
PSC1000™ Microprocessor
Reference Manual

Patriot Scientific Corporation
10989 Via Frontera

San Diego, CA 92127
1 (619) 674 5000 voice

1 (619) 674 5005 fax
www.ptsc.com

99-0370001

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000™ Microprocessor
Reference Manual

Patriot Scientific Corporation
10989 Via Frontera

San Diego, CA 92127
1 (619) 674 5000 voice

1 (619) 674 5005 fax
www.ptsc.com

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

DISCLAIMER

Patriot Scientific Corporation (PSC) reserves the right to make changes to its products or specifications at any
time, or to discontinue any product, without notice. PSC advises its customers to obtain the latest product
information available before designing-in or purchasing its products. PSC assumes no responsibility for the use
of any circuitry described other than the circuitry embodied in a PSC product. PSC makes no representations
that the circuitry described herein is free from patent infringement or other rights of third parties which may result
from its use. No license is granted by implication or otherwise under any patent, patent rights or other rights,
of PSC.

Information within this document is subject to change without notice, but was believed to be accurate at the
time of publication. No warranty of any kind, including but not limited to implied warranties of merchantability
or fitness for a particular application, are stated or implied. PSC and the author assume no responsibility for any
errors or omissions, and disclaims responsibility for any consequences resulting from the use of the information
included herein.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000™ Microprocessor
Reference Manual

by George William Shaw

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

iv

Copyright © 1995 George William Shaw, All Rights Reserved.
Copyright © 1995–1999 Patriot Scientific Corporation
Printed in the United States of America

Printing Date: 1999 March 25

Text, tables, and illustrations by George W. Shaw
Edited by Jeffrey Conroy

For company and product information, access www.ptsc.com. Patriot Scientific Corporation is publicly traded
over the counter, symbol PTSC.

ShBoom and PSC1000 are trademark of Patriot Scientific Corporation. Any other brands and products used within
this document are trademarks or registered trademarks of their respective owners.

The technology discussed in this document may be covered by one or more of the following US patents:
5,440,749; 5,530,890; 5,604,915; 5,659,703; 5,784,584. Other US and Foreign patents pending.

LIFE SUPPORT POLICY

Patriot Scientific Corporation’s (PSC) products are not authorized for use as critical components in life-support
appliances, devices or systems. Such use requires a specific written agreement signed by the appropriate PSC
officer. Life-support devices or systems are devices or systems which (a) are intended for surgical implant into
the body or (b) support or sustain life and whose failure to perform, when properly used in accordance with
instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the
user. A critical component is any component of a life- support device or system whose failure to perform can
be reasonably expected to cause the failure of the life-support device or system, or to affect its safety or
effectiveness. Use of PSC products in such applications is understood to be fully at the risk of the customer.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

v

Contents
DISCLAIMER . ii

LIFE SUPPORT POLICY . iv

Figures . xii

Tables . xv

Documentation Typography and Nomenclature . xvii

Features . 1

General Description . 1

Purpose . 9

Overview . 9

Central Processing Unit . 11
Resources . 11
Clock Speed . 12

Microprocessing Unit . 15
Address Space . 17
Registers and Stacks . 17
Programming Model . 18
Instruction Set Overview . 19

ALU Operations . 21
Branches, Skips, and Loops . 22
Literals . 23
Data Movement . 23
Loads and Stores . 24
Stack Data Management . 25
Stack Cache Management . 25
Byte Operations . 26
Floating-Point Math . 27
Debugging Features . 28
On-Chip Resources . 28
Miscellaneous . 28

Stacks and Stack Caches . 28
Stack-Page Exceptions . 29
Stack Initialization . 30
Stack Depth . 30

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

vi

Stack Flush and Restore . 31
Floating-Point Math Support . 33

Data Formats . 33
Status and Control Bits . 33
GRS Extension Bits . 34
Rounding . 34
Exceptions . 35

Video RAM Support . 37
Register mode . 38
MPU Reset . 40
Interrupts . 40
Bit Inputs . 41
Instruction Pre-fetch . 41
Posted-Write . 41
On-Chip Resources . 41
Instruction Reference . 41

ANS Forth Word Equivalents . 42
Java Byte Code Equivalents . 42
add . 43
adda . 43
addc . 43
addexp . 44
and . 44
bkpt . 45
b . 46
_cache . 48
call . 49
cmp . 49
copyb . 49
dbr . 50
dec . 50
denorm . 51
_depth . 51
di . 52
divu . 52
ei . 52
eqz . 53
expdif . 53
extexp . 53
extsig . 54
_frame . 55
iand . 56
inc . 56
lcache . 56
ld . 57
ldo . 58
ldepth . 58

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

vii

lframe . 58
mloop_ . 59
mulfs . 60
muls . 61
mulu . 61
mxm . 61
neg . 62
nop . 62
norml . 63
normr . 64
notc . 64
or . 65
pop . 66
push . 68
replb . 71
replexp . 71
ret . 71
rev . 72
rnd . 72
scache . 72
sdepth . 72
sexb . 73
shift_ . 74
shl_ . 75
shr_ . 76
skip_ . 77
split . 78
st . 79
step . 80
sto . 80
sub . 81
subb . 81
subexp . 82
testb . 82
testexp . 83
xcg . 83
xor . 83

Virtual Peripheral Unit . 89
Usage . 90
Resources . 91
Register Usage . 91
Instruction Set . 91
Instruction Formats . 91

Jumps . 91
Literals . 92
Others . 92

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

viii

Execution Timing . 92
Techniques . 93

Address Space, Memory and Device Addressing . 94
Interrupts . 94
Bus Transactions . 94
Bit Inputs and Bit Outputs . 94
VPU Hardware and Software Reset . 94
Instruction Reference . 95

delay . 96
dskipz . 96
int . 96
jump . 97
ld . 97
mloop . 97
nop . 98
outf . 98
outt . 98
refresh . 99
tskipz . 99
xfer . 100

Direct Memory Access Controller . 103
Resources . 103
DMA Requests . 104
Prioritization . 104
Memory and Device Addressing . 105
Interrupts . 105
Bus Transaction Types . 105
Device Access Timing . 105
Maximum Bandwidth Transfers . 105
Terminating DMA I/O-Channel Transfers . 106
Other Capabilities . 106

Interrupt Controller . 107
Resources . 107
Operation . 108
Interrupt Request Servicing . 108
External Interrupts . 108
I/O-Channel Transfer Interrupts . 109
VPU int Interrupts . 109
ISR Processing . 109

Bit Inputs . 111
Resources . 111
Input Sources and Sampling . 111
DMA Usage . 112
Interrupt Usage . 112

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

ix

General-Purpose Bits . 113
VPU Usage . 113
MPU Usage . 113

Bit Outputs . 115
Resources . 115
Usage . 115

Programmable Memory Interface . 117
Resources . 117
Memory System Architecture . 117

Memory Groups . 119
Memory Banks . 120

Device Requirements Programming . 120
Device Sizes . 120
Device Width . 121
Programmable Timing . 124
DRAM Refresh . 125
Video RAM Support . 125

System Requirements Programming . 126
RAS Cycle Generation . 126
Driver Current . 127
Memory Faults . 127

I/O-Channel Programming . 127

On-Chip Resource Registers . 129

Bus Operation . 157
Operation . 157
I/O Addressing . 158
Bus Transaction Types . 158
MPU and VPU (non-xfer) Memory Cycles . 158

Cell Memory Write from MPU . 159
Cell Memory Read to MPU/VPU . 159
Byte Memory Write from MPU . 159
Byte Memory Read to MPU/VPU . 159

I/O-Channel Transfers . 159
Cell Memory Write from Four-byte Byte-transfer Device . 159
Cell Memory Read to Four-byte Byte-transfer Device . 159
Byte Memory Write from Four-byte Byte-transfer Device . 159
Byte Memory Read to Four-byte Byte-transfer Device . 159
Cell Memory Write from One-byte Byte-transfer Device . 159
Cell Memory Read to One-byte Byte-transfer Device . 160
Byte Memory Write from One-byte Byte-transfer Device . 160
Byte Memory Read to One-byte Byte-transfer Device . 160
Cell Memory Write from One-cell Cell-transfer Device . 160
Cell Memory Read to One-cell Cell-transfer Device . 160

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

x

Byte Memory Write from One-cell Cell-transfer Device . 160
Byte Memory Read to One-cell Cell-transfer Device . 160

Bus Reset . 161
Video RAM Support . 161
Virtual-Memory Page Faults Input . 161
Alternate Inputs and Outputs . 161

Alternative Bit Inputs . 161
Alternative Bit Outputs . 161
Alternative Memory Fault Input . 162
Alternative Reset Input . 162

Processor Startup . 181
Power-on Reset . 181
Boot Memory . 181
Reset Process . 181
Bootstrap Programs . 181

Boot from Byte-Wide Boot-Only Memory and Copy the Application Program to Cell-Wide R/W Memory
. 182

Boot from Cell-Wide Boot-Only Memory and Copy the Application Program to Cell-Wide R/W Memory
. 183

Boot and Run from Byte-Wide Memory . 183
Boot and Run from Cell-Wide Memory . 184

Stack Initialization . 184

Example PSC1000 CPU Systems . 187
Example System 1 . 187
Example System 2 . 187
Example System 3 . 187

Electrical Characteristics . 199
Power and Grounding . 199
Power Decoupling . 199
Connection Recommendations . 199
Clock . 200
Absolute Maximum Ratings . 201
Operating Conditions . 202
DC Specifications . 203
AC Characteristics . 204

Mechanical Characteristics . 223

Revision History . 224

Distributors and Sales Offices . 225

Index . 227

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xi

Figures
Figure 1. 100-Pin Thin Quad Flat Package (TQFP) . 5
Figure 2. CPU Block Diagram . 11
Figure 3. MPU Block Diagram . 14
Figure 4. MPU Registers . 15
Figure 5. CPU Memory Map . 16
Figure 6. Byte Order . 17
Figure 7. add Execution Example . 18
Figure 8. MPU Instruction Formats . 22
Figure 9. Stack Exception Regions . 28
Figure 10. Floating-Point Number Formats . 33
Figure 11. Register mode . 39
Figure 12. VPU Block Diagram . 89
Figure 13. VPU Register Usage . 91
Figure 14. VPU Instruction Formats . 92
Figure 15. DMAC Block Diagram . 103
Figure 16. I/O-Channel Transfer Data Format . 104
Figure 17. INTC Block Diagram . 107
Figure 18. Bit Input Block Diagram . 111
Figure 19. Bit Outputs Block Diagram . 115
Figure 20. Group-Select and Bank-Select Bit Locations . 118
Figure 21. SMB Memory Architecture . 118
Figure 22. MMB Memory Architecture . 119
Figure 23. Programmable Bus Timing Reference . 128
Figure 24. On-Chip Resource Registers . 129
Figure 25. Example On-Chip Register Diagram . 130
Figure 26. Bit Input Register . 131
Figure 27. Interrupt Pending Register . 132
Figure 28. Interrupt Under Service Register . 133
Figure 29. Bit Output Register . 134
Figure 30. Interrupt Enable Register . 135
Figure 31. DMA Enable Register . 136
Figure 32. VRAM Control Bit Register . 137
Figure 33. Miscellaneous A Register . 139
Figure 34. Miscellaneous B Register . 140
Figure 35. Memory Fault Address Register . 142
Figure 36. Memory Fault Data Register . 142
Figure 37. Memory System Group-Select Mask Register . 143
Figure 38. Memory Group Device Size Register . 144
Figure 39. Miscellaneous C Register . 145

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xii

Figure 40. Memory Group 0–3 Extended Bus Timing Registers . 146
Figure 41. Memory Group 0–3 CAS Bus Timing Registers . 147
Figure 42. Memory Group 0–3 RAS Bus Timing Registers . 149
Figure 43. I/O Channel 0–7 Extended Bus Timing Registers . 150
Figure 44. Memory System Refresh Address . 151
Figure 45. VPU Delay Counter Register . 151
Figure 46. I/O Device Transfer Types A Register . 152
Figure 47. I/O Device Transfer Types B Register . 152
Figure 48. Reserved Register Addresses . 153
Figure 49. DMA Enable Expiration Register . 153
Figure 50. Driver Current Register . 154
Figure 51. VPU Reset Register . 155
Figure 52. Virtual-Memory Page Mapping Logic . 161
Figure 53. Cell Memory Write from MPU . 164
Figure 54. Cell Memory Read to MPU/VPU . 165
Figure 55. Byte Memory Write from MPU . 166
Figure 56. Byte Memory Read to MPU/VPU . 167
Figure 57. Cell Memory Write from Four-byte Byte-transfer Device 168
Figure 58. Cell Memory Read to Four-byte Byte-transfer Device . 169
Figure 59. Byte Memory Write from Four-byte Byte-transfer Device 170
Figure 60. Byte Memory Read to Four-byte Byte-transfer Device . 171
Figure 61. Cell Memory Write from One-byte Byte-transfer Device 172
Figure 62. Cell Memory Read to One-byte Byte-transfer Device . 173
Figure 63. Byte Memory Write from One-byte Byte-transfer Device 174
Figure 64. Byte Memory Read to One-byte Byte-transfer Device . 175
Figure 65. Cell Memory Write from One-cell Cell-transfer Device 176
Figure 66. Cell Memory Read to One-cell Cell-transfer Device . 177
Figure 67. Byte Memory Write from One-cell Cell-transfer Device 178
Figure 68. Byte Memory Read to One-cell Cell-transfer Device . 179
Figure 69. Example Minimal System with 8-bit Memory . 188
Figure 70. Example Minimal System with 32-bit DRAM and I/O Decoding 189
Figure 71. Example System with SRAM, DRAM and I/O Decode . 190
Figure 72. CPU-Clock and 2X-CPU-Clock . 204
Figure 73. CPU Reset Timing . 205
Figure 74. Memory Read Timing . 208
Figure 75. Memory Write Timing . 209
Figure 76. Signal Coincidence Timing . 210
Figure 77. Memory Fault Timing . 212
Figure 78. Refresh Timing . 213
Figure 79. VRAM Timing . 215
Figure 80. DMA Request Timing . 217
Figure 81. I/O on Bus Timing . 218
Figure 82. Bit Input Sample Timing . 219

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xiii

Figure 83. Bit input from Bus Sample Timing . 221
Figure 84. 100-Pin TQFP Package Dimensions . 223

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xiv

Tables
Table 1. Signal Descriptions . 3
Table 1. Signal Descriptions (continued) . 4
Table 2. Pin Assignments, 100-Pin TQFP . 6
Table 3. PSC1000 Microprocessor Ordering Information . 7
Table 4. Instruction Bandwidth Comparison . 15
Table 5. MPU Instruction Set . 20
Table 6. ALU Instructions . 21
Table 7. Code Examples: Rotate . 21
Table 8. Branch, Loop and Skip Instructions . 22
Table 9. MPU Branch Ranges . 22
Table 10. Literal Instructions . 23
Table 11. Data Movement Instructions . 23
Table 12. Load and Store Instructions . 24
Table 13. Code Example: Complex Addressing Mode . 24
Table 14. Code Examples: Memory Move and Fill . 24
Table 15. Stack Data Management Instructions . 25
Table 16. Stack Cache Management Instructions . 25
Table 17. Byte Operation Instructions . 26
Table 18. Code Example: Byte Store . 26
Table 19. Code Example: Null Character Search . 26
Table 20. Code Example: Null-Terminated String Move . 26
Table 21. Code Example: Byte Search . 27
Table 22. Floating-Point Math Instructions . 27
Table 23. Debugging Instructions . 28
Table 24. On-Chip Resources Instructions . 28
Table 25. Miscellaneous Instructions . 28
Table 26. Code Example: Stack Initialization . 30
Table 27. Code Example: Stack Depth . 30
Table 28. Code Example: Save Context . 31
Table 29. Code Example: Restore Context . 31
Table 30. Traps Dependent on System State . 32
Table 31. Trap Priorities . 33
Table 32. Traps Independent of System State . 33
Table 33. GRS Extension Bit Manipulation Instructions . 34
Table 34. Rounding-Mode Actions . 34
Table 35. Code Example: Floating-Point Multiply . 35
Table 36. Code Example: Memory-Fault Service Routine . 37
Table 37. VRAM Commands . 37
Table 38. Instructions That Hold-off Pre-fetch . 41

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xv

Table 39. MPU Mnemonics and Opcodes (Mnemonic Order) . 84
Table 39. MPU Mnemonics and Opcodes (Mnemonic Order, continued) 85
Table 40. MPU Mnemonics and Opcodes (Opcode Order) . 86
Table 40. MPU Mnemonics and Opcodes (Opcode Order, continued) 87
Table 41. VPU Instructions . 91
Table 42. VPU Branch Ranges . 92
Table 43. Code Example: VPU DRAM Refresh . 93
Table 44. VPU Mnemonics and Opcodes (Mnemonic Order) . 101
Table 45. VPU Mnemonics and Opcodes (Opcode Order) . 102
Table 46. Sources of Interrupts . 107
Table 47. Code Example: ISR Vectors . 109
Table 48. Code Example: Bit Input Without Zero-Persistence . 113
Table 49. Code Example: MPU Usage of Bit Inputs . 113
Table 50. Code Example: MPU “Real-Time” Bit Input Read . 114
Table 51. RAS/CAS Address Line Configuration, Cell memory . 122
Table 52. RAS/CAS Address Line Configuration, Byte Memory . 123
Table 53. Sources of RAS cycles . 126
Table 54. Bit Field to On-Chip Register Cross-Reference . 156
Table 55. Slot Check Computation . 157
Table 56. Bus Access Priorities . 157
Table 57. I/O-Channel Transfer Characteristics . 158
Table 58. RAS/CAS Bus Transactions . 163
Table 59. System Configuration after CPU Reset . 185
Table 60. Absolute Maximum Ratings . 201
Table 61. Operating Conditions . 202
Table 62. DC Specifications . 203
Table 63. Input Characteristics . 203
Table 64. CPU-Clock and 2X-CPU-Clock . 204
Table 65. CPU Reset Timing . 205
Table 66. Memory Read and Write Timing . 206
Table 66. Memory Read and Write Timing (continued) . 207
Table 67. Signal Coincidence Timing . 210
Table 68. Memory Fault Timing . 211
Table 69. Refresh Timing . 213
Table 70. VRAM Timing . 214
Table 71. DMA Request Timing . 216
Table 72. I/O on Bus Timing . 218
Table 73. Bit Input Sample Timing . 219
Table 74. Bit Input from Bus Sample Timing . 220
Table 75. 100-Pin TQFP Package Dimensions . 223
Table 76. 100-Pin TQFP Package Thermal Characteristics . 223

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

xvi

References to software commands, CPU instructions, registers, register fields, and package pins are in a different
font than body text to minimize confusion and to distinguish them from the surrounding text. Specifically:

Processor instructions are in lowercase (e.g., “The mloop repeats refresh and delay,…”).

Registers or register fields are also in lowercase (e.g., “msra contains data used during…”). Contextually, use of a
register or register field name can also imply its contents, (e.g. “…must contain the sum of mgebtdobe and
mgebtcase”). When referring to a register or register field whose function is identical among its variants, X is used
to hold the place of the identifying alpha or numeric character within the name (e.g. ioXebt).

Package pins are in uppercase (e.g., “…the timing for the &C&A&S inactive portion, also referred to as CAS precharge…”).
When referring to a pin whose function is identical among its variants, x is used to hold the place of the identifying
alpha or numeric character within the name (e.g., &C&A&S&x). The over bar or a prefix “–” on signal names indicates the
signal is active in its low state; otherwise, signals are active high or the active state is not relevant (e.g. &R&A&S and –RAS
refer to the same signal).

To avoid confusion regarding the width in bits of a “word”, the term “cell” is used to denote the full processor data
element size of 32 bits.

PRODUCT PREVIEW indicates that the product is in the conceptual or design phase of development, and that the
document represents the design goals for the product, which may change without notice before the product goes into
production.

ADVANCE INFORMATION indicates that the product is in the sampling or pre-production phase of development and
that data and specifications are preliminary and subject to change without notice.

Documentation Typography and Nomenclature

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

1

Features

General Description

Ë Low-System-Cost 32-Bit RISC Microprocessor
Ë Runs Java™ at Native Speed
Ë Multiple Language Support
Ë Dual-Processor Architecture

•Microprocessing Unit (MPU)
High-performance zero-operand dual-stack

architecture
•Virtual Peripheral Unit (VPU)

Performs timing, time-synchronous data
transfers, bit outputs, DRAM refresh,
emulates peripherals

Ë 4-Gigabyte Physical Address Space
Ë Internal Clock Multiplier

•2X CPU clock, 4X Bus timing
Ë 4-Group Memory/Bus Interface

•Supports any combination of EPROM, SRAM,
DRAM, VRAM

•Programmable memory and I/O timing
Ë Virtual Memory Support
Ë 8-Level Interrupt Controller
Ë 8-Level Direct Memory Access Controller
Ë 16 I/O bits
Ë 52 General-Purpose 32-Bit Registers
Ë “Glueless” System Interface
Ë Big Endian Byte Ordering
Ë Small, Low-Cost, 100-Pin TQFP Package

The PSC1000 microprocessor is a highly inte-
grated 32-bit RISC processor that offers high perfor-
mance and low power consumption at low system
cost for a wide range of embedded applications. It is
a highly integrated 32-bit RISC processor with a peak
performance of one instruction per CPU-clock cycle.
The 32-bit registers and data paths fully support 32-bit
addresses and data types. The processor addresses up
to four gigabytes of physical memory, and supports
virtual memory with the use of external mapping logic.

As an implementation of the ShBoom™ Micro-
processor architecture, the PSC1000 CPU architectural
philosophy is that of simplification and efficiency of
use. A zero-operand design eliminates most operand

bits and the decoding time and instruction space they
require. Instructions are shrunk to eight bits, signifi-
cantly increasing instruction bandwidth and reducing
program size. By not using pipeline or superscalar
execution, the resulting control simplicity increases
execution speed to issue and complete an instruction
in a single clock cycle—as often as every clock
cycle—without a conventional instruction cache. To
ensure a low-cost chip, a data cache and its cost are
also eliminated in favor of efficient register caches.

The stack architectures of the PSC1000 micro-
processor and the Java Virtual Machine are very
similar. This results in only a relatively simple byte
code translator (20K) being required to produce
executable native code from Java byte code, rather
than a full Just-in-Time (JIT) compiler (200–400K). The
result is much faster initial execution of Java programs
and significantly smaller memory requirements.
Further, most modern languages are implemented on
a stack model. The features that allow the PSC1000
to run Java efficiently apply similarly to other lan-
guages such as C, Forth and Postscript..

The PSC1000 CPU operates up to four groups of
programmable bus configurations from as fast as two
CPU clocks to as slow as 82 CPU clocks, allowing any
desired mix of high-speed and low-speed memory.
Minimum system cost is reduced, thus allowing the
system designer to trade system cost for performance
as needed.

By incorporating many on-chip system functions
and a “glueless” bus interface, support chips are
eliminated, further lowering system cost. The CPU
includes an MPU, a Virtual Peripheral Unit, a DMA
controller, an interrupt controller, bit inputs, bit out-
puts, and a programmable memory interface. It can
operate with 32-bit-wide or 8-bit-wide memory and
devices, and includes hardware debugging support.
A minimum system consists of a PSC1000 CPU, an 8-
bit-wide EPROM, an oscillator, and optionally one x8
or two x16 memories—a total of 4 or 5 active
components. The small die, which contains only 137
500 transistors, produces a high-performance, low-
cost CPU, and a high level of integration produces a
high-performance, low-cost system.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

2

FEATURES

MICROPROCESSING UNIT (MPU)
Zero-operand dual-stack architecture
Very similar to Java Virtual Machine
12.5-ns instruction cycle
52 General-Purpose 32-Bit Registers

16 global data registers (g0–g15)
16 local registers (r0–r15) double as return stack

cache
r0 is an index register with predecrement and

postincrement
Automatic local-register stack spill and refill

18 operand stack cache registers (s0–s17)
s0 is an address register
Automatic operand stack spill and refill

Index register (x) with predecrement and postinc-
rement

Count register (ct)
Stack paging traps
Cache-management instructions
MPU communicates with DMA and VPU via global

registers
Hardware single- and double-precision IEEE floating-

point support
Fast multiply
Fast bit-shifter
Hardware single-step and breakpoint
Virtual-memory support
Posted write
Power-fail status bit
Instruction-space-saving 8-bit opcodes

DIRECT MEMORY ACCESS CONTROLLER (DMAC)
Eight prioritized DMA channels
Fixed or revolving DMA priorities
Byte, four-byte or cell DMA devices
Single or back-to-back DMA requests
Transfer rates to 200 MB/second
Programmable timing for each channel
Interrupt MPU on transfer boundary/count reached
Terminate DMA on transfer boundary/count reached
Channels can be configured as event counters
DMA communicates with MPU and VPU via global

registers

VIRTUAL PERIPHERAL UNIT (VPU)
Executes instruction stream independent of MPU
Deterministic execution
Performs timing, time-synchronous data transfers, bit-

output operations, DRAM refresh
Emulates peripherals like serial I/O, A to D, D to A,

PWM, timers
Eight transfer channels
Byte, four-byte or cell device transfers
Programmable timing for each channel
Interrupt MPU on transfer boundary/count reached
Set/reset output bits
Set MPU interrupt
Test and branch on input bit
Looping instructions
Load transfer address, direction, interrupt on boundary
VPU communicates with DMA and MPU via global

registers or memory
Channels can be configured as timers
Instruction-space-saving 8-bit opcodes

INPUT-OUTPUT/INTERRUPTS
Eight bit inputs

Bits can be configured as zero-persistent
Register- and bit-addressable

Eight bit outputs
Register- and bit-addressable

I/O bits available on pins or multiplexed on bus
Eight prioritized and vectored interrupts

PROGRAMMABLE MEMORY INTERFACE (MIF)
Programmable bus interface timing to 1/4 external clock
Four independently configurable memory groups:

Any combination of 32-bit and 8-bit devices
Any combination of EPROM, SRAM, DRAM, VRAM
Almost any DRAM size/configuration
Fast-page mode access for each DRAM group
Glueless support for one memory bank per group
1.25 gates per memory bank for decoding up to 16

memory banks (four per memory group)
Virtual-memory support
DRAM refresh support (via VPU)
VRAM support includes DSF, O&E&, W&E&, C&A&S& before R&A&S&

control

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

3

SYMBOL TYPE DESCRIPTION

cVSS PWR Ground for core logic and all output driver pre-drivers.

cVCC PWR Power for core logic and all output driver pre-drivers.

ctrlVSS
PWR Ground for control signal output drivers (DSF, OUT[7:0], all RASes, all CASes, &D&O&B,

&O&E, &x&W&E).

ctrlVCC
PWR Power for control signal output drivers (DSF, OUT[7:0], all RASes, all CASes, &D&O&B, &O&E,

&x&W&E).

adVSS PWR Ground for AD[31:0] output drivers.

adVCC PWR Power for AD[31:0] output drivers.

CLK I EXTERNAL OSCILLATOR: The CPU operating frequency is twice the external oscillator
frequency.

&R&E&S&E&T
I

A()
RESET: Asserting &R&E&S&E&T causes the entire CPU to be initialized and the MPU and VPU
to begin execution at their hardware reset locations. If &R&E&S&E&T is not held low during
power-up, the signal also is input on AD8 during &R&A&S active and &C&A&S inactive, and
&R&E&S&E&T is ignored.

DSF O
I(L)

DEVICE SPECIAL FUNCTION: Set on VRAM memory cycles during &R&A&S and &C&A&S
accesses by the MPU to control VRAM function.

&M&F&L&T
I

S(&R&A&S)
MEMORY FAULT: Asserted by external memory-management hardware before &R&A&S
active to invalidate the current MPU bus cycle and cause the MPU to trap if the
configuration bit pkgmflt is set. The signal also is input on AD8 at &R&A&S fall during &C&A&S
inactive, if the bit pkgmflt is clear.

&I&N[7:0]
I

A()
INPUTS: Asserted by external hardware to request an interrupt or DMA, or to input a bit,
when the configuration bit pkgio is set. The bits alternatively are input on AD[7:0] during
&R&A&S active and &C&A&S inactive, if the bit pkgio is clear.

OUT[7:0] O
I(H)

OUTPUTS: Bit outputs writable from the VPU or MPU. These bits are also available on
AD[7:0] during &R&A&S inactive.

&R&A&S O
I(L)

ROW ADDRESS STROBE: A control signal asserted to define row address valid and
deasserted only when another row address cycle is required.

RAS O, I(H) Inverted &R&A&S.

&C&A&S O
I(H)

COLUMN ADDRESS STROBE: A control signal asserted to define column address valid
and deasserted at the end of the current bus cycle.

CAS O, I(L) Inverted &C&A&S.

Table 1. Signal Descriptions

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

4

SYMBOL TYPE DESCRIPTION

&M&G&S&0…&3/&R&A&S&0…&3
O

I(L)
MEMORY GROUP SELECTS/ROW ADDRESS STROBES: In multiple memory bank
(MMB) mode (configuration bit mmb is set), the strobes are active during all bus cycles
for the entire bus cycle. In single memory bank (SMB) mode, they are similar to &R&A&S.

&C&A&S&0-&3 O
I(H)

COLUMN ADDRESS STROBES: Similar to &C&A&S, to assert a column address cycle on
the specified memory bank within the current memory group.

&O&E O
I(H)

OUTPUT ENABLE: Active when the current bus transaction is a read from memory. The
configuration bit oed is set or cleared during the CPU reset startup process.

&E&W&E O
I(H)

EARLY WRITE ENABLE: Active when the current bus transaction is a write to memory.
Active time at either start of cycle or &C&A&S fall is programmable for each memory group.

&L&W&E
O

I(H)
LATE WRITE ENABLE: Active when the current bus transaction is a write to memory
and for VRAM control. Active time either at or after &D&O&B active is programmable for each
memory group.

AD[31:0]

I/O
S(&D&O&B)
S(&R&A&S)

A()
I(Z)

ADDRESS DATA BUS: Multiplexed address, data, I/O and control bus.
For data.
For alternate memory fault on AD8.
For alternate reset on AD8. See R&E&S&E&T&.

Notes:
 I =
 O =
 I/O =
PWR =

Input-Only Pins
Output-Only Pins
Bidirectional Pins
Power Pin

 A() =
S(sym)=

Asynchronous inputs
Synchronous inputs must meet
setup and hold requirements rela-
tive to symbol.

I(H) =
I(L) =
I(Z) =

high value on reset
low value on reset
high impedance on
reset

Table 1. Signal Descriptions (continued)

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

5

psc1000pkg.wpg

51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
751

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

LWE
OE
DSF
DOB
ctrlVCC
ctrlVSS

cVCC

cVSS

CAS
RAS
EWE
AD0

AD1

AD2
AD3
AD4
AD5

adVCC
adVSS

adVCC
adVSS
AD6
AD7
AD8
adVCC

ctrlVCC
OUT0
OUT1
OUT2
OUT3
OUT4
OUT5
OUT6
OUT7

RESET
AD31

cVCC
AD30
cVSS

adVSS
adVCC
AD29
AD28
AD27
AD26

AD25
AD24
AD23

adVSS
adVCC

PSC1000

Figure 1. 100-Pin Thin Quad Flat Package (TQFP)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

6

PIN
NO. PIN NAME TYPE

PIN
NO. PIN NAME TYPE

PIN
NO. PIN NAME TYPE

1 ctrlVCC PWR 35 AD17 I/O 69 &C&A&S O

2 OUT0 O 36 AD16 I/O 70 ctrlVSS PWR

3 OUT1 O 37 adVSS PWR 71 ctrlVCC PWR

4 OUT2 O 38 adVCC PWR 72 &D&O&B O

5 OUT3 O 39 cVCC PWR 73 DSF O

6 OUT4 O 40 cVSS PWR 74 &O&E O

7 OUT5 O 41 AD15 I/O 75 &L&W&E O

8 OUT6 O 42 AD14 I/O 76 ctrlVSS PWR

9 OUT7 O 43 AD13 I/O 77 ctrlVCC PWR

10 &R&E&S&E&T I 44 adVSS PWR 78 &M&G&S&0/&R&A&S&0 O

11 AD31 I/O 45 adVCC PWR 79 &M&G&S&1/&R&A&S&1 O

12 cVSS PWR1 46 AD12 I/O 80 &M&G&S&2/&R&A&S&2 O

13 AD30 I/O 47 AD11 I/O 81 &M&G&S&3/&R&A&S&3 O

14 cVCC PWR1 48 AD10 I/O 82 &M&F&L&T I

15 adVSS PWR 49 AD9 I/O 83 &I&N&0 I

16 adVCC PWR 50 adVSS PWR 84 &I&N&1 I

17 AD29 I/O 51 adVCC PWR 85 &I&N&2 I

18 AD28 I/O 52 AD8 I/O 86 &I&N&3 I

19 AD27 I/O 53 AD7 I/O 87 &I&N&4 I

20 AD26 I/O 54 AD6 I/O 88 CLK I

21 adVSS PWR 55 adVSS PWR 89 cVSS PWR2

22 adVCC PWR 56 adVCC PWR 90 cVCC PWR2

23 AD25 I/O 57 AD5 I/O 91 &I&N&5 I

24 AD24 I/O 58 AD4 I/O 92 &I&N&6 I

25 AD23 I/O 59 AD3 I/O 93 &I&N&7 I

26 adVSS PWR 60 AD2 I/O 94 &C&A&S&0 O

27 adVCC PWR 61 adVSS PWR 95 &C&A&S&1 O

28 AD22 I/O 62 adVCC PWR 96 &C&A&S&2 O

29 AD21 I/O 63 cVCC PWR1 97 &C&A&S&3 O

30 AD20 I/O 64 AD1 I/O 98 RAS O

31 AD19 I/O 65 cVSS PWR1 99 CAS O

32 adVSS PWR 66 AD0 I/O 100 ctrlVSS PWR

33 adVCC PWR 67 &E&W&E O

34 AD18 I/O 68 &R&A&S O
Notes:
1. PWR pin is near clock driver.
2. PWR pin is near PLL.

 I = Input-Only Pin I/O = Bidirectional Pins
O = Output-Only Pin PWR = Power Pins

Table 2. Pin Assignments, 100-Pin TQFP

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

7

Description CPU Clock
Frequency (MHz)

Package Type Stock Number

PSC1000-BAXTC 80 TQFP 31-0100371

Table 3. PSC1000 Microprocessor Ordering Information

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

8

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

9

Purpose

Overview

This reference manual describes the architecture,
hardware interface, and programming of the PSC1000
Microprocessor. The Patriot PSC1000 microprocessor
is one of a family of low-power, low-cost, stack-
architecture processors targeted specifically for
embedded applications. As stack-architecture proces-
sors, the PSC1000 family are ideal for applications that
must run Java™ at native speeds. These include laser
printers, ignition controllers, network routers, personal
digital assistants, set-top cable controllers, video
games, pagers, cell phones, and many other applica-
tions. But since C++ is semantically similar to Java, the
PSC1000 family also run C and C++ efficiently, as well
as stack-architecture languages such as Forth and
Postscript™.

This data book provides the information required to
design products that use the PSC1000 CPU, including
functional capability, electrical characteristics and
ratings, and package definitions, as well as the
information required to program both the MPU and
VPU.

The PSC1000 Microprocessor is an implementation
of the ShBoom™ Microprocessor architecture. It is a
highly integrated 32-bit RISC processor that executes
at a peak performance of one instruction per CPU-
clock cycle. The CPU is designed specifically for use
in those embedded applications for which power
consumption, MPU performance, and system cost are
deciding selection factors.

The PSC1000 CPU instruction sets are hardwired,
allowing most instructions to execute in a single cycle,
without the use of pipelines or superscalar architec-
ture. A "flow-through" design allows the next instruc-
tion to start before the prior instruction completes, thus
increasing performance.

The PSC1000 MPU contains 52 general-purpose
registers, including 16 global data registers, an index
register, a count register, a 16-deep addressable
register/return stack, and an 18-deep operand stack.

Both stacks contain an index register in the top
element, are cached on chip, and, when required,
automatically spill to and refill from external memory.
The stacks minimize the data movement typical of
register-based architectures, and also minimize
memory accesses during procedure calls, parameter
passing, and variable assignments. Additionally, the
MPU contains a mode/status register, two stack
pointers, and 41 locally addressed registers for I/O,
control, configuration, and status.

KEY FEATURES
Run Java at Native Speed: The stack architectures of
the PSC1000 microprocessor and the Java Virtual
Machine are very similar. This results in only a
relatively simple byte code translator (20K) being
required to produce executable native code from Java
byte code, rather than a full Just-in-Time (JIT) compiler
(200–400K) as is required for common processor
architectures. The result is much faster initial execu-
tion of Java programs and significantly smaller
memory requirements. Additionally, hundreds of
kilobytes of memory are saved due to the reduced size
of the translator itself.

Multiple Language Support: Most modern languages
are implemented on a stack model. The features that
allow the PSC1000 to run Java efficiently apply
similarly to other languages such as C, C++, Forth and
Postscript.

Dual-Processor Architecture: The CPU contains both
a high-performance, zero-operand, dual-stack
architecture microprocessing unit (MPU), and an
virtual peripheral unit (VPU) that executes instructions
to transfer data, measure time, test inputs, set outputs,
and emulate peripherals such as serial ports and A to
D or D to A converters.

Zero-Operand Architecture: Many RISC architectures
waste valuable instruction space—often 15 bits or
more per instruction—by specifying three possible
operands for every instruction. Zero-operand (stack)
architectures eliminate these operand bits, thus
allowing much shorter instructions—typically one-
fourth the size—and thus a higher instruction-execu-
tion bandwidth and smaller program size. Stacks also

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

10

minimize register saves and loads within and across
procedures, thus allowing shorter instruction se-
quences and faster-running code.

Fast, Simple Instructions: Instructions are simpler to
decode and execute than those of conventional RISC
processors, allowing the PSC1000 MPU and VPU to
issue and complete instructions in a single clock cycle,
as often as every CPU-clock cycle.

Four-Instruction Buffer: Using 8-bit opcodes, the CPU
obtains up to four instructions from memory each time
an instruction fetch or pre-fetch is performed. These
instructions can be repeated without rereading them
from memory. This maintains high performance when
connected directly to DRAM, without the expense of
a cache.

Local and Global Registers: Local and global registers
minimize the number of accesses to data memory. The
local-register stack automatically caches up to sixteen
registers, and the operand stack up to eighteen
registers. As stacks, any allocated data space efficiently
nests and unnests across procedure calls. The sixteen
global registers provide storage for shared data.

Posted Write: Decouples the processor from data
writes to memory, allowing the processor to continue
executing after a write is posted.

