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ABSTRACT 

Engineers often perform sensitivity analyses to explore 
how changes in the inputs of a physical process or a 
model affect the outputs.  This type of exploration is also 
important for the decision-making process.  Specifically, 
engineers may want to explore whether the available 
information is sufficient to make a robust decision, or 
whether there exists sufficient uncertainty—i.e., lack of 
information—that the optimal solution to the decision 
problem is unclear, in which case it can be said to be 
sensitive to information state.  In this paper, it is shown 
that an existing method for modeling and propagating 
uncertainty, called Probability Bounds Analysis (PBA), 
actually provides a general approach for exploring the 
global sensitivity of a decision problem that involves both 
probabilistic and imprecise information.  Specifically, it is 
shown that PBA conceptually generalizes an approach 
to sensitivity analysis suggested in the area of decision 
analysis.  The global nature of the analysis theoretically 
guarantees that the decision maker will identify any 
sensitivity in the formulated problem and information 
state.  However, a tradeoff is made in the numerical 
implementation of PBA; a particular existing 
implementation that preserves the guarantee of 
identifying existing sensitivity is overly conservative and 
can result in “false alarms.”  The use of interval 
arithmetic in sensitivity analysis is discussed, and 
additional advantages and limitations of PBA as a 
sensitivity analysis tool are identified. 

INTRODUCTION 

Engineers are often interested in how the conclusions of 
an analysis might change if the inputs or assumptions 
are changed.  In general, such a process of exploring 
how changes in inputs affect outputs is called a 
sensitivity analysis.  However, that specific phrase is 
used to describe several different methods in 
engineering applications.   

In this paper, sensitivity analysis is defined such that its 
primary goal is to examine whether the optimal solution 
to the decision problem is sensitive to the current 
information state, focusing on not only what information 
the decision maker (hereafter abbreviated as DM) has 
available, but also on what information the decision 
maker lacks.  By performing a sensitivity analysis, the 
DM is in essence checking whether his or her lack of 
knowledge affects what he or she decides.   

In this paper, two approaches to uncertainty modeling 
and sensitivity analysis are compared.  Specifically, the 
performance of Probability Bounds Analysis, or PBA [1], 
as a sensitivity analysis tool is examined via comparison 
with a decision analysis approach to sensitivity analysis  
[2-5], which will be referred to as DASA for brevity.   This 
comparison will reveal advantages and disadvantages of 
both approaches. 

A high-level view of PBA as a sensitivity analysis tool 
was presented by Ferson and coauthors [6, 7], and other 
existing work has compared the conclusions of DASA 
and PBA in the context of a specific environmentally 
benign design and manufacture example problem [8].  In 
this paper, the underlying, specific mathematical 
structure of the two approaches is compared. 

UNCERTAINTY IN ENGINEERING DESIGN 

Researchers in engineering design generally recognize 
two types of uncertainty: imprecision and variability (see 
[9] for an overview).  Variability is a description of 
naturally random behavior in a physical process or 
property, and it is also referred to as aleatory 
uncertainty, objective uncertainty, and irreducible 
uncertainty in the literature.  Probability theory is a 
natural model for this type of uncertainty. 

Imprecision, sometimes called epistemic uncertainty, 
incertitude, reducible uncertainty, or subjective 



2 

uncertainty, is due to a lack of knowledge or information.  
There are many sources of imprecision in engineering, 
including simplified behavioral models, limited data 
regarding environmental factors, incompletely elicited 
preferences, and unknown physical relationships [10].   

The distinction between variability and imprecision is not 
always clear philosophically, but in practice it is often 
useful to make such distinctions when modeling 
uncertainty [11].  More generally, it is useful to 
distinguish cases in which information is plentiful from 
cases in which information is scarce.  For example, how 
can one manage the efficient collection of information 
without explicitly acknowledging an existing lack of 
information? 

Engineers often recognize their lack of knowledge 
implicitly, even when they use mathematical formalisms 
such as precise probabilities that do not recognize this 
imprecision.  For example, they often perform “what-if” 
analyses that compare the assumed scenario to 
different, but closely related scenarios. 

Some mathematical formalisms, such as imprecise 
probabilities [e.g. 12] and evidence theory [13], express 
imprecision explicitly in addition to modeling variability, 
while other formalisms, such as classical, precise 
probabilities, do not distinguish the two types.  The goal 
of this paper is to demonstrate how the explicit, 
simultaneous consideration of imprecise and 
probabilistic aspects of uncertainty can improve the 
sensitivity analysis process. 

SUMMARY OF PROBABILITY BOUNDS 
ANALYSIS (PBA) 

It is possible to represent both variability and imprecision 
separately using the formalisms of credal sets of 
probabilities [14-16] or imprecise probabilities, a theory 
suggested by various authors [12, 17-20] that extends 
traditional probability theory by allowing for intervals or 
sets of probabilities.   

In general, imprecise probabilities present computational 
challenges.  By imposing some additional restrictions, 
Ferson and Donald [1] have developed a formalism 
called Probability Bounds Analysis (PBA) that facilitates 
computation; Berleant and collaborators independently 
developed a similar approach [21, 22], and related 
methods were developed earlier for Dempster-Shafer 
representations of uncertainty [23].  Although PBA is not 
quite as expressive as imprecise probabilities, it can still 
represent both variability and imprecision, and it has 
been shown to be useful in engineering design [11, 24]. 

PBA essentially allows a DM to explore whether the 
optimal solution changes as the imprecisely 
characterized parameters are varied across some 
neighborhood of the DM’s best-guess, or base values.  

This is done while still preserving any well-founded 
probabilistic information about the problem. 

PBA represents uncertainty using a structure called a 
probability-box, or p-box.  Essentially, a p-box is an 
imprecise cumulative distribution function (CDF).  Upper 
and lower CDF curves represent the bounds between 
which all possible probability distributions might lie.  The 
commercially available software RAMAS Risk Calc 4.0 
[25] provides one implementation of PBA computations 
by discretizing the p-box and then using algorithms, 
called dependency bounds convolutions (DBC)  
developed by Williamson and Downs [26] for the binary 
mathematical operations of additional, subtraction, 
multiplication, and division.   

These algorithms are based on interval arithmetic [27] 
and result in bounds on the true probability distribution. 
They handle various dependence relationships between 
the uncertain quantities, including independence and 
unknown dependence.  Methods for computing with and 
propagating p-boxes are compared, summarized, and 
extended by Bruns and Paredis [28].  In this paper, PBA 
is assumed to be performed using the DBC algorithms 
and the conclusions are intended specifically for PBA 
with DBC unless clearly stated otherwise. 

TRADITIONAL SENSITIVITY ANALYSIS 
APPROACHES 

At the highest level of abstraction, a sensitivity analysis 
is the study of how certain things influence other things.  
More concretely, Leamer [29] has defined a global 
sensitivity analysis as a systematic study in which “a 
neighborhood of alternative assumptions is selected and 
the corresponding interval of inferences is identified.”  
More specific to the context of engineering design, a 
sensitivity analysis can be viewed as the quantitative 
study of how the inputs to a model affect the outputs, 
where a model is defined broadly and includes all 
functions, calculations, and simulations.   

There are two fundamental reasons for conducting a 
sensitivity analysis: to understand the reliability of 
conclusions and inferences drawn from an analysis 
(which will be called sensitivity analysis for decision 
robustness) and to focus future information collection 
efficiently on those aspects to which the problem is most 
sensitive (which will be called sensitivity analysis for 
information prioritization).  Most of this paper deals with 
decision robustness, while information prioritization is 
considered in the discussion section. 

