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DISCLAIMER

Patriot Scientific Corporation (PSC) reserves the right to make changes to its products or specifications at any
time, or to discontinue any product, without notice. PSC advises its customers to obtain the latest product
information available before designing-in or purchasing its products. PSC assumes no responsibility for the use
of any circuitry described other than the circuitry embodied in a PSC product. PSC makes no representations
that the circuitry described herein is free from patent infringement or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights,
of PSC.

Information within this document is subject to change without notice, but was believed to be accurate at the
time of publication. No warranty of any kind, including but not limited to implied warranties of merchantability
or fitness for a particular application, are stated or implied. PSC and the author assume no responsibility for any
errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information
included herein.
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Documentation Typography and Nomenclature

References to software commands, CPU instructions, registers, register fields, and package pins are in a different
font than body text to minimize confusion and to distinguish them from the surrounding text. Specifically:

Processor instructions are in lowercase (e.g., “The ml oop repeats r ef r esh and del ay, ...").

Registers or register fields are also in lowercase (e.g., “nsr a contains data used during...”). Contextually, use of a
register or register field name can also imply its contents, (e.g. “...must contain the sum of ngebt dobe and
ngebt case”). When referring to a register or register field whose function is identical among its variants, X is used
to hold the place of the identifying alpha or numeric character within the name (e.g. i oXebt ).

Package pins are in uppercase (e.g., “...the timing for the CASinactive portion, also referred to as CAS precharge...”).
When referring to a pin whose function is identical among its variants, x is used to hold the place of the identifying
alpha or numeric character within the name (e.g., CASx). The over bar or a prefix “~” on signal names indicates the
signal is active in its low state; otherwise, signals are active high or the active state is not relevant (e.g. RAS and —RAS
refer to the same signal).

To avoid confusion regarding the width in bits of a “word”, the term “cell” is used to denote the full processor data
element size of 32 bits.

PRODUCT PREVIEW indicates that the product is in the conceptual or design phase of development, and that the
document represents the design goals for the product, which may change without notice before the product goes into
production.

ADVANCE INFORMATION indicates that the product is in the sampling or pre-production phase of development and
that data and specifications are preliminary and subject to change without notice.
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Features

4 Low-System-Cost 32-Bit RISC Microprocessor

4 Runs Java™ at Native Speed

4 Multiple Language Support

4 Dual-Processor Architecture
<Microprocessing Unit (MPU)

High-performance zero-operand dual-stack
architecture

=Virtual Peripheral Unit (VPU)

Performs timing, time-synchronous data
transfers, bit outputs, DRAM refresh,
emulates peripherals

4 4-Gigabyte Physical Address Space
4 Internal Clock Multiplier
«2X CPU clock, 4X Bus timing
4 4-Group Memory/Bus Interface
<Supports any combination of EPROM, SRAM,
DRAM, VRAM
<Programmable memory and 1/O timing
4 Virtual Memory Support
4 8-Level Interrupt Controller
4 8-Level Direct Memory Access Controller
4 16 1/O bits
4 52 General-Purpose 32-Bit Registers
4 “Glueless” System Interface
4 Big Endian Byte Ordering
4 Small, Low-Cost, 100-Pin TQFP Package

General Description

The PSC1000 microprocessor is a highly inte-
grated 32-bit RISC processor that offers high perfor-
mance and low power consumption at low system
cost for a wide range of embedded applications. It is
a highly integrated 32-bit RISC processor with a peak
performance of one instruction per CPU-clock cycle.
The 32-bitregisters and data paths fully support 32-bit
addresses and data types. The processor addresses up
to four gigabytes of physical memory, and supports
virtual memory with the use of external mapping logic.

As an implementation of the ShBoom™ Micro-
processor architecture, the PSC1000 CPU architectural
philosophy is that of simplification and efficiency of
use. A zero-operand design eliminates most operand

bits and the decoding time and instruction space they
require. Instructions are shrunk to eight bits, signifi-
cantly increasing instruction bandwidth and reducing
program size. By not using pipeline or superscalar
execution, the resulting control simplicity increases
execution speed to issue and complete an instruction
in a single clock cycle—as often as every clock
cycle—without a conventional instruction cache. To
ensure a low-cost chip, a data cache and its cost are
also eliminated in favor of efficient register caches.

The stack architectures of the PSC1000 micro-
processor and the Java Virtual Machine are very
similar. This results in only a relatively simple byte
code translator (20K) being required to produce
executable native code from Java byte code, rather
than afull Just-in-Time (JIT) compiler (200-400K). The
result is much faster initial execution of Java programs
and significantly smaller memory requirements.
Further, most modern languages are implemented on
a stack model. The features that allow the PSC1000
to run Java efficiently apply similarly to other lan-
guages such as C, Forth and Postscript..

The PSC1000 CPU operates up to four groups of
programmable bus configurations from as fast as two
CPU clocksto asslow as 82 CPU clocks, allowing any
desired mix of high-speed and low-speed memory.
Minimum system cost is reduced, thus allowing the
system designer to trade system cost for performance
as needed.

By incorporating many on-chip system functions
and a “glueless” bus interface, support chips are
eliminated, further lowering system cost. The CPU
includes an MPU, a Virtual Peripheral Unit, a DMA
controller, an interrupt controller, bit inputs, bit out-
puts, and a programmable memory interface. It can
operate with 32-bit-wide or 8-bit-wide memory and
devices, and includes hardware debugging support.
A minimum system consists of a PSC1000 CPU, an 8-
bit-wide EPROM, an oscillator, and optionally one x8
or two x16 memories—a total of 4 or 5 active
components. The small die, which contains only 137
500 transistors, produces a high-performance, low-
cost CPU, and a high level of integration produces a
high-performance, low-cost system.
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FEATURES

MICROPROCESSING UNIT (MPU)
Zero-operand dual-stack architecture
Very similar to Java Virtual Machine
12.5-ns instruction cycle
52 General-Purpose 32-Bit Registers
16 global data registers (g0-g15)
16 local registers (r O-r 15) double as return stack
cache
r 0 is an index register with predecrement and
postincrement
Automatic local-register stack spill and refill
18 operand stack cache registers (s0-s17)
s0 is an address register
Automatic operand stack spill and refill
Index register (x) with predecrement and postinc-
rement
Count register (ct)
Stack paging traps
Cache-management instructions
MPU communicates with DMA and VPU via global
registers
Hardware single- and double-precision IEEE floating-
point support
Fast multiply
Fast bit-shifter
Hardware single-step and breakpoint
Virtual-memory support
Posted write
Power-fail status bit
Instruction-space-saving 8-bit opcodes

DIRECT MEMORY ACCESS CONTROLLER (DMAC)

Eight prioritized DMA channels

Fixed or revolving DMA priorities

Byte, four-byte or cell DMA devices

Single or back-to-back DMA requests

Transfer rates to 200 MB/second

Programmable timing for each channel

Interrupt MPU on transfer boundary/count reached

Terminate DMA on transfer boundary/count reached

Channels can be configured as event counters

DMA communicates with MPU and VPU via global
registers

32-BIT RISC PROCESSOR

VIRTUAL PERIPHERAL UNIT (VPU)

Executes instruction stream independent of MPU

Deterministic execution

Performs timing, time-synchronous data transfers, bit-
output operations, DRAM refresh

Emulates peripherals like serial /0, A to D, D to A,
PWM, timers

Eight transfer channels

Byte, four-byte or cell device transfers

Programmable timing for each channel

Interrupt MPU on transfer boundary/count reached

Set/reset output bits

Set MPU interrupt

Test and branch on input bit

Looping instructions

Load transfer address, direction, interrupt on boundary

VPU communicates with DMA and MPU via global
registers or memory

Channels can be configured as timers

Instruction-space-saving 8-bit opcodes

INPUT-OUTPUT/INTERRUPTS
Eight bit inputs
Bits can be configured as zero-persistent
Register- and bit-addressable
Eight bit outputs
Register- and bit-addressable
I/O bits available on pins or multiplexed on bus
Eight prioritized and vectored interrupts

PROGRAMMABLE MEMORY INTERFACE (MIF)
Programmable bus interface timing to 1/4 external clock
Four independently configurable memory groups:
Any combination of 32-bit and 8-bit devices
Any combination of EPROM, SRAM, DRAM, VRAM
Almost any DRAM size/configuration
Fast-page mode access for each DRAM group
Glueless support for one memory bank per group
1.25 gates per memory bank for decoding up to 16
memory banks (four per memory group)
Virtual-memory support
DRAM refresh support (via VPU)
VRAM support includes DSF, OE, WE, CAS before RAS
control
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Table 1. Signal Descriptions

SYMBOL | TYPE DESCRIPTION
CVss PWR Ground for core logic and all output driver pre-drivers.
CVec PWR Power for core logic and all output driver pre-drivers.
PWR Ground for control signal output drivers (DSF, QUT[ 7: 0] , all RASes, all CASes, DOB,
ctrl Vg Dt
OE, xWE).
PWR Power for control signal output drivers (DSF, OUT[ 7: 0] , all RASes, all CASes, DOB, OE,
ctrl Ve iihaed
X VE).
adVsg PWR Ground for AD[ 31: 0] output drivers.
adV PWR Power for AD] 31: 0] output drivers.
CLK I EXTERNAL OSCILLATOR: The CPU operating frequency is twice the external oscillator
frequency.
I RESET: Asserting RESET causes the entire CPU to be initialized and the MPU and VPU
RESET A() to begin execution at their hardware reset locations. If RESET is not held low during
power-up, the signal also is input on AD8 during RAS active and CAS inactive, and
RESET is ignored.
DSE @] DEVICE SPECIAL FUNCTION: Set on VRAM memory cycles during RAS and CAS
I(L) accesses by the MPU to control VRAM function.
|| MEMORY FAULT: Asserted by external memory-management hardware before RAS
VELT S(RAS) | active to invalidate the current MPU bus cycle and cause the MPU to trap if the
configuration bit pkgnf | t is set. The signal also is input on AD8 at RAS fall during CAS
inactive, if the bit pkgnf I t is clear.
- I INPUTS: Asserted by external hardware to request an interrupt or DMA, or to input a bit,
I N[7:0] A() when the configuration bit pkgi o is set. The bits alternatively are inputon AD[ 7: 0] during
RAS active and CAS inactive, if the bit pkgi o is clear.
ouT[ 7: 0] @) OUTPUTS: Bit outputs writable from the VPU or MPU. These bits are also available on
’ I(H) A 7: 0] during RAS inactive.
BAC o ROW ADDRESS STROBE: A control signal asserted to define row address valid and
RAS ) .
I(L) deasserted only when another row address cycle is required.
RAS O, I(H) | Inverted RAS.
A @) COLUMN ADDRESS STROBE: A control signal asserted to define column address valid
CAS
I(H) and deasserted at the end of the current bus cycle.
CAS O, I(L) Inverted CAS.

ADVANCE INFORMATION
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Table 1. Signal Descriptions (continued)

Input-Only Pins
Output-Only Pins
/0 Bidirectional Pins
PWR= Power Pin

O
i

SYMBOL | TYPE DESCRIPTION
MGS0..3/ @) MEMORY GROUP SELECTS/ROW ADDRESS STROBES: In multiple memory bank
WSO“ 3 I(L) (MMB) mode (configuration bit mb is set), the strobes are active during all bus cycles
for the entire bus cycle. In single memory bank (SMB) mode, they are similar to RAS.
CASO-3 @) COLUMN ADDRESS STROBES: Similar to CAS, to assert a column address cycle on
I(H) the specified memory bank within the current memory group.
== 0] OUTPUT ENABLE: Active when the current bus transaction is a read from memory. The
OE ) ; : - .
I(H) configuration bit oed is set or cleared during the CPU reset startup process.
EVE (0] EARLY WRITE ENABLE: Active when the current bus transaction is a write to memory.
I(H) Active time at either start of cycle or CAS fall is programmable for each memory group.
0] LATE WRITE ENABLE: Active when the current bus transaction is a write to memory
LWE I(H) and for VRAM control. Active time either at or after DOB active is programmable for each
memory group.
I/O ADDRESS DATA BUS: Multiplexed address, data, I/0 and control bus.
S(DOB) | For data.
A 31: 0] S(RAS) | For alternate memory fault on ADS.
A() For alternate reset on AD8. See RESET.
1(Z2)
Notes:

A() = Asynchronous inputs I(H) = high value on reset
S(sym¥  Synchronous inputs must meet I(L) = low value on reset
setup and hold requirements rela- I(Z) = high impedance on

tive to symbol. reset
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Figure 1. 100-Pin Thin Quad Flat Package (TQFP)
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PSC1000 Microprocessor

32-BIT RISC PROCESSOR

PIN PIN PIN
NO. PINNAME TYPE | NO. PIN NAME TYPE NO. PIN NAME TYPE

1 ctrl Ve PWR 35  ADL7 110 69  CAS o)
2 QuTo o) 36  AD16 110 70 ctrl Vg PWR
3 auTl o 37 adVss PWR 71 ctrl Ve PWR
4 QuT2 o) 38 adV PWR 72 DOB o)
5 QuT3 o) 39  CV PWR 73 DSF o)
6 QuT4 o) 40  CVss PWR 74  CE o)
7 QuTs o) 41  ADI15 110 75 LWE o)
8 QuTe o) 42  AD14 110 76 ctrl Vg PWR
9 aut7 o) 43  ADI13 110 77 ctrlVg PWR
10  RESET [ 44  adVgs PWR 78 MGSO0/ RASO o)
11  AD31 110 45  adVe PWR 79  MGS1/ RASI1 o)
12 CVss PWR? 46  ADI12 110 80  MGS2/ RAS2 o)
13 AD30 110 47  AD11 110 81  MGS3/ RAS3 o)
14  CVe PWR? 48  ADIO 110 82  MFLT [
15  adVss PWR 49  AD9 110 83 I'NO [
16 adVee PWR 50 adVss PWR 84 INI |
17 AD29 110 51  adVq PWR 85 N2 [
18 AD28 110 52  AD8 110 86 N3 [
19  AD27 110 53  AD7 110 g7 IN4 [
20  AD26 110 54  AD6 110 88 CLK [
21 adVss PWR 55 adVss PWR 89 CVss PWR?
22 adVee PWR 56 adVee PWR 90 CVee PWR?
23 AD25 110 57 AD5 110 91 IN5 [
24  AD24 110 58  AD4 110 92 IN6 [
25  AD23 110 59  AD3 110 93 IN7 [
26 adVss PWR 60  AD2 110 94  CASO o)
27  adVg PWR 61  adVs PWR 95  CAS1 o)
28  AD22 110 62  adVg PWR 96 CAS2 o)
29  AD21 110 63  CV PWR? 97 CAS3 o)
30 AD20 110 64  ADL 110 98 RAS o)
31  AD19 110 65  CVss PWR! 99 CAS o)
32 adVss PWR 66 ADO I/0 100 ctrl Vg PWR
33 adV PWR 67 EWE o)
34  AD18 110 68  RAS o)

Notes:

1. PWR pinis near clock driver.

2. PWR pinis near PLL.

I = Input-Only Pin 110 = Bidirectional Pins

(0] = Output-Only Pin PWR = Power Pins
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Description CPU Clock Package Type Stock Number
Frequency (MHz)
PSC1000-BAXTC 80 TQFP 31-0100371
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Purpose

This reference manual describes the architecture,
hardware interface, and programming of the PSC1000
Microprocessor. The Patriot PSC1000 microprocessor
is one of a family of low-power, low-cost, stack-
architecture processors targeted specifically for
embedded applications. As stack-architecture proces-
sors, the PSC1000 family are ideal for applications that
must run Java™ at native speeds. These include laser
printers, ignition controllers, network routers, personal
digital assistants, set-top cable controllers, video
games, pagers, cell phones, and many other applica-
tions. Butsince C++ issemantically similar to Java, the
PSC1000 family also run C and C++ efficiently, as well
as stack-architecture languages such as Forth and
Postscript™.

This data book provides the information required to
design products that use the PSC1000 CPU, including
functional capability, electrical characteristics and
ratings, and package definitions, as well as the
information required to program both the MPU and
VPU.

Overview

The PSC1000 Microprocessor is an implementation
of the ShBoom™ Microprocessor architecture. It is a
highly integrated 32-bit RISC processor that executes
at a peak performance of one instruction per CPU-
clock cycle. The CPU is designed specifically for use
in those embedded applications for which power
consumption, MPU performance, and system cost are
deciding selection factors.

The PSC1000 CPU instruction sets are hardwired,
allowing most instructions to execute in asingle cycle,
without the use of pipelines or superscalar architec-
ture. A "flow-through" design allows the next instruc-
tion to start before the prior instruction completes, thus
increasing performance.

The PSC1000 MPU contains 52 general-purpose
registers, including 16 global data registers, an index
register, a count register, a 16-deep addressable
register/return stack, and an 18-deep operand stack.

Both stacks contain an index register in the top
element, are cached on chip, and, when required,
automatically spill to and refill from external memory.
The stacks minimize the data movement typical of
register-based architectures, and also minimize
memory accesses during procedure calls, parameter
passing, and variable assignments. Additionally, the
MPU contains a mode/status register, two stack
pointers, and 41 locally addressed registers for 1/O,
control, configuration, and status.

KEY FEATURES

Run Java at Native Speed: The stack architectures of
the PSC1000 microprocessor and the Java Virtual
Machine are very similar. This results in only a
relatively simple byte code translator (20K) being
required to produce executable native code from Java
byte code, rather than a full Just-in-Time (JIT) compiler
(200-400K) as is required for common processor
architectures. The result is much faster initial execu-
tion of Java programs and significantly smaller
memory requirements. Additionally, hundreds of
kilobytes of memory are saved due to the reduced size
of the translator itself.

Multiple Language Support: Most modern languages
are implemented on a stack model. The features that
allow the PSC1000 to run Java efficiently apply
similarly to other languages such as C, C++, Forth and
Postscript.

Dual-Processor Architecture: The CPU contains both
a high-performance, zero-operand, dual-stack
architecture microprocessing unit (MPU), and an
virtual peripheral unit (VPU) that executes instructions
to transfer data, measure time, test inputs, set outputs,
and emulate peripherals such as serial ports and A to
D or D to A converters.

Zero-Operand Architecture: Many RISC architectures
waste valuable instruction space—often 15 bits or
more per instruction—by specifying three possible
operands for every instruction. Zero-operand (stack)
architectures eliminate these operand bits, thus
allowing much shorter instructions—typically one-
fourth the size—and thus a higher instruction-execu-
tion bandwidth and smaller program size. Stacks also

ADVANCE INFORMATION
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minimize register saves and loads within and across
procedures, thus allowing shorter instruction se-
guences and faster-running code.

Fast, Simple Instructions: Instructions are simpler to
decode and execute than those of conventional RISC
processors, allowing the PSC1000 MPU and VPU to
issue and complete instructionsin asingle clock cycle,
as often as every CPU-clock cycle.

Four-Instruction Buffer: Using 8-bit opcodes, the CPU
obtains up to four instructions from memory each time
an instruction fetch or pre-fetch is performed. These
instructions can be repeated without rereading them
from memory. This maintains high performance when
connected directly to DRAM, without the expense of
a cache.

Local and Global Registers: Local and global registers
minimize the number of accesses to data memory. The
local-register stack automatically caches up to sixteen
registers, and the operand stack up to eighteen
registers. As stacks, any allocated data space efficiently
nests and unnests across procedure calls. The sixteen
global registers provide storage for shared data.

Posted Write: Decouples the processor from data
writes to memory, allowing the processor to continue
executing after a write is posted.

Programmable Memory/Bus Interface: Allows the use
of lower-cost memory and system components in
price-sensitive systems. The interface supports many
types of EPROM/SRAM/DRAM/VRAM directly,
including fast-page mode on up to four groups of
DRAM devices. On-chip support of RAS cycle OE and
W\E, CAS-before-RAS, and the DSF signal allow use of
VRAM without additional external hardware. Program-

10
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mable bus timing and driver power allow the designer
a range of solutions to system design challenges in
order to match the time, performance, and budget
requirements for each project.

Clock Multiplier: Internally doubles and quadruples
the external clock. An on-chip PLL circuit eliminates
typical stringent oscillator specifications, thus allowing
the use of lower-cost oscillators.

Fully Static Design: A fully static design allows
running the clock from DC up to rated speed. Lower
clock speeds can be used to drastically cut power
consumption.

Hardware Debugging Support: Both breakpoint and
single-step capability aid in debugging programs.

Virtual Memory: Supported through the use of
external mapping SRAMs and support logic.

Floating-Point Support: Special instructions imple-
ment efficient single- and double-precision |EEE
floating-point arithmetic.

Direct Memory Access Controller: Supports up to
eight prioritized levels at data rates of up to the
equivalent of one byte per CPU clock cycle.

Interrupt Controller: Supports up to eight prioritized
levels with interrupt responses as fast as eight CPU-
clock cycles.

Eight Bit Inputs and Eight Bit Outputs: I/O bits are
available for MPU and VPU application use, thus
reducing the requirement for external hardware.
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Central Processing Unit

The PSC1000 CPU architectural philosophy is that of
simplification and efficiency of use: implement the
simplest solution that adequately solves the problem
and provides the best utilization of existing resources.
In hardware, this typically equates to using fewer
transistors, and fewer transistors means a lower-cost,
and often lower-power, CPU.

Early RISC processors reduced transistor counts
compared to CISC processors, and gained their cost
and performance improvements therein. Today,

interconnections between transistors dominate the
silicon of many CPUs. The PSC1000 MPU architec-
tural philosophy results in, along with fewer transis-
tors, the minimization of interconnections compared
to register-based MPUs.

Resources

The PSC1000 CPU contains ten major functional
areas: microprocessing unit (MPU), virtual peripheral
unit (VPU), global registers, direct memory access
controller (DMAC), interrupt controller (INTC), on-
chip resources, bit inputs, bit outputs, programmable
memory interface (MIF), and clock. In part, the
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Figure 2. CPU Block Diagram
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PSC1000 CPU gains its capability and small silicon
size from the resource sharing within and among these
areas. See Figure 2. For example:

* The global registers are shared by the MPU, the VPU,
and the transfer logic within the MIF. They are used
by the MPU for data storage and control communica-
tion with the DMAC and the VPU; by the VPU for
transfer information, loop counts, and delay counts;
and by the DMAC for transfer information. Further, the
transfer information is used by the transfer logic in the
MIF which is shared by the VPU and DMAC.

» The MIF is shared by the MPU, the VPU, the DMAC,
the bit outputs, and the bit inputs for access to the
system bus. Bus transaction requests are arbitrated and
prioritized by the MIF to ensure temporally determinis-
tic execution of the VPU.

» The bit inputs are made available to the system
through the On-Chip Resource Registers. They are
shared by the INTC and the DMAC for service
requests, are available to the MPU and the VPU for
programmed input, and are bit-addressable.

» The DMAC transfer-termination logic is significantly
reduced by using specific termination conditions and
close coupling with the MPU for intelligent termina-
tion action.

» The INTC is shared by the bit inputs, the VPU, and
the DMAC (through the MIF transfer logic) for interrupt
requests to the MPU.

» The bit outputs are made available to the system
through the On-Chip Resource Registers. They are
shared by the MPU and the VPU for programmed
output, and are bit-addressable.

Although the maximum usage case requiring a
complex VPU program, many interrupt sources, many
input bits, many output bits, all available DMA
channels, and maximum MPU computational ability
might leave a shortage of resources, such applications
are not typical. The sharing of resources among

12
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functional units increases CPU capability and flexibil-
ity, and significantly reduces transistor count, package
pin count, and thus silicon size and cost. The ability
to select among available resources, compared to the
fixed resource set of other CPUs, allows the PSC1000
CPU to be used for a wider range of applications.

Clock Speed

The clock speed of a CPU is not a predictor of its
performance. For example, the PowerPC 604, running
at about half the speed of the DEC Alpha 21064A,
achieves about the same SPECint95 benchmark
performance. In this respect, the PSC1000 CPU is
more like the DEC Alphathan the PowerPC. However,
the PSC1000 CPU is based on a significantly different
design philosophy than either of these CPUs.

Most processors historically have forced the system
designer to maintain a balanced triangle among CPU
execution speed, memory bandwidth, and I/O
bandwidth. However, as system clock rate increases,
typically so does bus speed, cache memory speed,
and system interface costs. Typically, too, so do CPU
cost, as often thousands of transistors are added to
maintain this balance.

The PSC1000 CPU lets the system designer select the
performance level desired, while maintaining low
system cost. This may tilt the triangle slightly, but cost
is not part of the classical triangle-balancing equation.
The PSC1000 CPU’s programmable memory interface
permits a wide range of memory speeds to be used,
allowing systems to use slow or fast memory as
required. Slow memory clearly degrades system
performance, but the fast internal clock speed of the
PSC1000 CPU causes internal operations to be
completed quickly. Thus the multi-cycle multiply and
divide instructions always execute quickly, without the
silicon expense of a single-cycle multiply unit.
Although higher performance can sometimes be
gained by dedicating large numbers of transistors to
functions such as these, silicon cost also increases,
and increased cost did not fit the design goals for this
version of the PSC1000 CPU.
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Microprocessing Unit

The MPU supports the ShBoom™ architectural
philosophy of simplification and efficiency of use
through its basic design in several interrelated ways.

Whereas most RISC processors use pipelines and
superscalar execution to execute at high clock rates,
the PSC1000 MPU uses neither. By having a simpler
architecture, the PSC1000 MPU issues and completes
most instructions in a single clock cycle. There are no
pipelines to fill and none to flush during changes in
program flow. Though more instructions are some-
times required to perform the same procedure in
PSC1000 MPU code, the MPU operates at a higher
clock frequency than other processors of similar
silicon size and technology, thus giving comparable
performance at significantly reduced cost.

A microprocessor's performance is often limited by
how quickly it can be fed instructions from memory.
The MPU reduces this bottleneck by using 8-bit
instructions so that up to four instructions (an instruc-
tion group) can be obtained during each memory
access. Each instruction typically takes one CPU-clock
cycle to execute, thus requiring four CPU-clock cycles
to execute the instruction group. Because a memory
access can complete in four (or even fewer) CPU-clock
cycles, the next instruction group can be available
when execution of the pre-

Table 4. Instruction Bandwidth Comparison

95=91-(92+1)+9g3-(g4*2)
Typical RISC MPU PSC1000 MPU
push gl
push g2
add #1,92,05 inc #1
sub g1,05,05 sub
push g3
add g5,03,05 add
push g4
shl g4,#1,temp shl #1
sub
sub  g5,temp,g5 pop g5
20 bytes 10 bytes
Example of twice the instruction bandwidth
available on the PSC1000 MPU

and specification, a much greater bandwidth of
functional operations—up to four times as high—is
possible. Table 4 depicts an example PSC1000 MPU
instruction sequence that demonstrates twice the

vious group completes. This
makes it possible to feed
instructions to the processor

All registers are 32 bits wide.

s17

s16

at maximum instruction- 91451 rﬁ
execution bandwidth with- g '
out the cost and complexity I ‘ ‘
of an instruction cache. : sa

i . la
The zero-operand (stack) ; ‘ | mode
architecture makes 8-bit :

. s3 ]
instructions possible. The a1 o s2 o
stack architecture eliminates go ro so | I x

the requirement to specify
source and destination oper-
andsin every instruction. By
not using opcode bits on

Global
Registers

Local-Register

[J Addressable ] Unaddressable (used by cache logic)

Miscellaneous
Registers

Operand Stack
Stack

mpuregus.wpg

every instruction for oper-

Figure 4. MPU Registers
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typical RISC MPU instruction bandwidth. The instruc-
tion sequence onthe PSC1000 MPU requires one-half
the instruction bits, and the uncached performance
benefits from the resulting increase in instruction
bandwidth.

Stack MPUs are thus simpler than register-based
MPUs, and the PSC1000 MPU has two hardware
stacks to take advantage of this: the operand stack and
the local-register stack. The simplicity is widespread
and is reflected in the efficient ways stacks are used
during execution.

The ALU processes data from primarily one source of
inputs—the top of the operand stack. The ALU is also
used for branch address calculations. Data bussing is
thus greatly reduced and simplified. Intermediate
results typically “stack up” to unlimited depth and are
used directly when needed, rather than requiring
specific register allocations and management. The
stacks are individually cached and spill and refill
automatically, eliminating software overhead for stack
manipulation typical in other RISC processors.
Function parameters are passed on, and consumed
directly off of, the operand stack, eliminating the need
for most stack frame management. When additional
local storage is required, the local-register stack
supplies registers that efficiently nestand unnest across
functions. As stacks, the stack register spaces are only
allocated for data actually stored, maximizing storage
utilization and bus bandwidth when registers are
spilled or refilled—unlike architectures using fixed-size
register windows. Stacks speed context switches, such
as interrupt servicing, because registers do not need
to be explicitly saved before use—additional stack
space is allocated as required. The stacks thus reduce
the number of explicitly addressable registers other-
wise required, and speed execution by reducing data
location specification and movement. Stack storage
is inherently local, so the global registers supply non-
local register resources when required.

Eight-bit opcodes are too small to contain much
associated data. Additional bytes are necessary for
immediate values and branch offsets. However,
variable-length instructions usually complicate
decoding and complicate and lengthen the associated
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FFFFFFFF
LA —A— 1/0 Devices
NN
Boot Program
80000008 MPU Hardware Reset
80000004 VPU Hardware Reset
80000000 Boot Signature
M
1l4c OS Underflow
148 OS Overflow
144 LRS Underflow
140 LRS Overflow
13c Memory Fault
138 Single Step
134 Breakpoint
130 FP Round
12c FP Normalize
128 FP Overflow
124 FP Underflow
120 FP Exponent
1lic Interrupt 7
118 Interrupt 6
114 Interrupt 5
110 Interrupt 4
10c Interrupt 3
108 Interrupt 2
104 Interrupt 1
100 Interrupt O
M
10 VPU Software Reset
0

memmap.wpg

Figure 5. CPU Memory Map

data access paths. To simplify the problem, byte literal
data is taken only from the rightmost byte of the
instruction group, regardless of the location of the byte
literal opcode within the group. Similarly, branch
offsets are taken as all bits to the right of the branch
opcode, regardless of the opcode position. For 32-bit
literal data, the data is taken from a subsequent
memory cell. These design choices ensure that the
required data is always right-justified for placement
onthe internal data busses, reducing interconnections
and simplifying and speeding execution.
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Since most instructions decode and execute inasingle
clock cycle, the same ALU that is used for data
operations is also available, and is used, for branch
address calculations. This eliminates an entire ALU
often required for branch offset calculations.

Rather than consume the chip area for a single-cycle
multiply-accumulate unit, the higher clock speed of the
MPU reduces the execution time of conventional multi-
cycle multiply and divide instructions. For efficiently
multiplying by constants, a fast multiply instruction
multiplies only by the specified number of bits.

Rather than consume the chip area for a barrel shifter,
the counted bit-shift operation is “smart” to first shift
by bytes, and then by bits, to minimize the cycles
required. The shift operations can also shift double
cells (64 bits), allowing bit-rotate instructions to be
easily synthesized.

Although floating-point math is useful, and sometimes
required, it is not heavily used in embedded applica-
tions. Rather than consume the chip area for afloating-
point unit, MPU instructions to efficiently perform the
most time-consuming aspects of basic IEEE floating-
point math operations, in both single and double
precision, are supplied. The operations use the “smart”
shifter to reduce the cycles required.

Byte read and write operations are available, but
cycling through individual bytes is slow when
scanning for byte values. These types of operations are
made more efficient by instructions that operate on all
of the bytes within a cell at once.

Address Space

The MPU fully supports a linear four-gigabyte address
space for all program and data operations. I/O devices
are selected by mapping them into memory addresses.
By convention, the uppermost address bits select I/O
device addresses decoded in external hardware. This
convention leaves a contiguous linear program and
data space of two gigabytes with a sparse address
space above two gigabytes. It also allows simultaneous
addressing of an 1/0O device and a memory address for
I/O channel transfers. See Memory and Device
Addressing, page 105.
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Big Endian Byte Order
31 24 23 16 15

cell data

87 0 Bit

‘ byte data

Byte

byteordr.wpg

Figure 6. Byte Order

Several instructions or operations expect addresses
aligned on four-byte (cell) boundaries. These ad-
dresses are referred to as cell-aligned. Only the upper
30 bits of the address are used to locate the data; the
two least-significant address bits are ignored but
appear externally. Within a cell, the high order byte
is located at the low byte address. The next lower-
order byte is at the next higher address, and so on. For
example, the value 0x12345678 would exist at byte
addresses in memory, from low to high address, as 12
34 56 78. See Figure 6.

Registers and Stacks

The register set contains 52 general-purpose registers,
amode/status register, two stack pointers, and 41 local
address-mapped on-chip resource registers used for
I/O, configuration, and status. See Figure 4, and Figure
24, page 129.

The operand stack contains eighteen registers and
operates as a push-down stack, with direct access to
the top three registers (s0—s 2). These registers and the
remaining registers (s3—s17) operate together as a
stack cache. Arithmetic, logical, and data-movement
operations, as well as intermediate result processing,
are performed on the operand stack. Parameters are
passed to procedures and results are returned from
procedures on the stack, without the requirement of
building a stack frame or necessarily moving data
between other registers and the frame. As a true stack,
registers are allocated only as required, resulting in
efficient use of available storage. The external operand
stack is addressed by register sa.

The local-register stack contains sixteen registers and
operates as a push-down stack with direct access to
thefirstfifteen registers (r 0—r 14). Theses registersand

ADVANCE INFORMATION
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the remaining register (r 15) operate together as a stack
cache. As a stack, they are used to hold subroutine
return addresses and automatically nest local-register
data. The external operand stack is addressed by
register | a.

Both cached stacks automatically spill to memory and
refill from memory, and can be arbitrarily deep.
Additionally, sO and r 0 can be used for memory
access. See Stacks and Stack Caches on page 28.

The use of stack-cached operand and local registers
improves performance by eliminating the overhead
required to save and restore context (when compared
to processors with only global registers available). This
allows for very efficient interrupt and subroutine
processing.

In addition to the stacks are sixteen global registers
and three other registers. The global registers (g0-g15)
are used for data storage, as operand storage for the
MPU multiply and divide instructions (g0), and for the
VPU. Since these registers are shared, the MPU and
the VPU can also communicate through them.
Remaining are node, which contains mode and status
bits; x, which is an index register (in addition to sO
and r 0); and ct, which is a loop counter and also
participates in floating-point operations.

Programming Model

For those familiar with the Java Virtual Machine,
American National Standard Forth (ANS Forth),
Postscript, or Hewlett-Packard calculators that use
postfix notation, commonly known as Reverse Polish
Notation (RPN), programming the PSC1000 MPU is
in many ways be very familiar.

An MPU architecture can be classified as to the
number of operands specified within its instruction
format. Typical 16-bitand 32-bit CISC and RISC MPUs
are usually two- or three-operand architectures,
whereas smaller microcontrollers are often one-
operand architectures. In each instruction, two- and
three-operand architectures specify a source and
destination, or two sources and a destination, whereas
one-operand architectures specify only one source and
have an implicit destination, typically the accumula-
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tor. Architectures are also usually not pure. For
example, one-operand architectures often have two-
operand instructions to specify both a source and
destination for data movement between registers.

The PSC1000 MPU is a zero-operand architecture,
known as a stack computer. Operand sources and
destinations are assumed to be on the top of the
operand stack, which is also the accumulator. An
operation such as add uses both source operands
from the top of the operand stack, adds them, and
returns the result to the top of the operand stack, thus
causing a net reduction of one in the operand stack
depth. See Figure 7.

f s5 s5
e s4 f s4
d s3 € s3
c s2 add d s2
b sl c sl
a s0 a+b s0

Operand Stack
addexmpl.wpg

Figure 7. add Execution Example

Most ALU operations behave similarly, using two
source operands and returning one result operand to
the operand stack. A few ALU operations use one
source operand and return one result operand to the
operand stack. Some ALU and other operations also
require a non-stack register, and a very few do not use
the operand stack at all.

Non-ALU operations are also similar. Loads (memory
reads) either use an address on the operand stack or
in a specified register, and place the retrieved data on
the operand stack. Stores (memory writes) use either
an address on the operand stack or in a register, and
use data from the operand stack. Data movement
operations push data from a register onto the operand
stack, or pop data from the stack into a register.

Once data is on the operand stack it can be used for
any instruction that expects data there. The result of
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an add, for instance, can be left on the stack indefi-
nitely, until used by a subsequent instruction. See
Table 4. Instructions are also available to reorder the
data in the top few cells of the operand stack so that
prior results can be accessed when required. Data can
also be removed from the operand stack and placed
in local or global registers to minimize or eliminate
later reordering of stack elements. Data can even be
popped from the operand stack and restacked by
pushing it onto the local-register stack.

Computations are usually most efficiently performed
by executing the most deeply nested computations
first, leaving the intermediate results on the operand
stack, and then combining the intermediate results as
the computation unnests. If the nesting of the compu-
tation is complex, or if the intermediate results are to
be used some time later after other data will have been
added to the operand stack, the intermediate results
can be removed from the operand stack and stored in
global or local registers.

Global registers are used directly and maintain their
data indefinitely. Local registers are registers within the
local-register stack cache and, as a stack, must first be
allocated. Allocation can be performed by popping
data from the operand stack and pushing it onto the
local-register stack one cell at a time. It can also be
preformed by allocating a block of uninitialized stack
registers at one time; the uninitialized registers are
then initialized by popping data, one cell at a time,
into the registers in any order. The allocated local
registers can be deallocated by pushing data onto the
operand stack by popping it off of the local register
stack one cell at a time, and then discarding from the
operand stack the data that is not required. Alterna-
tively, the allocated local registers can be deallocated
by first saving any data required from the registers, and
then deallocating a block of registers at one time. The
method selected depends on the number of registers
required and whether the data on the operand stack
is in the required order.

19

Registers on both stacks are referenced relative to the
tops of the stacks and are thus local in scope. What
was accessible in r 0, for example, after one cell has
been push onto the local-register stack, is accessible
as r 1; the newly pushed value is accessible as r O.

Parameters are passed to and returned from subrou-
tines on the operand stack. An unlimited number of
parameters can be passed and returned in this manner.
Anunlimited number of local-register allocations can
also be made. Parameters and allocated local registers
thus conveniently nest and unnest across subroutines
and program basic blocks.

Subroutine return addresses are pushed onto the local-
register stack and thus appear as r 0 on entry to the
subroutine, with the previousr 0 accessibleasr 1, and
so on. As data is pushed onto the stacks and the
available register space fills, registers are spilled to
memory when required. Similarly, as data is removed
from the stacks and the register space empties, the
registers are refilled from memory as required. Thus
from the program’s perspective, the stack registers are
always available.

Instruction Set Overview

Table 5 lists the MPU instructions; Table 39, Table 39,
page 84, 85, and Table 40, Table 40, page 86, 87, list
the mnemonics and opcodes. All instructions consist
of eight bits, except for those that require immediate
data. This allows up to four instructions (an instruction
group) to be obtained on each instruction fetch, thus
reducing memory-bandwidth requirements compared
to typical RISC machines with 32-bitinstructions. This
characteristic also allows looping on an instruction
group (a micro-loop) without additional instruction
fetches from memory, further increasing efficiency.
Instruction formats are depicted in Figure 8.

ADVANCE INFORMATION
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32-BIT RISC PROCESSOR

ARITHMETIC/SHIFT
ADD

ADD with carry

ADD ADDRESS
SUBTRACT

SUBTRACT with borrow
INCREMENT
DECREMENT

NEGATE

SIGN EXTEND BYTE
COMPARE

MAXIMUM

MULTIPLY SIGNED
MULTIPLY UNSIGNED
FAST MULTIPLY SIGNED
DIVIDE UNSIGNED
SHIFT LEFT/RIGHT
DOUBLE SHIFT LEFT/RIGHT
INVERT CARRY

MISCELLANEOUS

CACHE CONTROL

FRAME CONTROL

STACK DEPTH

NO OPERATION
ENABLE/DISABLE INTERRUPTS

CONTROL TRANSFER
BRANCH

BRANCH ON ZERO
BRANCH INDIRECT

CALL

CALL INDIRECT
DECREMENT AND BRANCH
SKIP

SKIP ON CONDITION
MICRO-LOOP

MICRO-LOOP ON CONDITION
RETURN

RETURN FROM INTERRUPT

FLOATING POINT
TEST EXPONENT
EXTRACT EXPONENT
EXTRACT SIGNIFICAND
REPLACE EXPONENT
DENORMALIZE
NORMALIZE RIGHT/LEFT
EXPONENT DIFFERENCE
ADD EXPONENTS
SUBTRACT EXPONENTS
ROUND

LOGICAL
AND

OR

XOR

NOT AND
TEST BYTES
EQUAL ZERO

DEBUGGING
STEP
BREAKPOINT

DATA MANAGEMENT
LOAD

STORE

STORE INDIRECT, pre-dec/post-inc
PUSH REGISTER/STACK
POP REGISTER/STACK
EXCHANGE

REVOLVE

SPLIT

REPLACE BYTE

PUSH LITERAL

STORE ON-CHIP RESOURCE
LOAD ON-CHIP RESOURCE
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Table 6. ALU Instructions

add add pc adda addc
and cnp dec #1 dec #4
dec ct,#1 divu eqz i and
inc #1 inc #4 mul fs mul s
mul u nmxm neg not c
or sexb shift shiftd
shl #1 shl #8 shr #1 shr #8
shld #1 shrd #1 sub subb
testb xor

Table 7. Code Examples: Rotate

; Rotate single cell left by specified number of bits
; (nl #bits -- n2)

rotate_left:
push #0 ; space for bits
Xcg ; get count
shiftd
or ; combine parts

; Rotate single cell right by specified number of bits
; (nl #bits -- n2)

rotate_right::

push #0 ; space for bits
rev

rev

shl #1 ; make a negative
notc ; sign magnitude
shr #1 ; number

shiftd

or

21

ALU Operations

Almost all ALU operations occur on the top of the
operand stack in sO and, if required, s1. A few
operations also use gO0, ct, or pc.