Programmable Memory/Bus Interface: Allows the use
of lower-cost memory and system components in
price-sensitive systems. The interface supports many
types of EPROM/SRAM/DRAM/VRAM directly,
including fast-page mode on up to four groups of
DRAM devices. On-chip support of RAS cycle &O&E and
&W&E , CAS-before-RAS, and the DSF signal allow use of
VRAM without additional external hardware. Program-

mable bus timing and driver power allow the designer
a range of solutions to system design challenges in
order to match the time, performance, and budget
requirements for each project.

Clock Multiplier: Internally doubles and quadruples
the external clock. An on-chip PLL circuit eliminates
typical stringent oscillator specifications, thus allowing
the use of lower-cost oscillators.

Fully Static Design: A fully static design allows
running the clock from DC up to rated speed. Lower
clock speeds can be used to drastically cut power
consumption.

Hardware Debugging Support: Both breakpoint and
single-step capability aid in debugging programs.

Virtual Memory: Supported through the use of
external mapping SRAMs and support logic.

Floating-Point Support: Special instructions imple-
ment efficient single- and double-precision IEEE
floating-point arithmetic.

Direct Memory Access Controller: Supports up to
eight prioritized levels at data rates of up to the
equivalent of one byte per CPU clock cycle.

Interrupt Controller: Supports up to eight prioritized
levels with interrupt responses as fast as eight CPU-
clock cycles.

Eight Bit Inputs and Eight Bit Outputs: I/O bits are
available for MPU and VPU application use, thus
reducing the requirement for external hardware.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Central Processing Unit
PSC1000 MICROPROCESSOR

11

Central Processing Unit

addr
11

32
data

On-Chip ResourceOn-Chip Resource
RegistersRegisters

control

addr

data
32

32

addr

data

hold

4

32

addr

data
4

32

data/control

data/control

data/control

control

control

addr

data
32

32

addr

data
32

4

data/control

Transfer
Logic

OUT[7:0]

CAS0…3

CAS

CAS

RAS0…3/

RAS

RAS

OE

EWE

LWE

DSF

AD[31:0]

IN[7:0]

MGS0…3

MFLT

DOB

cpublk.wpg

Outputs

VPU Global
Registers

MPU MIF

INTCDMAC

Clock
Inputs

CLK

RESET

Figure 2. CPU Block Diagram

The PSC1000 CPU architectural philosophy is that of
simplification and efficiency of use: implement the
simplest solution that adequately solves the problem
and provides the best utilization of existing resources.
In hardware, this typically equates to using fewer
transistors, and fewer transistors means a lower-cost,
and often lower-power, CPU.

Early RISC processors reduced transistor counts
compared to CISC processors, and gained their cost
and performance improvements therein. Today,

interconnections between transistors dominate the
silicon of many CPUs. The PSC1000 MPU architec-
tural philosophy results in, along with fewer transis-
tors, the minimization of interconnections compared
to register-based MPUs.

Resources
The PSC1000 CPU contains ten major functional
areas: microprocessing unit (MPU), virtual peripheral
unit (VPU), global registers, direct memory access
controller (DMAC), interrupt controller (INTC), on-
chip resources, bit inputs, bit outputs, programmable
memory interface (MIF), and clock. In part, the

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

12

PSC1000 CPU gains its capability and small silicon
size from the resource sharing within and among these
areas. See Figure 2. For example:

C The global registers are shared by the MPU, the VPU,
and the transfer logic within the MIF. They are used
by the MPU for data storage and control communica-
tion with the DMAC and the VPU; by the VPU for
transfer information, loop counts, and delay counts;
and by the DMAC for transfer information. Further, the
transfer information is used by the transfer logic in the
MIF which is shared by the VPU and DMAC.

C The MIF is shared by the MPU, the VPU, the DMAC,
the bit outputs, and the bit inputs for access to the
system bus. Bus transaction requests are arbitrated and
prioritized by the MIF to ensure temporally determinis-
tic execution of the VPU.

C The bit inputs are made available to the system
through the On-Chip Resource Registers. They are
shared by the INTC and the DMAC for service
requests, are available to the MPU and the VPU for
programmed input, and are bit-addressable.

C The DMAC transfer-termination logic is significantly
reduced by using specific termination conditions and
close coupling with the MPU for intelligent termina-
tion action.

C The INTC is shared by the bit inputs, the VPU, and
the DMAC (through the MIF transfer logic) for interrupt
requests to the MPU.

C The bit outputs are made available to the system
through the On-Chip Resource Registers. They are
shared by the MPU and the VPU for programmed
output, and are bit-addressable.

Although the maximum usage case requiring a
complex VPU program, many interrupt sources, many
input bits, many output bits, all available DMA
channels, and maximum MPU computational ability
might leave a shortage of resources, such applications
are not typical. The sharing of resources among

functional units increases CPU capability and flexibil-
ity, and significantly reduces transistor count, package
pin count, and thus silicon size and cost. The ability
to select among available resources, compared to the
fixed resource set of other CPUs, allows the PSC1000
CPU to be used for a wider range of applications.

Clock Speed
The clock speed of a CPU is not a predictor of its
performance. For example, the PowerPC 604, running
at about half the speed of the DEC Alpha 21064A,
achieves about the same SPECint95 benchmark
performance. In this respect, the PSC1000 CPU is
more like the DEC Alpha than the PowerPC. However,
the PSC1000 CPU is based on a significantly different
design philosophy than either of these CPUs.

Most processors historically have forced the system
designer to maintain a balanced triangle among CPU
execution speed, memory bandwidth, and I/O
bandwidth. However, as system clock rate increases,
typically so does bus speed, cache memory speed,
and system interface costs. Typically, too, so do CPU
cost, as often thousands of transistors are added to
maintain this balance.

The PSC1000 CPU lets the system designer select the
performance level desired, while maintaining low
system cost. This may tilt the triangle slightly, but cost
is not part of the classical triangle-balancing equation.
The PSC1000 CPU’s programmable memory interface
permits a wide range of memory speeds to be used,
allowing systems to use slow or fast memory as
required. Slow memory clearly degrades system
performance, but the fast internal clock speed of the
PSC1000 CPU causes internal operations to be
completed quickly. Thus the multi-cycle multiply and
divide instructions always execute quickly, without the
silicon expense of a single-cycle multiply unit.
Although higher performance can sometimes be
gained by dedicating large numbers of transistors to
functions such as these, silicon cost also increases,
and increased cost did not fit the design goals for this
version of the PSC1000 CPU.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

13

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

14

shift

On-Chip
Resource
Registers

fp ops

mpublk.wpg

shift

ALU

s0

s1

s2

s3

s4

r0

r1

r2

r3

+4/-4

mode

sa +4/-4

la +4/-4

x +4/-4

ct -1

sdepth +1/-1

ldepth +1/-1

g0

g1

g2

g15

address
data

MIF

address

data

prefetch

instruction latch

multiplexer

decode/execute

MPU PC +1

+4next PC

INTCtrap logic

force
call

global int
enable

int #
int req
int ack

reti

control/status

32

32

32

3

32
11

2

Figure 3. MPU Block Diagram

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

15

Microprocessing Unit

mpuregus.wpg

g0
g1
.
.
.
.
.
.
.
.
.
.
.
.
g14
g15

r0
r1
.
.
.
.
.
.
.
.
.
.
.
.
r14
r15

s0
s1
s2
s3
.
.
.
.
.
.
.
.
.

.
s16
s17

.

.

Global
Registers

Local-Register
Stack

Operand Stack

All registers are 32 bits wide.

Addressable Unaddressable (used by cache logic)

x

ct

mode

Miscellaneous
Registers

la

sa

Figure 4. MPU Registers

g5 = g1 - (g2 + 1) + g3 - (g4 * 2)

Typical RISC MPU PSC1000 MPU

push g1
push g2

add #1,g2,g5 inc #1

sub g1,g5,g5 sub

push g3
add g5,g3,g5 add

push g4
shl g4,#1,temp shl #1

sub
sub g5,temp,g5 pop g5

20 bytes 10 bytes

Example of twice the instruction bandwidth
available on the PSC1000 MPU

Table 4. Instruction Bandwidth Comparison

The MPU supports the ShBoom™ architectural
philosophy of simplification and efficiency of use
through its basic design in several interrelated ways.

Whereas most RISC processors use pipelines and
superscalar execution to execute at high clock rates,
the PSC1000 MPU uses neither. By having a simpler
architecture, the PSC1000 MPU issues and completes
most instructions in a single clock cycle. There are no
pipelines to fill and none to flush during changes in
program flow. Though more instructions are some-
times required to perform the same procedure in
PSC1000 MPU code, the MPU operates at a higher
clock frequency than other processors of similar
silicon size and technology, thus giving comparable
performance at significantly reduced cost.

A microprocessor's performance is often limited by
how quickly it can be fed instructions from memory.
The MPU reduces this bottleneck by using 8-bit
instructions so that up to four instructions (an instruc-
tion group) can be obtained during each memory
access. Each instruction typically takes one CPU-clock
cycle to execute, thus requiring four CPU-clock cycles
to execute the instruction group. Because a memory
access can complete in four (or even fewer) CPU-clock
cycles, the next instruction group can be available
when execution of the pre-
vious group completes. This
makes it possible to feed
instructions to the processor
at maximum instruction-
execution bandwidth with-
out the cost and complexity
of an instruction cache.

The zero-operand (stack)
architecture makes 8-bit
instructions possible. The
stack architecture eliminates
the requirement to specify
source and destination oper-
ands in every instruction. By
not using opcode bits on
every instruction for oper-

and specification, a much greater bandwidth of
functional operations—up to four times as high—is
possible. Table 4 depicts an example PSC1000 MPU
instruction sequence that demonstrates twice the

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

16

memmap.wpg

Boot Signature
VPU Hardware Reset
MPU Hardware Reset

Boot Program

80000000
80000004
80000008

FFFFFFFF

I/O Devices

0

10

100
104
108
10c
110
114
118
11c
120
124
128
12c
130
134
138
13c
140
144
148
14c

Interrupt 0
Interrupt 1
Interrupt 2
Interrupt 3
Interrupt 4
Interrupt 5
Interrupt 6
Interrupt 7
FP Exponent
FP Underflow
FP Overflow
FP Normalize
FP Round
Breakpoint
Single Step
Memory Fault
LRS Overflow
LRS Underflow
OS Overflow
OS Underflow

VPU Software Reset

Figure 5. CPU Memory Map

typical RISC MPU instruction bandwidth. The instruc-
tion sequence on the PSC1000 MPU requires one-half
the instruction bits, and the uncached performance
benefits from the resulting increase in instruction
bandwidth.

Stack MPUs are thus simpler than register-based
MPUs, and the PSC1000 MPU has two hardware
stacks to take advantage of this: the operand stack and
the local-register stack. The simplicity is widespread
and is reflected in the efficient ways stacks are used
during execution.

The ALU processes data from primarily one source of
inputs—the top of the operand stack. The ALU is also
used for branch address calculations. Data bussing is
thus greatly reduced and simplified. Intermediate
results typically “stack up” to unlimited depth and are
used directly when needed, rather than requiring
specific register allocations and management. The
stacks are individually cached and spill and refill
automatically, eliminating software overhead for stack
manipulation typical in other RISC processors.
Function parameters are passed on, and consumed
directly off of, the operand stack, eliminating the need
for most stack frame management. When additional
local storage is required, the local-register stack
supplies registers that efficiently nest and unnest across
functions. As stacks, the stack register spaces are only
allocated for data actually stored, maximizing storage
utilization and bus bandwidth when registers are
spilled or refilled—unlike architectures using fixed-size
register windows. Stacks speed context switches, such
as interrupt servicing, because registers do not need
to be explicitly saved before use—additional stack
space is allocated as required. The stacks thus reduce
the number of explicitly addressable registers other-
wise required, and speed execution by reducing data
location specification and movement. Stack storage
is inherently local, so the global registers supply non-
local register resources when required.

Eight-bit opcodes are too small to contain much
associated data. Additional bytes are necessary for
immediate values and branch offsets. However,
variable-length instructions usually complicate
decoding and complicate and lengthen the associated

data access paths. To simplify the problem, byte literal
data is taken only from the rightmost byte of the
instruction group, regardless of the location of the byte
literal opcode within the group. Similarly, branch
offsets are taken as all bits to the right of the branch
opcode, regardless of the opcode position. For 32-bit
literal data, the data is taken from a subsequent
memory cell. These design choices ensure that the
required data is always right-justified for placement
on the internal data busses, reducing interconnections
and simplifying and speeding execution.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

17

31 078

byteordr.wpg

15162324

byte data

cell data

0 1 2 3

Bit

Byte

Big Endian Byte Order

Figure 6. Byte Order

Since most instructions decode and execute in a single
clock cycle, the same ALU that is used for data
operations is also available, and is used, for branch
address calculations. This eliminates an entire ALU
often required for branch offset calculations.

Rather than consume the chip area for a single-cycle
multiply-accumulate unit, the higher clock speed of the
MPU reduces the execution time of conventional multi-
cycle multiply and divide instructions. For efficiently
multiplying by constants, a fast multiply instruction
multiplies only by the specified number of bits.

Rather than consume the chip area for a barrel shifter,
the counted bit-shift operation is “smart” to first shift
by bytes, and then by bits, to minimize the cycles
required. The shift operations can also shift double
cells (64 bits), allowing bit-rotate instructions to be
easily synthesized.

Although floating-point math is useful, and sometimes
required, it is not heavily used in embedded applica-
tions. Rather than consume the chip area for a floating-
point unit, MPU instructions to efficiently perform the
most time-consuming aspects of basic IEEE floating-
point math operations, in both single and double
precision, are supplied. The operations use the “smart”
shifter to reduce the cycles required.

Byte read and write operations are available, but
cycling through individual bytes is slow when
scanning for byte values. These types of operations are
made more efficient by instructions that operate on all
of the bytes within a cell at once.

Address Space
The MPU fully supports a linear four-gigabyte address
space for all program and data operations. I/O devices
are selected by mapping them into memory addresses.
By convention, the uppermost address bits select I/O
device addresses decoded in external hardware. This
convention leaves a contiguous linear program and
data space of two gigabytes with a sparse address
space above two gigabytes. It also allows simultaneous
addressing of an I/O device and a memory address for
I/O channel transfers. See Memory and Device
Addressing, page 105.

Several instructions or operations expect addresses
aligned on four-byte (cell) boundaries. These ad-
dresses are referred to as cell-aligned. Only the upper
30 bits of the address are used to locate the data; the
two least-significant address bits are ignored but
appear externally. Within a cell, the high order byte
is located at the low byte address. The next lower-
order byte is at the next higher address, and so on. For
example, the value 0x12345678 would exist at byte
addresses in memory, from low to high address, as 12
34 56 78. See Figure 6.

Registers and Stacks
The register set contains 52 general-purpose registers,
a mode/status register, two stack pointers, and 41 local
address-mapped on-chip resource registers used for
I/O, configuration, and status. See Figure 4, and Figure
24, page 129.

The operand stack contains eighteen registers and
operates as a push-down stack, with direct access to
the top three registers (s0–s2). These registers and the
remaining registers (s3–s17) operate together as a
stack cache. Arithmetic, logical, and data-movement
operations, as well as intermediate result processing,
are performed on the operand stack. Parameters are
passed to procedures and results are returned from
procedures on the stack, without the requirement of
building a stack frame or necessarily moving data
between other registers and the frame. As a true stack,
registers are allocated only as required, resulting in
efficient use of available storage. The external operand
stack is addressed by register sa.

The local-register stack contains sixteen registers and
operates as a push-down stack with direct access to
the first fifteen registers (r0–r14). Theses registers and

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

18

addexmpl.wpg
Operand Stack

a
b
c
d
e
f

s0
s1
s2
s3
s4
s5
.
.

a + b
c
d
e
f

s0
s1
s2
s3
s4
s5
.
.

add

Figure 7. add Execution Example

the remaining register (r15) operate together as a stack
cache. As a stack, they are used to hold subroutine
return addresses and automatically nest local-register
data. The external operand stack is addressed by
register la.

Both cached stacks automatically spill to memory and
refill from memory, and can be arbitrarily deep.
Additionally, s0 and r0 can be used for memory
access. See Stacks and Stack Caches on page 28.

The use of stack-cached operand and local registers
improves performance by eliminating the overhead
required to save and restore context (when compared
to processors with only global registers available). This
allows for very efficient interrupt and subroutine
processing.

In addition to the stacks are sixteen global registers
and three other registers. The global registers (g0–g15)
are used for data storage, as operand storage for the
MPU multiply and divide instructions (g0), and for the
VPU. Since these registers are shared, the MPU and
the VPU can also communicate through them.
Remaining are mode, which contains mode and status
bits; x, which is an index register (in addition to s0
and r0); and ct, which is a loop counter and also
participates in floating-point operations.

Programming Model
For those familiar with the Java Virtual Machine,
American National Standard Forth (ANS Forth),
Postscript, or Hewlett-Packard calculators that use
postfix notation, commonly known as Reverse Polish
Notation (RPN), programming the PSC1000 MPU is
in many ways be very familiar.

An MPU architecture can be classified as to the
number of operands specified within its instruction
format. Typical 16-bit and 32-bit CISC and RISC MPUs
are usually two- or three-operand architectures,
whereas smaller microcontrollers are often one-
operand architectures. In each instruction, two- and
three-operand architectures specify a source and
destination, or two sources and a destination, whereas
one-operand architectures specify only one source and
have an implicit destination, typically the accumula-

tor. Architectures are also usually not pure. For
example, one-operand architectures often have two-
operand instructions to specify both a source and
destination for data movement between registers.

The PSC1000 MPU is a zero-operand architecture,
known as a stack computer. Operand sources and
destinations are assumed to be on the top of the
operand stack, which is also the accumulator. An
operation such as add uses both source operands
from the top of the operand stack, adds them, and
returns the result to the top of the operand stack, thus
causing a net reduction of one in the operand stack
depth. See Figure 7.

Most ALU operations behave similarly, using two
source operands and returning one result operand to
the operand stack. A few ALU operations use one
source operand and return one result operand to the
operand stack. Some ALU and other operations also
require a non-stack register, and a very few do not use
the operand stack at all.

Non-ALU operations are also similar. Loads (memory
reads) either use an address on the operand stack or
in a specified register, and place the retrieved data on
the operand stack. Stores (memory writes) use either
an address on the operand stack or in a register, and
use data from the operand stack. Data movement
operations push data from a register onto the operand
stack, or pop data from the stack into a register.

Once data is on the operand stack it can be used for
any instruction that expects data there. The result of

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

19

an add, for instance, can be left on the stack indefi-
nitely, until used by a subsequent instruction. See
Table 4. Instructions are also available to reorder the
data in the top few cells of the operand stack so that
prior results can be accessed when required. Data can
also be removed from the operand stack and placed
in local or global registers to minimize or eliminate
later reordering of stack elements. Data can even be
popped from the operand stack and restacked by
pushing it onto the local-register stack.

Computations are usually most efficiently performed
by executing the most deeply nested computations
first, leaving the intermediate results on the operand
stack, and then combining the intermediate results as
the computation unnests. If the nesting of the compu-
tation is complex, or if the intermediate results are to
be used some time later after other data will have been
added to the operand stack, the intermediate results
can be removed from the operand stack and stored in
global or local registers.

Global registers are used directly and maintain their
data indefinitely. Local registers are registers within the
local-register stack cache and, as a stack, must first be
allocated. Allocation can be performed by popping
data from the operand stack and pushing it onto the
local-register stack one cell at a time. It can also be
preformed by allocating a block of uninitialized stack
registers at one time; the uninitialized registers are
then initialized by popping data, one cell at a time,
into the registers in any order. The allocated local
registers can be deallocated by pushing data onto the
operand stack by popping it off of the local register
stack one cell at a time, and then discarding from the
operand stack the data that is not required. Alterna-
tively, the allocated local registers can be deallocated
by first saving any data required from the registers, and
then deallocating a block of registers at one time. The
method selected depends on the number of registers
required and whether the data on the operand stack
is in the required order.

Registers on both stacks are referenced relative to the
tops of the stacks and are thus local in scope. What
was accessible in r0, for example, after one cell has
been push onto the local-register stack, is accessible
as r1; the newly pushed value is accessible as r0.

Parameters are passed to and returned from subrou-
tines on the operand stack. An unlimited number of
parameters can be passed and returned in this manner.
An unlimited number of local-register allocations can
also be made. Parameters and allocated local registers
thus conveniently nest and unnest across subroutines
and program basic blocks.

Subroutine return addresses are pushed onto the local-
register stack and thus appear as r0 on entry to the
subroutine, with the previous r0 accessible as r1, and
so on. As data is pushed onto the stacks and the
available register space fills, registers are spilled to
memory when required. Similarly, as data is removed
from the stacks and the register space empties, the
registers are refilled from memory as required. Thus
from the program’s perspective, the stack registers are
always available.

Instruction Set Overview
Table 5 lists the MPU instructions; Table 39, Table 39,
page 84, 85, and Table 40, Table 40, page 86, 87, list
the mnemonics and opcodes. All instructions consist
of eight bits, except for those that require immediate
data. This allows up to four instructions (an instruction
group) to be obtained on each instruction fetch, thus
reducing memory-bandwidth requirements compared
to typical RISC machines with 32-bit instructions. This
characteristic also allows looping on an instruction
group (a micro-loop) without additional instruction
fetches from memory, further increasing efficiency.
Instruction formats are depicted in Figure 8.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

20

ARITHMETIC/SHIFT
ADD
ADD with carry
ADD ADDRESS
SUBTRACT
SUBTRACT with borrow
INCREMENT
DECREMENT
NEGATE
SIGN EXTEND BYTE
COMPARE
MAXIMUM
MULTIPLY SIGNED
MULTIPLY UNSIGNED
FAST MULTIPLY SIGNED
DIVIDE UNSIGNED
SHIFT LEFT/RIGHT
DOUBLE SHIFT LEFT/RIGHT
INVERT CARRY

MISCELLANEOUS
CACHE CONTROL
FRAME CONTROL
STACK DEPTH
NO OPERATION
ENABLE/DISABLE INTERRUPTS

CONTROL TRANSFER
BRANCH
BRANCH ON ZERO
BRANCH INDIRECT
CALL
CALL INDIRECT
DECREMENT AND BRANCH
SKIP
SKIP ON CONDITION
MICRO-LOOP
MICRO-LOOP ON CONDITION
RETURN
RETURN FROM INTERRUPT

FLOATING POINT
TEST EXPONENT
EXTRACT EXPONENT
EXTRACT SIGNIFICAND
REPLACE EXPONENT
DENORMALIZE
NORMALIZE RIGHT/LEFT
EXPONENT DIFFERENCE
ADD EXPONENTS
SUBTRACT EXPONENTS
ROUND

LOGICAL
AND
OR
XOR
NOT AND
TEST BYTES
EQUAL ZERO

DEBUGGING
STEP
BREAKPOINT

DATA MANAGEMENT
LOAD
STORE
STORE INDIRECT, pre-dec/post-inc
PUSH REGISTER/STACK
POP REGISTER/STACK
EXCHANGE
REVOLVE
SPLIT
REPLACE BYTE
PUSH LITERAL
STORE ON-CHIP RESOURCE
LOAD ON-CHIP RESOURCE

Table 5. MPU Instruction Set

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

21

add add pc adda addc
and cmp dec #1 dec #4
dec ct,#1 divu eqz iand
inc #1 inc #4 mulfs muls
mulu mxm neg notc
or sexb shift shiftd
shl #1 shl #8 shr #1 shr #8
shld #1 shrd #1 sub subb
testb xor

Table 6. ALU Instructions

; Rotate single cell left by specified number of bits
; (n1 #bits -- n2)

rotate_left::

push #0 ; space for bits
xcg ; get count
shiftd
or ; combine parts
...

; Rotate single cell right by specified number of bits
; (n1 #bits -- n2)

rotate_right::

push #0 ; space for bits
rev
rev

shl #1 ; make a negative
notc ; sign magnitude
shr #1 ; number

shiftd
or
...

Table 7. Code Examples: Rotate

ALU Operations
Almost all ALU operations occur on the top of the
operand stack in s0 and, if required, s1. A few
operations also use g0, ct, or pc.

Only one ALU status bit, carry, is maintained and
is stored in mode. Since there are no other ALU status
bits, all other conditional operations are performed by
testing s0 on the fly. eqz is used to reverse the
zero/non-zero state of s0. Most arithmetic operations
modify carry from the result produced out of bit 31
of s0. The instruction add pc is available to perform
pc-relative data references. adda is available to
perform address arithmetic without changing carry.
Other operations modify carry as part of the result
of the operation.

s0 and s1 can be used together for double-cell shifts,
with s0 containing the more-significant cell and s1
the less-significant cell of the 64-bit value. Both single-
cell and double-cell shifts transfer a bit between
carry and bit 31 of s0. Code depicting single-cell
rotates constructed from the double-cell shift is given
in Table 7.

All ALU instruction opcodes are formatted as 8-bit
values with no encoded fields.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

22

offset

offset

offsetbranch

branchopcodeopcodeopcode

opcodeopcode

opcode branch

branch

push.bopcodeopcode value

opcodepush.bopcode value

opcodeopcodepush.b value

push.n

opcodepush.lopcode opcode

opcodeopcodeopcode opcode

data for first push.l

data for fourth push.l (if present)

opcodeopcodeopcode opcode

push long
(any positions)

push byte

push nibble
(any positions)

Branches

Literals

All Others

mpuinfmt.wpg

data for second push.l (if present)

data for third push.l (if present)

3-bit offset

11-bit offset

19-bit offset

27-bit offset

opcode opcode opcode

Figure 8. MPU Instruction Formats

br br [] bz call
call [] dbr mloop mloopc
mloopn mloopnc mloopnn mloopnz
mloopz ret reti skip
skipc skipn skipnc skipnn
skipnz skipz

Table 8. Branch, Loop and Skip Instructions

Branches, Skips, and Loops
The instructions br, bz, call and dbr are variable-
length. The three least-significant bits in the opcode
and all of the bits in the current instruction group to
the right of the opcode are used for the relative branch
offset. See Figure 8 and Table 9. Branch destination
addresses are cell-aligned to maximize the range of the
offset and the number of instructions that are executed
at the destination. If an offset is not of sufficient size
for the branch to reach the destination, the branch
must be moved to an instruction group where more
offset bits are available, or a register indirect branch,
br [] or call [], can be used. Register indirect
branches use an absolute byte-aligned address from
s0. The instruction add pc can be used if a com-
puted pc-relative branch is required.

The mloop_ instructions are referred to as micro-
loops. If specified, a condition is tested, and then ct
is decremented. If a termination condition is not met,
execution continues at the beginning of the current
instruction group. Micro-loops are used to re-execute
short instruction sequences without re-fetching the
instructions from memory. See Table 14. Other than branching on zero with bz, conditional

branching is performed with the skip_ instructions.
They terminate execution of the current instruction
group and continue execution at the beginning of the
next instruction group. They can be combined with
the br, call, dbr, and ret (or other instructions) to
create additional flow-of-control operations.

Offset Bits Offset Range in Bytes

3 -16/+12

11 -4096/+4092

19 -1048576/+1048572

27 -268435456/+268435452

Note:
Encoded offset is in cells. Offset is added to the
address of the beginning of the cell containing the
branch to compute the destination address.

Table 9. MPU Branch Ranges

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

23

push.b push.l push.n

Table 10. Literal Instructions

pop ct pop gi pop ri pop x
push ct push gi push ri push si
push x

Table 11. Data Movement Instructions

Literals
To maximize opcode bandwidth, three sizes of literals
are available. The data for four-bit (nibble) literals,
with a range of !7 to +8, is encoded in the four least-
significant bits of the opcode; the numbers are
encoded as two’s-complement values with the value
1000 binary decoded as +8. The data for eight-
bit(byte) literals, with a range of 0–255, is located in
the right-most byte of the instruction group, regardless
of the position of the opcode within the instruction
group. The data for 32-bit (long, or cell) literals, is
located in a cell following the instruction group in the
instruction stream. Multiple push.l instructions in the
same instruction group access consecutive cells
immediately following the instruction group. See
Figure 8.

Data Movement
Register data is moved by first pushing the register
onto the operand stack, and then popping it into the
destination register. Memory data is moved similarly.
See Loads and Stores, above.

The opcodes for the data-movement instructions that
access gi and ri are 8-bit values with the register
number encoded in the four least-significant bits. All
other data-movement instruction opcodes are format-
ted as 8-bit values with no encoded fields.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

24

ld [--r0] ld [--x] ld [r0++] ld [r0]
ld [x++] ld [x] ld [] ld.b []
st [--r0] st [--x] st [r0++] st [r0]
st [x++] st [x] st [] replb

Table 12. Load and Store Instructions

; addc [g0+g2+20],#8,[g0-g3-4]

push g0
push g2
adda
push.b #20
adda
ld []

push.n #8
addc

push g0
push g3
neg
adda
dec #4
st []

; The carry into and out of addc is maintained.

Table 13. Code Example: Complex Addressing
Mode

; Memory Move
; (cell_source cell_dest cell_count --)

move_cells::

pop ct ; count
pop x ; dest
pop lstack ; source to r0

move_cell_loop::

ld [r0++]
st [x++]
mloop move_cell_loop

push lstack
pop ; discard source
...

; Memory Fill
; (cell_dest cell_count cell_value --)

fill_cells::
xcg
pop ct ; count
xcg
pop x ; dest

fill_cells_loop::
push ; keep fill value
st [x++]
mloop fill_cells_loop

pop ; discard fill value
...

Table 14. Code Examples: Memory Move and Fill

Loads and Stores
r0 and x support register-indirect addressing and also
register-indirect addressing with predecrement by four
or postincrement by four. These modes allow for
efficient memory reference operations. Code depicting
memory move and fill operations is given in Table 14.

Register indirect addressing can also be performed
with the address in s0. Other addressing modes can
be implemented using adda. Table 13 depicts the
code for a complex memory reference operation.

The memory accesses depicted in the examples above
are cell-aligned, with the two least-significant bits of
the memory addresses ignored. Memory can also be
read at byte addresses with ld.b [] and written at
byte addresses using x and replb. See Byte Opera-
tions.

The MPU contains a one-level posted write. This
allows the MPU to continue executing while the
posted write is in progress and can significantly reduce
execution time. Memory coherency is maintained by
giving the posted write priority bus access over other
MPU bus requests, thus writes are not indefinitely
deferred. In the code examples in Table 14, the loop
execution overhead is zero when using posted writes.
Posted writes are enabled by setting mspwe.

All load and store instruction opcodes are formatted
as 8-bit values with no encoded fields.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

25

lframe pop pop lstack push
push lstack rev sframe xcg

Table 15. Stack Data Management Instructions

lcache ldepth pop la pop sa
push la push sa scache sdepth

Table 16. Stack Cache Management Instructions

Stack Data Management
Operand stack data is used from the top of the stack
and is generally consumed when processed. This can
require the use of instructions to duplicate, discard, or
reorder the stack data. Data can also be moved to the
local-register stack to place it temporarily out of the
way, or to reverse its stack access order, or to place
it in a local register for direct access. See the code
examples in Table 14.

If more than a few stack data management instructions
are required to access a given operand stack cell,
performance usually improves by placing data in a
local or global register. However, there is a finite
supply of global registers, and local registers, at some
point, spill to memory. Data should be maintained on
the operand stack only while it is efficient to do so. In
general, if the program requires frequent access to data
in the operand stack deeper than s2, that data, or
other more accessible data, should be placed in
directly addressable registers to simplify access.

To use the local-register stack, data can be popped
from the operand stack and pushed onto the local-
register stack, or data can be popped from the local-
register stack and pushed onto the operand stack. This
mechanism is convenient to move a few cells when
the resulting operand stack order is acceptable. When
moving more data, or when the data order on the
operand stack is not as desired, lframe can be used
to allocate or deallocate the required local registers,
and then the registers can be written and read directly.
Using lframe also has the advantage of making the
required local-register stack space available by spilling
the stack as a continuous sequence of bus transac-
tions, which minimizes the number of RAS cycles
required when writing to DRAM. The instruction
sframe behaves similarly to lframe, and is primarily
used to discard a number of cells from the operand
stack.

All stack data management instruction opcodes are
formatted as 8-bit values with no encoded fields.

Stack Cache Management
Other than initialization, and possibly monitoring of
overflow and underflow via the related traps, the stack
caches do not require active management. Several
instructions exist to efficiently manipulate the caches
for context switching, status checking, and spill and
refill scheduling.

The _depth instructions can be used to determine
the number of cells in the SRAM part of the stack
caches. This value can be used to discard the values
currently in the cache, to later restore the cache depth
with _cache, or to compute the total on-chip and
external stack depth.

The _cache instructions can be used to ensure either
that data is in the cache or that space for data exists
in the cache, so that spills and refills occur at preferen-
tial times. This allows more control over the caching
process and thus a greater degree of determinism
during the program execution process. Scheduling
stack spills and refills in this way can also improve
performance by minimizing the RAS cycles required
due to stack memory accesses.

The _frame instructions can be used to allocate a
block of uninitialized register space at the top of the
SRAM part of a stack, or to discard such a block of
register space when no longer required. They, like the
_cache instructions, can be used to group stack spills
and refills to improve performance by minimizing the
RAS cycles required due to stack memory accesses.

See Stacks and Stack Caches on page 28 for more
information.

All stack cache management instruction opcodes are
formatted as 8-bit values with no encoded fields.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

26

ld.b [] replb copyb shl #8
shr #8 testb

Table 17. Byte Operation Instructions

; Byte store
; (byte byte_addr --)

byte_store::

pop x ; address
ld [x] ; get data
replb ; insert byte
st [x] ; replace data

Table 18. Code Example: Byte Store

; Null character search
; (cell_source --)

null_search::

pop x ; address

push.n #0
pop ct ; a very long loop

; loop terminates when null found or after
; a long time if not found.

null_search_loop::

ld [x++]
testb
pop
mloopnc null_search_loop
...

Table 19. Code Example: Null Character Search

; Move cell-aligned null-terminated string
; (cell_source cell_dest --)

null_move::

pop x ; destination
pop lstack ; source

push.n #0
pop ct ; a very long loop

null_move_loop::

ld [r0++]
testb ; check for zero
st [x++]
mloopnc null_move_loop

push lstack
pop ; discard source
...

Table 20. Code Example: Null-Terminated String
Move

Byte Operations
Bytes can be addressed and read from memory
directly and can be addressed and written to memory
with the code depicted in Table 18.

Instructions are available for manipulating bytes within
cells. A byte can be replicated across a cell, the bytes
within a cell can be tested for zero, and a cell can be
shifted by left or right by one byte. Code examples
depicting scanning for a specified byte, scanning for
a null byte, and moving a null-terminated string in
cell-sized units are given below.

All byte operation instruction opcodes are formatted
as 8-bit values with no encoded fields.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

27

; Byte search
; (cell_source cell_count byte --)

byte_search::

xcg
pop ct ; count

xcg
pop x ; source

copyb

byte_search_loop::

push ; keep data pattern
ld [x++]
xor

testb
pop

skipnc
dbr byte_search_loop
; carry set if byte found

pop ; discard pattern
...

Table 21. Code Example: Byte Search

addexp denorm expdif extexp
extsig norml normr replexp
rnd subexp testexp

Table 22. Floating-Point Math Instructions

Floating-Point Math
The instructions above are used to implement efficient
single- and double-precision IEEE floating-point
software for basic math functions (+, -, *, /), and to aid
in the development of floating-point library routines.
The instructions perform primarily the normalization,
denormalization, exponent arithmetic, rounding and
detection of exceptional numbers and conditions that
are otherwise execution-time-intensive when pro-
grammed conventionally. See Floating-Point Math
Support on page 33.

All floating-point math instruction opcodes are
formatted as 8-bit values with no encoded fields.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

28

stackpg.wpg

masked addr = 0x380

masked addr = 0x200

masked addr = 0x000

masked addr = addr AND 0x380

Boundary Region

Boundary Region

Middle Region

0x…000

0x…200

0x…3FF

1K Page
Address

0x…380

0x…27F

0x…07F

Figure 9. Stack Exception Regions

bkpt step

Table 23. Debugging Instructions

ldo [] ldo.i [] sto [] sto.i []

Table 24. On-Chip Resources Instructions

di ei nop pop mode
push mode split

Table 25. Miscellaneous Instructions

Debugging Features
Each of these instructions signals an exception and
traps to an application-supplied execution-monitoring
program to assist in the debugging of programs. See
Debugging Support on page 36.

Both debugging instruction opcodes are formatted as
8-bit values with no encoded fields.

On-Chip Resources
These instructions allow access to the on-chip
peripherals, status registers, and configuration
registers. All registers can be accessed with the ldo
[] and sto [] instructions. The first six registers
each contain eight bits, which are also bit addressable
with ldo.i [] and sto.i []. See On-Chip
Resource Registers on page 129.

All on-chip resource instruction opcodes are formatted
as 8-bit values with no encoded fields.

Miscellaneous
The disable- and enable-interrupt instructions are the
only system control instructions; they are supplied to
make interrupt processing more efficient. Other system
control functions are performed by setting or clearing
bits in mode, or in an on-chip resource register. The
instruction split separates a 32-bit value into two
cells, each containing 16 bits of the original value.

All miscellaneous instruction opcodes are formatted
as 8-bit values with no encoded fields.

Stacks and Stack Caches
The stack caches optimize use of the stack register
resources by minimizing the overhead required for the
allocation and saving of registers during programmed
or exceptional context switches (such as call subrou-
tine execution and trap or interrupt servicing).

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

29

The local-register stack consists of an on-chip SRAM
array that is addressed to behave as a conventional
last-in, first-out queue. Local registers r0–r15 are
addressed internally relative to the current top of stack.
The registers r0–r14 are individually addressable and
are always contiguously allocated and filled. If a
register is accessed that is not in the cache, all the
lower-ordinal registers are read in to ensure a contigu-
ous data set.

The operand stack is constructed similarly, with the
addition of two registers in front of the SRAM stack
cache array to supply inputs to the ALU. These
registers are designated s0 and s1, and the SRAM
array is designated s2–s17. Only registers s0, s1 and
s2 are individually addressable, but otherwise the
operand stack behaves similarly to the local-register
stack. Whereas the SRAM array, s2–s17, can become
“empty” (see below), s0 and s1 are always considered
to contain data.

The stack caches are designed to always allow the
current operation to execute to completion before an
implicit stack memory operation is required to occur.
No instruction explicitly pushes or explicitly pops
more than one cell from either stack (except for stack
management instructions). Thus to allow execution to
completion, the stack cache logic ensures that there
is always one or more cells full and one or more cells
empty in each stack cache (except immediately after
reset, see below) before instruction execution. If, after
the execution of an instruction, this is not the case on
either stack, the corresponding stack cache is automat-
ically spilled to memory or refilled from memory to
reach this condition before the next instruction is
allowed to execute. Similarly, the instructions
_cache, _frame, pop sa, and pop la, which
explicitly change the stack cache depth, execute to
completion, and then ensure the above conditions
exist.

Thus r15 or s17 can be filled by the execution of an
instruction, but they are spilled before the next
instruction executes. Similarly, r0 and s2 can be
emptied by the execution of an instruction, but they
are filled before the next instruction executes.

