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1 Introduction 

The current (civil) engineering approach to design makes use of limit states, which are 
conditions beyond which a system or some of its components fails to satisfy the 
provisions for which it was designed (Melchers, 1999). Current codes establish that 
several limit states be checked even for a simple component (e.g., a structural member, a 
retaining wall, etc.). When an entire system is designed, many failure modes (each one 
being a limit state) may arise and additional limit states pertaining to the whole system 
may originate (e.g., deflections, overturning, etc.). Thus, the design of engineering 
systems entails checking that several limit states be satisfied. 

This paper concentrates on the particular case in which failure is achieved if any of 
the limit states is violated (series system). If information on the uncertain variables is 
given in terms of probability distributions, then one can either attempt to directly 
calculate the probability of failure for the system or revert to the upper and lower bounds 
on the probability of failure for the system (Melchers, 1999; Ang and Tang, 1981). The 
latter approach is useful because directly calculating a system’s probability of failure 
may be extremely time consuming and computationally intensive. In addition, when the 
correlation among the failure modes is unknown, the first-order bounds can still be 
calculated. 

When correlation among failure modes is unknown, system bounds are typically 
calculated based on the two assumptions of complete independence and complete 
dependence, respectively, between any two modes of failure. Starting with the pioneering 
work of Freudenthall et al. (1966) and Cornell (1967), the definition of independence in 
probability theory has been used in the literature to define the upper system bound. 

The subject has been critically reviewed by Riha and Manteufel (2001); in order to 
improve on the first-order bounds, Kounias (1968) formulated the second-order bounds 
for a system’s probability of failure. These bounds proved difficult to evaluate since they 
also required the probability of intersection between each pair of events. Ditlevsen (1979) 
proposed a weakened version of these bounds for Gaussian variates. The approach 
calculates the joint probability of two events based on a first-order approximation of the 
failure space (FORM). This method is simpler to evaluate, but may be inaccurate for 
non-linear functions. The improvements to this first-order approximation proposed by 
Madsen et al. (1986) and Cruse (1997) may give a better estimate of the joint probability 
for non-linear functions. Ditlevsen (1994) proposed a method to numerically integrate the 
joint failure region based on the first-order approximations of the performance functions. 
This approach yields the joint probability of failure instead of bounds used by Ditlevsen 
(1979). According to Riha and Manteufel (2001), although there are several textbooks 
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that cover system reliability (e.g., Ang and Tang, 1981; Cruse, 1997; Ditlevsen and 
Madsen, 1996; Madsen et al., 1986; Rao, 1996; Thoft-Christensen and Murotsu, 1986), 
these works include some contradictions in the explanation of the first-order bounds. 

Let  be the m  limit state functions depending on n  random variables: 1, , mg g…

1( , , )nX X X= … ,

0}).≤

 (1) 

given for m  different failure modes of a series system. Then: 

( ) ({ ( ) 0})i iP F P g X= ≤  (2) 

is the probability of failure in mode i . The probability of failure of the series system is: 

1 1, ,
( ) ({( min ( ))f m i

i m
p P F F P g X

=
= =

…
…∪ ∪  (3) 

Riha and Manteufel (2001) use the correlation, ρ, among failure modes to show that: 

1, ,
1

max ( ) 1 (1 ( )), for 0 1,
m

i f i
i m

i

P F p P F
=

=

≤ ≤ − − ≤ ≤∏…
ρ  (4) 

1 11

( ) ( ) ( ), for 1 0,
mm m

i i f i
i ii

P F P F p P F
= ==

− ≤ ≤ − ≤ ≤∑ ∑∏ ρ  (5) 

1, ,
1

max ( ) ( ),  for unknown .
m

i f i
i m

i

P F p P F
=

=

≤ ≤∑…
ρ  (6) 

In this paper, it is assumed that the correlation among failure modes is unknown. Using 
set-theoretic arguments rather than correlation arguments, the first part of the paper 
derives the largest upper and lower bounds for series system probability of failure. The 
paper then introduces the basic concepts of independence that apply when input variables 
are not constrained by a unique probability measure, but rather, by a closed convex  
set of probability measures (Couso et al., 1999; Ferson et al., 2004; Fetz and 
Oberguggenberger, 2004; Giron and Rios, 1980; Levi, 1980; Walley, 1991). This 
situation occurs in practice when epistemic uncertainty (Walley, 1991) cannot be further 
reduced because of funding and/or time limitations. For example, it occurs when 
(Bernardini and Tonon, 2007): an expert only provides the upper and lower bounds on 
event probabilities or intervals of possible values for a given variable; experts do not 
agree on a single probability measure for the events of interest; intervals (or sets) are 
measured, e.g., because of instrument imprecision; input variables are the output of a 
previous calculation whose input variables are random variables and: 

1 two or more models are used for carrying out calculations 

2 discretisation error bounds are taken into account 

3 upper and lower bounds in the limit theory of plasticity are used. 

When working with sets of probability measures, only the upper and lower bounds on the 
probability of an event of interest can be calculated. As a consequence, when the input 
information is given as sets of probability measures, each series bound becomes a 
probability interval. Additionally, when working with sets of probability measures, the 
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concept of independence is not unique. The formulation presented takes into account 
these complexities. 

A comparison is made with the recent results of Utkin and Kozine (2005). They 
describe a generic algorithm to find an interval-valued reliability assessment of a system 
given imprecise reliability information concerning the components. Utkin and Kozine 
(2005) also derived closed-form formulas for special cases, such as a series system with 
no information on component dependency. 

In this paper, sets of probability measures are generated by parameterised probability 
distributions, random sets or upper and lower cumulative distribution functions. In this 
latter case, calculations are performed by discretising continuous distribution functions 
into random sets in such a way that the calculated bounds are automatically verified, i.e., 
they always contain the true bounds. The Outer Discretisation Method (ODM) introduced 
by Tonon (2004) independently from the work of Williamson and Downs (1990) is used 
to carry out the discretisation. A comparison with the Iterative Rescaling Method (IRM) 
of Hall and Lawry (2004) rounds off the presentation. Concepts are illustrated throughout 
using an example of a simple portal structure [modified from Melchers (1999)] which is 
introduced below. 

2 Example statement 

In this paper, we consider a ‘series system’. We assume that there are m  failure modes 
and therefore m  limit state functions , where 1, , mg g… 0( ) 0ig x ≤  means failure in the 
ith failure mode for values  of the input variables. 0x

For the examples given in this paper, it is assumed that these functions are ‘linear’ 
and are written as: 

: :n mg x→ A ,x  (7) 

where  and  is an m1( , , )mg g g= … A n×  matrix. In this case,  is a ‘monotonic’ 
function in all variables ; this is an important property that will be used in the 
computations. However, the limit state functions  are not always monotonic in the 
same direction because a limit state  can be an increasing function in , whereas 
another limit state, 

ig

1 nx, ,x …

ig

ig kx

,jg i j≠

st

, may be a decreasing function in . This is the reason why 
a limit state function g  for the whole series system is defined by: 

kx

sy

syst 1, ,
: : ( ) minsyst
n

i
i m

g x g x
=

→ =
…

( ).g x  (8) 

[  if there is failure with respect to at least one failure mode] is neither a 
linear function nor a monotonic function in general. Further, we assume that the basic 
variables  are independent. 