Only one ALU status bit, car ry, is maintained and
is stored in mode. Since there are no other ALU status
bits, all other conditional operations are performed by
testing sO on the fly. eqz is used to reverse the
zero/non-zero state of s0. Most arithmetic operations
modify car r y from the result produced out of bit 31
of s0. The instruction add pc is available to perform
pc-relative data references. adda is available to
perform address arithmetic without changingcar ry.
Other operations modify car r y as part of the result
of the operation.

s0 and s1 can be used together for double-cell shifts,
with sO containing the more-significant cell and s1
the less-significant cell of the 64-bit value. Both single-
cell and double-cell shifts transfer a bit between
carry and bit 31 of sO. Code depicting single-cell
rotates constructed from the double-cell shift is given
in Table 7.

All ALU instruction opcodes are formatted as 8-bit
values with no encoded fields.

ADVANCE INFORMATION
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Table 8. Branch, Loop and Skip Instructions

br br [] bz cal |
call [] dbr m oop m oopc
m oopn m oopnc m oopnn m oopnz
m oopz ret reti skip
ski pc ski pn ski pnc ski pnn
ski pnz ski pz

Branches, Skips, and Loops

The instructions br , bz, cal | and dbr are variable-
length. The three least-significant bits in the opcode
and all of the bits in the current instruction group to
the right of the opcode are used for the relative branch
offset. See Figure 8 and Table 9. Branch destination
addresses are cell-aligned to maximize the range of the
offset and the number of instructions that are executed
at the destination. If an offset is not of sufficient size
for the branch to reach the destination, the branch
must be moved to an instruction group where more
offset bits are available, or a register indirect branch,
br [] orcall [], can be used. Register indirect
branches use an absolute byte-aligned address from
s0. The instruction add pc can be used if a com-
puted pc-relative branch is required.

The m oop_ instructions are referred to as micro-
loops. If specified, a condition is tested, and then ct
is decremented. If a termination condition is not met,
execution continues at the beginning of the current
instruction group. Micro-loops are used to re-execute
short instruction sequences without re-fetching the
instructions from memory. See Table 14.

Table 9. MPU Branch Ranges

Offset Bits Offset Range in Bytes
3 -16/+12
11 -4096/+4092
19 -1048576/+1048572
27 -268435456/+268435452
Note:
Encoded offset is in cells. Offset is added to the
address of the beginning of the cell containing the
branch to compute the destination address.
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Branches

‘ opcode ‘ opcode ‘ opcode ‘ branch ‘ 3-bit offset

‘opcode ‘ opcode‘ branch ‘oﬁset ‘ 11-bit offset
‘opcode‘ branch ‘ offset ‘ 19-bit offset
‘ branch ‘ offset ‘ 27-bit offset
Literals

push nibble

‘ opcode ‘ opcode ‘ push.n ‘ opcode ‘ (any positions)

| opcode | opcode | push.b | value | push byte
‘opcode‘ push.b ‘opcode‘ value ‘
| push.b | opcode | opcode | value |
opcode | push.l | opcode | opcode | push long

data for first push.| (any positions)

‘ opcode ‘ opcode ‘ opcode ‘ opcode ‘

All Others

‘ opcode ‘ opcode ‘ opcode ‘ opcode ‘

mpuinfmt.wpg

Figure 8. MPU Instruction Formats

Other than branching on zero with bz, conditional
branching is performed with the ski p__ instructions.
They terminate execution of the current instruction
group and continue execution at the beginning of the
next instruction group. They can be combined with
thebr,cal | ,dbr,andr et (or other instructions) to
create additional flow-of-control operations.
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Table 10. Literal Instructions

Table 11. Data Movement Instructions

push. b push. | push. n

Literals

To maximize opcode bandwidth, three sizes of literals
are available. The data for four-bit (nibble) literals,
with a range of -7 to +8, is encoded in the four least-
significant bits of the opcode; the numbers are
encoded as two’s-complement values with the value
1000 binary decoded as +8. The data for eight-
bit(byte) literals, with a range of 0-255, is located in
the right-most byte of the instruction group, regardless
of the position of the opcode within the instruction
group. The data for 32-bit (long, or cell) literals, is
located in a cell following the instruction group in the
instruction stream. Multiple push. | instructionsinthe
same instruction group access consecutive cells
immediately following the instruction group. See
Figure 8.
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pop ct pop gi pop ri pop X
push ct push gi push ri push si
push x

Data Movement

Register data is moved by first pushing the register
onto the operand stack, and then popping it into the
destination register. Memory data is moved similarly.
See Loads and Stores, above.

The opcodes for the data-movement instructions that
access gi and ri are 8-bit values with the register
number encoded in the four least-significant bits. All
other data-movement instruction opcodes are format-
ted as 8-bit values with no encoded fields.

ADVANCE INFORMATION
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Table 12. Load and Store Instructions

32-BIT RISC PROCESSOR

Table 14. Code Examples: Memory Move and Fill

Id [--r0] Id [--x] Id[rO++] Id [rQ]
Id [x++] 1d [X] Id[] Id. b []
st [--r0] st [--x] st [rO++] st [rO]
st [x++] st [X] st [] eplb

Loads and Stores

r 0 and x support register-indirect addressing and also
register-indirect addressing with predecrement by four
or postincrement by four. These modes allow for
efficientmemory reference operations. Code depicting
memory move and fill operationsis givenin Table 14.

Register indirect addressing can also be performed
with the address in s0. Other addressing modes can
be implemented using adda. Table 13 depicts the
code for a complex memory reference operation.

The memory accesses depicted in the examples above
are cell-aligned, with the two least-significant bits of
the memory addresses ignored. Memory can also be
read at byte addresses with | d. b [] and written at
byte addresses using x and r epl b. See Byte Opera-
tions.

Table 13. Code Example: Complex Addressing
Mode

; addc [g0+g2+20],#8,[g0-g3-4]
push g0
push g2
adda
push.b #20
adda
Id 0
push.n #8
addc
push g0
push g3
neg
adda
dec #4
st 0
; The carry into and out of addc is maintained.

24

; Memory Move
; (cell_source cell_dest cell_count --)

move_cells::

pop ct ; count

pop X ; dest

pop Istack ; source torO
move_cell_loop::

Id [rO++]

st [x++]

mloop move_cell_loop

push Istack

pop ; discard source
; Memory Fill
; (cell_dest cell_count cell_value --)
fill_cells::

xcg

pop ct ; count

xcg

pop X ; dest

fill_cells_loop::

push ; keep fill value
st [x++]
mloop fill_cells_loop

; discard fill value

pop

The MPU contains a one-level posted write. This
allows the MPU to continue executing while the
posted write is in progress and can significantly reduce
execution time. Memory coherency is maintained by
giving the posted write priority bus access over other
MPU bus requests, thus writes are not indefinitely
deferred. In the code examples in Table 14, the loop
execution overhead is zero when using posted writes.
Posted writes are enabled by setting nspwe.

All load and store instruction opcodes are formatted
as 8-bit values with no encoded fields.
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Table 15. Stack Data Management Instructions

Table 16. Stack Cache Management Instructions

| frane
push | stack

pop | stack
sframe

push
Xcg

pop
rev

| cache
push | a

| dept h
push sa

pop la
scache

pop sa
sdepth

Stack Data Management

Operand stack data is used from the top of the stack
and is generally consumed when processed. This can
require the use of instructions to duplicate, discard, or
reorder the stack data. Data can also be moved to the
local-register stack to place it temporarily out of the
way, or to reverse its stack access order, or to place
it in a local register for direct access. See the code
examples in Table 14.

If more than a few stack data management instructions
are required to access a given operand stack cell,
performance usually improves by placing data in a
local or global register. However, there is a finite
supply of global registers, and local registers, at some
point, spill to memory. Data should be maintained on
the operand stack only while it is efficient to do so. In
general, if the program requires frequent access to data
in the operand stack deeper than s2, that data, or
other more accessible data, should be placed in
directly addressable registers to simplify access.

To use the local-register stack, data can be popped
from the operand stack and pushed onto the local-
register stack, or data can be popped from the local-
register stack and pushed onto the operand stack. This
mechanism is convenient to move a few cells when
the resulting operand stack order is acceptable. When
moving more data, or when the data order on the
operand stack is not as desired, | f r anme can be used
to allocate or deallocate the required local registers,
and then the registers can be written and read directly.
Using | f r ame also has the advantage of making the
required local-register stack space available by spilling
the stack as a continuous sequence of bus transac-
tions, which minimizes the number of RAS cycles
required when writing to DRAM. The instruction
sf r ane behavessimilarlytol f r are, and is primarily
used to discard a number of cells from the operand
stack.

All stack data management instruction opcodes are
formatted as 8-bit values with no encoded fields.
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Stack Cache Management

Other than initialization, and possibly monitoring of
overflow and underflow via the related traps, the stack
caches do not require active management. Several
instructions exist to efficiently manipulate the caches
for context switching, status checking, and spill and
refill scheduling.

The _dept h instructions can be used to determine
the number of cells in the SRAM part of the stack
caches. This value can be used to discard the values
currently in the cache, to later restore the cache depth
with _cache, or to compute the total on-chip and
external stack depth.

The _cache instructions can be used to ensure either
that data is in the cache or that space for data exists
inthe cache, so that spills and refills occur at preferen-
tial times. This allows more control over the caching
process and thus a greater degree of determinism
during the program execution process. Scheduling
stack spills and refills in this way can also improve
performance by minimizing the RAS cycles required
due to stack memory accesses.

The _f rame instructions can be used to allocate a
block of uninitialized register space at the top of the
SRAM part of a stack, or to discard such a block of
register space when no longer required. They, like the
_cacheinstructions, can be used to group stack spills
and refills to improve performance by minimizing the
RAS cycles required due to stack memory accesses.

See Stacks and Stack Caches on page 28 for more
information.

All stack cache management instruction opcodes are
formatted as 8-bit values with no encoded fields.

ADVANCE INFORMATION
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Table 17. Byte Operation Instructions

32-BIT RISC PROCESSOR

Table 19. Code Example: Null Character Search

Id.b []
shr #8

replb shl #8

testb

copyb

Byte Operations

Bytes can be addressed and read from memory
directly and can be addressed and written to memory
with the code depicted in Table 18.

Instructions are available for manipulating bytes within
cells. A byte can be replicated across a cell, the bytes
within a cell can be tested for zero, and a cell can be
shifted by left or right by one byte. Code examples
depicting scanning for a specified byte, scanning for
a null byte, and moving a null-terminated string in
cell-sized units are given below.

All byte operation instruction opcodes are formatted
as 8-bit values with no encoded fields.

Table 18. Code Example: Byte Store

; Byte store
; ( byte byte_addr --)

byte_ store::
pop X ; address
Id x] ; get data
replb ; insert byte
st x] ; replace data
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: Null character search
; (cell_source --)

null_search::
pop X ; address
push.n #0
pop ct ; avery long loop

; loop terminates when null found or after
; a long time if not found.

null_search_loop::

Id [x++]
testb
pop

mloopnc null_search_loop

Table 20. Code Example: Null-Terminated String
Move

; Move cell-aligned null-terminated string
; (cell_source cell_dest --)

null_move::

pop X ; destination

pop Istack ; source

push.n #0

pop ct ; a very long loop
null_move_loop::

Id [rO++]

testb ; check for zero

st [x++]

mloopnc null_move_loop

push Istack

pop ; discard source
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Table 21. Code Example: Byte Search

Table 22. Floating-Point Math Instructions

; Byte search
; (cell_source cell_count byte --)

byte search::

Xcg
pop ct ; count
Xcg

pop X ; source
copyb

byte_search_loop::

push
Id [x++]
xor

; keep data pattern

testb
pop

skipnc
dbr byte search_loop
; carry set if byte found

pop ; discard pattern

27

addexp denorm expdi f ext exp
extsig nor m nor nr repl exp
rnd subexp test exp

Floating-Point Math

The instructions above are used to implement efficient
single- and double-precision IEEE floating-point
software for basic math functions (+, -, *, /), and to aid
in the development of floating-point library routines.
The instructions perform primarily the normalization,
denormalization, exponent arithmetic, rounding and
detection of exceptional numbers and conditions that
are otherwise execution-time-intensive when pro-
grammed conventionally. See Floating-Point Math
Support on page 33.

All floating-point math instruction opcodes are
formatted as 8-bit values with no encoded fields.

ADVANCE INFORMATION
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Table 23. Debugging Instructions

32-BIT RISC PROCESSOR

Table 25. Miscellaneous Instructions

bkpt step

Debugging Features

Each of these instructions signals an exception and
traps to an application-supplied execution-monitoring
program to assist in the debugging of programs. See
Debugging Support on page 36.

Both debugging instruction opcodes are formatted as
8-bit values with no encoded fields.

Table 24. On-Chip Resources Instructions

I do [] ldo.i [] sto [] sto.i []

On-Chip Resources

These instructions allow access to the on-chip
peripherals, status registers, and configuration
registers. All registers can be accessed with the | do
[T and sto [] instructions. The first six registers
each contain eight bits, which are also bit addressable
with 1do.i [] and sto.i []. See On-Chip
Resource Registers on page 129.

All on-chip resource instruction opcodes are formatted
as 8-bit values with no encoded fields.

di ei nop
push nmode split

pop node

Miscellaneous

The disable- and enable-interrupt instructions are the
only system control instructions; they are supplied to
make interrupt processing more efficient. Other system
control functions are performed by setting or clearing
bits in node, or in an on-chip resource register. The
instruction spl i t separates a 32-bit value into two
cells, each containing 16 bits of the original value.

All miscellaneous instruction opcodes are formatted
as 8-bit values with no encoded fields.

Stacks and Stack Caches

The stack caches optimize use of the stack register
resources by minimizing the overhead required for the
allocation and saving of registers during programmed
or exceptional context switches (such as call subrou-
tine execution and trap or interrupt servicing).

1K Page
Address
Ox...3FF Boundary Region
masked addr = 0x380
0x...380
Middle Region
Ox...27F masked addr = 0x200
0x...200
0x...OTF Boundary Region
masked addr = 0x000
0x...000
masked addr = addr AND 0x380
stackpg.wpg

Figure 9. Stack Exception Regions
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The local-register stack consists of an on-chip SRAM
array that is addressed to behave as a conventional
last-in, first-out queue. Local registers r O-r 15 are
addressed internally relative to the current top of stack.
The registersr 0—r 14 are individually addressable and
are always contiguously allocated and filled. If a
register is accessed that is not in the cache, all the
lower-ordinal registers are read in to ensure a contigu-
ous data set.

The operand stack is constructed similarly, with the
addition of two registers in front of the SRAM stack
cache array to supply inputs to the ALU. These
registers are designated sO and s1, and the SRAM
array isdesignated s2-s17. Onlyregisterss0,s1 and
s2 are individually addressable, but otherwise the
operand stack behaves similarly to the local-register
stack. Whereas the SRAM array, s2-s17, can become
“empty” (see below), sO and s1 are always considered
to contain data.

The stack caches are designed to always allow the
current operation to execute to completion before an
implicit stack memory operation is required to occur.
No instruction explicitly pushes or explicitly pops
more than one cell from either stack (except for stack
management instructions). Thusto allow execution to
completion, the stack cache logic ensures that there
is always one or more cells full and one or more cells
empty in each stack cache (except immediately after
reset, see below) before instruction execution. If, after
the execution of an instruction, this is not the case on
either stack, the corresponding stack cache is automat-
ically spilled to memory or refilled from memory to
reach this condition before the next instruction is
allowed to execute. Similarly, the instructions
_cache, frane, pop sa, and pop | a, which
explicitly change the stack cache depth, execute to
completion, and then ensure the above conditions
exist.

Thus r 15 or s17 can be filled by the execution of an
instruction, but they are spilled before the next
instruction executes. Similarly, r0 and s2 can be
emptied by the execution of an instruction, but they
are filled before the next instruction executes.
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The stacks can be arbitrarily deep. When a stack spills,
data is written at the address in the stack pointer and
then the stack pointer is decremented by four
(postdecremented stack pointer). Conversely, when a
stack refills, the stack pointer is incremented by four,
and then data is read from memory (preincremented
stack pointer). The stack pointer thus points to the next
location to write and the stacks grow from higher to
lower memory addresses. The stack pointer for the
operand stack is sa, and the stack pointer for the
local-register stack is | a.

Since the stacks are dynamically allocated memory
areas, some amount of planning or management is
required to ensure the memory areas do not overflow
or underflow. The simplest is to allocate a sufficiently
large memory area so that overflow conditions won’t
occur. In this case, a correctly written program does
not produce underflow. Alternatively, stack memory
can be dynamically allocated or monitored through
the use of stack-page exceptions.

Stack-Page Exceptions

Stack-page exceptions occur on any stack-cache
memory access near the boundary of any 1024-byte
memory page to allow overflow and underflow
protection and stack memory management. To prevent
thrashing stack-page exceptions near the margins of
the page boundary areas, once a boundary area is
accessed and the corresponding stack-page exception
is signaled, the stack pointer must move to the middle
region of the stack page before another stack-page
exception can be signaled. See Figure 9.

Stack-page exceptions enable stack memory to be
managed by allowing stack memory pages to be
reallocated or relocated when the edges of the current
stack page are approached. The boundary regions of
the stack pages are located 32 cells from the ends of
each page to allow even a _cache or _frane
instruction to execute to completion and to allow for
the corresponding stack cache to be emptied to
memory. Using the stack-page exceptions requires that
only 2 KB of addressable memory be allotted to each
stack at any given time: the current stack page and the
page near the most recently encroached boundary.

ADVANCE INFORMATION
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Each stack supports stack-page overflow and stack-
page underflow exceptions. These exception condi-
tions are tested against the memory address that is
accessed when the corresponding stack spills or refills
between the execution of instructions. mode contains
bits that signal local-stack overflow, local-stack
underflow, operand stack overflow and operand stack
underflow, as well as the corresponding trap enable
bits.

The stack-page exceptions have the highest priority of
all of the traps. As this implies, it is important to
consider carefully the stack effects of the stack trap
handler code so that stack-page boundaries are not be
violated during its execution.

Table 26. Code Example: Stack Initialization

init_stacks::

; Create a stack area below xx_base in
; memory. One cell is read in to initialize s2/r0.

push.l #os_base-8
pop sa ; read os_base-4
; sO and s1 are uninitialized

; allow dead zone
;read Is_base-4

push.l #ls_base-8
pop la

Stack Initialization

After CPU reset both of the MPU stacks should be
considered uninitialized until the corresponding stack
pointers are loaded, and this should be one of the first
operations performed by the MPU.

After areset, the stacks are abnormally empty. That is,
r 0 and s2 have not been allocated, and are allocated
on the first push operation to, or stack pointer initial-
ization of, the corresponding stack. However, popping
the pushed cell causes that stack to be empty and
require a refill. The first pushed cell should therefore
be left on that stack, or the corresponding stack pointer
should be initialized, before the stack is used further.
See Table 26.

32-BIT RISC PROCESSOR

Stack Depth

The total number of cells on each stack can readily be
determined by adding the number of cells that have
spilled to memory and the number of cells in the on-
chip caches. See Table 27.

Table 27. Code Example: Stack Depth

; Operand stack depth
os_depth::
push.n #-2
scache
pop ; ensure 3 spaces available
.quad 3 ; keep up to push sa
; uninterruptable
sdepth
push.l #os_base-4
push sa
sub ; compute memory used
shr #1
shr #1 ; convert to cells
add ; total on-chip & off
Is_depth:: ; “:” forces alignment
; keep to push la
; uninterruptable
Idepth
push.l #ls_base-4
push la
sub ; compute memory used
shr #1
shr #1 ; convert to cells
add ; total on-chip & off
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Table 28. Code Example: Save Context

; Context switch: save context
; Save off any gloabls required and flush stacks

save_context:
; Save globals as required
push gl15
push gla
; save any others required

; Flush stacks to memory

; add one cell to local-register stack so on-chip

; part can spill.

push.b #-14 ; count for _cache

pop Istack

push ro : count for Icache

; ensure no interrupts between flush and la read
.quad 2

Icache ; write out spillable area
push la ; save pointer

; add three cells to stack so on-chip part can spill

push

push

push ro : count for scache

; ensure no interrupts between flush and sa read
.quad 2

scache ; write out all of spillable area
push sa

push.l #sp_save_area

st 1] ; save off stack pointer

: Now load new context and continue
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Stack Flush and Restore

When performing a context switch, it is necessary to
spill the data in the stack caches to memory so that the
stack caches can be reloaded for the new context.
Attention must be given to ensure that the parts of the
stack caches that are always maintained on-chip, r O
and s0-s2, are forced into the spillable area of the
stack caches so that they can be written to memory.
Code examples are given for context switches that
include flushing and restoring the caches in Table 28
and Table 29, respectively.

Table 29. Code Example: Restore Context

; Context switch: restore context
; Restore stack pointer and globals.

restore_context::

push.l #sp_save_area
pop sa : restore it, s2 refills...
; other refill when accessed
pop
pop ; bring s2 to sO
pop la : restore it, r0 refills...

; other refill when accessed

; Restore globals as required
; restore last saved first

pop gl4
pop gl15 ; and first saved last
ret ; return to suspended

; execution

ADVANCE INFORMATION
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Table 30. Traps Dependent on System State

Stack Depth
Change
Tr
Operand Local- aps
Stack Register
Stack
+n 0 Operand Stack Overflow
-n 0 Operand Stack Underflow
0 +1 Local Stack Overflow
0 -1 Local Stack Underflow
+1 -n Local Stack Underflow
Operand Stack Overflow
Local Stack Underflow and
Operand Stack Overflow
-1 +n Local Stack Overflow
Operand Stack Underflow
Local Stack Overflow and
Operand Stack Underflow
-1 -n Local Stack Underflow
Operand Stack Underflow
Local Stack Underflow and
Operand Stack Underflow
Notes:
1.+n>0,-n<0
2. If the instruction reads or writes memory or if a
posted write is in progress, a memory fault can also
occur.
3. If the instruction is single-stepped, a single-step
trap also occurs.
4. If any trap occurs, a local-register stack overflow
could also occur.
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Exceptions and Trapping

Exception handling is precise and is managed by
trapping to executable-code vectors in low memory.
Each 32-bit vector location can contain up to four
instructions. This allows servicing the trap within those
four instructions or by branching to a longer trap
routine. Traps are prioritized and nested to ensure
proper handling. The trap names and executable
vector locations are shown in Figure 5.

An exception is said to be signaled when the defined
conditions exist to cause the exception. If the trap is
enabled, the trap is then processed. Traps are pro-
cessed by the trap logic, which causes a call subrou-
tine to the associated executable-code-vector address.
When multiple traps occur concurrently, the lowest-
priority trap is processed first, but before the
executable-code vector is executed, the next-higher-
priority trap is processed, and so on, until the highest-
priority trap is processed. The highest-priority trap’s
executable-code vector then executes. The nested
executable-code-vector return addresses unnest as
each trap handler executes r et , thus producing the
prioritized trap executions.

Interrupts are disabled during trap processing and
nesting, until an instruction that begins in byte one of
aninstruction group is executed. Interrupts do not nest
with the traps since their request state is maintained
in the INTC registers.

Table 31 lists the priorities of each trap. Traps that can
occur explicitly due to the data processed or instruc-
tion executed are listed in Table 32. Traps that can
occur due to the current state of the system, concur-
rently with the traps in Table 32, are listed in Table 30.
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Table 31. Trap Priorities

Priority Traps
1 (highest) | local-register stack overflow
2 operand stack overflow
3 local-register stack underflow
4 operand stack underflow
5 memory fault
6 floating-point exponent
floating-point underflow
floating-point overflow
floating-point round
7 floating-point normalize
8 breakpoint
9 (lowest) | single step

Table 32. Traps Independent of System State

Instruction Trap Combinations
addexp Floating Point Underflow,
Floating Point Overflow
bkpt Breakpoint
denorm Floating Point Normalize
nor Floating Point Underflow,
Floating Point Normalize,
Floating Point Underflow and
Floating Point Normalize
nor nr Floating Point Overflow,
Floating Point Normalize,
Floating Point Overflow and
Floating Point Normalize
rnd Floating Point Round
step Single Step
subexp Floating Point Underflow,
Floating Point Overflow
testexp Floating Point Exponent
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Floating-Point Math Support

The MPU supports single-precision (32-bit) and
double-precision (64-bit) IEEE floating-point math
software. Rather than a floating-point unit and the
silicon area it would require, the MPU contains
instructions to perform most of the time-consuming
operations required when programming basic floating-
point math operations. Existing integer math opera-
tions are used to supply the core add, subtract,
multiply, and divide functions, while special instruc-
tions are used to efficiently manipulate the exponents
and detect exception conditions. Additionally, a three-
bit extension to the top one or two stack cells (depend-
ing on the precision) is used to aid in rounding and to
supply the required precision and exception signaling
operations.

Single Precision
31 30 23 22 0
‘ ‘ exponent significand ‘

|
sign bit L hidden bit
Double Precision
31 0

‘ significand (low) ‘

31 30
‘ ‘ exponent

significand (high)

T
|
|
|
sign bit L hidden bit

fpfmt.wpg

Figure 10. Floating-Point Number Formats

Data Formats

Though single- and double-precision IEEE formats are
supported, from the perspective of the MPU, only 32-
bit values are manipulated at any one time (except for
double shifting). See Figure 10. The MPU instructions
directly support the normalized data formats depicted.
The related denormalized formats are detected by
t est exp and fully supportable in software.

Status and Control Bits
nmode contains 13 bits that set floating-point precision,
rounding mode, exception signals, and trap enables.
See Figure 11, page 39.

ADVANCE INFORMATION
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Table 33. GRS Extension Bit Manipulation
Instructions

cleared by:
testexp replexp

shifted into by:
denorm
shr #1

shift
shrd #1

nor nr shiftd

shr #8

shifted out of by:
nor m

tested by:
rnd

read by:
push node

written by:
pop node

GRS Extension Bits

To maintain the precision required by the IEEE
standard, more significand bits are required than are
held in the IEEE format numbers. These extra bits are
used to hold bits that have been shifted out of the right
of the significand. They are used to maintain addi-
tional precision, to determine if any precision has been
lost during processing, and to determine whether
rounding should occur. The three bits appear in rode
so they can be saved, restored and manipulated.
Individually, the bits are named guard_bit,
round_bit and sti cky_bi t. Several instructions
manipulate or modify the bits. See Table 33.

When denor mand nor nr shift bits into the GRS
extension, the source of the bits is always the least-
significant bits of the significand. In single-precision
mode the GRS extension bits are taken from s0, and
in double-precision mode the bits are taken from s1.
For conventional right shifts, the GRS extension bits
always come from the least significant bits of the shift
(i.e., sO if a single shift and s1 if a double shift). The
instruction nor m is the only instruction to shift bits
out of the GRS extension; it shifts into sO in single-
precision mode and into s 1 in double-precision mode.
Conventional left shifts always shift in zeros and do
not affect the GRS extension bits.
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Table 34. Rounding-Mode Actions

S'%rt] el G| R|S Action
Round to nearest or even
X 0 X X | do nothing
« 1 0 0 glz;esn(w)ent s0, clear bit
X 1 any 1 increment sO
Round toward negative infinity
0 X X X | do nothing
1 0 0 0 | do nothing
1 any 1 increment sO

Round toward positive infinity

0 0 0 0 | do nothing
0 any 1 increment sO
1 X X X | do nothing

Round toward zero

X X X X

do nothing

Rounding

The GRS extension maintains three extra bits of
precision while producing a floating-point result.
These bits are used to decide how to round the result
to fit the destination format. If one views the bits as if
they were just to the right of the binary point, then
guard_bit has a position value of one-half,
round_bi t hasapositional value of one-quarter, and
sticky_bit has a positional value of one-eighth.
The rounding operation selected by f p_r ound_node
uses the GRS extension bits and the sign bit of ct to
determine how rounding occurs. If guard_bi t is
zero the value of GRS extension is below one-half. If
guar d_bi t isonethe value of GRS extension is one-
half or greater. Since the GRS extension bits are not
part of the destination format they are discarded when
the operation is complete. This information is the basis
for the operation of the instruction r nd.
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Most rounding adjustments by r nd involve doing
nothing or incrementing s0. Whether this is rounding
down or rounding up depends on the sign of the
floating-point result that isin ct . If the GRS extension
bits are non-zero, then doing nothing has the effect of
“rounding down” if the result is positive, and “round-
ingup” ifthe resultis negative. Similarly, incrementing
the result has the effect of “rounding up” if the result
is positive and “rounding down” if the result is
negative. If the GRS extension bits are zero then the
result was exact and rounding is not required. See
Table 34.

In practice, the significand (or the lower cell of a
double-precision significand) is in sO, and the sign
and exponentareinct . carry is setif the increment
from rnd carried out of bit 31 of s0O; otherwise,
car ry iscleared. Thisallowscar r y to be propagated
into the upper cell of a double-precision significand.

Exceptions

To speed processing, exception conditions detected
by the floating-point instructions set exception
signaling bits in node and, if enabled, trap. The
following traps are supported:

+ Exponent signaled from t est exp

e Underflow signaled from nor m , addexp,

subexp

e Overflow signaled from nor nr , addexp,
subexp

* Normalize signaled from denor m nor m
nor nr

* Rounded signaled from r nd

Exceptions are prioritized when the instruction
completes and are processed with any other system
exceptions or traps that occur concurrently. See
Exceptions and Trapping, page 32.

» Exponent Trap: Detects special-case exponents.
If the tested exponent is all zeros or all ones, carry
is set and the exception is signaled. Setting carry
allows testing the result without processing a trap.

* Underflow Trap: Detects exponents that have
become too small due to calculations or decrementing
while shifting.

* Overflow Trap: Detects exponents that have
become too large due to calculations or incrementing
while shifting.
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Table 35. Code Example: Floating-Point Multiply

; Floating-Point Multiply
; (rlr2 -- product)

testexp
addexp
pop ct ; save sign & exp sum

; A 24-bit x 24-bit multiply makes a 47 to 48-bit product,
; leaving 16-bits in the high cell. If we multiply 32-bit x

; 24-bit we get a 56-bit product with 24-bits in the high
; part, which is what we want.

; make into a 32-bit multiplier
shl #8

pop go

shl #1
push.n #0

mulu
Xcg
pop ; discard low part
normr

rnd

normr

push ct
replexp

» Normalize Exception: Detects bits lost due to
shifting into the GRS extension. The exception
condition is tested at the end of instruction execution
and is signaled if any of the bits in the GRS extension
are set. Testing at this time allows normal right shifts
to be used to set the GRS extension bits for later
floating-point instructions to test and signal.

* Rounded Exception: Detects a change in bit zero
of sO due to rounding.

ADVANCE INFORMATION
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Hardware Debugging Support

The MPU contains both a breakpoint instruction,
bkpt, and a single-step instruction, step. The
instruction bkpt executes the breakpoint trap and
supplies the address of the bkpt opcode to the trap
handler. This allows execution at full processor speed
up to the breakpoint, and then execution in a
program-controlled manner following the breakpoint.
st ep executes the instruction at the supplied address,
and then executes the single-step trap. The single-step
trap can efficiently monitor execution on an
instruction-by-instruction basis.

Breakpoint

Theinstruction bkpt performsan operation similar to
a call subroutine to address 0x134, except that the
return address is the address of the bkpt opcode. This
behavior is required because, due to the instruction
push. |, the address of a call subroutine cannot
always be determined from its return address.

Commonly, bkpt is used to temporarily replace an
instruction in an application at a point of interest for
debugging. The trap handler for bkpt typically
restores the original instruction, displays information
for the user, and waits for a command. Or, the trap
handler could be implemented as a conditional
breakpoint to check for atermination condition (such
as a register value or the number of executions of this
particular breakpoint), continuing execution of the
application until the condition is met. The advantage
of bkpt over st ep is that the applications executes
at full speed between breakpoints.

Single-Step

Theinstruction st ep isused to execute an application
program one instruction at a time. It acts much like a
return from subroutine, except that after executing one
instruction at the return address, a trap to address
0x138 occurs. The return address from the trap is the
address of the next instruction. The trap handler for
st ep typically displays information for the user, and
waits for a command. Or, the trap handler could
instead check for a termination condition (such as a
register value or the number of executions of this
particular location), continuing execution of the
application until the condition is met.
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st ep is processed and prioritized similarly to the
other exception traps. This means that all traps execute
before the step trap. The result is that st ep cannot
directly single-step through the program code of other
trap handlers. The instruction st ep is normally
considered to be below the operating-system level,
thus operating-system functions such as stack-page
traps must execute without its intervention.

Higher-priority trap handlers can be single-stepped by
re-prioritizing them in software. Rather than directly
executing a higher-priority trap handler from the
corresponding executable trap vector, the vector
would branch to code to rearrange the return ad-
dresses on the return stack to change the resulting
execution sequence of the trap handlers. Various
housekeeping tasks must also be performed, and the
various handlers must ensure that the stack memory
area boundaries are not violated by the re-prioritized
handlers.

Virtual-Memory Support

The MPU supports virtual memory through the use of
external mapping logic that translates logical to
physical memory addresses. During MPU RAS
memory cycles, the CPU-supplied logical row address
is translated by an external SRAM to the physical row
address and a memory page-fault bit. The memory
page-fault bit is sampled during the memaory cycle to
determine if the translated page in memory is valid or
invalid. Sufficient time exists in the normal RAS
precharge portion of DRAM memory cycles to map
the logical pages to physical pages with no memory-
cycle-time overhead.

An invalid memory page indication causes the
memory-fault exception to be signaled and, if enabled,
the trap to be executed to service the fault condition.
Posted-write faults are completed in the trap routine;
other types of faulting operations are completed by
returning from the trap routine to re-execute them.
Whether the fault is from a read or write operation is
indicatedbynf 1t _writ e. Thefaultaddressand data
(if a write) are stored in nf | t addr and nf | t dat a.
Memory-fault traps are enabled by nf It _trap_en.
See the code example on page 37.



Microprocessing Unit

A
FYPATRIOT
SCIENTIFIC CORPORATION

PSC1000 MICROPROCESSOR

Table 36. Code Example: Memory-Fault Service
Routine

; Memory-fault trap handler
memflt_handler::

push mode

di

; Get data (if any) and fault address.

push.l #mfltdata ; must be read first
Ido

push.l #mfltaddr ; must be read last
Ido 1

; Now go and get the faulted page from disk
; into memory, update the mapping SRAM, etc.
; ( mode data addr -- mode data addr )

; If memory fault occurred while attempting a
; posted write, perform the write in the handler.

; check if fault was read or write

push s2 ; duplicate mode
push.l  #mflt_write

and

bz discard_location ; write fault?
push.l  #miscc

Ido 0

push.b #mspwe

and ; posted write?
.quad 3

skipz  stack,discard_location

st 1] ; complete it
push ; maintain 2 items

discard_location::

; discard “address”
; discard “data”

pop
pop

; Reset exception-signal bit.

push.l  #mflt_exc_sig
iand
pop mode

; For non-posted-write faults, the load/store/pre
;-fetch retries on return.

ret
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Table 37. VRAM Commands

At falling edge of:
Description RAS CAS
CAS | OE | WE |DSF | DSF
RAM read/write H H H L L
color register set H H H H -
masked write H H L L L
flash write H H L H -
read transfer H L H L -
split read transfer | H L H H -
block write H H H L H
Vn\;;ai\tseked block H H L L H
set bit-blt mode L - L - -

Video RAM Support

Video RAMS (VRAMSs) are DRAMs that have a second
port that provides serial access to the DRAM array.
This allows video data to be serially clocked out of the
memory to the display while normal MPU accesses
occur. To prevent DRAM array access contentions, the
MPU periodically issues read transfer requests, which
copy the selected DRAM row to the serial transfer
buffer. To eliminate read transfer synchronization
problems, many VRAMs have split transfer buffers,
which allow greater timing flexibility for the MPU's
read transfer operations. The MPU instructs the VRAM
to perform a read transfer or a split read transfer by
encoding the command on the state of the VRAM OE,
WE, and DSF (device special function) during the time
RAS falls. These operations are encoded by writing
vr amand performing an appropriate read or write to
the desired VRAM memory address. See Figure 32,
page 137.

Some VRAMs have more advanced operations—such
as line fills, block fills, and bit-blts—which are
encoded with other combinations of WE, OE, DSF,
RAS, and CAS. A basic set of operations and com-
mands is common among manufacturers, but the
commands for more advanced functions vary.
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Register node

node contains a variety of bits that indicate the status
and execution options of the MPU. Except as noted,
all bitsare writable. The register isshown in Figure 11.

nflt wite
After a memory-fault exception is signaled, indicates
that the fault occurred due to a memory write.

guard_bi t

The most-significant bit of a 3-bit extension below the
least-significant bitofsO (s 1, iff p_pr eci si onisset)
thatis used to aid in rounding floating-point numbers.

round_bit

The middle bit of a 3-bit extension below the least-
significant bitofs0 (s1,iff p_pr eci si onisset) that
is used to aid in rounding floating-point numbers.

sticky_bit

The least-significant bit of a 3-bit extension below the
least-significantbitofs0 (s1,iff p_pr eci si onisset)
thatis used to aid in rounding floating-point numbers.
Once set due to shifting or writing the bit directly, the
bit stays set even though zero bits are shifted right
through it, until it is explicitly cleared or written to
zero.

nflt_trap_en
If set, enables memory-fault traps.

nflt_exc_sig
Set if a memory fault is detected.

| s_boundary

Set if |s_ovf _exc_sig or Is unf_exc_sig
becomes set as the result of a stack spill or refill.
Cleared when the address in | a, as the result of a
stack spill or refill, has entered the middle region of a
1024-byte memory page, and when | a is written.
Used by the local-register stack trap logic to prevent
unnecessary stack overflow and underflow traps when
repeated local-register stack spills and refills occur
near a 1024-byte memory page boundary. Not
writable.
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I's_unf_trap_en

If set, enables a local-register stack underflow trap to
occur after a local-register stack underflow exception
is signaled.

I's_unf_exc_sig

Setifalocal-register stack refill occurs,| s_boundary
is clear, and the accessed memory address is in the
last thirty-two cells of a 1024-byte memory page.

I's _ovf trap_en

If set, enables a local-register stack overflow trap to
occur after a local-register stack overflow exception
is signaled.

I s_ovf_exc_sig

Setifalocal-register stack spill occurs,| s_boundary
is clear, and the accessed memory address is in the
first thirty-two cells of a 1024-byte memory page.

0s_boundary

Set if os_ovf_exc_sig or os_unf_exc_sig
becomes set as the result of a stack spill or refill.
Cleared when the address in sa, as the result of a
stack spill or refill, has entered the middle region of
a 1024-byte memory page, and when sa is written.
Used by the operand stack trap logic to prevent
unnecessary stack overflow and underflow traps when
repeated operand stack spills and refills occur near a
1024-byte memory page boundary. Not writable.

os_unf_trap_en

If set, enables an operand stack underflow trap to
occur after an operand stack underflow exception is
signaled.

os_unf_exc_sig

Set if an operand stack refill occurs, os_boundary
is clear, and the accessed memory address is in the
last thirty-two cells of a 1024-byte memory page.

os_ovf _trap_en
If set, enables an operand stack overflow trap to occur
after an operand stack overflow exception is signaled.
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— Is_boundary
——lIs_unf_trap_en
— Is_unf_exc_sig

Local-Register Stack

" Mnemonic

Is_ovf_trap_en
— Is_ovf_exc_sig

Description
boundary area entered
underflow trap enable
underflow exception signal
overflow trap enable
overflow exception signal

Operand Stack

" Mnemonic

os_boundary
os_unf_trap_en
os_unf_exc_sig
os_ovf_trap_en
( os_ovf_exc_sig

Description
boundary area entered
underflow trap enable
underflow exception signal
overflow trap enable
overflow exception signal

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1 O

Mnemonic
carry
power_fail
interrupt_en

Memory Fault

Description J

carry flag
power fail occurred ——
global interrupt enable

T "
Mnemonic

— mflt_exc_sig
—— mflt_trap_en
mflt_write

Floating Point

Description ‘

exception signal
trap enable
fault was a write

[ R
Mnemonic

— sticky_bit
round_bit
guard_bit
fp_rnd_exc_sig
fp_rnd_trap_en
fp_nrm_exc_sig
fp_nrm_trap_en
fp_ovf_exc_sig
fp_ovf_trap_en
fp_unf_exc_sig
fp_unf_trap_en
fp_exp_exc_sig
fp_exp_trap_en

Description ‘

rounding sticky bit
rounding round bit
rounding guard bit
round exception signal
round trap enable

normalize exception signal ——————————
normalize trap enable ———————————

overflow exception signal

overflow trap enable

underflow exception signal

underflow trap enable

exponent exception signal

exponent trap enable

fp_round_mode

fp_precision

rounding mode (O=nearest,
1=-infinity, 2=+infinity, 3=zero)

precision (0O=single, 1=double)

mode.wpg

Figure 11. Register node
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os_ovf_exc_sig

Set if an operand stack spill occurs, os_boundary is
clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

carry
Contains the carry bit from the accumulator. Saving
and restoring node can be used to save and restore
carry.

power fail

Set during power-up to indicate that a power failure
has occurred. Cleared by any write to node. Other-
wise, not writable.

i nterrupt_en
If set, interrupts are globally enabled. Set by the
instruction ei , cleared by di .

fp_rnd_exc_sig

If set, a previous execution of r nd caused a change
inthe leastsignificantbitofs0 (s1,iff p_preci si on
is set).

fp_rnd_trap_en
If set, enables a floating-point round trap to occur after
a floating-point round exception is signaled.

fp_nrmexc_sig

If set, one or more of the guard_bi t, round_bi t
andsti cky_bit were setaftera previous execution
of denor m norm or nor nr.

fp_nrmtrap_en
If set, enables a floating-point normalize trap to occur
after a floating-point normalize exception is signaled.

fp_ovf_exc_sig

If set, a previous execution of nor nr, addexp or
subexp caused the exponent field to increase to or
beyond all ones.

fp_ovf _trap_en
If set, enables a floating-point overflow trap to occur
after a floating-point overflow exception is signaled.
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fp_unf_exc_sig

If set, a previous execution of norm , addexp or
subexp caused the exponent field to decrease to or
beyond all zeros.

fp_unf_trap_en
If set, enables a floating-point underflow trap to occur
after afloating-point underflow exception is signaled.

fp_exp_exc_sig
If set, a previous execution of t est exp detected an
exponent field containing all ones or all zeros.

fp_exp_trap_en
If set, enables a floating-point exponent trap to occur
after a floating-point exponent exception is sighaled.

f p_round_node
Contains the type of rounding to be performed by the
MPU instruction r nd.

fp_precision

If clear, the floating-point instructions operate on stack
values in IEEE single-precision (32-bit) format. If set,
the floating-point instructions operate on stack values
in IEEE double-precision (64-bit) format.