PARTIAL DERIVATIVE APPROACHES 

One form of sensitivity analysis looks at the partial 
derivatives of a function.  For example, if a model is 
represented by Equation (1), it is possible to express the 
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sensitivity of the result to each input parameter in terms 
of partial derivatives, as shown in Equation (2): 

 2( , , )f a b c ab a c= +  (1) 

 2 ;f b ac
a
∂

= +
∂

         ;f a
b
∂

=
∂

                2f a
c
∂

=
∂

 (2) 

The partial derivatives represent the local sensitivity of 
the function to the three independent variables around 
some point { , , }a b c .  Note that the partial derivatives can 
in general have different units, which makes direct 
comparisons question.  More importantly, they fail to 
consider the quantity of available information.   

For example, if the available knowledge is only that 
[6,17]a = , 2b = , and [1,2]c = , then it is pretty clear 

from Equation (1) that the output is very sensitive to the 
imprecision in a , but the partial derivatives, shown in 
Equations (3)-(5) (evaluated using interval arithmetic), 
make it appear as if the greatest sensitivity is to c .   

 2 [12,68]f b ac
a
∂

= + =
∂

 (3) 

 [6,17]f a
b
∂

= =
∂

 (4) 

 2 [36,289]f a
c
∂

= =
∂

 (5) 

However, this sensitivity is really a result of the lack of 
information about a .    For a complete analysis of 
sensitivity, a DM must consider both the inherent system 
dynamics and the information state. 

DETERMINISTIC APPROACHES 

In the context of DASA, the word deterministic implies a 
lack of probability information, but it can still imply 
significant uncertainty.  A typical deterministic sensitivity 
analysis is nominal range sensitivity analysis (NRSA), 
such as described by Frey  and Patil [30].  In a NRSA, a 
single, best-guess value is made for an uncertain 
quantity, and then a bounded range of values in the 
neighborhood of the best-guess value is defined.  The 
behavior of the system or decision problem is then 
explored by varying all of the parameters across these 
neighborhoods, or nominal ranges of values. 

PROBABILISTIC APPROACHES 

Other research in engineering design has focused on 
probabilistic sensitivity analysis [31-35].  These methods 
focus on identifying the largest contributors to 
probabilistic effects in the output.  For example, one type 
of approach attempts to determine how much each input 
contributes to the statistical variance of the output.  
These methods are not exploring sensitivity to a lack of 

information, but rather sensitivity to a physical reality of 
the problem or process being modeled.  This analysis 
can provide important insight during the design process, 
such as indicating that a manufacturing process needs 
to be improved so that the variance of the thickness of 
parts is reduced to an acceptable level.  However, such 
analyses do not help a DM explore the robustness of his 
or her decisions to the available information. 

SENSITIVITY ANALYSIS IN DECISION 
ANALYSIS 

Decision analysis [2-5] is a name given to a specific 
discipline and body of work that studies procedures, 
tools, and frameworks for transforming problems that are 
difficult to understand, solve, or explain, into problems 
that are more readily understood and solved.  One goal 
of decision analysis is to model the impact of uncertain 
quantities on the decision, where an uncertain quantity is 
any parameter that involves uncertainty.   

One of the motivations for decision analysis is that 
decision problems are difficult to formulate and solve.  It 
is therefore necessary to simplify the decision problem 
by including and collecting detailed information about 
only those quantities that most significantly impact the 
decision outcome.  To accomplish this, sensitivity 
analysis is applied in two phases: a deterministic phase 
and a probabilistic phase. 

During the deterministic phase of DASA, a DM 
essentially performs a NRSA to identify which quantities 
have the greatest impact on the decision.  Those that 
are found to be unimportant are simply replaced with 
best-guesses, and those that are important are explored 
further by defining probability distributions.  One of the 
motivations for limiting the number of quantities for 
which probabilities are assigned is the significant 
difficultly and cost associated with eliciting such 
distributions [36].  However, no explicit allowance is 
made in decision analysis for the partial specification of 
these probabilities; it is assumed that the difficult and 
costly process of probability elicitation can be completed 
perfectly, a consequence of the philosophy of DASA that 
uncertainty can only be modeled with traditional 
probabilities [5, 37]. 

During the probabilistic phase, the DM explores the 
behavior of the decision.  For example, some 
alternatives may be stochastically dominated, and 
therefore they may be eliminated.  If there is no clear 
optimal decision at this stage, the DM continues to the 
informational phase of decision analysis.  During this 
phase, the DM explores how reducing the variance in 
the probabilistic quantities would improve the value of 
the decision.  It is the view of the authors that this type of 
information modeling confounds imprecision and 
variability [11], and that therefore it is more effective to 
consider information management [24] and sensitivity 
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analysis using the more general formalism of imprecise 
probabilities. 

DEFINITIONS AND NOTATION 

In this paper, uncertain quantities are divided into two 
categories.  First, imprecise quantities will be denoted as 

ix , with the set of all m  imprecise quantities defined as 
1{ }m

i iX x == .  Imprecise quantities are those about which 
the DM has limited information and consequently 
specifies as intervals.  The intervals are defined such 
that the DM is highly confident that the true values are 
contained in the intervals. 

Probability distributions can be defined for uncertain 
quantities that the DM believes are well modeled 
probabilistically, such as environmental noise 
fluctuations.  These probabilistic quantities will be 
denoted as jy , with the set of all n  probabilistic 
quantities defined as 1{ }n

j jY y == .   

It is also recognized that some uncertain quantities 
involve both variability and imprecision.  Some of these 
quantities can be expressed as “nested” quantities.  For 
example, assume that 1y  is normally distributed, such 
that 2

1 ~ ( , )y N μ σ .  Thus, 1y  is a probabilistic quantity.  
Next assume that the mean μ  of this normal distribution 
is not known precisely, such that μ  is an imprecise 
quantity.  Letting 1x μ=  one can rewrite 1y  as 

2
1 1~ ( , )y N x σ . 

CHOOSING THE BEST ALTERNATIVE 

The DM’s goal in decision analysis is to select the best 
(according to some objective function) action *a  from a 
set of k  possible actions 1{ }k

i iA a == .  One way to 
identify an optimal action is to ignore all imprecision. 
This is accomplished by replacing all imprecise 
parameters with best guesses, or base values.  For 
example, X  is replaced with the vector of base values 

1ˆ ˆ ˆ{ ,..., }mX x x= .  Nested uncertainties, such as the 
example 2

1 1~ ( , )y N x σ  from the previous section, are 
replaced with precise, probabilistic quantities, such as 

2
1 1ˆ~ ( , )y N x σ , where 1̂x  is the best guess or base 

value for the imprecise quantity 1x .  The replacement of 
X  by X̂  removes all imprecision from the problem 
formulation, so the problem can be solved using 
standard approaches such as expected utility 
maximization.  For example, if the objective function for 
a problem is ( , , )f X Y a , then the optimization can be 
formulated as in Equation (6), where *a  is the identified 
“optimal” action.   

 * ˆarg max[ ( , , )]
a A

a f X Y a
∈

=  (6) 

Note that for utility analysis, ( , , )f X Y a  would be the 
expected utility function.  Naturally, a DM should be 
concerned with the sensitivity of the “optimality” of *a  to 

the state of available information, a question for 
deterministic, or nominal range sensitivity analysis. 

