).3(j−1).5(k−1) if F(i, j, k) = 1,
2(i−1).3(j−1).5(k−1) if F(i, j, k) = 0,

(2.2)

where F(i, j, k) = (i + ĩ + j + j̃ + k + k̃) (mod 2).

If n ≡ 0 (mod 4), we construct a cube Qn with a smaller magic constant

σ(Qn) using a method which we demonstrate in the following example. In

Figure 4 there are depicted the four layers of M4 (constructed by (2.1)) whose

numbers are the binary representation of the numbers m4(i, j, k) − 1.

000000 111110 111101 000011
111011 000101 000110 111000
110111 001001 001010 110100
001100 110010 110001 001111

101111 010001 010010 101100
010100 101010 101001 010111
011000 100110 100101 011011
100011 011101 011110 100000

1st layer 2nd layer

011111 100001 100010 011100
100100 011010 011001 100111
101000 010110 010101 101011
010011 101101 101110 010000

110000 001110 001101 110011
001011 110101 110110 001000
000111 111001 111010 000100
111100 000010 000001 111111

3rd layer 4th layer

Fig. 4

By closely examining Figure 4 you can �nd out that in every 4-tuple of

numbers in any row or diagonal it holds that on the zth position,
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z = 1, 2, . . . , 6, there are exactly two ones and two zeroes. We use this fact

in the construction. If b1b2b3 . . . b6 is the representation of the number

m4(i, j, k) lowered by 1 in binary code, then

q4(i, j, k) = 2b13b24b35b47b59b6 .

We have chosen the set {2, 3, 4, 5, 7, 9} in such a way that it does not contain

two nonempty subsets of numbers whose product is the same. The magic

constant of the cube Q4 (see Figure 5) is σ(Q4) = (2.3.4.5.7.9)2 = 57 153 600.

1 840 1080 63
1512 45 35 24
1890 36 28 30
20 42 54 1260

2520 27 21 40
15 56 72 945
12 70 90 756
126 540 420 2

1st layer 2nd layer

3780 18 14 60
10 84 108 630
8 105 135 504

189 360 280 3

6 140 180 378
252 270 210 4
315 216 168 5
120 7 9 7560

3rd layer 4th layer

Fig. 5. Multiplicative magic cube Q4

Because binary representation of elements (lowered by one) of the magic

cube Mn ful�lls the condition about the same number of ones and zeroes in

the corresponding positions, we can generalize the given construction for all

n ≡ 0 (mod 4).

3. If n ≡ 2 (mod 4) (in this case n
2 is odd and let t = n

2 ), then

mn(i, j, k) = d(u, v)t3 + mt(i∗, j∗, k∗), (3.1)

qn(i, j, k) = 7d(u,v).qt(i∗, j∗, k∗), (3.2)

where

qt(i∗, j∗, k∗) is constructed using (1.2),

u = (i∗ − j∗ + k∗) (mod t) + 1,

v = 4̃i + 2j̃ + k̃ + 1,

d(u, v) for 1 ≤ u ≤ t, 1 ≤ v ≤ 8 is de�ned by the table in Fig. 6,

(a = 1, 2, . . . , n−6
4 ).



72 Marián Trenkler

d(u, 1) d(u, 2) d(u, 3) d(u, 4) d(u, 5) d(u, 6) d(u, 7) d(u, 8)
d(1, v) 7 3 6 2 5 1 4 0
d(2, v) 3 7 2 6 1 5 0 4
d(3, v) 0 1 3 2 5 4 6 7

d(2a + 2, v) 0 1 2 3 4 5 6 7
d(2a + 3, v) 7 6 5 4 3 2 1 0

Figure 6

Problem 1. Using analogous formulas it is easy to make a computer

program which constructs an additive and a multiplicative magic square for

every n �= 2.

Problem 2. Find a smaller magic constant for a multiplicative magic

cubes of order n.

Remark. By the end of the 19-th century (see [1]) mathematicians began

to consider also 4-dimensional magic cubes. But only in 2001 the following

result was published:

Theorem. An additive magic d-dimensional cube of order n exists if and

only if d > 1 and n �= 2 or d = 1.

Similarly we can consider the existence of multiplicative magic d-dimen-

sional cubes for any natural d. The constructions given in [6] allow us to

experiment with magic cubes also in higher dimensional spaces.
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