MPU Reset

After reset, the VPU begins executing at address
0x80000004, before the MPU begins execution. The
VVPU must be programmed to execute del ay before
the MPU can access the bus and begin execution.
Once the VPU executes del ay, the MPU begins
executing at address 0x80000008. Details of various
startup configurations are detailed in Processor
Startup, page 181.

Interrupts

The CPU contains an on-chip prioritized interrupt
controller that supports up to eight different interrupt
levels from twenty-four interrupt sources. Interrupts
can be received through the bit inputs, from 1/O-
channel transfers, from the VPU, or can be forced in
software by writing to i oi n. For complete details of
interrupts and their servicing, see Interrupt Controller,
page 107.
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Bit Inputs

The CPU contains eight general-purpose bit inputs that
are shared with the INTC and DMAC as requests for
those services. The bits are taken from I N[ 7: 0], or,
if so configured, are sampled from AD[ 7: 0] on the
bus. Sampling from the bus can allow the use of
smaller, less-expensive packages for the CPU; it can
also reduce PWB area requirements through reuse of
the ADbus rather than routing a separate bit-input bus.
See Bit Inputs, page 111

Bit Outputs

The CPU contains eight general-purpose bit outputs
that can be written by the MPU or VPU. The bits are
output on OUT[ 7: 0] and are also available on
A 7: 0] during RAS inactive. Taking the bits from
the bus can allow the use of smaller, less-expensive
packages for the CPU; it can also reduce PWB area
requirements through reuse of the AD bus rather than
routing a separate bit-output bus. See Bit Outputs,
page 115.

Table 38. Instructions That Hold-off Pre-fetch

bkpt br bz cal | dbr I dt
m oopx push.l ret reti st step
T See text.

Instruction Pre-fetch

The MPU issues bus requests ordered to optimize
execution. To keep executing instructions as much as
possible, the next group of instructions are fetched
while the current group executes. This is referred to
as instruction pre-fetch. Instruction pre-fetch begins
as soon as an instruction group begins to execute
unless it is held off. Pre-fetch is held off if the execut-
ing instruction group contains one of the instruction
in Table 38. 1 d and st only hold off pre-fetch if they
occur as the first instruction in the executing instruc-
tion group. Knowing which instruction hold-off pre-
fetch Is useful when programming bus configuration
information.
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Posted-Write

The MPU supports a one-level posted write. This
allows MPU execution to continue unimpeded after
the write is posted. To maintain memory coherency,
posted writes have the highest priority of all MPU bus
requests. This guarantees that memory reads following
a posed write will always retrieve the most up-to-date
data.

On-Chip Resources

The non-MPU hardware features of the CPU are
generally accessed by the MPU through a set of 41
registers located in their own address space. Using a
separate address space simplifies implementation,
preserves opcodes, and prevents cluttering the normal
memory address space with peripherals. Collectively
known as the On-Chip Resources, these registers
allow access to the bit inputs, bit outputs, INTC,
DMAC, MIF, system configuration, and some func-
tions of the VPU. These registers and their functions
are referenced throughout this manual and are
described in detail in On-Chip Resource Registers,
page 129.

Instruction Reference

As a stack-based MPU architecture, the PSC1000
MPU instructions have documentation requirements
similar to other stack-based systems, such as the Java
Virtual Machine (JVM) and American National
Standard Forth (ANS Forth). Not surprisingly, many of
the VM and ANS Forth operations are instructions on
the PSC1000 MPU. As a result, the VM and ANS
Forth stack notation used for language documentation
is useful for describing PSC1000 MPU instructions.
The basic notation adapted for the PSC1000 MPU is:

( input_operands -- output_operands )
(L: input_operands -- output_operands )

where “--" indicates the execution of the instruction.
“Input_operands” and “output_operands” are lists of
values on the operand stack (the default) or local
register stack (preceded by “L:”). These are similar,
though not always identical, to the source and
destination operands that can be represented within
instruction mnemonics. The value held in the top-of-
stack register (sO or r 0) is always on the right of the
operand list with the values held in the higher ordinal

ADVANCE INFORMATION
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registers appearing to the left (e.g., s2 s1 s0). The
only items in the operand lists are those that are
pertinent to the instruction; other values may exist
under these on the stacks. All of the input_operands
are considered to be popped off the stack, the
operation performed, and the output_operands pushed
on the stack. For example, a notational expression of:
nln2--n3

represents two input operands, nl1 and n2, and one
outputoperand, n3. For the instruction add, n1 (taken
from s1)is added to n2 (taken from s0), and the result
is n3 (left in s0). If the name of a value on the left of
either diagram is the same as the name of a value on
the right, then the value was required, but unchanged.
The name represents the operand type. Numeric
suffixes are added to indicate different or changed
operands of the same type. The values may be bytes,
integers, floating-point numbers, addresses, or any
other type of value that can be placed in a single 32-
bit cell.

addr address

byte character or byte (upper 24 bits zero)
n integer or 32 arbitrary bits

other text integer or 32 arbitrary bits

ANS Forth defines other operand types and operands
that occupy more than one stack cell; those are not
used here.

Note that typically all stack action is described by the
notation and is not explicitly described in the text. If
there are multiple possible outcomes then the out-
come options are on separate lines and are to be
considered as individual cases. If other registers or
memory variables are modified, then that effect is
documented in the text.

Also on the stack diagram line is an indication of the
effect on carry, if any, as well as the opcode and
execution time at the right margin.
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A timing with an “M” indicates the specified number
of bus requests and bus transactions (memory cycles)
for the instruction to complete. Bus requests require
two CPU-clock cycles and bus transaction times are
as programmed and described in Programmable
Memory Interface, page 117, and Bus Operation, page
157.The value used for “M” includes both the bus
request and bus transaction times.

Timings do not include implied memory cycles such
as stack spills and refills required to maintain the state
ofthe stack caches. Any operation that pushes or pops
a stack, or references a local register could cause a
memory cycle. Operations that wait on the completion
of instruction pre-fetch are labeled “Mprefetch.” These
are distinct in that pre-fetch occurs in parallel with
execution so the wait time is probably not a full
memory cycle.

ANS Forth Word Equivalents

Those PSC1000 instructions that are exact equivalents
of ANS Forth words are indicated in the body text for
the instruction. Many additional ANS Forth words
simply require a short instruction sequence, but these
are not indicated.

Java Byte Code Equivalents

Those PSC1000 instructions that are exact equivalents
of Java byte codes are indicated in the body text for
the PSC1000 instruction. Many additional Java byte
codes simply require a short instruction sequence,
though the most complex byte codes require a
subroutine call. For detailed information contact
Patriot Scientific.
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Smi Rm.SO/RO ) CARRY? OPCCDE
add
add ( n1 n2 -- n3) carryz 1100 0000
0xC0
1 CPU-cl ock
Add n1 and n2 giving the sum n3. car ry is set if there is a carry out of bit 31 of the sum and cleared
otherwise.

Equivalent to Java byte code i add.
Equivalent to ANS Forth word +.

add pc ( n1-- n2) carryz 1011 1011
OxBB
1 CPU cl ock
Add the value of pc (the byte-aligned address of the add pc opcode) to nl giving the sum n2. carry is
set if there is a carry out of bit 31 of the sum and cleared otherwise.

adda

Add Addr ess

adda ( n1 n2 -- n3) 1110 1000
OxE8
1 CPU-cl ock

Add nl1 and n2 giving the sum n3. car ry is unaffected.

addc

Add with Carry

addc ( N1 n2 -- n3) carryz 1100 0010

oxC2

1 CPU cl ock

Add nl1 and n2 and car ry giving the sum n3. car ry is set if there is a carry out of bit 31 of the sum,
otherwise carry is cleared.
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

addexp

Add Exponents

addexp ( N1 n2-- n3nd4d n5) 1101 0010
0xD2

2 CPU-cl ocks

( L: -- addr ) only when trap processed 4+M CPU- cl ocks

Perform the following:

Exponent_Field(n5) = Exponent_Field(nl) - BIAS + Exponent_Field(n2)

Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (Ox3F800000 in position) for single precision and 1023 (0x3FFO0000 in position) for double
precision, as selected by f p_pr eci si on.

Compute as described above. Clear the exponent field bits and sign bit and set the hidden bit of n1 and
n2, givingn3 and n4, respectively. n5 isthe result of the computation. After completion, if the exponent-field
calculation result equaled or exceeded the maximum value of the exponent field (exponent field result >
255 for single, exponent field result > 2047 for double) an overflow exception is signaled. If the exponent-
field calculation result is less than or equal to zero an underflow exception is signaled. When an exception
is signaled, the exponent field of n5 contains as many bits of the computed exponent as it will hold.

and
Bi twi se AND
and ( n1 n2 -- n3) carry clear 1110 0001
OxEl
1 CPU-cl ock

Perform a bitwise AND of n1 and n2 giving the result n3.
Equivalent to Java byte code i and.

Equivalent to the ANS Forth word AND.
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Br eakpoi nt

bkpt ( --) 0011 1100
( L: -- addr ) 0x3C

1+M CPU- cl ocks
Perform a call subroutine to the breakpoint trap location, 0x134. addr is the address of the bk pt instruction.
Typically the breakpoint service routine replaces the bk pt opcode at addr with the original opcode, performs
whatever debugging function desired, and r et to addr.

Equivalent to Java byte code br eakpoi nt .
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

b

Eana if Condition

br of fset ( --) 0000 Oxxx
Branch Unconditionally 0x07?
M CPU- cl ocks

Transfer execution to offset cells from the beginning of the current instruction group.

The instruction adds the two's-complement cell offset encoded within and following the br opcode to pc,
and transfers execution to the resulting cell-aligned address.

Equivalent to Java byte codes got o, got 0_w.

Equivalent to the run-time for the ANS Forth words AGAI N, AHEAD, EL SE.

br [] ( addr -- ) 0100 1011
Branch I ndirect 0x4B
M CPU- cl ocks

Replace the value in pc with addr to transfer execution to addr. Note that addr is an absolute byte-aligned
address and not an offset.

bz of fset (n--) 0001 Oxxx

Branch if Zero 0x1?

M CPU- cl ocks

If nis zero, transfer execution to offset cells from the beginning of the instruction group; otherwise, continue
execution at the next instruction group.

If n is zero the instruction adds the two's-complement cell offset encoded within and following the bz
opcode to pc, and transfers execution to the resulting cell-aligned address. If n is non-zero execution
continues with the next instruction group.

Equivalent to Java byte codesi f eq, i fnul | .

Equivalent to the run-time for the ANS Forth words | F, UNTI L, VHI LE.
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Smi Rm.SO/RO ) CARRY? OPCCDE
dbr of f set ( --) 0001 1xxx
Decrenent CT and Branch 0x1?

M CPU- cl ocks
Decrementct by one. Ifct, isnon-zero transfer execution to offset cells from the beginning of the current
instruction group; otherwise, continue execution with the next instruction group.

The instruction decrements ct by one. If the resulting ct is non-zero the instruction then adds the two's-
complement cell offset encoded within and following the dbr opcode to pc, and transfers execution to the
resulting cell-aligned address. If the resulting ct is zero execution continues with the next instruction group.
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32-BIT RISC PROCESSOR
MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

cache

Fill/ Enpty Stack Cache

The cache instructions are used to optimize program execution, or to make program execution more
deterministic. Stack cache spills and refills can be caused to occur at preferential times, and to occur in bursts
to optimize memory access. Executing the instruction with both n and n-14 (n>0) ensures that an exact number
of items are in the stack cache. Pushing dummy values onto the stack (one value for the local-register stack, three
values for the operand stack) and then executing the instruction with n = -14 causes all previously held data
to be spilled to memory.

| cache (n--) 0100 1101

0x4D

1 or (IMto 14M CPU cl ocks

Ifn>0, ensure that at least n cells can be removed from the local-register stack without causing local-register
stack cache refills. Cells are refilled from memory into the cache if required. (1 < n < 14).

If n < 0 (two's complement), ensure that at least |n| cells can be added to the local-register stack without
causing local-register stack cache spills. Cells are spilled from the stack cache to memory if required. (-14
<n<-1).

If n = 0 the local-register stack cache is unchanged.

scache (n--n) 0100 o101

0x45

1 or (IMto 14M CPU cl ocks

If n > 0, ensure that at least n cells can be removed from the operand stack without causing operand stack
cache refills. Cells are refilled from memory into the cache if required. (1 < n < 14).

Ifn <0 (two's complement), ensure that at least | n| cells can be added to the operand stack without causing
operand stack cache spills. Cells are spilled from the stack cache to memory if required. (-14 < n < -1)

If n = 0 the operand stack cache is unchanged.
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cal |

Cal | Subroutine

call offset ( --) 0000 1xxx
( L: -- addr ) 0x07?

Cal | Subroutine 1+M CPU- cl ocks

Transfer execution to offset cells from the beginning of the current instruction group. addr is the cell-aligned
address of the next instruction group.

The instruction pushes addr on the local-register stack and then adds the two's-complement cell offset
encoded within and following the cal | opcodeto pc, and transfers execution to the resulting cell-aligned
address. The offset is in the same form and follows the same rules as those for branches.

call [] ( addrl -- ) 0100 1110
( L: -- addr2 ) Ox4E
Cal | Subroutine |Indirect 1+M CPU- cl ocks

Replace the value in pc with addrl to transfer execution there. addr2 is the byte-aligned address of the next
instruction following cal I [] . Note that addrl is an absolute address and not an offset.

cnp

Conpar e
cnp ( N1 n2--nl1ln2) carryz 1100 1011
0xCB
1 CPU-cl ock
Compare n2 and n1 as signed values. Set car ry if n1 < n2, otherwise clear carry.
copyb
Copy Byte Across Cell
copyb ( n1-- n2) 1101 0000
0xDO0
1 CPU cl ock

n2 is the result of copying the lowest byte of nl into each of the higher byte positions. For example,
0x12345678 becomes 0x78787878.

49

ADVANCE INFORMATION



NOILVINHO4dNI dONVAQAY

APATRIOT PSC1000 Microprocessor

32-BIT RISC PROCESSOR
MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

d b I See b .

dec
Decr enment
dec #1 ( n1-- n2) 1100 1111
OxCF
1 CPU-cl ock
Subtract one from n1 leaving the result n2.
Equivalent to ANS Forth word 1- .
dec #4 ( n1-- n2) 1100 1101
0xCD
1 CPU cl ock
Subtract four from n1 leaving the result n2.
dec ct, #1 ( --) 1100 0001
oxC1
1 CPU-cl ock

Subtract one from ct .
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denorm

Denor mal i ze

denorm (N1 -- n2) if single precision 1100 0101
( N1 n2-- n3nd4d) if double precision 0xC5

1 to 13 CPU- cl ocks
( L: -- addr ) only when trap processed
3+Mto 15+M CPU- cl ocks
Shift n1 (or n2n1 if double) right by the bit count in the exponent field of ct . Bits shift out of the right into
the GRS extension. If any bit in the GRS extension is set, a normalize exception is signaled. The location
of the exponent field depends on f p_pr eci si on. The exponent field of ct is decremented to zero.

Shifting is performed by bytes or bits to minimize CPU-clock cycles required. If the count in the exponent
bits of ct is larger than the width in bits of the significand field + 3 (for the guard_bi t, round_bi t and
the hidden bit), thest i cky_bi t issetand the other bits are cleared, and execution requires one CPU-clock
cycle.

dept h

Epth of Stack

| dept h ( -- n) 1001 1011

0x9B

1 CPU-cl ock

n is exactly the number of cells that can be removed from the local-register stack without causing a local-
register stack cache refill. (0 < n < 14).

sdepth ( -- n) 1001 1111

Ox9F

1 CPU-cl ock

n is exactly the number of cells, before n was pushed, that could be removed from the operand stack without

causing an operand stack cache refill. (0 < n < 14). If n = 14, then an operand stack cache spill occurred

when n was pushed and only 13 cells remain, excluding n, that can be removed from the operand stack
without causing an operand stack cache refill.
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

di

Di sable Interrupts

di ( --) 1011 0111
0xB7
1 CPU-cl ock

Globally disable interrupts, clearing i nt err upt _en. The i oi e bits are not changed.

di vu

Di vi de Unsi gned

di vu ( N1 n2--n3n4d) 1101 1110
OxDE

32 CPU- cl ocks
Divide the double value n2n1 by the value in g0 giving the quotient n3 and remainder n4. All values are
unsigned. If n2 is greater than or equal to g0 then the quotient will overflow. If g0 is zero then n3 equals
nl and n4 equals n2.

el
Enabl e Interrupts
ei ( --) 1011 0110
0xB6
1 CPU-cl ock

Globally enable interrupts, setting i nt err upt _en. The i oi e bits are not changed.
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eqz
Equal Zero
eqz ( n1-- n2) 1110 0101
OxE5
1 CPU-cl ock

n2 is the logical inverse of nl. If n1 is equal to zero n2 is -1. If n1 is non-zero n2 is zero.

Equivalent to ANS Forth word 0=.

expdi f

Exponent Difference

expdi f ( N1 n2-- n3n4d) 1100 0100
oxc4
1 CPU-cl ock
Clear the upper half of ct . Subtract the exponent field of n2 from the exponent field in n1 placing the result
in the exponent-field bits of ct . Clear the exponent-field bits and sign bit and set the hidden bit of n1 and
n2 giving n3 and n4, respectively. The locations of the exponent field and hidden bit depend on
f p_preci sion.

ext exp
Extract Exponent
ext exp ( n1-- n2) 1101 1011
OxDB
1 CPU cl ock

Clear the significand bits of n1 leaving the exponent-field bits and sign bit unchanged, giving n2. The
locations of the exponent field and significand field depend on f p_pr eci si on.
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extsig
Extract Significand
extsig ( n1-- n2) 1101 1100
0xDC
1 CPU-cl ock

Clear the exponent and sign bits of n1 leaving the significand-field bits unchanged. Then set the hidden
bit of n1, giving n2. The locations of the exponent field and significand field depend on f p_pr eci si on.
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_franme
Al'l ocate On-Chip Stack Frane
| franme (n--) 1011 1110
(L fodr - 21 XpXg) (n>0) OxBE
1 or (IMto 15M CPU cl ocks
( L b Jneda -7 ez Jon ) ( n<2~o )
1 or (1 to 15) CPU cl ocks
(L --) (n=0) 1 CPUclock

If n > 0, allocate n uninitialized cells, x,...X,, at the top of the local-register stack cache. This causesr 0 to
move torn, r1tomovetor (n+l), rito move to r (n+i), etc. Those local registers for which (n+i) > 14 are
written from the local-register stack cache to memory. (1 < n < 15).

Ifn <0, discard |n| cells, j,...j,, fromthe top of the local-register stack cache. This causesr O throughr (|n|-1)
to be discarded, r |[n| to becomer O, r (|n|+1) to become r 1, etc. (-15 < n < -1). Each cell discarded that
is not in the stack cache requires one CPU-clock cycle.

If n =0, no cells are allocated or discarded.

sfrane 1011 1111
OxBF
( b2damn-- joj1 XXy mn) (n>0)
1 or (IMto 15M CPU cl ocks
( “bnaa oo MN - --J-n+2Jn+lmn) ( n<0)
1 or (1 to 15) CPU cl ocks
(n--n) (n=0) 1 CPUclock

If n > 0, allocate n uninitialized cells, x,...x,, in the operand stack cache after sO and s1. This causes s2
to move to s(n+2), s3 to move to s(n+3), si to move to s(n+i), etc. Those stack cells for which (n+i) > 16
are written from the operand stack cache to memory. (1 < n < 15).

Ifn <0, discard |n| cells, j,...J;, fromwithin the operand stack cache after sO and s 1. This causes s 2 through
s(|n|+1) to be discarded, s(|n|+2) to become s2, s(|n|+3) to become s3, etc. (-15 < n < -1). Each cell
discarded that is not in the stack cache requires one CPU-clock cycle.

If n =0, no cells are allocated or discarded.
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| and
Bitwi se Invert then AND
i and ( N1 n2 -- n3) clear carry 1110 1001
OxE9
1 CPU cl ock

Clear the bits in n1 that are set in n2 leaving the result n3.

| NC
I ncrement
inc #1 ( n1-- n2) 1100 1110
OxCE
1 CPU-cl ock
Add one to nl giving the sum n2.
Equivalent to ANS Forth word 1+.
inc #4 ( n1 -- n2) 1100 1100
0xCC
1 CPU cl ock

Add four to n1 giving the sum n2.

| cacC he See cache.
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| d

Load Indirect from Menory

ld [--r0] ( --n) 0100 0100

0x44

1+M CPU- cl ocks

Decrement the address in r O by four. n is the value from the cell in memory at the new address inr 0. The
two least significant bits of the address are ignored and treated as zero.

ld [--X] ( -- n) 0100 1010

Ox4A

1+M CPU- cl ocks

Decrement the address in x by four. n is the value from the cell in memory at the new address in x. The
two least significant bits of the address are ignored and treated as zero.

Id [rO++] ( --n) 0100 0110
0x46
M CPU- cl ocks
n is the value from the cell in memory at the address in r 0. Increment r O by four. The two least significant
bits of the address are ignored and treated as zero.

ld [rO] ( -- n) 0100 0010

0x42

M CPU- cl ocks

n is the value from the cell in memory at the address in r 0. The two least significant bits of the address are
ignored and treated as zero.

I d [ x++] ( --n) 0100 1001

0x49

M CPU- cl ocks

n is the value from the cell in memory at the address in x. Increment x by four. The two least significant
bits of the address are ignored and treated as zero.

[d [X] ( -- n) 0100 0001

0x41

M CPU- cl ocks

n is the value from the cell in memory at the address in x. The two least significant bits of the address are
ignored and treated as zero.
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Id [] ( addr -- n) 0100 0000
0x40

M CPU- cl ocks
n is the value from the cell in memory at the address addr. The two least significant bits of the address are
ignored and treated as zero.

Equivalent to ANS Forth words @ F@ SF@
ld.b [] ( addr -- byte ) 0100 1000
0x48

M CPU- cl ocks
byte is the value from the byte in memory at the address addr.

Equivalent to ANS Forth word C@

| do

Load Indirect from On-Chip Resource

ldo [] ( addr -- n) 1001 0110

0x96

1 CPU cl ock

n is the value from the on-chip resource at addr. For valid values of addr, see On-Chip Resource Registers,
page 129.

ldo.i [] ( bit_addr -- n) 1001 0111
0x97
1 CPU cl ock
nisall ones (-1) if the bit at the on-chip resource address bit_addr is one, otherwise nis zero. For valid values
of bit_addr, see On-Chip Resource Registers, page 129.

| dept h See _dept h.

| f Fane See frane.
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m oop_

M cro Loop on Condition

An ml oop re-executes the current instruction group, beginning with the first instruction in the group, up to the
m oop_ instruction, until a specified condition is not met or until ct is decremented to zero. When either
termination condition occurs, execution continues with the instruction following the m oop_ opcode.

m oop ( --) 0011 1000
M cro Loop Unconditionally 0x38
1 CPU-cl ock

Decrementct by one. Ifct isnon-zero transfer execution to the beginning of the current instruction group.
If ct is zero continue execution with the instruction following m oop.

nm oopc ( --) 0011 1001
Mcro Loop if Carry 0x39
1 CPU-cl ock

Decrement ct by one. Ifct isnon-zero and car ry is set transfer execution to the beginning of the current
instruction group. Ifct iszeroorcar ry is clear continue execution with the instruction following m oopc.

m oopn
m oopnp (n--n) 0011 1010
Mcro Loop if Negative/Not Positive Ox3A

1 CPU cl ock
Decrement ct by one. If ct is non-zero and n is negative (neither positive nor zero) transfer execution to
the beginning of the current instruction group. If ct is zero or n is not negative (either positive or zero)
continue execution with the instruction following m oopn or m oopnp.

m oopnc ( --) 0011 1101
Mcro Loop if Not Carry 0x3D
1 CPU-cl ock

Decrementct byone.Ifct isnon-zeroandcar ry is clear transfer execution to the beginning of the current
instruction group. If ct iszero or car ry is set continue execution with the instruction following m oopnc.

nm oopnn
nm oopp (n--n) 0011 1110
Mcro Loop if Not Negative/Positive Ox3E

1 CPU-cl ock
Decrement ct by one. If ct is non-zero and n is not negative (either positive or zero) transfer execution
to the beginning of the current instruction group. If ct is zero or n is negative (neither positive nor zero)
continue execution with the instruction following m oopnn or ml oopp.
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m oopnz (n--n) 0011 1111
Mcro Loop if Not Zero Ox3F

1 CPU cl ock

Decrement ct by one. If ct is non-zero and n is not zero transfer execution to the beginning of the current
instruction group. If ct is zero or n is zero continue execution with the instruction following m oopnz.

m oopz (n--n) 0011 1011
Mcro Loop if Zero 0x3B
1 CPU-cl ock

Decrement ct by one. If ct is non-zero and n is zero transfer execution to the beginning of the current
instruction group. If ct is zero or n is not zero continue execution with the instruction following m oopz.

mul fs

Mul tiply Fast Signed

mul fs ( N1 n2--n3n4d) 1101 0110
0xD6

2 to 32 CPU cl ocks
Multiply the bit-order-reversed value n1 by the value in g0 leaving the result n4. n2 is usually zero and n3
is garbage (see below). The number of significant bits in n1 is indicated by the value in ct . All values are
single-cell size and signed. ct is decremented to zero.

The program must supply nl in bit-order-reversed form (e.g., the binary value for decimal 13 is 01101 and
bit-order reversed is 10110; note that the original high-order bit is zero as a sign bit and must be included.)
The program must also load ct with the bit count and push a zero for n2. For the example number above,
the count would be 5. n3 is typically discarded.

n2 could be non-zero but its use in this form is questionable. The effect of n2 on the result is that the value
of n2 shifted left by the bit count value in ct is added to the result, n4. n3 contains the low cell of the value
remaining after n2n1 is shifted right by the number of bits in ct . Instruction execution time is limited to 65
CPU-clock cycles by the instruction expiration counter.
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mul s

Multiply Signed

mul s ( N1 n2--n3n4d) 1101 0101
0xD5

32 CPU cl ocks
Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are signed.

mul u

Mul tiply Unsigned

mul u ( N1 n2-- n3n4d) 1101 0111
0xD7

32 CPU-cl ocks
Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are unsigned.

mXm
Maxi mum
mKm ( N1 n2--nl1n2) carry set 1101 1111
or ( N1 n2--n2nl) carry cl ear OxDF
2 CPU- cl ocks

Compare n2 and n1 as signed values. Set car r y if n1 <n2, otherwise clear car r y. Bring the larger of n1
and n2 to the top of stack. That is, if the resulting car r y is set then n2 is greater than n1 and n2 remains
on top. If the resulting car ry is clear then n2 is less than or equal to n1 and n1 is exchanged with n2.
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neg
Two' s- Conpl ement Negati on
neg ( n1-- n2) 1100 1001
0xC9
1 CPU-cl ock

n2 is the two's-complement negation of n1.
Equivalent to Java byte code i neg.

Equivalent to ANS Forth word NEGATE.

nop
No QOperation
nop ( --) 1110 éOég
X
1 CPU-cl ock
Do nothing.

Equivalent to Java byte code nop.
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nor m
Normal i ze Left
nor ( n1-- n2) if single precision 1100 0111
( N1 n2--n3n4d) i f doubl e precision 0xC7
1 to 13 CPU- cl ocks
( L: -- addr ) only when trap processed
3+M to 15+M CPU-cl ocks
( L: -- addrl addr2 ) only when both traps processed

5+2M to 17+2M CPU- cl ocks
While the hidden bit and the seven bits to the right of it in n1 (n2 if double) are zero, repeat the following:
Shift n1 (or n2n1 if double) left by eight bits and decrement the exponent field in ct by eight.
Then, while the hidden bit of n1 (n2 if double) is zero, repeat the following:
Shift n1 (or n2nl if double) left by one bit and decrement the exponent field in ct by one.

In both steps, bits shifted into bit zero of n1 come from the GRS extension.

When the operation is complete, if shifting was required and the decremented field in ct reached or passed
all zero bits during the processing, an underflow exception is signaled. If no shifting is required an underflow
exception is not signaled. Then, if any bit in the GRS extension is set, a normalize exception is signaled.
The location of the exponent field depends on f p_pr eci si on. If both traps are processed, the underflow
trap has higher priority. Instruction execution time is limited to 65 CPU-clock cycles by the instruction
expiration counter.
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nor nr

Normal i ze Ri ght

nor nr

( n1-- n2) if single precision 1100 0110
( N1 n2--n3n4d) i f doubl e precision 0xC6
1 to 11 CPU- cl ocks
( L: -- addr ) only when trap processed
3+M to 13+M CPU-cl ocks
( L: -- addrl addr2 ) only when both traps processed

5+2M to 15+2M CPU-clocks

While any bit except the first bit (the hidden bit) in the exponent field is non-zero, repeat the following:
Shift n1 (or n2n1 if double) right by one bit and increment the exponent field in ct by one. Bits shifted
out of bit zero of n1 shift into the GRS extension bits.

When the operation is complete, if shifting was required and the incremented field in ct reached or passed
all one bits during the processing, an overflow exception is signaled. If no shifting is required an overflow
exception is not signaled. Then, if the GRS extension is set, a normalization exception is signaled. The
locations of the exponent field and hidden bit depend onf p_pr eci si on. If both traps are processed, the
overflow trap has higher priority. Instruction execution time is limited to 65 CPU-clock cycles by the
instruction expiration counter.

not c

Conpl ement Carry

not c

(--) carry invertetil01 1101
OxDD
1 CPU-cl ock

Invert the state of carry.
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or
Bi twi se OR
or ( N1 n2 -- n3) carry clear 1110 0000
OxEO
1 CPU cl ock

Perform a bitwise OR on nl and n2 giving the result n3.
Equivalent to Java byte code i or .

Equivalent to ANS Forth word OR.
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Pop
pop (n--) 1011 0011
0xB3
1 CPU-cl ock
Discard n.

Equivalent to Java byte codes pop, | 2i .
Equivalent when executed twice to Java byte code pop2.

Equivalent to ANS Forth word D>S, DROP, FDROP.
Equivalent when executed twice to ANS Forth word 2 DROP.

pop ct (n--) 1011 0100
OxB4
1 CPU-cl ock

Replace the value in ct with n.
pop gi (n--) 0101 xxxx
0x57?
1 CPU cl ock

Replace the value in gi (global register i, i.e., g0—g15) with n. To eliminate contentions on registers g1-g15,
if the DMAC or the VPU is using one of these global registers when the MPU attempts access, the MPU stalls
until the registers are available. Contentions are not possible on g0.

pop | a ( addr -- ) 1011 1101
( Lo fneda--) 0xBD
1+M CPU- cl ocks
Replace the value in | a with cell-aligned address addr. The contents of the local-register stack cache,
...jn---J1, are discarded. The two least-significant bits of | a are cleared. The bit| s_boundary is cleared.

A stack refill is performed at addr+4 to initialize r 0.

pop | stack (n--) 1011 1010
(L --n) OxBA
1 CPU-cl ock

Remove n from the operand stack and push it onto the local-register stack (into r 0). The previous contents
of r 0 are placed in r 1, the previous contents of r 1 are placed in r 2, and so on.

Equivalent to ANS Forth word >R
Equivalent when executed twice to ANS Forth word 2>R.
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pop node (n--) 1011 1001
0xB9

1 CPU cl ock

Replace the value in node with n and clear power _f ai | . The node bits power _fail,|l s _boundary

and os_boundar y are not writeable.

pop ri (n--) 1010 xxxx
OxA?
1 CPU-cl ock

Replace the value in ri (local register i, i.e., r 0—r 14) with n.

If riisinthe local-register stack cache (i < | dept h) the value in r i is replaced with n. If r i is not currently
in the local-register stack cache (i > | dept h), cells starting at r (I dept h+1) are read from memory
sequentially to fill the cache until r i is reached. r i is then replaced with the value n.

Equivalent to Java byte codes ast ore_0, astore_1,astore_2,astore_3,fstore _0,fstore_1,
fstore 2,fstore 3,istore O,istore_1,istore 2,istore_3.

Equivalent when executed twice to Java byte codes dstore_O, dstore_1, dstore_2, dstore_3,
Istore O,Istore_1,Istore _2,lstore_3.

Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes ast ore (vi ndex),
fstore (vindex),istore (vindex).

Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes
dstore (vindex),Istore (vindex).

pop sa ( cjnpjam 2 addr -- nil nR ) 1011 1100

0xBC

1+M CPU- cl ocks

Replace the value in sa with cell-aligned address addr. The contents of the operand stack cache, ...j,...j;,

are discarded. The two least-significant bits of sa are cleared. The bit os_boundary is cleared. A stack
refill is performed at addr+4 to initialize s2.

pop X (n--) 1011 1000
0xB8
1 CPU-cl ock

Replace the value in x with n.
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push

push (n--nn) 1001 0010
0x92
1 CPU-cl ock

Duplicate n.

Equivalent to Java byte code dup.

push ct ( --n) 1001 0100
0x94
1 CPU- cl ock

nis the value inct .
push gi ( -- n) 0111 xxxx
ox77?
1 CPU-cl ock

n is the value in gi (global register i, i.e., g0—g15). To eliminate contentions on registers g1-g15, if the
DMAC or the VPU is using one of these global registers when the MPU attempts access, the MPU stalls until
the registers are available. Contentions are not possible on gO0.

push |l a ( -- addr ) 1001 1101
0x9D
1 CPU-cl ock

addr is the value in | a.
push | stack ( -- n) 1001 1010
Ox9A
(L n--) 1 CPU cl ock

Pop n from the local-register stack (from r 0) and push it onto the operand stack. The previous contents of
r 1 are placed in r 0, the previous contents of r 2 are placed in r 1, and so on.

Equivalent to ANS Forth word R>.
Equivalent when executed twice to ANS Forth word 2R>.

push node ( -- n) 1001 0001
0x91
1 CPU-cl ock

n is the value in node.
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push ri (--n) 1000 xxxx
0x8?

1 CPU-cl ock

n is the value in ri (local register i, i.e. r 0-r 14).

If r i is in the local-register stack cache (i < | dept h) the value in r i is pushed onto the operand stack. If r i
is not currently in the local-register stack cache (i > | dept h), cells starting atr (I dept h+1) are read from
memory sequentially until r i is reached. The value in r i is then pushed onto the operand stack.

Equivalent to Java byte codesal oad_0,al oad_1,al oad_2,al oad_3,fl oad_0,fl oad_1,fl oad_2,
fload 3,iload O,iload 1,iload 2,il oad_3.

Equivalent when executed twice to Java byte codes| | oad_0,| | oad_1,110ad_ 2,11 oad_3,dl oad_O,
dl oad_1,dl oad_2, dl oad_3.

Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes al oad (vi ndex),fl oad
(vindex),iload (vindex).

Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dl oad
(vindex), Il oad (vindex).

Equivalent to ANS Forth word R@
Equivalent when executed twice to ANS Forth word 2R@

push si ( --n) sO 1001 0010
0x92
sl 1001 0011
0x93
s2 1001 1110
Ox9E
1 CPU cl ock
n is the value in si (operand stack register i, i.e., s0, s1 or s2)

Equivalent to Java byte code dup.
Equivalent when executed twice to Java byte code dup?2.

Equivalent to ANS Forth words 2DUP, DUP, FDUP, FOVER, OVER.

push sa ( -- addr ) 1001 1100
0x9C
1 CPU-cl ock

addr is the value in sa.
push X ( -- n) 1001 1000
0x98
1 CPU-cl ock

n is the value in x.

69

ADVANCE INFORMATION



NOILVINHO4dNI dONVAQAY

APATRIOT PSC1000 Microprocessor

32-BIT RISC PROCESSOR

MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE
push. b #n (--n) 1001 0000
0x90

1 CPU-cl ock

n is an eight-bit literal value in the range 0-255. The byte literal is encoded as the last byte in the instruction
group. This allows only one unique push. b # value per instruction group. Multiple push. b # opcodes
in the same instruction group push the same value.

Equivalent for positive values to Java byte code bi push.
Equivalent for some values to Java byte code si push.

push. |l #n ( -- n) 0100 1111

Ox4F

M CPU- cl ocks

n is a 32-bit literal value. The value is compiled as a full cell following the instruction group. Multiple

push. | #inaninstructiongroup are compiled with data in sequential cells following the instruction group

in memory. As the push. | # opcodes are executed, the internally maintained next pc is incremented to

move past each cell as it is fetched and pushed on the stack. Note that ski pping a push. | # causes the

MPU to execute the literal value because the skipped push. | # will not have incremented next pc to move
past the value.

Equivalent to Java byte code f const _1, f const _2,1dc, | dc_w, si push.
Equivalent when executed twice to Java byte code | dc2_w.

push.n #n ( -- n) 0010 xxxXx
0x2?
1 CPU-cl ock
n is a literal value in the range -7 to 8. The four least-significant bits of the opcode encode the value for n.
The value is encoded as a two's-complement representation of n except that -8 (1000 binary) is decoded

to be +8.

EquivalenttoJava byte codesaconst _nul | ,f const _0,i const _ni,i const _0,i const _1,i const _2,
i const_3,iconst_4,iconst_5.

Equivalent for some values to Java byte code bi push.

Equivalent when executed twice to Java byte codes dconst 0,1 const 0, | const _1.

Equivalent to ANS Forth words FALSE, TRUE.
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replb

Repl ace Byte

replb ( N1 n2 -- n3) 1101 1010

OxDA

1 CPU cl ock

Replace the target byte of n2 with the least-significant byte of n1, leaving the result n3. The target byte is
selected by the two least-significant bits of x, as when accessing a byte in memory.

For example, if x = 0x121, n1 = OXCCDDEEFF, and n2 = 0x12345678, then n3 = 0x12FF5678.

repl exp
Repl ace Exponent
repl exp ( N1 n2 -- n3) 1011 0101
0xB5
1 CPU cl ock

Replace the exponent field and sign bits of n1 with the corresponding bits of n2. Clear the GRS extension.
The location of the exponent field depends on f p_pr eci si on.

r et

Ret urn

r et ( --) 0110 1110
( L: addr -- ) Ox6E

Return from Subroutine M CPU- cl ocks

Pop addr from the local-register stack into pc to transfer execution to addr.

Equivalent to ANS Forth word EXI T.

reti ( --) 0110 1111
( L: addr -- ) Ox6F
Return from I nterrupt M CPU- cl ocks

Pop addr from the local-register stack into pc to transfer execution to addr. Clear the current interrupt under-
service bit.
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rev
Revol ve Operand Stack
rev ( N1 n2n3-- n2n3nl) 1110 0100
OxE4
1 CPU-cl ock

Rotate the top three cells of the stack to bring nl to the top.

Equivalent to the run-time for the ANS Forth words FROT, ROT.

rnd
Round
rnd ( n1-- n2) carryz 1101 0001
0xD1
1 CPU cl ock
( L: -- addr ) only when trap processed 3+M CPU- cl ocks

Round n1 giving n2. Rounding is based on f p_r ound_node, the sign of ct , and the GRS extension. See
Rounding, page 34. If an increment carried out of bit 31 then set car ry, clear car r y otherwise.

Ifthe value of n2 is different from n1, arounded exception is signaled. The exception is detected as a change
in the value of bit zero.

NOILVINHO4dNI dONVAQAY

ScacC he See cache.

Sdept h See _dept h.
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Smi Rm.SO/RO ) CARRY? OPCCDE
sexb ( n1-- n2) 1101 1000
0xD8
1 CPU cl ock
Copy the value of bit seven of n1l into bits eight to thirty-one, leaving n2.
Equivalent to Java byte code i 2b.
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shift

The number of CPU-clock cycles required to shift the specified number of bits depends on the number of bits
requested. While the count > eight the value (single or double) is shifted eight bits each CPU-clock cycle. When
the count becomes less than eight the shifting is finished at one bit per CPU-clock cycle. For instance, the worst-
case useful shi f t is 31 bits (either left or right) and takes eleven CPU-clock cycles—three 8-bit shifts and seven
1-bit shifts plus one CPU-clock cycle for setup. A 32-bit shift would take five CPU-clock cycles. The counts are
modulo 64 in sign-magnitude representation using only the six least-significant bits for the magnitude and bit
31 for the sign. A zero in the six least-significant bits represents zero. (Sign-magnitude representation here is
a positive integer count in the six least-significant bits, the middle bits ignored, and bit 31 indicating the sign,
zero is positive, one is negative).

shift ( N1 n2 -- n3) carryx (n2>0)1110 1110
OxEE
1 to 11 CPU cl ocks
Shift n1 by |n2| bits leaving the result n3. If n2 is positive the shift is to the left, each bit is shifted out through
car ry, and zero is shifted into each bit on the right. If n2 is negative the shift is to the right, each bit shifted
out is shifted through the GRS extension, and car ry is copied into each high order bit of n1 vacated by
the shift. See text above regarding execution time and format of negative counts.

Equivalent to ANS Forth word LSHI FT.

shiftd ( N1 n2 n3 -- n4 n5) carryx (n3>0)1110 1111

Shift Doubl e OxEF

1 to 15 CPU- cl ocks

Shift the cell pair n2n1 by |n3]| bits leaving the resulting cell pair n5n4. If n3 is positive the shift is to the

left, each bit is shifted out of n2 through car r y, and zero is shifted into each bit on the right into n1. If n3

is negative the shift is to the right, each bit shifted out of n1 is shifted through the GRS extension, and car ry

is copied into each high order bit of n2 vacated by the shift. See text above regarding execution time and
format of negative counts.
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shl

Shift Left

shl #1 ( n1-- n2) carryz 1110 0010

Shift Left OxE2
1 CPU cl ock

Shift n1 one bit to the left leaving the result n2. The high order bit of n1 shifted out goes into carry. The
vacated bit on the right of n1 is filled with zero.