The stacks can be arbitrarily deep. When a stack spills,
data is written at the address in the stack pointer and
then the stack pointer is decremented by four
(postdecremented stack pointer). Conversely, when a
stack refills, the stack pointer is incremented by four,
and then data is read from memory (preincremented
stack pointer). The stack pointer thus points to the next
location to write and the stacks grow from higher to
lower memory addresses. The stack pointer for the
operand stack is sa, and the stack pointer for the
local-register stack is la.

Since the stacks are dynamically allocated memory
areas, some amount of planning or management is
required to ensure the memory areas do not overflow
or underflow. The simplest is to allocate a sufficiently
large memory area so that overflow conditions won’t
occur. In this case, a correctly written program does
not produce underflow. Alternatively, stack memory
can be dynamically allocated or monitored through
the use of stack-page exceptions.

Stack-Page Exceptions
Stack-page exceptions occur on any stack-cache
memory access near the boundary of any 1024-byte
memory page to allow overflow and underflow
protection and stack memory management. To prevent
thrashing stack-page exceptions near the margins of
the page boundary areas, once a boundary area is
accessed and the corresponding stack-page exception
is signaled, the stack pointer must move to the middle
region of the stack page before another stack-page
exception can be signaled. See Figure 9.

Stack-page exceptions enable stack memory to be
managed by allowing stack memory pages to be
reallocated or relocated when the edges of the current
stack page are approached. The boundary regions of
the stack pages are located 32 cells from the ends of
each page to allow even a _cache or _frame
instruction to execute to completion and to allow for
the corresponding stack cache to be emptied to
memory. Using the stack-page exceptions requires that
only 2 KB of addressable memory be allotted to each
stack at any given time: the current stack page and the
page near the most recently encroached boundary.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

30

init_stacks::

; Create a stack area below xx_base in
; memory. One cell is read in to initialize s2/r0.

push.l #os_base-8
pop sa ; read os_base-4
; s0 and s1 are uninitialized

push.l #ls_base-8 ; allow dead zone
pop la ; read ls_base-4

Table 26. Code Example: Stack Initialization

; Operand stack depth

os_depth::

push.n #-2
scache
pop ; ensure 3 spaces available

.quad 3 ; keep up to push sa
; uninterruptable

sdepth

push.l #os_base-4
push sa
sub ; compute memory used

shr #1
shr #1 ; convert to cells

add ; total on-chip & off
...

ls_depth:: ; “::” forces alignment
; keep to push la
; uninterruptable

ldepth

push.l #ls_base-4
push la
sub ; compute memory used

shr #1
shr #1 ; convert to cells

add ; total on-chip & off
...

Table 27. Code Example: Stack Depth

Each stack supports stack-page overflow and stack-
page underflow exceptions. These exception condi-
tions are tested against the memory address that is
accessed when the corresponding stack spills or refills
between the execution of instructions. mode contains
bits that signal local-stack overflow, local-stack
underflow, operand stack overflow and operand stack
underflow, as well as the corresponding trap enable
bits.

The stack-page exceptions have the highest priority of
all of the traps. As this implies, it is important to
consider carefully the stack effects of the stack trap
handler code so that stack-page boundaries are not be
violated during its execution.

Stack Initialization
After CPU reset both of the MPU stacks should be
considered uninitialized until the corresponding stack
pointers are loaded, and this should be one of the first
operations performed by the MPU.

After a reset, the stacks are abnormally empty. That is,
r0 and s2 have not been allocated, and are allocated
on the first push operation to, or stack pointer initial-
ization of, the corresponding stack. However, popping
the pushed cell causes that stack to be empty and
require a refill. The first pushed cell should therefore
be left on that stack, or the corresponding stack pointer
should be initialized, before the stack is used further.
See Table 26.

Stack Depth
The total number of cells on each stack can readily be
determined by adding the number of cells that have
spilled to memory and the number of cells in the on-
chip caches. See Table 27.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

31

; Context switch: save context
; Save off any gloabls required and flush stacks

save_context::

; Save globals as required
push g15
push g14
… ; save any others required

; Flush stacks to memory

; add one cell to local-register stack so on-chip
; part can spill.
push.b #-14 ; count for _cache
pop lstack

push r0 ; count for lcache

; ensure no interrupts between flush and la read
.quad 2
lcache ; write out spillable area
push la ; save pointer

; add three cells to stack so on-chip part can spill
push
push
push r0 ; count for scache

; ensure no interrupts between flush and sa read
.quad 2
scache ; write out all of spillable area
push sa

push.l #sp_save_area
st [] ; save off stack pointer

; Now load new context and continue
...

Table 28. Code Example: Save Context

; Context switch: restore context
; Restore stack pointer and globals.

restore_context::

push.l #sp_save_area
pop sa ; restore it, s2 refills...

; other refill when accessed

pop
pop ; bring s2 to s0
pop la ; restore it, r0 refills…

; other refill when accessed

; Restore globals as required
... ; restore last saved first
pop g14
pop g15 ; and first saved last

ret ; return to suspended
; execution

Table 29. Code Example: Restore Context

Stack Flush and Restore
When performing a context switch, it is necessary to
spill the data in the stack caches to memory so that the
stack caches can be reloaded for the new context.
Attention must be given to ensure that the parts of the
stack caches that are always maintained on-chip, r0
and s0–s2, are forced into the spillable area of the
stack caches so that they can be written to memory.
Code examples are given for context switches that
include flushing and restoring the caches in Table 28
and Table 29, respectively.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

32

Stack Depth
Change

Traps
Operand

Stack
Local-

Register
Stack

+n 0 Operand Stack Overflow

–n 0 Operand Stack Underflow

0 +1 Local Stack Overflow

0 –1 Local Stack Underflow

+1 -n Local Stack Underflow
Operand Stack Overflow
Local Stack Underflow and
Operand Stack Overflow

–1 +n Local Stack Overflow
Operand Stack Underflow
Local Stack Overflow and
Operand Stack Underflow

–1 –n Local Stack Underflow
Operand Stack Underflow
Local Stack Underflow and
Operand Stack Underflow

Notes:
1. +n > 0, –n < 0
2. If the instruction reads or writes memory or if a
posted write is in progress, a memory fault can also
occur.
3. If the instruction is single-stepped, a single-step
trap also occurs.
4. If any trap occurs, a local-register stack overflow
could also occur.

Table 30. Traps Dependent on System State Exceptions and Trapping
Exception handling is precise and is managed by
trapping to executable-code vectors in low memory.
Each 32-bit vector location can contain up to four
instructions. This allows servicing the trap within those
four instructions or by branching to a longer trap
routine. Traps are prioritized and nested to ensure
proper handling. The trap names and executable
vector locations are shown in Figure 5.

An exception is said to be signaled when the defined
conditions exist to cause the exception. If the trap is
enabled, the trap is then processed. Traps are pro-
cessed by the trap logic, which causes a call subrou-
tine to the associated executable-code-vector address.
When multiple traps occur concurrently, the lowest-
priority trap is processed first, but before the
executable-code vector is executed, the next-higher-
priority trap is processed, and so on, until the highest-
priority trap is processed. The highest-priority trap’s
executable-code vector then executes. The nested
executable-code-vector return addresses unnest as
each trap handler executes ret, thus producing the
prioritized trap executions.

Interrupts are disabled during trap processing and
nesting, until an instruction that begins in byte one of
an instruction group is executed. Interrupts do not nest
with the traps since their request state is maintained
in the INTC registers.

Table 31 lists the priorities of each trap. Traps that can
occur explicitly due to the data processed or instruc-
tion executed are listed in Table 32. Traps that can
occur due to the current state of the system, concur-
rently with the traps in Table 32, are listed in Table 30.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

33

Priority Traps

1 (highest) local-register stack overflow

2 operand stack overflow

3 local-register stack underflow

4 operand stack underflow

5 memory fault

6 floating-point exponent
floating-point underflow
floating-point overflow
floating-point round

7 floating-point normalize

8 breakpoint

9 (lowest) single step

Table 31. Trap Priorities

Instruction Trap Combinations

addexp Floating Point Underflow,
Floating Point Overflow

bkpt Breakpoint

denorm Floating Point Normalize

norml Floating Point Underflow,
Floating Point Normalize,
Floating Point Underflow and
Floating Point Normalize

normr Floating Point Overflow,
Floating Point Normalize,
Floating Point Overflow and
Floating Point Normalize

rnd Floating Point Round

step Single Step

subexp Floating Point Underflow,
Floating Point Overflow

testexp Floating Point Exponent

Table 32. Traps Independent of System State

exponent significand

fpfmt.wpg

31 30 23 22 0

exponent significand (high)

31 30 0

significand (low)

31 0

20 19

Single Precision

Double Precision

hidden bitsign bit

sign bit hidden bit

Figure 10. Floating-Point Number Formats

Floating-Point Math Support
The MPU supports single-precision (32-bit) and
double-precision (64-bit) IEEE floating-point math
software. Rather than a floating-point unit and the
silicon area it would require, the MPU contains
instructions to perform most of the time-consuming
operations required when programming basic floating-
point math operations. Existing integer math opera-
tions are used to supply the core add, subtract,
multiply, and divide functions, while special instruc-
tions are used to efficiently manipulate the exponents
and detect exception conditions. Additionally, a three-
bit extension to the top one or two stack cells (depend-
ing on the precision) is used to aid in rounding and to
supply the required precision and exception signaling
operations.

Data Formats
Though single- and double-precision IEEE formats are
supported, from the perspective of the MPU, only 32-
bit values are manipulated at any one time (except for
double shifting). See Figure 10. The MPU instructions
directly support the normalized data formats depicted.
The related denormalized formats are detected by
testexp and fully supportable in software.

Status and Control Bits
mode contains 13 bits that set floating-point precision,
rounding mode, exception signals, and trap enables.
See Figure 11, page 39.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

34

cleared by:
testexp replexp

shifted into by:
denorm normr shift shiftd
shr #1 shr #8 shrd #1

shifted out of by:
norml

tested by:
rnd

read by:
push mode

written by:
pop mode

Table 33. GRS Extension Bit Manipulation
Instructions

Sign of
ct G R S Action

Round to nearest or even

x 0 x x do nothing

x 1 0 0
increment s0, clear bit
0 of s0

x 1 any 1 increment s0

Round toward negative infinity

0 x x x do nothing

1 0 0 0 do nothing

1 any 1 increment s0

Round toward positive infinity

0 0 0 0 do nothing

0 any 1 increment s0

1 x x x do nothing

Round toward zero

x x x x do nothing

Table 34. Rounding-Mode Actions

GRS Extension Bits
To maintain the precision required by the IEEE
standard, more significand bits are required than are
held in the IEEE format numbers. These extra bits are
used to hold bits that have been shifted out of the right
of the significand. They are used to maintain addi-
tional precision, to determine if any precision has been
lost during processing, and to determine whether
rounding should occur. The three bits appear in mode
so they can be saved, restored and manipulated.
Individually, the bits are named guard_bit,
round_bit and sticky_bit. Several instructions
manipulate or modify the bits. See Table 33.

When denorm and normr shift bits into the GRS
extension, the source of the bits is always the least-
significant bits of the significand. In single-precision
mode the GRS extension bits are taken from s0, and
in double-precision mode the bits are taken from s1.
For conventional right shifts, the GRS extension bits
always come from the least significant bits of the shift
(i.e., s0 if a single shift and s1 if a double shift). The
instruction norml is the only instruction to shift bits
out of the GRS extension; it shifts into s0 in single-
precision mode and into s1 in double-precision mode.
Conventional left shifts always shift in zeros and do
not affect the GRS extension bits.

Rounding
The GRS extension maintains three extra bits of
precision while producing a floating-point result.
These bits are used to decide how to round the result
to fit the destination format. If one views the bits as if
they were just to the right of the binary point, then
guard_bit has a position value of one-half,
round_bit has a positional value of one-quarter, and
sticky_bit has a positional value of one-eighth.
The rounding operation selected by fp_round_mode
uses the GRS extension bits and the sign bit of ct to
determine how rounding occurs. If guard_bit is
zero the value of GRS extension is below one-half. If
guard_bit is one the value of GRS extension is one-
half or greater. Since the GRS extension bits are not
part of the destination format they are discarded when
the operation is complete. This information is the basis
for the operation of the instruction rnd.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

35

; Floating-Point Multiply
; (r1 r2 -- product)

...
testexp
addexp

pop ct ; save sign & exp sum

; A 24-bit x 24-bit multiply makes a 47 to 48-bit product,
; leaving 16-bits in the high cell. If we multiply 32-bit x
; 24-bit we get a 56-bit product with 24-bits in the high
; part, which is what we want.

; make into a 32-bit multiplier
shl #8
pop g0

shl #1
push.n #0

mulu
xcg
pop ; discard low part

normr
rnd
normr

push ct
replexp
...

Table 35. Code Example: Floating-Point MultiplyMost rounding adjustments by rnd involve doing
nothing or incrementing s0. Whether this is rounding
down or rounding up depends on the sign of the
floating-point result that is in ct. If the GRS extension
bits are non-zero, then doing nothing has the effect of
“rounding down” if the result is positive, and “round-
ing up” if the result is negative. Similarly, incrementing
the result has the effect of “rounding up” if the result
is positive and “rounding down” if the result is
negative. If the GRS extension bits are zero then the
result was exact and rounding is not required. See
Table 34.

In practice, the significand (or the lower cell of a
double-precision significand) is in s0, and the sign
and exponent are in ct. carry is set if the increment
from rnd carried out of bit 31 of s0; otherwise,
carry is cleared. This allows carry to be propagated
into the upper cell of a double-precision significand.

Exceptions
To speed processing, exception conditions detected
by the floating-point instructions set exception
signaling bits in mode and, if enabled, trap. The
following traps are supported:
C Exponent signaled from testexp
C Underflow signaled from norml, addexp,

subexp
C Overflow signaled from normr, addexp,

subexp
C Normalize signaled from denorm, norml,

normr
C Rounded signaled from rnd
Exceptions are prioritized when the instruction
completes and are processed with any other system
exceptions or traps that occur concurrently. See
Exceptions and Trapping, page 32.
C Exponent Trap: Detects special-case exponents.
If the tested exponent is all zeros or all ones, carry
is set and the exception is signaled. Setting carry
allows testing the result without processing a trap.
C Underflow Trap: Detects exponents that have
become too small due to calculations or decrementing
while shifting.
C Overflow Trap: Detects exponents that have
become too large due to calculations or incrementing
while shifting.

C Normalize Exception: Detects bits lost due to
shifting into the GRS extension. The exception
condition is tested at the end of instruction execution
and is signaled if any of the bits in the GRS extension
are set. Testing at this time allows normal right shifts
to be used to set the GRS extension bits for later
floating-point instructions to test and signal.
C Rounded Exception: Detects a change in bit zero
of s0 due to rounding.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

36

Hardware Debugging Support
The MPU contains both a breakpoint instruction,
bkpt, and a single-step instruction, step. The
instruction bkpt executes the breakpoint trap and
supplies the address of the bkpt opcode to the trap
handler. This allows execution at full processor speed
up to the breakpoint, and then execution in a
program-controlled manner following the breakpoint.
step executes the instruction at the supplied address,
and then executes the single-step trap. The single-step
trap can efficiently monitor execution on an
instruction-by-instruction basis.

Breakpoint
The instruction bkpt performs an operation similar to
a call subroutine to address 0x134, except that the
return address is the address of the bkpt opcode. This
behavior is required because, due to the instruction
push.l, the address of a call subroutine cannot
always be determined from its return address.

Commonly, bkpt is used to temporarily replace an
instruction in an application at a point of interest for
debugging. The trap handler for bkpt typically
restores the original instruction, displays information
for the user, and waits for a command. Or, the trap
handler could be implemented as a conditional
breakpoint to check for a termination condition (such
as a register value or the number of executions of this
particular breakpoint), continuing execution of the
application until the condition is met. The advantage
of bkpt over step is that the applications executes
at full speed between breakpoints.

Single-Step
The instruction step is used to execute an application
program one instruction at a time. It acts much like a
return from subroutine, except that after executing one
instruction at the return address, a trap to address
0x138 occurs. The return address from the trap is the
address of the next instruction. The trap handler for
step typically displays information for the user, and
waits for a command. Or, the trap handler could
instead check for a termination condition (such as a
register value or the number of executions of this
particular location), continuing execution of the
application until the condition is met.

step is processed and prioritized similarly to the
other exception traps. This means that all traps execute
before the step trap. The result is that step cannot
directly single-step through the program code of other
trap handlers. The instruction step is normally
considered to be below the operating-system level,
thus operating-system functions such as stack-page
traps must execute without its intervention.

Higher-priority trap handlers can be single-stepped by
re-prioritizing them in software. Rather than directly
executing a higher-priority trap handler from the
corresponding executable trap vector, the vector
would branch to code to rearrange the return ad-
dresses on the return stack to change the resulting
execution sequence of the trap handlers. Various
housekeeping tasks must also be performed, and the
various handlers must ensure that the stack memory
area boundaries are not violated by the re-prioritized
handlers.

Virtual-Memory Support
The MPU supports virtual memory through the use of
external mapping logic that translates logical to
physical memory addresses. During MPU RAS
memory cycles, the CPU-supplied logical row address
is translated by an external SRAM to the physical row
address and a memory page-fault bit. The memory
page-fault bit is sampled during the memory cycle to
determine if the translated page in memory is valid or
invalid. Sufficient time exists in the normal RAS
precharge portion of DRAM memory cycles to map
the logical pages to physical pages with no memory-
cycle-time overhead.

An invalid memory page indication causes the
memory-fault exception to be signaled and, if enabled,
the trap to be executed to service the fault condition.
Posted-write faults are completed in the trap routine;
other types of faulting operations are completed by
returning from the trap routine to re-execute them.
Whether the fault is from a read or write operation is
indicated by mflt_write. The fault address and data
(if a write) are stored in mfltaddr and mfltdata.
Memory-fault traps are enabled by mflt_trap_en.
See the code example on page 37.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

37

; Memory-fault trap handler

memflt_handler::

push mode
di

; Get data (if any) and fault address.

push.l #mfltdata ; must be read first
ldo []
push.l #mfltaddr ; must be read last
ldo []

; Now go and get the faulted page from disk
; into memory, update the mapping SRAM, etc.
; (mode data addr -- mode data addr)

...

; If memory fault occurred while attempting a
; posted write, perform the write in the handler.

; check if fault was read or write
push s2 ; duplicate mode
push.l #mflt_write
and

bz discard_location ; write fault?

push.l #miscc
ldo []

push.b #mspwe
and ; posted write?

.quad 3
skipz stack,discard_location
st [] ; complete it
push ; maintain 2 items

discard_location::

pop ; discard “address”
pop ; discard “data”

; Reset exception-signal bit.

push.l #mflt_exc_sig
iand
pop mode

; For non-posted-write faults, the load/store/pre
;-fetch retries on return.

ret

Table 36. Code Example: Memory-Fault Service
Routine

Description

At falling edge of:

R&&A&&S&& C&&A&&S&&
C&&A&&S&& O&&E&& W&&E&& DSF DSF

RAM read/write H H H L L

color register set H H H H -

masked write H H L L L

flash write H H L H -

read transfer H L H L -

split read transfer H L H H -

block write H H H L H

masked block
write H H L L H

set bit-blt mode L - L - -

Table 37. VRAM Commands

Video RAM Support
Video RAMS (VRAMs) are DRAMs that have a second
port that provides serial access to the DRAM array.
This allows video data to be serially clocked out of the
memory to the display while normal MPU accesses
occur. To prevent DRAM array access contentions, the
MPU periodically issues read transfer requests, which
copy the selected DRAM row to the serial transfer
buffer. To eliminate read transfer synchronization
problems, many VRAMs have split transfer buffers,
which allow greater timing flexibility for the MPU's
read transfer operations. The MPU instructs the VRAM
to perform a read transfer or a split read transfer by
encoding the command on the state of the VRAM &O&E ,
&W&E , and DSF (device special function) during the time
&R&A&S falls. These operations are encoded by writing
vram and performing an appropriate read or write to
the desired VRAM memory address. See Figure 32,
page 137.

Some VRAMs have more advanced operations—such
as line fills, block fills, and bit-blts—which are
encoded with other combinations of &W&E , &O&E , DSF,
&R&A&S , and &C&A&S . A basic set of operations and com-
mands is common among manufacturers, but the
commands for more advanced functions vary.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

38

Register mode
mode contains a variety of bits that indicate the status
and execution options of the MPU. Except as noted,
all bits are writable. The register is shown in Figure 11.

mflt_write
After a memory-fault exception is signaled, indicates
that the fault occurred due to a memory write.

guard_bit
The most-significant bit of a 3-bit extension below the
least-significant bit of s0 (s1, if fp_precision is set)
that is used to aid in rounding floating-point numbers.

round_bit
The middle bit of a 3-bit extension below the least-
significant bit of s0 (s1, if fp_precision is set) that
is used to aid in rounding floating-point numbers.

sticky_bit
The least-significant bit of a 3-bit extension below the
least-significant bit of s0 (s1, if fp_precision is set)
that is used to aid in rounding floating-point numbers.
Once set due to shifting or writing the bit directly, the
bit stays set even though zero bits are shifted right
through it, until it is explicitly cleared or written to
zero.

mflt_trap_en
If set, enables memory-fault traps.

mflt_exc_sig
Set if a memory fault is detected.

ls_boundary
Set if ls_ovf_exc_sig or ls_unf_exc_sig
becomes set as the result of a stack spill or refill.
Cleared when the address in la, as the result of a
stack spill or refill, has entered the middle region of a
1024-byte memory page, and when la is written.
Used by the local-register stack trap logic to prevent
unnecessary stack overflow and underflow traps when
repeated local-register stack spills and refills occur
near a 1024-byte memory page boundary. Not
writable.

ls_unf_trap_en
If set, enables a local-register stack underflow trap to
occur after a local-register stack underflow exception
is signaled.

ls_unf_exc_sig
Set if a local-register stack refill occurs, ls_boundary
is clear, and the accessed memory address is in the
last thirty-two cells of a 1024-byte memory page.

ls_ovf_trap_en
If set, enables a local-register stack overflow trap to
occur after a local-register stack overflow exception
is signaled.

ls_ovf_exc_sig
Set if a local-register stack spill occurs, ls_boundary
is clear, and the accessed memory address is in the
first thirty-two cells of a 1024-byte memory page.

os_boundary
Set if os_ovf_exc_sig or os_unf_exc_sig
becomes set as the result of a stack spill or refill.
Cleared when the address in sa, as the result of a
stack spill or refill, has entered the middle region of
a 1024-byte memory page, and when sa is written.
Used by the operand stack trap logic to prevent
unnecessary stack overflow and underflow traps when
repeated operand stack spills and refills occur near a
1024-byte memory page boundary. Not writable.

os_unf_trap_en
If set, enables an operand stack underflow trap to
occur after an operand stack underflow exception is
signaled.

os_unf_exc_sig
Set if an operand stack refill occurs, os_boundary
is clear, and the accessed memory address is in the
last thirty-two cells of a 1024-byte memory page.

os_ovf_trap_en
If set, enables an operand stack overflow trap to occur
after an operand stack overflow exception is signaled.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

39

31 012345678

mode.wpg

30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9

Floating Point

fp_precision

fp_round_mode
fp_exp_trap_en
fp_exp_exc_sig
fp_unf_trap_en
fp_unf_exc_sig
fp_ovf_trap_en
fp_ovf_exc_sig
fp_nrm_trap_en
fp_nrm_exc_sig
fp_rnd_trap_en
fp_rnd_exc_sig

sticky_bit
round_bit
guard_bit

underflow exception signal
underflow trap enable

exponent exception signal
exponent trap enable

rounding mode (0=nearest,
1=!infinity, 2=+infinity, 3=zero)

precision (0=single, 1=double)

overflow trap enable
overflow exception signal

normalize trap enable
normalize exception signal

round trap enable
round exception signal

rounding guard bit
rounding round bit
rounding sticky bit

Mnemonic Description

os_ovf_exc_sig
os_ovf_trap_en
os_unf_exc_sig
os_unf_trap_en
os_boundary

Mnemonic

overflow exception signal
overflow trap enable
underflow exception signal
underflow trap enable
boundary area entered

Description
Operand Stack

ls_ovf_exc_sig
ls_ovf_trap_en
ls_unf_exc_sig
ls_unf_trap_en
ls_boundary

Mnemonic

overflow exception signal
overflow trap enable
underflow exception signal
underflow trap enable
boundary area entered

Description
Local-Register Stack

mflt_trap_en

Mnemonic
exception signal

Description

Memory Fault

mflt_exc_sig

mflt_write
trap enable
fault was a write

Mnemonic Description
carry
power_fail
interrupt_en global interrupt enable

power fail occurred
carry flag

Figure 11. Register mode

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

40

os_ovf_exc_sig
Set if an operand stack spill occurs, os_boundary is
clear, and the accessed memory address is in the first
thirty-two cells of a 1024-byte memory page.

carry
Contains the carry bit from the accumulator. Saving
and restoring mode can be used to save and restore
carry.

power_fail
Set during power-up to indicate that a power failure
has occurred. Cleared by any write to mode. Other-
wise, not writable.

interrupt_en
If set, interrupts are globally enabled. Set by the
instruction ei, cleared by di.

fp_rnd_exc_sig
If set, a previous execution of rnd caused a change
in the least significant bit of s0 (s1, if fp_precision
is set).

fp_rnd_trap_en
If set, enables a floating-point round trap to occur after
a floating-point round exception is signaled.

fp_nrm_exc_sig
If set, one or more of the guard_bit, round_bit
and sticky_bit were set after a previous execution
of denorm, norml or normr.

fp_nrm_trap_en
If set, enables a floating-point normalize trap to occur
after a floating-point normalize exception is signaled.

fp_ovf_exc_sig
If set, a previous execution of normr, addexp or
subexp caused the exponent field to increase to or
beyond all ones.

fp_ovf_trap_en
If set, enables a floating-point overflow trap to occur
after a floating-point overflow exception is signaled.

fp_unf_exc_sig
If set, a previous execution of norml, addexp or
subexp caused the exponent field to decrease to or
beyond all zeros.

fp_unf_trap_en
If set, enables a floating-point underflow trap to occur
after a floating-point underflow exception is signaled.

fp_exp_exc_sig
If set, a previous execution of testexp detected an
exponent field containing all ones or all zeros.

fp_exp_trap_en
If set, enables a floating-point exponent trap to occur
after a floating-point exponent exception is signaled.

fp_round_mode
Contains the type of rounding to be performed by the
MPU instruction rnd.

fp_precision
If clear, the floating-point instructions operate on stack
values in IEEE single-precision (32-bit) format. If set,
the floating-point instructions operate on stack values
in IEEE double-precision (64-bit) format.

MPU Reset
After reset, the VPU begins executing at address
0x80000004, before the MPU begins execution. The
VPU must be programmed to execute delay before
the MPU can access the bus and begin execution.
Once the VPU executes delay, the MPU begins
executing at address 0x80000008. Details of various
startup configurations are detailed in Processor
Startup, page 181.

Interrupts
The CPU contains an on-chip prioritized interrupt
controller that supports up to eight different interrupt
levels from twenty-four interrupt sources. Interrupts
can be received through the bit inputs, from I/O-
channel transfers, from the VPU, or can be forced in
software by writing to ioin. For complete details of
interrupts and their servicing, see Interrupt Controller,
page 107.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

41

Bit Inputs
The CPU contains eight general-purpose bit inputs that
are shared with the INTC and DMAC as requests for
those services. The bits are taken from &I&N[7:0], or,
if so configured, are sampled from AD[7:0] on the
bus. Sampling from the bus can allow the use of
smaller, less-expensive packages for the CPU; it can
also reduce PWB area requirements through reuse of
the AD bus rather than routing a separate bit-input bus.
See Bit Inputs, page 111

Bit Outputs
The CPU contains eight general-purpose bit outputs
that can be written by the MPU or VPU. The bits are
output on O&U&T&[7:0] and are also available on
AD[7:0] during R&A&S& inactive. Taking the bits from
the bus can allow the use of smaller, less-expensive
packages for the CPU; it can also reduce PWB area
requirements through reuse of the AD bus rather than
routing a separate bit-output bus. See Bit Outputs,
page 115.

Instruction Pre-fetch
The MPU issues bus requests ordered to optimize
execution. To keep executing instructions as much as
possible, the next group of instructions are fetched
while the current group executes. This is referred to
as instruction pre-fetch. Instruction pre-fetch begins
as soon as an instruction group begins to execute
unless it is held off. Pre-fetch is held off if the execut-
ing instruction group contains one of the instruction
in Table 38. ld and st only hold off pre-fetch if they
occur as the first instruction in the executing instruc-
tion group. Knowing which instruction hold-off pre-
fetch Is useful when programming bus configuration
information.

Posted-Write
The MPU supports a one-level posted write. This
allows MPU execution to continue unimpeded after
the write is posted. To maintain memory coherency,
posted writes have the highest priority of all MPU bus
requests. This guarantees that memory reads following
a posed write will always retrieve the most up-to-date
data.

On-Chip Resources
The non-MPU hardware features of the CPU are
generally accessed by the MPU through a set of 41
registers located in their own address space. Using a
separate address space simplifies implementation,
preserves opcodes, and prevents cluttering the normal
memory address space with peripherals. Collectively
known as the On-Chip Resources, these registers
allow access to the bit inputs, bit outputs, INTC,
DMAC, MIF, system configuration, and some func-
tions of the VPU. These registers and their functions
are referenced throughout this manual and are
described in detail in On-Chip Resource Registers,
page 129.

Instruction Reference
As a stack-based MPU architecture, the PSC1000
MPU instructions have documentation requirements
similar to other stack-based systems, such as the Java
Virtual Machine (JVM) and American National
Standard Forth (ANS Forth). Not surprisingly, many of
the JVM and ANS Forth operations are instructions on
the PSC1000 MPU. As a result, the JVM and ANS
Forth stack notation used for language documentation
is useful for describing PSC1000 MPU instructions.
The basic notation adapted for the PSC1000 MPU is:

(input_operands -- output_operands)
(L: input_operands -- output_operands)

where “--” indicates the execution of the instruction.
“Input_operands” and “output_operands” are lists of
values on the operand stack (the default) or local
register stack (preceded by “L:”). These are similar,
though not always identical, to the source and
destination operands that can be represented within
instruction mnemonics. The value held in the top-of-
stack register (s0 or r0) is always on the right of the
operand list with the values held in the higher ordinal

bkpt br bz call dbr ld†
mloopx push.l ret reti st† step

† See text.

Table 38. Instructions That Hold-off Pre-fetch

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

42

registers appearing to the left (e.g., s2 s1 s0). The
only items in the operand lists are those that are
pertinent to the instruction; other values may exist
under these on the stacks. All of the input_operands
are considered to be popped off the stack, the
operation performed, and the output_operands pushed
on the stack. For example, a notational expression of:

n1 n2 -- n3
represents two input operands, n1 and n2, and one
output operand, n3. For the instruction add, n1 (taken
from s1) is added to n2 (taken from s0), and the result
is n3 (left in s0). If the name of a value on the left of
either diagram is the same as the name of a value on
the right, then the value was required, but unchanged.
The name represents the operand type. Numeric
suffixes are added to indicate different or changed
operands of the same type. The values may be bytes,
integers, floating-point numbers, addresses, or any
other type of value that can be placed in a single 32-
bit cell.

addr address
byte character or byte (upper 24 bits zero)
n integer or 32 arbitrary bits
other text integer or 32 arbitrary bits

ANS Forth defines other operand types and operands
that occupy more than one stack cell; those are not
used here.

Note that typically all stack action is described by the
notation and is not explicitly described in the text. If
there are multiple possible outcomes then the out-
come options are on separate lines and are to be
considered as individual cases. If other registers or
memory variables are modified, then that effect is
documented in the text.

Also on the stack diagram line is an indication of the
effect on carry, if any, as well as the opcode and
execution time at the right margin.

A timing with an “M” indicates the specified number
of bus requests and bus transactions (memory cycles)
for the instruction to complete. Bus requests require
two CPU-clock cycles and bus transaction times are
as programmed and described in Programmable
Memory Interface, page 117, and Bus Operation, page
157.The value used for “M” includes both the bus
request and bus transaction times.

Timings do not include implied memory cycles such
as stack spills and refills required to maintain the state
of the stack caches. Any operation that pushes or pops
a stack, or references a local register could cause a
memory cycle. Operations that wait on the completion
of instruction pre-fetch are labeled “Mprefetch.” These
are distinct in that pre-fetch occurs in parallel with
execution so the wait time is probably not a full
memory cycle.

ANS Forth Word Equivalents
Those PSC1000 instructions that are exact equivalents
of ANS Forth words are indicated in the body text for
the instruction. Many additional ANS Forth words
simply require a short instruction sequence, but these
are not indicated.

Java Byte Code Equivalents
Those PSC1000 instructions that are exact equivalents
of Java byte codes are indicated in the body text for
the PSC1000 instruction. Many additional Java byte
codes simply require a short instruction sequence,
though the most complex byte codes require a
subroutine call. For detailed information contact
Patriot Scientific.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

43

add

add (n1 n2 -- n3) carry± 1100 0000
0xC0

1 CPU-clock
Add n1 and n2 giving the sum n3. carry is set if there is a carry out of bit 31 of the sum and cleared
otherwise.

Equivalent to Java byte code iadd.

Equivalent to ANS Forth word +.

add pc (n1 -- n2) carry± 1011 1011
0xBB

1 CPU-clock
Add the value of pc (the byte-aligned address of the add pc opcode) to n1 giving the sum n2. carry is
set if there is a carry out of bit 31 of the sum and cleared otherwise.

adda
Add Address

adda (n1 n2 -- n3) 1110 1000
0xE8

1 CPU-clock
Add n1 and n2 giving the sum n3. carry is unaffected.

addc
Add with Carry

addc (n1 n2 -- n3) carry± 1100 0010
0xC2

1 CPU-clock
Add n1 and n2 and carry giving the sum n3. carry is set if there is a carry out of bit 31 of the sum,
otherwise carry is cleared.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

44

addexp
Add Exponents

addexp (n1 n2 -- n3 n4 n5) 1101 0010
0xD2

2 CPU-clocks
(L: -- addr) only when trap processed 4+M CPU-clocks

Perform the following:
 Exponent_Field(n5) = Exponent_Field(n1) - BIAS + Exponent_Field(n2)
 Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (0x3F800000 in position) for single precision and 1023 (0x3FF00000 in position) for double
precision, as selected by fp_precision.

Compute as described above. Clear the exponent field bits and sign bit and set the hidden bit of n1 and
n2, giving n3 and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field
calculation result equaled or exceeded the maximum value of the exponent field (exponent field result $
255 for single, exponent field result $ 2047 for double) an overflow exception is signaled. If the exponent-
field calculation result is less than or equal to zero an underflow exception is signaled. When an exception
is signaled, the exponent field of n5 contains as many bits of the computed exponent as it will hold.

and
Bitwise AND

and (n1 n2 -- n3) carry clear 1110 0001
0xE1

1 CPU-clock
Perform a bitwise AND of n1 and n2 giving the result n3.

Equivalent to Java byte code iand.

Equivalent to the ANS Forth word AND.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

45

bkpt
Breakpoint

bkpt (--) 0011 1100
(L: -- addr) 0x3C

1+M CPU-clocks
Perform a call subroutine to the breakpoint trap location, 0x134. addr is the address of the bkpt instruction.
Typically the breakpoint service routine replaces the bkpt opcode at addr with the original opcode, performs
whatever debugging function desired, and ret to addr.

Equivalent to Java byte code breakpoint.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

46

b
Branch if Condition

br offset (--) 0000 0xxx
Branch Unconditionally 0x0?

M CPU-clocks
Transfer execution to offset cells from the beginning of the current instruction group.

The instruction adds the two's-complement cell offset encoded within and following the br opcode to pc,
and transfers execution to the resulting cell-aligned address.

Equivalent to Java byte codes goto, goto_w.

Equivalent to the run-time for the ANS Forth words AGAIN, AHEAD, ELSE.

br [] (addr --) 0100 1011
Branch Indirect 0x4B

M CPU-clocks
Replace the value in pc with addr to transfer execution to addr. Note that addr is an absolute byte-aligned
address and not an offset.

bz offset (n --) 0001 0xxx
Branch if Zero 0x1?

M CPU-clocks
If n is zero, transfer execution to offset cells from the beginning of the instruction group; otherwise, continue
execution at the next instruction group.

If n is zero the instruction adds the two's-complement cell offset encoded within and following the bz
opcode to pc, and transfers execution to the resulting cell-aligned address. If n is non-zero execution
continues with the next instruction group.

Equivalent to Java byte codes ifeq, ifnull.

Equivalent to the run-time for the ANS Forth words IF, UNTIL, WHILE.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

47

dbr offset (--) 0001 1xxx
Decrement CT and Branch 0x1?

M CPU-clocks
Decrement ct by one. If ct, is non-zero transfer execution to offset cells from the beginning of the current
instruction group; otherwise, continue execution with the next instruction group.

The instruction decrements ct by one. If the resulting ct is non-zero the instruction then adds the two's-
complement cell offset encoded within and following the dbr opcode to pc, and transfers execution to the
resulting cell-aligned address. If the resulting ct is zero execution continues with the next instruction group.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

48

_cache
Fill/Empty Stack Cache

The cache instructions are used to optimize program execution, or to make program execution more
deterministic. Stack cache spills and refills can be caused to occur at preferential times, and to occur in bursts
to optimize memory access. Executing the instruction with both n and n!14 (n>0) ensures that an exact number
of items are in the stack cache. Pushing dummy values onto the stack (one value for the local-register stack, three
values for the operand stack) and then executing the instruction with n = !14 causes all previously held data
to be spilled to memory.

lcache (n --) 0100 1101
0x4D

1 or (1M to 14M) CPU-clocks
If n > 0, ensure that at least n cells can be removed from the local-register stack without causing local-register
stack cache refills. Cells are refilled from memory into the cache if required. (1 # n # 14).

If n < 0 (two's complement), ensure that at least *n* cells can be added to the local-register stack without
causing local-register stack cache spills. Cells are spilled from the stack cache to memory if required. (!14
n # !1).

If n = 0 the local-register stack cache is unchanged.

scache (n -- n) 0100 0101
0x45

1 or (1M to 14M) CPU-clocks
If n > 0, ensure that at least n cells can be removed from the operand stack without causing operand stack
cache refills. Cells are refilled from memory into the cache if required. (1 # n # 14).

If n < 0 (two's complement), ensure that at least *n* cells can be added to the operand stack without causing
operand stack cache spills. Cells are spilled from the stack cache to memory if required. (!14 # n # !1)

If n = 0 the operand stack cache is unchanged.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

49

call
Call Subroutine

call offset (--) 0000 1xxx
(L: -- addr) 0x0?

Call Subroutine 1+M CPU-clocks

Transfer execution to offset cells from the beginning of the current instruction group. addr is the cell-aligned
address of the next instruction group.