ONE-WAY DETERMINISTIC SENSITIVITY ANALYSIS 

During the deterministic phase of DASA, it is assumed 
that the DM can specify a nominal range for the 
imprecise parameters, such as given by Equation (7). 

 [ , ] for 1...i i ix x x i m= =  (7) 

The sensitivity analysis step of the decision process 
explores how varying the values of the ix ’s across their 
ranges affects the optimal decision—a nominal range 
sensitivity analysis (NRSA).  One convenient way of 
performing a NRSA for a selection decision is to 
evaluate the sensitivity of the decision outcome 
graphically using tornado diagrams, as in Figure 1  [3, 4, 
38].  A tornado diagram allows a DM to perform a one-
way NRSA—to explore the effects of uncertain 
parameters one at a time.   

A simple tornado diagram, such as shown in Figure 1, 
compares a single action (for example 1a ) to another 
action (for example 2a ), where it is assumed that action 

2a  is entirely robust to the imprecision; that is, the 
expected utility of 2a  is completely independent of 

1{ ,..., }mX x x= .  The perfectly known expected utility of 
action 2a  is represented by the large vertical, dotted line 
on the tornado plot.   

Also displayed on the tornado diagram is a bar for each 
imprecise quantity, where each bar represents the range 
of the expected utility of action 1a  across the range of an 
imprecise quantity.  Each bar is created by plotting the 
output while taking one imprecise quantity ix  and 
varying it from its lower limit ix  to its upper limit ix  with 
all other quantities held constant at their base values.  
The distinction “one-way sensitivity analysis” is made to 
emphasize that the sensitivity is examined one quantity 
at a time.  This is repeated for each imprecise quantity.  
The bars are then reordered from largest (at the top) to 
smallest (at the bottom), thus creating the shape that 
gave rise to the name “tornado diagram."   

If any of the bars of the tornado plot intersect the dotted 
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Figure 1. Sample tornado diagram, one imprecisely 

known alternative 
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line corresponding to the expected utility of 2a , then the 
decision is sensitive to the imprecision.  Recall that each 
bar represents the range of expected utilities that can be 
realized for action 1a  depending on where in the 
imprecise region [ , ]i i ix x x=  the true value of ix  lies.  
When a bar crosses the dotted line, it means that 
depending on where the true ix  lies, either 1a  or 2a  can 
yield a higher expected utility. 

MORE ADVANCED ONE-WAY ANALYSIS 

Tornado diagrams can be generalized to situations with 
more than two alternative actions, including cases in 
which there are multiple alternatives whose expected 
utilities are functions of imprecise parameters, although 
this is not addressed explicitly in the existing literature.  
One direct way to accomplish this is to consider the 
differences in expected utility between alternatives.   

For example, assume that two alternatives ( 1a  and 2a ) 
are available.  Let 3x  represent the ambient temperature 
in which the system will operate, and assume that this 
temperature is known imprecisely, such that 

3 3 3[ , ]x x x= .  Next assume that the expected utility of 
each action ( 1a  and 2a ) depends on temperature.  The 
changes in the expected utilities is in a sense 
coordinated with the changes in 3x .  Assuming that the 
action chosen has no effect on the resolution of the 
imprecision in 3x , then whichever action is chosen, it 
would face the same true value of 3x —i.e., the same 
ambient temperature.  The expected utilities of two 
actions should therefore be compared pair-wise, using 
the same values for 3x .  In the ambient temperature 
example, this means that the expected utility for 1a  at 
low temperatures (e.g. 3 3x x= ) should be compared to 
the expected utility of 2a  at low temperatures (e.g. 

3 3x x= ).   

More generally, the tornado diagram should be 
constructed by comparing the differences of expected 
utility across the range of the imprecise parameters, 
written mathematically as 1 2 3[ ( ) ( ) | ]E u a u a x− .  When 
these tornado diagrams are analyzed, the critical value 
for comparison is a difference in expected utility of zero, 
as shown in Figure 2.  If a bar of the diagram crosses 

zero for some ix , then given the existing imprecision in 
that ix , the decision is one-way sensitive to that 
imprecise quantity.  This means that the difference in 
expected utility could be positive or negative; it is not 
clear which alternative yields the higher expected utility.   

BEYOND ONE-WAY SENSITIVITY ANALYSIS 

A one-way sensitivity analysis can be generalized to a 2-
way, 3-way, and so on up to a m -way (or an all-way, 
global sensitivity) analysis.  A m -way analysis considers 
all m  imprecise quantities at the same time, effectively 
considering all possible combinations of resolutions of 
the imprecision.  However, due to computational costs 
and visualization challenges, decision-makers are often 
limited to performing one-way sensitivity analyses in 
decision analysis.  The mathematical formulation of one-
way and m -way (global) sensitivity analyses are 
presented and compared in the following section. 

MATHEMATICAL FORMULATION OF GLOBAL 
SENSITIVITY ANALYSIS 

In the tornado diagram approach to sensitivity analysis, 
intervals for each imprecise quantity were defined 
explicitly in terms of their bounds (or endpoints), as in 
Equation (7).  It will now be convenient to define these 
intervals with reference to the base values.  For a 
particular imprecise quantity, the interval of possible 
values that are consistent with the available information 
(denoted ix ) is given by Equation (8). 

 ˆ ˆ ˆ+  where [ , ]i i i i i i i ix x x x x x x x= Δ Δ = − −  (8) 

For the entire vector of imprecise quantities, the 
consistent region X  is given by Equation (9). 

 1ˆ ,  where { ,..., }mX X X X x x= + Δ Δ = Δ Δ  (9) 

It is assumed that the objective G  is to be maximized 
during a design decision, and G  is a function of the 
chosen design action a  (where a  can be considered 
some alternative or some set of design variables) and 
the imprecise quantities, e.g. ( , )G f X a= . 

During the first stage of decision analysis, the DM 
considers only the base values for the imprecise 
quantities and therefore solves the optimization problem 
given in Equation (10). 

 * ˆarg max( ( , ))
a

a f X a=  (10) 

During the sensitivity analysis stage, the DM’s goal is to 
explore how this optimal solution may change as the 
imprecise quantities vary from their best guess values of 
X̂ .  The optimal solution *a  found in Equation (10) will 
be insensitive to the imprecision if it is the optimal for all 
X X∈ .  Because the sensitivity is considered for all 
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Figure 2. Sample tornado diagram for comparing 

alternatives 
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points in the consistent region, this type of sensitivity 
analysis is called global sensitivity analysis.   

A global sensitivity analysis can be performed in the 
following way.  First, the DM defines a new quantity 

*, ( )jG XΔ , the difference in objective value between the 
optimal solution *a  from Equation (10) and the objective 
value for a particular alternative ja , as in Equation (11). 

 *
*, ( ) ( , ) ( , )j jG X f X a f X aΔ = −  (11) 

The optimal solution *a  is insensitive to the imprecision 
if *, ( )jG XΔ  is non-negative for all X X∈  and all 

ja A∈ .  This leads to the global optimization problem 
formulated in Equation (12). 

 ( )*
min *

,
( ) min ( , ) ( , )

j
j

a A
X X

G X f X a f X a
∈
∈

Δ = −  (12) 

For future comparisons, it is useful to note that the 
global analysis defined in Equation (12) can be broken 
into two steps.  First, the optimization shown in Equation 
(13) can be performed for each of the actions ja A∈ . 