Equivalent to ANS Forth word 2*.

shl #8 ( n1-- n2) carryz 1110 1100
Shift Left Byte OxXEC
1 CPU cl ock

Shift n1 eight bits (one byte) to the left leaving n2. The last bit shifted out goes into car r y. The vacated eight
bits on the right are filled with zeros.

shid #1 ( N1 n2-- n3n4d) carryz 1110 0110
Shift Left Double OxE6
1 CPU-cl ock

Shift cell pair n2n1 one bit to the left leaving the result n4n3. The high order bit of n2 shifted out goes into
car ry. The vacated bit on the right of n1 is filled with zero.

Equivalent to ANS Forth word D2* .
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MNEMONI C STACKS ( input Sn/Rn..SO/RO -- output Sm Rm.SO/RO ) CARRY? OPCCDE

shr

Shift Right

shr #1 ( n1-- n2) 1110 0011

Shift Right OxE3
1 CPU-cl ock

Shift n1 one bit to the right leaving the result n2. The bit shifted out is shifted into the GRS extension. The
vacated bit on the left is filled with carry.

shr #8 ( n1 -- n2) 1110 1101
Shift Right Byte OxED
1 CPU-cl ock

Shift n1 eight bits (one byte) to the right leaving the result n2. The bits shifted out are shifted into the GRS
extension. The vacated eight bits on the left are filled with carry.

shrd #1 ( N1 n2--n3n4d) 1110 0111
Shift Ri ght Doubl e OxE7
1 CPU-cl ock

Shift cell pair n2n1 one bit to the right leaving the result n4n3. The bit shifted out of n1 is shifted into the
GRS extension. The vacated bit in n2 on the left is filled with carry.
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ski

Skip if Condition

ski p conditionally or unconditionally skips execution of the remainder of the instruction group. If the
condition is true, skip the remainder of the instruction group and continue execution with the following
instruction group. If condition is false, continue execution with the next instruction.

WARNING: Do not ski p apush. | #. Since the MPU will not have executed the push. | # opcode,
the corresponding literal cell is not skipped. The result will be the MPU executing the literal cell.

ski p ( --) 0011 0000
Ski p Unconditionally 0x30
Mor ef et ch CPU- cl ocks

Unconditionally skip the remainder of the instruction group.

ski pc ( --) 0011 0011

Skip if Carry 0x31

1 (no carry) Mprefetch (carry) CPU cl ocks

If car ry isset, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

ski pn
ski pnp (n--) 0011 0010
Skip if Negative/ Not Positive 0x32

1 (not neg) Mpref etch (neg) CPU- cl ocks
If nis negative (neither positive nor zero), skip the remainder of the instruction group and continue execution
with the next instruction group; otherwise, continue execution with the next instruction.

ski pnc ( --) 0011 0111
Skip if Not Carry 0x35
M CPU- cl ocks

Ifcar ry isclear, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

ski pnn
ski pp (n--) 0011 0110
Skip if Not Negative/Positive 0x36

1 (neg) Moref etch (not neg) CPU cl ocks
If n is not negative (either positive or zero), skip the remainder of the instruction group and continue
execution with the next instruction group; otherwise, continue execution with the next instruction.
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ski pnz (n--) 0011 0001
Skip if Not Zero 0x37

1 (zero) Moref etch (non-zero) CPU- cl ocks
If nis not zero, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

ski pz (n--) 0011 0101
Skip if Zero 0x33
1 (non-zero) Morefetch (zero) CPU cl ocks

If n is zero, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

split

Split Cell
split ( n1 -- n2 n3) 1001 1001
0x99

1 CPU cl ock

Split n1 into two parts so that the lower-half of n1 is in the lower-half of n2 and the upper-half of nl is in
the lower-half of n3.

For example, if n1 = 0x12345678 then n2 = 0x5678 and n3 = 0x1234.
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St

Store Indirect to Menory

st [--r0] (n--) 0110 0100
0x64

1+M CPU- cl ocks
Decrement r O by four. Store the cell n into memory at the new address inr 0. The two least-significant bits
of the address are ignored and treated as zero.

st [--X] (n--) 0110 1000
0x68
1+M CPU- cl ocks
Decrement x by four. Store the cell n into memory at the new address in x. The two least-significant bits
of the address are ignored and treated as zero.

st [rO++] (n--) 0110 0110
0x66
M CPU- cl ocks
Store the cell n into memory at the address in r 0. Increment r 0 by four. The two least-significant bits of
the address are ignored and treated as zero.

st [rO] (n--) 0110 0010

0x62

M CPU- cl ocks

Store the cell n into memory at the address in r 0. The two least-significant bits of the address are ignored
and treated as zero.

St [ x++] (n--) 0110 1001

0x69

M CPU- cl ocks

Store the cell n into memory at the address in x. Increment x by four. The two least-significant bits of the
address are ignored and treated as zero.

st [X] (n--) 0110 0001

0x61

M CPU- cl ocks

Store the cell n into memory at the address in x. The two least-significant bits of the address are ignored
and treated as zero.
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st [] ( naddr -- n) 0110 0000
0x60

M CPU- cl ocks
Store the cell n into memory at address addr. The two least-significant bits of the address are ignored and
treated as zero.

st ep

Si ngl e-Step Processor

step ( --) 0011 0100

( L: addrl -- addr2 ) 0x34

2M+2+i nst  CPU- cl ocks

Pop addrl from the local-register stack into pc and continue execution at addrl for one instruction. Then

perform a call subroutine to the single-step trap location, 0x138. addr2 is the address of the next instruction
following addrl.

sto
Store Indirect to On-Chip Resource
sto [] ( naddr -- n) 1011 0000
0xBO
1 CPU-cl ock

Store n into the on-chip resource register at address addr. The programmer must ensure thatst o [] is not
executed to access (even if not changed) any configuration register containing information for a memory
group with a bus transaction in process. For valid values of addr, see On-Chip Resource Registers, page
129.

sto.i [] ( nbit_addr -- n) 1011 0001

0xB1

1 CPU cl ock

If n is non-zero, set the bit at the on-chip resource register address bit_addr; otherwise, clear the bit. For
valid values of addr, see On-Chip Resource Registers, page 129.
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sub
Subt r act
sub ( N1 n2 -- n3) carryz 1100 1000
0xC8
1 CPU cl ock

Subtract n2 from n1 leaving the difference n3. If computing the difference required a borrow, car r y is set;
otherwise, carry is cleared.

Equivalent to Java byte code i sub.

Equivalent to ANS Forth word - .

subb

Subtract with Borrow

subb ( N1 n2 -- n3) carryz 1100 1010

OxCA

1 CPU cl ock

Subtract n2 and car ry from n1 leaving the difference n3. If computing the difference required a borrow,
car ry is set; otherwise, car ry is cleared.
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subexp
Subtract Exponents
subexp ( N1 n2-- n3nd4d n5) 1101 0011
0xD3
2 CPU-cl ocks
( L: -- addr ) only when trap processed 4+M CPU- cl ocks

Perform the following:

Exponent_Field(n5) = Exponent_Field(nl) - Exponent_Field(n2) + BIAS - 1

Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (Ox3F800000 in bit position) for single precision and 1023 (0x3FFO0000 in bit position) for
double precision, as selected by f p_pr eci si on.

Compute as described above. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and
n2 giving n3 and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field
calculation result equaled or exceeded the maximum value of the exponent field (exponent result > 255
for single, exponent result > 2047 for double) an overflow exception is signaled. If the exponent-field
calculation result is less than or equal to zero an underflow exception is signaled. When an exception is
signaled, the exponent field of n5 contains as many bits of the result as it will hold.

testb

Test Bytes for Zero

testb (n--n) carryz 1101 1001
0OxD9
1 CPU-cl ock

If any byte of n is zero set car r y, otherwise clear carry.
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t est exp
Test Exponent
t est exp ( N1 n2--nl1n2) carryz 1101 0100
OxD4
1 CPU-cl ock
( L: -- addr ) only when trap processed 3+M CPU- cl ocks

Clear the GRS extension. If the exponent field in n1 or n2 is all zeros or all ones, an exponent exception is
signaled and carry is set; otherwise, carry is cleared. The location of the exponent field depends on
f p_preci sion.

XCQ
Exchange
Xxcg ( N1 n2--n2nl) 1011 0010
0xB2
1 CPU cl ock
Exchange the top two operand stack cells.
Equivalent to Java byte code swap.
Equivalent to the ANS Forth words FSWAP, SWAP.
XOr
Bi twi se Exclusive OR
xor ( N1 n2 -- n3) carry clear 1100 0011
0xC3
1 CPU cl ock

Perform a bitwise EXCLUSIVE OR of n1 and n2 giving the result n3.
Equivalent to Java byte code i xor .

Equivalent to ANS Forth word XOR.
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Table 39. MPU Mnemonics and Opcodes (Mnemonic Order)

Mnemonic Opcode |Mnemonic Opcode|Mnemonic  Opcode |[Mnemonic  Opcode
add cO|lframe be | pop ro a0 |push r3 83
add pc bb |m oop 38 |pop ri al |push rd 84
adda e8|m oopc 39 |pop r2 a2 |push r5 85
addc c2|m oopn 3a |pop r3 a3 |push r6é 86
addexp d2 |m oopnc 3d |pop rd a4 |push r7 87
and el |m oopnn 3e |pop r5 a5 |push r8 88
bkpt 3c |m oopnp 3a |pop r6é a6 |push ro9 89
br of f set 00..|m oopnz 3f |pop r7 a7 |push rio0 8a
br [1 4b | M oopp 3e |pop r8 a8 |push ril 8b
bz of f set 10..{m oopz 3b | pop ro a9 |push riz 8c
call of f set 08..,mul fs d6 | pop rio aa |push ri3 8d
call [1 4e mul s d5 |pop ril ab |push ri4 8e
cnmp cb|mulu d7 |pop riz ac |push s0O 92
copyb dO | nxm df |pop ri3 ad |push sl 93
dbr of f set 18..|neg c9 |pop ri4 ae |push s2 9e
dec #1 cf |nop ea |pop sa bc |push sa 9c
dec #4 cd|norm c7 |pop X b8 |push X 98
dec ct cl|nornr c6 |push 92 |push. b #byte 90
denorm c5|notc dd | push ct 94 |push. |  #cell af
di b7 |or e0 |push g0 70 |push.n #-7 29
di vu de |pop b3 |push gl 71 |push.n #-6 2a
ei b6 | pop ct b4 | push g2 72 |push.n #-5 2b
eqz e5|pop g0 50 |push g3 73 |push.n #-4 2c
expdi f c4 |pop gl 51 |push g4 74 |push.n #-3 2d
ext exp db | pop g2 52 |push g5 75 |push.n #-2 2e
extsig dc |pop g3 53 |push g6 76 |push.n #-1 2f
i and e9 |pop g4 54 |push g7 77 |push.n #0 20
inc #1 ce|pop g5 55 |push g8 78 |push.n #1 21
i nc #4 cc |pop g6 56 |push g9 79 |push.n #2 22
| cache 4d | pop g7 57 |push gl0 7a|push.n #3 23
I d [--r0] 44 |pop g8 58 |push gll 7b|push.n #4 24
I d [--X] 4a |pop g9 59 |push gl2 7c |push.n #5 25
I d [ rO++] 46 |pop gl10 5a |push g13 7d |push.n #6 26
I d [rO] 42 |pop gll 5b |push gl4a 7e |push.n #7 27
I d [ x++] 49 |pop gl2 5¢ |push gl5 7f |push.n #8 28
I d [ X] 41 |pop g13 5d |push | a 9d |replb da
I d [1 40 |pop gl4a 5e |push | stack 9a |repl exp b5
Id. b [1 48 |pop gl5 5f |push node 91 |ret 6e
| do [1 96 | pop | a bd | push ro 80 |reti 6f
| do.i [1 97 | pop | stack ba |push ri 81 |rev e4
| depth 9b | pop node b9 | push r2 82 |rnd di
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Table 39. MPU Mnemonics and Opcodes (Mnemonic Order, continued)

Mnemonic Opcode |Mnemonic Opcode |Mnemonic Opcode | Mnemonic  Opcode
scache 45 |shr #8 ed |ski pz 33|sto [1 b0
sdept h 9f |shrd #1 e7|split 99 |sto.i [1 bl
sexb d8 |skip 30 |st [--r0] 64 |sub c8
sfrane bf |ski pc 31 |st [--x] 68 |subb ca
shi ft ee |ski pn 32 |st [ rO++] 66 |subexp d3
shiftd ef |skipnc 35|st [rO] 62 |testb do
shi #1 e2 |ski pnn 36 |st [ x++] 69 |t est exp da
shi #8 ec |ski pnp 32 |st [ X] 61 |xcg b2
shid #1 e6 |ski pnz 37 |st [1 60 | xor e3
shr #1 e3 |ski pp 36 |step 34
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Opcode Mnemonic |Opcode Mnemonic |Opcode Mnemonic|Opcode Mnemonic
00..07 br of f set |45 scache 72 push g2 9e push s2
08..0f call of f set |46 Id [rO++] |73 push g3 of sdepth
10..17 bz of f set |47 74 push g4 a0 pop ro
18..1f  dbr of fset |48 Id. b [] 75 push g5 al pop rl
20 push.n #0 49 I d [ x++] 76 push g6 a2 pop r2
21 push.n #1 4a I d [--x] 77 push g7 a3 pop r3
22 push.n #2 4b br [1 78 push g8 a4 pop rd
23 push.n #3 4c 79 push g9 ab pop r5
24 push.n #4 4d | cache 7a push gl0 a6 pop ré
25 push.n #5 4e cal | [1 7b push gll a7 pop r7
26 push.n #6 af push. | #cell 7c push gl2 a8 pop r8
27 push.n #7 50 pop g0 7d push gl3 a9 pop r9
28 push.n #8 51 pop gl 7e push gl4a aa pop r10
29 push.n #-7 52 pop g2 7f push gl5 ab pop ril
2a push.n #-6 53 pop g3 80 push ro ac pop rl2
2b push.n #-5 54 pop g4 81 push rl ad pop ril3
2c push.n #-4 55 pop g5 82 push r2 ae pop rla
2d push.n #-3 56 pop g6 83 push r3 af

2e push.n #-2 57 pop g7 84 push rd b0 sto [1
2f push.n #-1 58 pop g8 85 push r5 bl sto.i [1
30 skip 59 pop g9 86 push ré b2 Xcg

31 ski pc 5a pop gl0 87 push r7 b3 pop

32 ski pn 5b pop gll 88 push r8 b4 pop ct
32 ski pnp 5¢ pop gl2 89 push r9 b5 repl exp

33 ski pz 5d pop gl3 8a push r10 b6 ei

34 step 5e pop gl4a 8b push ril b7 di

35 ski pnc 5f pop gl5 8c push rl2 b8 pop X
36 ski pnn 60 st [1 8d push rl3 b9 pop node
36 ski pp 61 st [ X] 8e push rla ba pop | stack
37 ski pnz 62 st [rO] 8f bb add pc
38 nl oop 63 90 push.b #byte |bc pop sa
3a m oopnp 66 st [rO++] |92 push s0O bf sframe

3b m oopz 67 93 push sl c0 add

3c bkpt 68 st [--x] 94 push ct cl dec ct
3d m oopnc 69 st [ x++] 95 c2 addc

3e m oopnn 6a 96 I do [1 c3 xor

3e m oopp 6b 97 I do.i [1 c4 expdi f

3f m oopnz 6¢c 98 push X c5 denorm

40 I d [1 6d 99 split c6 nor nr

41 I d [ X] 6e ret 9a push | stack |c7 nor

42 I d [rO] 6f reti 9b | dept h c8 sub

43 70 push g0 9c push sa c9 neg

44 I d [--r0] |71 push gl 9d push la ca subb
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Table 40. MPU Mnemonics and Opcodes (Opcode Order, continued)

Opcode Mnemonic|Opcode Mnemonic|Opcode Mnemonic|Opcode Mnemonic
cb cnp do testb e7 shrd #1 f5
cc inc #4 da replb e8 adda f6
cd dec #4 db ext exp e9 i and f7
ce inc #1 dc extsig ea nop f8
cf dec #1 dd not c eb fo
do copyb de di vu ec shi #8 fa
di rnd df nmxKm ed shr #8 fb
d2 addexp e0 or ee shift fc
d3 subexp el and ef shiftd fd
da t est exp e2 shi #1 fo fe
d5 mul s e3 shr #1 fl ff
dé mul fs e4 rev f2

d7 mul u eb eqz f3

ds sexb e6 shid #1 fa
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Virtual Peripheral Unit

The Virtual Peripheral Unit (VPU) is a special-purpose
processing unit that executes instructions to transfer
data between devices and memory, refresh dynamic
memory, measure time, manipulate bit inputs and bit
outputs, and perform system timing functions. With
these functions the VPU can be programmed to
emulate serial ports, analog to digital converters,
digital to analog converters, PWM outputs, timers, and
other peripherals. VPU programs are usually written
to be entirely temporally deterministic. Because it can
be difficult or impossible to write programs that
contain conditional execution paths that execute inan
efficient temporally deterministic manner, the VPU
contains no computational and minimal decision-
making ability. VPU programs are intended to be
relatively simple, using interrupts to the MPU to
perform computation or decision making.

To ensure temporally deterministic execution, the VPU
exercises absolute priority over bus access. Bustiming
must always be deterministic; “wait states” of fixed
length are programmed in the MIF. Temporal deter-
minism is achieved by counting VPU-execution and
bus CPU-clock cycles between the timed VPU events.
Bus access is granted to the VPU unless it is executing
del ay, which allows MPU and DMA requests access
to the bus during a specified time. Thus, when a
memory access is required, the VPU simply seizes the
bus and performs the required operation at precisely
the programmed instant.

The MIF ensures that the bus is available when the
VPU requires it. The MPU and the DMAC request the
bus from the MIF, which prioritizes the requests and
grants the bus while the VPU isexecuting del ay. The
MIF ensures that any transactions are completed
before the delay time of the VPU expires and the VPU
next requires the bus.

| MIF
VPU Program Counter «——— 735 | address
? €| control
‘ ‘ 4—28‘ | 2 P data
Instruction Latch €
: ° ) Global
8 8 8 8 5 Registers
\ 2 N 2 $
Multiplexer < 3
On-Chip
8 Resource
Registers
———+<——Y¥»| ioout
Decode/Execute €— 8
——45—P»] ioin
8
.
ﬁﬁ ioip
4P
3 iopdelay
‘«€—— | iopreset
vpublk.wpg

Figure 12. VPU Block Diagram
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When transferring data, the VPU does not modify any
data that is transferred; it only causes the bus transac-
tion to occur at the programmed time. It performs
time-synchronous I/O-channel transfers, as opposed
to the DMAC, which prioritizes and performs asyn-
chronous I/O-channel transfers. Other than how they
are initiated, the two types of transfers are identical.

Usage

A VPU program can be used to eliminate external
logic and simplify system designs. By using the VPU
for timing-dependent system and application opera-
tions, timing constraints on the MPU program can
often be eliminated or greatly relaxed. Additionally,
the VPU with the assistance of the MPU can emulate
a wide variety of system peripherals including serial
ports, analog to digital converters, digital to analog
converters, PWM outputs, timers, and other peripher-
als.

For example, a VPU program of about 150 bytes
supplies the data transfers and timing for a video
display . The program produces vertical and horizontal
sync, and transfers data from DRAM to a video shift
register or palette. Additionally, the VPU supplies
flexibility. Video data from various areas of memory
could be displayed, without requiring that the data be
moved to create a contiguous frame buffer. As new
data areas are specified, the VPU instructions are
rewritten by the MPU to change the program the VPU
executes for the next video frame. While this is
executing, the MPU still has access to the bus to
execute instructions and process data, and the DMAC
still has access to the bus to transfer data.

Many other applications are possible. The VPU is best
used for applications that require data to be moved,
or some other event to occur, at specific times. For
example:

» sending digitized 16-bit data values to a pair of
DAC:s to play CD-quality stereo sound,

» sampling data from input devices at specified time
intervals for the MPU to later process,

» sendingdataand control signals to display images
on an LCD display,

» transferring data packets for an intelligent network
interface,
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» transferring synchronous data blocks for an
intelligent SCSI controller,

» sending multiple channels of data to DACs for a
wave-table synthesizer,

» controlling video and I/O for serial and X-Win-
dows video terminals or PC video accelerators,

e controlling timed events in process-control
environments,

« controlling ignition and fuel for automotive
engines,

e inputting and outputting serial data streams,

e producing PWM output directly or for integration
by an external R-C network for a low-cost digital to
analog converter, or

« combining several of the above to significantly
reduce system cost.

The VPU is designed to dictate access to the bus (to
ensure temporally deterministic execution), but to be
aslave to the MPU. The VPU can communicate status
to the MPU by:

e the status changing on a device the VPU has
accessed,

» loading a value in a global register,

e setting a bit output, or

e consuming a bit input.

The MPU can control the VPU by:

e rewriting VPU instructions in memory,

» modifying the global registers the VPU is using,
e clearing a bit input, or

e resetting the VPU.

The events controlled are not required to occur at a
persistent, constant rate. The VPU is appropriate for
applications whose event rates must be consistently
controlled, whether once or many times. As an
example of the former, the VPU can take audio data
from memory and send it to a DAC to play the sound
atacontinuous rate, for as long as the audio clip lasts.
As an example of the latter, the VPU can be synchro-
nized to the rotation of an automotive engine by the
MPU in order for the VPU to time fuel injection and
ignition, with the synchronization constantly changed
by the MPU (by changing global registers or rewriting
the VPU program) as the MPU monitors engine
performance.
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Resources

The VPU consists of instruction decode and execution
processes, and control paths to other CPU resources,
as shown in Figure 12. The VPU and related registers
include:

« Bitinput register, i oi n: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.

» Interrupt pending register, i oi p:indicateswhich
interrupts have been recognized but are waiting to be
prioritized and serviced. See Figure 27, page 132.

»  Bit output register, i oout : bits that were last
written by either the MPU or the VPU. See Figure 29,
page 134.

* VPU resetregister, vpur eset : writing any value
causes the VPU to begin execution at the VPU
software reset address. See Figure 51, page 155.

* Global registers g1 through g7: contain values
used by del ay.

» Global registers g8 through g15: contain loop
counts or I/O-channel transfer specifications. Transfer
specifications consist of device and memory transfer
addresses and control bits. See Figure 16, page 104.

Register Usage

915 ] ] The VPU shares
g14 R

dski pz global registers

m oop gl1-g15 with

xfer the MPU, and

g8 uses them for

- Id

97 loop counts,

: del ay initial-

del ay ization counts,

o1 and transfer

30 - - information. See

Figure 13. Loop

YPUreQUSWRS | counts and de-

| ay counts are
32 bits. Transfer
addresses in bits 31-2 typically address cells, but can
also address bytes, depending on the 1/O-channel
configuration. Bit one determines whether the transfer
is @ memory write or a memory read, and bit zero
enables interrupts on 1024-byte memory page
boundary crossings (see Interrupts, below). See Figure
16, page 104.

Figure 13. VPU Register Usage
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The MPU can read or write any registers used by the
VPU at any time. If there is a register-access conten-
tion between the MPU and the VPU, the MPU is held
off until the VPU access is complete.

Table 41. VPU Instructions

DELAY NO OPERATION
DECREMENT AND SKIP  OUTPUT TRUE
INTERRUPT MPU OUTPUT FALSE

JUMP REFRESH

LOAD REGISTER TEST INPUT AND SKIP
MICRO-LOOP TRANSFER

Instruction Set

Table 41 lists the VPU instructions; Table 44 and
Table 45, page 101, list the mnemonics and opcodes.
Details of instruction execution are given in Instruction
Reference, page 95.

Instruction Formats

Allinstructions consist of eight bits except for | d, which
requires 32-bit immediate data, and j unp, which
requires a page-relative destination address. The use of
eight-bit instructions allows up to four instructions
(referred to as an instruction group) to be obtained on
each instruction fetch, thus reducing memory-band-
width requirements compared to typical 32-bit proces-
sors. This characteristic also allows looping on the
instruction group (a micro-loop) without additional
instruction fetches, further increasing efficiency.
Instruction formats are depicted in Figure 14.

Jumps

The instruction j unp is variable-length. The j unp
opcode can occur in any position within the instruc-
tion group. The four least-significant bits in the opcode
and all of the bits in the current instruction group to
the right of the opcode are used for the page-relative
destination address. See Figure 14 and Table 42. The
size of the encoded page-relative destination address
depends on the location of the opcode within the
currentinstruction group. The bits are used to replace
the same cell-address bits within the next VPU pc.
These destination addresses are cell-aligned to
maximize the range of the destination address bitsand
the number of instructions that are executed at the
destination. The next VPU pc is the cell-aligned

ADVANCE INFORMATION
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address following the current instruction group,
incremented foreach| d instruction that preceded the
j unp in the current instruction group. If the destina-
tion address bits are not of sufficient range for the
j unp to reach the destination, the j unp must be
moved to an instruction group where more destination
address bits are available.

Table 42. VPU Branch Ranges

Bits Page-Relative Range
4 64 bytes
12 4096 bytes
20 1048576 bytes
28 268435456 bytes
Encoded bits replace the same number of bits from
A2 upward in the VPU next PC; A1 and AO are zero.

Literals

The instruction| d requires a total of 40 bits, eight bits
for the opcode in the current instruction group, and
32 bits following the current instruction group for the
literal data. The | d opcode can occur in any position
within the instruction group. The data for the first| d
in an instruction group immediately follows the
instruction group in memory; the data for each
subsequent| d occupies successive locations. The four
least-significant bits in the opcode contain the number
ofthe global register that is the destination for the data.
Global register zero (g0) is not allowed.

Others

All other instructions require eight bits. Most have a
register or bit number encoded in the three or four
least-significant bits of the opcode. See Instruction
Reference, page 95, for details on the other individual
instructions.

Execution Timing

Counting execution CPU-clocks cycles is the key to
programming the VPU. Each instruction requires
execution time as described in Instruction Reference,
page 95. In general, instructions execute in one CPU-
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Jumps

‘opcode‘opcode‘opcode‘ jump ‘ 4-bit destination

‘opcode‘opcode‘ jump ‘dest ‘ 12-bit destination

‘opcode‘ jump ‘destination ‘ 20-bit destination

destination

| jump | | 28-bit destination

Literals

load register

opcode‘ Id #,gn ‘opcode ‘ opcode
(any position)

data for first Id #,gn

‘ opcode ‘ opcode ‘ opcode ‘ opcode ‘

All Others

‘ opcode ‘ opcode ‘ opcode ‘ opcode ‘

vpuinfmt.wpg

Figure 14. VPU Instruction Formats

clock cycle, and, if they require a bus transaction, the
instruction execution overlaps the time for the bus
transaction. A timing with an “M” indicates the
specified number of bus requests and bus transactions
(memory cycles) for the instruction to complete. Bus
requests require two CPU-clock cycles and bus
transaction times are as programmed and described in
Programmable Memory Interface, page 117, and Bus
Operation, page 157.The value used for “M” includes
both the bus request and bus transaction times.

Additionally, instruction fetch between the execution
of instruction groups must be considered and requires
“M” CPU-clock cycles. There is no instruction pre-
fetch in the VPU, so timing computation is simplified.
When execution of the instructions in an instruction
group completes, instruction fetch begins during the
next CPU-clock cycle.

To ensure deterministic timing, the programmer must
keep track of the addresses being accessed and
whether or not a RAS cycle or a CAS cycle will occur.
Thisisfairly simple. There are only two cases in which
RAS cycles occur in the VPU:
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1. A RAS cycle is forced by the VPU on the first bus
transaction to each memory group after the execution
ofdel ay orr ef r esh. This guarantees, regardless of
whether or not the current RAS page on a memory
group is the target page, that the bus timing will be
known: a RAS cycle.

2. A RAS cycle occurs when the memory page
accessed is not the current RAS page on the target
memory group. While this seems unknowable, with
case 1, above, and a little care, it is easy to know if the
target page is the current page. Case 1 eliminates all
possibilities of the MPU or DMA making bus access
timing non-deterministic. This limits RAS cycles to
only those caused by the VPU program. Here, again,
other than at initialization, there are only two cases:

A. Locating the VPU program to fully reside within a
single RAS page, or in SRAM, eliminates RAS cycles
due to instruction fetch page crossings. Alternatively,
so long as the location of the page crossing is known,
the RAS cycle can be considered inthe VPU program-
ming execution timing.

B. Planning of data transfers with the instruction xf er
allows timing to be known and considered. Placing
data transfer buffers fully within a single RAS page, or
planning the starting address to know when page
crossings occur, allows deterministic timing.

Techniques

Creating correct timing in A VPU program is matter of
counting instruction executions and determining the
type of memory accesses and the bus transaction times
involved. Most simple, and many complex, programs
executes an infinite loop. More complex programs
execute continually changing program code.

»  Straight in-line code is the easiest to program as
there is only one path and no inner loops. Simply
count the cycles through the path to determine the
timing.

* ml oops are also simple to program. The first
access to the instruction group will require a bus
transaction, but subsequent iterations will execute the
instruction group without refetching the instructions.
» Counted program loops (other than m oops) are
a little more complex. They are programmed using:

93

Table 43. Code Example: VPU DRAM Refresh

; VPU DRAM Refresh

; A typical 256K DRAM requires 512 refreshes every

; 8 ms. That means we require a refresh every

; 15.625 us, or a total loop time below of 31.250 us

; since we do two refreshes per loop. Assuming a RAS

; cycle with the bus request takes 11 CPU-clock cycles,
; the loop below takes 11 + 11 + 2 + delay or 35 + delay
; CPU-clock cycles to execute.

External_clock =50000000 ;Hz
CPU_clock = (External_clock * 2)/100000
; X100KHz

HndrdKHz_per_ns = 10000 ; scaling factor
VPU_start::

; Enter here from A VPU software reset.

; Total time to be taken by one loop iteration in

; hanoseconds.

Loop_ns = 31250
; Number of CPU-clocks required by
; instructions except delay time.
Overhead_clocks =35

: Instruction overhead in nanoseconds.
Overhead_ns = ((Overhead_clocks *
HndrdKHz_per_ns) / CPU_clock)

; CPU-clock delay value required to achieve

; Loop_ns above.

Refresh_delay = (Loop_ns - Overhead_ns) /
(HndrdKHz_per_ns / CPU_clock)

Id #Refresh_delay,g7
: Inst. Fetch, 11
VPU_Refresh_Loop::

refresh ;11
refresh 011
delay g7 ; 2 + delay
jump VPU_Refresh_Loop ;11

backward_| abel : :
; put | oop body here
dski pz gx, forward_I abel
j unp backwar d_| abel
forward_| abel ::
They are more complex because the exittiming is one
CPU-clock cycle shorter than the looping timing.
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» Maintaining consistent timing on an event that is
repeated throughout the program containing loops is
even more complex. A good example of such a
requirement is video generation, where horizontal
sync must be maintained throughout the main
program loop. Nested loops are used to create the top
and bottom margins and data area of the screen and
must generate precisely timed horizontal sync
throughout. Separate del ay values are required for
the transitions into, out of, and inside each loop.
When programmed appropriately, timing is simplified
to loading at each point the delay count equal to the
fixed interval required minus the interval instruction
execution time.

» Alternatively, loops can be unrolled at the expense
of additional memory. Timing is to the straight in-line
case.

« Timing is also simplified by keeping duplicate
timing code arranged with the same timing at each
occurrence. Inthe video example, the horizontal sync
pulse (three instructions) is always kept within asingle
instruction group, thus creating a fixed timing element.
» Rearranging the sequence of instructions, where
the sequence is not critical, can assist in creating the
correct program timing. For instance, a register load
for a loop, delay, or xfer value can occur anywhere
preceding the instruction. Refresh instructions also can
generally occur at any convenient location, so long as
the overall rate is maintained.

« Often, timing is not required to be absolutely
precise, nor absolutely consistent. Tolerances make
coding easier. For instance, a 40KHz audio stream
could probably be played consistently, or randomly,
plus or minus one microsecond and the variations not
be audible to the listener.

A code example of a typical refresh routine is given
in Table 43, and example video code is included with
the Patriot software development tools..

Address Space, Memory and Device Addressing
The VPU uses the same 32-bit address space as the
MPU, but has its own program counter and executes
independently and concurrently. 1/0O devices ad-
dressed during the execution of xf er are within the
same address space. xfer bus transactions are
identical to 1/0O-channel bus transactions except for
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how they are initiated. See Direct Memory Access
Controller, page 103.

Interrupts

The VPU can request any of the eight MPU interrupts
by executingi nt . The VPU can also request an MPU
interrupt by accessing the last location in a 1024-byte
memory page during the execution of xf er . xf er
transfer interrupts and 1/0O-channel transfer interrupts
are identical. See Direct Memory Access Controller,
page 103, for more information. The MPU can
respond to interrupt requests when the VPU next
executes del ay.

Bus Transactions

VPU instruction-fetch bus transactions are identical
to MPU memory-read bus transactions. xf er bus
transactions are identical to DMA bus transactions
except for how they are initiated. See Bus Operations,
page 157.

Bit Inputs and Bit Outputs

The bit inputs in i oi n are accessed by the VPU with
t ski pz. This instruction tests an input bit, consumes
it, and conditionally skips the remainder of the
instruction group. This allows for polled device
transfers or complex device-transfer sequences rather
than the simple asynchronous transfers available with
the DMAC. See Bit Inputs, page 111. Note that since
t ski pz causes conditional execution, care must be
taken when designing program code that contains
t ski pz if deterministic execution is expected.

The bit outputs in i oout can be individually set or
cleared by the VPU with out t and out f . They can
be used to activate external events, generate synchro-
nization pulses, etc. See Bit Outputs, page 115.

VPU Hardware and Software Reset

After hardware reset, the VPU begins executing at
address 0x80000004, before the MPU begins execu-
tion. The VPU can then perform the RAS cycles
required to initialize DRAM, and begin a program
loop to maintain DRAM refresh, before executing
del ay to allow the MPU to configure the system.
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Once the MPU has configured the system, the VPU
typically is required to begin execution of its applica-
tion program code. The VPU power-on-reset address
selects the boot memory device, usually because A31
is set and other high address bits are zero. To clear
A31 and thus begin execution in non-boot memory,
asoftware reset must be issued by the MPU. See Table
43, page 94. The software reset is the only way to
clear A31. The software reset can also be used in other
instances to cause the VPU to begin execution of a
new program. See Processor Startup, page 181.
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Instruction Reference

The following text contains a description of each of
the VPU instructions. In addition to a functional
description, at the right margin is the instruction
opcode and the number of CPU-clock cycles required
to execute. See Execution Timing, page 92.
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MNEMONI C OPCCDE

del ay

del ay gi 0101 Oxxx

5i hex

2+gi CPU-cl ocks

Loadvpudel ay from gi (global register i, g1—-g7) and wait the specified number of CPU-clock cycles, allowing

bus access for DMA and the MPU. gi is unchanged. vpudel ay counts down once each CPU-clock cycle. After

vpudel ay reaches zero, the VPU instruction after del ay executes. Note that instruction decode and termination

requires two CPU-clock cycle for a total execution time of 2+gi CPU-clock cycles. Within the opcode 0101
Oxxx binary, xxx is the register number (1-7).

DMA and MPU bus transactions are granted bus access only when vpudel ay indicates that sufficient time
remains for the complete bus transaction to occur. The first VPU memory access to each memory group after
del ay executes is forced to be a RAS cycle so that VPU execution timing is deterministic. See Table 53, page
126.

dski pz

Decrenent and Skip if Zero

dski pz gi 0110 1xxx

6i hex

(not zero) 1 CPU clock

(zero) M CPU- cl ocks

Decrement gi (global register i, g8—g15). If gi is zero, then skip the remainder of the instruction group and

continue execution with the next instruction group; otherwise, continue execution with the next instruction.

Primarily used to create program loops by following dski pz withj unp. Loops can be nested by using a different

global register for each level of loop counter. Within the opcode 0110 xxxx binary, xxxx is the register number
(8-15).

| Nt
Set I nterrupt
int n 1001 Oxxx
9n hex
1 CPU-cl ock

Set bit n of i 0i p to request interrupt n. Used to notify the MPU that an event has occurred. Within the opcode
1001 Oxxx binary, xxx is the input bit number (0-7).
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MNEMONI C OPCODE
junp

junp destination 0011 xxxXx

3? hex

M CPU- cl ocks

Transfer execution to the page-relative, cell-aligned destination. The bits of destination replace the same cell-
address bits within the current VPU pc. The number of bits within destination depends on the position of j unp
within the current instruction group. See page 92. Note that because of how j unp functions, it cannot change
A30 or A31. A VPU software reset from the MPU is used to clear A31 after power-on reset. See VPU Power-on
and Software Reset, page 94.

| d

Load Regi ster

I d #val ue, gi 0010 xxxXx

2n hex

M CPU- cl ocks

Load gi (global register i, g1—-g15) with the 32-bit constant value. Used to load values for xf er , m oop, dski pz

and del ay, orto communicate with the MPU. Within the opcode 0010 xxxx binary, xxxx is the register number
(1-15).

m oop

M cro-Loop on Regi ster

m oop gi 0111 1xxx
7i hex
1 CPU-cl ock

Decrement gi (global register i, g8—g15). If gi is non-zero, transfer execution to the beginning of the instruction
group. If gi is zero, continue execution with the instruction following m oop. Used to loop on sequences of
up to three other instructions without requiring the re-fetching of the instructions from memory. Within the
opcode 0111 xxxx binary, xxxx is the register number (8-15).
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nop
No QOperation
nop 1111 0000
FO hex
1 CPU-cl ock

Do nothing. Used to waste time or as a placeholder for an instruction to be later placed.

out f
Set Bit Qutput Fal se
outf n 1011 Oxxx
Bn hex
1 CPU-cl ock

Clear bit output n. Within the opcode 1011 0xxx binary, xxx is the bit number (0-7).

outt
Set Bit CQutput True
outt n 1010 Oxxx
An hex
1 CPU-cl ock

Set bit output n. Within the opcode 1010 Oxxx binary, xxx is the bit number (0-7).
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MNEMONI C OPCODE

refresh

refresh 0001 0000
10 hex

M CPU- cl ocks
Perform a RAS-only memory refresh cycle simultaneously on all memory groups so enabled. nsr r a, nsr ha,
and nsr a31 are used as the RAS refresh address. msr r a is incremented. nsr t g specifies the memory group
whose RAS cycle timing is used for the refresh cycle. See Figure 44, page 151. ngXr d enables or disables refresh
on each memory group. See Figure 33, page 139. VPU program code must be written to include r ef r esh at
intervals adequate for any DRAM used. The first VPU memory access to each memory group after r ef r esh
executes is forced to be a RAS cycle so that VPU execution timing is deterministic. See Table 53, page 126.

t ski pz

Test Bit Input and Skip if Zero

tskipz n 1000 Oxxx

8n hex

(not zero) 1 CPU clock

(zero) M CPU-cl ocks

If bit input n is zero, then consume the input and skip the remainder of the instruction group and continue

execution with the next instruction group; otherwise, continue execution with the next instruction. Used to cause

the VPU code to operate conditionally on bit inputs. See Bit Inputs, page 111. Within the opcode 1000 0xxx
binary, xxx is the input bit number (0-7).
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xf er
Transfer Data
xfer gi 0000 1xxx
Oi hex
M CPU- cl ocks

Cause an I/0O-channel transfer to occur immediately using gi, (global register i, g8—g15). gi contains the device
address, memory address, and control information. See Figure 16.If bit one of gi is zero, perform a write bus
transaction; if it is one, perform a read bus transaction. Increment bits 2-15 of gi. If bits 2-15 of gi are zero and
bit zero of gi is one, then assert interrupt request i-8. Within the opcode 0000 xxxx binary, xxxx is the register
number (8-15).

The type of bus transaction performed depends on whether the memory group involved is cell-wide or byte-wide
(see Figure 34, page 140) and on the device transfer type (see Figure 46 and Figure 47, page 152). xfer bus
transactions are identical to DMA bus transactions except for how they are initiated. See Direct Memory Access
Controller, page 103.
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Table 44. VPU Mnemonics and Opcodes (Mnemonic Order)

Mnemonic Opcode | Mnemonic Opcode | Mnemonic Opcode | Mnemonic Opcode
del ay gl 51 | int 6 96 | m oop gll 7b | outt 7 a7
del ay g2 52 | int 7 97 | m oop gl2 7c | refresh 10
del ay g3 53 | junp dest 30...| m oop g13 7d | tskipz O 80
del ay g4 54 | Id #, gl 21 | m oop gl4 7e | tskipz 1 81
del ay g5 55 | Id #, g2 22 | m oop gl5 7f | tskipz 2 82
del ay g6 56 | Id #, g3 23 | nop fo |tskipz 3 83
del ay g7 57 | Id #, g4 24 | outf 0 b0 | tskipz 4 84
dskipz g8 68 | Id #, g5 25 | outf 1 bl | tskipz 5 85
dskipz g9 69 | Id #, g6 26 | outf 2 b2 | tskipz 6 86
dski pz gl0 6a | Id #, g7 27 | outf 3 b3 | tskipz 7 87
dski pz gl1 6b | Id #, g8 28 | outf 4 b4 | xfer g8 08
dski pz gl2 6c | Id #, g9 29 | outf 5 b5 | xfer g9 09
dski pz gl3 6d | Id #, glo0 2a | outf 6 b6 | xfer gl10 Oa
dski pz gl4 6e | Id #, gll 2b | outf 7 b7 | xfer gl1 Ob
dski pz gl5 6f | Id #, gl2 2c | outt 0 a0 | xfer gl2 Oc
int 0 90 | Id #, gl3 2d | outt 1 al | xfer g13 od
int 1 91 | Id #, gl4 2e | outt 2 a2 | xfer gl4 Oe
int 2 92 | Id #, gl5 2f | outt 3 a3 | xfer g15 of
int 3 93 | Moop g8 78 | outt 4 a4

int 4 94 | mMoop g9 79 | outt 5 ab

int 5 95 | mMoop 910 7a | outt 6 a6
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Table 45. VPU Mnemonics and Opcodes (Opcode Order)

32-BIT RISC PROCESSOR

Opcode Mnemonic

Opcode Mnemonic

Opcode Mnemonic

Opcode Mnemonic

00..07

08 xfer g8
09 xfer g9
Oa xfer gl10
Ob xfer gl1
Oc xfer gl2
od xfer g13
Oe xfer gl4
of xfer g15
10 refresh

11..20

21 Id #, gl
22 Id #, g2
23 Id #, g3
24 |d #, g4
25 Id #, g5
26 Id #, g6
27 Id #, g7
28 Id #, g8
29 Id #, g9
2a Id #, glo0
2b  Id #, gll
2c Id #, gl2
2d Id #, gl13

2e I d #, gld
2f Id #, 915
30 junp dest
40..50

51 del ay gl
52 del ay g2
53 del ay g3
54 del ay g4
55 del ay g5
56 del ay g6
57 del ay g7
58..67

68 dskipz g8
69 dskipz g9
6a dski pz gl0
6b dski pz gl1
6¢c dski pz gl2
6d dski pz gl13
6e dski pz gl4
6f dski pz gl5
70..77

78 m oop g8
79 m oop g9
7a m oop g10

7b m oop gll
7c m oop gl2
7d m oop gl3
7e m oop gl4
7f m oop g15
80 tskipz O

81 tskipz 1

82 tskipz 2
83 tskipz 3
84 tskipz 4
85 tskipz 5
86 tskipz 6
87 tskipz 7
88..8f

90 i nt 0
91 i nt 1
92 i nt 2
93 i nt 3
94 i nt 4
95 i nt 5
96 i nt 6
97 i nt 7
98..9f

a0 outt 0

al outt 1
a2 outt
a3 outt

2
3
a4 outt 4
5
6
7

a5 outt

a6 outt

a7 outt
a8..af

b0 out f 0
bl out f 1
b2 out f 2
b3 out f 3
b4 out f 4
b5 out f 5
b6 out f 6
b7 out f 7
b8..ef

fo nop

fl1.£f
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Direct Memory Access Controller

A Direct Memory Access Controller (DMAC) allows
I/O devices to transfer data to and from system
memory without the intervention of the MPU. The
DMAC supports eight I/O channels prioritized from
eight separate sources. Direct memory access (DMA)
requests are received from the bit inputs through
i oi n. DMA and MPU bus request priorities are either
fixed, which allows higher-priority requests to block
lower-priority requests, or revolving, which prevents
higher-priority requests that cannot be satisfied from
blocking lower-priority requests.