0( ) 0systg x ≤

= 1( , , )nx x x…
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2.1 Example: failure analysis of a rigid-plastic portal frame 

As an accompanying example, we consider, similarly to Melchers (1999), the  
rigid-plastic portal frame shown in Figure 1, whose limit state functions  
corresponding to failure modes 1,…, 4 are as follows: 

1 4, ,g g…

1 1 3 4
2 2 3 4
3 1 2 4
4 1 2 3

mode 1: ( ) 2 2
mode 2: ( ) 2
mode 3: ( )
mode 4: ( ) 2 2

= + + −
= + +
= + + −
= + + − +

g x M M M H V
g x M M M V
g x M M M H
g x M M M H V

−
−  (9) 

where  is the vector of the independent uncertain variables 
considered or, for short, 

1 2 3 4( , , , , , )Tx M M M M H V=

,( )ig x i x∗= A  and ( )g x x= A  where ,i ∗A  is the ith row of . A
All limit state functions, , are monotonically increasing with respect to all resisting 

moments  and monotonically decreasing with respect to the horizontal force H . As 
for the vertical force , only the first three functions  are monotonically decreasing in 

 and the last one, , is increasing with respect to V . As mentioned above and shown 
in Figure 2, the limit state function  for the system is, in general, neither linear nor 
monotonic. 

ig

kM

V

4g
ig

V

systg

Figure 1 Example: rigid frame and four collapse modes 

 

Source: Redrawn from Melchers (1999) 

Figure 2  and  as functions of  , 1, ,4ig i = …

2 3M M
systg

4 2M
1[0.5,2.5], 1.0,V M∈ =

0.33, .1, 2.0H= = = =  

 

Notes: Thin lines: functions ig  and bold line: function  systg
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3 System reliability bounds 

With reference to the notation introduced in equations (1) to (3), the lower and upper 
bounds for fp

, ,m…
 are derived using only the single modes’ probabilities of failure, 

, together with set-theoretic arguments. Fréchet (1935) proved not only 
that they are the extreme cases, but also that they are the bounds on all possible cases of 
dependence and moreover, that they are the best possible such bounds in the absence of 
information about the dependence (Ferson et al., 2004). 

( ), 1iP F i =

3.1 Lower bounds 

Let us assume that the sets  are nested. They can then be ordered in such way that: iF

1 2 .mF F F…⊆ ⊆ ⊆  (10) 

Then: 

1 1, ,
( ) ( ) max ( ).f m m

i m
p P F F P F P F

=
= = =

…
…∪ ∪ i  (11) 

In this case, if a realisation, x , of the input parameters is in , then 1F 2 , , mx F F∈ …  and 
therefore failure occurs in all modes. In Melchers (1999), this is called ‘total 
dependence’, which means that if failure occurs in mode 1, then failure occurs in all other 
modes. When failure events, , are not nested, the lower bound reads: iF

1 1, ,
( ) max ( ) :f m i

i m
p P F F P F pf

−

=
= ≥

…
…∪ ∪ =

( ).

 (12) 

because then the event  with the greatest failure probability is, in general, only a 
subset of  

iF

1 .mF F…∪ ∪

3.2 Upper bounds 

In the opposite extreme case (the events  are pairwise disjoint), if failure occurs in one 
mode, then failure does not occur in all other modes. The probability of failure for the 
system is: 

iF

1
1

( )
m

f m
i

p P F F P F
=

= =∑…∪ ∪ i

∅

:

 (13) 

For general events , the above equation leads to an upper bound for the probability of 
failure for the system because the probability of non-empty intersections (e.g., 

) are not subtracted from . But then  can be greater 

than one, so we take: 

iF

i jF F ≠∩
1

( )
m

ii
P F

=∑ 1
( )

m
ii

P F
=∑

1
1

( ) min ( ),1
m

f m i
i

p P F F P F pf
+

=

⎛ ⎞
= ≤ ⎜ ⎟⎜ ⎟

⎝ ⎠
∑…∪ ∪ =  (14) 

as an upper bound. 
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3.3 Remark 

The lower bound fp
−  and the upper bound fp

+  correspond to those derived by Riha and 
Manteufel (2001) in equation (6), except for the unity cap imposed on the upper bound. 

In Melchers’ (1999) textbook, the expression  is used for the upper 

bound, 
1

1 (1 (
m

ii
P F

=
− −∏ ))

fp
+ , because it is assumed that the failure modes are independent. This may be 

true for some components, such as light bulbs, where the correlation may only vary 
between total correlation and independence. But, in general, two failure modes, i  and , 
are not independent if their limit state functions,  and 

j

ig jg , share at least one variable. 
They are correlated in a certain way (positive or negative). 

3.4 Example, continued 

To better understand the examples that will be introduced later on (when more 
complicated models of uncertainty are used), let us recall an example similar to 
Melchers’ (1999): each random variable 1 2 3 4, ( , , , , ,iX X M M M M H V )= , is normally 
distributed, with parameters  where: ( ,

i iX Xμ σ )

2= B

) .… T

2

(1.0,1.0,1.0, 2.1,2.0,1.0)TX =μ  (15) 

and 

(0.15,0.15,0.15,0.15,0.17,0.80) .TX =σ  (16) 

Then the components  of  are again normally distributed with parameters 
 and  obtained as: 

( )ig X ( )g X

( )g Xμ ( )g Xσ

2
( ) ( )and ,g X X g X X= Aμ μ σ σ  (17) 

where 

1 6 1 4

2 2 2 2 2 2 2
( ) ( ) ( ), ( , , ) , ( , ,j j= = =… T

i i X X X g X g X g XB A σ σ σ σ σ σ  (18) 

The first failure mode’s failure probability, , is obtained as: 1( )P F

1 1

2
1 1 ( ) ( ) 1, 1,( ) ({ ( ) 0}) (0; , ) (0; , )∗ ∗= ≤ = =g X g X X XP F P g X F Fμ σ μ σA B  (19) 

where  is the value of the normal distribution function with parameters  and 

 and evaluated at zero. In our example, the probabilities of failure for failure 
modes  are: 

F

)

i =

1 ( )g Xμ

1

2
(g Xσ

1, ,4…

6
1

6
2

12
3

6
4

( ) 3.4096 10
( ) 1.6020 10
( ) 6.7281 10
( ) 9.1368 10 .

P F
P F
P F
P F

−

−

−

−

= ⋅
= ⋅
= ⋅
= ⋅
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The left bound of the failure probability takes the value: 
6

1, ,4
max ( ) 9.1368 10f i
i

p P F−

=
= =

…
−⋅

−⋅

 (20) 

and the right bound takes the value: 

4
5

1

min ( ),1 1.4148 10 .f i
i

p P F+

=

⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (21) 

By using the limit state function itself, , the probability of failure of the system, systg fp , 
is: 

5 6({ ( ) 0}) 1.3138 10 [9.1368 10 ,  1.4148 10 ]X 5− −= ≤ = ⋅ ∈ ⋅ ⋅ −
fp P gsyst  (22) 

where fp  is an exact value because here, the probability distributions are exactly known. 