The instruction pushes addr on the local-register stack and then adds the two's-complement cell offset
encoded within and following the call opcode to pc, and transfers execution to the resulting cell-aligned
address. The offset is in the same form and follows the same rules as those for branches.

call [] (addr1 --) 0100 1110
(L: -- addr2) 0x4E

Call Subroutine Indirect 1+M CPU-clocks

Replace the value in pc with addr1 to transfer execution there. addr2 is the byte-aligned address of the next
instruction following call []. Note that addr1 is an absolute address and not an offset.

cmp
Compare

cmp (n1 n2 -- n1 n2) carry± 1100 1011
0xCB

1 CPU-clock
Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry.

copyb
Copy Byte Across Cell

copyb (n1 -- n2) 1101 0000
0xD0

1 CPU-clock
n2 is the result of copying the lowest byte of n1 into each of the higher byte positions. For example,
0x12345678 becomes 0x78787878.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

50

dbr See _b_.

dec
Decrement

dec #1 (n1 -- n2) 1100 1111
0xCF

1 CPU-clock
Subtract one from n1 leaving the result n2.

Equivalent to ANS Forth word 1-.

dec #4 (n1 -- n2) 1100 1101
0xCD

1 CPU-clock
Subtract four from n1 leaving the result n2.

dec ct, #1 (--) 1100 0001
0xC1

1 CPU-clock
Subtract one from ct.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

51

denorm
Denormalize

denorm (n1 -- n2) if single precision 1100 0101
(n1 n2 -- n3 n4) if double precision 0xC5

1 to 13 CPU-clocks
(L: -- addr) only when trap processed

3+M to 15+M CPU-clocks
Shift n1 (or n2n1 if double) right by the bit count in the exponent field of ct. Bits shift out of the right into
the GRS extension. If any bit in the GRS extension is set, a normalize exception is signaled. The location
of the exponent field depends on fp_precision. The exponent field of ct is decremented to zero.

Shifting is performed by bytes or bits to minimize CPU-clock cycles required. If the count in the exponent
bits of ct is larger than the width in bits of the significand field + 3 (for the guard_bit, round_bit and
the hidden bit), the sticky_bit is set and the other bits are cleared, and execution requires one CPU-clock
cycle.

_depth
Depth of Stack

ldepth (-- n) 1001 1011
0x9B

1 CPU-clock
n is exactly the number of cells that can be removed from the local-register stack without causing a local-
register stack cache refill. (0 # n # 14).

sdepth (-- n) 1001 1111
0x9F

1 CPU-clock
n is exactly the number of cells, before n was pushed, that could be removed from the operand stack without
causing an operand stack cache refill. (0 # n # 14). If n = 14, then an operand stack cache spill occurred
when n was pushed and only 13 cells remain, excluding n, that can be removed from the operand stack
without causing an operand stack cache refill.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

52

di
Disable Interrupts

di (--) 1011 0111
0xB7

1 CPU-clock
Globally disable interrupts, clearing interrupt_en. The ioie bits are not changed.

divu
Divide Unsigned

divu (n1 n2 -- n3 n4) 1101 1110
0xDE

32 CPU-clocks
Divide the double value n2n1 by the value in g0 giving the quotient n3 and remainder n4. All values are
unsigned. If n2 is greater than or equal to g0 then the quotient will overflow. If g0 is zero then n3 equals
n1 and n4 equals n2.

ei
Enable Interrupts

ei (--) 1011 0110
0xB6

1 CPU-clock
Globally enable interrupts, setting interrupt_en. The ioie bits are not changed.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

53

eqz
Equal Zero

eqz (n1 -- n2) 1110 0101
0xE5

1 CPU-clock
n2 is the logical inverse of n1. If n1 is equal to zero n2 is -1. If n1 is non-zero n2 is zero.

Equivalent to ANS Forth word 0=.

expdif
Exponent Difference

expdif (n1 n2 -- n3 n4) 1100 0100
0xC4

1 CPU-clock
Clear the upper half of ct. Subtract the exponent field of n2 from the exponent field in n1 placing the result
in the exponent-field bits of ct. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and
n2 giving n3 and n4, respectively. The locations of the exponent field and hidden bit depend on
fp_precision.

extexp
Extract Exponent

extexp (n1 -- n2) 1101 1011
0xDB

1 CPU-clock
Clear the significand bits of n1 leaving the exponent-field bits and sign bit unchanged, giving n2. The
locations of the exponent field and significand field depend on fp_precision.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

54

extsig
Extract Significand

extsig (n1 -- n2) 1101 1100
0xDC

1 CPU-clock
Clear the exponent and sign bits of n1 leaving the significand-field bits unchanged. Then set the hidden
bit of n1, giving n2. The locations of the exponent field and significand field depend on fp_precision.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

55

_frame
Allocate On-Chip Stack Frame

lframe (n --) 1011 1110
(L: …j2 j1 -- …j2 j1 xn…x1) (n > 0) 0xBE

1 or (1M to 15M) CPU-clocks
(L: …jn+1 jn…j1 -- …jn+2 jn+1) (n < 0)

1 or (1 to 15) CPU-clocks
(L: --) (n = 0) 1 CPU-clock

If n > 0, allocate n uninitialized cells, xn…x1, at the top of the local-register stack cache. This causes r0 to
move to rn, r1 to move to r(n+1), ri to move to r(n+i), etc. Those local registers for which (n+i) > 14 are
written from the local-register stack cache to memory. (1 # n # 15).

If n < 0, discard *n* cells, jn…j1, from the top of the local-register stack cache. This causes r0 through r(*n*-1)
to be discarded, r*n* to become r0, r(*n*+1) to become r1, etc. (!15 # n # !1). Each cell discarded that
is not in the stack cache requires one CPU-clock cycle.

If n = 0, no cells are allocated or discarded.

sframe 1011 1111
0xBF

(…j2 j1 m n -- …j2 j1 xn…x1 m n) (n > 0)
1 or (1M to 15M) CPU-clocks

(…jn+1 jn…j1 m n -- …jn+2 jn+1 m n) (n < 0)
1 or (1 to 15) CPU-clocks

(n -- n) (n = 0) 1 CPU-clock
If n > 0, allocate n uninitialized cells, xn…x1, in the operand stack cache after s0 and s1. This causes s2
to move to s(n+2), s3 to move to s(n+3), si to move to s(n+i), etc. Those stack cells for which (n+i) > 16
are written from the operand stack cache to memory. (1 # n # 15).

If n < 0, discard *n* cells, jn…j1, from within the operand stack cache after s0 and s1. This causes s2 through
s(*n*+1) to be discarded, s(*n*+2) to become s2, s(*n*+3) to become s3, etc. (!15 # n # !1). Each cell
discarded that is not in the stack cache requires one CPU-clock cycle.

If n = 0, no cells are allocated or discarded.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

56

iand
Bitwise Invert then AND

iand (n1 n2 -- n3) clear carry 1110 1001
0xE9

1 CPU-clock
Clear the bits in n1 that are set in n2 leaving the result n3.

inc
Increment

inc #1 (n1 -- n2) 1100 1110
0xCE

1 CPU-clock
Add one to n1 giving the sum n2.

Equivalent to ANS Forth word 1+.

inc #4 (n1 -- n2) 1100 1100
0xCC

1 CPU-clock
Add four to n1 giving the sum n2.

lcache See _cache.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

57

ld
Load Indirect from Memory

ld [--r0] (-- n) 0100 0100
0x44

1+M CPU-clocks
Decrement the address in r0 by four. n is the value from the cell in memory at the new address in r0. The
two least significant bits of the address are ignored and treated as zero.

ld [--x] (-- n) 0100 1010
0x4A

1+M CPU-clocks
Decrement the address in x by four. n is the value from the cell in memory at the new address in x. The
two least significant bits of the address are ignored and treated as zero.

ld [r0++] (-- n) 0100 0110
0x46

M CPU-clocks
n is the value from the cell in memory at the address in r0. Increment r0 by four. The two least significant
bits of the address are ignored and treated as zero.

ld [r0] (-- n) 0100 0010
0x42

M CPU-clocks
n is the value from the cell in memory at the address in r0. The two least significant bits of the address are
ignored and treated as zero.

ld [x++] (-- n) 0100 1001
0x49

M CPU-clocks
n is the value from the cell in memory at the address in x. Increment x by four. The two least significant
bits of the address are ignored and treated as zero.

ld [x] (-- n) 0100 0001
0x41

M CPU-clocks
n is the value from the cell in memory at the address in x. The two least significant bits of the address are
ignored and treated as zero.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

58

ld [] (addr -- n) 0100 0000
0x40

M CPU-clocks
n is the value from the cell in memory at the address addr. The two least significant bits of the address are
ignored and treated as zero.

Equivalent to ANS Forth words @, F@, SF@.

ld.b [] (addr -- byte) 0100 1000
0x48

M CPU-clocks
byte is the value from the byte in memory at the address addr.

Equivalent to ANS Forth word C@.

ldo
Load Indirect from On-Chip Resource

ldo [] (addr -- n) 1001 0110
0x96

1 CPU-clock
n is the value from the on-chip resource at addr. For valid values of addr, see On-Chip Resource Registers,
page 129.

ldo.i [] (bit_addr -- n) 1001 0111
0x97

1 CPU-clock
n is all ones (-1) if the bit at the on-chip resource address bit_addr is one, otherwise n is zero. For valid values
of bit_addr, see On-Chip Resource Registers, page 129.

ldepth See _depth.

lframe See _frame.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

59

mloop_
Micro Loop on Condition

An mloop re-executes the current instruction group, beginning with the first instruction in the group, up to the
mloop_ instruction, until a specified condition is not met or until ct is decremented to zero. When either
termination condition occurs, execution continues with the instruction following the mloop_ opcode.

mloop (--) 0011 1000
Micro Loop Unconditionally 0x38

1 CPU-clock
Decrement ct by one. If ct is non-zero transfer execution to the beginning of the current instruction group.
If ct is zero continue execution with the instruction following mloop.

mloopc (--) 0011 1001
Micro Loop if Carry 0x39

1 CPU-clock
Decrement ct by one. If ct is non-zero and carry is set transfer execution to the beginning of the current
instruction group. If ct is zero or carry is clear continue execution with the instruction following mloopc.

mloopn
mloopnp (n -- n) 0011 1010
Micro Loop if Negative/Not Positive 0x3A

1 CPU-clock
Decrement ct by one. If ct is non-zero and n is negative (neither positive nor zero) transfer execution to
the beginning of the current instruction group. If ct is zero or n is not negative (either positive or zero)
continue execution with the instruction following mloopn or mloopnp.

mloopnc (--) 0011 1101
Micro Loop if Not Carry 0x3D

1 CPU-clock
Decrement ct by one. If ct is non-zero and carry is clear transfer execution to the beginning of the current
instruction group. If ct is zero or carry is set continue execution with the instruction following mloopnc.

mloopnn
mloopp (n -- n) 0011 1110
Micro Loop if Not Negative/Positive 0x3E

1 CPU-clock
Decrement ct by one. If ct is non-zero and n is not negative (either positive or zero) transfer execution
to the beginning of the current instruction group. If ct is zero or n is negative (neither positive nor zero)
continue execution with the instruction following mloopnn or mloopp.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

60

mloopnz (n -- n) 0011 1111
Micro Loop if Not Zero 0x3F

1 CPU-clock
Decrement ct by one. If ct is non-zero and n is not zero transfer execution to the beginning of the current
instruction group. If ct is zero or n is zero continue execution with the instruction following mloopnz.

mloopz (n -- n) 0011 1011
Micro Loop if Zero 0x3B

1 CPU-clock
Decrement ct by one. If ct is non-zero and n is zero transfer execution to the beginning of the current
instruction group. If ct is zero or n is not zero continue execution with the instruction following mloopz.

mulfs
Multiply Fast Signed

mulfs (n1 n2 -- n3 n4) 1101 0110
0xD6

2 to 32 CPU-clocks
Multiply the bit-order-reversed value n1 by the value in g0 leaving the result n4. n2 is usually zero and n3
is garbage (see below). The number of significant bits in n1 is indicated by the value in ct. All values are
single-cell size and signed. ct is decremented to zero.

The program must supply n1 in bit-order-reversed form (e.g., the binary value for decimal 13 is 01101 and
bit-order reversed is 10110; note that the original high-order bit is zero as a sign bit and must be included.)
The program must also load ct with the bit count and push a zero for n2. For the example number above,
the count would be 5. n3 is typically discarded.

n2 could be non-zero but its use in this form is questionable. The effect of n2 on the result is that the value
of n2 shifted left by the bit count value in ct is added to the result, n4. n3 contains the low cell of the value
remaining after n2n1 is shifted right by the number of bits in ct. Instruction execution time is limited to 65
CPU-clock cycles by the instruction expiration counter.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

61

muls
Multiply Signed

muls (n1 n2 -- n3 n4) 1101 0101
0xD5

32 CPU-clocks
Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are signed.

mulu
Multiply Unsigned

mulu (n1 n2 -- n3 n4) 1101 0111
0xD7

32 CPU-clocks
Multiply n1 by the value in g0 and add n2, leaving the double result n4n3. All values are unsigned.

mxm
Maximum

mxm (n1 n2 -- n1 n2) carry set 1101 1111
 or (n1 n2 -- n2 n1) carry clear 0xDF

2 CPU-clocks
Compare n2 and n1 as signed values. Set carry if n1 < n2, otherwise clear carry. Bring the larger of n1
and n2 to the top of stack. That is, if the resulting carry is set then n2 is greater than n1 and n2 remains
on top. If the resulting carry is clear then n2 is less than or equal to n1 and n1 is exchanged with n2.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

62

neg
Two's-Complement Negation

neg (n1 -- n2) 1100 1001
0xC9

1 CPU-clock
n2 is the two's-complement negation of n1.

Equivalent to Java byte code ineg.

Equivalent to ANS Forth word NEGATE.

nop
No Operation

nop (--) 1110 1010
0xEA

1 CPU-clock
Do nothing.

Equivalent to Java byte code nop.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

63

norml
Normalize Left

norml (n1 -- n2) if single precision 1100 0111
(n1 n2 -- n3 n4) if double precision 0xC7

1 to 13 CPU-clocks
(L: -- addr) only when trap processed

3+M to 15+M CPU-clocks
(L: -- addr1 addr2) only when both traps processed

5+2M to 17+2M CPU-clocks
While the hidden bit and the seven bits to the right of it in n1 (n2 if double) are zero, repeat the following:
 Shift n1 (or n2n1 if double) left by eight bits and decrement the exponent field in ct by eight.
Then, while the hidden bit of n1 (n2 if double) is zero, repeat the following:
 Shift n1 (or n2n1 if double) left by one bit and decrement the exponent field in ct by one.

In both steps, bits shifted into bit zero of n1 come from the GRS extension.

When the operation is complete, if shifting was required and the decremented field in ct reached or passed
all zero bits during the processing, an underflow exception is signaled. If no shifting is required an underflow
exception is not signaled. Then, if any bit in the GRS extension is set, a normalize exception is signaled.
The location of the exponent field depends on fp_precision. If both traps are processed, the underflow
trap has higher priority. Instruction execution time is limited to 65 CPU-clock cycles by the instruction
expiration counter.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

64

normr
Normalize Right

normr (n1 -- n2) if single precision 1100 0110
(n1 n2 -- n3 n4) if double precision 0xC6

1 to 11 CPU-clocks
(L: -- addr) only when trap processed

3+M to 13+M CPU-clocks
(L: -- addr1 addr2) only when both traps processed

5+2M to 15+2M CPU-clocks
While any bit except the first bit (the hidden bit) in the exponent field is non-zero, repeat the following:
 Shift n1 (or n2n1 if double) right by one bit and increment the exponent field in ct by one. Bits shifted
out of bit zero of n1 shift into the GRS extension bits.

When the operation is complete, if shifting was required and the incremented field in ct reached or passed
all one bits during the processing, an overflow exception is signaled. If no shifting is required an overflow
exception is not signaled. Then, if the GRS extension is set, a normalization exception is signaled. The
locations of the exponent field and hidden bit depend on fp_precision. If both traps are processed, the
overflow trap has higher priority. Instruction execution time is limited to 65 CPU-clock cycles by the
instruction expiration counter.

notc
Complement Carry

notc (--) carry inverted1101 1101
0xDD

1 CPU-clock
Invert the state of carry.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

65

or
Bitwise OR

or (n1 n2 -- n3) carry clear 1110 0000
0xE0

1 CPU-clock
Perform a bitwise OR on n1 and n2 giving the result n3.

Equivalent to Java byte code ior.

Equivalent to ANS Forth word OR.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

66

pop

pop (n --) 1011 0011
0xB3

1 CPU-clock
Discard n.

Equivalent to Java byte codes pop, l2i.
Equivalent when executed twice to Java byte code pop2.

Equivalent to ANS Forth word D>S, DROP, FDROP.
Equivalent when executed twice to ANS Forth word 2DROP.

pop ct (n --) 1011 0100
0xB4

1 CPU-clock
Replace the value in ct with n.

pop gi (n --) 0101 xxxx
0x5?

1 CPU-clock
Replace the value in gi (global register i, i.e., g0–g15) with n. To eliminate contentions on registers g1–g15,
if the DMAC or the VPU is using one of these global registers when the MPU attempts access, the MPU stalls
until the registers are available. Contentions are not possible on g0.

pop la (addr --) 1011 1101
(L: …jn…j1 --) 0xBD

1+M CPU-clocks
Replace the value in la with cell-aligned address addr. The contents of the local-register stack cache,
…jn…j1, are discarded. The two least-significant bits of la are cleared. The bit ls_boundary is cleared.
A stack refill is performed at addr+4 to initialize r0.

pop lstack (n --) 1011 1010
(L: -- n) 0xBA

1 CPU-clock
Remove n from the operand stack and push it onto the local-register stack (into r0). The previous contents
of r0 are placed in r1, the previous contents of r1 are placed in r2, and so on.

Equivalent to ANS Forth word >R.
Equivalent when executed twice to ANS Forth word 2>R.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

67

pop mode (n --) 1011 1001
0xB9

1 CPU-clock
Replace the value in mode with n and clear power_fail. The mode bits power_fail, ls_boundary
and os_boundary are not writeable.

pop ri (n --) 1010 xxxx
0xA?

1 CPU-clock
Replace the value in ri (local register i, i.e., r0–r14) with n.

If ri is in the local-register stack cache (i # ldepth) the value in ri is replaced with n. If ri is not currently
in the local-register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from memory
sequentially to fill the cache until ri is reached. ri is then replaced with the value n.

Equivalent to Java byte codes astore_0, astore_1, astore_2, astore_3, fstore_0, fstore_1,
fstore_2, fstore_3, istore_0, istore_1, istore_2, istore_3.
Equivalent when executed twice to Java byte codes dstore_0, dstore_1, dstore_2, dstore_3,
lstore_0, lstore_1, lstore_2, lstore_3.
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes astore (vindex),
fstore (vindex), istore (vindex).
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes
dstore (vindex), lstore (vindex).

pop sa (…jn…j1 m1 m2 addr -- m1 m2) 1011 1100
0xBC

1+M CPU-clocks
Replace the value in sa with cell-aligned address addr. The contents of the operand stack cache, …jn…j1,
are discarded. The two least-significant bits of sa are cleared. The bit os_boundary is cleared. A stack
refill is performed at addr+4 to initialize s2.

pop x (n --) 1011 1000
0xB8

1 CPU-clock
Replace the value in x with n.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

68

push

push (n -- n n) 1001 0010
0x92

1 CPU-clock
Duplicate n.

Equivalent to Java byte code dup.

push ct (-- n) 1001 0100
0x94

1 CPU-clock
n is the value in ct.

push gi (-- n) 0111 xxxx
0x7?

1 CPU-clock
n is the value in gi (global register i, i.e., g0–g15). To eliminate contentions on registers g1–g15, if the
DMAC or the VPU is using one of these global registers when the MPU attempts access, the MPU stalls until
the registers are available. Contentions are not possible on g0.

push la (-- addr) 1001 1101
0x9D

1 CPU-clock
addr is the value in la.

push lstack (-- n) 1001 1010
0x9A

(L: n --) 1 CPU-clock
Pop n from the local-register stack (from r0) and push it onto the operand stack. The previous contents of
r1 are placed in r0, the previous contents of r2 are placed in r1, and so on.

Equivalent to ANS Forth word R>.
Equivalent when executed twice to ANS Forth word 2R>.

push mode (-- n) 1001 0001
0x91

1 CPU-clock

n is the value in mode.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

69

push ri (-- n) 1000 xxxx
0x8?

1 CPU-clock
n is the value in ri (local register i, i.e. r0–r14).

If ri is in the local-register stack cache (i # ldepth) the value in ri is pushed onto the operand stack. If ri
is not currently in the local-register stack cache (i > ldepth), cells starting at r(ldepth+1) are read from
memory sequentially until ri is reached. The value in ri is then pushed onto the operand stack.

Equivalent to Java byte codes aload_0, aload_1, aload_2, aload_3, fload_0, fload_1, fload_2,
fload_3, iload_0, iload_1, iload_2, iload_3.
Equivalent when executed twice to Java byte codes lload_0, lload_1, lload_2, lload_3, dload_0,
dload_1, dload_2, dload_3.
Equivalent for indexes up to fourteen (almost all actual cases) to Java byte codes aload (vindex), fload
(vindex), iload (vindex).
Equivalent when executed twice for indexes up to thirteen (almost all actual cases) to Java byte codes dload
(vindex), lload (vindex).

Equivalent to ANS Forth word R@.
Equivalent when executed twice to ANS Forth word 2R@.

push si (-- n) s0 1001 0010
0x92

s1 1001 0011
0x93

s2 1001 1110
0x9E

1 CPU-clock
n is the value in si (operand stack register i, i.e., s0, s1 or s2)

Equivalent to Java byte code dup.
Equivalent when executed twice to Java byte code dup2.

Equivalent to ANS Forth words 2DUP, DUP, FDUP, FOVER, OVER.

push sa (-- addr) 1001 1100
0x9C

1 CPU-clock
addr is the value in sa.

push x (-- n) 1001 1000
0x98

1 CPU-clock
n is the value in x.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

70

push.b #n (-- n) 1001 0000
0x90

1 CPU-clock
n is an eight-bit literal value in the range 0–255. The byte literal is encoded as the last byte in the instruction
group. This allows only one unique push.b # value per instruction group. Multiple push.b # opcodes
in the same instruction group push the same value.

Equivalent for positive values to Java byte code bipush.
Equivalent for some values to Java byte code sipush.

push.l #n (-- n) 0100 1111
0x4F

M CPU-clocks
n is a 32-bit literal value. The value is compiled as a full cell following the instruction group. Multiple
push.l # in an instruction group are compiled with data in sequential cells following the instruction group
in memory. As the push.l # opcodes are executed, the internally maintained next pc is incremented to
move past each cell as it is fetched and pushed on the stack. Note that skipping a push.l # causes the
MPU to execute the literal value because the skipped push.l # will not have incremented next pc to move
past the value.

Equivalent to Java byte code fconst_1, fconst_2, ldc, ldc_w, sipush.
Equivalent when executed twice to Java byte code ldc2_w.

push.n #n (-- n) 0010 xxxx
0x2?

1 CPU-clock
n is a literal value in the range -7 to 8. The four least-significant bits of the opcode encode the value for n.
The value is encoded as a two's-complement representation of n except that -8 (1000 binary) is decoded
to be +8.

Equivalent to Java byte codes aconst_null, fconst_0, iconst_m1, iconst_0, iconst_1, iconst_2,
iconst_3, iconst_4, iconst_5.
Equivalent for some values to Java byte code bipush.
Equivalent when executed twice to Java byte codes dconst_0, lconst_0, lconst_1.

Equivalent to ANS Forth words FALSE, TRUE.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

71

replb
Replace Byte

replb (n1 n2 -- n3) 1101 1010
0xDA

1 CPU-clock
Replace the target byte of n2 with the least-significant byte of n1, leaving the result n3. The target byte is
selected by the two least-significant bits of x, as when accessing a byte in memory.

For example, if x = 0x121, n1 = 0xCCDDEEFF, and n2 = 0x12345678, then n3 = 0x12FF5678.

replexp
Replace Exponent

replexp (n1 n2 -- n3) 1011 0101
0xB5

1 CPU-clock
Replace the exponent field and sign bits of n1 with the corresponding bits of n2. Clear the GRS extension.
The location of the exponent field depends on fp_precision.

ret
Return

ret (--) 0110 1110
(L: addr --) 0x6E

Return from Subroutine M CPU-clocks

Pop addr from the local-register stack into pc to transfer execution to addr.

Equivalent to ANS Forth word EXIT.

reti (--) 0110 1111
(L: addr --) 0x6F

Return from Interrupt M CPU-clocks

Pop addr from the local-register stack into pc to transfer execution to addr. Clear the current interrupt under-
service bit.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

72

rev
Revolve Operand Stack

rev (n1 n2 n3 -- n2 n3 n1) 1110 0100
0xE4

1 CPU-clock
Rotate the top three cells of the stack to bring n1 to the top.

Equivalent to the run-time for the ANS Forth words FROT, ROT.

rnd
Round

rnd (n1 -- n2) carry± 1101 0001
0xD1

1 CPU-clock
(L: -- addr) only when trap processed 3+M CPU-clocks

Round n1 giving n2. Rounding is based on fp_round_mode, the sign of ct, and the GRS extension. See
Rounding, page 34. If an increment carried out of bit 31 then set carry, clear carry otherwise.

If the value of n2 is different from n1, a rounded exception is signaled. The exception is detected as a change
in the value of bit zero.

scache See _cache.

sdepth See _depth.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

73

sexb
Sign-extend byte

sexb (n1 -- n2) 1101 1000
0xD8

1 CPU-clock
Copy the value of bit seven of n1 into bits eight to thirty-one, leaving n2.

Equivalent to Java byte code i2b.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

74

shift_

The number of CPU-clock cycles required to shift the specified number of bits depends on the number of bits
requested. While the count $ eight the value (single or double) is shifted eight bits each CPU-clock cycle. When
the count becomes less than eight the shifting is finished at one bit per CPU-clock cycle. For instance, the worst-
case useful shift is 31 bits (either left or right) and takes eleven CPU-clock cycles—three 8-bit shifts and seven
1-bit shifts plus one CPU-clock cycle for setup. A 32-bit shift would take five CPU-clock cycles. The counts are
modulo 64 in sign-magnitude representation using only the six least-significant bits for the magnitude and bit
31 for the sign. A zero in the six least-significant bits represents zero. (Sign-magnitude representation here is
a positive integer count in the six least-significant bits, the middle bits ignored, and bit 31 indicating the sign,
zero is positive, one is negative).

shift (n1 n2 -- n3) carry± (n2>0)1110 1110
0xEE

1 to 11 CPU-clocks
Shift n1 by *n2* bits leaving the result n3. If n2 is positive the shift is to the left, each bit is shifted out through
carry, and zero is shifted into each bit on the right. If n2 is negative the shift is to the right, each bit shifted
out is shifted through the GRS extension, and carry is copied into each high order bit of n1 vacated by
the shift. See text above regarding execution time and format of negative counts.

Equivalent to ANS Forth word LSHIFT.

shiftd (n1 n2 n3 -- n4 n5) carry± (n3>0)1110 1111
Shift Double 0xEF

1 to 15 CPU-clocks
Shift the cell pair n2n1 by *n3* bits leaving the resulting cell pair n5n4. If n3 is positive the shift is to the
left, each bit is shifted out of n2 through carry, and zero is shifted into each bit on the right into n1. If n3
is negative the shift is to the right, each bit shifted out of n1 is shifted through the GRS extension, and carry
is copied into each high order bit of n2 vacated by the shift. See text above regarding execution time and
format of negative counts.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

75

shl_
Shift Left

shl #1 (n1 -- n2) carry± 1110 0010
Shift Left 0xE2

1 CPU-clock
Shift n1 one bit to the left leaving the result n2. The high order bit of n1 shifted out goes into carry. The
vacated bit on the right of n1 is filled with zero.

Equivalent to ANS Forth word 2*.

shl #8 (n1 -- n2) carry± 1110 1100
Shift Left Byte 0xEC

1 CPU-clock
Shift n1 eight bits (one byte) to the left leaving n2. The last bit shifted out goes into carry. The vacated eight
bits on the right are filled with zeros.

shld #1 (n1 n2 -- n3 n4) carry± 1110 0110
Shift Left Double 0xE6

1 CPU-clock
Shift cell pair n2n1 one bit to the left leaving the result n4n3. The high order bit of n2 shifted out goes into
carry. The vacated bit on the right of n1 is filled with zero.

Equivalent to ANS Forth word D2*.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

76

shr_
Shift Right

shr #1 (n1 -- n2) 1110 0011
Shift Right 0xE3

1 CPU-clock
Shift n1 one bit to the right leaving the result n2. The bit shifted out is shifted into the GRS extension. The
vacated bit on the left is filled with carry.

shr #8 (n1 -- n2) 1110 1101
Shift Right Byte 0xED

1 CPU-clock
Shift n1 eight bits (one byte) to the right leaving the result n2. The bits shifted out are shifted into the GRS
extension. The vacated eight bits on the left are filled with carry.

shrd #1 (n1 n2 -- n3 n4) 1110 0111
Shift Right Double 0xE7

1 CPU-clock
Shift cell pair n2n1 one bit to the right leaving the result n4n3. The bit shifted out of n1 is shifted into the
GRS extension. The vacated bit in n2 on the left is filled with carry.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

77

skip_
Skip if Condition

skip conditionally or unconditionally skips execution of the remainder of the instruction group. If the
condition is true, skip the remainder of the instruction group and continue execution with the following
instruction group. If condition is false, continue execution with the next instruction.

WARNING: Do not skip a push.l #. Since the MPU will not have executed the push.l # opcode,
the corresponding literal cell is not skipped. The result will be the MPU executing the literal cell.

skip (--) 0011 0000
Skip Unconditionally 0x30

Mprefetch CPU-clocks
Unconditionally skip the remainder of the instruction group.

skipc (--) 0011 0011
Skip if Carry 0x31

1 (no carry) Mprefetch (carry) CPU-clocks
If carry is set, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

skipn
skipnp (n --) 0011 0010
Skip if Negative/Not Positive 0x32

1 (not neg) Mprefetch (neg) CPU-clocks
If n is negative (neither positive nor zero), skip the remainder of the instruction group and continue execution
with the next instruction group; otherwise, continue execution with the next instruction.

skipnc (--) 0011 0111
Skip if Not Carry 0x35

M CPU-clocks
If carry is clear, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

skipnn
skipp (n --) 0011 0110
Skip if Not Negative/Positive 0x36

1 (neg) Mprefetch (not neg) CPU-clocks
If n is not negative (either positive or zero), skip the remainder of the instruction group and continue
execution with the next instruction group; otherwise, continue execution with the next instruction.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

78

skipnz (n --) 0011 0001
Skip if Not Zero 0x37

1 (zero) Mprefetch (non-zero) CPU-clocks
If n is not zero, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

skipz (n --) 0011 0101
Skip if Zero 0x33

1 (non-zero) Mprefetch (zero) CPU-clocks

If n is zero, skip the remainder of the instruction group and continue execution with the next instruction
group; otherwise, continue execution with the next instruction.

split
Split Cell

split (n1 -- n2 n3) 1001 1001
0x99

1 CPU-clock
Split n1 into two parts so that the lower-half of n1 is in the lower-half of n2 and the upper-half of n1 is in
the lower-half of n3.

For example, if n1 = 0x12345678 then n2 = 0x5678 and n3 = 0x1234.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

79

st
Store Indirect to Memory

st [--r0] (n --) 0110 0100
0x64

1+M CPU-clocks
Decrement r0 by four. Store the cell n into memory at the new address in r0. The two least-significant bits
of the address are ignored and treated as zero.

st [--x] (n --) 0110 1000
0x68

1+M CPU-clocks
Decrement x by four. Store the cell n into memory at the new address in x. The two least-significant bits
of the address are ignored and treated as zero.

st [r0++] (n --) 0110 0110
0x66

M CPU-clocks
Store the cell n into memory at the address in r0. Increment r0 by four. The two least-significant bits of
the address are ignored and treated as zero.

st [r0] (n --) 0110 0010
0x62

M CPU-clocks
Store the cell n into memory at the address in r0. The two least-significant bits of the address are ignored
and treated as zero.

st [x++] (n --) 0110 1001
0x69

M CPU-clocks
Store the cell n into memory at the address in x. Increment x by four. The two least-significant bits of the
address are ignored and treated as zero.

st [x] (n --) 0110 0001
0x61

M CPU-clocks
Store the cell n into memory at the address in x. The two least-significant bits of the address are ignored
and treated as zero.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

80

st [] (n addr -- n) 0110 0000
0x60

M CPU-clocks
Store the cell n into memory at address addr. The two least-significant bits of the address are ignored and
treated as zero.

step
Single-Step Processor

step (--) 0011 0100
(L: addr1 -- addr2) 0x34

2M+2+inst CPU-clocks
Pop addr1 from the local-register stack into pc and continue execution at addr1 for one instruction. Then
perform a call subroutine to the single-step trap location, 0x138. addr2 is the address of the next instruction
following addr1.

sto
Store Indirect to On-Chip Resource

sto [] (n addr -- n) 1011 0000
0xB0

1 CPU-clock
Store n into the on-chip resource register at address addr. The programmer must ensure that sto [] is not
executed to access (even if not changed) any configuration register containing information for a memory
group with a bus transaction in process. For valid values of addr, see On-Chip Resource Registers, page
129.

sto.i [] (n bit_addr -- n) 1011 0001
0xB1

1 CPU-clock
If n is non-zero, set the bit at the on-chip resource register address bit_addr; otherwise, clear the bit. For
valid values of addr, see On-Chip Resource Registers, page 129.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

81

sub
Subtract

sub (n1 n2 -- n3) carry± 1100 1000
0xC8

1 CPU-clock
Subtract n2 from n1 leaving the difference n3. If computing the difference required a borrow, carry is set;
otherwise, carry is cleared.

Equivalent to Java byte code isub.

Equivalent to ANS Forth word -.

subb
Subtract with Borrow

subb (n1 n2 -- n3) carry± 1100 1010
0xCA

1 CPU-clock
Subtract n2 and carry from n1 leaving the difference n3. If computing the difference required a borrow,
carry is set; otherwise, carry is cleared.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

82

subexp
Subtract Exponents

subexp (n1 n2 -- n3 n4 n5) 1101 0011
0xD3

2 CPU-clocks
(L: -- addr) only when trap processed 4+M CPU-clocks

Perform the following:
 Exponent_Field(n5) = Exponent_Field(n1) - Exponent_Field(n2) + BIAS - 1
 Sign_Bit(n5) = Sign_Bit(n1) XOR Sign_Bit(n2)
BIAS is 127 (0x3F800000 in bit position) for single precision and 1023 (0x3FF00000 in bit position) for
double precision, as selected by fp_precision.

Compute as described above. Clear the exponent-field bits and sign bit and set the hidden bit of n1 and
n2 giving n3 and n4, respectively. n5 is the result of the computation. After completion, if the exponent-field
calculation result equaled or exceeded the maximum value of the exponent field (exponent result $ 255
for single, exponent result $ 2047 for double) an overflow exception is signaled. If the exponent-field
calculation result is less than or equal to zero an underflow exception is signaled. When an exception is
signaled, the exponent field of n5 contains as many bits of the result as it will hold.

testb
Test Bytes for Zero

testb (n -- n) carry± 1101 1001
0xD9

1 CPU-clock
If any byte of n is zero set carry, otherwise clear carry.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR
MNEMONIC STACKS (input Sn/Rn…S0/R0 -- output Sm/Rm…S0/R0) CARRY? OPCODE

83

testexp
Test Exponent

testexp (n1 n2 -- n1 n2) carry± 1101 0100
0xD4

1 CPU-clock
(L: -- addr) only when trap processed 3+M CPU-clocks

Clear the GRS extension. If the exponent field in n1 or n2 is all zeros or all ones, an exponent exception is
signaled and carry is set; otherwise, carry is cleared. The location of the exponent field depends on
fp_precision.

xcg
Exchange

xcg (n1 n2 -- n2 n1) 1011 0010
0xB2

1 CPU-clock
Exchange the top two operand stack cells.

Equivalent to Java byte code swap.

Equivalent to the ANS Forth words FSWAP, SWAP.

xor
Bitwise Exclusive OR

xor (n1 n2 -- n3) carry clear 1100 0011
0xC3

1 CPU-clock
Perform a bitwise EXCLUSIVE OR of n1 and n2 giving the result n3.

Equivalent to Java byte code ixor.