DMA is supported for both cell-wide and byte-wide
devices in both cell-wide and byte-wide memory.
Each I/O channel can be individually configured as to
the type of device and bus timing requirements. Byte-
wide devices transfer data on AD[ 7: 0] and can be
configured as either one-byte byte-transfer or four-byte
byte-transfer devices. Transfers are flybys or are
buffered, as required for the 1/O-channel bus transac-
tion. See Table 57, page 158. DMAC and VPU xf er

transfers are identical except for how they are
initiated. DMAC transfers occur from asynchronous
requests whereas xfer transfers occur at their
programmed time.

Resources

The DMAC consists of several registers and associated
control logic. DMA request zero, which corresponds
to bit zero of the registers, has the highest priority;
DMA request seven, which corresponds to bit seven
ofthe registers, has the lowest priority. The DMAC and
related registers include:

e Bitinput register, i oi n: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.

e Interrupt enable register, i oi e: indicates which
i 0i n bits are to be recognized as interrupt requests.
See Figure 30, page 135.

 DMA enable register, i odnmae: indicates which
i 0i n bits are to be recognized as DMA requests. If
DMA is enabled on an i oi n bit, interrupt enable by
i 0i e on that bitis ignored. See Figure 31, page 136.
« DMA enable expiration register, i odrmaex:

[1of8 |
| ioXdmaex | > o ) < MIF
| | control Expiration Logic
8 < Transfer page
| > | boundary
| ioXdmae_i I
|
#
|_ o _| P 3P| /O channel #
Request ioriti Ly 1/Ochannel
Logic —» Prioritizer et
78 > (] I/O channel
Bit Inputs acknowledge
ioXin_i
zero-persist
INX < 8
bypass
sample INx < ) y
map
dmablk.wpg

Figure 15. DMAC Block Diagram
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31

16 15

10 9 210

non-incrementing bits

incrementing bits

Used in g8 to g15

1024-byte page boundary detect bits (page end when transfer with bits all ones) J
Memory transfer direction (O=memory write, 1=memory read)

Transfer interrupt enable

xfrdmarg.wpg

Figure 16. I/O-Channel Transfer Data Format

indicates which i odmae bits are cleared following a
DMA transfer involving the last location in a 1024-
byte memory page occurring on that channel. See
Figure 49, page 153.

» Global registers g8 through g15: contain 1/O-
channel transfer specifications. Transfer specifications
consist of device and memory transfer addresses and
control bits. See Figure 16, page 104.

» Fixed DMA priorities bit, f dmap, in register
miscellaneous B, mi scb: prevents or allows lower-
priority bus requests to contend for access to the bus
if a higher-priority request cannot be satisfied (i.e., the
available bus transaction slot is too small). See Figure
34, page 140.

DMA Requests

An i oi n bit is configured as a DMA request source
when the corresponding i odrmae bit is set and the
corresponding i oi e bit is clear (though i oi e is
ignored when i odnae is set). Once a zero reaches
i oi n, it is available to request a DMA 1/O-channel
transfer. See DMA Usage, page 112. A DMA request
is forced in software by clearing the corresponding
i oi n bit. Individually disabling DMA operations on
an 1/0O channel by clearing its i odnmae bit prevents a
corresponding zero bitini oi n from being recognized
as a DMA request, but does not affect the zero-
persistence of the corresponding bit in i oi n.

Prioritization

A DMA request is prioritized with other pending DMA
requests, and, if the request has the highest priority or
is the next request in revolving-priority sequence (see
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below), its corresponding I/O channel is the next to
request the bus. DMA request prioritization requires
one CPU-clock cycle to complete. When the I/O
channel bus request is made, the MIF waits until the
current bus transaction, if any, is almost complete. It
then checks vpudel ay to determine if the available
bus slot is large enough for the required I/O channel
bus transaction. If the bus slot is large enough, the bus
is granted to the 1/O channel, and the bus transaction
begins.

The VPU always seizes the bus when vpudel ay
decrements to zero. Otherwise, a DMA 1/O channel
bus request and an MPU bus request contend for the
bus, with the DMA I/O channel bus request having
higher priority.

If f dmap is set and the bus slot is too small, the DMA
I/O channel does not get the bus. Until a higher-
priority DMA I/O channel request is made that fits the
shrinking available bus slot, no bus transactions occur
until the VPU seizes the bus. When the VPU next
executesdel ay, the highest-priority DMA request, or
the MPU ifthere are no DMA requests, repeats the bus
request process.

If f dmap is clear and the bus slot is too small, the
DMA /O channel does not get the bus. The next
lower-priority bus request is then allowed to request
the bus, with the MPU as the lowest-priority request.
The process repeats until the bus is granted or the VPU
seizes the bus. When the VPU next executes del ay,
the highest-priority DMA request, or the MPU if there
are no DMA requests, repeats the bus request process.
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Memory and Device Addressing

Addresses used for /O channel transfers contain both
the 1/0O device address and the memory address. By
convention, the uppermost address bits (when A31 is
set) select I/O device addresses, while the lower
address bits select the memory source/destination for
the transfer. Multi-cycle transfer operations (e.g.,
transferring between a byte device and cell memory)
assume A31 is part of the external I/O-device address
decode and pass/clear A31 to select/deselect the 1/O
device as required during the bus transaction. See /O
Addressing, page 158, and I/O-Channel Transfers,
page 159.

1024-byte memory page boundaries have special
significance to 1/0 channel transfers. When each I/O-
channel bus transaction completes, bits 15-2 of the
memory address in the global register are incremented.
The new address is evaluated to determine if the last
location in a 1024-byte memory page was just
transferred (by detecting that bits 9-2 are now zero).
When the last location in a 1024-byte memory page
was just transferred, an MPU interrupt can be re-
quested or DMA can be disabled. See Interrupts and
Terminating DMA 1/O-Channel Transfers, below.

Interrupts

An MPU interrupt can be requested after an 1/O
channel transfer accesses the last location in a 1024-
byte memory page. The interrupt requested is the same
asthe I/0O-channel number, and occurs if interrupts are
enabled on that channel (i.e., if bit zero of the
corresponding global register is set). See Figure 16,
and Interrupt Controller, page 107. This allows, for
example, the MPU to be notified that a transfer has
completed (by aligning the end of a transfer memory
area with the end of a 1024-byte memory page), or to
inform the MPU of progress during long transfers.

Note that for the interrupt to be serviced, the MPU
must obtain the bus for sufficient time to execute the
ISR. If the VPU does not execute del ay, or continu-
ous DMA transfers occur, the MPU will be unable to
get the bus.
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Bus Transaction Types

The type of bus transaction performed with an 1/O
device depends on whether the memory group
involved is cell-wide or byte-wide and the whether the
device is a one-byte byte-transfer, four-byte byte-
transfer, or one-cell cell-transfer device. See 1/O-
Channel Transfers, page 159.

Device Access Timing

Any 1/O device accessed during an 1/O-channel
transfer must complete the transfer by the end of the
programmed bus cycle. Wait states are not available.
Since I/O devices generally have longer access times
than memory, during an 1/O-channel bus cycle the
programmed bus timing for the accessed memory
group is modified by substituting i oXebt for the
corresponding value in ngXebt . Note that i oXebt
must be adequate both for the 1/O device and for any
memory group involved in the transfer. See Program-
mable Memory Interface, page 117.

Maximum Bandwidth Transfers

When the external input source fori oi nisl N[ 7: 0] ,
maximum-bandwidth, back-to-back DMA transfers are
possible. To achieve this, at the end of the DMA bus
transaction an internal circuit bypasses the input
sampling circuitry to check the DMA request bit
directly on T N[ 7: 0] ; if the signal is low and no
higher-priority requests are pending, another DMA bus
request occurs immediately without the usual sam-
pling and prioritization delays. This requires that the
external DMA hardware ensure the bit is valid at this
time. See Figure 80, page 217. If the remaining bus
slot is large enough, the DMA bus request is granted,
and the transfer starts immediately. To terminate back-
to-back DMA bustransactions, the DMA request input
must go high before the end of the current DMA bus
transaction, or the corresponding DMA enable bit
must be cleared. See Terminating DMA 1/0O-Channel
Transfers, below. The maximum possible transfer rate
is four bytes every two CPU-clock cycles. For exam-
ple, with a 50-MHz 1X clock, the maximum transfer
rate is 200 MB/second.

ADVANCE INFORMATION
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Terminating DMA 1/0O-Channel Transfers

DMA 1/O channel bus transactions occur on an I/O
channel while DMA remains enabled and DMA
requests are received. To limit DMA transfers to a
specified number of transactions:

» program the DMA transfer address so that the last
data transfer desired occurs using the last location in
a 1024-byte memory page, and

» set the corresponding i odrmaex bit.

When the above transaction completes, the DMA
enable bit in i odmae is cleared. If the transfer
interrupt is enabled in the global register for the
corresponding /0O channel, a corresponding MPU
interrupt is also requested.

If more than 1024 bytes are to be transferred, enable
the transfer interrupt for the 1/O channel in the
corresponding global register. Program the interrupt
service routine to check the global register for the
next-to-last 1024-byte page, and, at that time, set the
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corresponding i odmaex bit. When the last location
in the next 1024-byte page is transferred, the corre-
sponding bitini odmae is cleared, disabling DMA on
that channel. Note that this assumes the bus is
available to the MPU to execute the ISR during the
DMA transfers.

Other Capabilities

The DMAC can also be used to count events, and to
interrupt the MPU when a given count is reached. To
dothis, events are designed to produce a normal DMA
memory read request, and the resulting transfer cycle
increments the “address” in the corresponding global
register. This “address” becomes the event counter.
The MPU can also examine the register at any time to
determine how many events have occurred. To
interrupt the MPU after a given event count, program
the global register for a negative count value within
bits 9-2, and enable the page-boundary interrupt. The
MPU is interrupted when the counter reaches zero.
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Interrupt Controller

Aninterrupt controller (INTC) allows multiple external
or internal requests to gain, in an orderly and priori-
tized manner, the attention of the MPU. The INTC
supports up to eight prioritized interrupt requests from
twenty-four sources. Interrupts are received from the
bit inputs through i oi n, from 1/O-channel transfers,
or from the VPU interrupt instruction i nt .

Resources

The INTC consists of several registers and associated
control logic. Interrupt zero, which corresponds to bit
zero of the registers, has the highest priority; interrupt
seven, which corresponds to bit seven of the registers,
has the lowest priority. The INTC and related registers
include:

» Bitinput register, i oi n: bit inputs configured as

« Interrupt pending register,i oi p:indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 27, page 132.

e Interrupt under service register, i oi us:indicates
which interrupts are currently being serviced. See
Figure 28, page 133.

e Global registers g8 through g15: contain I/O-
channel transfer specifications. Transfer specifications
consist of device and memory transfer addresses and
control bits. Bit zero enables interrupts during 1/O-
channel transfers on the corresponding channel. See
Figure 16, page 104.

 DMA enable register, i odnae: indicates which
i oi n bits are to be recognized as DMA requests. If
DMA is enabled on an i oi n bit, interrupt enable by
i 0i e on that bit is ignored. See Figure 31, page 136.

Table 46. Sources of Interrupts

DMA or interrupt requests, or general bit inputs. See Interrupt # Interrupt Source
Figure 26, page 131.
» Interrupt enable register, i oi e: indicates which i 0i n bit X
i oi n bits are to be recognized as interrupt requests. X I/0 channel X (register g(8+X))
See Figure 30, page 135. VPU instruction i nt X
Bit Inputs |_____________I
Jerooers | MIF
-persist | .
INX ioXin_i | transfer interrupt x
————! |
8
| 2 | | MPU
CLR », _
| ioXip_i ioXius_i | b, :nftalck
| D Ql— D Q | g »| Prioritizer
| int req
" A Y A 9
| CLK CLK | 8 3 x|
A A | |
| Q .8 CPU-clock global int
| ioXie_i < ;; | enable
| | VPU
int x
lof8 _
MPU on-chip register R/W capability not depicted intcblk.wpg

Figure 17. INTC Block Diagram
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Operation

Each interrupt request is shared by three sources. A
request can arrive from a zero bit in i oi n (typically
from an external input low), from an I/O-channel
transfer interrupt, or from the VPU instruction i nt .
Interrupt request zero comes from i oi n bit zero, I/O
channel zero (using g8), ori nt 0; interrupt request
one comes fromi oi n bitone, I/O channel one (using
g9), or int 1; the other interrupt requests are
similarly assigned. See Table 46. Application usage
typically designates only one source for an interrupt
request, though this is not required.

Associated with each of the eight interrupt requests is
an interrupt service routine (ISR) executable-code
vector located in external memory. See Figure 5, page
16. A single ISR executable-code vector for a given
interrupt request is used for all requests on that
interrupt. It is programmed to contain executable
code, typically a branch to the ISR. When more than
one source is possible, the current source might be
determined by examining associated bits in i oi n,
i oi e, i odmae and the global registers.

Interrupt Request Servicing

When an interrupt request from any source occurs, the
corresponding bit in i oi p is set, and the interrupt
request is now a pending interrupt. Pending interrupts
are prioritized each CPU-clock cycle. The
i nt errupt _en bitin node holds the current global
interrupt enable state. It can be set with the MPU
enable-interrupt instruction, ei ; cleared with the
disable-interrupt instruction, di ; or changed by
modifying mode. Globally disabling interrupts allows
all interrupt requests to reach i oi p, but prevents the
pending interrupts in i oi p from being serviced.

When interrupts are enabled, interrupts are recognized
by the MPU between instruction groups, just before
the execution of the first instruction in the group. This
allows short, atomic, uninterruptable instruction
sequences to be written easily without having to save,
restore, and manipulate the interrupt state. The stack
architecture allows interrupt service routines to be
executed without requiring registers to be explicitly
saved, and the stack caches minimize the memory
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accesses required when making additional register
resources available.

If interrupts are globally enabled and the highest-
priorityi oi p bithasa higher priority than the highest-
priority i oi us bit, the highest-priority i oi p bit is
cleared, the corresponding i oi us bit is set, and the
MPU is interrupted just before the next execution of
the first instruction in an instruction group. This nests
the interrupt servicing, and the pending interrupt is
now the current interrupt under service. Thei oi p bits
are not considered for interrupt servicing while
interrupts are globally disabled, or while none of the
i oi p bitshasa higher priority than the highest-priority
i oi us bit.

Unless software modifiesi oi us, the currentinterrupt
under service is represented by the highest-priority
i 0i us bit currently set. reti is used at the end of
ISRs to clear the highest-priority i oi us bit that is set
and to return to the interrupted program. If the
interrupted program was a lower-priority interrupt
service routine, this effectively “unnests” the interrupt
servicing.

External Interrupts

An i oi n bit is configured as an “external” interrupt
request source ifthe correspondingi oi e bitissetand
the corresponding i odnae bit is clear. Once a zero
reaches i oi n, it is available to request an interrupt.
An interrupt request is forced in software by clearing
the corresponding i oi n bit or by setting the corre-
spondingi oi p bit. Individually disabling an interrupt
request by clearingitsi oi e bit preventsacorrespond-
ing zero bit in i oi n from being recognized as an
external interrupt request, but does not affect a
corresponding interrupt request from another source.

While aninterrupt request is being processed, until its
ISR terminates by executingr et i , the corresponding
i 0i n bit is not zero-persistent and follows the
sampled level of the external input pin. Specifically,
for a given interrupt request, while its i oi e bit is set,
anditsi oi p bitori oi us bitisset, itsi oi n bitis not
zero-persistent. This effect can be used to disable
zero-persistent behavior on non-interrupting bits.
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For waveforms, see Figure 82, page 219, and Figure
83, page 221.

I/0-Channel Transfer Interrupts

If an i oi n bit is configured as a DMA request, or if
that I/O channel is used by xf er, interrupt requests
occur after a transfer involving the last location in a
1024-byte memory page, provided bit zero in the
corresponding global register is set (i.e., transfer
interrupts are enabled). The request occurs by the
corresponding i oi p bit being set, and is thus not
disabled by clearing the corresponding i oi e bit. See
Direct Memory Access Controller, page 103, and
Virtual Peripheral Unit, page 89.

VPU i nt Interrupts

The VPU can also directly request any of the eight
available interrupts by executing i nt . The request
occurs by the corresponding i oi p bit being set, and
is thus not disabled by clearing the corresponding
i oi e bit. The MPU is able to respond to the interrupt
request when the VPU next executes del ay. VPU
interrupts are disabled by modifying the VPU instruc-
tions in memory to remove the instruction i nt .

ISR Processing

When an interrupt request is recognized by the MPU,
a cal | to the corresponding ISR executable-code
vector is performed, and interrupts are blocked until
an instruction that begins in byte one of an instruction
group is executed. To service an interrupt without
being interrupted by a higher-priority interrupt:

» thelSR executable-code vector typically contains
a four-byte branch, and

» the first instruction group of the interrupt service
routine must globally disable interrupts.

See the code example in Table 47.

If interrupts are left globally enabled during ISR
processing, a higher-priority interrupt can interrupt the
MPU during processing of the current ISR. This allows
devices with more immediate servicing requirements
to be serviced promptly even when frequent interrupts
at many priority levels are occurring.
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Table 47. Code Example: ISR Vectors

; Interrupt Vectors

.quad 4

text vectors ; org 0x100 set in linker

br int_ 0_ISR ; highest-priority ISR

br int_1 ISR

br int_ 7 ISR ; lowest-priority ISR

text ISRs ; org set in linker file
int_ 0_ISR::

push mode ; save carry

; This ISR can’t be interrupted because int 0
; has the highest priority.

56p mode ; restore carry
reti

int_A_ISR::
push mode ; save carry

H’his ISR can be interrupted by a higher
; priority interrupt.

pop mode
reti
int B_ISR::
push mode ; save carry & ei state
di

EuDon’t allow this ISR to be interrupted at all.

; ensure return before interrupts re-enabled

.quad 2
pop mode
reti
int C_ISR::
push mode ; save carry & ei state
pop Istack ; place accessible
di
; Don’t allow this critical part of the ISR to be
; interrupted.
ﬁjsh ro
pop mode ; restore ei state

E'iSR can be interrupted by higher-priority
; interrupts now

Istack
mode

5ﬁsh
pop
reti

; restore carry

ADVANCE INFORMATION
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Note that there is a delay of one CPU-clock cycle
between the execution of ei , di , or pop node and
the change in the global interrupt enable state taking
effect. To ensure the global interrupt enable state
change takes effect before byte zero of the next
instruction group, the state-changing instruction must
not be the last instruction in the current instruction
group.

If the global interrupt enable state is to be changed by
the ISR, the prior global interrupt enable state can be
saved with push node and restored with pop node
within the ISR. Usually apop node,reti sequence
is placed in the same instruction group at the end of
the ISRtoensurethatr et i isexecuted, and the local-
register stack unnests, before another interrupt is
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serviced. Since the return address from an ISR is
always to byte zero of an instruction group (because
of the way interrupts are recognized), another interrupt
can be serviced immediately after execution ofr et i .
See the code example in Table 47.

As described above for processing ISR executable-
code vectors, interrupt requests are similarly blocked
during the execution of all traps. This allows software
to prevent, for example, further data from being
pushed on the local-register stack due to interrupts
during the servicing of a local-register-stack overflow
exception. When resolving concurrent trap and
interrupt requests, interrupts have the lowest priority.
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Bit Inputs

Eight external bit inputs are available in bit input
register i oi n. They are shared for use as interrupt
requests, as DMA requests, as input to the VPU
instruction t ski pz, and as bit inputs for general use
by the MPU. They are sampled externally from one of
two sources determined by the state of pkgi o.

Resources

The bit inputs consist of several registers, package
pins, and associated input sampling circuitry. These
resources include:

» Bitinput register, i oi n: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.

» Interrupt enable register, i oi e: indicates which
i 0i n bits are to be recognized as interrupt requests.
See Figure 30, page 135.

» Interrupt pending register,i oi p:indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 27, page 132.

e Interrupt under service register, i oi us:indicates
which interrupts are currently being serviced. See
Figure 28, page 133.

 DMA enable register, i odmae: indicates which
i 0i n bits are to be recognized as DMA requests for
the corresponding I/O channels. If DMA is enabled on
an i oi n bit, interrupt enable by i oi e on that bit is
ignored. See Figure 31, page 136.

o Package I/O pins bit, pkgi o, in register miscella-
neous B, m sch: selects whether the bit inputs are
sampled from the dedicated inputs T N[ 7: 0] or
multiplexed off AD] 7: 0] . See Figure 34, page 140.

Input Sources and Sampling
If pkgi o is clear, the bit inputs are sampled from
AD[ 7: 0] whileRAS islow and CAS is high. External

10f8 |
- ioXin i
INX —I—) A Zero- ioXin_i |
| Q D Q>»D Q> Persistence [PD Q
ADx — B Control |
| AB CLK CLK CLK |
| A ﬁ A AAAA |
- | —_ _—
CPU-clock
pkgio
\ DMA
. A/B zero-persist INX
K » A Q bypass sample INx <
B
> INTC
FINS AD zero-persist INx <
RAS —»| Sample -
CAS Clock VPU
set INx |— MPU
T write INx <
inpblk.wpg

Figure 18. Bit Input Block Diagram
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hardware must place the bit inputs on AD[ 7: 0] and

remove them at the appropriate time. Using AD] 7: 0]

for bitinputs can reduce PWB area and cost compared

withusingl N[ 7: 0] . AD] 7: 0] are sampled for input:

« while CAS is high, four CPU-clock cycles after
RAS transitions low,

» every four CPU-clock cycles while CAS remains
high,

« immediately before CAS transitions low if at least
four CPU-clock cycles have elapsed since the last
sample, and

» four CPU-clock cycles after CAS transitions high,
provided CAS is still high.

This ensures:

» time for external hardware to place data on the
bus before sampling,

» continuous sampling while CAS is high, and

» at least one sample every CAS bus cycle when
four CPU-clocks have elapsed since the last
sample.

To ensure sampling in a given state, an input bit must

be valid at the designated sample times or remain low

for a worst-case sample interval, which, as described
above, depends on the programmed bus timing and
activity. See Figure 83, page 221, for waveforms.

If pkgi o is set, the bit inputs are sampled from
I'N[ 7: 0] every four CPU-clock cycles. To ensure
sampling in a given state, a bit input must be valid for
just more than four CPU-clock cycles. See Figure 82,
page 219, for waveforms.

Allasynchronously sampled signals are susceptible to
metastable conditions. To reduce the possibility of
metastable conditions resulting from the sampling of
the bit inputs, they are held for four CPU-clock cycles
to resolve to a valid logic level before being made
available to i oi n and thus for use within the CPU.
The worst-case sampling delay for bit inputs taken
from AD[ 7: 0] to reach i oi n depends on the bus
cycle times. The worst-case sampling delay for bit
inputs from T N[ 7: 0] to reach i oi n is eight CPU-
clock cycles. The sample delay causes bit-input
consumers not to detect an external signal change for
the specified period.
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The bit inputs reaching i oi n are normally zero-
persistent. That is, once an i oi n bit is zero, it stays
zeroregardless of the bit state at subsequent samplings
until the bit is “consumed” and released, or is written
with a one by the MPU. Zero-persistent bits have the
advantage of both edge-sensitive and level-sensitive
inputs, without the noise susceptibility and non-
shareability of edge-sensitive inputs. Under certain
conditions during DMA request servicing and i oi n
interrupt servicing, the i oi n bits are not zero-
persistent. See DMA Usage and Interrupt Usage
below. An effect of the INTC can be used to disable
zero-persistent behavior on the bits. See General-
Purpose Bits below.

DMA Usage

An i oi n bit is configured as a DMA request source
when its corresponding i odrrae bit is set. After the
DMA bus transaction begins, the i oi n bit is con-
sumed.

When the external input source fori oi nisT N[ 7: 0] ,
maximum-bandwidth back-to-back DMA transfers are
possible. To achieve this, an internal circuit bypasses
the sampling and zero-persistence circuitry to check
the DMA request bit on I N[ 7: 0] at the end of the
DMA bus transaction without the usual sampling and
prioritization delays. See Maximum Bandwidth
Transfers, page 105.

Interrupt Usage

An i oi n bit is configured as an interrupt request
source whenthe correspondingi oi e bitissetand the
correspondingi odnae bitis clear. While an interrupt
request is being processed, until its ISR terminates by
executing r et i , the corresponding i oi n bit is not
zero-persistent and follows the sampled level of the
external input. Specifically, for a given interrupt
request, while its i oi e bit is set, and its i oi p bit or
i 0i us bit is set, its i oi n bit is not zero-persistent.
This effect can be used to disable zero-persistent
behavior on non-interrupting bits (see below).
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Table 48. Code Example: Bit Input Without Zero-
Persistence

; Disable zero-persistence for bit input 7

push.n  #-1 ; true flag
push.b #io7ius_i
sto.i 1 ; set under service hit
push.b #io7ie_i
sto.i 1 ; enable interrupt
; discard flag

pop

General-Purpose Bits

If an i oi n bit is configured neither for interrupt
requests nor for DMA requests, then it is a zero-
persistent general-purposei oi n bit. Alternatively, by
using an effect of the INTC, general-purposei oi n bits
can be configured without zero-persistence. Any bits
so configured should be the lowest-priority i 0i n bits
to prevent blocking a lower-priority interrupt. They are
configured by setting theiri oi e andi oi us bits. The
i 0i us bit preventsthei oi n bitfrom zero-persisting
and from being prioritized and causing an interrupt
request. See the code example in Table 48.

VPU Usage

An io0in bit are used as input to t ski pz. This
instruction reads, tests, and consumes the bit. The
i oi n bits cannot be written by the VPU. General-
purpose i oi n bits are typically used for t ski pz, but
there are no hardware restrictions on usage.

MPU Usage

Bits in i 0i n are read and written by the MPU as a
group withl do [ioin] andsto [io0in], orare
read and written individually with 1do.i
[foXin_i] andsto.i [ioXi n_i].Writing zero
bitstoi oi n hasthe same effect as though the external
bitinputs had transitioned low for one sampling cycle,
except that there is no sampling delay. This allows
software to simulate events such as external interrupt
or DMA requests. Writing one bits to i oi n, unlike
data from external inputs when the bits are zero-
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Table 49. Code Example: MPU Usage of Bit Inputs

; Force service on bit 5 (Interrupt or DMA, as
; configured)

push.n #0 ; false flag

push.n #io5in_i

sto.i 1] ; Clear input bit
; discard flag

pop
; Read last sampled state of zero-persistent bit
; inputs. (Assumes all bits are configured as
; Zzero-persistent).
push.n #-1 ; all ones for all bits

push.n #ioin

sto [] ; temporarily remove
; persistence, latest
; sample latches,
pop ; discard -1

push.n #ioin
Ido [] ; get last sample

persistent, releases persisting zeros to accept the
current sample. The written data is available immedi-
ately after the write completes. The MPU can read
i oi n atany time, without regard to the designations
of the i oi n bits, and with no effect on the state of the
bits. The MPU does not consume the state of i oi n
bits during reads. See the code examples in Table 49.

To perform a “real-time” external-bit-input read on
zero-persistent bits, ones bits are written to the bits of
interest in i oi n before reading i 0i n. This releases
any persisting zeros, latches the most recently resolved
sample, and reads that value. Bits that are not config-
ured as zero-persistent do not require this write. Note
that any value read can be as much as two worst-case
sample delays old. To read the values currently on the
external inputs requires waiting two worst-case sample
delays for the values to reach i oi n. See the code
example in Table 50.

ADVANCE INFORMATION
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Table 50. Code Example: MPU “Real-Time” Bit Input
Read

; Read current state of zero-persistent input pins.
; (Assumes pkgio is set, and bits are zero-persistent)

; Assume we just tickled a device and we want to

; see if it just responded, but we have the bits

; configured as zero-persistent. The sample interval
; of four CPU-clock cycles and the sample holding

; delay of four CPU-clock cycles means there is a

; worst-case delay of eight CPU-clock cycles before
; the data is available in ioin. So...

; Put programming to tickle device here...

nop ; wait the delay time
nop

nop

nop

nop

nop ; 6 here, two below

; Read last sampled state of all zero-persistent
; bit inputs (Assumes all bits are configured as
; Zero-persistent)

push.n #-1 ; all ones for all bits (7)

push.n #ioin ; (CPU-clock cycle # 8)
; ...data is now available
; toiain.
sto [] ; Temporarily remove
; persistence, latest
; sample latches,
pop ; discard -1

push.n #ioin
Ido ] ; get last sample
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Bit Outputs

Eight general-purpose bit outputs can be set high or
low by either the MPU or the VPU. The bits are
available in the bit output register, i oout .

Resources

The bit outputs consist of a register, package pins, and
associated circuitry. These resources include:

«  Bit output register, i oout : bits that were last
written by either the MPU or the VPU. See Figure 29,
page 134.

» Outputs, QUT[ 7: 0] : the dedicated output pins.
e Address Data bus, AQJ 7: 0] : multiplexed bit
outputs on these pins while RAS is high.

«  Output pin driver current bits, out dr v, in driver
current register, dr i ver : sets the drive capability of
QUT[ 7: 0] . See Figure 50, page 154.

Usage
The bits are read and written by the MPU as a group
withl do [ioout] andsto [ioout], orareread

The bit outputs are written individually by the VPU
with out t and out f . The bit outputs cannot be read
by the VPU.

When written, the new values are available immedi-
ately after the write completes. Note that if both the
MPU and VPU write the same bit during the same
CPU-clock cycle, any one bit written prevails.

The bits are always available on QUT[ 7: 0] , and on
AD[ 7: 0] when RAS is high. When sampled from
AD[ 7: 0], external hardware is required to latch the
bits when RAS falls. Note that (by definition) these
bits are only updated when a RAS cycle occurs. Using
AD[ 7: 0] for output can reduce PWB area and cost
compared to using QUT[ 7: 0] . See Figure 81, page
218, for waveforms.

The drive capability of QUT[ 7: 0] can be pro-
grammed indri ver.

and written individually with 1 do. i [i oXout _i]
andsto.i [ioXout_i].
drivers
outdrv  addrv
2 3
ioout ) ﬁﬁ OUT[ 7: 0]
A
RAS — A/B Q ) 8 AD[ 7: 0]
B
£
MIF AD[7:0] MIF Control
outblk.wpg

Figure 19. Bit Outputs Block Diagram
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Programmable Memory Interface

The Programmable Memory Interface (MIF) allows the
timing and behavior of the CPU bus interface to be
adapted to the requirements of peripheral devices with
minimal external logic, thus reducing system cost
while maintaining performance. A variety of memory
devices are supported, including EPROM, SRAM,
DRAM and VRAM, as well as a variety of I/O devices.
All operations on the bus are directed by the MIF.
Most aspects of the bus interface are programmable,
including address setup and hold times, data setup and
hold times, output buffer enable and disable times,
write enable activation times, memory cycle times,
DRAM-type device address multiplexing, and when
DRAM-type RAS cycles occur. Additional specifica-
tions are available for 1/O devices, including data
setup and hold times, output buffer enable and disable
times, and device transfer type (one-byte, four-byte or
one-cell).

Resources

The MIF consists of several registers, package pins,
and associated control logic. These resources include:
* VRAM control bit register, vr am controls OE,
LWE, CASes, RASes, and DSF to initiate special VRAM
operations. See Figure 32, page 137.

» Miscellaneous Aregister, m sca: controlsrefresh
and RAS-cycle generation. See Figure 33, page 139.
» Miscellaneous B register, m scb: selects each
memory group data width (cell-wide or byte-wide),
and the memory bank-select architecture. See Figure
34, page 140.

« Memory system group-select mask register,
nmsgsm indicates which address bits are decoded to
select groups of memory devices. See Figure 37, page
143.

e Memory group device size register, ngds:
indicates the size and configuration of memory
devices for each memory group. See Figure 38, page
144.

» Miscellaneous C register, ni scc: controls RAS-
cycle generation and the location of bank-select
address bits for SRAM memory groups. See Figure 39,
page 145.

 Memory group X extended bus timing register,
ngXebt : indicates memory-cycle expansion or
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extension values, which create longer data setup and
hold times and output buffer enable and disable times
for the memory devices in the corresponding memory
group. See Figure 40, page 146.

e Memory group X CAS bus timing register,
nmgXcasbt : indicates the unexpanded and unextend-
ed address and data strobe activation times for the
CAS portion of a bus cycle. See Figure 41, page 147.
e Memory group X RAS bus timing register,
ngXr asbt : indicates the RAS precharge and address
hold times to be prepended to the CAS part of a bus
cycle to create a RAS cycle. See Figure 42, page 149.
e 1/O channel X extended bus timing register,
i oXebt : indicates memory cycle expansion or
extension values, which create longer data setup and
hold times and output buffer enable and disable times
for the 1/0O device on the corresponding I/O channel.
See Figure 43, page 150.

» Memory system refresh address, nmsr a: indicates
the row address to be used during the next DRAM
refresh cycle. See Figure 44, page 151.

» 1/O device transfer types A register, i odtt a:
indicates the type of transfer for each of I/O channels
0, 1, 2 and 3. See Figure 46, page 152.

» 1/O device transfer types B register, i odttb:
indicates the type of transfer for each of I/O channels
4,5, 6 and 7. See Figure 47, page 152.

« Driver current register, dri ver : indicates the
relative drive current of the various output drivers. See
Figure 50, page 154.

Memory System Architecture

The MIF supports direct connection to a variety of
memory and peripheral devices. The primary require-
ment is that the device access time be deterministic;
wait states are not available because they create non-
deterministic timing for the VPU. The MIF directly
supports awide range of sizes for multiplexed-address
devices (DRAM, VRAM, etc.) up to 128 MB, as well
as sizes for demultiplexed-address devices (SRAM,
EPROM, etc.) up to 1 MB. Fast-page mode access and
RAS-only refresh to DRAM-type devices are sup-
ported. SRAM-type devices appear to the MIF as
DRAM with no RAS address bits and a large number
of CAS address bits. See Figure 38, page 144.
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SMB — Single Memory Bank per Memory Group Mode

31 0
High Address Bits’ Middle Address Bits*® RAS Address Bits*® CAS Address Bits®
L group-select and bank-select address bits?*°
MMB — Multiple Memory Bank per Memory Goup Mode
31 0
High Address Bits’ Middle Address Bits™® RAS Address Bits*® CAS Address Bits®
L L bank-select address bits?
group-select address bits'®
Notes
1. Located by bits in msgsm 5. Excluded from RAS-cycle determination, except
2. DRAM—2 bits immediately above the RAS address bits. for A31 (see note 7).
SRAM—2 bits located by mssbs inmi scc. 6. Included in RAS-cycle determination.
3. SRAM and DRAM. 7. Optionally included in RAS-cycle determination.
4. DRAM only, field is zero length in SRAM. 8. If msgsmis zero, see text.
gsbsbits.wpg
Figure 20. Group-Select and Bank-Select Bit Locations
Address bits are multiplexed out of the CPU on AQJ 31: 9]
to reduce package pin count. DRAM-type devices collect
the entire memory address in two pieces, referred to asthe
row address (upper address bits) and column address —
(lower address bits). Their associated bus cycles are Groun 0
referred to as Row Address Strobe (RAS) cycles and CASD CAS P
Column Address Strobe (CAS) cycles. With the exception PSC1000 CPU
of memory faults, refresh, and CAS-before-RAS VRAM RAST RAS
cycles, a RAS cycle contains, enclosed within the RAS Group 1
active period, a CAS cycle. Thus, RAS cycles are longer CASL CAS
than CAS cycles. While RAS cycles are not required for
the operation of SRAM-type devices, RAS cycles can RAS2 RAS
occur for several reasons which are discussed below. — — Group 2
Though I/O devices can be addressed like memory for
access by the MPU, I/O-channel transfers require RAS3 RAS
addressing an 1/0 device and a memory location CAS3 s Group 3
simultaneously. This is achieved by splitting the

available 32 address bits into two areas: the lower
address bits, which address memory, and the higher
address bits, which address I/O devices. The location
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smbarch.wpg

Figure 21. SMB Memory Architecture



Programmable Memory Interface

: SCIENTIFIC CORPORATION

PSC1000 MICROPROCESSOR

of the split depends upon application requirements for
the quantity of addressable memory and I/O devices
installed. The areas can overlap, if required, with the
side effect that an I/O device can only transfer data
with a corresponding area of memory. These higher
address bits are discussed below.

Memory Groups

The MIF operates up to four memory groups, main-
taining for each the most recent RAS address bits and
a unique configuration. Up to two address bits are
decoded to determine the current group. The address
bits for this function are set in the memory system

Group 0

v

Group 1

v

Group 2

v

Group 3

v

RAS
i
MES1L
M=S2
MS3
5 L E% )
PSC1000 CPU Dls >]KS TAS >ls <— Bank0
RAS—— RAS RAS RAS
% ‘LDT % <— Bank1
CAS CAS CAS CAS
RAS RAS RAS RAS
CAS2
‘L% EDT <— Bank2
CAS CAS CAS CAS
RAS RAS RAS RAS
CAS3
i% EDT % <«— Bank 3
CAS CAS CAS CAS
RAS RAS RAS RAS

mmbarch.wpg

Figure 22. MMB Memory Architecture
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group-select mask register, nsegsm Each memory
group is programmed for device width, bus timing,
and device size (which specifies how address bits are
multiplexed onto AD] 31: 9] ). Address bits below the
group-select mask are typically used to address
memory devices or portions of an I/O device, and bits
above the group-select mask are typically used to
address I/O devices.

Memory Banks

Each memory group can have one or more memory
banks, which are selected in a manner dependent
upon the bus interface mode. All memory banks
within a memory group share the configuration and
most recent RAS address of that group. Two address
bits are decoded to determine the current memory
bank.

In Single Memory Bank (SMB) mode (nmb =0), megsm
sets the group-select and bank-select bits to be the
same bits. This allows up to four groups at one bank
per group, totaling four banks: group 0, bank O; group
1, bank 1; group 2, bank 2; and group 3, bank 3.
MGSx /RASX output RASX signals for direct connec-
tion to memory devices. See Figure 21.

In Multiple Memory Bank (MMB) mode (nmb = 1),
depending on whether ns gs moverlaps the bank-select
bits, one, two or four banks can be selected in each
group. This allows up to sixteen banks for all groups
combined; more banks can be decoded by defining
additional bank-select bits with external logic. The
address bitsthat select the current memory bank either
are located immediately above the row-address bits
for DRAM devices (mgXds values 0-0x0e), or are
specified by the nssbs bits for all SRAM devices in
the system (ngXds value 0x0f). The group-select bits
determine the MGSx /RASX (which output the MGSx
signal), and the bank-select bits determine the CASx
that activates in any given bus cycle. See Figure 20.
Gating the four MGSx signals with the four CASx
signals creates up to sixteen memory bank selects. See
Figure 22.

A hybrid of the two modes can also be programmed
by selecting MMB mode and placing the nsgs mbits
overlapping the banks bits. This allows using MGSx
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directly as a faster chip select for SRAM-type devices
than CASx isin SMB mode. For DRAM-type devices,
the CASx strobes can be connected directly to the
memory device and only one NOR gate per group is
required to create the RAS for that group.

Device Requirements Programming

Each memory group can be programmed with a
unique configuration of device width, device size, and
bus timing. After a CPU reset, the system operates in
byte-wide mode, with the slowest possible bus timing,
and executes from memory group zero, typically from
an external PROM. See Processor Startup, page 181.
Usually, the program code in the PROM initially
executes code to determine and set the proper
configurations for the memory groups, 1/0 devices,
and other requirements of the system.

Device Sizes

Memory device sizes are programmed to one of
sixteen settings in ngds. Most currently available and
soon to be available DRAM-type device sizes can be
selected, as well as an SRAM-type option. The
selection of the device size and width determines the
arrangement of the address bits on AQJ 31: 9] . See
Table 51, page 122, and Table 52, page 123.