 ( )*
min *, ( ) min ( , ) ( , )j j

X X
G X f X a f X a

∈
Δ = −  (13) 

In the second step, the minimum is taken across all of 
these values as in Equation (14), where each value 
corresponds to some particular alternative ja .   

 ( )min * min *,( ) min ( )
j

j
a A

G X G X
∈

Δ = Δ  (14) 

The is equivalent to the formulation in Equation (12). 

More generally, it is useful to define the difference in 
objective value between two alternatives as in Equation 
(15), with bounds given in Equations (16) and (17). 

 , ( ) ( , ) ( , )i j i jG X f X a f X aΔ = −  (15) 

The minimum and maximum of this function are defined 
in the following equations. 
 ( )min , ( ) min ( , ) ( , )i j i j

X X
G X f X a f X a

∈
Δ = −  (16) 

 ( )max , ( ) max ( , ) ( , )i j i j
X X

G X f X a f X a
∈

Δ = −  (17) 

Since it is required that min , max ,( ) ( )i j i jG X G XΔ ≤ Δ , there 
are three scenarios1 of sensitivity: 

1. min , ( ) 0i jG XΔ ≥ : selection of ia  over ja  is robust. 

2. min , ( ) 0i jG XΔ <  and max , ( ) 0i jG XΔ > : the selection 
of ia  or ja  is sensitive to the lack of information. 

3. max , ( ) 0i jG XΔ ≤ : selection of ja over ia  is robust. 
                                                      
1 Note that if max min 0Δ = Δ =  then the alternatives yield identical, 
precise performance and it does not matter which is chosen. 
 

COMPARING ONE-WAY AND GLOBAL ANALYSIS 

The goal of this section is to compare the formulation of 
global sensitivity analysis described in the previous 
section with the one-way, tornado diagram analysis. 

We next develop the mathematical equivalent of the 
general one-way sensitivity analysis using tornado 
diagrams.  For example, consider a comparison 
between just two alternatives, 1a  and 2a , as was shown 
in Figure 2 for the scenario of six imprecise quantities, or 

1 6{ ,..., }X x x= .  The question of interest is whether 
1,2 ( )G XΔ  is always positive, always negative, or 

overlaps zero.   

Unlike in global analysis, the imprecise quantities are 
considered individually, one at a time.  Consequently, 
each bar in the tornado diagram is only an estimate of 

1,2 ( )G XΔ , and as such the endpoints of each bar are 
also only estimates of the true upper and lower bounds. 

For example, when the bar in the tornado plot for 1x  is 
computed, only the imprecision in 1x  is considered.  This 
means that all the other imprecise quantities are fixed at 
their best-guess values ( ˆ  for all 1i ix x i= ≠ ), while 1x  is 
allowed to take on all values in the consistent region 1x . 
Mathematically, the lower and upper endpoints of the 
bar are given in Equations (18) and (19) respectively for 
the general case of m  imprecise quantities. 

 ( ) ( )( )1 2 1 1 2 2
1 1

ˆ ˆ ˆ ˆmin ( , ,..., ), ( , ,..., ),m mx x
f x x x a f x x x a

∈
−  (18) 

 ( ) ( )( )1 2 1 1 2 2
1 1

ˆ ˆ ˆ ˆmax ( , ,..., ), ( , ,..., ),m mx x
f x x x a f x x x a

∈
−  (19) 

For simplicity of notation, we now consider the 
minimization problem for the case with 1 2{ , }X x x= .  In 
this case, the lower bound on 1x  is given by a reduced 
form of Equation (18), shown in Equation (20). 

 ( ) ( )( )1 2 1 1 2 2
1 1

ˆ ˆmin ( , ), ( , ),
x x

f x x a f x x a
∈

−  (20) 

Similarly, the lower bound for 2x  would be given by 
Equation (21). 

 ( ) ( )( )1 2 1 1 2 2
2 2

ˆ ˆmin ( , ), ( , ),
x x

f x x a f x x a
∈

−  (21) 

Leaving one-way analysis and returning to the global 
sensitivity analysis problem, the general form in 
Equation (13) reduces to Equation (22) in this example. 

 ( ) ( )( )1 2 1 1 2 2
,1 1

2 2

min ( , ), ( , ),
x x
x x

f x x a f x x a
∈
∈

−  (22) 

The following question is now posed: is there any way to 
get from a one-way sensitivity analysis to a global 
sensitivity analysis?  Mathematically, this question 
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translates to: is if possible to solve Equation (22) using 
just the results from Equations (20) and (21)?   

To see that the answer is no, consider the following 
example.  It is entirely possible that for some function 

1 2( , )f x x , the optimal in the global problem of Equation 
(22) occurs at the point 1 2( , )x x  where 

1 1 1ˆx x δ= + , 2 2 2ˆx x δ= + , 1 0δ ≠ , 2 0δ ≠ , 1 1 1x̂ xδ+ ∈ , 
and 2 2 2x̂ xδ+ ∈ .  However, neither Equation (20) nor 
Equation (21) ever considers this point.  As such, a one-
way analysis can fail to identify the true lower bound of 
difference.  It is a trivial extension (replace the 
minimizations with maximizations) to show the same for 
the upper bound.  Consequently, it is quite possible that 
a one-way analysis fails to identify a global sensitivity, as 
shown in the following, specific example. 

NUMERICAL AND GRAPHICAL EXAMPLE 

We now consider a specific example.  First, assume that 
the decision involves two imprecise quantities 1 [3,5]x =  
and 2 [2,7]x = , with best-guess base values of 1̂ 4x =  
and 2ˆ 5x = .  Assume that the difference in expected 
utility between the two possible alternatives, 1a  and 2a , 
is given by Equation (23). 

 1,2 1 2 1 2( ) ( , ) 2 3 3G X g x x x xΔ ≡ = − −  (23) 

The goal of sensitivity analysis is to determine if the 
preference of one alternative over another is sensitive to 
the existing the lack of information.  This requires the 
DM to find the interval of difference in expected utility 
that is consistent with available information.  This is 
equivalent to finding the minimum and maximum of the 
expected utility in the consistent region—an 
optimization-like problem. 

The consistent region for this decision is shown in Figure 
3.  Also shown (by the solid lines) is the set of points that 
a one-way analysis would consider.  Because one-way 
NRSA only considers points on the lines, it will only 
reveal the extrema of the objective that fall on these 
lines.  If the true minimum and maximum over the 

consistent region do not fall on these lines, one-way 
NRSA will not identify the correct intervals.  This can 
lead to an incorrect conclusion about the sensitivity of 
the problem to imprecision. 

For example, along the one-way lines, the minimum of 
1 2( , )g x x  is found to be -16 at the point (4,7).  The 

maximum is found to be -1 at (4,2).  Since the maximum 
is less than zero, the one-way sensitivity analysis 
concludes that 2a  is better than 1a , and that this 
difference is insensitive to the imprecision.   

However, the global minimum across the entire 
consistent region is found to be -18 at the point (3,7), 
and the global maximum is 1 at the point (5,2).  Since 
the true maximum is greater than zero, the range 
crosses zero and the decision actually is sensitive to the 
imprecision, which contradicts the conclusion of the one-
way analysis. 

SUMMARY OF ONE-WAY ANALYSIS RESULTS 

The preceding simple example illustrates that he use of 
only one-way analysis can lead to an incorrect 
conclusion.  The results and examples presented in this 
section may not be that astonishing in and of 
themselves; if one does not search the full range of 
possibilities, one could miss a significant pointing that 
space.  In the next section, the framework established in 
this section will be used to show how interval arithmetic 
makes it possible to search the entire consistent region, 
thereby avoiding this problem.  Subsequently, the result 
will be extended to a case that involves imprecision and 
variability. 