4 Parameterised probability measures and random sets 

In this section, we want to show how to describe the uncertainty about the value of a 
variable, , by combining the widely used approaches of probability measures and 
intervals, which lead to ‘parameterised probability measures’ and ‘random sets’. 

kx

4.1 Sets of probability measures 

Let  be a ‘credal set’ (Giron and Rios, 1980; Levi, 1980), i.e., a convex set of 
probability measures, , that describes the uncertainty about the value of a variable,  
(Klir, 2006; Walley, 1991). Since more than one probability measure is used, the 
probability of an event, E, is not a single number, but an interval; indeed, the lower and 
upper probabilities are, respectively: 

kM

kP kx

( ) inf{ ( ) : }k kkP E P E P= Mk∈  (23) 

and 

( ) sup{ ( ) : }.k k k kP E P E P= M∈  (24) 

In this paper, we restrict ourselves to two types of sets of probability measures: 

1 sets  of probability measures generated by parameterised probability measures kM

2 sets  of probability measures generated by random sets. kM

Remarks: Although the index k seems to be meaningless, it is used here to indicate 
marginal variables, as opposed to joint uncertainty where no index is used. 
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4.2 Sets  of probability measures generated by parameterised probability 
measures 

kM

Probability distributions of a certain family are defined by some parameters, e.g.,  and 
 for a normal distribution. Let P  be a probability measure parameterised by , 

which defines the corresponding probability distribution. Then, the set of probability 
measures is: 

μ
∈Θθσ θ k

{ : }kM P= ∈Θθ θ k  (25) 

and the lower and upper probabilities are, respectively: 

( ) inf{ ( ) : }, ( ) sup{ ( ) : }.kkkP E P E P E P E= =∈Θ ∈Θθ θ kθ θ  (26) 

Here, uncertainty about the parameter θ  is modelled using a set (interval); this is to show 
how the probability bounds are computed. There are many other possibilities to model 
one’s uncertainty about θ , such as fuzzy and random sets. These cases are covered in 
Fetz (2003). Using these additional models of uncertainty would only increase the 
computational effort required, but the ideas and algorithms for computing the bounds 
remain the same as for intervals. 

4.3 Example, continued 

Let us assume that the mean value of the normally distributed vertical force, V  (or ), 
is not precisely given. The uncertainty about the mean value is modelled by the interval 

. This leads to the set of probability measures, : 

6X

6 66 [ , ] [0.95,  1.15]L R
X X= =Θ μ μ 6M

{
}

2

2

6 6 6

( )
2

6 2

6

1: ( ) d ,
2

  [ , ] [0.95,  1.15], 0.8 .

−
−

= =

= = = =

∫M
x

E
L R
X X X

P P E e x

∈Θ

μ
σ

μ μ
πσ

μ μ μ σ σ

 (27) 

4.4 Sets  of probability measures generated by random sets kM

In this case, the uncertainty about the value of variable  is modelled by using a set of 
probability measures, , generated by random sets. 

kx

kM

4.4.1 Random sets 

A random set, , (Dempster, 1967, 1968; Molčanov, 2005) consists of a finite 

class of sets (so called focal sets)  and a weighting function 
(or basic probability assignment): 

( , )k kmA
1, { , ,A A= …A kni

k k k k⊆ }A

): [0,1] : (A A→A i i
k k k k km m  
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with  where  is the number of focal sets. Probability assignment 
1

( ) 1A
=

=∑ kn i
k ki
m

( )

kn

Aikkm  indicates that an event in (subset of) Aik  has probability ( )Aik km , but the 
available information does not allow for a more precise identification of which event in 
Aik  has probability ( )Aik km . Random sets occur frequently in engineering. For example, 

whenever the observation of a random variable is imprecise, i.e., whenever a set of 
values (and not a precise value) is observed. Or another example: the sets 1 , ,A A kn

k…k  are 
 expert meanings about the possible range of the kth parameter considered. Then the 

weights represent the trust in the expert opinions. 
kn

For an event, , the upper probability, kF kP , can be easily calculated in closed form 
because it coincides with the plausibility measure, , defined as (Dempster, 1967): Plk

( ) Pl ( ) ( ).
A

A
≠

= = ∑
i
k k

i
k k k k k k

F

P F F m
∩ ∅

 (28) 

Likewise, the lower probability, kP , coincides with the belief measure, , defined as 
(Dempster, 1967): 

Belk

( ) Bel ( ) ( ).
A

A= = ∑
i
k k

i
k k k kk

F

P F F m
⊆

k

)iX ω

k )i

 (29) 

Remark: The weighting function, , can also be interpreted as a probability measure 

 on a finite set  together with a multi-valued mapping (Dempster, 
1967): 

km

}knkωkm
1{ , ,k k= …Ω ω

: ( ) : (→ i
k k k k kX PΩ ω  (30) 

which maps the singletons  onto the focal sets . Then i
k ∈Ωω : (A =ik k kX ω ( )Aik km  is 

‘more exactly’ 1( ( ))A−
k kX

i
km  and  can be interpreted as a multi-valued random 

variable (Alvarez, 2006; Molčanov, 2005). 
kX

4.4.2 Sets  of probability measures generated by random sets kM

Let  be the set of all probability measures, , ‘on’ the 

corresponding focal set, , and equal to zero outside . Since the probability 

assignment, , can be distributed in all possible ways in , the set of probability 

measures generated by )k  is the set of all weighted sum , ,n… , 
where the weights are the probability assignments

{ : ( ) 1=Mi i i i
k k k kP P A

i
kA

( )ik km A

( ,A

}=

s of 
, i.e.: 

Mk

i
kP

,iP i

i
kA

Aik

k m 1k k=

1 1

( ) : ( ) .
= =

⎧ ⎫⎪ ⎪= = =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑M M
k kn n

i i i i i i
k k k k k k k k k

i i

P m A P P m A∈  (31) 

An element of this set, , is generated as: kM
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1

( ) ,
=

=∑ M
kn

i i i i
k k k k k

i

P m A P P ∈ .k  (32) 

4.5 Sets kM  of probability measures generated by lower and upper cumulative 
distribution functions 

Consider two given upper semi-continuous cumulative distribution functions, kF  and 

kF , with kkF F≤ . kF  and kF  are the lower and the upper cumulative distribution 
functions, respectively. The set of probability measures whose cumulative distributions 
are comprised between kF  and kF  is also called p-box (Ferson, 2001): 

{ : ( ) (( , ]) ( )}.kk k kkP F x P x F x= ≤ − ≤∞M  (33) 

It can also be interpreted as a random set with infinitely many focal sets (intervals): 

( ) [min{ : ( ) }, min{ : ( ) }], [0,1]= ≥ ≥kk kA y x F x y x F x y y ∈  (34) 

weighted by the uniform distribution on [0, 1]. 
In order to be computationally practical, sets  (or p-boxes) are approximated by a 

set of probability measures generated by random sets having a finite number of focal sets. 
This is accomplished via the Outer Discretisation Method (ODM) described by Tonon 
(2004) and illustrated in Figure 3. 