For DRAM, during both RAS and CAS cycles, some or
all of the high address bits are on AD above those AD
used for the RAS and CAS address bits. These high
address bits can be used by the application, e.g., for
decoding by external hardware to select I/O devices.
On high-performance systems with fast CAS cycles,
RAS cycles are often required for 1/O address decod-
ing. If the external decoding hardware is sufficiently
fast, however, CAS-cycle 1/O is possible.

For SRAM, to allow addressing as much memory as
possible with CAS cycles, the only high address bit that
appears during CAS address time is A31. /O devices
can still be selected on CAS cycles by translating the
device addressing bits in software to lower address bits,
provided that these translated bits do not interfere with
the desired SRAM memory addressing. The device
addressing bits must be translated to those address bits
that appear during SRAM access on the AD that are
externally decoded for I/O addressing.
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Device Width

Memory device widths are either 8-bits (byte) or 32-
bits (cell), and are programmed using ngXds in
m scb.

As shown in Table 51, cell-wide memory groups do
not use Al or AO to address the memory device. All
accesses to cell-wide devices are cell-aligned and
transfer the entire cell. Memory device address lines
are attached to the CPU on AD[ x: 11] (x is deter-
mined by the device size).

Accesses to a byte-wide memory group are also cell-
aligned and transfer all four bytes within the cell, from
most significant to least significant (i.e., 0, 1,2, 3). The
only exception is for an 1/0-channel transfer with a
one-byte byte-transfer device, in which case only one
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arbitrarily addressed byte is transferred. See Bus
Operation, page 157.

As shown in Table 52, byte-wide memory devices
require the use of A1 and AO. Since for DRAM the RAS
and CAS memory device address bits must be on the
same AD, the address lines (except A31) are internally
rotated left two bits. This properly places AO on AD11
for connection to DRAM. This also means, however,
that the high address bits used for I/O address decod-
ing appear on AD differently for a byte-wide memory
group than for a cell-wide memory group. Since I/O
device address decoding hardware is wired to fixed
AD, the address bits used to access a device are
different when transferring data with a byte-wide
memory device than when transferring data with a
cell-wide memory device.
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Device
Size

0,1

2,3

4,5,
6

4

7,8,
9

10

11

12

13

14

15

pak | 128

256,
512

256

512

N
Ml
zp.

im

2M

4M

4M

8M

16M

16M

32M

64M

64M

128

SRAM

RAS

RAS

RAS

RAS

RAS

RAS

RAS

#BITS?

8 9

o|ln>o0n

9

10

10

11

12

11

12

13

12

13

14

13

14

n/a

AD9

AO | AO

AO

A0

AO

AO

A0

AO

[oe]
Zlelo>o =B »

AO

A0

AO

AO

A0

AO

AO

A0

AO

AD10

Al | Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

Al

AD11

A10|Al10

A2

All

All

Al12

Al12

Al12

A2

Al13

A13

Al13

Al4

Al4

Al4

Al15

A15

All

AD12

All|All

A3

Al2

Al12

Al13

Al3

Al13

A3

Al4

Al4

Al4

Al15

Al15

Al15

Al16

Al6

Al12

AD13

Al12|Al12

A4

Al13

Al13

Al4

Al4

Al4

A4

Al15

A15

Al15

Al6

Al6

Al6

Al7

Al7

Al3

AD14

Al13|A13

A5

Al4

Al4

Al15

Al15

Al15

A5

Al16

Al6

Al16

Al7

Al7

Al7

Al18

Al8

Al4

AD15

Al4|Al4

A6

A15

Al15

Al6

Al6

Al6

A6

Al7

Al7

Al7

Al18

A18

Al18

A19

A19

Al5

AD16

Al15|A15

A7

Al6

Al16

Al7

Al7

Al7

A7

Al18

Al8

Al18

Al19

Al19

A19

A20

A20

Al6

AD17

Al16|Al6

A8

Al7

Al7

Al18

A18

Al18

A8

Al19

A19

A19

A20

A20

A20

A21

A21

Al7

AD18

Al7|AL7

A9

Al8

Al18

Al19

Al19

A19

A9

A20

A20

A20

A21

A21

A21

A22

A22

Al8

AD19

A18

A18]A18

A10

A19

A19

A10

A20

A20

A20

A10

A21

A21

A21

A10

A22

A22

A22

A10

A23

A23

Al10

Al9

AD20

Al9

A19]A19

A20

A20

A20

All

A21

A21

A21

All

A22

A22

A22

All

A23

A23

A23

All

A24

A24

All

A20

AD21

A20

A20|A20

A21

A21

A21

A21

A21

A22

A22

Al12

A23

A23

A23

Al12

A24

A24

A24

Al12

A25

A25

Al2

A21

AD22

A21

A21|A21

A22

A22

A22

A22

A22

A22

A23

A22

A22

A24

A24

Al13

A25

A25

A25

Al13

A26

A26

Al13

A22

AD23

A22

A22|A22

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A25

A23

A23

A26

A26

Al4

A27

A27

Al4

A23

AD24

A24

A24|A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A27

A24

A24

A28

Al15

A24

AD25

A25

A25|A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

Al6

A25

AD26

A26

A26 |A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

Al7

A26

AD27

A27

A27|A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

Al8

A27

AD28

A28

A28 |A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

Al19

A28

AD29

A29

A29|A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A20

A29

AD30

A30

A30|A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A21

A30

AD31

A31

A31|A31

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A31

A3l

A31

A3l

A31

A3l

A3l

Notes:

#BITS is the number of CAS or RAS address bits for the specified device size.

Location of DRAM CAS or RAS address bits for the specified device size.

Location of bank-select bits in MMB mode for the specified device size.
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Table 52. RAS/CAS Address Line Configuration, Byte Memory
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Device
Size

0,1

2,3

4,5,
6

4

7,8,
9

10

11

12

13,
14

13 | 14

15

64K

128

256,
512
K

256

512

1,
2,4
M

M

2M

4M

4M

8M

16M

16M

32M

64M

128

6am| 128

SRAM

RAS

RAS

n >0

RAS

RAS

RAS

n >0

RAS

n >0

RAS

#BITS?

oln>o0

10

10

11

12

[ee]
2Elo>»o z‘;_b

11

12

13

12

13

14

13 | 14

n/a

n/a

AD9

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29

A29|A29

A29

A29

AD10

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30

A30|A30

A30

A30

AD11

A8

A8

A0

A9

A9

A0

A10

A10

A10

A0

All

All

All

Al12

Al12

Al12

A0

A13|A13

A0

A9

AD12

A9

A9

Al

Al10

Al10

Al

All

All

All

Al

Al2

Al2

Al2

Al3

Al3

Al3

Al

Al4|Al14

Al

Al0

AD13

A10

A10

A2

All

All

A2

Al12

Al12

Al12

A2

Al13

Al13

Al13

Al4

Al4

Al4

A2

A15|A15

A2

All

AD14

All

All

A3

Al2

Al2

A3

Al13

Al3

Al3

A3

Al4

Al4

Al4

Al15

Al15

Al15

A3

Al6 |Al6

A3

Al2

AD15

Al12

Al12

Ad

Al13

Al13

Ad

Al4

Al4

Al4

Ad

A15

A15

A15

Al6

Al6

Al6

Ad

Al7 |Al17

A4

Al13

AD16

Al13

Al13

A5

Al4

Al4

A5

Al15

Al15

Al15

A5

Al6

Al6

Al6

Al7

Al7

Al7

A5

Al8|A18

A5

Al4

AD17

Al4

Al4

A6

A15

A15

A6

Al6

Al6

Al6

A6

Al7

Al7

Al7

A18

A18

A18

A6

A19 |A19

A6

A15

AD18

Al15

Al15

A7

Al6

Al6

A7

Al7

Al7

Al7

A7

Al8

Al8

Al8

Al19

Al19

Al19

A7

A20|A20

A7

Al6

AD19

Al6

Al6

Al6

A8

Al7

Al7

A8

A18

A18

A18

A8

A19

A19

A19

A20

A20

A20

A8

A21|A21

A8

Al7

AD20

Al7

Al7

Al7

Al8

Al8

Al8

A9

Al19

Al19

Al19

A9

A20

A20

A20

A21

A21

A21

A9

A22 |A22

A9

Al8

AD21

A18

A18

A18

A19

A19

A19

A19

A19

A20

A20

A10

A21

A21

A21

A10

A22

A22

A22

A10

A23|A23

A10

A19

AD22

Al9

Al9

Al9

A20

A20

A20

A20

A20

A20

A21

A20

A20

A22

A22

All

A23

A23

A23

All

A24 | A24

All

A20

AD23

A20

A20

A20

A21

A21

A21

A21

A21

A21

A21

A21

A21

A21

A23

A21

A21

A24

A24

Al12

A25|A25

Al12

A21

AD24

A21

A21

A21

A22

A22

A22

A22

A22

A22

A22

A22

A22

A22

A22

A22

A22

A22

A25

Al3

A22 |A26

Al3

A22

AD25

A22

A22

A22

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

A23

Al4

A23|A23

Al4

A23

AD26

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24

A24 |A24

Al5

A24

AD27

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25

A25|A25

Al6

A25

AD28

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26

A26|A26

Al7

A26

AD29

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27

A27)A27

A18

A27

AD30

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28

A28 |A28

Al9

A28

AD31

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A3l

A31|A31

A3l

A3l

Notes:

#BITS is the number of CAS or RAS address bits for the specified device size.

Location of DRAM CAS or RAS address bits for the specified device size.

Location of bank-select bits in MMB mode for the specified device size.
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Programmable Timing

The timing for RAS and CAS cycles on each memory
group, as well as data setup and hold times for each
I/O channel, is programmable. Depending on the
parameter, timing granularity is in either CPU-clock
cycles or 2X-CPU-clock cycles. In some cases, timing
is specified in CPU-clock cycles with a modifier
available to advance the event by one 2X-CPU-clock
cycle.

In all cases, the hardware actually counts time in CPU-
clock cycle granules and then delays or advances the
signal transition by any 2X-CPU-clock granularity
timing specified. If the rate of the external clock is
changed during operation, 2X-CPU-clock granularity
timing generated by the 2X-CPU-clock PLL must not
be in effect during the time of the change because the
PLL cannot track the change and improper clock
cycles will be generated. Simply program the timing
to measure an integral number of CPU-clock cycles.
See 72, page 204.

Timing specification is broken into three pieces: RAS
prefix, basic CAS cycle, and CAS extension/expansion
timing. All CAS cycles consist of the basic CAS cycle
timing and the appropriate CAS extension/expansion
timing. This combination is referred to as the CAS part
of the memory cycle. All RAS cycles consist of a RAS
prefix plus a CAS part. Bus transactions of multiple bus
cycles are simply the required sequence of RAS
prefixes and CAS parts in immediate succession. Only
discrete read cycles or write cycles are performed;
read-modify-write cycles are not performed.

To gain access to the bus, the bus address must be
transferred to the MIF and a check made to see if the
bus is available for the time required to complete the
bus transaction. This bus request process takes two
CPU-clock cycles at the beginning of each bus
transaction. Memory-reference MPU and VPU
instructions always overlap one cycle of instruction
execution with the bus request process. DMA opera-
tion can overlap both cycles of the bus request process
with a preceding MPU bus transaction. Thus, except
for DMA overlapped with an MPU bus transaction,
there are two inactive CPU-clock cycles on the bus
preceding each bus transaction. Instruction execution
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times listed herein include the bus access and
programmed bus transaction time as part of the entire
memory reference time.

RAS Prefix Timing

This timing for a memory group is specified by
programming the fields in the corresponding
nmgXr asbt . The RAS prefix of a RAS cycle consists of
aleading CPU-clock cycle; the RAS inactive portion,
also referred to as RAS precharge (nmgbt r as); and the
RAS address hold time (ngbt r hl d). The last two are
modified by the early RAS bit (nmgbt er as). For
computation of the RAS-cycle duration, ngbt r ast
must contain the sum of ngbt r as and ngbt r hl d
plus one. During this time the DRAM RAS address bits,
high address bits, and bit outputs are on AD. See
Figure 42, page 149.

CAS Part Timing

This timing for a memory group is specified by
programming the fields in ngXcasbt and ngXebt .
The CAS part of the cycle begins with the timing for
the CAS inactive portion, also referred to as CAS
precharge (nmgbt cas). Next is the CAS address hold
time/beginning of data time (nmgbt dob), when DOB,
and possibly OE or LWE, go active. Then CAS, DOB,
and either OE (if a memory read) or both EWE and
LWE (if a memory write) go inactive again
(mgbt cast ). Toaccommodate longer data setup and
buffer delay times, the CAS cycle can be expanded at
DOB fall (ngebt dobe). Toaccommodate longer data
hold and output buffer disable times, the CAS strobes
can be extended following DOB inactive
(mgebt case). Memory write cycles can be pro-
grammed to have EV\E go active either at the begin-
ning of the CAS cycle (before RAS rise if a RAS cycle)
or at CAS fall (ngbt ewea). Similarly, LWE can be
programmed to go active either at DOB fall plus
expansion or at DOB fall plus expansion plus one 2X-
CPU-clock cycle (mgbtlwea). EWE generally
accommodates SRAM-type devices and L WE accom-
modates DRAM-type devices. Further, DOB going
inactive tracks EWE/LWE or OE, either of which can
be made to go inactive earlier than the unextended
CAS time by one 2X-CPU-clock cycle (mgbt ewe and
ngbt eoe). For computation of CAS-cycle duration,
nmgbt cast isadded to ngebt sum the latter of which
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must contain the sum of ngebtdobe and
ngebt case. See Figure 41, page 147, and Figure 40,
page 146.

When MPU bus transactions or VPU instruction-fetch
bus transactions occur, the bus cycle timing for the
memory group uses the values in ngXebt , as de-
scribed above. When an I/O channel bus transaction
occurs, the values ini oXebt for the appropriate 1/0O
channel are substituted for the ngXebt values. The
i oXebt values mustbe programmed to accommodate
any memory group that might be involved in the
transfer, as well as the 1/O device.

DRAM Refresh

DRAM requires periodic accesses to each row within
the memory device to maintain the memory contents.
Most DRAM devices support several modes of refresh,
including the RAS-only refresh mode supplied by the
VPU instruction r ef resh. The VPU must be pro-
grammed to execute refresh at intervals short
enough for the most restrictive DRAM in the system.
The timing during the refresh cycle uses the RAS cycle
timing of the memory group indicated by nsrt g,
which must be long enough for the slowest DRAM
refresh cycle in the system. Refresh on each memory
group can be individually enabled or disabled. See
Figure 33, page 139.

nsr a contains data used during each refresh cycle.
r ef r eshincrementsthel4-bitrowaddressinnsrr a
after the refresh cycle completes. The address bits in
nmsr a3l and nsr ha are normally zero, but can be
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written if the zero values interfere with other system
hardware during refresh cycles.

Video RAM Support

Special VRAM operating modes are supported through
the use of vr am See Figure 32, page 137, and Table
37, page 37. Many VRAM modes use a RAS cycle to
set an operating state inthe VRAM device that persists
until the next RAS cycle occurs on that VRAM device.
Unexpected RAS cycles can thus cause undesirable
results.

Refresh cycles are one source of unexpected RAS
cycles; these can be disabled on groups containing
VRAM by setting the appropriate ngXr d bits. See
Figure 33, page 139.

Changes in the high address bits are a second source
of unexpected RAS cycles; these can be prevented
from occurring on memory group nsvgr p by setting
nmsevhacr . The high address bits are typically used
for I/O device addresses, and require a RAS cycle
when these bits change if nshacd is clear. An I/O-
channel transfer immediately prior to a VRAM group
access is an example of such an occurrence. The RAS
cycle might be required for proper system operation,
but the VRAM group can be prevented from receiving
the RAS cycle by setting nsevhacr . The RAS prechar-
ge portion of the cycle will occur on RAS and RAS,
but not onthe MGSx /RASx ofthe VRAM group. Note
that if more than one memory group is used for VRAM
then this protection is not effective. See Figure 39,
page 145.

ADVANCE INFORMATION
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System Requirements Programming

RAS Cycle Generation

RAS cycles are primarily required to bring new row
addresses onto AD for DRAM-type devices. They are
also required, in certain instances, to ensure tempo-
rally deterministic execution of the VPU, or to ensure
correct operation after certain events. The MIF handles
these cases automatically. RAS cycles can also be
configured to occur in order to supply additional time
for decoding I/O addresses, for example. Since RAS
cycles generally take considerably longer than CAS

Table 53. Sources of RAS cycles

32-BIT RISC PROCESSOR

cycles, it is desirable to minimize their use. The
various sources of RAS cycles are listed in Table 53,
page 126.

When the current and previous addresses are com-
pared to determine if a RAS cycle is required, the MIF
uses the following rules:

e Thecurrent DRAM RAS address bits are compared
to those from the most recent RAS cycle on the current
memory group. If the bits are different, a RAS cycle
occurs.

MPU
Group | Access Reason Configuration Requirement| DMA
VPU
all any High address bits changed mshacd cl ear S al |
al | any A31 changed mehacd clear, S all
nsexa3lhac clear
all any A31 set nmsr as31d clear S all
all any Memory group row address C all
changed
pgm first After VRAM CAS before RAS msvgrp C all
pgm first after refresh on enabled group |[ngXr d set C MPU,DMA
all first after r ef r esh executes T VPU
all first after memory fault on group C all
all first ngds written C all
all first CPU hardware reset C all
all first del ay completes T VPU
all first VPU software reset T VPU
KEY:
all — any group or device with which the event might occur
pgm — any group programmed for the event to occur
any - any arbitrary access creating the specified condition
first — first access on each specified group after the specified event
S - might be required by system hardware
C - might be required for correct operation of devices
T - required for temporally deterministic VPU execution
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» The middle address bits are not compared (see
Figure 20, page 118). The middle address bits are: for
DRAM, above the RAS address bits up to and includ-
ing nsgsm for SRAM, from A22 up to and including
nmsgsm If negsmis zero there are no middle address
bits in either case. If nsgsm includes A31, A31
becomes part of the high address bits and is optionally
compared.

» The current high address bits are compared to
those from the most recent RAS cycle, depending on
the configuration options discussed below. The
location of the high address bits depends on nsgsm
See Figure 37, page 143.

Three high-address-bit configuration options are
available to minimize the occurrence of RAS cycles
caused by high-address-bit comparisons.

» The high address bits are typically used for 1/O
device addresses, and thus when they change, a RAS
cycle might be required for their proper decoding by
external hardware. The high address bits can be
excluded from RAS-cycle determination by setting the
memory system high-address-bit compare disable
(mshacd). See Figure 33, page 139.

» During bus transactions between four-byte byte-
transfer devices and cell memory or between one-cell
cell-transfer devices and byte memory, A31is passed
(taken from the global register, usually set) or cleared
(by the MIF) to select or deselect the I/O device when
required. Decoding A31 externally for this purpose
can be done more quickly than a full address decode,
so this separate option is available. A31 can be
included in or excluded from the high-address-bit
compare (msexa3lhac). See Figure 39, page 145.
* Insystems that require a RAS cycle to decode I/O
device addresses but not to decode changes in A31
(mshacd clear and nmsexa3lhac set), it might be
necessary for the memory address bits and I/O
addressing bits to overlap if the system contains a large
amount of memory and I/O devices. This can prevent
a RAS cycle from occurring because some of the
overlapped address bits do not cause a RAS (middle
address bits), or do not require a RAS (DRAM RAS
address bits), even though they changed from the last
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system RAS cycle. In this case, a RAS can be forced
to ensure that I/O device addresses are decoded by
setting A31 (msr as31d clear). This option can also
be useful any other time forcing a RAS cycle is
desirable.

Driver Current
The drive capability of all the package output drivers
is programmable. See Figure 50, page 154.

Memory Faults

Virtual memory page-fault detection is enabled
through nflt _enabl e in node. The memory fault
input can either come from AD8 or MFL T, depending
on the state of pkgnf | t . See Figure 39, page 145.

I/O-Channel Programming

As previously discussed, the normal memory-group
bus timing is changed during an I/O-channel bus
transaction by substituting the values in the corre-
sponding i oXebt for the values in ngXebt for the
memory group involved. Thisallows each I/O channel
to be programmed to meet the requirements of the
device. Thei oXebt values must be adequate for the
I/O device, as well as any memory group with which
a data transfer might occur. See Figure 43, page 150.

In addition to timing, the type of transfer on each 1/0O
channel can be specified in i odtta or i odtthb.
Transfers can either be one byte or four bytes per
transaction for byte-wide devices, or one cell per
transaction for cell-wide devices. Four-byte byte-
transfer devices might contend for the bus less often
than one-byte byte-transfer devices, and thus can
transfer data more efficiently. Also, with cell-wide
memory, four-byte byte transfers are cell-aligned and
pack the data into the memory cells, whereas one-byte
byte transfers place only one byte per memory cell.
See Bus Operation, page 157.

See Direct Memory Access Controller, page 103, for
other 1/0O-channel transfer options.

ADVANCE INFORMATION
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Note: DB rise tracks CE or EVIE and LVE rise.

bustime.wpg

Figure 23. Programmable Bus Timing Reference
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On-Chip Resource Registers

The on-chip resource registers comprise portions of
various functional areas on the CPU including the
MPU, VPU, DMAC, INTC, MIF, bit inputs, and bit
outputs. The registers are addressed from the MPU in
their own address space using the instructions | doJ ]
and sto[] at the register level, or | do.i[] and
st o.i[] atthe bit level (for those registers that have
bit addresses). On other processors, resources of this

type are often either memory-mapped or opcode-
mapped. By using a separate address space for these
resources, the normal address space remains unclut-
tered, and opcodes are preserved. Except as noted, all
registers are readable and writeable. Areas marked
“Reserved Zeros” contain no programmable bits and
always return zero. Areas marked “Reserved” contain
unused programmable bits. Both areas might contain
functional programmable bits in the future.

Register Size Addr Mnemonic Description
31 151310 7 0
000 ioin Bit Input Register
020 ioip Interrupt Pending Register
040 ioius Interrupt Under Service Register
060 ioout Bit Output Register
080 ioie Interrupt Enable Register
0a0 iodmae DMA Enable Register
0c0 vram VRAM Control Bit Register
0e0 misca Miscellaneous A Register
100 misch Miscellaneous B Register
120 mfltaddr Memory Fault Address Register
140 mfltdata Memory Fault Data Register
160 msgsm  Memory System Group Select Mask Register
180 mgds Memaory Group Device Size Register
la0 miscc Miscellaneous C Register
1c0 mgOebt  Memory Group O Extended Bus Timing Register
1le0 mglebt Memory Group 1 Extended Bus Timing Register
200 mg2ebt Memory Group 2 Extended Bus Timing Register
220 mg3ebt Memory Group 3 Extended Bus Timing Register
240 mgOcasbt Memory Group 0 CAS Bus Timing Register
260 mglcasbt Memory Group 1 CAS Bus Timing Register
280 mg2casbt Memory Group 2 CAS Bus Timing Register
2a0 mg3casbt Memory Group 3 CAS Bus Timing Register
2c0 mgOrasbt Memory Group 0 RAS Bus Timing Register
2e0 mglrasbt Memory Group 1 RAS Bus Timing Register
300 mg2rasbt Memory Group 2 RAS Bus Timing Register
320 mg3rasbt Memory Group 3 RAS Bus Timing Register
340 ioOebt I/0 Channel 0 Extended Bus Timing Register
360 iolebt I/O Channel 1 Extended Bus Timing Register
380 io2ebt I/O Channel 2 Extended Bus Timing Register
3a0 io3ebt I/O Channel 3 Extended Bus Timing Register
3c0 iodebt I/O Channel 4 Extended Bus Timing Register
3e0 io5ebt I/O Channel 5 Extended Bus Timing Register
400 io6ebt I/O Channel 6 Extended Bus Timing Register
420 io7ebt I/O Channel 7 Extended Bus Timing Register
440 msra Memory System Refresh Address Register (WO)
440 vpudelay VPU Delay Register (RO)
460 iodtta I/O Device Transfer Types A Register
480 iodttb I/O Device Transfer Types B Register
7a0 iodmaex 1/O DMA Enable Expiration Register
7c0  drivers Driver Current Register
7e0 vpureset VPU Reset Register
onchipmp.wpg

Figure 24. On-Chip Resource Registers
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mgXrasbt Memory Group 0-3 RAS Bus Timing Registers
2COmgOrasbt 2EO mglrasbt 300 mg2rasbt 320 mg3rasbt
31 13 9 8 5 4 10
Reserved Zeros
Mnemonic Description
mgbtrast memory group bus timing RAS prefix cycle total
{0, 1, 2, ..., 31} CPU-clock cycles [1f]
mgbtras memory group bus timing RAS low start
{1, 2, 3, ..., 16} CPU-clock cycles [0f]
mgbtrhid mepTory group bus timing row address holdk
{0, 1, 2, ..., 15} CPU-clock cycles [Oe] \
mgbteras memory gr bus timing early RAS Iow\
by one 2X-CPU-clock cycle [0]
\ onchp2c0.wpg

Four bit field range of 0-15 encodes
functional values set {1, 2, 3, ..., 16}

Four bit field range of 0-15 encodes
functional values set {0, 1, 2, ..., 15}

Value after CPU reset

onchpexm.wpg

Figure 25. Example On-Chip Register Diagram

The first several registers are bit addressable in
addition to being register addressable. This allows the
MPU to modify individual bits without corrupting
other bits that might be changed concurrently by the
VPU, DMAC, or INTC logic.

Bus activity must be prevented to avoid a possible
invalid bus cycle when changing the value in any
register that affects the bus configuration or timing of
a bus cycle that might be in progress. Bus activity can
be prevented by ensuring:

* no DMA requests are serviced,

« the VPU does not seize the bus (because
vpudel ay goes to zero),

e  no writes are posted, and

» pre-fetch does not occur.

This is typically not a problem because most changes
are made just after power-up when no DMA or VPU
activity of concern is occurring. Posted writes can be
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ensured complete by ensuring an MPU memory
access (such as an instruction fetch) occurs after the
write is posted.

The diagrams that follow use a {} notation that depicts
the decoded set of values represented by ordinal
values within the corresponding bit field. The full
range of values possible on a bit field are always
depicted. Thus {1, 2, 3, 4} is only be possible on a
two-bit-wide field. In this case, a zero in the field
represents a one value, a one in the field represents
a two value, and so on through the list. Note that not
all sets are consecutive numbers, such as {0, 1, 2, 4}.
Also note that references in the text to usage of a field
imply the decoded value represented by the field, not
the ordinal values, e.g., references to ngbt r as in the
example imply the decoded values 1-16 and not the
ordinal values 0-15 programmed into the field.
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00 ioin Bit Input Register
31 8 76 543210
Reserved Zeros ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Bit Address Mnemonic Description J

07 i07in_i 1/0 bit 7 input [1]

06 i06in_i I/0 bit 6 input [1]] ———

05 io5in_i 1/0 bit 5 input [1]

04 io4in_i 1/0 bit 4 input [1]

03 i03in_i 1/0 bit 3 input [1]

02 i02in_i 1/0 bit 2 input [1]

01 iolin_i 1/0 bit 1 input [1]

00 i00in_i 1/0 bit 0 input [1]

onchp000.wpg

Figure 26. Bit Input Register

Contains sampled data from T N[ 7: 0] or AD[ 7: 0], The bits can be individually read, set and cleared to
depending on the value of pkgi 0.i oi nisthe source prevent race conditions between the MPU and other
of inputs for all consumers of bit inputs. Bits are zero-  CPU logic.

persistent: once a bitis zero ini oi n it stays zero until

consumed by the VPU, DMAC, or INTC, or written by

the MPU with a one. Under certain conditions bits

become not zero-persistent. See Bit Inputs, page 111.
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20 ioip

Interrupt Pending Register

31

8 76 543210

Reserved Zeros

Bit Address Mnemonic
27 i07ip_i
26 i06ip_i
25 io5ip_i
24 io4ip_i
23 i03ip_i
22 i02ip_i
21 iolip_i
20 i00ip_i

Description
I/O bit 7 interrupt pending [0]
I/O bit 6 interrupt pending [0] ———
I/O bit 5 interrupt pending [0]
I/O bit 4 interrupt pending [0]
I/O bit 3 interrupt pending [0]
I/O bit 2 interrupt pending [0]
I/O bit 1 interrupt pending [0]
I/O bit O interrupt pending [0]

|

onchp020.wpg

Figure 27. Interrupt Pending Register

Contains interrupt requests that are waiting to be
serviced. Interrupts are serviced in order of priority (O
= highest, 7 = lowest). An interrupt request from an
I/O-channel transfer or from i nt occurs by the
corresponding pending bit being set. Bits can be set
or cleared to submit or withdraw interrupt requests.
When an i oi p bit and corresponding i oi e bit are
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set, the correspondingi oi n bitis not zero-persistent.
See Interrupt Controller, page 107.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and INTC
logic.
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40 ioius Interrupt Under Service Register
31 8 76 543210
Reserved Zeros ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Bit Address Mnemonic Description J
a7 i07ius_i I/O bit 7 interrupt under service [0]
46 i06ius_i 1/0 bit 6 interrupt under service [0] ———
45 io5ius_i 1/0 bit 5 interrupt under service [0]
44 iodius_i I/O bit 4 interrupt under service [0] ————
43 i03ius_i I/O bit 3 interrupt under service [0)] —
42 i02ius_i I/O bit 2 interrupt under service [0]
41 iolius_i I/O bit 1 interrupt under service [0]
40 io0ius_i I/O bit 0 interrupt under service [0]
onchp040.wpg

Figure 28. Interrupt Under Service Register

Contains the current interrupt service request and
those that have been temporarily suspended to service
a higher-priority request. When an ISR executable-
code vector for an interrupt request is executed, the
i oi us bit for that interrupt request is set and the
corresponding i oi p bit is cleared. When an ISR
executes r et i , the highest-priority interrupt under-
service bit is cleared. The bits are used to prevent
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interrupts from interrupting higher-priority ISRs. When
ani oi us bitand correspondingi oi e bit are set, the
corresponding i oi n bit is not zero-persistent. See
Interrupt Controller, page 107.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and INTC
logic.

ADVANCE INFORMATION



NOILVINHO4dNI dONVAQAY

A
FYPATRIOT
SCIENTIFIC CORPORATION

PSC1000 Microprocessor

32-BIT RISC PROCESSOR

60 ioout Bit Output Register

31

8 76 543210

Reserved Zeros

Bit Address Mnemon
67 io7out_i
66 iobout_i
65 iobout_i
64 iodout_i
66 io3out_i
62 io2out_i
61 iolout_i
60 ioOout_i

ic

Description
I/O bit 7 output [1]
I/O bit 6 output [1]
1/O bit 5 output [1]
1/O bit 4 output [1]
1/0 bit 3 output [1]
I/O bit 2 output [1]
1/O bit 1 output [1]
I/O bit 0 output [1]

|

onchp060.wpg

Figure 29. Bit Output Register

Contains the bits from MPU and VPU bit-output
operations. Bits appear on QUT[ 7: 0] immediately
after writing and on AD] 7: 0] while RAS is inactive.
See Bit Outputs, page 115.

134

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and VPU.
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80 ioie Interrupt Enable Register
31 8 765 43210
Reserved Zeros ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Bit Address Mnemonic Description J
87 io7ie_i I/O bit 7 interrupt enable [0]
86 io6ie_i I/O bit 6 interrupt enable [0] ——
85 iobie_i I/O bit 5 interrupt enable [0]
84 iodie_i I/O bit 4 interrupt enable [0]
83 io3ie_i I/O bit 3 interrupt enable [0]
82 io2ie_i I/O bit 2 interrupt enable [0]
81 iolie_i I/O bit 1 interrupt enable [0]
80 ioOie_i I/O bit O interrupt enable [0]

onchp080.wpg

Figure 30. Interrupt Enable Register

If the corresponding i odnae bit is not set, allows a  The bits can be individually read, set and cleared. Bit
corresponding zero bit in i oi n to request the corre-  addressability for this register is an artifact of its
sponding interruptservice. When an enabled interrupt ~ position in the address space, and does not imply any
request is recognized, the corresponding i oi p bitis race conditions on this register can exist.

set and the correspondingi oi n bitis no longer zero-

persistent. See Interrupt Controller, page 107.
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AO iodmae

DMA Enable Register

31

8 76543210

Reserved Zeros

Bit Address Mnemonic
A7 io7dmae_i
A6 io6dmae_i
A5 iobdmae_i
A4 io4dmae_i
A3 io3dmae_i
A2 io2dmae_i
Al ioldmae_i
AO io0Odmae_i

Description

I/0 channel 7 DMA enable [0]
I/0 channel 6 DMA enable [0] ———
I/O channel 5 DMA enable [0] ————
I/0O channel 4 DMA enable [0)] ———
I/O channel 3 DMA enable [0] —————
I/O channel 2 DMA enable [0]
I/O channel 1 DMA enable [0]
I/O channel 0 DMA enable [0]

|

onchpOa0.wpg

Figure 31. DMA Enable Register

Allows a corresponding zero bitini oi n to request
a DMA 1/0O-channel transfer for the corresponding
I/O channel. When an enabled DMA request is
recognized, the corresponding zero bit in i oi n is
set. If the corresponding i odmaex bit is set, the
i odmae bit is cleared (to disable further DMA
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requests from that channel) when an 1/O-channel
transfer on that channel accesses the last location in
a 1024-byte memory page. See Direct Memory
Access Controller, page 103. When ai odnae bit s
set, the corresponding i oi e bit is ignored.
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CO vram

VRAM Control Bit Register

31

76 543210

Reserved Zeros

Mnemonic
msvgrp
dsfvcas
dsfvras

cashvras
wevras
oevras

Description
memory system VRAM group [3] ——

state of DSF at VRAM CAS fall [0]

state of DSF at next VRAM RAS fall [0]
CAS fall before RAS next VRAM RAS [0]
LVE low at next VRAM RAS fall [0]

CE low at next VRAM RAS fall [0]

onchp0c0.wpg

Figure 32. VRAM Control Bit Register

These bits control the behavior of OE, LWE, the
CASes, and DSF at RAS fall time; they also control the
behavior of DSF at CAS fall time. They can be used
in any combination to activate the various modes on
VRAMs.

The bits from vr ammove through a hidden register
prior to controlling the memory strobes during a
subsequent MPU memory cycle. The bits stored for
msvgr p in the hidden register determine which
memory group is the current VRAM memory group,
whose strobes are affected by the accompanying data
in the hidden register. The hidden register is locked
once data has been transferred into it from vr amuntil
an MPU access to the VRAM memory group occurs,
thus consuming the data in the hidden register.

When a sto [] to vramoccurs and the hidden
register is not currently locked, the data from vr amis
transferred into the hidden register immediately if a
posted write (to any memory group) is not waiting or
in process, or at the end of the posted write if a posted
write is waiting or in process. When a sto [] to
vr amoccurs and the hidden register is already locked,
the data in vr amis not transferred (and is replaceable)
until after the next access to the VRAM memory group
occurs. The next access to the VRAM memory group
uses the data in the hidden register, and when the
memory access is complete, the data in vramis
transferred to the hidden register.
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Only MPU memory accesses have an effect on vr am
or the hidden register. Immediately after transferring
vr amto the hidden register, dsf vr as, casbvr as,
wevr as, and oevr as in vr amare cleared. After the
VRAM group access, additional CAS or RAS cycles
can occur on the VRAM memory group without
rewriting the register, and use the current (cleared)
vr amdata. When writes to vr amare paired with one
or more accesses to the VRAM memory group of the
required RAS or CAS type, the internal operations
described above are transparent to the program. Note
that RAS precharge must be at least three CPU-clock
cycles in duration for proper VRAM operation. See
Video RAM Support, pages 37, 125, and 161.

nsvgrp
Specifiesthe memory group containing the VRAM that
is controlled by this register. VPU and MPU instruc-
tions must not be fetched from the memory group
used for VRAM because the VRAM operations will
likely occur on an instruction-fetch bus transaction
rather than the intended VRAM transaction.

dsfvcas

Contains the state applied to DSF at the start of the
next CAS-part of a memory cycle on the VRAM
memory group. The bit is persistent and is not
automatically cleared after being transferred to the
hidden register. DSF is low when not accessing the
VRAM memory group.

ADVANCE INFORMATION
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Contains the state applied to DSF two CPU-clock
cycles after RAS rises during the next RAS cycle on
the VRAM memory group. DSF changes to the
dsfvcas state at the expiration of the row-address
hold time. The bit is automatically cleared after being
transferred to the hidden register.

casbvras

If set, during the next RAS cycle on the VRAM memory
group all CAS signals are active two CPU-clock cycles
after RAS rises, and are inactive at the normal
expiration time. OE, EWE and LE go inactive at the
expiration of the row-address hold time. The next
access to the memory group nsvgr p is forced by
internal logic to be a RAS cycle.

Note that since all read and write strobes are inactive
throughout their normally active times during the bus
cycle, no data I/O with memory can occur. The data
associated with the ST or LD used to cause the cycle
is lost or undefined. The casbvr as bit is automati-
cally cleared after being transferred to the hidden
register.
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32-BIT RISC PROCESSOR

Wwevr as
If set, LWE is low two CPU-clock cycles after RAS
rises during the next RAS cycle on the VRAM memory
group, and is high at the expiration of the row-address
hold time. Otherwise, LWE is high until the expiration
of the row-address hold time during the next RAS
cycle on the VRAM memory group. In either case,
during the CAS portion of the cycle LWE behaves
normally and the data transferred is part of the
function performed. The bit is automatically cleared
after being transferred to the hidden register.

oevras
If set, OE is low two CPU-clock cycles after RAS rises
during the next RAS cycle on the VRAM memory
group, and is high at the expiration of the row-address
hold time. Otherwise, OE is high until the expiration
of the row-address hold time during the next RAS
cycle on the VRAM memory group. In either case,
during the CAS portion of the cycle OE behaves
normally and the data transferred is part of the
function performed. The bit is automatically cleared
after being transferred to the hidden register.
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EO misca Miscellaneous A Register
31 8 76543210
Reserved Zeros ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Mnemonic Description J
mg3rd memory group 3 refresh disable [0]
mg2rd memory group 2 refresh disable [0] ———
mglrd memory group 1 refresh disable [0]
mgOrd memory group O refresh disable [0]
msras31d memory system don't force RAS cycle if A31 =1 [0]
mshacd memory system high-address-bit compare disable [0]
msrtg memory system refresh timing group [0]

onchp0e0.wpg

Figure 33. Miscellaneous A Register

ngXr d

Allows (if clear) or prevents (if set) a refresh cycle from
occurring on the corresponding memory group when
r ef r esh executes. Allowing refresh on some memory
groups can be undesirable or inappropriate. For
example, the primary side effect of refresh is that the
current row address latched in the memory device is
changed. This can be undesirable on VRAM devices
when a RAS cycle sets persistent operational modes
and addresses. Another refresh side effect is that the
next memory cycle to the memory group is a RAS
cycle to re-select the operational memory row. This
is usually undesirable in SRAM because refresh is not
required; the refresh and RAS cycles only slow
execution, or make otherwise predictable timing
unpredictable.

nmsr as31d

If set, allows non-RAS cycles when A31 is a one. If
clear, forces a RAS cycle on both one-bus-cycle
transactions and the first cycle of four-bus-cycle byte
transactions when A31 is a one. In large memory
systems in which the 1/O-device addressing bits
overlap the group, bank, or DRAM RAS bits, this
option forces a RAS cycle when one might not
otherwise occur because these various bits either are
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excluded from the RAS comparison logic or could
inadvertently match the 1/O-device address bits. RAS
cycles might be required by system design to allow
enough time for 1/O decode and select. A31 is used
in selecting 1/0O addresses.

nmshacd

If clear, enables the comparison of the high address
bitsto those of the most recent RAS cycle to determine
ifaRAS cycle mustoccur. If set, disables this compari-
son. These bits are typically used for I/O addresses that
require external decoding logic which might require
the additional time available in a RAS cycle for this
decoding. However, with high-speed logic it is often
possible to decode the I/O address in the time
available within a CAS cycle, thus speeding I/O
access. A31 can be excluded from the high-address-bit
compare by setting nsexa31lhac.

nsrtg
Contains the number of the memory group whose RAS
cycle timing is to be used for refresh cycles produced
by r ef r esh. The memory group specified must be
the group with the most-restrictive (slowest) refresh
timing.

ADVANCE INFORMATION
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100 miscb

Miscellaneous B Register

31

8 76 543210

Reserved Zeros

Mnemonic
mmb
fdmap
pkgio
oed
mg3bw
mg2bw
mglbw
mgObw

multiple memory bank [0]
fixed DMA priorities [0]
package has I/O pins [0]

memory group 3 byte wide [1]
memory group 2 byte wide [1]
memory group 1 byte wide [1]
memory group 0 byte wide [1]

Description

|

CE disable [1]

onchp100.wpg

Figure 34. Miscellaneous B Register

nmb

If clear, selects Single Memory Bank (SMB) mode for
all memory groups. RASx signals appear on the
corresponding package pins. Bank-select bits corre-
spond with the ns gs mbits. Up to four memory banks
(i.e., one memory bank per memory group) can be
directly connected and accessed. See Figure 21, page
118.

If set, selects Multiple Memory Bank (MMB) mode for
all memory groups. MGSx signals appear on the
corresponding package pins. Bank-select bits are
located immediately above the DRAM RAS bits, or for
SRAM in the nssbs location. Up to sixteen memory
banks (i.e., four banks per memory group) can be
connected with 1.25 two-input gates per bank. With
additional inputs per gate and additional decoding, an
arbitrarily large number of memory banks can easily
be connected. See Figure 22, page 119.

f dmap

DMA requests contend for the bus; the highest-priority
request gets the first chance at access. If vpudel ay
is large enough to allow bus access by the highest-
priority request, the bus is granted to the device.

If f drap is set and vpudel ay is too small for the
highest-priority DMA request, the DMA request does
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not get the bus. Unless a higher-priority DMA request
occurs that fits the shrinking available bus slot, no bus
transactions occur until the VPU seizes the bus. When
the VPU next executes del ay, the highest-priority
DMA request—or the MPU if there are ho DMA
requests—repeats the bus request process.