INTERVAL ARITHMETIC AS AN APPROACH TO 
SENSITIVITY ANALYSIS 

Intervals are actually a specific case of a p-box, and 
PBA using DBC is based on interval arithmetic.  
Consequently, it is useful to consider interval arithmetic 
as a sensitivity analysis.   

INTRODUCTION TO INTERVAL ARITHMETIC 

Interval arithmetic refers to arithmetic operations that are 
defined on sets of intervals rather than on sets of real 
numbers [27].  An interval is a bounded set of real 
numbers, such that the interval [ , ]a b  refers to the set of 
all x∈  such that a x b≤ ≤ .  The basic operations of 
interval arithmetic are straightforward to define, such as 
shown in Equations (24)-(27). 

 [ , ] [ , ] [ , ]a b c d a c b d+ = + +  (24) 

 [ , ] [ , ] [ , ]a b c d a d b c− = − −  (25) 

 [ , ]*[ , ] [min( , , , ),max( , , , )]a b c d ac ad bc bd ac ad bc bd= (26) 

x1

x2 Legend
Global upper bound

One-way analysis

Consistent region

3 5

2

7

Global lower bound

4

5

One-way upper bound

One-way lower bound

 
Figure 3. Two dimensional imprecise parameter space 

example problem 
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 1/([ , ]) [1/ ,1/ ] if 0 or 0a b b a b a= < >  (27) 

The more difficult problem is how to implement interval 
arithmetic on computers.  Modern techniques for interval 
arithmetic began with the work of R. E. Moore [39].  A 
desirable characteristic of interval methods is that they 
be rigorous, where the term rigorous describes the 
bounds of the intervals; bounds on a quantity are 
rigorous if the true value of the quantity actually lies 
between the bounds.   

For example, let ε  be a small positive number, and let 
[ , ] [ , ]x a b c d= + .  Equation (24) gives the true bounds 

on x  as [ , ]a c b d+ + , meaning that x a c≥ +  and 
x b d≤ + .  However, the interval [ , ]a c b dε ε+ − + +  is 
also a rigorous description of x , because the 
relationships x a b ε≥ + −  and x b d ε≤ + +  are also 
true.  However, these bounds are not the best-possible 
(or tightest) bounds, because they include other points 
that actually are not in the true output interval. 

INTERVAL ARITHMETIC AS A SENSITIVITY 
ANALYSIS  

One goal of interval arithmetic algorithms is to ensure 
that when given correct input intervals, the calculated 
output intervals are rigorous (given the input intervals) 
without being unnecessarily large.  Ideally, interval 
arithmetic algorithms would find the exact minimum and 
maximum of a function given particular interval inputs.  
For example, given two interval inputs 1 1 1[ , ]x x x=  and 

2 2 2[ , ]x x x= , interval arithmetic can be used to evaluate 
bounds on the value of a function, such as 

1 2 1 2( , ) 2 3 3g x x x x= − − , which is the same function 
given in Equation (23). Finding the bounds on 1 2( , )g x x  
given the interval inputs is equivalent to solving the 
optimization problems formulated in Equations (28) and 
(29) for the lower bound ( g ) and upper bounds ( g ), 
respectively. 

 ( )
1 1 1
2 2 2

1 2
[ , ]
[ , ]

min 2 3 3
x x
x xx

xg x x
∈
∈

= − −  (28) 

 ( )
1 1 1
2 2 2

1 2
[ , ]
[ , ]

max 2 3 3
x x
x xx

xg x x
∈
∈

= − −  (29) 

The formulation of interval arithmetic in Equations (28) 
and (29) is equivalent to the first step of global 
sensitivity: optimizing over the consistent region, as 
formulated in Equations  (16) and (17).  One merely 
needs to recognize that the intervals 1 1 1[ , ]x x x=  and 

2 2 2[ , ]x x x=  define a consistent region X  as in 
Equation (22). 

Using the input intervals defined in the previous example 
( 1 [3,5]x = and 2 [2,7]x = ), the sensitivity analysis for 

1 2( , )g x x can now be repeated using interval arithmetic 
rather than an explicit optimization formulation.  
Referring back to the basic interval operations defined in 

Equations (24)-(27), the problem can be solved as 
follows.   

 

1,2 1 2 1 2( ) ( , ) 2 3 3
2 [3,5] 3 [2,7] 3
[6,10] [6,21] 3
[6 21,10 6] 3 [ 15,4] 3
[ 18,1]

G X g x x x xΔ = = − − =
= ⋅ − ⋅ −
= − −
= − − − = − −
= −

 (30) 

The bounds found in Equation (30) are identical to those 
found using the global sensitivity analysis approach in 
the previous section, and they clearly indicate that the 
interval of expected utility crosses zero.  This means that 
depending on where in the input intervals the true values 
fall, the “optimal” alternative can change.  

 
LIMITATIONS OF INTERVAL ARITHMETIC 

Interval arithmetic algorithms are adept at finding 
rigorous bounds on a function with interval inputs.  
However, the bounds are not necessarily best-possible.  
Recall that if the true bounds on a quantity are [ , ]a b , 
then bounds such as [ , ]a bε ε− +  for 0ε >  are rigorous 
(since they contain the true interval), but they are not 
best-possible because they include points—namely 
[ , )a aε−  and ( , ]b b ε+ —that are not in the true interval. 

The bounds found using interval arithmetic may not be 
best-possible due to what is often referred to as the 
repeated variable problem.  For example, consider a 
functions shown in Equations (31) and (32).  

 1 1 2 1 2 1( , )f x x x x x= ⋅ −  (31) 

 2 1 2 1 2( , ) ( 1)f x x x x= ⋅ −  (32) 

In actuality, 1 1 2( , )f x x  is equivalent to 2 1 2( , )f x x , and 
traditional operations over real numbers preserve this 
equivalence via the distributive property.  However, in 
interval arithmetic, this equivalence may not be 
preserved.   

For example, let 1 [1,2]x =  and 2 [3,5]x = .  Applying the 
relationships of Equations (24) and (26), the following 
results are found. 

 

1 1 2 1 2 1( , )
[1,2] [3,5] [1,2]
[3,10] [1,2]
[1,9]

f x x x x x= ⋅ −
= ⋅ −
= −
=

 (33) 

 

2 1 2 1 2( , ) ( 1)
[1,2] ([3,5] 1)
[1,2] [2,4]
[2,8]

f x x x x= ⋅ −
= ⋅ −
= ⋅
=

 (34) 
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A quick, constrained optimization approach reveals that 
the true bounds for both functions is [2,8].  For function 

1 1 2( , )f x x , which contains the repeated variable, interval 
arithmetic yields bounds that are rigorous (since 
[2,8] [1,9]⊂ ), but not best-possible.     

Because interval arithmetic can lead to bounds on 
functions that are correct but wider than necessary, 
inferences drawn during sensitivity analysis can be 
incorrect.  However, these errors are always in the 
direction of over-conservativeness, meaning that the DM 
can conclude that the decision is sensitive when it is not, 
but the DM will never conclude that the decision is not 
sensitive when it actually is.  This point is revisited in the 
discussion section. 