kM

Figure 3 Outer discretisation method 

 

We assume that F  and F  are continuous and strictly monotonically increasing. As a 
first step, the [0, 1] ordinate intervals of F  and F  are both discretised into n  
subintervals of length 0( 1, , )jm j = …> n ; for example, 5n =  in Figure 3. By 

definition, let  and let 0 : 0m = 1F −  and 
1

F
−

 indicate the inverse functions of F  and F , 
respectively. As a second step, the focal elements are calculated: the focal element 
corresponding to (the weight) jm  is the interval: 
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1
1 1

0 1

( ),  ( )
j j

i
i i

F m F m
−

− −

= =

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

∑ ∑ ,i ⎥  (35) 

where 
1

0
(0) : lim ( ),

y
F F

−

→ +
=

1
y

−
 (36) 

1

1
(1) : lim ( ).

y
F F−

→ −
= 1 y−  (37) 

For example, the focal set  corresponding to  in Figure 3 is given by 3
kA

3( )km A
1 11 2 1 2 3⎡ ⎤+⎢ ⎥⎣ ⎦k( ( ) ( )),  ( ) ( ) ( ))
− −+ +k k k kF m A m A F m A m A(m A . 

An ODM example is contained in Section 5.4.2. A comparison with the Iterative 
Rescaling Method (IRM) of Hall and Lawry (2004) is given in the Appendix. In Figure 3, 
the approximating upper and lower cumulative distribution functions are indicated as 

ODMF  and ODMF , respectively. As shown in Tonon (2008), the ODM algorithm ensures 
that the calculated probability bounds always contain the bounds that could be calculated 
using F  and F . 

4.6 Sets of joint probability measures and independence 

For notational convenience, let us consider only two variables,  and  and let us 
assume that their uncertainty is described by sets of probability measures,  and . 
In order to compute the failure probabilities  and P F , the joint 
probability measures, P , are needed. They must be consistent with the available 
information and thus the marginal probability measures must be in the corresponding 
sets, and  respectively, i.e.: 

1x

1

2x

1M

mF
2M

)( )iP F ( …∪ ∪

1M 2M

1{ : ( )  and ( ) }.P P P⋅× ×⋅⊆ ∈ ∈M MR R 2M  (38) 

If the input variables are independent, the question arises as to what independence means 
in the context of the sets of probability measures. At difference with precise probabilities, 
there are several notions of independence; three of them are the most important (Couso  
et al., 1999): 

• epistemic independence 

• strong independence 

• random set independence (if sets kM  are generated by random sets). 

Only the strong and random set independence will be used in this paper. 

• Strong independence: The set M  is defined in a very natural way as the set of all 
product measures 1 2P P⊗  of the marginals 1 1P ∈M  and 2 2P ∈M  (Couso et al., 
1999): 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

    Probability bounds for series systems 321    
 

S 1 2 1 1 2{ : , , },P P P P P P= =M M⊗ ∈ ∈ 2M

).

 (39) 

where  This type of independence is always used 
if the sets  are generated by parameterised probabilities. 

1 2 1 2 1 1 2 2( ) ( ) ( ) (× =P P A A P A P A⊗

kM

• Random set independence: It is assumed that the marginal focal sets are chosen in an 
independent way. The set of joint probability measures is generated by the joint 
random set with focal sets 2  and weights 

 (Fetz, 2001, 2003): 
1 12 ,  1, , , 1, ,i jA A i n j n× = =… …

2 ( )jA1 1 12( ) ( )i j im A A m A m× = 2

) 1 .

R

1 2

R 1 1 2 12 2
1 1

: ( ) ( ) , (
= =

⎧ ⎫⎪ ⎪= = × =⎨ ⎬
⎪ ⎪⎩ ⎭

∑∑
n n

i j ij ij i j

i j

P P m A m A P P A AM  (40) 

In general,  (Couso et al., 1999) and therefore S ⊆M M

S ( )P E P≤ ≤ ≤ RR S( ) ( ) ( )P E P E E  where RP  and RP  are the lower and upper 

probabilities corresponding to random set independence and SP  and SP  are the lower 
and upper probabilities corresponding to strong independence. 

We do not go further into the details, except for the following two results: 

1 Let f  be a continuous function; let the marginal focal sets  and 1
iA 2

jA  be intervals 

and let 1 2[ , ] ( )
ijijij i jB b b f A A= = ×  be all of the images of the joint focal sets. Then 

we have: 

1 2

R 1 2
{ ( ) 0}

 ( ,0] 0

({ ( ) 0}) ( )

  
  ( ) ( )

i j

ij ij

i j

A A f x

ij ij

B b

P f x m A A

m B m B

× ≤ ≠

− ≠ ≤

≤ = × =

= =

∑

∑ ∑
∩ ∅

∩ ∞ ∅

 (41) 

and 

1 2

1R 2
{ ( ) 0}

( ,0] 0

({ ( ) 0}) ( )

  ( ) ( )

× ⊆ ≤

− ≤

≤ = × =

= =

∑

∑ ∑

i j

ij ij

i j

A A f x

ij ij

B b

P f x m A A

m B m B
⊆ ∞

 (42) 

with  1 2( ) ( )ij i jm B m A A= × .

2 If f  is monotonic, then R S( ) ( )P E P E=  and R S( ) ( )P E P E=  (Fetz, 2003). For a 

general function, f , it is very hard to compute S ( )P E  and S ( )P E . 

More information can be found in Fetz (2001, 2003) and Fetz and Oberguggenberger 
(2004). 
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5 System reliability bounds for sets of probability measures 

If sets of probability measures are used to describe the uncertainty of the input variables, 
the resulting mode probabilities of failure are intervals and so too are the system 
reliability bounds and the probability of failure of the system itself. In this section, we 
show how to compute the system reliability bounds for sets of probability measures and 
we highlight the problems that may arise in these computations. 

5.1 Notation 

Let us introduce the following notation for the intervals of probabilities resulting for sets 
of probability measures as input: 

, ,,

,

[ ( ), ( )] interval for the th mode’s probability of failure,
[ , ] interval for the system’s probability of failure,

[ , ] interval for the lower bound, exact computation,ex exex

iF i i

f ff

f ff

f

I P F P F i
I p p

I p p

I

−−−

=
=

=

,,
[ , ] interval for the upper bound, exact computation,

[ , ] interval for the lower bound, interval arithmetics,

[ , ] interval for the lower bound, interval arithmetics.

ex exex ff

f ff

f ff

p p

I p p

I p p

+++

−−−

+++

=

=

=

 

5.2 Computation of the bounds 

Since a set of probability measures, , models the uncertainty of each variable, , 
the probability of failure for the ith mode is the interval: 

kM kx

[ ( ), ( )]
i
F iI P F P F= i  (43) 

with 

( ) inf{ ( ) : }, ( ) sup{ ( ) : }= =i i i iP F P F P P F P F PM∈ M∈  (44) 

where  is the set of joint probability measures of the input generated by the sets 
. 