Equivalent to ANS Forth word XOR.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000™ Microprocessor
32-BIT RISC PROCESSOR

84

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
add c0 lframe be pop r0 a0 push r3 83

add pc bb mloop 38 pop r1 a1 push r4 84

adda e8 mloopc 39 pop r2 a2 push r5 85

addc c2 mloopn 3a pop r3 a3 push r6 86

addexp d2 mloopnc 3d pop r4 a4 push r7 87

and e1 mloopnn 3e pop r5 a5 push r8 88

bkpt 3c mloopnp 3a pop r6 a6 push r9 89

br offset 00… mloopnz 3f pop r7 a7 push r10 8a

br [] 4b mloopp 3e pop r8 a8 push r11 8b

bz offset 10… mloopz 3b pop r9 a9 push r12 8c

call offset 08… mulfs d6 pop r10 aa push r13 8d

call [] 4e muls d5 pop r11 ab push r14 8e

cmp cb mulu d7 pop r12 ac push s0 92

copyb d0 mxm df pop r13 ad push s1 93

dbr offset 18… neg c9 pop r14 ae push s2 9e

dec #1 cf nop ea pop sa bc push sa 9c

dec #4 cd norml c7 pop x b8 push x 98

dec ct c1 normr c6 push 92 push.b #byte 90

denorm c5 notc dd push ct 94 push.l #cell 4f

di b7 or e0 push g0 70 push.n #-7 29

divu de pop b3 push g1 71 push.n #-6 2a

ei b6 pop ct b4 push g2 72 push.n #-5 2b

eqz e5 pop g0 50 push g3 73 push.n #-4 2c

expdif c4 pop g1 51 push g4 74 push.n #-3 2d

extexp db pop g2 52 push g5 75 push.n #-2 2e

extsig dc pop g3 53 push g6 76 push.n #-1 2f

iand e9 pop g4 54 push g7 77 push.n #0 20

inc #1 ce pop g5 55 push g8 78 push.n #1 21

inc #4 cc pop g6 56 push g9 79 push.n #2 22

lcache 4d pop g7 57 push g10 7a push.n #3 23

ld [--r0] 44 pop g8 58 push g11 7b push.n #4 24

ld [--x] 4a pop g9 59 push g12 7c push.n #5 25

ld [r0++] 46 pop g10 5a push g13 7d push.n #6 26

ld [r0] 42 pop g11 5b push g14 7e push.n #7 27

ld [x++] 49 pop g12 5c push g15 7f push.n #8 28

ld [x] 41 pop g13 5d push la 9d replb da

ld [] 40 pop g14 5e push lstack 9a replexp b5

ld.b [] 48 pop g15 5f push mode 91 ret 6e

ldo [] 96 pop la bd push r0 80 reti 6f

ldo.i [] 97 pop lstack ba push r1 81 rev e4

ldepth 9b pop mode b9 push r2 82 rnd d1

Table 39. MPU Mnemonics and Opcodes (Mnemonic Order)

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

85

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode
scache 45 shr #8 ed skipz 33 sto [] b0

sdepth 9f shrd #1 e7 split 99 sto.i [] b1

sexb d8 skip 30 st [--r0] 64 sub c8

sframe bf skipc 31 st [--x] 68 subb ca

shift ee skipn 32 st [r0++] 66 subexp d3

shiftd ef skipnc 35 st [r0] 62 testb d9

shl #1 e2 skipnn 36 st [x++] 69 testexp d4

shl #8 ec skipnp 32 st [x] 61 xcg b2

shld #1 e6 skipnz 37 st [] 60 xor e3

shr #1 e3 skipp 36 step 34

Table 39. MPU Mnemonics and Opcodes (Mnemonic Order, continued)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000™ Microprocessor
32-BIT RISC PROCESSOR

86

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
00…07 br offset 45 scache 72 push g2 9e push s2

08…0f call offset 46 ld [r0++] 73 push g3 9f sdepth

10…17 bz offset 47 74 push g4 a0 pop r0

18…1f dbr offset 48 ld.b [] 75 push g5 a1 pop r1

20 push.n #0 49 ld [x++] 76 push g6 a2 pop r2

21 push.n #1 4a ld [--x] 77 push g7 a3 pop r3

22 push.n #2 4b br [] 78 push g8 a4 pop r4

23 push.n #3 4c 79 push g9 a5 pop r5

24 push.n #4 4d lcache 7a push g10 a6 pop r6

25 push.n #5 4e call [] 7b push g11 a7 pop r7

26 push.n #6 4f push.l #cell 7c push g12 a8 pop r8

27 push.n #7 50 pop g0 7d push g13 a9 pop r9

28 push.n #8 51 pop g1 7e push g14 aa pop r10

29 push.n #-7 52 pop g2 7f push g15 ab pop r11

2a push.n #-6 53 pop g3 80 push r0 ac pop r12

2b push.n #-5 54 pop g4 81 push r1 ad pop r13

2c push.n #-4 55 pop g5 82 push r2 ae pop r14

2d push.n #-3 56 pop g6 83 push r3 af

2e push.n #-2 57 pop g7 84 push r4 b0 sto []

2f push.n #-1 58 pop g8 85 push r5 b1 sto.i []

30 skip 59 pop g9 86 push r6 b2 xcg

31 skipc 5a pop g10 87 push r7 b3 pop

32 skipn 5b pop g11 88 push r8 b4 pop ct

32 skipnp 5c pop g12 89 push r9 b5 replexp

33 skipz 5d pop g13 8a push r10 b6 ei

34 step 5e pop g14 8b push r11 b7 di

35 skipnc 5f pop g15 8c push r12 b8 pop x

36 skipnn 60 st [] 8d push r13 b9 pop mode

36 skipp 61 st [x] 8e push r14 ba pop lstack

37 skipnz 62 st [r0] 8f bb add pc

38 mloop 63 90 push.b #byte bc pop sa

3a mloopnp 66 st [r0++] 92 push s0 bf sframe

3b mloopz 67 93 push s1 c0 add

3c bkpt 68 st [--x] 94 push ct c1 dec ct

3d mloopnc 69 st [x++] 95 c2 addc

3e mloopnn 6a 96 ldo [] c3 xor

3e mloopp 6b 97 ldo.i [] c4 expdif

3f mloopnz 6c 98 push x c5 denorm

40 ld [] 6d 99 split c6 normr

41 ld [x] 6e ret 9a push lstack c7 norml

42 ld [r0] 6f reti 9b ldepth c8 sub

43 70 push g0 9c push sa c9 neg

44 ld [--r0] 71 push g1 9d push la ca subb

Table 40. MPU Mnemonics and Opcodes (Opcode Order)

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Microprocessing Unit
PSC1000 MICROPROCESSOR

87

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic
cb cmp d9 testb e7 shrd #1 f5

cc inc #4 da replb e8 adda f6

cd dec #4 db extexp e9 iand f7

ce inc #1 dc extsig ea nop f8

cf dec #1 dd notc eb f9

d0 copyb de divu ec shl #8 fa

d1 rnd df mxm ed shr #8 fb

d2 addexp e0 or ee shift fc

d3 subexp e1 and ef shiftd fd

d4 testexp e2 shl #1 f0 fe

d5 muls e3 shr #1 f1 ff

d6 mulfs e4 rev f2

d7 mulu e5 eqz f3

d8 sexb e6 shld #1 f4

Table 40. MPU Mnemonics and Opcodes (Opcode Order, continued)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

88

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR

89

vpublk.wpg

Instruction Latch

Multiplexer

Decode/Execute

VPU Program Counter

iopreset

control

ioip

ioin

ioout

data

address

iopdelay

MIF

8

8

8

8 8

8

8

4–28

32

322

32

Global
Registers

On-Chip
Resource
Registers

8

Figure 12. VPU Block Diagram

Virtual Peripheral Unit

The Virtual Peripheral Unit (VPU) is a special-purpose
processing unit that executes instructions to transfer
data between devices and memory, refresh dynamic
memory, measure time, manipulate bit inputs and bit
outputs, and perform system timing functions. With
these functions the VPU can be programmed to
emulate serial ports, analog to digital converters,
digital to analog converters, PWM outputs, timers, and
other peripherals. VPU programs are usually written
to be entirely temporally deterministic. Because it can
be difficult or impossible to write programs that
contain conditional execution paths that execute in an
efficient temporally deterministic manner, the VPU
contains no computational and minimal decision-
making ability. VPU programs are intended to be
relatively simple, using interrupts to the MPU to
perform computation or decision making.

To ensure temporally deterministic execution, the VPU
exercises absolute priority over bus access. Bus timing
must always be deterministic; “wait states” of fixed
length are programmed in the MIF. Temporal deter-
minism is achieved by counting VPU-execution and
bus CPU-clock cycles between the timed VPU events.
Bus access is granted to the VPU unless it is executing
delay, which allows MPU and DMA requests access
to the bus during a specified time. Thus, when a
memory access is required, the VPU simply seizes the
bus and performs the required operation at precisely
the programmed instant.

The MIF ensures that the bus is available when the
VPU requires it. The MPU and the DMAC request the
bus from the MIF, which prioritizes the requests and
grants the bus while the VPU is executing delay. The
MIF ensures that any transactions are completed
before the delay time of the VPU expires and the VPU
next requires the bus.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

90

When transferring data, the VPU does not modify any
data that is transferred; it only causes the bus transac-
tion to occur at the programmed time. It performs
time-synchronous I/O-channel transfers, as opposed
to the DMAC, which prioritizes and performs asyn-
chronous I/O-channel transfers. Other than how they
are initiated, the two types of transfers are identical.

Usage
A VPU program can be used to eliminate external
logic and simplify system designs. By using the VPU
for timing-dependent system and application opera-
tions, timing constraints on the MPU program can
often be eliminated or greatly relaxed. Additionally,
the VPU with the assistance of the MPU can emulate
a wide variety of system peripherals including serial
ports, analog to digital converters, digital to analog
converters, PWM outputs, timers, and other peripher-
als.

For example, a VPU program of about 150 bytes
supplies the data transfers and timing for a video
display . The program produces vertical and horizontal
sync, and transfers data from DRAM to a video shift
register or palette. Additionally, the VPU supplies
flexibility. Video data from various areas of memory
could be displayed, without requiring that the data be
moved to create a contiguous frame buffer. As new
data areas are specified, the VPU instructions are
rewritten by the MPU to change the program the VPU
executes for the next video frame. While this is
executing, the MPU still has access to the bus to
execute instructions and process data, and the DMAC
still has access to the bus to transfer data.

Many other applications are possible. The VPU is best
used for applications that require data to be moved,
or some other event to occur, at specific times. For
example:
C sending digitized 16-bit data values to a pair of
DACs to play CD-quality stereo sound,
C sampling data from input devices at specified time
intervals for the MPU to later process,
C sending data and control signals to display images
on an LCD display,
C transferring data packets for an intelligent network
interface,

C transferring synchronous data blocks for an
intelligent SCSI controller,
C sending multiple channels of data to DACs for a
wave-table synthesizer,
C controlling video and I/O for serial and X-Win-
dows video terminals or PC video accelerators,
C controlling timed events in process-control
environments,
C controlling ignition and fuel for automotive
engines,
C inputting and outputting serial data streams,
C producing PWM output directly or for integration
by an external R-C network for a low-cost digital to
analog converter, or
C combining several of the above to significantly
reduce system cost.

The VPU is designed to dictate access to the bus (to
ensure temporally deterministic execution), but to be
a slave to the MPU. The VPU can communicate status
to the MPU by:
C the status changing on a device the VPU has
accessed,
C loading a value in a global register,
C setting a bit output, or
C consuming a bit input.
The MPU can control the VPU by:
C rewriting VPU instructions in memory,
C modifying the global registers the VPU is using,
C clearing a bit input, or
C resetting the VPU.

The events controlled are not required to occur at a
persistent, constant rate. The VPU is appropriate for
applications whose event rates must be consistently
controlled, whether once or many times. As an
example of the former, the VPU can take audio data
from memory and send it to a DAC to play the sound
at a continuous rate, for as long as the audio clip lasts.
As an example of the latter, the VPU can be synchro-
nized to the rotation of an automotive engine by the
MPU in order for the VPU to time fuel injection and
ignition, with the synchronization constantly changed
by the MPU (by changing global registers or rewriting
the VPU program) as the MPU monitors engine
performance.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR

91

g15
g14

g8
g7

g0
g1

.

.

.

.

.

.

.

.

.

.

delay

dskipz
mloop
xfer

ld

vpuregus.wpg

Figure 13. VPU Register Usage

DELAY NO OPERATION
DECREMENT AND SKIP OUTPUT TRUE
INTERRUPT MPU OUTPUT FALSE
JUMP REFRESH
LOAD REGISTER TEST INPUT AND SKIP
MICRO-LOOP TRANSFER

Table 41. VPU Instructions

Resources
The VPU consists of instruction decode and execution
processes, and control paths to other CPU resources,
as shown in Figure 12. The VPU and related registers
include:
C Bit input register, ioin: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.
C Interrupt pending register, ioip: indicates which
interrupts have been recognized but are waiting to be
prioritized and serviced. See Figure 27, page 132.
C Bit output register, ioout: bits that were last
written by either the MPU or the VPU. See Figure 29,
page 134.
C VPU reset register, vpureset: writing any value
causes the VPU to begin execution at the VPU
software reset address. See Figure 51, page 155.
C Global registers g1 through g7: contain values
used by delay.
C Global registers g8 through g15: contain loop
counts or I/O-channel transfer specifications. Transfer
specifications consist of device and memory transfer
addresses and control bits. See Figure 16, page 104.

Register Usage
The VPU shares
global registers
g1–g15 with
the MPU, and
uses them for
loop counts,
delay initial-
ization counts,
and transfer
information. See
Figure 13. Loop
counts and de-
lay counts are
32 bits. Transfer

addresses in bits 31–2 typically address cells, but can
also address bytes, depending on the I/O-channel
configuration. Bit one determines whether the transfer
is a memory write or a memory read, and bit zero
enables interrupts on 1024-byte memory page
boundary crossings (see Interrupts, below). See Figure
16, page 104.

The MPU can read or write any registers used by the
VPU at any time. If there is a register-access conten-
tion between the MPU and the VPU, the MPU is held
off until the VPU access is complete.

Instruction Set
Table 41 lists the VPU instructions; Table 44 and
Table 45, page 101, list the mnemonics and opcodes.
Details of instruction execution are given in Instruction
Reference, page 95.

Instruction Formats
All instructions consist of eight bits except for ld, which
requires 32-bit immediate data, and jump, which
requires a page-relative destination address. The use of
eight-bit instructions allows up to four instructions
(referred to as an instruction group) to be obtained on
each instruction fetch, thus reducing memory-band-
width requirements compared to typical 32-bit proces-
sors. This characteristic also allows looping on the
instruction group (a micro-loop) without additional
instruction fetches, further increasing efficiency.
Instruction formats are depicted in Figure 14.

Jumps
The instruction jump is variable-length. The jump
opcode can occur in any position within the instruc-
tion group. The four least-significant bits in the opcode
and all of the bits in the current instruction group to
the right of the opcode are used for the page-relative
destination address. See Figure 14 and Table 42. The
size of the encoded page-relative destination address
depends on the location of the opcode within the
current instruction group. The bits are used to replace
the same cell-address bits within the next VPU pc.
These destination addresses are cell-aligned to
maximize the range of the destination address bits and
the number of instructions that are executed at the
destination. The next VPU pc is the cell-aligned

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

92

destination

destination

dest

jumpopcodeopcodeopcode

opcodeopcode jump

opcode jump

jump

opcodeld #,gnopcode opcode

opcodeopcodeopcode opcode

data for first ld #,gn

data for fourth ld #,gn (if present)

opcodeopcodeopcode opcode

load register
(any position)

Jumps

Literals

All Others

vpuinfmt.wpg

data for third ld #,gn (if present)

data for second ld #,gn (if present)

4-bit destination

12-bit destination

20-bit destination

28-bit destination

Figure 14. VPU Instruction Formats

address following the current instruction group,
incremented for each ld instruction that preceded the
jump in the current instruction group. If the destina-
tion address bits are not of sufficient range for the
jump to reach the destination, the jump must be
moved to an instruction group where more destination
address bits are available.

Literals
The instruction ld requires a total of 40 bits, eight bits
for the opcode in the current instruction group, and
32 bits following the current instruction group for the
literal data. The ld opcode can occur in any position
within the instruction group. The data for the first ld
in an instruction group immediately follows the
instruction group in memory; the data for each
subsequent ld occupies successive locations. The four
least-significant bits in the opcode contain the number
of the global register that is the destination for the data.
Global register zero (g0) is not allowed.

Others
All other instructions require eight bits. Most have a
register or bit number encoded in the three or four
least-significant bits of the opcode. See Instruction
Reference, page 95, for details on the other individual
instructions.

Execution Timing
Counting execution CPU-clocks cycles is the key to
programming the VPU. Each instruction requires
execution time as described in Instruction Reference,
page 95. In general, instructions execute in one CPU-

clock cycle, and, if they require a bus transaction, the
instruction execution overlaps the time for the bus
transaction. A timing with an “M” indicates the
specified number of bus requests and bus transactions
(memory cycles) for the instruction to complete. Bus
requests require two CPU-clock cycles and bus
transaction times are as programmed and described in
Programmable Memory Interface, page 117, and Bus
Operation, page 157.The value used for “M” includes
both the bus request and bus transaction times.

Additionally, instruction fetch between the execution
of instruction groups must be considered and requires
“M” CPU-clock cycles. There is no instruction pre-
fetch in the VPU, so timing computation is simplified.
When execution of the instructions in an instruction
group completes, instruction fetch begins during the
next CPU-clock cycle.

To ensure deterministic timing, the programmer must
keep track of the addresses being accessed and
whether or not a RAS cycle or a CAS cycle will occur.
This is fairly simple. There are only two cases in which
RAS cycles occur in the VPU:

Bits Page-Relative Range

4 64 bytes

12 4096 bytes

20 1048576 bytes

28 268435456 bytes

Encoded bits replace the same number of bits from
A2 upward in the VPU next PC; A1 and A0 are zero.

Table 42. VPU Branch Ranges

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR

93

; VPU DRAM Refresh
;
; A typical 256K DRAM requires 512 refreshes every
; 8 ms. That means we require a refresh every
; 15.625 us, or a total loop time below of 31.250 us
; since we do two refreshes per loop. Assuming a RAS
; cycle with the bus request takes 11 CPU-clock cycles,
; the loop below takes 11 + 11 + 2 + delay or 35 + delay
; CPU-clock cycles to execute.

External_clock = 50000000 ; Hz
CPU_clock = (External_clock * 2)/100000

; x100KHz
HndrdKHz_per_ns = 10000 ; scaling factor

VPU_start::
; Enter here from A VPU software reset.
; Total time to be taken by one loop iteration in
; nanoseconds.
Loop_ns = 31250

; Number of CPU-clocks required by
; instructions except delay time.
Overhead_clocks = 35

; Instruction overhead in nanoseconds.
Overhead_ns = ((Overhead_clocks *

HndrdKHz_per_ns) / CPU_clock)

; CPU-clock delay value required to achieve
; Loop_ns above.
Refresh_delay = (Loop_ns - Overhead_ns) /

 (HndrdKHz_per_ns / CPU_clock)

ld #Refresh_delay,g7
; Inst. Fetch, 11

VPU_Refresh_Loop::

refresh ; 11
refresh ; 11

delay g7 ; 2 + delay
jump VPU_Refresh_Loop ; 11

Table 43. Code Example: VPU DRAM Refresh1. A RAS cycle is forced by the VPU on the first bus
transaction to each memory group after the execution
of delay or refresh. This guarantees, regardless of
whether or not the current RAS page on a memory
group is the target page, that the bus timing will be
known: a RAS cycle.

2. A RAS cycle occurs when the memory page
accessed is not the current RAS page on the target
memory group. While this seems unknowable, with
case 1, above, and a little care, it is easy to know if the
target page is the current page. Case 1 eliminates all
possibilities of the MPU or DMA making bus access
timing non-deterministic. This limits RAS cycles to
only those caused by the VPU program. Here, again,
other than at initialization, there are only two cases:

A. Locating the VPU program to fully reside within a
single RAS page, or in SRAM, eliminates RAS cycles
due to instruction fetch page crossings. Alternatively,
so long as the location of the page crossing is known,
the RAS cycle can be considered in the VPU program-
ming execution timing.

B. Planning of data transfers with the instruction xfer
allows timing to be known and considered. Placing
data transfer buffers fully within a single RAS page, or
planning the starting address to know when page
crossings occur, allows deterministic timing.

Techniques
Creating correct timing in A VPU program is matter of
counting instruction executions and determining the
type of memory accesses and the bus transaction times
involved. Most simple, and many complex, programs
executes an infinite loop. More complex programs
execute continually changing program code.
C Straight in-line code is the easiest to program as
there is only one path and no inner loops. Simply
count the cycles through the path to determine the
timing.
C mloops are also simple to program. The first
access to the instruction group will require a bus
transaction, but subsequent iterations will execute the
instruction group without refetching the instructions.
C Counted program loops (other than mloops) are
a little more complex. They are programmed using:

backward_label::
… ; put loop body here
dskipz gx, forward_label
jump backward_label

forward_label::
They are more complex because the exit timing is one
CPU-clock cycle shorter than the looping timing.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

94

C Maintaining consistent timing on an event that is
repeated throughout the program containing loops is
even more complex. A good example of such a
requirement is video generation, where horizontal
sync must be maintained throughout the main
program loop. Nested loops are used to create the top
and bottom margins and data area of the screen and
must generate precisely timed horizontal sync
throughout. Separate delay values are required for
the transitions into, out of, and inside each loop.
When programmed appropriately, timing is simplified
to loading at each point the delay count equal to the
fixed interval required minus the interval instruction
execution time.
C Alternatively, loops can be unrolled at the expense
of additional memory. Timing is to the straight in-line
case.
C Timing is also simplified by keeping duplicate
timing code arranged with the same timing at each
occurrence. In the video example, the horizontal sync
pulse (three instructions) is always kept within a single
instruction group, thus creating a fixed timing element.
C Rearranging the sequence of instructions, where
the sequence is not critical, can assist in creating the
correct program timing. For instance, a register load
for a loop, delay, or xfer value can occur anywhere
preceding the instruction. Refresh instructions also can
generally occur at any convenient location, so long as
the overall rate is maintained.
C Often, timing is not required to be absolutely
precise, nor absolutely consistent. Tolerances make
coding easier. For instance, a 40KHz audio stream
could probably be played consistently, or randomly,
plus or minus one microsecond and the variations not
be audible to the listener.

A code example of a typical refresh routine is given
in Table 43, and example video code is included with
the Patriot software development tools..

Address Space, Memory and Device Addressing
The VPU uses the same 32-bit address space as the
MPU, but has its own program counter and executes
independently and concurrently. I/O devices ad-
dressed during the execution of xfer are within the
same address space. xfer bus transactions are
identical to I/O-channel bus transactions except for

how they are initiated. See Direct Memory Access
Controller, page 103.

Interrupts
The VPU can request any of the eight MPU interrupts
by executing int. The VPU can also request an MPU
interrupt by accessing the last location in a 1024-byte
memory page during the execution of xfer. xfer
transfer interrupts and I/O-channel transfer interrupts
are identical. See Direct Memory Access Controller,
page 103, for more information. The MPU can
respond to interrupt requests when the VPU next
executes delay.

Bus Transactions
VPU instruction-fetch bus transactions are identical
to MPU memory-read bus transactions. xfer bus
transactions are identical to DMA bus transactions
except for how they are initiated. See Bus Operations,
page 157.

Bit Inputs and Bit Outputs
The bit inputs in ioin are accessed by the VPU with
tskipz. This instruction tests an input bit, consumes
it, and conditionally skips the remainder of the
instruction group. This allows for polled device
transfers or complex device-transfer sequences rather
than the simple asynchronous transfers available with
the DMAC. See Bit Inputs, page 111. Note that since
tskipz causes conditional execution, care must be
taken when designing program code that contains
tskipz if deterministic execution is expected.

The bit outputs in ioout can be individually set or
cleared by the VPU with outt and outf. They can
be used to activate external events, generate synchro-
nization pulses, etc. See Bit Outputs, page 115.

VPU Hardware and Software Reset
After hardware reset, the VPU begins executing at
address 0x80000004, before the MPU begins execu-
tion. The VPU can then perform the RAS cycles
required to initialize DRAM, and begin a program
loop to maintain DRAM refresh, before executing
delay to allow the MPU to configure the system.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR

95

Once the MPU has configured the system, the VPU
typically is required to begin execution of its applica-
tion program code. The VPU power-on-reset address
selects the boot memory device, usually because A31
is set and other high address bits are zero. To clear
A31 and thus begin execution in non-boot memory,
a software reset must be issued by the MPU. See Table
43, page 94. The software reset is the only way to
clear A31. The software reset can also be used in other
instances to cause the VPU to begin execution of a
new program. See Processor Startup, page 181.

Instruction Reference
The following text contains a description of each of
the VPU instructions. In addition to a functional
description, at the right margin is the instruction
opcode and the number of CPU-clock cycles required
to execute. See Execution Timing, page 92.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC OPCODE

96

delay

delay gi 0101 0xxx
5i hex

2+gi CPU-clocks
Load vpudelay from gi (global register i, g1–g7) and wait the specified number of CPU-clock cycles, allowing
bus access for DMA and the MPU. gi is unchanged. vpudelay counts down once each CPU-clock cycle. After
vpudelay reaches zero, the VPU instruction after delay executes. Note that instruction decode and termination
requires two CPU-clock cycle for a total execution time of 2+gi CPU-clock cycles. Within the opcode 0101
0xxx binary, xxx is the register number (1–7).

DMA and MPU bus transactions are granted bus access only when vpudelay indicates that sufficient time
remains for the complete bus transaction to occur. The first VPU memory access to each memory group after
delay executes is forced to be a RAS cycle so that VPU execution timing is deterministic. See Table 53, page
126.

dskipz
Decrement and Skip if Zero

dskipz gi 0110 1xxx
6i hex

(not zero) 1 CPU-clock
(zero)M CPU-clocks

Decrement gi (global register i, g8–g15). If gi is zero, then skip the remainder of the instruction group and
continue execution with the next instruction group; otherwise, continue execution with the next instruction.
Primarily used to create program loops by following dskipz with jump. Loops can be nested by using a different
global register for each level of loop counter. Within the opcode 0110 xxxx binary, xxxx is the register number
(8–15).

int
Set Interrupt

int n 1001 0xxx
9n hex

1 CPU-clock
Set bit n of ioip to request interrupt n. Used to notify the MPU that an event has occurred. Within the opcode
1001 0xxx binary, xxx is the input bit number (0–7).

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR
MNEMONIC OPCODE

97

jump

jump destination 0011 xxxx
3? hex

M CPU-clocks
Transfer execution to the page-relative, cell-aligned destination. The bits of destination replace the same cell-
address bits within the current VPU pc. The number of bits within destination depends on the position of jump
within the current instruction group. See page 92. Note that because of how jump functions, it cannot change
A30 or A31. A VPU software reset from the MPU is used to clear A31 after power-on reset. See VPU Power-on
and Software Reset, page 94.

ld
Load Register

ld #value, gi 0010 xxxx
2n hex

M CPU-clocks
Load gi (global register i, g1–g15) with the 32-bit constant value. Used to load values for xfer, mloop, dskipz
and delay, or to communicate with the MPU. Within the opcode 0010 xxxx binary, xxxx is the register number
(1–15).

mloop
Micro-Loop on Register

mloop gi 0111 1xxx
7i hex

1 CPU-clock
Decrement gi (global register i, g8–g15). If gi is non-zero, transfer execution to the beginning of the instruction
group. If gi is zero, continue execution with the instruction following mloop. Used to loop on sequences of
up to three other instructions without requiring the re-fetching of the instructions from memory. Within the
opcode 0111 xxxx binary, xxxx is the register number (8–15).

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC OPCODE

98

nop
No Operation

nop 1111 0000
F0 hex

1 CPU-clock
Do nothing. Used to waste time or as a placeholder for an instruction to be later placed.

outf
Set Bit Output False

outf n 1011 0xxx
Bn hex

1 CPU-clock
Clear bit output n. Within the opcode 1011 0xxx binary, xxx is the bit number (0–7).

outt
Set Bit Output True

outt n 1010 0xxx
An hex

1 CPU-clock
Set bit output n. Within the opcode 1010 0xxx binary, xxx is the bit number (0–7).

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR
MNEMONIC OPCODE

99

refresh

refresh 0001 0000
10 hex

M CPU-clocks
Perform a RAS-only memory refresh cycle simultaneously on all memory groups so enabled. msrra, msrha,
and msra31 are used as the RAS refresh address. msrra is incremented. msrtg specifies the memory group
whose RAS cycle timing is used for the refresh cycle. See Figure 44, page 151. mgXrd enables or disables refresh
on each memory group. See Figure 33, page 139. VPU program code must be written to include refresh at
intervals adequate for any DRAM used. The first VPU memory access to each memory group after refresh
executes is forced to be a RAS cycle so that VPU execution timing is deterministic. See Table 53, page 126.

tskipz
Test Bit Input and Skip if Zero

tskipz n 1000 0xxx
8n hex

(not zero) 1 CPU-clock
(zero) M CPU-clocks

If bit input n is zero, then consume the input and skip the remainder of the instruction group and continue
execution with the next instruction group; otherwise, continue execution with the next instruction. Used to cause
the VPU code to operate conditionally on bit inputs. See Bit Inputs, page 111. Within the opcode 1000 0xxx
binary, xxx is the input bit number (0–7).

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

MNEMONIC OPCODE

100

xfer
Transfer Data

xfer gi 0000 1xxx
0i hex

M CPU-clocks
Cause an I/O-channel transfer to occur immediately using gi, (global register i, g8–g15). gi contains the device
address, memory address, and control information. See Figure 16.If bit one of gi is zero, perform a write bus
transaction; if it is one, perform a read bus transaction. Increment bits 2–15 of gi. If bits 2–15 of gi are zero and
bit zero of gi is one, then assert interrupt request i!8. Within the opcode 0000 xxxx binary, xxxx is the register
number (8–15).

The type of bus transaction performed depends on whether the memory group involved is cell-wide or byte-wide
(see Figure 34, page 140) and on the device transfer type (see Figure 46 and Figure 47, page 152). xfer bus
transactions are identical to DMA bus transactions except for how they are initiated. See Direct Memory Access
Controller, page 103.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Virtual Peripheral Unit
PSC1000 MICROPROCESSOR

101

Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode

delay g1 51 int 6 96 mloop g11 7b outt 7 a7

delay g2 52 int 7 97 mloop g12 7c refresh 10

delay g3 53 jump dest 30… mloop g13 7d tskipz 0 80

delay g4 54 ld #, g1 21 mloop g14 7e tskipz 1 81

delay g5 55 ld #, g2 22 mloop g15 7f tskipz 2 82

delay g6 56 ld #, g3 23 nop f0 tskipz 3 83

delay g7 57 ld #, g4 24 outf 0 b0 tskipz 4 84

dskipz g8 68 ld #, g5 25 outf 1 b1 tskipz 5 85

dskipz g9 69 ld #, g6 26 outf 2 b2 tskipz 6 86

dskipz g10 6a ld #, g7 27 outf 3 b3 tskipz 7 87

dskipz g11 6b ld #, g8 28 outf 4 b4 xfer g8 08

dskipz g12 6c ld #, g9 29 outf 5 b5 xfer g9 09

dskipz g13 6d ld #, g10 2a outf 6 b6 xfer g10 0a

dskipz g14 6e ld #, g11 2b outf 7 b7 xfer g11 0b

dskipz g15 6f ld #, g12 2c outt 0 a0 xfer g12 0c

int 0 90 ld #, g13 2d outt 1 a1 xfer g13 0d

int 1 91 ld #, g14 2e outt 2 a2 xfer g14 0e

int 2 92 ld #, g15 2f outt 3 a3 xfer g15 0f

int 3 93 mloop g8 78 outt 4 a4

int 4 94 mloop g9 79 outt 5 a5

int 5 95 mloop g10 7a outt 6 a6

Table 44. VPU Mnemonics and Opcodes (Mnemonic Order)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000™ Microprocessor
32-BIT RISC PROCESSOR

102

Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic Opcode Mnemonic

00…07 2e ld #, g14 7b mloop g11 a1 outt 1

08 xfer g8 2f ld #, g15 7c mloop g12 a2 outt 2

09 xfer g9 30 jump dest 7d mloop g13 a3 outt 3

0a xfer g10 40…50 7e mloop g14 a4 outt 4

0b xfer g11 51 delay g1 7f mloop g15 a5 outt 5

0c xfer g12 52 delay g2 80 tskipz 0 a6 outt 6

0d xfer g13 53 delay g3 81 tskipz 1 a7 outt 7

0e xfer g14 54 delay g4 82 tskipz 2 a8…af

0f xfer g15 55 delay g5 83 tskipz 3 b0 outf 0

10 refresh 56 delay g6 84 tskipz 4 b1 outf 1

11…20 57 delay g7 85 tskipz 5 b2 outf 2

21 ld #, g1 58…67 86 tskipz 6 b3 outf 3

22 ld #, g2 68 dskipz g8 87 tskipz 7 b4 outf 4

23 ld #, g3 69 dskipz g9 88…8f b5 outf 5

24 ld #, g4 6a dskipz g10 90 int 0 b6 outf 6

25 ld #, g5 6b dskipz g11 91 int 1 b7 outf 7

26 ld #, g6 6c dskipz g12 92 int 2 b8…ef

27 ld #, g7 6d dskipz g13 93 int 3 f0 nop

28 ld #, g8 6e dskipz g14 94 int 4 f1…ff

29 ld #, g9 6f dskipz g15 95 int 5

2a ld #, g10 70…77 96 int 6

2b ld #, g11 78 mloop g8 97 int 7

2c ld #, g12 79 mloop g9 98…9f

2d ld #, g13 7a mloop g10 a0 outt 0

Table 45. VPU Mnemonics and Opcodes (Opcode Order)

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

DMA Controller
PSC1000 MICROPROCESSOR

103

Direct Memory Access Controller

Request
Logic Prioritizer

Expiration Logic

fdmap

ioXdmae_i

ioXdmaex

I/O channel #

8

8

8

8

8

3
#

dmablk.wpg

MIF
control

Transfer page
boundary

I/O channel
acknowledge

I/O channel
request

Bit Inputs

ioXin_i

zero-persist
INx

bypass
sample INx 8

1 of 8

Figure 15. DMAC Block Diagram

A Direct Memory Access Controller (DMAC) allows
I/O devices to transfer data to and from system
memory without the intervention of the MPU. The
DMAC supports eight I/O channels prioritized from
eight separate sources. Direct memory access (DMA)
requests are received from the bit inputs through
ioin. DMA and MPU bus request priorities are either
fixed, which allows higher-priority requests to block
lower-priority requests, or revolving, which prevents
higher-priority requests that cannot be satisfied from
blocking lower-priority requests.

DMA is supported for both cell-wide and byte-wide
devices in both cell-wide and byte-wide memory.
Each I/O channel can be individually configured as to
the type of device and bus timing requirements. Byte-
wide devices transfer data on AD[7:0] and can be
configured as either one-byte byte-transfer or four-byte
byte-transfer devices. Transfers are flybys or are
buffered, as required for the I/O-channel bus transac-
tion. See Table 57, page 158. DMAC and VPU xfer

transfers are identical except for how they are
initiated. DMAC transfers occur from asynchronous
requests whereas xfer transfers occur at their
programmed time.

Resources
The DMAC consists of several registers and associated
control logic. DMA request zero, which corresponds
to bit zero of the registers, has the highest priority;
DMA request seven, which corresponds to bit seven
of the registers, has the lowest priority. The DMAC and
related registers include:
C Bit input register, ioin: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.
C Interrupt enable register, ioie: indicates which
ioin bits are to be recognized as interrupt requests.
See Figure 30, page 135.
C DMA enable register, iodmae: indicates which
ioin bits are to be recognized as DMA requests. If
DMA is enabled on an ioin bit, interrupt enable by
ioie on that bit is ignored. See Figure 31, page 136.
C DMA enable expiration register, iodmaex:

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

104

31 01516

xfrdmarg.wpg

12

non-incrementing bits incrementing bits

910

Transfer interrupt enable
Memory transfer direction (0=memory write, 1=memory read)

1024-byte page boundary detect bits (page end when transfer with bits all ones)

Used in g8 to g15

Figure 16. I/O-Channel Transfer Data Format

indicates which iodmae bits are cleared following a
DMA transfer involving the last location in a 1024-
byte memory page occurring on that channel. See
Figure 49, page 153.
C Global registers g8 through g15: contain I/O-
channel transfer specifications. Transfer specifications
consist of device and memory transfer addresses and
control bits. See Figure 16, page 104.
C Fixed DMA priorities bit, fdmap, in register
miscellaneous B, miscb: prevents or allows lower-
priority bus requests to contend for access to the bus
if a higher-priority request cannot be satisfied (i.e., the
available bus transaction slot is too small). See Figure
34, page 140.

DMA Requests
An ioin bit is configured as a DMA request source
when the corresponding iodmae bit is set and the
corresponding ioie bit is clear (though ioie is
ignored when iodmae is set). Once a zero reaches
ioin, it is available to request a DMA I/O-channel
transfer. See DMA Usage, page 112. A DMA request
is forced in software by clearing the corresponding
ioin bit. Individually disabling DMA operations on
an I/O channel by clearing its iodmae bit prevents a
corresponding zero bit in ioin from being recognized
as a DMA request, but does not affect the zero-
persistence of the corresponding bit in ioin.

Prioritization
A DMA request is prioritized with other pending DMA
requests, and, if the request has the highest priority or
is the next request in revolving-priority sequence (see

below), its corresponding I/O channel is the next to
request the bus. DMA request prioritization requires
one CPU-clock cycle to complete. When the I/O
channel bus request is made, the MIF waits until the
current bus transaction, if any, is almost complete. It
then checks vpudelay to determine if the available
bus slot is large enough for the required I/O channel
bus transaction. If the bus slot is large enough, the bus
is granted to the I/O channel, and the bus transaction
begins.

The VPU always seizes the bus when vpudelay
decrements to zero. Otherwise, a DMA I/O channel
bus request and an MPU bus request contend for the
bus, with the DMA I/O channel bus request having
higher priority.

If fdmap is set and the bus slot is too small, the DMA
I/O channel does not get the bus. Until a higher-
priority DMA I/O channel request is made that fits the
shrinking available bus slot, no bus transactions occur
until the VPU seizes the bus. When the VPU next
executes delay, the highest-priority DMA request, or
the MPU if there are no DMA requests, repeats the bus
request process.

If fdmap is clear and the bus slot is too small, the
DMA I/O channel does not get the bus. The next
lower-priority bus request is then allowed to request
the bus, with the MPU as the lowest-priority request.
The process repeats until the bus is granted or the VPU
seizes the bus. When the VPU next executes delay,
the highest-priority DMA request, or the MPU if there
are no DMA requests, repeats the bus request process.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

DMA Controller
PSC1000 MICROPROCESSOR

105

Memory and Device Addressing
Addresses used for I/O channel transfers contain both
the I/O device address and the memory address. By
convention, the uppermost address bits (when A31 is
set) select I/O device addresses, while the lower
address bits select the memory source/destination for
the transfer. Multi-cycle transfer operations (e.g.,
transferring between a byte device and cell memory)
assume A31 is part of the external I/O-device address
decode and pass/clear A31 to select/deselect the I/O
device as required during the bus transaction. See I/O
Addressing, page 158, and I/O-Channel Transfers,
page 159.

1024-byte memory page boundaries have special
significance to I/O channel transfers. When each I/O-
channel bus transaction completes, bits 15–2 of the
memory address in the global register are incremented.
The new address is evaluated to determine if the last
location in a 1024-byte memory page was just
transferred (by detecting that bits 9–2 are now zero).
When the last location in a 1024-byte memory page
was just transferred, an MPU interrupt can be re-
quested or DMA can be disabled. See Interrupts and
Terminating DMA I/O-Channel Transfers, below.

Interrupts
An MPU interrupt can be requested after an I/O
channel transfer accesses the last location in a 1024-
byte memory page. The interrupt requested is the same
as the I/O-channel number, and occurs if interrupts are
enabled on that channel (i.e., if bit zero of the
corresponding global register is set). See Figure 16,
and Interrupt Controller, page 107. This allows, for
example, the MPU to be notified that a transfer has
completed (by aligning the end of a transfer memory
area with the end of a 1024-byte memory page), or to
inform the MPU of progress during long transfers.

Note that for the interrupt to be serviced, the MPU
must obtain the bus for sufficient time to execute the
ISR. If the VPU does not execute delay, or continu-
ous DMA transfers occur, the MPU will be unable to
get the bus.

Bus Transaction Types
The type of bus transaction performed with an I/O
device depends on whether the memory group
involved is cell-wide or byte-wide and the whether the
device is a one-byte byte-transfer, four-byte byte-
transfer, or one-cell cell-transfer device. See I/O-
Channel Transfers, page 159.