SENSITIVITY ANALYSIS WITH IMPRECISE AND 
PROBABILISTIC QUANTITIES 

In the previous sections, it was assumed that there were 
no probabilistic parameters.  In this section, that 
assumption is lifted.  It is in the context of having both 
imprecision and probabilistic uncertainty that the value of 
PBA is clearest.  This combined analysis is not 
performed in traditional DASA, which assumes that 
precise probabilities are the only description of 
uncertainty, as noted earlier.  This scenario of analysis is 
first presented as an extension to the deterministic, 
NRSA phase of DASA, and then it is shown how PBA 
generalizes this approach. 

EXTENSION OF NRSA TO COMBINED ANALYSIS 

From one perspective, sensitivity analysis for decision 
robustness with probabilistic quantities is fundamentally 
equivalent to sensitivity analysis without probabilistic 
quantities.  Note that the analysis intended in this 
section is different from probabilistic sensitivity analysis 
approaches referenced earlier that seek to identify the 
largest contributors to probabilistic effects in the output.  
Here the emphasis is on the sensitivity to lack of 
knowledge (i.e. imprecision) about the probabilistic 
components.  However, the presence of probabilistic 
quantities does not change the basic process; it only 
changes the function that needs to be evaluated in the 
decision problem, since now mathematical expectations 
need to be calculated over the probability distributions. 

For example, consider again the example 
2

1 1( , )y N x σ∼ .  This means that 1y  is a probabilistic 
quantity that is normally distributed with imprecise 
parameter 1x  as the mean and the known 2σ  as the 
variance. 

One can now think of applying an NRSA for 1x ; when a 
NRSA is performed, a single value from the consistent 
region of each imprecise quantity is considered at a 
time.  Consequently, for each combination of imprecise 
parameters (whether one-way, two-way, or more 

analysis), a particular precise distribution is specified 
and the expected value can be calculated in the 
standard manner.  This process is then repeated for 
multiple (discretized) values, and the results of these 
calculations are aggregated into an interval of expected 
utility. 

Another way of viewing this process is to consider a 
function 1,2 ( , )G X YΔ  to be the difference in expected 
utility (or other objective) between alternatives 1a  and 

2a , given the imprecise variables X  and probabilistic 
quantities Y .  Assuming there is one probabilistic 
quantity and one imprecise quantity such that 

2
1 1( , )y N x σ∼ , and assuming that the utility function is 

1( , )if y a , one finds Equation (35). 

  [ ]1,2 1 1 1 2 11( , ) ( , ) ( , ) ( )xG X Y f y a f y a p y dyΔ = − ⋅ ⋅∫  (35) 

Note that 11 ( )xp y  is not a joint probability density 
function, but rather a set of density functions; 
specifically, the set of normal (Gaussian) density 
functions with variance 2σ  and means 1xμ∈  for this 
example.  A NRSA approach considers all of the values 

1 1x x∈ , just as it would for any other function 
1,2 ( , )G X YΔ .  The added wrinkle here is that each value 

of 1x  results in a different density function being used for 
the expectation. 

Mathematically, this does not change the solution 
process; 1,2 ( , )G X YΔ  is a still just a function of the 
inputs.  However, it does make a difference when 
formulating the problem, because this extended NRSA 
approach requires the form of 11 ( )xp y  to be known;  
without specifying 11 ( )xp y , there is no way to evaluate 
Equation (35).  While the NRSA could be repeated for 
various distributions, this would add to the already 
burdensome computational cost of performing a brute 
force analysis over the entire consistent region.  
Fortunately, PBA provides a more efficient and flexible 
approach to sensitivity analysis with imprecise and 
probabilistic quantities. 

PBA AS A GENERALIZED SENSITIVITY ANALYSIS 
FOR DECISION ROBUSTNESS  

By modeling and propagating uncertainty using PBA, a 
DM can achieve an all-way sensitivity analysis for 
decision robustness (identifying whether the decision is 
sensitive to the existing imprecision), in essence 
combining aspects of the deterministic, probabilistic, and 
informational phases of decision analysis.  

PBA as a sensitivity analysis 

In the previous section, the case of an imprecisely 
characterized probabilistic parameter was considered.  
The presented model, 2

1 1( , )y N x σ∼ , is actually a p-
box.  Specifically, it is the family of normal distributions 
with means 1 1x x∈  and standard deviation 2σ .  For 
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example, if 1 [50,60]x =  and 2 5σ = , then the 
uncertainty in 1y  can be expressed with the p-box 
shown in Figure 4.   

Calculations based on PBA preserve both the interval 
and probabilistic forms of uncertainty.  The dependency 
bounds convolutions (DBC) methods for implementing 
PBA allow for rigorous calculations with p-boxes for the 
principle binary operators of addition, subtraction, 
multiplication, and division (as long as the value zero is 
not in the consistent region of the denominator) [1, 21, 
26].  Similar to rigorous interval calculations, a p-box 
calculation is rigorous if the following is true: given that 
the true input distributions are contained in the input p-
boxes, then the true output distribution is included in the 
output p-box. 

In this way, PBA generalizes sensitivity analysis for 
decision robustness.  The output p-box contains all 
distributions that are consistent with the available 
information, and the calculation of the expected value 
over a p-box leads to an interval of expected utilities.  
This interval comprises the individual expected values 
that correspond to each distribution in the p-box.   

Because the output p-box for utility is guaranteed (using 
DBC) to include all of the distributions consistent with 
the available information (assuming the inputs are 
correctly defined), the output interval of expected utility 
is guaranteed to include the true interval.  Consequently, 
if the true interval crosses the critical value2, the output 
interval will, too.  Thus, any sensitivity of the optimal 
action to the imprecision will be detected.  If the chosen 
action’s output expected utility interval does not cross 
the critical value and all inputs were rigorously defined, 
then the optimality of the chosen action is robust to 
imprecision.  

Example analysis with probabilistic and imprecise 
quantities 

A new model is considered now,  with 2
1 1 2( ,( ) )y N x x∼ , 

where 1 [50,60]x = , 2 [3,7]x = , 1̂ 55x = , and 2ˆ 5x = .  In 
other words, 1y  is normally distributed with imprecisely 
                                                      
2  The critical value is known.  For comparison between alternatives it 

is zero.  Alternatively it can be defined by some known benchmark. 

known mean 1x  and standard deviation 2x .  The 
corresponding p-box is shown in panel (1) of Figure 5.  A 
one-way sensitivity analysis will consider all distributions 

2
1 ([50,60],5 )y N= , such as the examples shown in 

panel (2) of Figure 5, and all of the distributions 
2

1 (55,[3,7] )y N= , such as the examples shown in 
panel (3) of Figure 5.  For a global sensitivity analysis, 
all of these distributions, plus many others, such as the 
example shown in panel (4) of Figure 5, must be 
considered.   The p-box contains all of these 
distributions, and hence all are considered when PBA is 
used as a sensitivity approach.   

A general p-box may contain distributions that do not 
satisfy the complete uncertainty model.  For example, 
the p-box in Figure 4 contains step functions that are not 
consistent with 2

1 1( , )y N x σ∼ .  Depending on the 
implementation of PBA chosen (see the discussion of 
parameterized p-boxes in [28] for more information), 
these distributions can be included in or excluded from 
the propagation.  The DBC algorithm implements the 
calculations by considering only the bounds, and 
therefore includes these extra distributions.  The 
consequences of this are described in first sub-section 
of the following discussion.  