M
, 1= , ,k k n…M
If these intervals, , are inserted into the formulas for the lower and upper system 

reliability bounds, the upper bounds are overestimated and the lower bounds are 
underestimated (naïve interval computations). This is a very well-known problem in 
interval analysis, which has devised many algorithms to counter this problem. In our 
case, since the modes of failure share input variables, , there are interactions between 
the intervals  and these shared variables are repeated in the formulas. By 

treating each interval separately, a repeated variable affecting two intervals is treated as if 
it were two different variables. Cf., the famous example 

iF
I

,…
iX

, 1 ,
iF
I i m=

( )f x x x= −  evaluated for an 

interval : using naïve interval computations treating both x  as different [ , ]L Rx x
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variables, the result is not [0, 0], but [ , . As a consequence, the set of the 
probabilities of failure: 

]L R R Lx x x x− −

}M1{( ( ), , ( )) :mS P F P F P= … ∈  (45) 

is just a subset of the Cartesian product of the failure probability intervals: 

1 2
.

mF F FS I I I= × × ×  (46) 

In order to obtain the exact lower and upper system reliability bounds: 

, ,,
[ , ],ex exexexf f , ,,

[ , ],exexf ff f
p p

+++ =I p p I
−−− =  (47) 

one has to work on set S : 

{ 1, 1, ,
min max ( ) : ( ( ), , ( )) ,

ex i mf i m
p P F P F P F−

=
=

…
… ∈ }S  (48) 

{ 1, 1, ,
max max ( ) : ( ( ), , ( )) ,ex i mf

i m
p P F P F P F
−

=
=

…
… ∈ }S  (49) 

1,
1

min min( ( ),1) : ( ( ), , ( )) ,
ex

m

i mf
i

p P F P F P F+

=

⎧ ⎫⎪ ⎪= ⎨
⎪ ⎪⎩ ⎭

∑ … ∈S ⎬  (50) 

1,
1

max min( ( ),1) : ( ( ), , ( )) .ex

m

if
i

p P F P F P F
+

=

⎧ ⎫⎪ ⎪= ⎨
⎪ ⎪⎩ ⎭

∑ … ∈m S ⎬  (51) 

In most cases, this is very difficult to accomplish because it entails solving two min-max 
optimisation problems on the modes’ probabilities of failure. Replacing S  by S  leads 
to the results of naïve interval computations and to the formulas: 

1, , 1, ,
max ( ), max ( ),i ff i m i m

p P F p P
−−

= =
= =

… iF…
 (52) 

1 1

min ( ),1 , min ( ),1 ,
m m

i ff
i i

p P F p P F
++

= =

⎛ ⎞ ⎛
= =⎜ ⎟ ⎜⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑ i

⎞
⎟⎟
⎠

 (53) 

which are the outer approximations to the actual probability intervals, i.e.: 

, ,[ , ], [ , ].ex exf f f ff ff f
I I p p I I p p

− +−− − + +=⊆ ⊆ +=  (54) 

Only for the more or less useless upper bound of the lower bound we have ,exf fp p
− −
=  

because interactions do not play a role in the calculation of max(max(·)). In the 
following, we will also use the notation fp

−  for the lower bound 
f
p−  of the interval 

[ , ]ff
p p

−−  and fp
+  for fp

+
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The bounds in equations (52) and (53) coincide with the bounds derived by Utkin and 
Kozine (2005, p.28) when one substitutes 1 ( )iP F−  for the component reliability  
and takes sup

( )ia
1f =  to turn previsions into probabilities. The same result is obtained 

when one considers that the reliability of a parallel system [Utkin and Kozine, (2005), 
p.29] means survival if at least one component survives and this corresponds to equations 
(52) and (53) for failure of series systems (failure occurs if at least one component fails). 
Since Utkin and Kozine (2005) assume that their available information consists of the 
upper and lower previsions ( ia  and ia ) on the reliability of each component, they are 
already operating on set S  [Utkin and Kozine, (2005), p.26, 29]. The discussion 
contained in this section puts their work in the proper light. 

5.3 Conditions leading to exact bounds 

In this section, the expression ‘exact bounds’ does not refer to the probability of failure 
for the system [ , ]f ff

I p p= . Rather, it refers to the exact intervals ,exfI
−  and ,exfI

+  for the 

lower and upper system reliability bounds. 
In order to calculate the intervals ,exfI

−  and ,exfI
+ , it is not required that S . 

Indeed, it is sufficient to have: 
S=

1 1( ( ), , ( )) and ( ( ), , ( ))mP F P F S P F P F S… …∈ m ∈  (55) 

because these are the only values used in the above formulas (52) and (53). 
If the sets of probability measures, , are generated by random sets and if the limit 

state functions  are monotonic always in the same direction, then (55) holds because 

all 

kM

ig

( )iP F  and all ( )iP F  can be obtained always at the same corners of the joint random 
sets. 

5.4 Example, continued 

5.4.1 Parameterised probability measures 

To visualise the problems arising in computing the system reliability bounds, let us start 
with the case where the uncertainty on V  is described by the set of probability measures 
given in Section 4.3. All other variables are normally distributed as in Section 3.4. The 
input (and therefore all results) are parameterised by the mean value of the vertical load 

. Figure 4 depicts the probabilities of failure for modes  as 
a function of  are increasing functions in , but  is 
a decreasing function of . 

, [0.95,  1.15]VV ∈μ
. (V P Fμ

1, ,4= …i

4(P F1 2),  ( ) and P F P

Vμ
3( )F Vμ )

The images of [0.95, 1.15] through these four functions lead to the following 
intervals for the mode’s probabilities of failure: 

6 6
1 1 1

6 6
2 2 2

12 12
3 3 3

6 5
4 4 4

( ) [ ( ), ( )] [2.64662 10 ,7.17076 10 ]
( ) [ ( ), ( )] [1.21401 10 ,3.61337 10 ]
( ) [ ( ), ( )] [6.72815 10 ,6.72815 10 ]
( ) [ ( ), ( )] [4.38048 10 ,  1.16099 10 ].

P F P F P F
P F P F P F
P F P F P F
P F P F P F

− −

− −

− −

− −

= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅

∈
∈
∈
∈
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Figure 4 Failure probabilities as functions of  Vμ

 

How to obtain these intervals is explained below [equations (56) to (59)] for the most 
general case. 