If f dmap is clear and vpudel ay is too small for the
highest-priority DMA request, the request does not get
the bus. The next lower-priority bus request is then
allowed to request the bus, with the MPU as the
lowest-priority request. The process repeats until the
bus is granted or the VPU seizes the bus. When the
VVPU next executes del ay, the highest-priority DMA
request—or the MPU if there are no DMA
requests—repeats the bus request process.

pkgi o

If set, inputs to i oi n are taken from I N[ 7: 0] . If
clear, inputs are taken from AD[ 7: 0] when RAS is
low and CAS is high. See Bit Inputs, page 111.

oed

If set, disables OE from going active during bus cycles.
If clear, OE behaves normally. On CPU reset, the OE
signal is disabled to prevent conventionally connected
memory from responding; this allows booting from a
device in I/O space. See Processor Startup, page 181.
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ngXbw

If clear, the corresponding memory group is cell-wide
and is read and written 32-bits per bus cycle. If set, the
corresponding memory group is byte-wide and isread
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and written in a single bus transaction of four bus
cycles, one byte per cycle.

ADVANCE INFORMATION
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120 mfltaddr Memory Fault Address Register
31 0

Memory Fault Address

Register is read-only. Reading nf | t addr after a memory fault releases the data lock on nf | t addr and

nf | t dat a, allowing data to flow into the registers. [0] onchp20wg

Figure 35. Memory Fault Address Register

When a memory page-fault exception occurs during read of nfltaddr after the fault. After reading
a memory read or write, nfltaddr contains the  nfltaddr,thedatainnf|taddr andnflt dat aare
address that caused the exception. The contents of  no longer valid.

nfltaddr and nf |t dat a are latched until the first

140 mfltdata Memory Fault Data Register

31 0

Memory Fault Data

Register is read-only. Reading nf | t addr after a memory fault releases the data lock on nf | t addr and

nf | t dat a, allowing data to flow into the registers. [0] onchp140:pg

Figure 36. Memory Fault Data Register

When a memory page-fault exception occurs during nfltdata are latched until the first read of
a memory write, nf | t dat a contains the data to be ~ nfltaddr after the fault.
stored atnf | t addr . The contents of nf | t dat a and
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160 msgsm

Memory System Group Select Mask Register

31

16 15 0

Reserved Zeros

Memory System Group-Select Mask

decoded to select memory groups. [0]

Contains zero, one, or two adjacent bits to determine which, if any, of the upper 16 address bits will be

onchp160.wpg

Figure 37. Memory System Group-Select Mask Register

Contains zero, one, or two adjacent bits that locate the
memory group-select bits between A16 and A31.

When no bits are set, all memory accesses occur in
memory group zero. The memory system high address
bits occur in the address bits: for DRAM, above the
memory group zero DRAM RAS address; for SRAM,
above A21.
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When one bit is set, it determines the address bit that
selects accesses between memory group zero and
memory group one. The memory system high address
bits occur in the address bits higher than the bit
selected, but always include A31.

When two adjacent bits are set, they are decoded to
select one of four memory groups thatisaccessed. The
memory system high address bits occur in the address
bits higher than the bits selected, but always include
A31.

ADVANCE INFORMATION
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180 mgds Memory Group Device Size Register
31 16 15 12 11 8 7 4 3 0
Reserved Zeros
Mnemonic Description J
mg3ds memory group 3 device size [0f]
mg2ds memory group 2 device size [0f]
mglds memory group 1 device size [0f]
mg0ds memory group 0 device size [0f]
Device Sizes :
0x00 64K DRAM 0x04 1M DRAM 0x08 8M DRAM : 0x0c 64M DRAM
0x01 128K DRAM 0x05 2M DRAMT 0x09 16M DRAM 0x0d 64M DRAM
0x02 256K DRAM 0x06 4M DRAM Ox0a 16M DRAM O0x0e 128M DRAM
0x03 512K DRAM 0x07 4M DRAM 0x0b 32M DRAM 0x0f SRAM
t Asymmetric addressing, the number of RAS and CAS address bits differ.
onchp180.wpg

Figure 38. Memory Group Device Size Register

Contains 4-bit codes that select the DRAM address bit
configuration, or SRAM, for each memory group. The
code determines which bits are used during RAS and
CAS addressing and which bits are compared to
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determine ifaRAS cycle isrequired (due to the DRAM
row address changing). See Table 51, page 122, and
Table 52, page 123.
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1A0 miscc

Miscellaneous C Register

31

Reserved Zeros

Mnemonic
pkgmfit
mspwe

msexvhacr

msexa3lhac

mssbs

Description

package has MFLT [0]
memory system posted-write enable [0] ———

memory system exclude VRAM from high-
address-hit compare RAS cycles [0]
memory system exclude A31 from
high-address-bit compare [0]

memory system SRAM bank select

offset from A14 (A12 for byte mode)

to the two bits for SRAM bank select

(0-9 valid, Oxa-Oxf invalid) [O]

i

onchpla0.wpg

Figure 39. Miscellaneous C Register

pkgnf |t

If set, the memory-fault input is sampled from MFLT.
If clear, the memory-fault input is sampled from AD3
when RAS falls. See Figure 77, page 212.

s pwe
If set, enables a one-level MPU posted-write buffer,
which allows the MPU to continue executing after a
write to memory occurs. A posted write has prece-
dence over subsequent MPU reads to maintain
memory coherency. If clear, the MPU must wait for
writes to complete before continuing.

nsexvhacr

If set, RAS cycles do not occur in the memory group
msvgr p whendue to ahigh-address-bit comparison.
This prevents unexpected RAS cycles (typically caused
by a DMA or VPU initiated bus transaction) from
causing a VRAM operation.

nsexa3lhac
If set, A31 is not included in the high-address-bit
compare. Ifclear, A31isincluded in the high-address-
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bit compare. See nshacd for more information. The
high address bits are typically used for I/O addresses,
and require external decoding logic that might require
the additional time available in a RAS cycle for
decoding. Some bustransactions contain adjacent bus
cycles whose high address bits differ by only the state
of A31, and could thus require a RAS cycle due solely
to the change in this bit. However, some system
designs can decode the A31 change in the time
available in a CAS cycle, thus speeding I/O access. If
this bit is set a RAS cycle does not occur if only
address bit A31 changes.

neshs

For multiple memory bank mode only, these bits
contain the offset from Al4 (Al12 for a byte-mode
group) to the two address bits used to select banks
within any memory group containing SRAM devices.
Typically set to place the bits immediately above the
address bits of the SRAM devices used.

ADVANCE INFORMATION
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mgXebt Memory Group 0-3 Extended Bus Timing Registers
1COmgOebt 1EOmglebt 200 mg2ebt 220 mg3ebt
31 11 10 6 5 210
Reserved Zeros

Mnemonic Description

mgebtsum memory group extended bus timing sum
{0, 1, 2, ..., 31} CPU-clocks [1f]

mgebtdobe memory group extended bus timing DOB expansion
{0, 1, 2, ..., 15} CPU-clocks [0f]

mgebtcase memory group extended bus timing CAS extension

{0, 1, 2, 4} CPU-clocks [3]

onchplc0.wpg

Figure 40. Memory Group 0-3 Extended Bus Timing Registers

These values compensate for propagation, turn-on,
turn-off, and other delays in the memory system. They
are specified separately for each memory group. When
an 1/O-channel bus transaction occurs, the 1/O-
channel extension, i oXebt , is substituted for the
corresponding value. The I/O-channel extensions must
be sufficient for any memory group into which that 1/O
channel might transfer.

ngebt sum

Programmed to contain the sum of ngebt case and
ngebt dobe. This value is used only during the slot
check to compute the total time required for the bus
cycle.
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nmgebt dobe

Expands the CAS cycle at DOB fall by the specified
time. This parameter is used to compensate for
memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a
memory read cycle, OE is expanded. If the bus cycle
is a memory write cycle, EWE is expanded and LWE
fall is delayed the specified time.

ngebt case

Extends the CAS cycle by the specified amount after
the unextended CAS time. DOB, OE, EWE and LWE
rise unextended. This parameter is used to allow for
data hold times or to allow for devices to disable their
output drivers. When used in combination with
nmgbt ewe or ngbt eoe, hold or disable times can be
set in most increments of 2X-CPU-clock cycles.
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mgXcasbt Memory Group 0-3 CAS Bus Timing Registers
240 mgOcasbt 260 mglcasbt 280 mg2casbt 2A0 mg3casbt
31 1615 1312 9 8 4 3210
Reserved Zeros
Mnemonic Description J
mgbtcas memory group bus timing CAS low start
{1, 2,3, ..., 8} 2X-CPU-clock cycles [7]
mgbtdob memory group bus timing DOB low start
{1, 2, 3, ..., 16} 2X-CPU-clock cycles [0f]
mgbtcast memory group bus timing CAS cycle total
{1, 2, 3, ..., 32} CPU-clock cycles [1f]
mgbtewea memory group bus timing late fall EVEE active
(O=active at cycle start, 1=active at CAS low) [1]
mgbtlwea memory group bus timing LV\E active, delay by one 2X-CPU-clock cycle [0]
mgbteoe memory group bus timing early rise CE by one 2X-CPU-clock cycle [0]
mgbtewe memory group bus timing early rise write enables by one 2X-CPU-clock cycle [0]

onchp240.wpg

Figure 41. Memory Group 0-3 CAS Bus Timing Registers

Defines the basic timing for CAS-only cycles and the
CAS portion of RAS cycles. Timing is specified
separately for each memory group. The values that
refer to CAS apply to CAS, CASO, CAS1, CAS2 and
CAS3, appropriately. The basic CAS cycle timing is
augmented by ngXebt and i oXebt values.

ngbt cas

Specifies the CAS-cycle precharge time, the time from
the start of the CAS-timed portion of the memory cycle
until CAS goes low.

ngbt dob

Specifies the end of address time (column address
hold) and the beginning of data time on the bus
relative to the start of the CAS portion of the memory
cycle. This is the time the CPU places write data on
the bus or begins accepting read data from the bus.

ngbt cast

Specifies the total unexpanded and unextended time
of a CAS cycle. DOB, OE, EWE and LWE rise at this
time unless modified by ngbt eoe or ngbt ewe. This
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time value is also used during the slot check to
compute the total time required for the bus cycle.

nmgbt ewea

In a system with fast SRAM, EWV\E fall at cycle start is
required to have an adequate write enable. Other
devices require their addresses to be valid before write
enable falls; in these cases CAS low is required.

nmgbt | wea

Specifies a delay of zero or one 2X-CPU-clock cycle
after DOB fall plus expansion for LV\E fall. Expansion
refers to the value of ngebt dobe ori oebt dobe, as
appropriate. Allows adjustment for system and device
delays. For example, DRAM expects data valid at its
write-enable fall. In small systems DOB plus one 2X-
CPU-clock cycle (with an expansion of zero) might be
appropriate. In a large system with a heavily loaded
(or buffered) LWE, DOB might be appropriate for the
fastest memory cycle. If a larger delay is required, an
expansion value can be set. Allows resolution of one
2X-CPU-clock cycle in expansion timing.
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ngbt eoe

If set, OE rises one 2X-CPU-clock cycle before the end
of the unextended CAS cycle. If clear, OE rises with
the end of the unextended CAS cycle. One 2X-CPU-
clock cycle is sufficient output-driver disable time for
some devices; if not, output-driver disable time can be
created in most increments of 2X-CPU-clock cycles
by combining ngebt case and ngbt eoe.
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nmgbt ewe

If set, EWE and LWE rise one 2X-CPU-clock cycle
before the end of the unextended CAS cycle. If clear,
EWE and LWE rise with the end of the unextended
CAScycle. One 2X-CPU-clock cycle is sufficient hold
time for some devices; if not, hold time can be created
in most increments of 2X-CPU-clock cycles by
combining ngebt case and ngbt ewe.
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mgXrasbt Memory Group 0-3 RAS Bus Timing Registers
2CO0mgOrasbt 2EO mglrasbt 300 mg2rasbt 320 mg3rasbt
31 13 9 8 5 4 10
Reserved Zeros
Mnemonic Description J
mgbtrast memory group bus timing RAS prefix cycle total

{0, 1, 2, ..., 31} CPU-clock cycles [1f]

mgbtras memory group bus timing RAS low start
{1, 2, 3, ..., 16} CPU-clock cycles [0f]
mgbtrhld memory group bus timing row address hold
{0, 1, 2, ..., 15} CPU-clock cycles [0e]
mgbteras memory group bus timing early RAS low

by one 2X-CPU-clock cycle [0]

onchp2c0.wpg

Figure 42. Memory Group 0-3 RAS Bus Timing Registers

Defines the timing for the RAS-prefix portion a of RAS
memory cycle. Timing is specified separately for each
memory group. The values are selected as required for
the memory devices used. Timing values that refer to
RAS apply to RAS,RASO, RAS1,RAS2 and RASS,
appropriately.

ngbt r ast

Programmed to contain the sum of the decoded
number of CPU-clock cycles represented inngbt r as
and ngbt r hl d plus one. At the end of this time the
CAS portion of the memory cycle begins. This value
isused only during the slot check to compute the total
time required for the bus cycle.
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nmgbt r as

Specifies the RAS precharge time, the time RAS is
high at the beginning of a RAS cycle. The time can be
shortened with ngbt er as.

nmgbtrhl d

Specifies the row-address hold time of a RAS cycle,
immediately preceding the CAS timing portion of the
cycle. The time can be lengthened with ngbt er as.
Immediately following this time the CAS address is
placed on the bus, if appropriate.

ngbt er as

If set, reduces the RAS precharge time (specified by
nmgbt r as) and extends the row-address hold time
(specified by ngbt r hl d) by one 2X-CPU-clock cycle.

ADVANCE INFORMATION
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ioXebt I/0 Channel 0-7 Extended Bus Timing Registers
340 io0ebt 360 iolebt 380 i02ebt 3A0i03ebt
3CO0io4ebt 3EO io5ebt 400 io6ebt 420 io07ebt
31 11 10 6 5 210
Reserved Zeros
Mnemonic Description

ioebtsum I/0 channel extended bus timing sum

{0, 1, 2, ..., 31} CPU-clock cycles [1f]

ioebtdobe 1/0 channel extended bus timing DOB expansion

{0, 1, 2, ..., 15} CPU-clock cycles [0f]

ioebtcase 1/0 channel extended bus timing CAS extension

{0, 1, 2, 4} CPU-clock cycles [3]

onchp340.wpg

Figure 43. I/O Channel 0-7 Extended Bus Timing Registers

These values compensate for signal propagation, turn-
on, turn-off, device, and other delays in the memory
and I/O systems. They are substituted for the memory
group values, ngXebt , during 1/O channel transfers
and thus must be sufficient for the I/O device, as well
as any memory group with which the 1/O device will
transfer.

i oebt sum

Programmed to contain the sum of i oebt case and
i oebt dobe. This value is used only during the slot
check to compute the total time required for the bus
cycle.

i oebt dobe
Expands the CAS cycle at DOB fall by the specified
time. This parameter is used to compensate for
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memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a
memory read cycle, OE is expanded. If the bus cycle
a is memory write cycle, EWE is expanded and LWE
fall is delayed the specified time.

i oebt case

Extends the CAS cycle by the specified amount after
the unextended CAS time. DOB, OE, EWE and LWE
rise unextended. This parameter is used to allow for
data hold times or to allow for devices to disable their
output drivers. When used in combination with
nmgbt ewe or ngbt eoe, hold or disable times can be
set in most increments of 2X-CPU-clock cycles.
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440 msra Memory System Refresh Address
WRITE ONLY
3130 2221 16 15 210
Reserved 00
Mnemonic Description J
msrra AD [24:11] memory system RAS refresh addr [0]
msrha  AD[30:25] memory system refresh high address [0]
msra31l AD31 memory system refresh address [0]

onchp44w.wpg

Figure 44. Memory System Refresh Address

Contains the next address used for memory-system and those memory groups that are refreshed are set by
refresh. The values are placed on the specified pins ~ NgXrd.

whenr ef r esh executes, and nsr r a is incremented

by one. The timing for a refresh cycle issetby nsrt g,

440 vpudelay VPU Delay Counter Register

READ ONLY

31 0

VPU Delay Counter

onchp44r.wpg

Figure 45. VPU Delay Counter Register

Contains the number of CPU-clock cycles until the  example, to determine if a time-critical task can be
VPU seizesthe bus. The counterisdecrementedonce  completed before the VPU seizes the bus, or to
each CPU-clock cycle. The counter can be used, for ~ measure time in CPU-clock increments.
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460 iodtta I/0 Device Transfer Types A Register

31 8 76543210
Reserved Zeros
Mnemonic Description J

Device Transfer Types io3dtt  1/0 channel 3 device transfer type [0]
0 four-byte byte-transfer io2dtt  1/O channel 2 device transfer type [0)] ———
1 one-byte byte-transfer . .
2 one-cell cell-transfer ioldtt  1/O channel 1 device transfer type [0]
3 llegal io0dtt  1/0 channel 0 device transfer type [0]

onchp460.wpg

Figure 46. I/O Device Transfer Types A Register

480 iodttb I/0 Device Transfer Types B Register

31 8 765 43210
Reserved Zeros
Mnemonic Description J

Device Transfer Types io7dtt  1/O channel 7 device transfer type [0]
0 four-byte byte-transfer io6dtt  1/O channel 6 device transfer type [0)] ————
1 one-byte byte-transfer ) .
2 one-cell cell-transfer io5dtt  I/O channel 5 device transfer type [0]
3 llegal ioddtt  I/O channel 4 device transfer type [0]

onchp480.wpg

Figure 47. /0 Device Transfer Types B Register

Specifies one of three transfer types for the device bus transaction. The transaction consists of a single
attached to the corresponding I/O channel. bus cycle. Transfers to cell-wide memory are to byte
» Four-Byte Byte-Transfer Type: Transfersfour bytes  zero of the addressed cell, with the remaining 24 bits
of data, one byte at a time, between the device and undefined. Transfers to byte-wide memory are to the
memory in a single bus transaction. The transaction specified byte.

consists of four bus cycles accessing the device, plus e One-Cell Cell-Transfer Type: Transfers one cell of
one additional bus cycle to access memory if the  data between the device and memory in a single bus
memory is cell-wide. All initial transfer addresses are  transaction. The transaction consists of one bus cycle
to cell boundaries. to access the device, plus four additional bus cycles
+ One-Byte Byte-Transfer Type: Transfers one byte  to access memory if the memory is byte-wide. All
of data between the device and memory in a single initial transfers are to cell boundaries.
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Reserved Register Addresses

4A0-780

onchp4a0.wpg

Figure 48. Reserved Register Addresses

These addresses are reserved.

7A0 iodmaex DMA Enable Expiration Register

31 8 765 43210
Reserved

Mnemonic Description J
io7dmaex I/0 channel 7 DMA enable expiration [0]
io6dmaex I/0 channel 6 DMA enable expiration [0)] ———
iobdmaex I/0 channel 5 DMA enable expiration [0]
io4dmaex I/O channel 4 DMA enable expiration [0]
io3dmaex I/O channel 3 DMA enable expiration [0]
io2dmaex I/0O channel 2 DMA enable expiration [0]
ioldmaex I/0 channel 1 DMA enable expiration [0]
io0Odmaex I/0 channel 0 DMA enable expiration [0]

onchp7a0.wpg

Figure 49. DMA Enable Expiration Register

Clears the corresponding DMA enable bitini odnae DMA onthe corresponding I/O channel to be disabled
after a DMA 1/O channel transfer is made to the last  after transferring a predetermined number of bytes. See
location in a 1024-byte memory page. This allows Direct Memory Access Controller, page 103.
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7CO drivers Driver Current Register
31 2928 2625 2322 201918171615 0
Reserved
L Mnemonic Description
outdrv bit output pin drive [0]
rashcasbdrv  RAS, CAS pin drive [0]
ctribdrv control B pin drive (RAS, DOB, DSF) [0]
bankxdrv MGSx /RASX, CASx pin drive
ctrladrv control A pin drive (O, EVE, LVE, CAS) [0]
addrv AD pin drive [0]
3-Bit Field 2-Bit Field Where n =

00n 1of3drivers On 1of3drivers 0 1 of 2 pre-drivers

0ln 2of3drivers 1n 2 of 3 drivers 1 2 of 2 pre-drivers

11n 3 of 3 drivers onchp7cowpg

Figure 50. Driver Current Register

Allows programming the relative amount of current
available to drive the various signals out of the
package. The programmed driver current has several
effects.

e Theamountof current selected determinesthe rise
and fall times of the signals into a given load. The rise
and fall times, PWB wire lengths, and PWB construc-
tion determine whether the signals are to be treated
astransmission lines, and whether signal terminations
are required.

» Therise and fall of signals affects bus cycle timing
since signal switching consumes time. Slower rise and
fall times might require a slower bus cycle.

e Greater driver current increases di/dt, and thus
increases package and system electrical noise. Though
total power consumption does not change when driver
current is changed (since the same load is charged,
just slower or faster), there is less noise produced
when di/dt is decreased. Reducing output driver pre-
driver current also reduces package and system
electrical noise, and can thus facilitate approval of
electromagnetic compliance for products.

Programmable drivers allow the system designer to
trade among system design complexity, system cost,
and system performance.
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Output drivers consist of a pre-driver and an output
driver. The current-supply capability of each part of
the output driver can be programmed separately. The
low bit of each field selects full- or half-drive capabil-
ity on the pre-drivers for that set of signals. The upper
one ortwo bitsselect 1/3-, 2/3- or full-drive capability.

The pre-drivers are supplied by the core logic power,
and the noise generated by their operation can affect
the performance of the CPU in systems with an
inadequate power supply or decoupling. In such
systems, lowering pre-driver current can possibly
compensate for system design flaws.

The drivers are on two separate power buses: one for
AD and one for control signals and all other output
pins. As a result, inside the package, electrical noise
caused by AD driver switching is prevented from
corrupting the quality of the control signals. This
separation, however, does not preclude noise cou-
pling between the power pins outside the package.
Depending on system loading, the output drivers
account for 50% to 95% of the power consumed by
the CPU, and thus are a potentially large noise source.
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7EO vpureset VPU Reset Register

31

write reset VPU on any write

read Offffffff while waiting to reset, zero otherwise

onchp7e0.wpg

Figure 51. VPU Reset Register

Writing any value causes the VPU to begin executing
at its software reset executable-code vector (location
0x00000010) at the end of the current memory cycle.
This is the mechanism used to clear bit 31 in the VPU
PC after hardware reset, and to direct the VPU to
execute a new procedure. The value of the register is
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-1 during the VPU reset process (i.e., from the time
vpur eset iswritten until the VPU begins execution
of the software reset executable-code vector); other-
wise, its value is zero.

ADVANCE INFORMATION



NOILVINHO4dNI dONVAQAY

APATRIOT PSC1000 Microprocessor

32-BIT RISC PROCESSOR

Table 54. Bit Field to On-Chip Register Cross-Reference

Bit field Register | Bit field Register | Bit-field Register
addrv drivers | i oXout _i i oout | Mmb m sch
bankxdr v drivers | nfltaddr nfltaddr | nsexa3lhac m scc
casbvras vram | nfltdata nfltdata | nsexvhacr m scc
ctrladrv drivers | ngbtcas ngXcasbt | negsm nsgsm
ctrlbdrv drivers | ngbt cast ngXcasbt | nshacd m sca
dsfvcas vram | ngbt dob ngXcasbt | nspwe m scc
dsfvras vram | ngbt eoe ngXcasbt | nsra3l nera
fdrmap m schb | ngbteras ngXrasbt | nsras31ld m sca
i oebt case i oXebt | ngbt ewe ngXcasbt | nsrha nera
i oebt dobe i oXebt | ngbt ewea ngXcasbt | nerra nera
i oebt sum i oXebt | ngbtl wea ngXcasbt | nertg m sca
vpudel ay vpudel ay | ngbtras ngXrasbt | nesbs m scc
vpur eset vpureset | ngbtrast ngXrasbt | nmevgrp vram
i oXdrmae_i i odnae | ngbtrhld ngXrasbt | oed m sch
i oXdrmaex i odmaex | ngebt case ngXebt | oevras vram
i oXdtt iodtta/b | ngebt dobe ngXebt | outdrv drivers
ioXie_i i oi e | ngebt sum ngXebt | pkgio m sch
ioXin_i i oi n | ngXbw m schb | pkgnflt m scc
ioXip_i i oi p | ngXds ngds | rasbhcashdrv drivers
i oXi us_i ioius | ngXrd nm sca | wevras vram
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Bus Operation

The MIF handles requests from all sources for access
to the system bus. Requests arrive and are prioritized,
respectively, from the VPU, DMAC and MPU. This
order ensures that the VPU always has predictable
memory timing, that DMA has bus availability
(because the MPU can saturate the bus), and that
memory coherency is maintained for the MPU.

Operation

To gain access to the bus, the bus address must be
transferred to the MIF and a check made to see if the
bus is available for the time required to complete the
bus transaction. The available bus time is called the
slot and the process checking is called the slot check.
This bus request process takes two CPU-clock cycles
at the beginning of each bus transaction. Memory-
reference MPU and VPU instructions always overlap
one cycle of instruction execution with the bus access
process. DMA operation can overlap both cycles of
the bus request process with a preceding MPU bus
transaction. Thus, except for DMA overlapped with an
MPU bus transaction, there are two CPU-clock cycles
of no activity on the bus preceding each bus transac-
tion. Instruction execution times listed include the bus
request and programmed bus transaction time as part
of the entire memory reference time.

The MIF must always grant the bus to the VPU
immediately when requested in order to guarantee
temporally deterministic VPU execution. To allow this,
the VPU has exclusive access to the bus except when
it is executing del ay. When a DMA or MPU bus

Table 55. Slot Check Computation

Table 56. Bus Access Priorities

(Highest)
VPU
DMA:
I/O Channel O
I/O Channel 1
I/O Channel 2
I/O Channel 3
I/O Channel 4
I/O Channel 5
I/O Channel 6
I/O Channel 7
MPU:
Posted write
Instruction pre-fetch
Local-register stack spill or refill
Operand stack spill or refill
| d/st
Instruction fetch
(Lowest)

request is made, the MIF prioritizes the request,
determines the type of bus transaction, computes the
slot required (see Table 55), and compares this to
vpudel ay—the amount of time before the VPU
seizesthe bus. Ifvpudel ay is zero, the VPU currently
has the bus. If vpudel ay is larger than the value
computed for the bus transaction, the bus is granted
to the requestor. Otherwise, the bus remains idle until
a bus request occurs that can be satisfied, or until the
VPU seizes the bus. Once a bus request has passed
the slot check, the bus transaction begins on the next
CPU-clock cycle.

The slot check computation is an estimate because for
I/O channel bus transactions i oXebt is used for all

For MPU bus transactions:

For 1/0O-channel bus transactionst:

((number of RAS cycles) - ngbt r ast ) + ((number of bus cycles) - ((ngbt cast + 1) + ngebt sum)

((number of RAS cycles) - ngbt r ast ) + ((number of bus cycles) - ((ngbt cast + 1) +i oebt sum)
Memory values are for the accessed memory group, and I/O-channel values are for the accessed 1/O channel.

T To simplify calculation, this value is an estimate of the actual required slot. See text.
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parts of the computation even though a mix of
i oXebt and ngXebt times might be used during the
transaction. The effect of this simplified computation
is that the slot requested might be larger than the bus
time actually used. The bus becomes immediately
available for use when the actual bus transaction
completes.

The address lines out of the CPU are multiplexed to
reduce package pin count and provide an easy
interface to DRAM. DRAMSs have their addresses split
into two pieces: the upper-address bits, or row
address, and the lower-address bits, or column
address. The two pieces of the address are clocked
into the DRAM with two corresponding clock signals:
RAS and CAS. ADJ 31: 0] also output higher-order
address bits than the DRAM row and column ad-
dresses during RAS and CAS times, as well as data
input or output during the last portion of each bus
cycle while DOB is active. Bit outputs and bit inputs
are also available on ADJ 7: 0] .

I/0O Addressing

All the address bits above the s gs mbits are referred
to as the high address bits. These bits are typically
used to address I/O devices with external decoding

Table 57. 1/0-Channel Transfer Characteristics

32-BIT RISC PROCESSOR

hardware. They can be configured to be included in
RAS-cycle determination, or excluded for faster 1/O
cycles, to match the requirements of the external
decoding hardware. See System Requirements
Programming, page 126, for the available configura-
tion options.

Bus Transaction Types

The CPU supports both cell-wide and byte-wide
memory, cell-wide and byte-wide devices, and single-
or multi-bus-cycle transactions. Various combinations
ofthese are allowed; they require one, four, or five bus
cycles to complete the bus transaction, which can
include zero, one, or two RAS cycles. The underlying
structure of all bus cycles is the same. Depending on
the programmed system configuration, device-memory
combination, and current system state, RAS prefix and
CAS parts of bus cycles are combined to provide
correct address generation and memory device
operation. Table 58, page 163, lists the various
combinations of RAS and CAS cyclesthat are possible
within a given bus transaction.

MPU and VPU (non-xf er ) Memory Cycles
The MPU and the VPU can read and execute pro-
grams stored in cell-wide or byte-wide memory. The

Device Width Device Memory Flyby?/ Bus Cycles* | Bits Moved
Transfer Width Buffered?
Type!

byte 0 byte F 4 32
byte 0 cell B 5 32
byte 1 byte F 1 8
byte 1 cell F 1 8
cell 2 byte B 5 32
cell 2 cell F 1 32

1. Refers to device type specified ini odtta ori odtthb.

2. Data is transferred directly between device and memory.

3. Data is stored in the MIF during part of the transfer.

4. The entire sequence of cycles is an atomic bus transaction.
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MPU can also read data from and write data to cell-
wide and byte-wide memory. All accesses to cell-wide
or byte-wide memory involve an entire cell. Accesses
to cell-wide memory thus require one bus cycle, while
accesses to byte-wide memory require four bus cycles.

Cell Memory Write from MPU

Cell Memory Read to MPU/VPU

Table 58 and the referenced figures provide details
regarding these bus transactions. These transactions
require one bus cycle.

Byte Memory Write from MPU

Byte Memory Read to MPU/VPU

Table 58 and the referenced figures provide details
regarding these bus transactions. These transactions
require four bus cycles. Byte address bits A1 and AO
are incremented from O to 3 to address the most-
significant through the least-significant byte of the
accessed cell.

I/O-Channel Transfers

Depending on the device transfer type and memory
device width, a variety of bus cycle combinations
occur between 1/0O devices and memory, as shown in
Table 57. The starting address for the transaction
comes from the global register that corresponds to the
I/O channel involved (g8 corresponds to 1/0O channel
0, ..., g15 corresponds to 1/0O channel 7). The direc-
tion of the transfer relative to memory is indicated by
bit one of the same register. See Figure 16, page 104.
The device transfer type for the transaction comes from
the corresponding field ini odtta ori odttb. The
bus transaction proceeds with the cycles and strobes
listed in Table 58.

Cell Memory Write from Four-byte Byte-transfer
Device

Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from the device and
stored in the MIF during the first four bus cycles, and
is written to memory by the MIF during the fifth bus
cycle. Data that is written to memory while being
collected from the device during the first four bus
cycles is replaced during the fifth bus cycle. A31 is
cleared to deselect the 1/O device in order to prevent
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contention with the MIF during the fifth bus cycle.
Byte address bits A1 and AO are incremented from O
to 3 to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred from the device.

Cell Memory Read to Four-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from memory and
stored in the MIF during the first bus cycle and written
to the device by the MIF during the last four bus
cycles. OE is suppressed during the last four bus
cycles to prevent bus contention between memory
and the MIF while the device is written. A31is cleared
to deselect the I/O device in order to prevent conten-
tion with memory during the first bus cycle. Byte
address bits A1 and AO are incremented from 0 to 3
to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred to the device.

Byte Memory Write from Four-byte Byte-transfer
Device

Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
four bus cycles. Byte address bits A1 and AO are
incremented from O to 3 to address the most-signifi-
cant through the least-significant byte of the accessed
cell on both the device and memory. The data is
transferred on the bus directly from the device to
memory without the intervention of the MIF.

Byte Memory Read to Four-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
four bus cycles. Byte address bits A1 and AO are
incremented from O to 3 to address the most-signifi-
cant through the least-significant byte of the accessed
cell on both the device and memory. The data is
transferred on the bus directly from memory to the
device without the intervention of the MIF.

Cell Memory Write from One-byte Byte-transfer
Device

Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
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one buscycle. Data is typically supplied by the device
on A 7: 0], and is written to the corresponding bits
in memory. AD[ 31: 8] are also written to memory,
and, if not driven by an external device, still hold the
CAS address bits.

Cell Memory Read to One-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Data is typically taken by the device
from AD[ 7: 0] , which come from the corresponding
bits in memory. The other memory bits are driven by
memory, but are typically unused by the device.

Byte Memory Write from One-byte Byte-transfer
Device

Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Addresses in the global registers
normally address cells because the lowest two bits are
unavailable for addressing. However, for this transac-
tion, the address in the global register is a modified
byte address. That s, the address is shifted left two bits
(pre-shifted in software) to be correctly positioned for
the byte-wide memory connected to AD. The address
is not shifted again before reaching AD. A31 remains
in place, A30 and A29 become unavailable, and the
group bits exist two bits to the right of their normal
position due to the pre-shifting in the supplied address.
This transaction allows bytes to be transferred, one
byte per bus transaction, and packed into byte-wide
memory.

Byte Memory Read to One-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Addresses in the global registers
normally address cells because the lowest two bits are
unavailable for addressing. However, for this transac-
tion, the address in the global register is a modified
byte address. That s, the address is shifted left two bits
(pre-shifted in software) to be correctly positioned for
the byte-wide memory connected to AD. The address
is not shifted again before reaching AD. A31 remains
in place, A30 and A29 become unavailable, and the
groups bits exist two bits to the right of their normal
position in the due to the pre-shifting in the supplied
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address. This transaction allows bytes to be trans-
ferred, one byte per bus transaction, and unpacked
from byte-wide memory to a device.

Cell Memory Write from One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle.

Cell Memory Read to One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle.

Byte Memory Write from One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from the device and
stored in the MIF during the first bus cycle and written
to memory by the MIF during the last four bus cycles.
Data that is written to memory while being collected
from the device during the first bus cycle is replaced
duringthe second cycle. A31is cleared to deselectthe
I/O device in order to prevent contention with the MIF
during the last four bus cycles. Byte address bits A1
and AO are incremented from O to 3 to address the
most-significant through the least-significant byte of
the accessed cell while the data is being transferred
from the MIF to memory.

Byte Memory Read to One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from memory and
stored in the MIF during the first four bus cycles and
written to the device by the MIF during the last bus
cycle. OE is suppressed during the fifth bus cycle to
prevent a bus contention between the memory and
MIF while the device is written. A31 is cleared to
deselect the I/O device in order to prevent contention
with memory during the first four bus cycles. Byte
address bits A1 and AO are incremented from 0 to 3
to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred from the memory to the MIF.
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Bus Reset

External hardware reset initializes the entire CPU to the
power-on configuration, except for power _fail in
node. While the reset is active (external or power-on self-
reset), the AD go to a high-impedance state, QUT[ 7: 0]
go high, RASes go active, and all other outputs go
inactive. See Figure 73, page 205, for waveforms.

Video RAM Support

VRAMs increase the speed of graphics operations
primarily by greatly reducing the system memory
bandwidth required to display pixels on the video
display. AVRAM command is used to transfer an entire
row of data from the DRAM array to an internal serial
access memory to be clocked out to the video display.
VRAMs also support other commands to enhance
graphics operations. The VRAM operations are encoded
by writing vr amand performing an appropriate read
or write to the desired VRAM memory address. Basic
timing for VRAM bus cycles is the same as any similar
bus transaction in that memory group. See Figure 32,
page 137. Refresh and RAS cycles might also affect
VRAM operations. See Video RAM Support, page 125.
Waveforms representing the effects of the various vr am
options are on page 215.

Virtual-Memory Page Faults Input

The MIF detects memory page faults that are caused
by MPU memory accesses by integrating fault
detection with RAS cycles. The mapped page size is
thus the size of the CAS page. The memory system
RAS page address is mapped from a logical page
address to a physical page address during RAS
precharge through the use of an external SRAM. A
memory fault signal supplied from the SRAM s
sampled during RAS fall and, if low, indicates that a
memory page fault has occurred. See Figure 52. The
memory fault signal is input from MFL T or AD8. See
Alternate Memory Fault Input, below.

When a memory fault is detected, the bus transaction
completes without any of the signals that normally go
active during the CAS part of the bus cycle. A memory
fault exception is then signaled to the MPU, which
executes a trap to service the fault condition. See
Figure 77, page 212, for waveforms.
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Figure 52. Virtual-Memory Page Mapping Logic

Alternate Inputs and Outputs

The bit inputs, bit outputs, memory fault input, and
reset input can be multiplexed on ADrather than using
the dedicated pins. This feature can be used to reduce
the number of tracks routed on the PWB (to reduce
PWB size and cost), and can allow the PSC1000 CPU
to be supplied in smaller packages. See Figure 81,
page 218, for waveforms.

Alternative Bit Inputs

The bit inputs can be sampled either from T N[ 7: 0]
or from ADJ 7: 0] while RAS is low and CAS is high.
The source is determined by pkgi 0. See Figure 34,
page 140, and Bit Inputs, page 111.

Alternative Bit Outputs

The bit outputs appear both on QUT[ 7: 0] and on
A 7: 0] while RAS is high. Since they appear in
both places, no selection bit is required. See Bit
Outputs, page 115.

ADVANCE INFORMATION
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Alternative Memory Fault Input Alternative Reset Input

The memory fault signal can be sampled either from External hardware reset can be taken either from

MFLT or from ADS8 during RAS fall. The source is RESET or from ADB; the determination is made at

determined by pkgnf | t . See Figure 39, page 145. power-on. The power-on and reset sequence is
described in detail in Processor Startup, page 181.
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Table 58. RAS/CAS Bus Transactions

Cell Memory Byte Memory
Ch”o- | Write to Memory |Read from Memory| Write to Memory |[Read from Memory
; anne
Device
TrTay”pS(:fr 2;’;6 4 |1|2]|3]|4|5|2|2|3]4|5]1|2(3(4|5|1|2|3|4]|5
R R R R
cycle® M M M ¢, C, C Mc, C, C
/ , CM CM CM M M M CM M M M
MPU/VPU i strobe* | w ) wow w w 0 0 0 O
See Figure 53 Figure 54 Figure 55 Figure 56
R Ry IRy R R R
cycle? 'c cc, MM e c cll Ccoc C ''Cc Cc C
four-byte y c, & Me,le,c Tt Mg c ™
byte-f 0 strobe* |w w w w wflo - - - “Tjlw w w w 0o 0 0 O
transfer
device A31° a a a a 0|0 a a a ala a a a a a a a
See Figure 57 Figure 58 Figure 59 Figure 60
ooet | R R, R, R,
one-byte G G G G
byte- 1 strobe* | w 0 w 0
transfer
device A31° a a a a
See Figure 61 Figure 62 Figure 63 Figure 64
R R R, R R R
cycle® : : t'Mc,CyCulMC, C, Cy A
one-cell G G c,Cy "™ ™c, ™M™ ¢
byte-f 2 strobe* | w 0 wwwww|o oo o -°
transfer
device A31° a a a 0 00 0l0O OO0 O a
See Figure 65 Figure 66 Figure 67 Figure 68
Notes:

1. I/0O-channel transfer type ini odtt a and i odt t b.

2. VPU does not write to memory.

3. Indicates on which bus cycle RAS or CAS cycles are possible. Presence of a RAS cycle depends on system
conditions. R, or C, indicates that the bus cycle uses i oXebt timing values, R,, or C,, indicate that the bus cycle
uses ngXebt timing values.

. Active strobe during cycle (w is EWE/LWE, o is OE, — is no active strobe).

5. A31 selects the I/O device when set, deselects the 1/O device when clear (a = program-supplied value, 0 =

forced to zero).

6. Data is collected from the device and stored in the MIF during the first four cycles, and is written to memory by

the MIF during the fifth cycle. Data written during first four cycles is replaced during the fifth cycle.

7. Data is collected from memory into the MIF during the first cycle and written to the device by the MIF during the

last four cycles. OE is suppressed during the last four cycles to prevent memory from driving the bus.

8. Data is collected from the device and stored in the MIF during the first cycle, and is written to memory by the MIF

during the last four cycles. Data written to memory during the first cycle is replaced during the second cycle.

9. Data is collected from memory into the MIF during the first four cycles, and is written to the device by the MIF

during the last cycle. OE is suppressed on the fifth cycle to prevent memory from driving the bus.

N
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T Presence of RAS inactive period depends on system conditions.
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Figure 53. Cell Memory Write from MPU
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AD8 Reset X Fault’ X Reset ) < Data from Memory to CPU ) < Reset
AD[ 30: 9] < RAS Address Bits' XCAS Address BitsX Data from Memory to CPU )
AD31 < Address Bit X Data from Memory to CPU >

T Presence of RAS inactive period depends on system conditions.
mpucellr.wpg

Figure 54. Cell Memory Read to MPU/VPU
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Figure 55. Byte Memory Write from MPU

166



Bus Operation APATRIOT

PSC1000 MICROPROCESSOR

=
e
e O R e AR N A e I e
AD8 ResetanX Reset) <Reset> <Reset> <Reset> (
AD[ 30: 9] <RAS*X CAS > < CAS > <CAS >

AD31 < Address Bit > <Address> <Address> <Address>

Bit Bit Bit

CAS >

T Presence of RAS inactive period depends on system conditions.
mpubyter.wpg

Figure 56. Byte Memory Read to MPU/VPU
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Figure 57. Cell Memory Write from Four-byte Byte-transfer Device
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Figure 58. Cell Memory Read to Four-byte Byte-transfer Device
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Figure 59. Byte Memory Write from Four-byte Byte-transfer Device
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Figure 60. Byte Memory Read to Four-byte Byte-transfer Device
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Figure 61. Cell Memory Write from One-byte Byte-transfer Device

172



Bus Operation APATRIOT

PSC1000 MICROPROCESSOR

| ' |
s \ /
DOB
CE
|
we_
AD[ 7: 0] BitlnputsX Bit OutputsTX Bit Inputs ) < Data from Memory to Device ) ( Bit Inputs
AD3 Reset) < Reset ) < Data from Memory (unused) ) < Reset
AD[ 30: 9] < RAS Address Bits' XCAS Address BitsX Data from Memory (unused))
AD31 < Address Bit X Data from Memory (unused))
T Presence of RAS inactive period depends on system conditions.
iolcellr.wpg

Figure 62. Cell Memory Read to One-byte Byte-transfer Device
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Figure 63. Byte Memory Write from One-byte Byte-transfer Device
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Figure 64. Byte Memory Read to One-byte Byte-transfer Device
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Figure 65. Cell Memory Write from One-cell Cell-transfer Device
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Figure 66. Cell Memory Read to One-cell Cell-transfer Device
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Figure 67. Byte Memory Write from One-cell Cell-transfer Device
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Figure 68. Byte Memory Read to One-cell Cell-transfer Device
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Processor Startup

Power-on Reset

The CPU self-resets on power-up (see Reset Process,
below). The CPU contains an internal circuit that holds
internal reset active and keeps the processor from
running, regardless of the state of the external hard-
ware reset, until the supply voltage reaches approxi-
mately 3 V. Once the supply reaches 3V, RESET is
sampled and, if active, is used as the source of external
reset for the CPU. Otherwise, external reset is multi-
plexed on AD8. This determination applies until power
is cycled again. If one of the resets is active, the CPU
waits until that reset goes inactive before continuing.
If neither reset source is active, the processor immedi-
ately begins the reset sequence. The clock input at
CLK, therefore, must be stable before that time.