DISCUSSION 

In the preceding, it was shown that PBA provides a 
convenient way to perform a global sensitivity analysis 
for decision robustness, even when both imprecise and 
probabilistic quantities are present.  In this section, the 
primary limitations of PBA as a sensitivity analysis tool 
are presented, and then a few additional advantages 
over DASA are described. 
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Figure 4. Example p-box for 1y  
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BOUNDS ARE RIGOROUS BUT NOT NECESSARILY 
BEST POSSIBLE 

In the previous sections, it was emphasized that the 
results of PBA computations using dependency bounds 
convolutions (DBC) [1, 21, 26] are rigorous, meaning 
that the true interval is contained in the output interval 
assuming the inputs are correctly defined.  Note that it 
was not said that the output intervals are the true 
intervals, because the output intervals actually can be 
larger than the true distributions for three reasons.   

First, it can be a consequence of the repeated variable 
limitation of interval arithmetic described earlier in this 
paper, since DBC is based on interval arithmetic.  
Second, DBC involves a discretization of the p-box.  
This discretized p-box contains the original p-box, but is 
actually slightly larger.  Consequently, the resultant 
calculated p-boxes will also be slightly larger than the 
theoretical output.   

Third, DBC considers the p-box to be the absolute 
representation of uncertainty.  In truth, a p-box is a 
conservative abstraction of the information that is truly 
available: the p-box includes all of the distributions that 
are consistent with the available information, but it may 
also include some distributions that are excluded from 
the truth by the available information.  To avoid this 
abstraction, one would have to sacrifice the 
computational advantages of DBC and use the broader 
formalism of imprecise probabilities. 

Since the bounds found using DBC are rigorous, the 
optimal decision will never appear to be robust when in 
fact it highly sensitive to the information state.  However, 
if the bounds are much larger than the best possible 
bounds (a situation referred to as overly conservative), 
then there may appear to be significant sensitivity when 
in fact the real problem may involve none.  This could 
lead to the conclusion that the decision in not robust 
when in fact it is robust.  This is the opposite of the 
problem faced by less than all-way sensitivity analysis, 
which ignores dependencies and higher order 
interactions and can lead to results that are non-
rigorous, i.e., that are inconsistent with the truth.   

Type I and Type II Error Performance 

If a selection decision problem is recast as an exercise 
in hypothesis testing, the types of errors made with the 
PBA and sensitivity analyses can be discussed in 
standard statistical terms of Type I and Type II errors via 
an analogy3.  The decision problem involves the 
selection of the best action *

1{ ,..., }ka a a∈ .  Without loss 
of generality, we can assume that after solving the basic, 
                                                      
3 The alignment is not exact, but is illustrative.  As such, this 
hypothesis testing procedure is meant for discussion only; it is not 
proposed as an actual approach to engineering design. 
 

precise optimization problem of Equation (6), the 
alternatives are renumbered such that *

1a a=       

In this scenario, the null hypothesis is that any one of the 
2{ ,..., }i ka a a∈  is actually the optimal action.  The 

alternative hypothesis is that 1a  is the optimal action.  
Formulated this way, the burden of proof is on showing 
that 1a  is optimal.   

A less than all-way NRSA (the deterministic phase of 
DASA) may underestimate the true imprecision and 
indicate that there is enough evidence to reject the null 
hypothesis in favor of the alternative when there really is 
not sufficient evidence to do so.  In this situation, the null 
hypothesis would be rejected when it is actually true, a 
Type I error.   

Conversely, PBA may overestimate the uncertainty and 
lead to acceptance of the null hypothesis when it is 
actually false, a Type II error.  This can also be viewed 
as a “false alarm,” in that sensitivity was detected when 
it did not exist.  A Type II error is an error in the sense 
that an opportunity to make a decision is lost; the null 
hypothesis could have been rejected, but was not.  
Consequently, a DM may waste resources or make an 
arbitrary decision while trying to reduce indeterminacy 
that does not exist in the actual problem.  However, PBA 
with DBC will not lead to a Type I error (assuming the 
imprecision in the inputs is sufficiently characterized).   

Which is preferable, a Type I or Type II error?  A Type II 
error may be preferable in high-risk applications; when 
the cost of failure is high, one is often more willing to be 
conservative and spend additional resources to reduce 
uncertainty further.  In other applications, the cost of 
delaying a decision or collecting more information may 
exceed any potential benefit from waiting.  There is no 
general answer; the analyst must assess the situation 
and make his or her own choice.  However, one can 
conclude that PBA with DBC leads to a more rigorous 
sensitivity analysis for robustness in that it avoids a Type 
I error; it will always detect a lack of robustness. 

Quality of inputs 

In the preceding discussion, it was noted that the rigor of 
the PBA method depends on the accuracy of the 
characterization of the inputs.  This is a somewhat 
obvious but crucial limitation.  For example, if a DM 
assumes that a quantity is known precisely when 
actually significant imprecision exists (as is required by 
traditional probability theory), then any subsequent 
analysis will underestimate sensitivity.  The 
characterization of inputs is not a perfect science, so 
underestimation can occur.  Consequently, the 
“guarantee” of rigor does not apply universally, but only 
when the inputs are correct.  Naturally, this is an 
inherent difficulty that all analyses encounter.  We 
believe that by allowing for the independent expression 
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of probabilistic and imprecise aspects of the problem, 
the use of PBA improves the ability of an engineer to 
adequately recognize and reason with these 
uncertainties. 

Summary of performance 

The key conclusion is that if the same assumptions are 
made for DASA and PBA, then PBA with DBC will 
conclude sensitivity in all cases that DASA does and 
possibly in more cases, including all cases that the 
decision (given the defined inputs) actually is sensitive to 
the available information.  In other words, if the 
imprecision in the inputs is underestimated, both 
methods can yield results that underestimate the 
imprecision in the output, and thus may fail to identify 
sensitivity.  However, there is no case in which DASA 
avoids a Type I error and PBA does not, as summarized 
in Table 1.   

LACK OF RIGOROUS BLACK-BOX METHODS 

The basic DBC methods for p-box computations require 
an open, operationally defined model (e.g. algebraic) of 
the problem.  Consequently, they cannot be used to 
analyze differential equations or so-called black-box 
models, such as simulations and finite element analysis 
in which the underlying equations cannot be expressed 
in the appropriate form.  Ongoing, unpublished research 
in PBA by other investigators is making advances in 
propagating p-boxes through ordinary differential 
equations, so there is promise that the applicability of 
PBA will continue to increase.   

Methods for black-box analysis are discussed in Bruns 
and Paredis [28], but these generally sacrifice the 
guarantee of rigor in the calculations.  Optimization-
based methods often lead to bounds that are close to 
being both rigorous and best possible, but no guarantee 
can be made with these heuristic or sampling based 
methods.  Consequently, the value of PBA for 
guaranteed rigorous sensitivity analysis for robustness is 
limited currently to non-black box models for which DBC 
algorithms are applicable.  

SENSITIVITY ANALYSIS FOR INFORMATION 
PRIORITIZATION 

Heretofore, the discussions were focused on what was 
described as sensitivity analysis for decision 
robustness—that is, identifying whether there is enough 
information to guarantee the optimality (with respect to a 
specific objective function) of a particular solution.  
Another major use of sensitivity analysis is for identifying 
to which uncertainties the decision is most sensitive, 
assuming a decision is sensitive (i.e. lacks robustness) 
given the existing imprecision.     

NRSA-based DASA analysis gives a direct answer to 
this question; heuristically speaking, the decision is most 
sensitive to those imprecise parameters for which the 
bars in the tornado diagram cross the critical value (e.g. 
zero) by the largest amount.  Assuming equal cost in 
information collection, resources should be directed first 
towards these imprecise quantities.  However, DASA 
does not include a process for the joint consideration of 
imprecise and probabilistic quantities that PBA enables. 