By looking at Figure 4, it is obvious that the upper bounds of ,  and 
 do not correspond to the upper bound of . By applying interval arithmetics 

to the formulas for 

1( )P F 2( )P F

3( )P F 4( )P F

fp
−  and fp

+ , one does not get exact intervals ,exfI
−  and ,exfI

+ , but only 

,exf fI − ⊃ I −  and ,exf fI
+ +⊃I : 

6 5

6 5
[4.38048 10 ,  1.16099 10 ]
[8.24112 10 ,  2.23941 10 ].

f

f

I
I

− −

+ −
= ⋅ ⋅
= ⋅ ⋅

−

−  

In this simple example, we can easily calculate the exact bounds by computing the 
minimum and maximum of fp

−  and fp
+  as functions of  in [0.95, 1.15], see also 

Figure 5: 
Vμ

6 5
, ,,

5 5
, ,,

[ , ] [5.62629 10 ,  1.16099 10 ]

[ , ] [1.36547 10 ,  1.54705 10 ].
ex exex

ex exex

f ff

f ff

I p p

I p p

−−− −

+++ −

= = ⋅ ⋅

= = ⋅ ⋅

−

−
 

Figure 5 fp
−  and fp

+  as functions of  Vμ
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As mentioned above, the only exact bound obtained by using interval arithmetics is the 

(useless) upper bound ,exfp
−

 of the lower bound. In the following, it is assumed that the 
means  of all variables are intervals, rather than singletons. The standard deviations 

remain the same as before. The set Θ for the mean values is given by: 
iX

μ

[0.75,1.05] [0.75,1.05] [0.75,1.05] [1.75, 2.2] [1.9, 2.5] [0.75,1.25],= × × × × ×Θ  

where the ith interval is the interval for the mean value of . Based on equation (19), 

the lower and upper probabilities of failure for the ith mode, 
iX

( )iP F  and ( )iP F , are 
obtained in the following way: 

2
, ,( ) (0; , )i

i i X iP F F +
∗ ∗= A Bμ σX  (56) 

2
, ,( ) (0; , )i

i i X iP F F −
∗ ∗= A Bμ σX  (57) 

with 

0

0
j

j

j

L
X iji

X R
X ij

−
⎧⎪= ⎨
⎪⎩

A

A

>

<

μ
μ

μ
 (58) 

and 

0

0,
j

j

j

L
X iji

X R
X ij

+
⎧ <⎪= ⎨

>⎪⎩

A

A

μ
μ

μ
 (59) 

if we assume (as in our example) that all mean values are positive. Then, we get: 
8 2

1 1 1
8 4

2 2 2
15 3

3 3 3
7 2

4 4 4

( ) [ ( ), ( )] [7.64097 10 ,1.60766 10 ]
( ) [ ( ), ( )] [8.69605 10 ,8.92689 10 ]
( ) [ ( ), ( )] [5.38242 10 ,7.85493 10 ]
( ) [ ( ), ( )] [4.15900 10 ,1.60766 10 ].

P F P F P F
P F P F P F
P F P F P F
P F P F P F

− −

− −

− −

− −

= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅
= ⋅ ⋅

∈
∈
∈
∈

 

Applying the formulas for the system reliability bounds [equations (52) to (53)], we 
obtain: 

7

2
4.15900 10
4.09007 10 .

f

f

p
p

− −

+ −
= ⋅
= ⋅

 

5.4.2 Random sets, ODM 

In order to make the uncertain information more realistic, truncated normal distributions 
(as opposed to normal distributions) are assumed. The cumulative distribution function: 

2 2
2

2
( ; , ) ( ; , )( ; , )

( ; , ) ( ; , )trunc

L

R L

F x F x
F x

F x F x

−
=

−
μ σ μ σ

μ σ
μ σ μ σ2  (60) 
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is the CDF which we get if a normal distribution with parameters μ ,  and CDF 

 is truncated to the interval [ , . 

σ
2( ; , )F x μ σ ]L Rx x

As a first step, we start with the lower and upper CDFs, iF  and iF , for each 
variable  given by: iX

2( ) ( ; , ),
i i

R
X XiF x F x= μ σ  (61) 

2( ) ( ; , ),
i i

L
i X XF x F x= μ σ  (62) 

with means and variances from the previous example. Then, we replace iF  and iF  
(which are CDFs) by the CDF of the corresponding truncated normal distributions. The 
intervals used for truncation are given in Table 1. 
Table 1 Intervals for truncation 

Variable Interval for truncation of the lower CDF Interval for truncation of the upper CDF 

M1 [0.25, 1.65] [0.25, 1.65] 
M2 [0.25, 1.65] [0.25, 1.65] 
M3 [0.25, 1.65] [0.25, 1.65] 
M4 [1.15, 2.80] [1.15, 2.80] 
H [1.30, 2.90] [1.30, 2.90] 
V [0.00, 3.00] [0.00, 3.50] 

Figure 6 Lower and upper CDFs of truncated normal distributions and the random sets obtained 
by ODM 

 

As a second step, the resulting p-boxes are approximated by random sets using the ODM: 
the ordinate y  (the interval [0, 1]) is discretised by: 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   328 T. Fetz and F. Tonon    
 

(0) (1) (2) (3) (4)0.0,  0.1,  0.5,  0.9 and 1.0,y y y y y= = = = =  

which leads to focal sets (intervals)  with weights i
kA

( ) ( 1)( ) −= −i i i
k km A y y . The lower 

and upper CDFs and the random sets are depicted in Figure 6. 
If random set independence is assumed, we have to compute the images: 

[ , ] ( ) and [ , ] ( )systsyst systsyst
j jj jj j j
ii iiB b b g A B b b g A= = = = j  (63) 

of all 46 = 4,096 joint random sets jA . 
For the mode’s limit states, , this can be accomplished very easily by using their 

monotonicity properties. As we have already mentioned, in general, the system limit state 
function, , is not monotonic. For the lower bounds, 

ig

systg syst
jb , which are needed to 

calculate the upper probability [equation (41)], one has: 

min ( ) min min ( ) min min ( ) min ,systsyst j j j

j j
i i i

i i ix A x A x A
b g x g x g x= = = =

∈ ∈ ∈
b  (64) 

which is also very easy to compute. As for the upper bounds, syst
j
b , which are needed to 

calculate the lower probability [equation (42)], one has: 

max ( ) max min ( ) min max ( ) min .syst systj j j

j j
ii i

i i ix A x A x A
b g x g x g x= = ≤ =

∈ ∈ ∈
b  (65) 

Alternatively, one may calculate the left-hand side of equation (65) by solving the linear 
optimisation problem: 

maximise ,y  (66) 

subject to 

( ) 1, , ,ig x y i m≥ = …  (67) 

1, , ,k kx I k n= …∈  (68) 

where 1
j

mI I× × =A

.

 is the joint focal set generated by the Cartesian product of 
marginal focal sets (intervals) . kI

Numerical results 
The probabilities of failure for the single failure modes are as follows: 

1
1

2
2

1
3

2
4

( ) [0, 2.319 10 ]
( ) [0, 4.410 10 ]
( ) [0, 2.021 10 ]
( ) [0, 4.938 10 ]

P F
P F
P F
P F

−

−

−

−

⋅
⋅
⋅
⋅

∈
∈
∈
∈

 

The system reliability bounds yield [equations (52) to (53)]: 
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1
0
5.2748 10 .

f

f

p
p

−

+ −
=
= ⋅

 

The system’s probability of failure obtained using  is comprised within the bounds 
[equations (66) to (68)]: 

systg

1[0,3.65221 10 ].fp
−⋅∈  

Figure 7 Images of the joint focal sets as stacks and the p-boxes of the probabilities of failure for 
the four failure modes (Section 5.4.2) 
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For the four failure modes, Figure 7 depicts the images of the joint focal sets (as stacks in 
the figures to the left) and their relevant p-boxes (figures to the right). The images of the 
joint focal sets are sorted by the left interval bounds and visualised as a stack where the 
distance of a focal set to the focal set directly below is exactly the joint weight. So the 
contour of the left side of the stack coincides with the left side of the p-box. Figure 8 
depicts the results for the system obtained by using . systg