During the power-on-reset process, the nmode bit
power fail is set to indicate that the power had
previously failed. The bit is cleared by any write to
node.

Boot Memory

The CPU supports booting from byte-wide memory
that is configured as either an OE-activated or boot-
only memory device. The boot-only memory configu-
ration is primarily used to keep the typically slow boot
EPROMSs out of the heavily used low-address memory
pages.

Boot-only memory is distinct from OE-activated
memory inthat it is wired into the system to place data
on the bus without the use of OE or memory bank- or
group-specific (RASx or CASx) signals. OED is
initially set during a CPU reset to disable OE during
the boot-up process to allow the described operation.
The boot-only memory select signal is externally
decoded from the uppermost address bits that contain
0x800.... The number of uppermost address bits used
depends on the system’s I/O device address decoding
requirements. The lowest address bits are connected
so as to address individual bytes and cells as they are
for a normal memory. Thus the boot-only memory
device can be selected regardless of which memory
group is accessed.
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Reset Process

When reset occurs, the CPU leaves on-chip RAM
uninitialized and clears most registers to zero, except
for strategically placed bits that assist in the reset
sequence. Specifically, the CPU resets to the most
conservative system configuration. See Table 59. The
nmode bit power _f ai | is set only by the power-on-
reset process and can be checked to determine
whether the reset was caused by a power failure or
reset going active.

The first bus transaction after reset is a cell read of four
bytes from byte-wide memory in memory group zero,
memory bank zero, starting from addresses
0x80000000, with OE disabled, in SMB mode. This
address consists of 1/O device address 0x800... and
memory device address Ox...N. Because OE is
disabled, OE-activated memory does not respond,
thus allowing a boot-only memory to respond.

The CPU tests the byte returned from address
0x80000003. If the byte is Oxa5 then a boot-only
memory responded and execution continues with OE
disabled. Otherwise, a boot-only memory did not
respond, and the CPU assumes booting occurs from
OE-activated memory. The CPU then clears CED to
activate OE for this memory to respond on subsequent
bus cycles.

Bootstrap Programs

With either boot-only or OE-activated memory, bus
accesses continue in SMB mode from the byte-wide
memory device. The second bus transaction is to the
hardware reset address for the VPU at 0x80000004.
This typically contains a junp to a small
r ef resh/del ay loop. The del ay makes the bus
available and allows the MPU to begin executing at
its reset address, 0x80000008. The programmer must
ensure that the delay value programmed in the VPU
is sufficient to allow the MPU on the bus with the very
slow byte-wide bus transactions that default after reset.

If the system is wired in MMB mode, booting is
simpler from a boot-only memory. Booting from OE-
activated memory is also possible, but requires
external gating to prevent bank zero of memory

ADVANCE INFORMATION
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groups one, two, and three from being selected when
memaory group zero is accessed.

Next, the MPU begins executing and typically is
programmed to branch to the system bootstrap
routine. The MPU bootstrap is programmed to:

» set the configuration registers required for the
system hardware,

e set the software reset vector for the VPU,

e copy the initial MPU and VPU application
programs from the boot device into memory (if
required),

» branch to the application program for the MPU,
and

» reset the VPU in software to begin VPU program
execution (if required).

System startup is now complete.

The following pages describe several startup configu-
rations. For actual code see Example PSC1000 CPU
System, page 187. The configurations described below
are:

» Bootfrom byte-wide boot-only memory and copy
the application program to cell-wide R/W memory.
» Boot from cell-wide boot-only memory and copy
the application program to cell-wide R/W memory.
» Boot and run from byte-wide memory.

» Boot and run from cell-wide memory.

Boot from Byte-Wide Boot-Only Memory and Copy
the Application Program to Cell-Wide R/W Memory
This process requires external decoding hardware to
cause the boot-only memory to activate as previously
described.

To indicate that boot-only memory is present, the
memory must have Oxa5 at location 0x80000003
(typically 0x000000a5 in the cell at 0x80000000).
This signature byte must be detected at startup to
continue the boot process from a boot-only memory.

Construct the boot program execution sequence to be
as follows:

1. The VPU executes JUVP from its power-on-reset
location to code that performs eight RAS cycles on

182

32-BIT RISC PROCESSOR

each memory group (by performing refresh cycles) to
initialize system DRAM. It then enters a micro-loop
that includes r ef resh for DRAM, and del ay to
allow the MPU to execute. The micro-loop repeats
r ef resh and del ay, and eliminates VPU accesses
to the bus for further instructions during configuration.
del ay allows the MPU bus access to begin configur-
ing the system before more refresh cycles are required.
The refresh cycles are not required if the system does
not contain DRAM.

2. The MPU executes br from its reset location to the
program code to configure the system. The br should
contain bits that address memory group three. This
later allows the configuration for memory group three
to be used for boot-only device access timing while
memory groups zero, one and two are programmed
for the system timing requirements. Although memory
group one or two could be used instead of three in the
manner described herein, only memory group three
is discussed for simplicity.

The MPU configuration program code must be
arranged to hold off instruction pre-fetch so that the
configurations of the current memory group and the
global memory system are not changed during a bus
cycle. See the supplied example boot code on page
191.

3. When programming mi scb, set b if required. In
systems wired for MMB mode this allows RAS-type
cycles to occur properly on all memory groups.

4. Set mrsgsmto define four memory groups, even if
the system ultimately does not have them. During the
next instruction fetch the boot-only memory is again
selected. However, the address bits for memory group
three placed in the PC by br in step two cause the
configuration for memory group three to be used.

5. Program the timing of memory group three to
optimize access to the boot-only memory. Then
program the remainder of the system configuration.
During this process the VPU typically performs three
or so sets of refresh cycles. Though it is possible that
the MPU will be changing pertinent configuration
registers during the refresh cycles, it is very unlikely
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due to the long bus cycle times of EPROMs typically
used for boot-only memory. Further, the worst result
isinappropriate timing on asingle refresh cycle, which
is of little actual consequence since there is no data
yet in DRAM to be protected.

If memory group three is used by the application, it
must be configured later from the loaded application
code.

6. Read the final boot code (if any) and the application
program from the boot-only memory and write them
to the appropriate locations in R/W memory. The
entire application program can be loaded into R/W
RAM, except for that part, if any, that is destined for
memory group three, where the boot-only memory is
running. This must be copied by the application once
it is running.

7. Layout a single instruction group that contains
programming to clear CED and to branch to the
application program. Using br [] clears A31 so that
the boot-only memory does not activate at the branch
destination.

8. Now the application program is executing. Config-
ure memory group three, if required. If loading
memory group three from the boot-only memory is
necessary, then arrange the code between two
instruction groupsto firstensure pre-fetch iscomplete,
then set OED, then execute a micro-loop to transfer the
application to memory group three, and reenable OED
when the micro-loop completes.

9. Reset the VPU in software to begin execution of its
application program. A software reset of the VPU
causes it to begin executing at 0x10, and as a result
clears A31 from the VPU PC so the boot-only memory
is no longer selected.

The boot process is complete.

Boot from Cell-Wide Boot-Only Memory and Copy the
Application Program to Cell-Wide R/W Memory
This process requires external decoding hardware to
cause the boot-only memory to activate as previously
described.

183

The CPU always initially boots from byte-wide
memory since this is the reset configuration. The CPU
executes instructions from the low byte of each
address until the configuration for the current memory
group is programmed to be cell wide. Up to this point,
the upper 24 bits of the boot-device data are unused.
The boot process is otherwise the same as booting
from byte-wide boot-only memory, except that at step
3, when writing m scb, also set memory groups zero
and three to be cell-wide. In the instruction group with
the st 0 to ni scb place a br to the next instruction
group. This holds off pre-fetch so that the next
instruction fetch is cell-wide. Note that the boot
program must be carefully programmed so that the
instructions before the br are represented as byte-
wide and after the br are represented as cell-wide.
The Patriot linker has a section directive, CELLBOOT,
to create the appropriate initial section.

Boot and Run from Byte-Wide Memory

This process requires the boot/run memory device to
be activated by MGSO/RASO/CASO0. A3l is nhotused
when selecting the boot/run memory.

To indicate that OE-activated memory is present, the
memory must not respond with Oxa5 at location
0x80000003 when OE is not asserted. The lack of this
signature byte is detected at startup to indicate that OE
is required to continue the boot process. CED is set
during a CPU reset to disable CED during the boot-up
process, and cleared when the signature byte 0xa5 is
not detected, re-enabling OE.

Construct the boot program execution sequence to be
as follows:

1. The VPU executes JUVMP from its power-on-reset
location to code that performs eight RAS cycles on each
memory group (by performing refresh cycles) to initialize
system DRAM. It the enters a micro-loops that includes
r ef r esh for DRAM, and del ay to allow the MPU to
execute. The micro-loop repeatsr ef r eshanddel ay,
and eliminates accesses by the VPU to the bus for further
instructions during configuration. del ay allows the MPU
bus access to begin configuring the system before more
refresh cycles are required. The refresh cycles are not
required if the system does not contain DRAM.
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2. The MPU executes br from its reset location to the
program code to configure the system.

The MPU configuration program code must be
arranged to hold off instruction pre-fetch so that the
configurations of the current memory group and the
global memory system are not changed during a bus
cycle. See the supplied example boot code on page
191.

3. When programming i scb, set mrb if required. In
systems wired for MMB mode this allows RAS-type
cycles to occur properly on all memory groups.

4. Program the timing of memory group zero to
optimize access to the memory. Then program the
remainder of the system configuration. During this
process the VVPU typically performs three or so sets of
refresh cycles. Though it is possible for the MPU to be
changing pertinent configuration registers during a
refresh cycle, it is very unlikely due to the long bus
cycle times of EPROMs. Further, the worst result is
inappropriate timing on a single refresh cycle, which
is of little actual consequence since there is no data
yet in DRAM to be protected.

5. Reset the VPU in software to begin execution of its
application program, if needed. A software reset of the
VPU causes it to begin executing at 0x10, and as a
result clears A31 from the VPU PC.

6. Begin execution of the application program.

The boot process is complete.
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Boot and Run from Cell-Wide Memory

This process requires the boot/run memory device to
be activated by MGSO/RASO/CASO. A31isnotused
when selecting the boot/run memory.

The CPU always initially boots from byte-wide
memory since this is the reset configuration. The CPU
executes instructions from the low byte of each
address until the configuration for the current memory
group is programmed to be cell wide. Up to this point,
the upper 24 bits of the boot-device data are unused.
The boot process is otherwise the same as booting and
running from byte-wide memory, except that at step
3, when writing ni scb, also set memory group zero
to be cell- wide. In the instruction group with the st o
to m scb place a br to the next instruction group.
This holds off pre-fetch so that the next instruction
fetch is cell-wide. Note that the boot program must be
carefully programmed so that the instructions before
the br are represented as byte-wide and after the br
are represented as cell-wide. The Patriot linker has a
section directive, CELLBQOOT, to create the appropriate
initial section.

Stack Initialization

After CPU reset both of the MPU stacks are uninitializ-
ed until the corresponding stack pointers are loaded.
This should be one of the first operations performed
by the MPU.

After a reset, the operand stack is abnormally empty.
Thatis, s2 has not been allocated, and is allocated on
the first push operation. However, popping this item
causes the stack to be empty and require a refill. The
first pushed item should therefore be left on the stack,
or sa should be initialized, before the operand stack
is used further.
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i oebt sunt Ox1f i oebt dobe 0xOf
The CPU reset conditions produce the following configuration:
Stacks uninitialized.
All interrupts, traps, faults, DMAs, and DMA expirations disabled.

Posted writes disabled.

Cause RAS cycle when A31 = 1.

Cause RAS cycle when high address bits change.
A31 included in high-address-bit compare.

Input bits taken from the bus.

Memory fault taken from ADS.

‘OE disabled.

All memory groups are byte-wide.

All memory device sizes set to SRAM.

cycles.

Revolving DMA priorities.
Device transfer types all set to four-byte byte-transfer devices.

Uninitialized
s2-s17 sdepth rl-r15 | dept h gl-gl5
Initialized Zero
sO-s1 ro g0 X ct
i odmae m sca nfltaddr nfltdata nsgsm
iodtta iodtth i odmaex drivers
Initialized Non-zero
sa Oxfffffffc I a Oxfffffffc ioin  Oxff i oout Oxff
vram
nsvgrp 0x03 dsfvcas zero dsfvras
WevVr as zero oevr as zero
m scb
nmb zero f drmap zero pkgi o
ng3bw one ng2bw one nglbw
ngds
ng3ds OxOf ng2ds OxOf nglds
ngXebt
ngebt sunt  Ox1f ngebt dobe 0OxOf ngebt case
nmgXcasbt
ngbt cas 0x07 ngbt dob OxOf ngbt cast
ngbt | wea zero ngbt ece zero ngbt ewe
ngXr asbt
ngbtrast  Ox1f ngbt r as OxOf ngbtrhld
i oXebt

ioip i oi us ioie
m scc nera vpudel ay
node  0x00004000
zero casbvras zero
zero oed one
one ngObw one
OxOf ngOds OxOf
0x03
Oxaf ngbt ewea one
zero
0x0e ngbt eras zero

i oebt case 0x03

VRAM memory group set to memory group three, no VRAM options set.
VRAM memory group included in high address bit compare caused RAS cycles.
Refresh enabled on all groups using memory group zero timing, refresh address bits starting at zero.

Single memory bank per memory group (SMB) mode with one memory group.

Memory bus cycles set for maximum length, actual CAS cycle length set to 51 CPU-clock cycles with CAS
precharge of eight 2X-CPU-clock cycles (* xxebt sumregisters set to maximum, which requests a slot larger
than actually required), CAS address hold time of eight 2X-CPU-clock cycles, EWE fall at CAS fall, memory
write data setup time to LWE fall of 15 CPU-clock cycles, memory write data setup time to EWE and LV\E
rise of 39 CPU-clock cycles, OE active time of 39 CPU-clock cycles, data hold time/buffer disable time of
four CPU-clock cycles, RAS precharge of 16 CPU-clock cycles, RAS address hold time of 14 CPU-clock

All I/O-channel timings set for maximum length (the same bus cycles as memory above).
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Example PSC1000 CPU Systems

Example System 1

Figure 69 depicts a minimal system with an 8-bit wide
EPROM in memory group zero, and 256K of 8-bit-
wide DRAM in memory group one. Memory group
zero and memory group one must be configured with
timing appropriate for the devices used, and nglds
set to 0x02 (256K DRAM). Otherwise, the default
system configuration is suitable. The system can boot
and run directly from the EPROM, or, since EPROMs
are generally slower than DRAM, can copy the
EPROM into DRAM for faster code execution.

Example System 2

Figure 70 depicts a minimal system with 32-bit-wide
DRAM in memory group zero, an 8-bit-wide EPROM
as a boot-only memory device, and an I/O address
decoder. The I/O address decoding is performed by
a74HC137, a 3-to-8 decoder with latch. The decoder
is wired to supply four device selects when A31 is set,
and another four when A31 is clear. The sets of four
selects are latched during RAS precharge and enabled
during CAS active. They are decoded from A30 and
A29 when a 32-bit-wide memory group is involved
and from A28 and A27 when an 8-bit-wide memory
group is involved. The device select with A31 set and
the other decoded address bits clear is used to select
the EPROM as a boot-only memory device.

The EPROM must be programmed with Oxa5 at
location 0x80000003 (typically 0x000000a5 at
location 0x80000000). Memory group zero must be
configured with timing appropriate for the devices
used, ngObwset to zero (cell wide), and ng0ds set to
0x02 (256K DRAM). Since RASIis used to latch the I/O
address, msr as31d, nshacd and nsexa31hac must
remain in their default configuration of clear.
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Example System 3

Figure 71 depicts a system with 32 KB of 32-bit-wide
SRAM in memory group zero, 1 MB of 32-bit-wide
DRAM in memory group one, an 8-bit-wide EPROM
as a boot-only memory device, and an 1/O address
decoder. Address latching of the CAS address for the
SRAM is performed by two 74ACT841 transparent
latches. The address inputs of the DRAM and EPROM
are also connected to the outputs of the latches,
though they could have been connected to the
corresponding ADinstead. The 1/O address decoding
is performed by a 74FCT138A, a 3-to-8 decoder, using
the latched CAS address bits. The decoder is wired to
supply eight device selects when A31 is set. The
selects are enabled during CAS active. They are
decoded from A30 and A29 when the DRAM memory
group is involved and from A20 and A21 when the
SRAM memory group is involved. Since the EPROM
is 8-bit-wide, the selects are decoded from A18 and
A19 when accessing the EPROM. The device select
with A31 set and the other decoded address bits clear
is used to select the EPROM as a boot-only memory
device.

The EPROM must be programmed with Oxa5 at
location 0x80000003 (typically 0x000000a5 at
location 0x80000000). The memory groups must be
configured with timing appropriate for the devices
used, ngObw and nglbw set to zero (cell wide),
ng0ds set to Ox0f (SRAM), and nglds set to 0x02
(256K DRAM). Since RAS is not used to latch the 1/O
address, msr as31d, nshacd and nsexa31hac can
be set to reduce the number of RAS cycles involved
in 1/O.
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Figure 69. Example Minimal System with 8-bit Memory
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Figure 70. Example Minimal System with 32-bit DRAM and I/O Decoding
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Figure 71. Example System with SRAM, DRAM and I/0 Decode
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PSC1000 MICROPROCESSOR

Electrical Characteristics

Power and Grounding

The PSC1000 CPU is implemented in CMOS for low
average power requirements. However, the high
clock-frequency capability of the CPU can require
large switching currents of as much as eleven amperes,
depending on the output loading. Thus, all Vcand Vsg
must be connected to planes within the PWB (printed
wire board) for adequate power distribution.

The switching current required by ¢V and cVgg is
characterized by the internal clock and output driver
pre-drivers. The internal clock requires approximately
500 mA with significant 5-GHz frequency components
every clock transition. The output driver pre-drivers
require as much as 3 A with significant 1-GHz
frequency components every output transition. The
CPU has on-chip capacitance to supply the high-
frequency components. Package diagrams indicate
which of ¢V, and cVs are closest to the internal
clock drivers and PLL.

The switching current required by ctrl V, and
ctrl Vg is characterized by the supplied output
drivers and externally attached loads. Assuming a
worst-case average load of 100 pF and 16 pins
switching at once, these drivers require 2.67 A with
significant 300-MHz frequency components every
output transition. Switching-current requirements
reduce substantially linear manner with a reduction
in external loading.

The switching power required by adVy. and adVgg is
characterized by the supplied output drivers and
externally attached loads. Assuming a worst-case
average load of 100 pF and 32 pins switching at once,
these drivers require 5.33 Awith significant 300-MHz
frequency components every output transition.
Switching-current requirements reduce substantially
linear manner with a reduction in external loading.

Power Decoupling

Due to the switching characteristics discussed above,
power decoupling at the CPU is typically required.
Surface-mount capacitors with low ESR are preferred.
Generally, smaller-physically-sized capacitors have

199

better frequency characteristics (i.e., lower series
inductance, resulting in higher self-resonance fre-
quency) than larger physically-sized capacitors. PWB
board construction using FR-4 with power and ground
layer spacing of 10 mils or less supplies the best high-
frequency decoupling (typically about 100 pF/in?).
Connections to the power and ground planes must be
as short as possible. Proper power and ground plane
connections and appropriate decoupling also reduces
EMC problems.

The charge supply required from the decoupling
capacitors can be calculated from the relation C =
I/(fAV), where | is the current required, f is the
frequency, and AV is the allowed voltage drop,
typically .1 V. Thus, ¢V and ¢V require 1000 pF
for the internal clock and .03 wF for the output driver
pre-drivers, whilect r | Vocandct r | Vsstogether with
adVq and adVgg require .24 uF. These requirements
can be met with four .1 uF X7R capacitors, one on
each side of, and on the same side of the PWB, as the
CPU, as close to the package as practical.

Note that mounting capacitors on the same PWB
surface as the PSC1000 CPU package can allow
connecting traces of about 25 mils in length, while
mounting capacitors on the opposite PWB surface
requires traces of over 100 mils in length. At the
switching frequencies listed, the difference in trace
lengths creates significant differences in decoupling
effectiveness. The package and capacitor power and
ground connections would optimally be fabricated
with VIP (via-in-pad), if possible, for the same reasons.

Connection Recommendations

All output drivers are designed to directly drive the
heavy capacitive loads of memory systems, thus
minimizing the external components and propagation
delays associated with buffering logic. However, with
increased loading comes increased power dissipation,
and trade-offs must be made to ensure that the
PSC1000 CPU operating temperature does not exceed
operating limitations. Systems with heavy CPU bus
loads might require heat sinks or forced air ventilation.
Note that reducing output driver current does not
reduce total power dissipation because power
consumption is dependent on output loading and not

ADVANCE INFORMATION
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on signal transition edge rates. See Figure 50, page
154.

To reduce system cost, most inputs have internal
circuitry to provide a stable input voltage if the input
is unused. Thus, most unused inputs do not require
pull-ups.

Clock

The PSC1000 CPU requires an external CMOS
oscillator at one-half the processor frequency. The
oscillator is doubled internally (CPU-clock cycle) to
operate the MPU and the VPU, and doubled again to
provide fine-granularity programmable bus timing (2X-
CPU-clock cycle).

Inexpensive oscillators typically have guaranteed duty
cycles of only 55/45 or 60/40. The narrower half of the

200

32-BIT RISC PROCESSOR

clock cycle represents the clock period at which the
CPU appearsto be operating. An 80-MHz CPU is thus
be limited with a 60/40 oscillator to 64 MHz (32 MHz
externally), because with a 64 MHz CPU-clock the
40% clock period is 12.5 ns. Thus oscillator selection
and qualification is an important factor in processor
performance.

The CPU-clock frequency selected depends on appli-
cation and system hardware requirements. A clock
frequency might be selected for the VPU to produce
appropriate application timing, or for the MIF to
optimize bus timing. For instance, if the system
requires a 40 ns bus cycle, it might be more efficient
to operate at 75 MHz with a three CPU-clock cycle
long bus cycle (40 ns) than to operate at 80 MHz with
a four CPU-clock cycle long bus cycle (50 ns).



Electrical Characteristics

PSC1000 MICROPROCESSOR

Absolute Maximum Ratings

Table 60. Absolute Maximum Ratings

A
ZYPATRIOT
SCIENTIFIC CORPORATION

Characteristic Symbol | Min Max | Unit Notes
Core Logic Supply Voltage CVcc -0.5 +7.0 \% 1
Control Driver Supply Voltage ctrlVec -0.5 +7.0 \% 1
AD Driver Supply Voltage adV . -0.5 +7.0 \% 1
DC Input Voltage V, -0.5 +7.0 \%
DC Output Voltage Vo -0.5 +7.0 \% output Hi-Z
-0.5 | V105 \% output driven

DC Input Diode Current I -50 mA V, < Vg
DC Output Diode Current lok -50 mA

+50 mA
Storage Temperature Tsrs -65 +150 °C
Case Temperature Under Bias Te -65 +125 °C
Operating Junction Temperature T, -65 +150 °C

Notes:

1. cVgs Ct 1l Vg and adVgg are required to be at the same potential.

Stressing the device beyond Absolute Maximum Ratings can cause the device to sustain permanent damage.
Operating the device beyond Operating Conditions is not recommended and can reduce device reliability.
Functional operation at Absolute Maximum Ratings is not guaranteed.
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Operating Conditions

Table 61. Operating Conditions

PSC1000 Microprocessor

32-BIT RISC PROCESSOR

Characteristic Symbol | Min Max | Unit Notes
Core Logic Supply Voltage CVcc 3.0 5.5 \%
Control Driver Supply Voltage ctrlVec 3.0 5.5 \%
AD Driver Supply Voltage adV . 3.0 5.5 \%
Input Voltage V, 0 5.5 \%
Output Voltage Vo 0 5.5 \% output Hi-Z
0 Vee \% output driven
Output Current lon 180 mA 1
oL 180 mA 1
Input Clock fe 80 MHz
Case Temperature Under Bias Te 0 +85 °C
Free-Air Operating Temperature Ta -40 +85 °C
Input Edge Rate At/AV 0 1 ns/V 2

Notes:

2. Viy = Vibun — ViLmax monotonic

1. Assumes the maximum of three driver sections enabled (at 60 ma each) during signal transitions only.
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DC Specifications

Table 62. DC Specifications

Characteristic Sym- Min Max | Unit Notes
bol
Input Low Voltage V. 0 0.8 \% TTL
0 1.8 CMOS
Input High Voltage \ 2.0 CVcc \% TTL
3.0 CVee V | CMOS
Output Low Voltage Voo 0.4 \% loo =12 mA
2.4 lo, = 45 mA
Output High Voltage Voy \%
Vec-0.4 lo. =12 mA
Input Leakage Current I, +10 uA 0<=V<=V¢c
Output Leakage Current lo +10 uA 0.4<Vqy1<Vcc
Power Supply Current lec 100 mA 1
Input Capacitance Cn 8 pF 2
1/0 or Output Capacitance Cour 10 pF 2
Notes:

1. Under normal operation. Specially constructed programs can draw substantially more current.
2. f. = 1 MHz. Capacitance values are not tested.

Table 63. Input Characteristics

Impedance, Ohms
PIN Input Level Notes
Minimum | Maximum
AD[ 31: O] TTL 25K 50K repeater, V,,
15K 30K repeater, V,
CLK CMOS M must be driven
TN 7:0] TTL M
MFLT TTL Schmitt trigger 250K 500K pull-up
RESET CMOS Schmitt trigger 250K 500K pull-up
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32-BIT RISC PROCESSOR

AC Characteristics

Table 64. CPU-Clock and 2X-CPU-Clock

No. | Characteristic Symbol | Min Max Unit Notes
1 Clock period 125 ns

Stabilization of PLL 10,000 | CPU-Clocks | 3
Notes:

1. CPU-Clock generated from CLK edges.
2. 2X-CPU-Clock intermediate pulse generated with a PLL.

3. Required after RESET inactive before dependance on 2X-CPU-Clock timing.

ax __ [ s /

CPU-
Clock?®

2X-CPU- [] H ] |_| []
Clock?

Figure 72. CPU-Clock and 2X-CPU-Clock

2xe4xpck.wpg
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Table 65. CPU Reset Timing

No. | Characteristic Symbol | Min | Max Unit Notes
1 Reset active time, pin 2 CPU-clocks
2 Reset active to AD Hi-Z 3 4 CPU-clocks | 2
10 11 CPU-clocks | 3
3 Reset inactive to AD active and start of RAS 4 5 CPU-clocks
prefix for first bus cycle
4 Reset active to signals inactive 3 4 CPU-clocks | 2
10 11 CPU-clocks | 3
Notes:

1. AD have bus repeaters that hold the last bus state when not driven by the CPU or an external device.
2. When reset is sampled from RESET.

3. When reset is sampled from ADS.

4. States occur from subsequent bus cycle and program execution.

<« 1——————
<« 22— 3>
AD{ 31: 0] X Hi-z? X
<€ 4 7
RAS, CAS, MGSX/
RASX, DSF \ | Note 4
<«——4——>
CE, DOB, EVE, ]L Note 4
[VE, QUT[7:0 |

reset.wpg

Figure 73. CPU Reset Timing
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Table 66. Memory Read and Write Timing

No. | Characteristic Min Max Unit Notes
1 RAS Prefix 1+ngbtras +ngbtrhld CPU-clocks 5
2 RAS inactive (mgbtras - 2) - ngbt er as 2X-CPU- 5

clocks
3 RAS address hold (mgbtrhl d-2) + ngbt eras 2X-CPU- 5
clocks
4 RAS prefix start to RAS rise 1 CPU-clocks
5 End of bus cycle to start of next 0 CPU-clocks
6 CAS part nmgbt cast + ngebt dobe + CPU-clocks 5
ngebt case
nmgbt cast +i oebt dobe + CPU-clocks 59
i oebt case
7 CAS part start to CAS falll ngbt cas 2X-CPU- 5
clocks
8 CAS part start to MGSx rise time 6 CPU-clocks
9 CAS part start to MGSx fall 3.75 ns
10 MGSx inactive pulse width, RAS cycle 0 ns 3
11 RAS cycle start to MGSx fall 3.0 ns
12 MGSX inactive pulse width, CAS cycle 0 ns 3
13 CAS part start to DOB rise, memory read (mgbt cast - 2) - ngbt eoe 2X-CPU- 5
clocks
14 | CAS part start to DOB fall ngbt dob 2X-CPU- 5
clocks
15 CAS part start to CAS address valid 5.0 ns
16 DOB fall to address invalid 15 ns
17 RAS prefix to address valid 2.25 ns
18 RAS prefix end to RAS address invalid 2.0 ns
19 RAS prefix end to CAS address valid 5.75 ns
20 Data setup before DOB rise 16.0 ns 4.6
21 Data hold after DOB rise 0 ns 4.6
22 CAS part start to OE rise time 13 2X-CPU-
clocks
23 CAS part start to OE fall time 14 2X-CPU-
clocks
24 Previous cycle end to EWVE rise 1.75 ns
25 Previous cycle end to LWE rise 1.75 ns
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Table 66. Memory Read and Write Timing (continued)

A
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SCIENTIFIC CORPORATION

. Use decoded value of register fields for calculations.
. If ngbt eoe is set, data must be held until specified time relative to the next CPU-clock timing boundary. See
Note 1.
7. MGSx applies when nmb is set. RASx applies when mmb is clear.
8. All CASes and RASes move appropriately.
9. Applies to bus cycles of I/O-channel bus transactions that involve the I/O device.

1. AD have bus repeaters that hold the last bus state when not driven by the CPU or an external device.
2. Does not apply to byte-wide data transfers. See note 1.
3. Minimum applies when time 5 is minimum.

4. Time applies only to data transfers to the CPU.

5

6

No. | Characteristic Min Max Unit Notes
26 CAS part start to DOB rise, memory write (mgbt cast - 2) - ngbt ewe 2X-CPU- 5
clocks
27 DOB fall to data valid 3.25 ns 4
28 DOB rise to data not driven 1.0 ns 4
29 CAS part start to EVE rise time 26 CPU-clocks
30 CAS part start to EV\E fall 8.5 ns
31 EWE inactive pulse width, RAS 25 ns 3
32 RAS prefix start to EWE fall 6.0 ns
33 EWE inactive pulse width, CAS 25 ns 3
34 CAS part start to EV\E fall 2X-CPU- 5
clocks
35 CAS part start to LWE rise 2X-CPU-
clocks
36 CAS part start to LVE fall ngbt dob + ngbt | wea + 2X-CPU- 5
(mgebt dobe - 2) clocks
ngbt dob + ngbt | wea + 2X-CPU- 59
(i oebt dobe - 2) clocks
37 Previous cycle end to OE rise 2.25 ns
Notes:
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Figure 74. Memory Read Timing
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Figure 75. Memory Write Timing
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Table 67. Signal Coincidence Timing

32-BIT RISC PROCESSOR

No. | Characteristic Symbol | Min | Max | Unit Notes
1 CAS rise to CASX rise 3.0 ns
2 ‘CAS fall to CASx fall 3.25 ns
3 ‘CAS rise to CAS falll 5 ns
4 ‘CAS fall to CASrise 1.0 ns
5 RAS rise to RASX rise 3.25 ns
6 RAS fall to RASx fall 3.75 ns
7 RAS rise to RAS falll 1.0 ns
8 RAS fall to RAS rise 5 ns
Notes:

CASX

CAS

RASX

—
»
N
»

<
RAS \

CAS

7

3

\*

7

7

coincide.wpg

Figure 76. Signal Coincidence Timing
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Table 68. Memory Fault Timing

No. | Characteristic Symbol | Min Max Unit Notes
1 MFLT setup 45 ns 7
2 MFLT hold 0 ns 7
3 Fault request setup 9.0 ns 7
4 Fault request hold 0 ns 7
5 EWE rise after RAS fall (mgbtrhl d-2) 2X-CPU- 8,9

+ ngbt er as clocks

Notes:

1. MGSx applies when nmb is set.

2 RASKX applies when nmb is clear.

3. MFLT is used for memory fault requests when pkgnf | t is set.

4. ADB is used for memory fault requests when pkgnf | t is clear.

5. Appropriate timing references of RAS apply to RAS.

6. Conditions exist for time equivalent to the entire bus transaction.

7. Applies as if RAS had fallen at the next CPU-clock timing boundary.

8. Applies only to memory write cycles.

9. Use decoded value of register fields for calculation.

211

ADVANCE INFORMATION



NOILVINHO4dNI dONVAQAY

APATRIOT PSC1000 Microprocessor

32-BIT RISC PROCESSOR

.
v

€«— 2

|

|

N

CAS, \
CASX

CAS \

DOB, N
CE, LViEE I Note 6

Figure 77. Memory Fault Timing
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Table 69. Refresh Timing

No. | Characteristic Symbol | Min | Max Unit Notes
1 Refresh cycle length 1 + ngbtras | CPU-clocks 4,5
+ngbtrhld+
ngbt cast +
ngebt dobe +
ngbt case
2 RAS cycle precharge (nmgbtras - 2) 2X-CPU- 4,5
-ngbt er as clocks
Notes:

1. MGSx applies when nmb is set.

2 RASKX applies when nmb is clear.

3. Appropriate timing references of RAS apply to RAS.

4. Timing is for memory group nsrt g.

5. Use decoded values of register fields for calculation. Sum is the same as for a RAS cycle.

€< 1

e T\ fa
S W

v\ .
&S _/
CAS_\

DOB, CE,
LVE, EVE

refresh.wpg

Figure 78. Refresh Timing
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Table 70. VRAM Timing

No. | Characteristic Symbol | Min Max Unit Notes
1 RAS rise to DSF in dsf vr as state 0 2 CPU-clocks 9
2 RAS fall to DSF changing to dsf vcas state (mgbtrhld-2) 2X-CPU-
+ngbt eras clocks
3 DSF changing to dsf vcas state before CAS ngbtcas +1 2X-CPU- 10
fall clocks
4 DSF in dsf vcas state after CAS rise 0 1 CPU-clocks 11
5 RAS rise to signal active 2 CPU-clocks
6 RAS fall to signal inactive time 2 2X-CPU-
clocks
Notes:
1. During an access to the VRAM memory group when casbvr as is clear.
2. During an access to the VRAM memory group when casbvr as is set.
3. During an access to the VRAM memory group when oevr as is set.
4. During an access to the VRAM memory group when wevr as is set.
5. Active during a memory read.
6. Active during a memory write.
7. DSFis low during non-VRAM memory group accesses.
8. All CASes move appropriately.
9. If the previous memory cycle was to the VRAM memory group then DSF might not go low between memory
cycles.
10. Applies to RAS cycles and CAS cycles.
11. If the next memory cycle is to the VRAM memory group then DSF might not go low between memory cycles.
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Figure 79. VRAM Timing
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Table 71. DMA Request Timing

channel bus cycle

No. | Characteristic Min Max Unit Notes

1 Initial DMA request >4 CPU-clocks

2 Initial DMA request to first DMA I/O-channel bus >3.25ns + 5 00 4
cycle start CPU-cycles

3 DMA request setup before end of DMA 1/0O-channel 6.75ns + 2 2
bus transaction CPU-clocks

4 DMA request hold after end of DMA 1/0-channel 0 ns 2
bus transaction

5 DMA request high setup before end of DMA 1/O- 6.75ns + 2 2
channel bus cycle CPU-clocks

6 DMA request high hold after end of DMA 1/0O-chan- 0 ns 2
nel bus cycle

7 End of DMA bus cycle to start of next DMA 1/O- 2 CPU-clocks | 2,5
channel bus cycle

8 End of DMA bus cycle to start of next non-DMA 1/0O 2 CPU-clocks | 2,5

Notes:
Timings assume pkgi o is set. When pkgi o is clear, bus sampling timings predominate.

bus cycles to complete the bus transaction. Some cycles might be RAS cycles.
. Bus cycle could be either RAS or CAS.

from higher priority devices.
5. Value represents bus request overhead.

1. Bus transaction start can be for a RAS or CAS cycle and occurs after bus request overhead.
2. Timings are only relevant on the last bus cycle of a DMA bus transaction. Noted areas can contain 0, 3 or 4

3
4. The max condition occurs if the VPU never executes del ay or if there are continuous DMA bus transactions
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Figure 80. DMA Request Timing
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Table 72. /0 on Bus Timing

No. | Characteristic Symbol | Min | Max Unit Notes
1 RAS rise to outputs valid 9.0 ns
2 RAS fall to outputs not driven .75 ns
3 RAS fall to AD[ 7: 0] bit inputs valid 2 CPU-clocks 1,4
4 AD{ 7: 0] bitinputs setup before CAS fall 5.0 ns 1
5 AD[ 7: 0] bitinputs hold after CAS fall 0 ns 1
6 CAS rise to AD[ 7: 0] bit inputs valid 4 CPU-clocks 15
7 AD8 fault input setup to RAS fall 16.25 ns 2
8 AD8 fault input hold after RAS fall 0 ns 2
9 AD8 reset input setup before CAS fall 1.75 ns 3
10 AD8 reset input hold after CAS fall 0 ns 3

Notes:

1. AD 7: 0] are used for inputs when pkgi o is clear.

2. ADS8 is used for memory fault requests when pkgnf I t is clear.

3. AD8 is used for reset when RESET is not low at power-up.

4. If RAS fall to CAS fall is less than maximum, time 4 applies.

5. If CASrise to CAS fall is less than maximum, time 4 applies..

RAS 4/—‘\
s -/ 7
4>
1 < ?&ﬁ > 5 < J 6 < > J 6 €
AD[ 7: 0] X BitOutthsX Bit Inputs X Xnigts;x XBitInputs
< T Yo P« "3H«
AD8 X Fault Input XResetlnput Xt'?r?;litx XReset Input

iobus.wpg

Figure 81. I/O on Bus Timing
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Table 73. Bit Input Sample Timing

No. | Characteristic Symbol | Min Max Unit Notes
1 Sample clock period 4 CPU-clocks 1
2 T Nx to sample delay .75 1.5ns +4 ns 1
CPU-clocks
3 Low data sampled to i oXi n delay 4 CPU-clocks 1,25
4 High data sampled to i oXi n delay 4 CPU-clocks 1,2,45
5 T NXx toi oXi n delay 15 ns 1,3

Notes:

1. TN[ 7: 0] are used for inputs when pkgi o is set.

2. Allows data sampled in a metastable state to resolve to stated level.

3. Only during a DMA bus transaction on the corresponding I/O channel.
4. Minimum is exceeded when i oi n is a persisting zero.

5. Except during a DMA bus transaction on the corresponding 1/O channel.

" ] | — |
M 1 — > 1 —» €<—— 1 —

. \ﬁHéﬂﬂ :3 ooy
i 0Xi n L 5 } / ; Notes [

Figure 82. Bit Input Sample Timing

insamp.wpg
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Table 74. Bit Input from Bus Sample Timing

No. | Characteristic Symbol | Min Max Unit Notes
1 RAS fall to first sample 2 CPU-clocks 1
2 Continued sample clock while CAS remains 4 CPU-clocks

high

3 Sample clock to CAS fall 5.0 ns 2
4 CAS rise to first sample 4 CPU-clocks
5 CAS inactive 4 CPU-clocks
6 CAS inactive <4 CPU-clocks
7 External input change to AD change 50.5 CPU-clocks 3
8 AD to sample delay 4 CPU-clocks 4
9 Low data sampled to i oi n delay 4 CPU-clocks 5
10 High data sampled to i oi n delay 4 note 5 | CPU-clocks 5,6

Notes:

1. If RAS fall to CAS fall is less than maximum, time 3 applies.

2. Applies only when four or more CPU-clock cycles have elapsed since the last sample.

3. Does not include external buffer delay.

4. Minimum is specified only to allow meeting specific sampling events.

5. Allows data sampled in metastable state to resolve.

6. Minimum is exceeded when i oi n is a persisting zero.
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Figure 83. Bit input from Bus Sample Timing
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Mechanical Characteristics
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Table 75. 100-Pin TQFP Package Dimensions

Figure 84. 100-Pin TQFP Package Dimensions

Table 76. 100-Pin TQFP Package Thermal Characteristics

Millimeters
Symbol
Min. | Nom. | Max.

A — — 1.60

A .05 — 15

B 17 .20 .27

C — — 17

D 16.00 BSC.

D, 14.00 BSC.

E 16.00 BSC.

E, 14.00 BSC.

L 45 .60 .75

N 100

e .50 BSC.
coplanarity — — .08

8 0° 3.5° 7.0°

Note: JEDEC SPEC MS-026

Characteristic Symbol | Value @ Airflow LFM Unit | Notes
0 | 225 | 500 | 1000

Thermal Resistance, Junction to Ambient B)a 42 37 32 28 °C/w

Thermal Resistance, Junction to Case B,c 10 °C/w

Notes:
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