Ferson and Tucker [7] propose a meta-level sensitivity 
analysis in PBA for identifying where future empirical 
efforts (or information collection) might be most 
productive.  This analysis is similar to an approach in 
probabilistic sensitivity analysis in which the variance of 
a parameter is reduced, e.g. “pinched,” to zero, and the 
resulting reduction in the output variance is measured.   

The idea of this meta-level sensitivity analysis is to pinch 
the p-box of a particular input quantity and to compare 
the resultant p-box using this pinched input to the results 
from the original input p-box.  The goal is to identify for 
which input quantity the pinching reduced the 
uncertainty in the output p-box the most.  Unlike a 
precise distribution, a p-box has two dimensions of 
uncertainty.  This leads to two important questions: (1) 
To which distribution should the p-box be pinched? (2) 
How can the uncertainty in two p-boxes be compared? 

There are many possible answers to the first question, 
such as the examples shown in Figure 6 for the p-box 
from Figure 4: (1) pinching the mean to a single value 
such as the midpoint or other best guess value; (2) 
reducing the mean to a smaller interval; (3) reducing the 
mean and variance to point estimates (i.e. reducing the 
p-box to a single, precise distribution); (4) some arbitrary 
set of distributions inside the p-box. 

Which approach is the best?  The answer is not obvious 
because by its very nature, the p-box contains all of the 
distributions that are deemed consistent with the 
available information.  Ferson and Tucker [7] suggest 
considering the entire set of possible pinchings.  This 

Table 1.  Summary of veracity of analyses. 

Truth 
DASA NRSA 
conclusion 

PBA using DBC 
conclusion 

Sensitive Sensitive 
Not Sensitive1 Sensitive 

Not Sensitive Not Sensitive Sensitive 
Not Sensitive2 

1 possible if extrema are in a region not searched by a less 
than all-way analysis 

2 possible due to repeated variable limitation of interval 
arithmetic 
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leads to an interval of uncertainty reductions, since each 
pinching leads to a particular reduction in uncertainty.  In 
some cases, these intervals will provide a reasonable 
ranking of the importance of reducing uncertainty in 
specific inputs.  For example, if the total uncertainty can 
be reduced 30-50% by pinching input A, but only 10-
15% by pinching input B, then it is probably more 
valuable to spend resources on reducing the uncertainty 
in input A than on reducing the uncertainty in input B.   

The question regarding comparing the uncertainty in two 
p-boxes is also difficult to answer.  In probabilistic 
sensitivity analysis, the difference between two 
assumptions is measured in uncertainty reduction in 
terms of variance reduction, or sometimes in terms of 
some entropy measure.  Ideally, a meta-level sensitivity 
analysis also would compare the reduction in uncertainty 
using some single metric.   

Ferson and Tucker [7] use the area of a p-box (i.e., the 
difference between the integrals of the upper bound and 
lower bound of the p-box).  This number decreases as 
the imprecision is reduced, reaching zero in the case of 
a precisely known distribution.  However, there is no 
consensus on single “best” scalar measure that captures 
the combined effect of both the imprecise and 
probabilistic dimensions of uncertainty, as other 
researchers have proposed alternative metrics [40, 41].  
It may be that different definitions of total uncertainty are 
appropriate and valuable in different contexts.   

The ability of PBA to evaluate the potential changes in 
total uncertainty (however measured), makes it a more 
powerful formalism for prioritizing information collection 
than measures, such as variance, that only capture one 
aspect of uncertainty.  However, calculating the various 
“pinchings” is much more computationally expensive 

than the direct, NRSA-based DASA result.  It may be 
most valuable to consider both methods, depending on 
the required tradeoffs, interests, and resources of the 
problem at hand.  

ADDITIONAL ADVANTAGES OF PBA AS A 
SENSITIVITY ANALYSIS 

In addition to providing an all-way, rigorous sensitivity 
analysis for decision robustness, PBA with DBC is more 
flexible than traditional DASA methods.  Specifically, 
PBA allows for unknown distribution types and various 
conditions of dependency between uncertain 
parameters. 

Unknown distribution types 

It was suggested earlier that PBA can also handle cases 
of unknown distribution type.  This is possible because a 
p-box can be constructed that captures various 
distributions.  For example, a p-box can be constructed 
and propagated with only knowledge of the mean and 
variance [42]; no assumption of distribution type (e.g. 
normal, lognormal, gamma, or Weibull) is necessary.  
For example, a p-box for a mean of 15 and variance of 
20 is shown in Figure 7.  Such flexibility is useful when, 
for example, a decision maker has estimates of the 
mean and variance of a probabilistic parameter, but no 
theoretical or empirical evidence about the distribution 
family. Using methods based on DBC, such p-boxes can 
be propagated into output p-boxes, which in turn can be 
used for the analysis described earlier in the paper. 

Known or unknown dependencies 

Traditional statistical methods require that the joint 
probability density functions between all uncertain 
quantities be known precisely.  Since information 
regarding joint density functions is often scarce, it is 
convenient to assume independence, thus making the 
joint density functions simple functions of the marginal 
density functions.  While assumptions of independence 
are in some cases justifiable, it is desirable to limit the 
number of assumptions that are made merely for 
computational convenience. 
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 Figure 6. Pinching a p-box 
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DBC methods can determine probability bounds in the 
case of unknown dependence between the inputs [1, 
25].  Essentially, a p-box can be computed that covers 
all possible dependency scenarios; this allows the DM to 
avoid making unwarranted assumptions about 
dependencies.  On the other hand, DASA (in both the 
deterministic and probabilistic phases), often ignores 
dependencies and higher order interactions due to 
excessive computational and elicitation effort, and the 
probabilistic analysis also requires a known distribution 
type.  Consequently, the class of problems that can be 
accurately explored with PBA (using DBC) is more 
inclusive than the class of problems that sensitivity 
analysis can explore. 

SUMMARY: GENERAL USEFULNESS OF PBA 

In this paper, it was shown that PBA generalizes a 
global (or all-way) sensitivity analysis for identification of 
decision robustness.  When implemented using the DBC 
algorithm, PBA provides a means for performing a 
sensitivity analysis for robustness identification that 
avoids a Type I error; it will never lead to the conclusion 
that the decision is not sensitive to the existing lack of 
information when in fact the decision is sensitive, 
assuming the imprecision in the inputs is properly 
characterized.  In other words, PBA avoids giving a false 
sense of security.  PBA can also handle a wider array of 
problems than a traditional sensitivity analysis.  It allows 
for a sensitivity analysis even when limited probabilistic 
information is available, and can be used to propagate 
uncertainties without making assumptions about the 
dependencies between uncertain quantities.   

However, PBA also has important limitations.  First, it 
has a much higher computational cost than DASA.  
Second, PBA (when implemented using DBC algorithm) 
is subject to a Type II error, which means concluding 
that the decision is sensitive to the existing lack of 
information when in fact it is not sensitive.  This could 
result in missed opportunities or unnecessary 
expenditures on information collection.   

A decision maker must consider multiple criteria when 
choosing a sensitivity analysis strategy.  This paper 
helps to guide this selection by revealing the nature of 
two approaches and discussing the tradeoffs between 
Type I errors, Type II errors, computational expense, 
identification of sensitivity, and information prioritization 
that must be considered. 
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