Some comments on the more interesting upper bounds are in order: in general, the 

interactions between the probability intervals [ ( ), ( )]i iP F P F  results in ,exf fp p
++ ≠ . On 

the other hand, it is not sure that fp is the upper probability for the strong independence 
assumption because  is not monotonic and therefore, in general, the results for the 
random set independence are not equal to the results for strong independence. 

systg

Figure 8 Images of the joint focal sets as stacks and the p-box for the probability of failure of the 
system (Section 5.4.2) 

 

5.4.3 Random sets, ODM, Monte-Carlo 

Using only four focal sets leads to a very rough approximation of the p-boxes. If we use a 
finer discretisation, e.g., ten focal sets, we would get a better approximation, but then we 
have to compute 106 images of joint focal sets. The idea is now not to consider all  
106 joint focal sets, but only, say, N = 10,000 randomly chosen sets. Notice that the 
probability bounds are no longer automatically verified. Since the weights, , are 
probability distributions, the focal sets are chosen as follows: 

km

1 for each variable, , choose  focal sets using the weights  kx N km

2 the jth joint focal set is the Cartesian product of all jth chosen marginal focal sets, 
 1, ,j N= …

3 the weights of these joint focal sets are 1/  for all sets. N

In the following, we use ten focal sets or 10,000 

focal sets  and N = 10,000 Monte-Carlo 
simulations. The finer discretisation results in ten to 100 times narrower intervals for the 
probabilities of failure, see Tables 2, 3 and 4. In Figure 9, the coarse discretisation is 
depicted and in Figures 10 and 11, the corresponding images of the joint focals and the  
p-boxes are depicted. 

( )(discretisation : /10, 0, ,10)iy i i= = …

00, 0, ,10,000)i= = …( )(discretisation : /10,0iy i
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Table 2 Probabilities of failure for the single failure modes 

Discretisation using ten focal sets Discretisation using 10,000 focal sets 

1
1( ) [0,  1.251 10 ]P F −⋅∈  2

1( ) [0,  1.45 10 ]P F −⋅∈  

2
2( ) [0,  2.670 10 ]P F −⋅∈  4

2( ) [0,  3.00 10 ]P F −⋅∈  

2
3( ) [0,  9.680 10 ]P F −⋅∈  3

3( ) [0,  6.30 10 ]P F −⋅∈  

2
4( ) [0,  1.710 10 ]P F −⋅∈  4

4( ) [0,  1.00 10 ]P F −⋅∈  

Table 3 The system reliability bounds [equations (52) and (53)] 

Discretisation using ten focal sets Discretisation using 10,000 focal sets 

0fp
− =  0fp

− =  

12.657 10fp
+ −= ⋅  22.12 10fp

+ −= ⋅  

Table 4 The system’s probability of failure obtained using  [equations (66) to (68)] systg

Discretisation using ten focal sets Discretisation using 10,000 focal sets 

1[0,  2.042 10 ]fp
−⋅∈  2[0,  2.04 10 ]fp

−⋅∈  

Figure 9 Lower and upper CDFs of truncated normal distributions and the random sets obtained 
by ODM (Section 5.4.3, coarse discretisation) 

 

 

 

    
 
 

   

   
 

   

   

 

   

       
 



   

 

   

   
 

   

   

 

   

   332 T. Fetz and F. Tonon    
 

Figure 10 Images of the joint focal sets as stacks and their relevant p-boxes of the probabilities of 
failure for the four failure modes (Section 5.4.3, coarse discretisation) 
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Figure 11 Images of the joint focal sets as stacks and the p-box for the probability of failure of the 
system (Section 5.4.3, coarse discretisation) 

 

5.5 Criteria for using or not using system reliability bounds 

As already mentioned in the Introduction, the main reason to use system reliability 
bounds is the high computational effort to obtain the probability of failure of the system, 
fp , when the computation of the probability of failure for each mode, , is easier to 

obtain. Based on the algorithms and numerical examples presented, the following criteria 
can be offered to the analyst. 

( )iP F

5.5.1 Linear , monotonicity always in the same direction ig

• Parameterised probabilities (normal distribution): Cheap calculation of single 
mode’s probabilities of failure, but expensive calculation of system’s probability of 
failure because of the non-linearity of systg . 

• Random sets: Cheap calculation of single mode’s probabilities of failure; exact 
bounds can be obtained. However, the calculation of the system’s probability of 
failure is also cheap because of the monotonicity of systg  in this case. All of these 
bounds calculated using the strong independence assumption coincide with those 
obtained using the random set independence assumption. Therefore, one should 
compute the probability of failure for the system directly by using systg  and one 
should not use the system’s reliability bounds. 

5.5.2 Linear , monotonicity not always in the same direction ig

• Parameterised probabilities (normal distribution): Cheap calculation of single 
mode’s probabilities of failure, expensive calculation of system’s probability of 
failure. 

• Random sets: Cheap calculation of single mode’s probabilities of failure; exact 
bounds cannot be calculated. As for the system, cheap calculation of the upper 
probability of failure, but more expensive calculation of the lower probability of 
failure. The assumptions of random set independence and strong independence lead 
to different bounds. 
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5.5.3 Non-linear , monotonicity always in the same direction ig

• Random sets: Cheap calculation of single mode’s probabilities of failure; exact 
bounds can be obtained. However, the calculation of the system’s probability of 
failure is also cheap because of the monotonicity of systg  in this case. All of these 
bounds calculated using the strong independence assumption coincide with those 
obtained using the random set independence assumption. Therefore, one should 
compute the probability of failure for the system directly by using systg  and one 
should not use the system’s reliability bounds. 

• Parameterised probabilities (normal distribution): If the ig  are non-linear, the effort 
to compute one single mode’s probability is the same as calculating the system’s 
probability of failure. For the computations, we have to make use of the 
monotonicity of systg  and of Monte-Carlo simulations. 

5.5.4 Non-linear , monotonicity not always in the same direction ig

• Random sets: Cheap calculation of single mode’s probabilities of failure; exact 
bounds cannot be calculated. As for the system, cheap calculation of the upper 
probability of failure, but more expensive calculation of lower probability of failure. 
The hypotheses of random set independence and strong independence lead to 
different bounds. 

• Parameterised probabilities (normal distribution): As in Section 5.5.3, but the effort 
to compute the system’s probability of failure is greater because now, systg  is not 
monotonic. 

5.5.5 Non-linear , not monotonic ig

• Parameterised probabilities (normal distribution) and random sets: In general, all 
bounds are expensive to compute and one should directly compute the probability of 
failure for the system. 

6 Conclusions 

Algorithms were presented for calculating bounds on the probability of failure of a series 
system when no information is available on the dependencies among mode’s failure 
probabilities and when input data on the variables that control the components’ 
probability of failure is constrained either by parameterised probability measures or 
random sets. The assumption of independence for the input variables has been folded into 
the formulation. 