Device Access Timing
Any I/O device accessed during an I/O-channel
transfer must complete the transfer by the end of the
programmed bus cycle. Wait states are not available.
Since I/O devices generally have longer access times
than memory, during an I/O-channel bus cycle the
programmed bus timing for the accessed memory
group is modified by substituting ioXebt for the
corresponding value in mgXebt. Note that ioXebt
must be adequate both for the I/O device and for any
memory group involved in the transfer. See Program-
mable Memory Interface, page 117.

Maximum Bandwidth Transfers
When the external input source for ioin is &I&N[7:0],
maximum-bandwidth, back-to-back DMA transfers are
possible. To achieve this, at the end of the DMA bus
transaction an internal circuit bypasses the input
sampling circuitry to check the DMA request bit
directly on &I&N[7:0]; if the signal is low and no
higher-priority requests are pending, another DMA bus
request occurs immediately without the usual sam-
pling and prioritization delays. This requires that the
external DMA hardware ensure the bit is valid at this
time. See Figure 80, page 217. If the remaining bus
slot is large enough, the DMA bus request is granted,
and the transfer starts immediately. To terminate back-
to-back DMA bus transactions, the DMA request input
must go high before the end of the current DMA bus
transaction, or the corresponding DMA enable bit
must be cleared. See Terminating DMA I/O-Channel
Transfers, below. The maximum possible transfer rate
is four bytes every two CPU-clock cycles. For exam-
ple, with a 50-MHz 1X clock, the maximum transfer
rate is 200 MB/second.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

106

Terminating DMA I/O-Channel Transfers
DMA I/O channel bus transactions occur on an I/O
channel while DMA remains enabled and DMA
requests are received. To limit DMA transfers to a
specified number of transactions:
C program the DMA transfer address so that the last
data transfer desired occurs using the last location in
a 1024-byte memory page, and
C set the corresponding iodmaex bit.
When the above transaction completes, the DMA
enable bit in iodmae is cleared. If the transfer
interrupt is enabled in the global register for the
corresponding I/O channel, a corresponding MPU
interrupt is also requested.

If more than 1024 bytes are to be transferred, enable
the transfer interrupt for the I/O channel in the
corresponding global register. Program the interrupt
service routine to check the global register for the
next-to-last 1024-byte page, and, at that time, set the

corresponding iodmaex bit. When the last location
in the next 1024-byte page is transferred, the corre-
sponding bit in iodmae is cleared, disabling DMA on
that channel. Note that this assumes the bus is
available to the MPU to execute the ISR during the
DMA transfers.

Other Capabilities
The DMAC can also be used to count events, and to
interrupt the MPU when a given count is reached. To
do this, events are designed to produce a normal DMA
memory read request, and the resulting transfer cycle
increments the “address” in the corresponding global
register. This “address” becomes the event counter.
The MPU can also examine the register at any time to
determine how many events have occurred. To
interrupt the MPU after a given event count, program
the global register for a negative count value within
bits 9–2, and enable the page-boundary interrupt. The
MPU is interrupted when the counter reaches zero.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Interrupt Controller
PSC1000 MICROPROCESSOR

107

Interrupt Controller

ioXie_i

zero-persist
 INx ioXin_i

Bit Inputs

D Q

CLR

CLK

ioXip_i

D Q

CLK

ioXius_i

Prioritizer

VPU
int x

MIF
transfer interrupt x

global int
enable

reti

int ack

int req
int #

CPU-clock

MPU

8

8

8

8

3

intcblk.wpg

Q

MPU on-chip register R/W capability not depicted

1 of 8

Figure 17. INTC Block Diagram

Interrupt # Interrupt Source

X
ioin bit X
I/O channel X (register g(8+X))
VPU instruction int X

Table 46. Sources of Interrupts

An interrupt controller (INTC) allows multiple external
or internal requests to gain, in an orderly and priori-
tized manner, the attention of the MPU. The INTC
supports up to eight prioritized interrupt requests from
twenty-four sources. Interrupts are received from the
bit inputs through ioin, from I/O-channel transfers,
or from the VPU interrupt instruction int.

Resources
The INTC consists of several registers and associated
control logic. Interrupt zero, which corresponds to bit
zero of the registers, has the highest priority; interrupt
seven, which corresponds to bit seven of the registers,
has the lowest priority. The INTC and related registers
include:
C Bit input register, ioin: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.
C Interrupt enable register, ioie: indicates which
ioin bits are to be recognized as interrupt requests.
See Figure 30, page 135.

C Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 27, page 132.
C Interrupt under service register, ioius: indicates
which interrupts are currently being serviced. See
Figure 28, page 133.
C Global registers g8 through g15: contain I/O-
channel transfer specifications. Transfer specifications
consist of device and memory transfer addresses and
control bits. Bit zero enables interrupts during I/O-
channel transfers on the corresponding channel. See
Figure 16, page 104.
C DMA enable register, iodmae: indicates which
ioin bits are to be recognized as DMA requests. If
DMA is enabled on an ioin bit, interrupt enable by
ioie on that bit is ignored. See Figure 31, page 136.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

108

Operation
Each interrupt request is shared by three sources. A
request can arrive from a zero bit in ioin (typically
from an external input low), from an I/O-channel
transfer interrupt, or from the VPU instruction int.
Interrupt request zero comes from ioin bit zero, I/O
channel zero (using g8), or int 0; interrupt request
one comes from ioin bit one, I/O channel one (using
g9), or int 1; the other interrupt requests are
similarly assigned. See Table 46. Application usage
typically designates only one source for an interrupt
request, though this is not required.

Associated with each of the eight interrupt requests is
an interrupt service routine (ISR) executable-code
vector located in external memory. See Figure 5, page
16. A single ISR executable-code vector for a given
interrupt request is used for all requests on that
interrupt. It is programmed to contain executable
code, typically a branch to the ISR. When more than
one source is possible, the current source might be
determined by examining associated bits in ioin,
ioie, iodmae and the global registers.

Interrupt Request Servicing
When an interrupt request from any source occurs, the
corresponding bit in ioip is set, and the interrupt
request is now a pending interrupt. Pending interrupts
are prioritized each CPU-clock cycle. The
interrupt_en bit in mode holds the current global
interrupt enable state. It can be set with the MPU
enable-interrupt instruction, ei; cleared with the
disable-interrupt instruction, di; or changed by
modifying mode. Globally disabling interrupts allows
all interrupt requests to reach ioip, but prevents the
pending interrupts in ioip from being serviced.

When interrupts are enabled, interrupts are recognized
by the MPU between instruction groups, just before
the execution of the first instruction in the group. This
allows short, atomic, uninterruptable instruction
sequences to be written easily without having to save,
restore, and manipulate the interrupt state. The stack
architecture allows interrupt service routines to be
executed without requiring registers to be explicitly
saved, and the stack caches minimize the memory

accesses required when making additional register
resources available.

If interrupts are globally enabled and the highest-
priority ioip bit has a higher priority than the highest-
priority ioius bit, the highest-priority ioip bit is
cleared, the corresponding ioius bit is set, and the
MPU is interrupted just before the next execution of
the first instruction in an instruction group. This nests
the interrupt servicing, and the pending interrupt is
now the current interrupt under service. The ioip bits
are not considered for interrupt servicing while
interrupts are globally disabled, or while none of the
ioip bits has a higher priority than the highest-priority
ioius bit.

Unless software modifies ioius, the current interrupt
under service is represented by the highest-priority
ioius bit currently set. reti is used at the end of
ISRs to clear the highest-priority ioius bit that is set
and to return to the interrupted program. If the
interrupted program was a lower-priority interrupt
service routine, this effectively “unnests” the interrupt
servicing.

External Interrupts
An ioin bit is configured as an “external” interrupt
request source if the corresponding ioie bit is set and
the corresponding iodmae bit is clear. Once a zero
reaches ioin, it is available to request an interrupt.
An interrupt request is forced in software by clearing
the corresponding ioin bit or by setting the corre-
sponding ioip bit. Individually disabling an interrupt
request by clearing its ioie bit prevents a correspond-
ing zero bit in ioin from being recognized as an
external interrupt request, but does not affect a
corresponding interrupt request from another source.

While an interrupt request is being processed, until its
ISR terminates by executing reti, the corresponding
ioin bit is not zero-persistent and follows the
sampled level of the external input pin. Specifically,
for a given interrupt request, while its ioie bit is set,
and its ioip bit or ioius bit is set, its ioin bit is not
zero-persistent. This effect can be used to disable
zero-persistent behavior on non-interrupting bits.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Interrupt Controller
PSC1000 MICROPROCESSOR

109

; Interrupt Vectors

.quad 4

.text vectors ; org 0x100 set in linker

br int_0_ISR ; highest-priority ISR
br int_1_ISR
...
br int_7_ISR ; lowest-priority ISR
...

.text ISRs ; org set in linker file

int_0_ISR::
push mode ; save carry
; This ISR can’t be interrupted because int 0
; has the highest priority.
...
pop mode ; restore carry
reti
...

int_A_ISR::
push mode ; save carry
...
; This ISR can be interrupted by a higher
; priority interrupt.
pop mode
reti
...

int_B_ISR::
push mode ; save carry & ei state
di
...
; Don’t allow this ISR to be interrupted at all.
...
; ensure return before interrupts re-enabled
.quad 2
pop mode
reti
...

int_C_ISR::
push mode ; save carry & ei state
pop lstack ; place accessible
di
; Don’t allow this critical part of the ISR to be
; interrupted.
...
push r0
pop mode ; restore ei state
...
; ISR can be interrupted by higher-priority
; interrupts now
...
push lstack
pop mode ; restore carry
reti
...

Table 47. Code Example: ISR VectorsFor waveforms, see Figure 82, page 219, and Figure
83, page 221.

I/O-Channel Transfer Interrupts
If an ioin bit is configured as a DMA request, or if
that I/O channel is used by xfer, interrupt requests
occur after a transfer involving the last location in a
1024-byte memory page, provided bit zero in the
corresponding global register is set (i.e., transfer
interrupts are enabled). The request occurs by the
corresponding ioip bit being set, and is thus not
disabled by clearing the corresponding ioie bit. See
Direct Memory Access Controller, page 103, and
Virtual Peripheral Unit, page 89.

VPU int Interrupts
The VPU can also directly request any of the eight
available interrupts by executing int. The request
occurs by the corresponding ioip bit being set, and
is thus not disabled by clearing the corresponding
ioie bit. The MPU is able to respond to the interrupt
request when the VPU next executes delay. VPU
interrupts are disabled by modifying the VPU instruc-
tions in memory to remove the instruction int.

ISR Processing
When an interrupt request is recognized by the MPU,
a call to the corresponding ISR executable-code
vector is performed, and interrupts are blocked until
an instruction that begins in byte one of an instruction
group is executed. To service an interrupt without
being interrupted by a higher-priority interrupt:
C the ISR executable-code vector typically contains
a four-byte branch, and
C the first instruction group of the interrupt service
routine must globally disable interrupts.
See the code example in Table 47.

If interrupts are left globally enabled during ISR
processing, a higher-priority interrupt can interrupt the
MPU during processing of the current ISR. This allows
devices with more immediate servicing requirements
to be serviced promptly even when frequent interrupts
at many priority levels are occurring.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

110

Note that there is a delay of one CPU-clock cycle
between the execution of ei, di, or pop mode and
the change in the global interrupt enable state taking
effect. To ensure the global interrupt enable state
change takes effect before byte zero of the next
instruction group, the state-changing instruction must
not be the last instruction in the current instruction
group.

If the global interrupt enable state is to be changed by
the ISR, the prior global interrupt enable state can be
saved with push mode and restored with pop mode
within the ISR. Usually a pop mode, reti sequence
is placed in the same instruction group at the end of
the ISR to ensure that reti is executed, and the local-
register stack unnests, before another interrupt is

serviced. Since the return address from an ISR is
always to byte zero of an instruction group (because
of the way interrupts are recognized), another interrupt
can be serviced immediately after execution of reti.
See the code example in Table 47.

As described above for processing ISR executable-
code vectors, interrupt requests are similarly blocked
during the execution of all traps. This allows software
to prevent, for example, further data from being
pushed on the local-register stack due to interrupts
during the servicing of a local-register-stack overflow
exception. When resolving concurrent trap and
interrupt requests, interrupts have the lowest priority.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bit Inputs
PSC1000 MICROPROCESSOR

111

Bit Inputs

inpblk.wpg

÷ 4

AD
Sample
Clock

A/B

A

B

Q

B

A

A/B

Q D Q

CLK

D Q

CLK

D Q

CLK

zero-persist INx
bypass sample INx

DMA

zero-persist INx

INTC

write INx

MPU
CAS

RAS

ADx

INx ioXin_i

VPU
set INx

Zero-
Persistence

Control

pkgio

CPU-clock

1 of 8

Figure 18. Bit Input Block Diagram

Eight external bit inputs are available in bit input
register ioin. They are shared for use as interrupt
requests, as DMA requests, as input to the VPU
instruction tskipz, and as bit inputs for general use
by the MPU. They are sampled externally from one of
two sources determined by the state of pkgio.

Resources
The bit inputs consist of several registers, package
pins, and associated input sampling circuitry. These
resources include:
C Bit input register, ioin: bit inputs configured as
DMA or interrupt requests, or general bit inputs. See
Figure 26, page 131.
C Interrupt enable register, ioie: indicates which
ioin bits are to be recognized as interrupt requests.
See Figure 30, page 135.

C Interrupt pending register, ioip: indicates which
interrupts have been recognized, but are waiting to be
prioritized and serviced. See Figure 27, page 132.
C Interrupt under service register, ioius: indicates
which interrupts are currently being serviced. See
Figure 28, page 133.
C DMA enable register, iodmae: indicates which
ioin bits are to be recognized as DMA requests for
the corresponding I/O channels. If DMA is enabled on
an ioin bit, interrupt enable by ioie on that bit is
ignored. See Figure 31, page 136.
C Package I/O pins bit, pkgio, in register miscella-
neous B, miscb: selects whether the bit inputs are
sampled from the dedicated inputs &I&N[7:0] or
multiplexed off AD[7:0]. See Figure 34, page 140.

Input Sources and Sampling
If pkgio is clear, the bit inputs are sampled from
AD[7:0] while &R&A&S is low and &C&A&S is high. External

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

112

hardware must place the bit inputs on AD[7:0] and
remove them at the appropriate time. Using AD[7:0]
for bit inputs can reduce PWB area and cost compared
with using &I&N[7:0]. AD[7:0] are sampled for input:
C while &C&A&S is high, four CPU-clock cycles after

&R&A&S transitions low,
C every four CPU-clock cycles while &C&A&S remains

high,
C immediately before &C&A&S transitions low if at least

four CPU-clock cycles have elapsed since the last
sample, and

C four CPU-clock cycles after &C&A&S transitions high,
provided &C&A&S is still high.

This ensures:
C time for external hardware to place data on the

bus before sampling,
C continuous sampling while &C&A&S is high, and
C at least one sample every &C&A&S bus cycle when

four CPU-clocks have elapsed since the last
sample.

To ensure sampling in a given state, an input bit must
be valid at the designated sample times or remain low
for a worst-case sample interval, which, as described
above, depends on the programmed bus timing and
activity. See Figure 83, page 221, for waveforms.

If pkgio is set, the bit inputs are sampled from
&I&N[7:0] every four CPU-clock cycles. To ensure
sampling in a given state, a bit input must be valid for
just more than four CPU-clock cycles. See Figure 82,
page 219, for waveforms.

All asynchronously sampled signals are susceptible to
metastable conditions. To reduce the possibility of
metastable conditions resulting from the sampling of
the bit inputs, they are held for four CPU-clock cycles
to resolve to a valid logic level before being made
available to ioin and thus for use within the CPU.
The worst-case sampling delay for bit inputs taken
from AD[7:0] to reach ioin depends on the bus
cycle times. The worst-case sampling delay for bit
inputs from &I&N[7:0] to reach ioin is eight CPU-
clock cycles. The sample delay causes bit-input
consumers not to detect an external signal change for
the specified period.

The bit inputs reaching ioin are normally zero-
persistent. That is, once an ioin bit is zero, it stays
zero regardless of the bit state at subsequent samplings
until the bit is “consumed” and released, or is written
with a one by the MPU. Zero-persistent bits have the
advantage of both edge-sensitive and level-sensitive
inputs, without the noise susceptibility and non-
shareability of edge-sensitive inputs. Under certain
conditions during DMA request servicing and ioin
interrupt servicing, the ioin bits are not zero-
persistent. See DMA Usage and Interrupt Usage
below. An effect of the INTC can be used to disable
zero-persistent behavior on the bits. See General-
Purpose Bits below.

DMA Usage
An ioin bit is configured as a DMA request source
when its corresponding iodmae bit is set. After the
DMA bus transaction begins, the ioin bit is con-
sumed.

When the external input source for ioin is &I&N[7:0],
maximum-bandwidth back-to-back DMA transfers are
possible. To achieve this, an internal circuit bypasses
the sampling and zero-persistence circuitry to check
the DMA request bit on &I&N[7:0] at the end of the
DMA bus transaction without the usual sampling and
prioritization delays. See Maximum Bandwidth
Transfers, page 105.

Interrupt Usage
An ioin bit is configured as an interrupt request
source when the corresponding ioie bit is set and the
corresponding iodmae bit is clear. While an interrupt
request is being processed, until its ISR terminates by
executing reti, the corresponding ioin bit is not
zero-persistent and follows the sampled level of the
external input. Specifically, for a given interrupt
request, while its ioie bit is set, and its ioip bit or
ioius bit is set, its ioin bit is not zero-persistent.
This effect can be used to disable zero-persistent
behavior on non-interrupting bits (see below).

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bit Inputs
PSC1000 MICROPROCESSOR

113

; Disable zero-persistence for bit input 7
push.n #-1 ; true flag

push.b #io7ius_i
sto.i [] ; set under service bit

push.b #io7ie_i
sto.i [] ; enable interrupt
pop ; discard flag
...

Table 48. Code Example: Bit Input Without Zero-
Persistence

; Force service on bit 5 (Interrupt or DMA, as
; configured)

push.n #0 ; false flag

push.n #io5in_i
sto.i [] ; clear input bit
pop ; discard flag
...

; Read last sampled state of zero-persistent bit
; inputs. (Assumes all bits are configured as
; zero-persistent).

push.n #-1 ; all ones for all bits

push.n #ioin
sto [] ; temporarily remove

; persistence, latest
; sample latches,

pop ; discard -1

push.n #ioin
ldo [] ; get last sample
...

Table 49. Code Example: MPU Usage of Bit Inputs

General-Purpose Bits
If an ioin bit is configured neither for interrupt
requests nor for DMA requests, then it is a zero-
persistent general-purpose ioin bit. Alternatively, by
using an effect of the INTC, general-purpose ioin bits
can be configured without zero-persistence. Any bits
so configured should be the lowest-priority ioin bits
to prevent blocking a lower-priority interrupt. They are
configured by setting their ioie and ioius bits. The
ioius bit prevents the ioin bit from zero-persisting
and from being prioritized and causing an interrupt
request. See the code example in Table 48.

VPU Usage
An ioin bit are used as input to tskipz. This
instruction reads, tests, and consumes the bit. The
ioin bits cannot be written by the VPU. General-
purpose ioin bits are typically used for tskipz, but
there are no hardware restrictions on usage.

MPU Usage
Bits in ioin are read and written by the MPU as a
group with ldo [ioin] and sto [ioin], or are
read and written individually with ldo.i
[ioXin_i] and sto.i [ioXin_i]. Writing zero
bits to ioin has the same effect as though the external
bit inputs had transitioned low for one sampling cycle,
except that there is no sampling delay. This allows
software to simulate events such as external interrupt
or DMA requests. Writing one bits to ioin, unlike
data from external inputs when the bits are zero-

persistent, releases persisting zeros to accept the
current sample. The written data is available immedi-
ately after the write completes. The MPU can read
ioin at any time, without regard to the designations
of the ioin bits, and with no effect on the state of the
bits. The MPU does not consume the state of ioin
bits during reads. See the code examples in Table 49.

To perform a “real-time” external-bit-input read on
zero-persistent bits, ones bits are written to the bits of
interest in ioin before reading ioin. This releases
any persisting zeros, latches the most recently resolved
sample, and reads that value. Bits that are not config-
ured as zero-persistent do not require this write. Note
that any value read can be as much as two worst-case
sample delays old. To read the values currently on the
external inputs requires waiting two worst-case sample
delays for the values to reach ioin. See the code
example in Table 50.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

114

; Read current state of zero-persistent input pins.
; (Assumes pkgio is set, and bits are zero-persistent)

; Assume we just tickled a device and we want to
; see if it just responded, but we have the bits
; configured as zero-persistent. The sample interval
; of four CPU-clock cycles and the sample holding
; delay of four CPU-clock cycles means there is a
; worst-case delay of eight CPU-clock cycles before
; the data is available in ioin. So...

; Put programming to tickle device here...

nop ; wait the delay time
nop
nop
nop
nop
nop ; 6 here, two below

; Read last sampled state of all zero-persistent
; bit inputs (Assumes all bits are configured as
; zero-persistent)

push.n #-1 ; all ones for all bits (7)

push.n #ioin ; (CPU-clock cycle # 8)
; ...data is now available
; to ioin.

sto [] ; Temporarily remove
; persistence, latest
; sample latches,

pop ; discard -1

push.n #ioin
ldo [] ; get last sample
...

Table 50. Code Example: MPU “Real-Time” Bit Input
Read

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

115

Bit Outputs

ioout

A

B
QA/B

drivers

outdrv addrv

32

8 8

88

8

MIF AD[7:0]

OUT[7:0]

AD[7:0]RAS

outblk.wpg

MIF Control

Figure 19. Bit Outputs Block Diagram

Eight general-purpose bit outputs can be set high or
low by either the MPU or the VPU. The bits are
available in the bit output register, ioout.

Resources
The bit outputs consist of a register, package pins, and
associated circuitry. These resources include:
C Bit output register, ioout: bits that were last
written by either the MPU or the VPU. See Figure 29,
page 134.
C Outputs, OUT[7:0]: the dedicated output pins.
C Address Data bus, AD[7:0]: multiplexed bit
outputs on these pins while &R&A&S is high.
C Output pin driver current bits, outdrv, in driver
current register, driver: sets the drive capability of
OUT[7:0]. See Figure 50, page 154.

Usage
The bits are read and written by the MPU as a group
with ldo [ioout] and sto [ioout], or are read
and written individually with ldo.i [ioXout_i]
and sto.i [ioXout_i].

The bit outputs are written individually by the VPU
with outt and outf. The bit outputs cannot be read
by the VPU.

When written, the new values are available immedi-
ately after the write completes. Note that if both the
MPU and VPU write the same bit during the same
CPU-clock cycle, any one bit written prevails.

The bits are always available on OUT[7:0], and on
AD[7:0] when &R&A&S is high. When sampled from
AD[7:0], external hardware is required to latch the
bits when &R&A&S falls. Note that (by definition) these
bits are only updated when a RAS cycle occurs. Using
AD[7:0] for output can reduce PWB area and cost
compared to using OUT[7:0]. See Figure 81, page
218, for waveforms.

The drive capability of OUT[7:0] can be pro-
grammed in driver.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

116

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

117

Programmable Memory Interface

The Programmable Memory Interface (MIF) allows the
timing and behavior of the CPU bus interface to be
adapted to the requirements of peripheral devices with
minimal external logic, thus reducing system cost
while maintaining performance. A variety of memory
devices are supported, including EPROM, SRAM,
DRAM and VRAM, as well as a variety of I/O devices.
All operations on the bus are directed by the MIF.
Most aspects of the bus interface are programmable,
including address setup and hold times, data setup and
hold times, output buffer enable and disable times,
write enable activation times, memory cycle times,
DRAM-type device address multiplexing, and when
DRAM-type RAS cycles occur. Additional specifica-
tions are available for I/O devices, including data
setup and hold times, output buffer enable and disable
times, and device transfer type (one-byte, four-byte or
one-cell).

Resources
The MIF consists of several registers, package pins,
and associated control logic. These resources include:
C VRAM control bit register, vram: controls &O&E ,
&L&W&E , CASes, RASes, and DSF to initiate special VRAM
operations. See Figure 32, page 137.
C Miscellaneous A register, misca: controls refresh
and RAS-cycle generation. See Figure 33, page 139.
C Miscellaneous B register, miscb: selects each
memory group data width (cell-wide or byte-wide),
and the memory bank-select architecture. See Figure
34, page 140.
C Memory system group-select mask register,
msgsm: indicates which address bits are decoded to
select groups of memory devices. See Figure 37, page
143.
C Memory group device size register, mgds:
indicates the size and configuration of memory
devices for each memory group. See Figure 38, page
144.
C Miscellaneous C register, miscc: controls RAS-
cycle generation and the location of bank-select
address bits for SRAM memory groups. See Figure 39,
page 145.
C Memory group X extended bus timing register,
mgXebt: indicates memory-cycle expansion or

extension values, which create longer data setup and
hold times and output buffer enable and disable times
for the memory devices in the corresponding memory
group. See Figure 40, page 146.
C Memory group X CAS bus timing register,
mgXcasbt: indicates the unexpanded and unextend-
ed address and data strobe activation times for the
CAS portion of a bus cycle. See Figure 41, page 147.
C Memory group X RAS bus timing register,
mgXrasbt: indicates the RAS precharge and address
hold times to be prepended to the CAS part of a bus
cycle to create a RAS cycle. See Figure 42, page 149.
C I/O channel X extended bus timing register,
ioXebt: indicates memory cycle expansion or
extension values, which create longer data setup and
hold times and output buffer enable and disable times
for the I/O device on the corresponding I/O channel.
See Figure 43, page 150.
C Memory system refresh address, msra: indicates
the row address to be used during the next DRAM
refresh cycle. See Figure 44, page 151.
C I/O device transfer types A register, iodtta:
indicates the type of transfer for each of I/O channels
0, 1, 2 and 3. See Figure 46, page 152.
C I/O device transfer types B register, iodttb:
indicates the type of transfer for each of I/O channels
4, 5, 6 and 7. See Figure 47, page 152.
C Driver current register, driver: indicates the
relative drive current of the various output drivers. See
Figure 50, page 154.

Memory System Architecture
The MIF supports direct connection to a variety of
memory and peripheral devices. The primary require-
ment is that the device access time be deterministic;
wait states are not available because they create non-
deterministic timing for the VPU. The MIF directly
supports a wide range of sizes for multiplexed-address
devices (DRAM, VRAM, etc.) up to 128 MB, as well
as sizes for demultiplexed-address devices (SRAM,
EPROM, etc.) up to 1 MB. Fast-page mode access and
RAS-only refresh to DRAM-type devices are sup-
ported. SRAM-type devices appear to the MIF as
DRAM with no RAS address bits and a large number
of CAS address bits. See Figure 38, page 144.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

118

31 0

gsbsbits.wpg

RAS Address Bits4,6Middle Address Bits5,8High Address Bits7

group-select and bank-select address bits1,3,5

31 0

RAS Address Bits4,6Middle Address Bits5,8High Address Bits7

group-select address bits1,5

bank-select address bits2

Notes
1. Located by bits in msgsm. 5. Excluded from RAS-cycle determination, except
2. DRAM—2 bits immediately above the RAS address bits. for A31 (see note 7).

SRAM—2 bits located by mssbs in miscc. 6. Included in RAS-cycle determination.
3. SRAM and DRAM. 7. Optionally included in RAS-cycle determination.
4. DRAM only, field is zero length in SRAM. 8. If msgsm is zero, see text.

SMB — Single Memory Bank per Memory Group Mode

MMB — Multiple Memory Bank per Memory Goup Mode

CAS Address Bits5

CAS Address Bits5

Figure 20. Group-Select and Bank-Select Bit Locations

RAS

CAS
Group 0

Group 1

Group 2

Group 3

RAS0

CAS0

PSC1000 CPU

smbarch.wpg

RAS

CAS

RAS1

CAS1

RAS

CAS

RAS2

CAS2

RAS

CAS

RAS3

CAS3

Figure 21. SMB Memory Architecture

Address bits are multiplexed out of the CPU on AD[31:9]
to reduce package pin count. DRAM-type devices collect
the entire memory address in two pieces, referred to as the
row address (upper address bits) and column address
(lower address bits). Their associated bus cycles are
referred to as Row Address Strobe (RAS) cycles and
Column Address Strobe (CAS) cycles. With the exception
of memory faults, refresh, and CAS-before-RAS VRAM
cycles, a RAS cycle contains, enclosed within the &R&A&S
active period, a CAS cycle. Thus, RAS cycles are longer
than CAS cycles. While RAS cycles are not required for
the operation of SRAM-type devices, RAS cycles can
occur for several reasons which are discussed below.

Though I/O devices can be addressed like memory for
access by the MPU, I/O-channel transfers require
addressing an I/O device and a memory location
simultaneously. This is achieved by splitting the
available 32 address bits into two areas: the lower
address bits, which address memory, and the higher
address bits, which address I/O devices. The location

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

119

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS

RAS

CAS3

CAS2

CAS1

CAS0

MGS3

MGS2

MGS1

MGS0

RAS

Group 0 Group 1 Group 2 Group 3

Bank 3

Bank 2

Bank 1

Bank 0

mmbarch.wpg

PSC1000 CPU

Figure 22. MMB Memory Architecture

of the split depends upon application requirements for
the quantity of addressable memory and I/O devices
installed. The areas can overlap, if required, with the
side effect that an I/O device can only transfer data
with a corresponding area of memory. These higher
address bits are discussed below.

Memory Groups
The MIF operates up to four memory groups, main-
taining for each the most recent RAS address bits and
a unique configuration. Up to two address bits are
decoded to determine the current group. The address
bits for this function are set in the memory system

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

120

group-select mask register, msgsm. Each memory
group is programmed for device width, bus timing,
and device size (which specifies how address bits are
multiplexed onto AD[31:9]). Address bits below the
group-select mask are typically used to address
memory devices or portions of an I/O device, and bits
above the group-select mask are typically used to
address I/O devices.

Memory Banks
Each memory group can have one or more memory
banks, which are selected in a manner dependent
upon the bus interface mode. All memory banks
within a memory group share the configuration and
most recent RAS address of that group. Two address
bits are decoded to determine the current memory
bank.

In Single Memory Bank (SMB) mode (mmb = 0), msgsm
sets the group-select and bank-select bits to be the
same bits. This allows up to four groups at one bank
per group, totaling four banks: group 0, bank 0; group
1, bank 1; group 2, bank 2; and group 3, bank 3.
&M&G&S&x /&R&A&S&x output &R&A&S&x signals for direct connec-
tion to memory devices. See Figure 21.

In Multiple Memory Bank (MMB) mode (mmb = 1),
depending on whether msgsm overlaps the bank-select
bits, one, two or four banks can be selected in each
group. This allows up to sixteen banks for all groups
combined; more banks can be decoded by defining
additional bank-select bits with external logic. The
address bits that select the current memory bank either
are located immediately above the row-address bits
for DRAM devices (mgXds values 0–0x0e), or are
specified by the mssbs bits for all SRAM devices in
the system (mgXds value 0x0f). The group-select bits
determine the &M&G&S&x /&R&A&S&x (which output the &M&G&S&x
signal), and the bank-select bits determine the &C&A&S&x
that activates in any given bus cycle. See Figure 20.
Gating the four &M&G&S&x signals with the four &C&A&S&x
signals creates up to sixteen memory bank selects. See
Figure 22.

A hybrid of the two modes can also be programmed
by selecting MMB mode and placing the msgsm bits
overlapping the banks bits. This allows using &M&G&S&x

directly as a faster chip select for SRAM-type devices
than &C&A&S&x is in SMB mode. For DRAM-type devices,
the &C&A&S&x strobes can be connected directly to the
memory device and only one NOR gate per group is
required to create the RAS for that group.

Device Requirements Programming
Each memory group can be programmed with a
unique configuration of device width, device size, and
bus timing. After a CPU reset, the system operates in
byte-wide mode, with the slowest possible bus timing,
and executes from memory group zero, typically from
an external PROM. See Processor Startup, page 181.
Usually, the program code in the PROM initially
executes code to determine and set the proper
configurations for the memory groups, I/O devices,
and other requirements of the system.

Device Sizes
Memory device sizes are programmed to one of
sixteen settings in mgds. Most currently available and
soon to be available DRAM-type device sizes can be
selected, as well as an SRAM-type option. The
selection of the device size and width determines the
arrangement of the address bits on AD[31:9]. See
Table 51, page 122, and Table 52, page 123.

For DRAM, during both RAS and CAS cycles, some or
all of the high address bits are on AD above those AD
used for the RAS and CAS address bits. These high
address bits can be used by the application, e.g., for
decoding by external hardware to select I/O devices.
On high-performance systems with fast CAS cycles,
RAS cycles are often required for I/O address decod-
ing. If the external decoding hardware is sufficiently
fast, however, CAS-cycle I/O is possible.

For SRAM, to allow addressing as much memory as
possible with CAS cycles, the only high address bit that
appears during CAS address time is A31. I/O devices
can still be selected on CAS cycles by translating the
device addressing bits in software to lower address bits,
provided that these translated bits do not interfere with
the desired SRAM memory addressing. The device
addressing bits must be translated to those address bits
that appear during SRAM access on the AD that are
externally decoded for I/O addressing.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

121

Device Width
Memory device widths are either 8-bits (byte) or 32-
bits (cell), and are programmed using mgXds in
miscb.

As shown in Table 51, cell-wide memory groups do
not use A1 or A0 to address the memory device. All
accesses to cell-wide devices are cell-aligned and
transfer the entire cell. Memory device address lines
are attached to the CPU on AD[x:11] (x is deter-
mined by the device size).

Accesses to a byte-wide memory group are also cell-
aligned and transfer all four bytes within the cell, from
most significant to least significant (i.e., 0, 1 ,2, 3). The
only exception is for an I/O-channel transfer with a
one-byte byte-transfer device, in which case only one

arbitrarily addressed byte is transferred. See Bus
Operation, page 157.

As shown in Table 52, byte-wide memory devices
require the use of A1 and A0. Since for DRAM the RAS
and CAS memory device address bits must be on the
same AD, the address lines (except A31) are internally
rotated left two bits. This properly places A0 on AD11
for connection to DRAM. This also means, however,
that the high address bits used for I/O address decod-
ing appear on AD differently for a byte-wide memory
group than for a cell-wide memory group. Since I/O
device address decoding hardware is wired to fixed
AD, the address bits used to access a device are
different when transferring data with a byte-wide
memory device than when transferring data with a
cell-wide memory device.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

122

Device
Size

0,1 0 1 2,3 2 3
4,5,

6
4 5 6

7,8,
9

7 8 9
10,
11,
12

10 11 12
13,
14

13 14 15

64,
128
K

64K
128
K

256,
512
K

256
K

512
K

1,
2,4
M

1M 2M 4M

4,
8,16

M
4M 8M 16M

16,
32,6
4M 16M 32M 64M

64,
128
M 64M

128
M SRAM

C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS

#BITS1 8 8 9 9 9 10 10 10 11 12 11 11 12 13 12 12 13 14 13 13 14 n/a n/a

AD9 A0

AD10 A1

AD11 A2 A10 A10 A2 A11 A11 A2 A12 A12 A12 A2 A13 A13 A13 A2 A14 A14 A14 A2 A15 A15 A2 A11

AD12 A3 A11 A11 A3 A12 A12 A3 A13 A13 A13 A3 A14 A14 A14 A3 A15 A15 A15 A3 A16 A16 A3 A12

AD13 A4 A12 A12 A4 A13 A13 A4 A14 A14 A14 A4 A15 A15 A15 A4 A16 A16 A16 A4 A17 A17 A4 A13

AD14 A5 A13 A13 A5 A14 A14 A5 A15 A15 A15 A5 A16 A16 A16 A5 A17 A17 A17 A5 A18 A18 A5 A14

AD15 A6 A14 A14 A6 A15 A15 A6 A16 A16 A16 A6 A17 A17 A17 A6 A18 A18 A18 A6 A19 A19 A6 A15

AD16 A7 A15 A15 A7 A16 A16 A7 A17 A17 A17 A7 A18 A18 A18 A7 A19 A19 A19 A7 A20 A20 A7 A16

AD17 A8 A16 A16 A8 A17 A17 A8 A18 A18 A18 A8 A19 A19 A19 A8 A20 A20 A20 A8 A21 A21 A8 A17

AD18 A9 A17 A17 A9 A18 A18 A9 A19 A19 A19 A9 A20 A20 A20 A9 A21 A21 A21 A9 A22 A22 A9 A18

AD19 A18 A18 A18 A10 A19 A19 A10 A20 A20 A20 A10 A21 A21 A21 A10 A22 A22 A22 A10 A23 A23 A10 A19

AD20 A19 A19 A19 A20 A20 A20 A11 A21 A21 A21 A11 A22 A22 A22 A11 A23 A23 A23 A11 A24 A24 A11 A20

AD21 A20 A20 A20 A21 A21 A21 A21 A21 A22 A22 A12 A23 A23 A23 A12 A24 A24 A24 A12 A25 A25 A12 A21

AD22 A21 A21 A21 A22 A22 A22 A22 A22 A22 A23 A22 A22 A24 A24 A13 A25 A25 A25 A13 A26 A26 A13 A22

AD23 A22 A22 A22 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A25 A23 A23 A26 A26 A14 A27 A27 A14 A23

AD24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A24 A27 A24 A24 A28 A15 A24

AD25 A16 A25

AD26 A17 A26

AD27 A18 A27

AD28 A19 A28

AD29 A20 A29

AD30 A21 A30

AD31 A31

Notes: 1. #BITS is the number of CAS or RAS address bits for the specified device size.

 Location of DRAM CAS or RAS address bits for the specified device size.

 Location of bank-select bits in MMB mode for the specified device size.

Table 51. RAS/CAS Address Line Configuration, Cell memory

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

123

Device
Size

0,1 0 1 2,3 2 3
4,5,

6
4 5 6

7,8,
9

7 8 9
10,
11,
12

10 11 12
13,
14

13 14 15

64,
128
K

64K
128
K

256,
512
K

256
K

512
K

1,
2,4
M

1M 2M 4M

4,
8,16

M
4M 8M 16M

16,
32,6
4M 16M 32M 64M

64,
128
M 64M

128
M SRAM

C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS
C
A
S

RAS

#BITS1 8 8 9 9 9 10 10 10 11 12 11 11 12 13 12 12 13 14 13 13 14 n/a n/a

AD9 A29

AD10 A30

AD11 A0 A8 A8 A0 A9 A9 A0 A10 A10 A10 A0 A11 A11 A11 A0 A12 A12 A12 A0 A13 A13 A0 A9

AD12 A1 A9 A9 A1 A10 A10 A1 A11 A11 A11 A1 A12 A12 A12 A1 A13 A13 A13 A1 A14 A14 A1 A10

AD13 A2 A10 A10 A2 A11 A11 A2 A12 A12 A12 A2 A13 A13 A13 A2 A14 A14 A14 A2 A15 A15 A2 A11

AD14 A3 A11 A11 A3 A12 A12 A3 A13 A13 A13 A3 A14 A14 A14 A3 A15 A15 A15 A3 A16 A16 A3 A12

AD15 A4 A12 A12 A4 A13 A13 A4 A14 A14 A14 A4 A15 A15 A15 A4 A16 A16 A16 A4 A17 A17 A4 A13

AD16 A5 A13 A13 A5 A14 A14 A5 A15 A15 A15 A5 A16 A16 A16 A5 A17 A17 A17 A5 A18 A18 A5 A14

AD17 A6 A14 A14 A6 A15 A15 A6 A16 A16 A16 A6 A17 A17 A17 A6 A18 A18 A18 A6 A19 A19 A6 A15

AD18 A7 A15 A15 A7 A16 A16 A7 A17 A17 A17 A7 A18 A18 A18 A7 A19 A19 A19 A7 A20 A20 A7 A16

AD19 A16 A16 A16 A8 A17 A17 A8 A18 A18 A18 A8 A19 A19 A19 A8 A20 A20 A20 A8 A21 A21 A8 A17

AD20 A17 A17 A17 A18 A18 A18 A9 A19 A19 A19 A9 A20 A20 A20 A9 A21 A21 A21 A9 A22 A22 A9 A18

AD21 A18 A18 A18 A19 A19 A19 A19 A19 A20 A20 A10 A21 A21 A21 A10 A22 A22 A22 A10 A23 A23 A10 A19

AD22 A19 A19 A19 A20 A20 A20 A20 A20 A20 A21 A20 A20 A22 A22 A11 A23 A23 A23 A11 A24 A24 A11 A20

AD23 A20 A20 A20 A21 A21 A21 A21 A21 A21 A21 A21 A21 A21 A23 A21 A21 A24 A24 A12 A25 A25 A12 A21

AD24 A21 A21 A21 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A22 A25 A13 A22 A26 A13 A22

AD25 A22 A22 A22 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A23 A14 A23 A23 A14 A23

AD26 A24 A15 A24

AD27 A25 A16 A25

AD28 A26 A17 A26

AD29 A27 A18 A27

AD30 A28 A19 A28

AD31 A31

Notes: 1. #BITS is the number of CAS or RAS address bits for the specified device size.

 Location of DRAM CAS or RAS address bits for the specified device size.

 Location of bank-select bits in MMB mode for the specified device size.

Table 52. RAS/CAS Address Line Configuration, Byte Memory

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

124

Programmable Timing
The timing for RAS and CAS cycles on each memory
group, as well as data setup and hold times for each
I/O channel, is programmable. Depending on the
parameter, timing granularity is in either CPU-clock
cycles or 2X-CPU-clock cycles. In some cases, timing
is specified in CPU-clock cycles with a modifier
available to advance the event by one 2X-CPU-clock
cycle.

In all cases, the hardware actually counts time in CPU-
clock cycle granules and then delays or advances the
signal transition by any 2X-CPU-clock granularity
timing specified. If the rate of the external clock is
changed during operation, 2X-CPU-clock granularity
timing generated by the 2X-CPU-clock PLL must not
be in effect during the time of the change because the
PLL cannot track the change and improper clock
cycles will be generated. Simply program the timing
to measure an integral number of CPU-clock cycles.
See 72, page 204.

Timing specification is broken into three pieces: RAS
prefix, basic CAS cycle, and CAS extension/expansion
timing. All CAS cycles consist of the basic CAS cycle
timing and the appropriate CAS extension/expansion
timing. This combination is referred to as the CAS part
of the memory cycle. All RAS cycles consist of a RAS
prefix plus a CAS part. Bus transactions of multiple bus
cycles are simply the required sequence of RAS
prefixes and CAS parts in immediate succession. Only
discrete read cycles or write cycles are performed;
read-modify-write cycles are not performed.

To gain access to the bus, the bus address must be
transferred to the MIF and a check made to see if the
bus is available for the time required to complete the
bus transaction. This bus request process takes two
CPU-clock cycles at the beginning of each bus
transaction. Memory-reference MPU and VPU
instructions always overlap one cycle of instruction
execution with the bus request process. DMA opera-
tion can overlap both cycles of the bus request process
with a preceding MPU bus transaction. Thus, except
for DMA overlapped with an MPU bus transaction,
there are two inactive CPU-clock cycles on the bus
preceding each bus transaction. Instruction execution

times listed herein include the bus access and
programmed bus transaction time as part of the entire
memory reference time.

RAS Prefix Timing
This timing for a memory group is specified by
programming the fields in the corresponding
mgXrasbt. The RAS prefix of a RAS cycle consists of
a leading CPU-clock cycle; the &R&A&S inactive portion,
also referred to as RAS precharge (mgbtras); and the
RAS address hold time (mgbtrhld). The last two are
modified by the early RAS bit (mgbteras). For
computation of the RAS-cycle duration, mgbtrast
must contain the sum of mgbtras and mgbtrhld
plus one. During this time the DRAM RAS address bits,
high address bits, and bit outputs are on AD. See
Figure 42, page 149.

CAS Part Timing
This timing for a memory group is specified by
programming the fields in mgXcasbt and mgXebt.
The CAS part of the cycle begins with the timing for
the &C&A&S inactive portion, also referred to as CAS
precharge (mgbtcas). Next is the CAS address hold
time/beginning of data time (mgbtdob), when &D&O&B ,
and possibly &O&E or &L&W&E , go active. Then &C&A&S , &D&O&B ,
and either &O&E (if a memory read) or both &E&W&E and
&L&W&E (if a memory write) go inactive again
(mgbtcast). To accommodate longer data setup and
buffer delay times, the CAS cycle can be expanded at
&D&O&B fall (mgebtdobe). To accommodate longer data
hold and output buffer disable times, the CAS strobes
can be extended following &D&O&B inactive
(mgebtcase). Memory write cycles can be pro-
grammed to have &E&W&E go active either at the begin-
ning of the CAS cycle (before &R&A&S rise if a RAS cycle)
or at &C&A&S fall (mgbtewea). Similarly, &L&W&E can be
programmed to go active either at &D&O&B fall plus
expansion or at &D&O&B fall plus expansion plus one 2X-
CPU-clock cycle (mgbtlwea). &E&W&E generally
accommodates SRAM-type devices and &L&W&E accom-
modates DRAM-type devices. Further, &D&O&B going
inactive tracks &E&W&E /&L&W&E or &O&E , either of which can
be made to go inactive earlier than the unextended
CAS time by one 2X-CPU-clock cycle (mgbtewe and
mgbteoe). For computation of CAS-cycle duration,
mgbtcast is added to mgebtsum, the latter of which

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

125

must contain the sum of mgebtdobe and
mgebtcase. See Figure 41, page 147, and Figure 40,
page 146.

When MPU bus transactions or VPU instruction-fetch
bus transactions occur, the bus cycle timing for the
memory group uses the values in mgXebt, as de-
scribed above. When an I/O channel bus transaction
occurs, the values in ioXebt for the appropriate I/O
channel are substituted for the mgXebt values. The
ioXebt values must be programmed to accommodate
any memory group that might be involved in the
transfer, as well as the I/O device.

DRAM Refresh
DRAM requires periodic accesses to each row within
the memory device to maintain the memory contents.
Most DRAM devices support several modes of refresh,
including the RAS-only refresh mode supplied by the
VPU instruction refresh. The VPU must be pro-
grammed to execute refresh at intervals short
enough for the most restrictive DRAM in the system.
The timing during the refresh cycle uses the RAS cycle
timing of the memory group indicated by msrtg,
which must be long enough for the slowest DRAM
refresh cycle in the system. Refresh on each memory
group can be individually enabled or disabled. See
Figure 33, page 139.

msra contains data used during each refresh cycle.
refresh increments the14-bit row address in msrra
after the refresh cycle completes. The address bits in
msra31 and msrha are normally zero, but can be

written if the zero values interfere with other system
hardware during refresh cycles.

Video RAM Support
Special VRAM operating modes are supported through
the use of vram. See Figure 32, page 137, and Table
37, page 37. Many VRAM modes use a RAS cycle to
set an operating state in the VRAM device that persists
until the next RAS cycle occurs on that VRAM device.
Unexpected RAS cycles can thus cause undesirable
results.

Refresh cycles are one source of unexpected RAS
cycles; these can be disabled on groups containing
VRAM by setting the appropriate mgXrd bits. See
Figure 33, page 139.

Changes in the high address bits are a second source
of unexpected RAS cycles; these can be prevented
from occurring on memory group msvgrp by setting
msevhacr. The high address bits are typically used
for I/O device addresses, and require a RAS cycle
when these bits change if mshacd is clear. An I/O-
channel transfer immediately prior to a VRAM group
access is an example of such an occurrence. The RAS
cycle might be required for proper system operation,
but the VRAM group can be prevented from receiving
the RAS cycle by setting msevhacr. The RAS prechar-
ge portion of the cycle will occur on RAS and &R&A&S ,
but not on the &M&G&S&x /&R&A&S&x of the VRAM group. Note
that if more than one memory group is used for VRAM
then this protection is not effective. See Figure 39,
page 145.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

126

Group Access Reason Configuration Requirement
MPU
DMA
VPU

all any High address bits changed mshacd clear S all

all any A31 changed
mshacd clear,
msexa31hac clear S all

all any A31 set msras31d clear S all

all any Memory group row address
changed C all

pgm first After VRAM CAS before RAS msvgrp C all

pgm first after refresh on enabled group mgXrd set C MPU,DMA

all first after refresh executes T VPU

all first after memory fault on group C all

all first mgds written C all

all first CPU hardware reset C all

all first delay completes T VPU

all first VPU software reset T VPU

KEY:
all

pgm
any
first

S
C
T

– any group or device with which the event might occur
– any group programmed for the event to occur
– any arbitrary access creating the specified condition
– first access on each specified group after the specified event
– might be required by system hardware
– might be required for correct operation of devices
– required for temporally deterministic VPU execution

Table 53. Sources of RAS cycles

System Requirements Programming
RAS Cycle Generation
RAS cycles are primarily required to bring new row
addresses onto AD for DRAM-type devices. They are
also required, in certain instances, to ensure tempo-
rally deterministic execution of the VPU, or to ensure
correct operation after certain events. The MIF handles
these cases automatically. RAS cycles can also be
configured to occur in order to supply additional time
for decoding I/O addresses, for example. Since RAS
cycles generally take considerably longer than CAS

cycles, it is desirable to minimize their use. The
various sources of RAS cycles are listed in Table 53,
page 126.

When the current and previous addresses are com-
pared to determine if a RAS cycle is required, the MIF
uses the following rules:
C The current DRAM RAS address bits are compared
to those from the most recent RAS cycle on the current
memory group. If the bits are different, a RAS cycle
occurs.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Programmable Memory Interface
PSC1000 MICROPROCESSOR

127

C The middle address bits are not compared (see
Figure 20, page 118). The middle address bits are: for
DRAM, above the RAS address bits up to and includ-
ing msgsm; for SRAM, from A22 up to and including
msgsm. If msgsm is zero there are no middle address
bits in either case. If msgsm includes A31, A31
becomes part of the high address bits and is optionally
compared.
C The current high address bits are compared to
those from the most recent RAS cycle, depending on
the configuration options discussed below. The
location of the high address bits depends on msgsm.
See Figure 37, page 143.

Three high-address-bit configuration options are
available to minimize the occurrence of RAS cycles
caused by high-address-bit comparisons.
C The high address bits are typically used for I/O
device addresses, and thus when they change, a RAS
cycle might be required for their proper decoding by
external hardware. The high address bits can be
excluded from RAS-cycle determination by setting the
memory system high-address-bit compare disable
(mshacd). See Figure 33, page 139.
C During bus transactions between four-byte byte-
transfer devices and cell memory or between one-cell
cell-transfer devices and byte memory, A31is passed
(taken from the global register, usually set) or cleared
(by the MIF) to select or deselect the I/O device when
required. Decoding A31 externally for this purpose
can be done more quickly than a full address decode,
so this separate option is available. A31 can be
included in or excluded from the high-address-bit
compare (msexa31hac). See Figure 39, page 145.
C In systems that require a RAS cycle to decode I/O
device addresses but not to decode changes in A31
(mshacd clear and msexa31hac set), it might be
necessary for the memory address bits and I/O
addressing bits to overlap if the system contains a large
amount of memory and I/O devices. This can prevent
a RAS cycle from occurring because some of the
overlapped address bits do not cause a RAS (middle
address bits), or do not require a RAS (DRAM RAS
address bits), even though they changed from the last

system RAS cycle. In this case, a RAS can be forced
to ensure that I/O device addresses are decoded by
setting A31 (msras31d clear). This option can also
be useful any other time forcing a RAS cycle is
desirable.

Driver Current
The drive capability of all the package output drivers
is programmable. See Figure 50, page 154.

Memory Faults
Virtual memory page-fault detection is enabled
through mflt_enable in mode. The memory fault
input can either come from AD8 or &M&F&L&T , depending
on the state of pkgmflt. See Figure 39, page 145.

I/O-Channel Programming
As previously discussed, the normal memory-group
bus timing is changed during an I/O-channel bus
transaction by substituting the values in the corre-
sponding ioXebt for the values in mgXebt for the
memory group involved. This allows each I/O channel
to be programmed to meet the requirements of the
device. The ioXebt values must be adequate for the
I/O device, as well as any memory group with which
a data transfer might occur. See Figure 43, page 150.

In addition to timing, the type of transfer on each I/O
channel can be specified in iodtta or iodttb.
Transfers can either be one byte or four bytes per
transaction for byte-wide devices, or one cell per
transaction for cell-wide devices. Four-byte byte-
transfer devices might contend for the bus less often
than one-byte byte-transfer devices, and thus can
transfer data more efficiently. Also, with cell-wide
memory, four-byte byte transfers are cell-aligned and
pack the data into the memory cells, whereas one-byte
byte transfers place only one byte per memory cell.
See Bus Operation, page 157.

See Direct Memory Access Controller, page 103, for
other I/O-channel transfer options.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

128

mgbtrast
mgbtras

mgbtcast +
mgebtdobe or

ioebtdobe

mgbtdob

RAS Prefix CAS Part

mgbtrhld

mgbtcas mgebtcase
ioebtcase

mgebtdobe
ioebtdobe

mgbteras

CAS cycle

mgbtewea

CAS cycle

mgbteoe

mgbtewemgbtlwea

DataCAS Address BitsRAS Address Bits

Note

Note: DOB rise tracks OE or EWE and LWE rise.

RAS

CAS

DOB

OE

EWE

LWE

AD

external
clock

bustime.wpg

Figure 23. Programmable Bus Timing Reference

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

129

On-Chip Resource Registers

15 10 7 01331

240 mg0casbt Memory Group 0 CAS Bus Timing Register
220 mg3ebt Memory Group 3 Extended Bus Timing Register
200 mg2ebt Memory Group 2 Extended Bus Timing Register
1e0 mg1ebt Memory Group 1 Extended Bus Timing Register
1c0 mg0ebt Memory Group 0 Extended Bus Timing Register
1a0 miscc Miscellaneous C Register
180 mgds Memory Group Device Size Register
160 msgsm Memory System Group Select Mask Register
140 mfltdata Memory Fault Data Register
120 mfltaddr Memory Fault Address Register
100 miscb Miscellaneous B Register
0e0 misca Miscellaneous A Register
0c0 vram VRAM Control Bit Register
0a0 iodmae DMA Enable Register
080 ioie Interrupt Enable Register
060 ioout Bit Output Register
040 ioius Interrupt Under Service Register
020 ioip Interrupt Pending Register
000 ioin Bit Input Register

260 mg1casbt Memory Group 1 CAS Bus Timing Register
280 mg2casbt Memory Group 2 CAS Bus Timing Register
2a0 mg3casbt Memory Group 3 CAS Bus Timing Register
2c0 mg0rasbt Memory Group 0 RAS Bus Timing Register
2e0 mg1rasbt Memory Group 1 RAS Bus Timing Register
300 mg2rasbt Memory Group 2 RAS Bus Timing Register
320 mg3rasbt Memory Group 3 RAS Bus Timing Register
340 io0ebt I/O Channel 0 Extended Bus Timing Register340 io0ebt I/O Channel 0 Extended Bus Timing Register340 io0ebt I/O Channel 0 Extended Bus Timing Register
360 io1ebt I/O Channel 1 Extended Bus Timing Register
380 io2ebt I/O Channel 2 Extended Bus Timing Register
3a0 io3ebt I/O Channel 3 Extended Bus Timing Register
3c0 io4ebt I/O Channel 4 Extended Bus Timing Register
3e0 io5ebt I/O Channel 5 Extended Bus Timing Register
400 io6ebt I/O Channel 6 Extended Bus Timing Register
420 io7ebt I/O Channel 7 Extended Bus Timing Register
440 msra Memory System Refresh Address Register (WO)
440 vpudelay VPU Delay Register (RO)
460 iodtta I/O Device Transfer Types A Register
480 iodttb I/O Device Transfer Types B Register
7a0 iodmaex I/O DMA Enable Expiration Register
7c0 drivers Driver Current Register
7e0 vpureset VPU Reset Register

onchipmp.wpg

Register Size Addr Mnemonic Description

Figure 24. On-Chip Resource Registers

The on-chip resource registers comprise portions of
various functional areas on the CPU including the
MPU, VPU, DMAC, INTC, MIF, bit inputs, and bit
outputs. The registers are addressed from the MPU in
their own address space using the instructions ldo[]
and sto[] at the register level, or ldo.i[] and
sto.i[] at the bit level (for those registers that have
bit addresses). On other processors, resources of this

type are often either memory-mapped or opcode-
mapped. By using a separate address space for these
resources, the normal address space remains unclut-
tered, and opcodes are preserved. Except as noted, all
registers are readable and writeable. Areas marked
“Reserved Zeros” contain no programmable bits and
always return zero. Areas marked “Reserved” contain
unused programmable bits. Both areas might contain
functional programmable bits in the future.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

130

Memory Group 0–3 RAS Bus Timing Registers

31 0458

mgXrasbt

memory group bus timing RAS prefix cycle total
{0, 1, 2, ..., 31} CPU-clock cycles [1f]

mgbtrast

Mnemonic Description

memory group bus timing RAS low start
{1, 2, 3, ..., 16} CPU-clock cycles [0f]

mgbtras

mgbtrhld

mgbteras

memory group bus timing row address hold
{0, 1, 2, ..., 15} CPU-clock cycles [0e]

memory group bus timing early RAS low
 by one 2X-CPU-clock cycle [0]

onchp2c0.wpg

1913

2C0 mg0rasbt 2E0 mg1rasbt 300 mg2rasbt 320 mg3rasbt

Reserved Zeros

Value after CPU reset

Four bit field range of 0-15 encodes
functional values set {0, 1, 2, ..., 15}

Four bit field range of 0-15 encodes
functional values set {1, 2, 3, ..., 16}

onchpexm.wpg

Figure 25. Example On-Chip Register Diagram

The first several registers are bit addressable in
addition to being register addressable. This allows the
MPU to modify individual bits without corrupting
other bits that might be changed concurrently by the
VPU, DMAC, or INTC logic.

Bus activity must be prevented to avoid a possible
invalid bus cycle when changing the value in any
register that affects the bus configuration or timing of
a bus cycle that might be in progress. Bus activity can
be prevented by ensuring:
C no DMA requests are serviced,
C the VPU does not seize the bus (because
vpudelay goes to zero),
C no writes are posted, and
C pre-fetch does not occur.
This is typically not a problem because most changes
are made just after power-up when no DMA or VPU
activity of concern is occurring. Posted writes can be

ensured complete by ensuring an MPU memory
access (such as an instruction fetch) occurs after the
write is posted.

The diagrams that follow use a {} notation that depicts
the decoded set of values represented by ordinal
values within the corresponding bit field. The full
range of values possible on a bit field are always
depicted. Thus {1, 2, 3, 4} is only be possible on a
two-bit-wide field. In this case, a zero in the field
represents a one value, a one in the field represents
a two value, and so on through the list. Note that not
all sets are consecutive numbers, such as {0, 1, 2, 4}.
Also note that references in the text to usage of a field
imply the decoded value represented by the field, not
the ordinal values, e.g., references to mgbtras in the
example imply the decoded values 1–16 and not the
ordinal values 0–15 programmed into the field.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

131

31 012345678

00 ioin Bit Input Register

I/O bit 7 input [1]io7in_i07
Bit Address Mnemonic Description

I/O bit 6 input [1]io6in_i06
05
04
03
02
01
00

io5in_i
io4in_i
io3in_i
io2in_i
io1in_i
io0in_i

I/O bit 5 input [1]
I/O bit 4 input [1]
I/O bit 3 input [1]
I/O bit 2 input [1]
I/O bit 1 input [1]
I/O bit 0 input [1]

onchp000.wpg

Reserved Zeros

Figure 26. Bit Input Register

Contains sampled data from &I&N[7:0] or AD[7:0],
depending on the value of pkgio. ioin is the source
of inputs for all consumers of bit inputs. Bits are zero-
persistent: once a bit is zero in ioin it stays zero until
consumed by the VPU, DMAC, or INTC, or written by
the MPU with a one. Under certain conditions bits
become not zero-persistent. See Bit Inputs, page 111.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and other
CPU logic.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

132

31 012345678

ioip Interrupt Pending Register

I/O bit 7 interrupt pending [0]io7ip_i27
Bit Address Mnemonic Description

I/O bit 6 interrupt pending [0]io6ip_i26

25
24
23
22
21

io5ip_i
io4ip_i
io3ip_i

io2ip_i
io1ip_i

I/O bit 5 interrupt pending [0]
I/O bit 4 interrupt pending [0]
I/O bit 3 interrupt pending [0]
I/O bit 2 interrupt pending [0]
I/O bit 1 interrupt pending [0]

20 io0ip_i I/O bit 0 interrupt pending [0]

20

onchp020.wpg

Reserved Zeros

Figure 27. Interrupt Pending Register

Contains interrupt requests that are waiting to be
serviced. Interrupts are serviced in order of priority (0
= highest, 7 = lowest). An interrupt request from an
I/O-channel transfer or from int occurs by the
corresponding pending bit being set. Bits can be set
or cleared to submit or withdraw interrupt requests.
When an ioip bit and corresponding ioie bit are

set, the corresponding ioin bit is not zero-persistent.
See Interrupt Controller, page 107.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and INTC
logic.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

133

Interrupt Under Service Register

31 012345678

40 ioius

I/O bit 7 interrupt under service [0]io7ius_i47
Bit Address Mnemonic Description

I/O bit 6 interrupt under service [0]io6ius_i46
45
44
43
42
41

io5ius_i
io4ius_i
io3ius_i

io2ius_i
io1ius_i

I/O bit 5 interrupt under service [0]
I/O bit 4 interrupt under service [0]
I/O bit 3 interrupt under service [0]
I/O bit 2 interrupt under service [0]
I/O bit 1 interrupt under service [0]

40 io0ius_i I/O bit 0 interrupt under service [0]
onchp040.wpg

Reserved Zeros

Figure 28. Interrupt Under Service Register

Contains the current interrupt service request and
those that have been temporarily suspended to service
a higher-priority request. When an ISR executable-
code vector for an interrupt request is executed, the
ioius bit for that interrupt request is set and the
corresponding ioip bit is cleared. When an ISR
executes reti, the highest-priority interrupt under-
service bit is cleared. The bits are used to prevent

interrupts from interrupting higher-priority ISRs. When
an ioius bit and corresponding ioie bit are set, the
corresponding ioin bit is not zero-persistent. See
Interrupt Controller, page 107.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and INTC
logic.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

134

31 012345678

60 ioout Bit Output Register

I/O bit 7 output [1]io7out_i67
Bit Address Mnemonic Description

I/O bit 6 output [1]io6out_i66

65
64
66

62
61
60

io5out_i
io4out_i
io3out_i
io2out_i

io1out_i
io0out_i

I/O bit 5 output [1]
I/O bit 4 output [1]
I/O bit 3 output [1]

I/O bit 2 output [1]
I/O bit 1 output [1]
I/O bit 0 output [1]

onchp060.wpg

Reserved Zeros

Figure 29. Bit Output Register

Contains the bits from MPU and VPU bit-output
operations. Bits appear on OUT[7:0] immediately
after writing and on AD[7:0] while &R&A&S is inactive.
See Bit Outputs, page 115.

The bits can be individually read, set and cleared to
prevent race conditions between the MPU and VPU.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

135

31 012345678

80 ioie Interrupt Enable Register

I/O bit 7 interrupt enable [0]io7ie_i87
Bit Address Mnemonic Description

I/O bit 6 interrupt enable [0]io6ie_i86
85
84
83
82
81

io5ie_i
io4ie_i
io3ie_i

io2ie_i
io1ie_i

I/O bit 5 interrupt enable [0]
I/O bit 4 interrupt enable [0]
I/O bit 3 interrupt enable [0]
I/O bit 2 interrupt enable [0]
I/O bit 1 interrupt enable [0]

80 io0ie_i I/O bit 0 interrupt enable [0]
onchp080.wpg

Reserved Zeros

Figure 30. Interrupt Enable Register

If the corresponding iodmae bit is not set, allows a
corresponding zero bit in ioin to request the corre-
sponding interrupt service. When an enabled interrupt
request is recognized, the corresponding ioip bit is
set and the corresponding ioin bit is no longer zero-
persistent. See Interrupt Controller, page 107.

The bits can be individually read, set and cleared. Bit
addressability for this register is an artifact of its
position in the address space, and does not imply any
race conditions on this register can exist.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

136

31 012345678

A0 iodmae DMA Enable Register

I/O channel 7 DMA enable [0]io7dmae_iA7
Bit Address Mnemonic Description

I/O channel 6 DMA enable [0]io6dmae_iA6

A5
A4
A3
A2
A1

io5dmae_i
io4dmae_i
io3dmae_i
io2dmae_i
io1dmae_i

I/O channel 5 DMA enable [0]
I/O channel 4 DMA enable [0]
I/O channel 3 DMA enable [0]

I/O channel 2 DMA enable [0]
I/O channel 1 DMA enable [0]

A0 io0dmae_i I/O channel 0 DMA enable [0]
onchp0a0.wpg

Reserved Zeros

Figure 31. DMA Enable Register

Allows a corresponding zero bit in ioin to request
a DMA I/O-channel transfer for the corresponding
I/O channel. When an enabled DMA request is
recognized, the corresponding zero bit in ioin is
set. If the corresponding iodmaex bit is set, the
iodmae bit is cleared (to disable further DMA

requests from that channel) when an I/O-channel
transfer on that channel accesses the last location in
a 1024-byte memory page. See Direct Memory
Access Controller, page 103. When a iodmae bit is
set, the corresponding ioie bit is ignored.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

137

31 0123456

C0 vram VRAM Control Bit Register

memory system VRAM group [3]msvgrp
Mnemonic Description

state of DSF at VRAM CAS fall [0]dsfvcas
dsfvras

casbvras
wevras
oevras

state of DSF at next VRAM RAS fall [0]

CAS fall before RAS next VRAM RAS [0]
LWE low at next VRAM RAS fall [0]

OE low at next VRAM RAS fall [0]

7

onchp0c0.wpg

Reserved Zeros

Figure 32. VRAM Control Bit Register

These bits control the behavior of &O&E , &L&W&E , the
CASes, and DSF at &R&A&S fall time; they also control the
behavior of DSF at &C&A&S fall time. They can be used
in any combination to activate the various modes on
VRAMs.

The bits from vram move through a hidden register
prior to controlling the memory strobes during a
subsequent MPU memory cycle. The bits stored for
msvgrp in the hidden register determine which
memory group is the current VRAM memory group,
whose strobes are affected by the accompanying data
in the hidden register. The hidden register is locked
once data has been transferred into it from vram until
an MPU access to the VRAM memory group occurs,
thus consuming the data in the hidden register.

When a sto [] to vram occurs and the hidden
register is not currently locked, the data from vram is
transferred into the hidden register immediately if a
posted write (to any memory group) is not waiting or
in process, or at the end of the posted write if a posted
write is waiting or in process. When a sto [] to
vram occurs and the hidden register is already locked,
the data in vram is not transferred (and is replaceable)
until after the next access to the VRAM memory group
occurs. The next access to the VRAM memory group
uses the data in the hidden register, and when the
memory access is complete, the data in vram is
transferred to the hidden register.

Only MPU memory accesses have an effect on vram
or the hidden register. Immediately after transferring
vram to the hidden register, dsfvras, casbvras,
wevras, and oevras in vram are cleared. After the
VRAM group access, additional CAS or RAS cycles
can occur on the VRAM memory group without
rewriting the register, and use the current (cleared)
vram data. When writes to vram are paired with one
or more accesses to the VRAM memory group of the
required RAS or CAS type, the internal operations
described above are transparent to the program. Note
that RAS precharge must be at least three CPU-clock
cycles in duration for proper VRAM operation. See
Video RAM Support, pages 37, 125, and 161.

msvgrp
Specifies the memory group containing the VRAM that
is controlled by this register. VPU and MPU instruc-
tions must not be fetched from the memory group
used for VRAM because the VRAM operations will
likely occur on an instruction-fetch bus transaction
rather than the intended VRAM transaction.

dsfvcas
Contains the state applied to DSF at the start of the
next CAS-part of a memory cycle on the VRAM
memory group. The bit is persistent and is not
automatically cleared after being transferred to the
hidden register. DSF is low when not accessing the
VRAM memory group.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

138

dsfvras
Contains the state applied to DSF two CPU-clock
cycles after &R&A&S rises during the next RAS cycle on
the VRAM memory group. DSF changes to the
dsfvcas state at the expiration of the row-address
hold time. The bit is automatically cleared after being
transferred to the hidden register.

casbvras
If set, during the next RAS cycle on the VRAM memory
group all CAS signals are active two CPU-clock cycles
after &R&A&S rises, and are inactive at the normal
expiration time. &O&E , &E&W&E and &L&W&E go inactive at the
expiration of the row-address hold time. The next
access to the memory group msvgrp is forced by
internal logic to be a RAS cycle.

Note that since all read and write strobes are inactive
throughout their normally active times during the bus
cycle, no data I/O with memory can occur. The data
associated with the ST or LD used to cause the cycle
is lost or undefined. The casbvras bit is automati-
cally cleared after being transferred to the hidden
register.

wevras
If set, &L&W&E is low two CPU-clock cycles after &R&A&S
rises during the next RAS cycle on the VRAM memory
group, and is high at the expiration of the row-address
hold time. Otherwise, &L&W&E is high until the expiration
of the row-address hold time during the next RAS
cycle on the VRAM memory group. In either case,
during the CAS portion of the cycle &L&W&E behaves
normally and the data transferred is part of the
function performed. The bit is automatically cleared
after being transferred to the hidden register.

oevras
If set, &O&E is low two CPU-clock cycles after &R&A&S rises
during the next RAS cycle on the VRAM memory
group, and is high at the expiration of the row-address
hold time. Otherwise, &O&E is high until the expiration
of the row-address hold time during the next RAS
cycle on the VRAM memory group. In either case,
during the CAS portion of the cycle &O&E behaves
normally and the data transferred is part of the
function performed. The bit is automatically cleared
after being transferred to the hidden register.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

139

31 012345678

misca Miscellaneous A Register

memory group 3 refresh disable [0]mg3rd

Mnemonic Description

memory group 2 refresh disable [0]mg2rd
mg1rd
mg0rd

msras31d
mshacd
msrtg

memory group 1 refresh disable [0]
memory group 0 refresh disable [0]

memory system don't force RAS cycle if A31 = 1 [0]
memory system high-address-bit compare disable [0]

memory system refresh timing group [0]

E0

onchp0e0.wpg

Reserved Zeros

Figure 33. Miscellaneous A Register

mgXrd
Allows (if clear) or prevents (if set) a refresh cycle from
occurring on the corresponding memory group when
refresh executes. Allowing refresh on some memory
groups can be undesirable or inappropriate. For
example, the primary side effect of refresh is that the
current row address latched in the memory device is
changed. This can be undesirable on VRAM devices
when a RAS cycle sets persistent operational modes
and addresses. Another refresh side effect is that the
next memory cycle to the memory group is a RAS
cycle to re-select the operational memory row. This
is usually undesirable in SRAM because refresh is not
required; the refresh and RAS cycles only slow
execution, or make otherwise predictable timing
unpredictable.

msras31d
If set, allows non-RAS cycles when A31 is a one. If
clear, forces a RAS cycle on both one-bus-cycle
transactions and the first cycle of four-bus-cycle byte
transactions when A31 is a one. In large memory
systems in which the I/O-device addressing bits
overlap the group, bank, or DRAM RAS bits, this
option forces a RAS cycle when one might not
otherwise occur because these various bits either are

excluded from the RAS comparison logic or could
inadvertently match the I/O-device address bits. RAS
cycles might be required by system design to allow
enough time for I/O decode and select. A31 is used
in selecting I/O addresses.

mshacd
If clear, enables the comparison of the high address
bits to those of the most recent RAS cycle to determine
if a RAS cycle must occur. If set, disables this compari-
son. These bits are typically used for I/O addresses that
require external decoding logic which might require
the additional time available in a RAS cycle for this
decoding. However, with high-speed logic it is often
possible to decode the I/O address in the time
available within a CAS cycle, thus speeding I/O
access. A31 can be excluded from the high-address-bit
compare by setting msexa31hac.

msrtg
Contains the number of the memory group whose RAS
cycle timing is to be used for refresh cycles produced
by refresh. The memory group specified must be
the group with the most-restrictive (slowest) refresh
timing.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

140

Miscellaneous B Register

31 012345678

100 miscb

multiple memory bank [0]mmb
Mnemonic Description

fixed DMA priorities [0]fdmap

pkgio
oed

mg3bw
mg2bw
mg1bw

package has I/O pins [0]
OE disable [1]

memory group 3 byte wide [1]

memory group 2 byte wide [1]
memory group 1 byte wide [1]

mg0bw memory group 0 byte wide [1]
onchp100.wpg

Reserved Zeros

Figure 34. Miscellaneous B Register

mmb
If clear, selects Single Memory Bank (SMB) mode for
all memory groups. &R&A&S&x signals appear on the
corresponding package pins. Bank-select bits corre-
spond with the msgsm bits. Up to four memory banks
(i.e., one memory bank per memory group) can be
directly connected and accessed. See Figure 21, page
118.

If set, selects Multiple Memory Bank (MMB) mode for
all memory groups. &M&G&S&x signals appear on the
corresponding package pins. Bank-select bits are
located immediately above the DRAM RAS bits, or for
SRAM in the mssbs location. Up to sixteen memory
banks (i.e., four banks per memory group) can be
connected with 1.25 two-input gates per bank. With
additional inputs per gate and additional decoding, an
arbitrarily large number of memory banks can easily
be connected. See Figure 22, page 119.

fdmap
DMA requests contend for the bus; the highest-priority
request gets the first chance at access. If vpudelay
is large enough to allow bus access by the highest-
priority request, the bus is granted to the device.

If fdmap is set and vpudelay is too small for the
highest-priority DMA request, the DMA request does

not get the bus. Unless a higher-priority DMA request
occurs that fits the shrinking available bus slot, no bus
transactions occur until the VPU seizes the bus. When
the VPU next executes delay, the highest-priority
DMA request—or the MPU if there are no DMA
requests—repeats the bus request process.

If fdmap is clear and vpudelay is too small for the
highest-priority DMA request, the request does not get
the bus. The next lower-priority bus request is then
allowed to request the bus, with the MPU as the
lowest-priority request. The process repeats until the
bus is granted or the VPU seizes the bus. When the
VPU next executes delay, the highest-priority DMA
request—or the MPU if there are no DMA
requests—repeats the bus request process.

pkgio
If set, inputs to ioin are taken from &I&N[7:0]. If
clear, inputs are taken from AD[7:0] when &R&A&S is
low and &C&A&S is high. See Bit Inputs, page 111.

oed
If set, disables &O&E from going active during bus cycles.
If clear, &O&E behaves normally. On CPU reset, the &O&E
signal is disabled to prevent conventionally connected
memory from responding; this allows booting from a
device in I/O space. See Processor Startup, page 181.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

141

mgXbw
If clear, the corresponding memory group is cell-wide
and is read and written 32-bits per bus cycle. If set, the
corresponding memory group is byte-wide and is read

and written in a single bus transaction of four bus
cycles, one byte per cycle.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

142

31 0

120 mfltaddr Memory Fault Address Register

Register is read-only. Reading mfltaddr after a memory fault releases the data lock on mfltaddr and
mfltdata, allowing data to flow into the registers. [0]

onchp120.wpg

Memory Fault Address

Figure 35. Memory Fault Address Register

31 0

mfltdata Memory Fault Data Register140

Register is read-only. Reading mfltaddr after a memory fault releases the data lock on mfltaddr and
mfltdata, allowing data to flow into the registers. [0]

onchp140.wpg

Memory Fault Data

Figure 36. Memory Fault Data Register

When a memory page-fault exception occurs during
a memory read or write, mfltaddr contains the
address that caused the exception. The contents of
mfltaddr and mfltdata are latched until the first

read of mfltaddr after the fault. After reading
mfltaddr, the data in mfltaddr and mfltdata are
no longer valid.

When a memory page-fault exception occurs during
a memory write, mfltdata contains the data to be
stored at mfltaddr. The contents of mfltdata and

mfltdata are latched until the first read of
mfltaddr after the fault.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

143

Memory System Group Select Mask Register

31 0

160 msgsm

1516

Contains zero, one, or two adjacent bits to determine which, if any, of the upper 16 address bits will be
decoded to select memory groups. [0]

onchp160.wpg

Reserved Zeros Memory System Group-Select Mask

Figure 37. Memory System Group-Select Mask Register

Contains zero, one, or two adjacent bits that locate the
memory group-select bits between A16 and A31.

When no bits are set, all memory accesses occur in
memory group zero. The memory system high address
bits occur in the address bits: for DRAM, above the
memory group zero DRAM RAS address; for SRAM,
above A21.

When one bit is set, it determines the address bit that
selects accesses between memory group zero and
memory group one. The memory system high address
bits occur in the address bits higher than the bit
selected, but always include A31.