It turns out that calculating the failure probability bounds for each failure mode and 
then calculating bounds for the system is advantageous (with respect to directly 
calculating the system’s probability of failure) when: 
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• the system’s safety margin is linear in the input variables; monotonicity is alwa
the same direction and input variables are given as parameterised probabilities 

• the system’s safety margin is lin

ys in 

ear in the input variables; monotonicity is not 

ets. 

The paper also shows how discretising given the upper and lower CDF envelopes using 
s to validated bounds on the system’s probability of failure. 
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Appendix 

Comparison between ODM and the iterative scaling method 

Hall and Lawry (2004) introduced the Iterative Rescaling Method (IRM) with the aim of 
discretising set kM  in equation (33) into a random set with a finite number of focal 
elements. Their approach consists in discretising the abscissa, rather than the ordinate as 
is done in Figure 3. The interval of interest for variable x , I , is partitioned into non-
overlapping segments, iI  and a heuristic algorithm is used to allocate the probability 
assignment onto the set of all unions of siI − . 

If the aim of the analysis is to generate bounds on the probability of a quantity being 
less than (or greater than) some threshold value, as, for example, is the case in reliability 
analysis, then the ODM is more accurate than the IRM at a given level of discretisation 
because the ODM approximation touches the lower and upper cumulative curves which it 
app

bitrary closed inter

et

idate this comparison, let us reconsider the numerical example used 
by Hall and Lawry (2004), in which the lognormal distribution is used with mean in the 
range [0.1, 1.0], standard deviation in the range [0.1, 0.5] and 

roximates, whereas this is not necessarily the case with IRM. On the other hand, if the 
aim is to support arbitrary information processing which might, for example, involve 
calculating the probability of a quantity of interest lying in some ar val, 
then the ODM gives a poorer approximation than the IRM. This is simply because 
bounds on cumulative distributions (which ODM discr ises) contain much less 
information than bounds on density functions (which IRM discretises). 

In order to eluc

[0.172,  17.453]I = . A 
uniform discretisation is used for the ODM; the focal ele  
[0.172, 2.604], [0.891, 3.372], [1.154, 17.453] and all with  
on the partition obtained by projecting the focal elements  
and Lawry, 2004): 

ments are as follows: 
 = 0.333. The IRM based

 onto I  yields (Hall
m

 extremes

[1.154,2.604), 0.333;m

[0.172,0.891) [1.154,3.372), 0.010;
[0.172,0.891) [1.154, 2.604) [3.372,17.453], 0.005;
[0.891,3.372), 0.318;
[0.891,17.453), 0.008;
[0.172,17.453], 0.318.

m

m

m

m

m

=
=
=
=
=
=

∪
∪ ∪

 

First, notice that three focal elements are used in the ODM discretisation, versus seven in 
IRM discretisation. However, as one can see in Figure 12, the two discretisations induce 
the

tained in the convex set generated by IRM. 
Since seven focal elements were used in the IRM discretisation and three in the 

 I . This is especially true 
when joint random sets must be considered, whose focal elements are the Cartesian 
products of the marginal focal elements. Figure 13 shows the ODM approximation 

 upper (and lower, respectively) CDFs that are undistinguishable from the other at the 
scale of the figure, with the ODM approximation actually touching the upper and lower 
CDFs and the IRM approximation getting very close to the same CDFs. Since the upper 
and lower CDFs uniquely generate a convex set of probability measures by natural 
extension (Walley, 1991), the convex set of probability measures generated by the CDFs 
induced by ODM is con

ODM, the RM leads to higher calculation burden than the ODM
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obtained with seven focal elements. By comparing with Figure 12, the improvement over 
the IRM is noticeable. 

Figure 12 IRM and ODM approximation to upper and lower CDFs 

 

Note: IRM uses seven focal elements and ODM uses three focal elements. 

Figure 13 ODM approximation to the same CDF as in Figure 12 (seven focal elements) 

 

O her hand, co lies in  in 
[ . Table 5 illu yields a better approx  ODM. 
T bability bound als calculated with IRM a

Probabilit IRM Probabilit

n the ot nsider the probability that x   a specific interval comprised
0.172, 17.453] strates that IRM imation than
able 5 Pro s for some interv nd ODM 

Interval y bounds from y bounds from ODM 

[0.891, 1.154) [0.000, 0.651] [0, 0.667] 
[1.154, 2.604 [0.333, 1.000] [0, 1.000] 
[2.604, 3.372) [0.000, 0.654] [0, 0.667

) 
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). These are the random variables defined on Ω 

ude all

 be a bounded random variable and let 

Call rM  the set of probability measures induced by the measurable selections of the 
random set, ( )S Γ , (Miranda et al., 2005

whose values d in the images of the random set ( )X ω . C p  the set of 
probability measures (credal set) generated by the upper and lower probabilities induced 
by the same random set [equation (33)]. 

Lemma: Let :G X

are incl  M

→ R ( )C ∫  indicate the 
oquet integ  1953–1954). Let an upper bar indicate clos  of a set and let 
onv(A)’ i x hull of set A. Let  indicate the Borel  on
hen using 

Ch ral (Choquet,
ndicate the conve
ODM: 

ure
σβR -field  R . ‘C

W

( ) max ( )rP H H H= ∀M ∈ βR  1 

( ) min ( )rP H H H= ∀M ∈ βR  2 

( )3 sup{ :d d VG P G P V=∫ ∫ ∈ ( )}C S Γ  

4 ( ) inf{ :VG P V S∈ ( )}d dC G P =∫ ∫ Γ  

5 pM  is convex and closed and ( )Convp r=M M  

6 p r r= ⇔M M M  is convex. 

Proof: Propositions 1 and 2: in ODM, the variables are defined on a Euclidean space. 
The Euclidean space equipped with the Euclidean topology is separable (i.e., has a 
countable dense subset) because it has the lattice of rational numbers as a countable 
dense subset and thus every open ball contains a point whose coordinates are all rational. 
The multi-valued mapping, Γ, is compact and complete because ODM generates compact 
and complete focal elements (a set, A, is complete if every Cauchy sequence of points in 
A has a limit that is also in A). Thus, random sets generated by ODM satisfy the 
hypotheses of Theorem 1 in Miranda et al. (2003), which ensures that Propositions 1 and 
2 are true. Propositions 3 and 4: random sets generated by ODM satisfy the hypotheses of 
Theorem 2 in Miranda et al. (2003), which ensures that Propositions 3 and 4 are true. 
Proposition 5: the multi-valued mapping of the ODM generates random closed intervals. 
The

or open, th  are not applicable. Thus, the 
question is still open as to whether the upper and lower probabilities induced by an IRM 
random set can be used to summarise the information on the distribution of the original 
random variable without a substantial loss of precision. Indeed, all one can say at the 
moment is that  [Miranda et al., (2003), p.386]. 

y constitute a particular case of compact random sets on Polish spaces and Theorem 
3.2 in Miranda et al. (2005), states Proposition 5. Proposition 6: Theorem 1 in Miranda  
et al. (2003) ensures that ODM random sets satisfy the hypotheses of Theorem 4 in 
Miranda et al. (2003), which Proposition 6 states. 

Since, in general, the focal elements generated by IRM are not complete and are 
neither closed n e results in Miranda et al. (2003)

r pM M⊆