When two adjacent bits are set, they are decoded to
select one of four memory groups that is accessed. The
memory system high address bits occur in the address
bits higher than the bits selected, but always include
A31.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

144

Memory Group Device Size Register

31 03478

180 mgds

memory group 3 device size [0f]mg3ds

Mnemonic Description

memory group 2 device size [0f]mg2ds
mg1ds

mg0ds

memory group 1 device size [0f]
memory group 0 device size [0f]

15 1116 12

Device Sizes
0x00 64K DRAM 0x04 1M DRAM 0x08 8M DRAM 0x0c 64M DRAM†

0x01 128K DRAM 0x05 2M DRAM 0x09 16M DRAM† 0x0d 64M DRAM
0x02 256K DRAM 0x06 4M DRAM† 0x0a 16M DRAM 0x0e 128M DRAM
0x03 512K DRAM 0x07 4M DRAM 0x0b 32M DRAM 0x0f SRAM

† Asymmetric addressing, the number of RAS and CAS address bits differ.
onchp180.wpg

Reserved Zeros

Figure 38. Memory Group Device Size Register

Contains 4-bit codes that select the DRAM address bit
configuration, or SRAM, for each memory group. The
code determines which bits are used during RAS and
CAS addressing and which bits are compared to

determine if a RAS cycle is required (due to the DRAM
row address changing). See Table 51, page 122, and
Table 52, page 123.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

145

Miscellaneous C Register

31 0345678

1A0 miscc

package has MFLT [0]pkgmflt

Mnemonic Description

memory system posted-write enable [0]mspwe

msexa31hac

mssbs

memory system exclude A31 from
high-address-bit compare [0]

memory system SRAM bank select
offset from A14 (A12 for byte mode)
to the two bits for SRAM bank select

(0-9 valid, 0xa-0xf invalid) [0] onchp1a0.wpg

msexvhacr memory system exclude VRAM from high-
address-bit compare RAS cycles [0]

Reserved Zeros

Figure 39. Miscellaneous C Register

pkgmflt
If set, the memory-fault input is sampled from &M&F&L&T .
If clear, the memory-fault input is sampled from AD8
when &R&A&S falls. See Figure 77, page 212.

mspwe
If set, enables a one-level MPU posted-write buffer,
which allows the MPU to continue executing after a
write to memory occurs. A posted write has prece-
dence over subsequent MPU reads to maintain
memory coherency. If clear, the MPU must wait for
writes to complete before continuing.

msexvhacr
If set, RAS cycles do not occur in the memory group
msvgrp when due to a high-address-bit comparison.
This prevents unexpected RAS cycles (typically caused
by a DMA or VPU initiated bus transaction) from
causing a VRAM operation.

msexa31hac
If set, A31 is not included in the high-address-bit
compare. If clear, A31 is included in the high-address-

bit compare. See mshacd for more information. The
high address bits are typically used for I/O addresses,
and require external decoding logic that might require
the additional time available in a RAS cycle for
decoding. Some bus transactions contain adjacent bus
cycles whose high address bits differ by only the state
of A31, and could thus require a RAS cycle due solely
to the change in this bit. However, some system
designs can decode the A31 change in the time
available in a CAS cycle, thus speeding I/O access. If
this bit is set a RAS cycle does not occur if only
address bit A31 changes.

mssbs
For multiple memory bank mode only, these bits
contain the offset from A14 (A12 for a byte-mode
group) to the two address bits used to select banks
within any memory group containing SRAM devices.
Typically set to place the bits immediately above the
address bits of the SRAM devices used.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

146

Memory Group 0–3 Extended Bus Timing Registers

31 056

mgXebt

memory group extended bus timing sum
{0, 1, 2, ..., 31} CPU-clocks [1f]

mgebtsum
Mnemonic Description

mgebtcase

memory group extended bus timing DOB expansion
{0, 1, 2, ..., 15} CPU-clocks [0f]

memory group extended bus timing CAS extension
{0, 1, 2, 4} CPU-clocks [3]

121011

mgebtdobe

1C0 mg0ebt 1E0 mg1ebt 200 mg2ebt 220 mg3ebt

onchp1c0.wpg

Reserved Zeros

Figure 40. Memory Group 0–3 Extended Bus Timing Registers

These values compensate for propagation, turn-on,
turn-off, and other delays in the memory system. They
are specified separately for each memory group. When
an I/O-channel bus transaction occurs, the I/O-
channel extension, ioXebt, is substituted for the
corresponding value. The I/O-channel extensions must
be sufficient for any memory group into which that I/O
channel might transfer.

mgebtsum
Programmed to contain the sum of mgebtcase and
mgebtdobe. This value is used only during the slot
check to compute the total time required for the bus
cycle.

mgebtdobe
Expands the CAS cycle at &D&O&B fall by the specified
time. This parameter is used to compensate for
memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a
memory read cycle, &O&E is expanded. If the bus cycle
is a memory write cycle, &E&W&E is expanded and &L&W&E
fall is delayed the specified time.

mgebtcase
Extends the CAS cycle by the specified amount after
the unextended CAS time. &D&O&B , &O&E , &E&W&E and &L&W&E
rise unextended. This parameter is used to allow for
data hold times or to allow for devices to disable their
output drivers. When used in combination with
mgbtewe or mgbteoe, hold or disable times can be
set in most increments of 2X-CPU-clock cycles.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

147

Memory Group 0–3 CAS Bus Timing Registers

31 0

mgXcasbt

memory group bus timing CAS low start
{1, 2, 3, ..., 8} 2X-CPU-clock cycles [7]

mgbtcas

Mnemonic Description

mgbtcast

memory group bus timing DOB low start
{1, 2, 3, ..., 16} 2X-CPU-clock cycles [0f]

memory group bus timing CAS cycle total
{1, 2, 3, ..., 32} CPU-clock cycles [1f]

12

mgbtdob

240 mg0casbt 260 mg1casbt 280 mg2casbt 2A0 mg3casbt

1516 13 12 9 8 4 3

mgbtewea

mgbtlwea

mgbteoe

mgbtewe

memory group bus timing late fall EWE active
(0=active at cycle start, 1=active at CAS low) [1]

memory group bus timing LWE active, delay by one 2X-CPU-clock cycle [0]
memory group bus timing early rise OE by one 2X-CPU-clock cycle [0]

memory group bus timing early rise write enables by one 2X-CPU-clock cycle [0]

onchp240.wpg

Reserved Zeros

Figure 41. Memory Group 0–3 CAS Bus Timing Registers

Defines the basic timing for CAS-only cycles and the
CAS portion of RAS cycles. Timing is specified
separately for each memory group. The values that
refer to &C&A&S apply to CAS, &C&A&S&0 , &C&A&S&1 , &C&A&S&2 and
&C&A&S&3, appropriately. The basic CAS cycle timing is
augmented by mgXebt and ioXebt values.

mgbtcas
Specifies the CAS-cycle precharge time, the time from
the start of the CAS-timed portion of the memory cycle
until &C&A&S goes low.

mgbtdob
Specifies the end of address time (column address
hold) and the beginning of data time on the bus
relative to the start of the CAS portion of the memory
cycle. This is the time the CPU places write data on
the bus or begins accepting read data from the bus.

mgbtcast
Specifies the total unexpanded and unextended time
of a CAS cycle. &D&O&B , &O&E , &E&W&E and &L&W&E rise at this
time unless modified by mgbteoe or mgbtewe. This

time value is also used during the slot check to
compute the total time required for the bus cycle.

mgbtewea
In a system with fast SRAM, &E&W&E fall at cycle start is
required to have an adequate write enable. Other
devices require their addresses to be valid before write
enable falls; in these cases &C&A&S low is required.

mgbtlwea
Specifies a delay of zero or one 2X-CPU-clock cycle
after &D&O&B fall plus expansion for &L&W&E fall. Expansion
refers to the value of mgebtdobe or ioebtdobe, as
appropriate. Allows adjustment for system and device
delays. For example, DRAM expects data valid at its
write-enable fall. In small systems &D&O&B plus one 2X-
CPU-clock cycle (with an expansion of zero) might be
appropriate. In a large system with a heavily loaded
(or buffered) &L&W&E , &D&O&B might be appropriate for the
fastest memory cycle. If a larger delay is required, an
expansion value can be set. Allows resolution of one
2X-CPU-clock cycle in expansion timing.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

148

mgbteoe
If set, &O&E rises one 2X-CPU-clock cycle before the end
of the unextended CAS cycle. If clear, &O&E rises with
the end of the unextended CAS cycle. One 2X-CPU-
clock cycle is sufficient output-driver disable time for
some devices; if not, output-driver disable time can be
created in most increments of 2X-CPU-clock cycles
by combining mgebtcase and mgbteoe.

mgbtewe
If set, &E&W&E and &L&W&E rise one 2X-CPU-clock cycle
before the end of the unextended CAS cycle. If clear,
&E&W&E and &L&W&E rise with the end of the unextended
CAS cycle. One 2X-CPU-clock cycle is sufficient hold
time for some devices; if not, hold time can be created
in most increments of 2X-CPU-clock cycles by
combining mgebtcase and mgbtewe.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

149

Memory Group 0–3 RAS Bus Timing Registers

31 0458

mgXrasbt

memory group bus timing RAS prefix cycle total
{0, 1, 2, ..., 31} CPU-clock cycles [1f]

mgbtrast

Mnemonic Description

memory group bus timing RAS low start
{1, 2, 3, ..., 16} CPU-clock cycles [0f]

mgbtras

mgbtrhld

mgbteras

memory group bus timing row address hold
{0, 1, 2, ..., 15} CPU-clock cycles [0e]

memory group bus timing early RAS low
 by one 2X-CPU-clock cycle [0]

onchp2c0.wpg

1913

2C0 mg0rasbt 2E0 mg1rasbt 300 mg2rasbt 320 mg3rasbt

Reserved Zeros

Figure 42. Memory Group 0–3 RAS Bus Timing Registers

Defines the timing for the RAS-prefix portion a of RAS
memory cycle. Timing is specified separately for each
memory group. The values are selected as required for
the memory devices used. Timing values that refer to
&R&A&S apply to RAS, &R&A&S&0 , &R&A&S&1 , &R&A&S&2 and &R&A&S&3 ,
appropriately.

mgbtrast
Programmed to contain the sum of the decoded
number of CPU-clock cycles represented in mgbtras
and mgbtrhld plus one. At the end of this time the
CAS portion of the memory cycle begins. This value
is used only during the slot check to compute the total
time required for the bus cycle.

mgbtras
Specifies the RAS precharge time, the time &R&A&S is
high at the beginning of a RAS cycle. The time can be
shortened with mgbteras.

mgbtrhld
Specifies the row-address hold time of a RAS cycle,
immediately preceding the CAS timing portion of the
cycle. The time can be lengthened with mgbteras.
Immediately following this time the CAS address is
placed on the bus, if appropriate.

mgbteras
If set, reduces the RAS precharge time (specified by
mgbtras) and extends the row-address hold time
(specified by mgbtrhld) by one 2X-CPU-clock cycle.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

150

I/O Channel 0–7 Extended Bus Timing Registers

31 056

ioXebt

I/O channel extended bus timing sum
{0, 1, 2, ..., 31} CPU-clock cycles [1f]

ioebtsum
Mnemonic Description

ioebtcase

I/O channel extended bus timing DOB expansion
{0, 1, 2, ..., 15} CPU-clock cycles [0f]

I/O channel extended bus timing CAS extension
{0, 1, 2, 4} CPU-clock cycles [3]

121011

ioebtdobe

340 io0ebt 360 io1ebt 380 io2ebt 3A0 io3ebt

onchp340.wpg

3C0 io4ebt 3E0 io5ebt 400 io6ebt 420 io7ebt

Reserved Zeros

Figure 43. I/O Channel 0–7 Extended Bus Timing Registers

These values compensate for signal propagation, turn-
on, turn-off, device, and other delays in the memory
and I/O systems. They are substituted for the memory
group values, mgXebt, during I/O channel transfers
and thus must be sufficient for the I/O device, as well
as any memory group with which the I/O device will
transfer.

ioebtsum
Programmed to contain the sum of ioebtcase and
ioebtdobe. This value is used only during the slot
check to compute the total time required for the bus
cycle.

ioebtdobe
Expands the CAS cycle at &D&O&B fall by the specified
time. This parameter is used to compensate for

memory group buffer delays, device access time, and
other operational requirements. If the bus cycle is a
memory read cycle, &O&E is expanded. If the bus cycle
a is memory write cycle, &E&W&E is expanded and &L&W&E
fall is delayed the specified time.

ioebtcase
Extends the CAS cycle by the specified amount after
the unextended CAS time. &D&O&B , &O&E , &E&W&E and &L&W&E
rise unextended. This parameter is used to allow for
data hold times or to allow for devices to disable their
output drivers. When used in combination with
mgbtewe or mgbteoe, hold or disable times can be
set in most increments of 2X-CPU-clock cycles.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

151

Memory System Refresh Address

31 0

msra

AD31 memory system refresh address [0]msra31

Mnemonic Description
msrra

AD[30:25] memory system refresh high address [0]
AD [24:11] memory system RAS refresh addr [0]

12

msrha

1516

onchp44w.wpg

30 22 21

440

WRITE ONLY

Reserved 0 0

Figure 44. Memory System Refresh Address

VPU Delay Counter Register

31 0

vpudelay

onchp44r.wpg

440

READ ONLY

VPU Delay Counter

Figure 45. VPU Delay Counter Register

Contains the next address used for memory-system
refresh. The values are placed on the specified pins
when refresh executes, and msrra is incremented
by one. The timing for a refresh cycle is set by msrtg,

and those memory groups that are refreshed are set by
mgXrd.

Contains the number of CPU-clock cycles until the
VPU seizes the bus. The counter is decremented once
each CPU-clock cycle. The counter can be used, for

example, to determine if a time-critical task can be
completed before the VPU seizes the bus, or to
measure time in CPU-clock increments.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

152

I/O Device Transfer Types A Register

31 056

iodtta

I/O channel 3 device transfer type [0]io3dtt

Mnemonic Description

io1dtt
I/O channel 2 device transfer type [0]

12

io2dtt

onchp460.wpg

3478

460

I/O channel 1 device transfer type [0]
I/O channel 0 device transfer type [0]io0dtt

Device Transfer Types
0 four-byte byte-transfer
1 one-byte byte-transfer
2 one-cell cell-transfer
3 illegal

Reserved Zeros

Figure 46. I/O Device Transfer Types A Register

I/O Device Transfer Types B Register

31 056

iodttb

I/O channel 7 device transfer type [0]io7dtt

Mnemonic Description

io5dtt
I/O channel 6 device transfer type [0]

12

io6dtt

onchp480.wpg

3478

480

I/O channel 5 device transfer type [0]
I/O channel 4 device transfer type [0]io4dtt

Device Transfer Types
0 four-byte byte-transfer
1 one-byte byte-transfer
2 one-cell cell-transfer
3 illegal

Reserved Zeros

Figure 47. I/O Device Transfer Types B Register

Specifies one of three transfer types for the device
attached to the corresponding I/O channel.
C Four-Byte Byte-Transfer Type: Transfers four bytes
of data, one byte at a time, between the device and
memory in a single bus transaction. The transaction
consists of four bus cycles accessing the device, plus
one additional bus cycle to access memory if the
memory is cell-wide. All initial transfer addresses are
to cell boundaries.
C One-Byte Byte-Transfer Type: Transfers one byte
of data between the device and memory in a single

bus transaction. The transaction consists of a single
bus cycle. Transfers to cell-wide memory are to byte
zero of the addressed cell, with the remaining 24 bits
undefined. Transfers to byte-wide memory are to the
specified byte.
C One-Cell Cell-Transfer Type: Transfers one cell of
data between the device and memory in a single bus
transaction. The transaction consists of one bus cycle
to access the device, plus four additional bus cycles
to access memory if the memory is byte-wide. All
initial transfers are to cell boundaries.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

153

onchp4a0.wpg

Reserved Register Addresses

4A0-780

Figure 48. Reserved Register Addresses

onchp7a0.wpg

DMA Enable Expiration Register

31 056

iodmaex

I/O channel 7 DMA enable expiration [0]io7dmaex
Mnemonic Description

io5dmaex
I/O channel 6 DMA enable expiration [0]

12

io6dmaex

3478

7A0

I/O channel 5 DMA enable expiration [0]
I/O channel 4 DMA enable expiration [0]io4dmaex

io3dmaex
io2dmaex
io1dmaex

io0dmaex

I/O channel 3 DMA enable expiration [0]
I/O channel 2 DMA enable expiration [0]
I/O channel 1 DMA enable expiration [0]

I/O channel 0 DMA enable expiration [0]

Reserved

Figure 49. DMA Enable Expiration Register

These addresses are reserved.

Clears the corresponding DMA enable bit in iodmae
after a DMA I/O channel transfer is made to the last
location in a 1024-byte memory page. This allows

DMA on the corresponding I/O channel to be disabled
after transferring a predetermined number of bytes. See
Direct Memory Access Controller, page 103.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

154

onchp7c0.wpg

Driver Current Register

31 0

drivers

AD pin drive [0]addrv

Mnemonic Description

bankxdrv
control A pin drive (OE, EWE, LWE, CAS) [0]ctrladrv

7C0

MGSx/RASx, CASx pin drive

control B pin drive (RAS, DOB, DSF) [0]ctrlbdrv

16 15

rasbcasbdrv RAS, CAS pin drive [0]
outdrv bit output pin drive [0]

29 28 26 25 23 22 20 19 18 17

3-Bit Field 2-Bit Field Where n =
00n 1 of 3 drivers 0n 1 of 3 drivers 0 1 of 2 pre-drivers
01n 2 of 3 drivers 1n 2 of 3 drivers 1 2 of 2 pre-drivers
11n 3 of 3 drivers

Reserved

Figure 50. Driver Current Register

Allows programming the relative amount of current
available to drive the various signals out of the
package. The programmed driver current has several
effects.
C The amount of current selected determines the rise
and fall times of the signals into a given load. The rise
and fall times, PWB wire lengths, and PWB construc-
tion determine whether the signals are to be treated
as transmission lines, and whether signal terminations
are required.
C The rise and fall of signals affects bus cycle timing
since signal switching consumes time. Slower rise and
fall times might require a slower bus cycle.
C Greater driver current increases di/dt, and thus
increases package and system electrical noise. Though
total power consumption does not change when driver
current is changed (since the same load is charged,
just slower or faster), there is less noise produced
when di/dt is decreased. Reducing output driver pre-
driver current also reduces package and system
electrical noise, and can thus facilitate approval of
electromagnetic compliance for products.

Programmable drivers allow the system designer to
trade among system design complexity, system cost,
and system performance.

Output drivers consist of a pre-driver and an output
driver. The current-supply capability of each part of
the output driver can be programmed separately. The
low bit of each field selects full- or half-drive capabil-
ity on the pre-drivers for that set of signals. The upper
one or two bits select 1/3-, 2/3- or full-drive capability.

The pre-drivers are supplied by the core logic power,
and the noise generated by their operation can affect
the performance of the CPU in systems with an
inadequate power supply or decoupling. In such
systems, lowering pre-driver current can possibly
compensate for system design flaws.

The drivers are on two separate power buses: one for
AD and one for control signals and all other output
pins. As a result, inside the package, electrical noise
caused by AD driver switching is prevented from
corrupting the quality of the control signals. This
separation, however, does not preclude noise cou-
pling between the power pins outside the package.
Depending on system loading, the output drivers
account for 50% to 95% of the power consumed by
the CPU, and thus are a potentially large noise source.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

On-Chip Resource Registers
PSC1000 MICROPROCESSOR

155

onchp7e0.wpg

VPU Reset Register

31 0

vpureset7E0

write reset VPU on any write
read 0ffffffff while waiting to reset, zero otherwise

Figure 51. VPU Reset Register

Writing any value causes the VPU to begin executing
at its software reset executable-code vector (location
0x00000010) at the end of the current memory cycle.
This is the mechanism used to clear bit 31 in the VPU
PC after hardware reset, and to direct the VPU to
execute a new procedure. The value of the register is

-1 during the VPU reset process (i.e., from the time
vpureset is written until the VPU begins execution
of the software reset executable-code vector); other-
wise, its value is zero.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

156

Bit field Register Bit field Register Bit-field Register
addrv drivers ioXout_i ioout mmb miscb

bankxdrv drivers mfltaddr mfltaddr msexa31hac miscc

casbvras vram mfltdata mfltdata msexvhacr miscc

ctrladrv drivers mgbtcas mgXcasbt msgsm msgsm

ctrlbdrv drivers mgbtcast mgXcasbt mshacd misca

dsfvcas vram mgbtdob mgXcasbt mspwe miscc

dsfvras vram mgbteoe mgXcasbt msra31 msra

fdmap miscb mgbteras mgXrasbt msras31d misca

ioebtcase ioXebt mgbtewe mgXcasbt msrha msra

ioebtdobe ioXebt mgbtewea mgXcasbt msrra msra

ioebtsum ioXebt mgbtlwea mgXcasbt msrtg misca

vpudelay vpudelay mgbtras mgXrasbt mssbs miscc

vpureset vpureset mgbtrast mgXrasbt msvgrp vram

ioXdmae_i iodmae mgbtrhld mgXrasbt oed miscb

ioXdmaex iodmaex mgebtcase mgXebt oevras vram

ioXdtt iodtta/b mgebtdobe mgXebt outdrv drivers

ioXie_i ioie mgebtsum mgXebt pkgio miscb

ioXin_i ioin mgXbw miscb pkgmflt miscc

ioXip_i ioip mgXds mgds rasbcasbdrv drivers

ioXius_i ioius mgXrd misca wevras vram

Table 54. Bit Field to On-Chip Register Cross-Reference

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

157

Bus Operation

For MPU bus transactions:
((number of RAS cycles) @ mgbtrast) + ((number of bus cycles) @ ((mgbtcast + 1) + mgebtsum))

For I/O-channel bus transactions†:
((number of RAS cycles) @ mgbtrast) + ((number of bus cycles) @ ((mgbtcast + 1) + ioebtsum))

Memory values are for the accessed memory group, and I/O-channel values are for the accessed I/O channel.

† To simplify calculation, this value is an estimate of the actual required slot. See text.

Table 55. Slot Check Computation

The MIF handles requests from all sources for access
to the system bus. Requests arrive and are prioritized,
respectively, from the VPU, DMAC and MPU. This
order ensures that the VPU always has predictable
memory timing, that DMA has bus availability
(because the MPU can saturate the bus), and that
memory coherency is maintained for the MPU.

Operation
To gain access to the bus, the bus address must be
transferred to the MIF and a check made to see if the
bus is available for the time required to complete the
bus transaction. The available bus time is called the
slot and the process checking is called the slot check.
This bus request process takes two CPU-clock cycles
at the beginning of each bus transaction. Memory-
reference MPU and VPU instructions always overlap
one cycle of instruction execution with the bus access
process. DMA operation can overlap both cycles of
the bus request process with a preceding MPU bus
transaction. Thus, except for DMA overlapped with an
MPU bus transaction, there are two CPU-clock cycles
of no activity on the bus preceding each bus transac-
tion. Instruction execution times listed include the bus
request and programmed bus transaction time as part
of the entire memory reference time.

The MIF must always grant the bus to the VPU
immediately when requested in order to guarantee
temporally deterministic VPU execution. To allow this,
the VPU has exclusive access to the bus except when
it is executing delay. When a DMA or MPU bus

request is made, the MIF prioritizes the request,
determines the type of bus transaction, computes the
slot required (see Table 55), and compares this to
vpudelay—the amount of time before the VPU
seizes the bus. If vpudelay is zero, the VPU currently
has the bus. If vpudelay is larger than the value
computed for the bus transaction, the bus is granted
to the requestor. Otherwise, the bus remains idle until
a bus request occurs that can be satisfied, or until the
VPU seizes the bus. Once a bus request has passed
the slot check, the bus transaction begins on the next
CPU-clock cycle.

The slot check computation is an estimate because for
I/O channel bus transactions ioXebt is used for all

(Highest)
VPU
DMA:

I/O Channel 0
I/O Channel 1
I/O Channel 2
I/O Channel 3
I/O Channel 4
I/O Channel 5
I/O Channel 6
I/O Channel 7

MPU:
Posted write
Instruction pre-fetch
Local-register stack spill or refill
Operand stack spill or refill
ld/st
Instruction fetch

(Lowest)

Table 56. Bus Access Priorities

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

158

Device Width Device
Transfer

Type1

Memory
Width

Flyby2/
Buffered3

Bus Cycles4 Bits Moved

byte 0 byte F 4 32

byte 0 cell B 5 32

byte 1 byte F 1 8

byte 1 cell F 1 8

cell 2 byte B 5 32

cell 2 cell F 1 32

1. Refers to device type specified in iodtta or iodttb.
2. Data is transferred directly between device and memory.
3. Data is stored in the MIF during part of the transfer.
4. The entire sequence of cycles is an atomic bus transaction.

Table 57. I/O-Channel Transfer Characteristics

parts of the computation even though a mix of
ioXebt and mgXebt times might be used during the
transaction. The effect of this simplified computation
is that the slot requested might be larger than the bus
time actually used. The bus becomes immediately
available for use when the actual bus transaction
completes.

The address lines out of the CPU are multiplexed to
reduce package pin count and provide an easy
interface to DRAM. DRAMs have their addresses split
into two pieces: the upper-address bits, or row
address, and the lower-address bits, or column
address. The two pieces of the address are clocked
into the DRAM with two corresponding clock signals:
&R&A&S and &C&A&S . AD[31:0] also output higher-order
address bits than the DRAM row and column ad-
dresses during RAS and CAS times, as well as data
input or output during the last portion of each bus
cycle while &D&O&B is active. Bit outputs and bit inputs
are also available on AD[7:0].

I/O Addressing
All the address bits above the msgsm bits are referred
to as the high address bits. These bits are typically
used to address I/O devices with external decoding

hardware. They can be configured to be included in
RAS-cycle determination, or excluded for faster I/O
cycles, to match the requirements of the external
decoding hardware. See System Requirements
Programming, page 126, for the available configura-
tion options.

Bus Transaction Types
The CPU supports both cell-wide and byte-wide
memory, cell-wide and byte-wide devices, and single-
or multi-bus-cycle transactions. Various combinations
of these are allowed; they require one, four, or five bus
cycles to complete the bus transaction, which can
include zero, one, or two RAS cycles. The underlying
structure of all bus cycles is the same. Depending on
the programmed system configuration, device-memory
combination, and current system state, RAS prefix and
CAS parts of bus cycles are combined to provide
correct address generation and memory device
operation. Table 58, page 163, lists the various
combinations of RAS and CAS cycles that are possible
within a given bus transaction.

MPU and VPU (non-xfer) Memory Cycles
The MPU and the VPU can read and execute pro-
grams stored in cell-wide or byte-wide memory. The

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

159

MPU can also read data from and write data to cell-
wide and byte-wide memory. All accesses to cell-wide
or byte-wide memory involve an entire cell. Accesses
to cell-wide memory thus require one bus cycle, while
accesses to byte-wide memory require four bus cycles.

Cell Memory Write from MPU
Cell Memory Read to MPU/VPU
Table 58 and the referenced figures provide details
regarding these bus transactions. These transactions
require one bus cycle.

Byte Memory Write from MPU
Byte Memory Read to MPU/VPU
Table 58 and the referenced figures provide details
regarding these bus transactions. These transactions
require four bus cycles. Byte address bits A1 and A0
are incremented from 0 to 3 to address the most-
significant through the least-significant byte of the
accessed cell.

I/O-Channel Transfers
Depending on the device transfer type and memory
device width, a variety of bus cycle combinations
occur between I/O devices and memory, as shown in
Table 57. The starting address for the transaction
comes from the global register that corresponds to the
I/O channel involved (g8 corresponds to I/O channel
0, …, g15 corresponds to I/O channel 7). The direc-
tion of the transfer relative to memory is indicated by
bit one of the same register. See Figure 16, page 104.
The device transfer type for the transaction comes from
the corresponding field in iodtta or iodttb. The
bus transaction proceeds with the cycles and strobes
listed in Table 58.

Cell Memory Write from Four-byte Byte-transfer
Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from the device and
stored in the MIF during the first four bus cycles, and
is written to memory by the MIF during the fifth bus
cycle. Data that is written to memory while being
collected from the device during the first four bus
cycles is replaced during the fifth bus cycle. A31 is
cleared to deselect the I/O device in order to prevent

contention with the MIF during the fifth bus cycle.
Byte address bits A1 and A0 are incremented from 0
to 3 to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred from the device.

Cell Memory Read to Four-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from memory and
stored in the MIF during the first bus cycle and written
to the device by the MIF during the last four bus
cycles. &O&E is suppressed during the last four bus
cycles to prevent bus contention between memory
and the MIF while the device is written. A31 is cleared
to deselect the I/O device in order to prevent conten-
tion with memory during the first bus cycle. Byte
address bits A1 and A0 are incremented from 0 to 3
to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred to the device.

Byte Memory Write from Four-byte Byte-transfer
Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
four bus cycles. Byte address bits A1 and A0 are
incremented from 0 to 3 to address the most-signifi-
cant through the least-significant byte of the accessed
cell on both the device and memory. The data is
transferred on the bus directly from the device to
memory without the intervention of the MIF.

Byte Memory Read to Four-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
four bus cycles. Byte address bits A1 and A0 are
incremented from 0 to 3 to address the most-signifi-
cant through the least-significant byte of the accessed
cell on both the device and memory. The data is
transferred on the bus directly from memory to the
device without the intervention of the MIF.

Cell Memory Write from One-byte Byte-transfer
Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

160

one bus cycle. Data is typically supplied by the device
on AD[7:0], and is written to the corresponding bits
in memory. AD[31:8] are also written to memory,
and, if not driven by an external device, still hold the
CAS address bits.

Cell Memory Read to One-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Data is typically taken by the device
from AD[7:0], which come from the corresponding
bits in memory. The other memory bits are driven by
memory, but are typically unused by the device.

Byte Memory Write from One-byte Byte-transfer
Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Addresses in the global registers
normally address cells because the lowest two bits are
unavailable for addressing. However, for this transac-
tion, the address in the global register is a modified
byte address. That is, the address is shifted left two bits
(pre-shifted in software) to be correctly positioned for
the byte-wide memory connected to AD. The address
is not shifted again before reaching AD. A31 remains
in place, A30 and A29 become unavailable, and the
group bits exist two bits to the right of their normal
position due to the pre-shifting in the supplied address.
This transaction allows bytes to be transferred, one
byte per bus transaction, and packed into byte-wide
memory.

Byte Memory Read to One-byte Byte-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle. Addresses in the global registers
normally address cells because the lowest two bits are
unavailable for addressing. However, for this transac-
tion, the address in the global register is a modified
byte address. That is, the address is shifted left two bits
(pre-shifted in software) to be correctly positioned for
the byte-wide memory connected to AD. The address
is not shifted again before reaching AD. A31 remains
in place, A30 and A29 become unavailable, and the
groups bits exist two bits to the right of their normal
position in the due to the pre-shifting in the supplied

address. This transaction allows bytes to be trans-
ferred, one byte per bus transaction, and unpacked
from byte-wide memory to a device.

Cell Memory Write from One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle.

Cell Memory Read to One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
one bus cycle.

Byte Memory Write from One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from the device and
stored in the MIF during the first bus cycle and written
to memory by the MIF during the last four bus cycles.
Data that is written to memory while being collected
from the device during the first bus cycle is replaced
during the second cycle. A31 is cleared to deselect the
I/O device in order to prevent contention with the MIF
during the last four bus cycles. Byte address bits A1
and A0 are incremented from 0 to 3 to address the
most-significant through the least-significant byte of
the accessed cell while the data is being transferred
from the MIF to memory.

Byte Memory Read to One-cell Cell-transfer Device
Table 58 and the referenced figure provide details
regarding the bus transaction. The transaction requires
five bus cycles. Data is collected from memory and
stored in the MIF during the first four bus cycles and
written to the device by the MIF during the last bus
cycle. &O&E is suppressed during the fifth bus cycle to
prevent a bus contention between the memory and
MIF while the device is written. A31 is cleared to
deselect the I/O device in order to prevent contention
with memory during the first four bus cycles. Byte
address bits A1 and A0 are incremented from 0 to 3
to address the most-significant through the least-
significant byte of the accessed cell while the data is
being transferred from the memory to the MIF.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

161

mfltblk.wpg

Latch

LE

SRAM

Bypass
CE

A0

Ax

D0

Dx
Dy

CE

WE OE

DEVSEL
MAPDIS

EWE

OE

MFLT

RAS

AD11

ADnn

PSC1000
CPU

A0

Ax

DRAM

Control Logic

Figure 52. Virtual-Memory Page Mapping Logic

Bus Reset
External hardware reset initializes the entire CPU to the
power-on configuration, except for power_fail in
mode. While the reset is active (external or power-on self-
reset), the AD go to a high-impedance state, OUT[7:0]
go high, RASes go active, and all other outputs go
inactive. See Figure 73, page 205, for waveforms.

Video RAM Support
VRAMs increase the speed of graphics operations
primarily by greatly reducing the system memory
bandwidth required to display pixels on the video
display. A VRAM command is used to transfer an entire
row of data from the DRAM array to an internal serial
access memory to be clocked out to the video display.
VRAMs also support other commands to enhance
graphics operations. The VRAM operations are encoded
by writing vram and performing an appropriate read
or write to the desired VRAM memory address. Basic
timing for VRAM bus cycles is the same as any similar
bus transaction in that memory group. See Figure 32,
page 137. Refresh and RAS cycles might also affect
VRAM operations. See Video RAM Support, page 125.
Waveforms representing the effects of the various vram
options are on page 215.

Virtual-Memory Page Faults Input
The MIF detects memory page faults that are caused
by MPU memory accesses by integrating fault
detection with RAS cycles. The mapped page size is
thus the size of the CAS page. The memory system
RAS page address is mapped from a logical page
address to a physical page address during RAS
precharge through the use of an external SRAM. A
memory fault signal supplied from the SRAM is
sampled during &R&A&S fall and, if low, indicates that a
memory page fault has occurred. See Figure 52. The
memory fault signal is input from &M&F&L&T or AD8. See
Alternate Memory Fault Input, below.

When a memory fault is detected, the bus transaction
completes without any of the signals that normally go
active during the CAS part of the bus cycle. A memory
fault exception is then signaled to the MPU, which
executes a trap to service the fault condition. See
Figure 77, page 212, for waveforms.

Alternate Inputs and Outputs
The bit inputs, bit outputs, memory fault input, and
reset input can be multiplexed on AD rather than using
the dedicated pins. This feature can be used to reduce
the number of tracks routed on the PWB (to reduce
PWB size and cost), and can allow the PSC1000 CPU
to be supplied in smaller packages. See Figure 81,
page 218, for waveforms.

Alternative Bit Inputs
The bit inputs can be sampled either from &I&N[7:0]
or from AD[7:0] while &R&A&S is low and &C&A&S is high.
The source is determined by pkgio. See Figure 34,
page 140, and Bit Inputs, page 111.

Alternative Bit Outputs
The bit outputs appear both on OUT[7:0] and on
AD[7:0] while &R&A&S is high. Since they appear in
both places, no selection bit is required. See Bit
Outputs, page 115.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

162

Alternative Memory Fault Input
The memory fault signal can be sampled either from
&M&F&L&T or from AD8 during &R&A&S fall. The source is
determined by pkgmflt. See Figure 39, page 145.

Alternative Reset Input
External hardware reset can be taken either from
&R&E&S&E&T or from AD8; the determination is made at
power-on. The power-on and reset sequence is
described in detail in Processor Startup, page 181.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

163

Cell Memory Byte Memory

Device

I/O-
Channel
Transfer

Type1

Write to Memory Read from Memory Write to Memory Read from Memory

bus
cycle #

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

MPU/VPU2 -

cycle3 RM RM RM CM CM CM

RM CM CM CMCM CM CM CM

strobe4 w o w w w w o o o o

See Figure 53 Figure 54 Figure 55 Figure 56

four-byte
byte-
transfer
device

0

cycle3 RI CI CI CI

RM RM RI CI CI CI

RI CI CI CI

RI CI CI CICI CM CM CI CI CI

strobe4 w w w w w6 o – – – –7 w w w w o o o o

A315 a a a a 0 0 a a a a a a a a a a a a

See Figure 57 Figure 58 Figure 59 Figure 60

one-byte
byte-
transfer
device

1

cycle3 RI RI RI RI

CI CI CI CI

strobe4 w o w o

A315 a a a a

See Figure 61 Figure 62 Figure 63 Figure 64

one-cell
byte-
transfer
device

2

cycle3 RI RI RI RM CM CM CM

RM CM CM CM

RI

CI CI CI CM CM CI

strobe4 w o w w w w w8 o o o o –9

A315 a a a 0 0 0 0 0 0 0 0 a

See Figure 65 Figure 66 Figure 67 Figure 68

Notes:
1. I/O-channel transfer type in iodtta and iodttb.
2. VPU does not write to memory.
3. Indicates on which bus cycle RAS or CAS cycles are possible. Presence of a RAS cycle depends on system

conditions. RI or CI indicates that the bus cycle uses ioXebt timing values, RM or CM indicate that the bus cycle
uses mgXebt timing values.

4. Active strobe during cycle (w is &E&W&E/&L&W&E, o is &O&E, – is no active strobe).
5. A31 selects the I/O device when set, deselects the I/O device when clear (a = program-supplied value, 0 =

forced to zero).
6. Data is collected from the device and stored in the MIF during the first four cycles, and is written to memory by

the MIF during the fifth cycle. Data written during first four cycles is replaced during the fifth cycle.
7. Data is collected from memory into the MIF during the first cycle and written to the device by the MIF during the

last four cycles. &O&E is suppressed during the last four cycles to prevent memory from driving the bus.
8. Data is collected from the device and stored in the MIF during the first cycle, and is written to memory by the MIF

during the last four cycles. Data written to memory during the first cycle is replaced during the second cycle.
9. Data is collected from memory into the MIF during the first four cycles, and is written to the device by the MIF

during the last cycle. &O&E is suppressed on the fifth cycle to prevent memory from driving the bus.

Table 58. RAS/CAS Bus Transactions

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

164

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

Fault†

RAS Address Bits†

Bit Inputs

Reset

Data to Memory from CPU

Data to Memory from CPU

Data to Memory from CPU

CAS Address Bits Data to Memory from CPU

Bit Inputs

Reset

Address Bit

mpucellw.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 53. Cell Memory Write from MPU

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

165

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

Fault†

RAS Address Bits†

Bit Inputs

Reset

Data from Memory to CPU

Data from Memory to CPU

Data from Memory to CPU

CAS Address Bits Data from Memory to CPU

Bit Inputs

Reset

Address Bit

mpucellr.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 54. Cell Memory Read to MPU/VPU

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

166

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit
Inputs

Reset

Bit
Out†

Fault
†

RAS†

Bit
Inputs

Reset

Data to Memory
from CPU

CAS

mpubytew.wpg

CAS CAS CAS

Bit
Inputs

Bit
Inputs

Bit
Inputs

Reset Reset Reset

Data to Memory
from CPU

Data to Memory
from CPU

Data to Memory
from CPU

Address Bit Address
Bit

Address
Bit

Address
Bit

† Presence of RAS inactive period depends on system conditions.

1 2 3 4

Figure 55. Byte Memory Write from MPU

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

167

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit
Inputs

Reset

Bit
Out†

Fault†

RAS†

Bit
Inputs

Reset

Data from
Memory to CPU

CAS

mpubyter.wpg

CAS CAS

Bit
Inputs

Bit
Inputs

Bit
Inputs

Reset Reset Reset

Data from
Memory to CPU

Data from
Memory to CPU

Data from
Memory to CPU

Address Bit Address
Bit

Address
Bit

Address
Bit

† Presence of RAS inactive period depends on system conditions.

1 2 3 4

CAS

Figure 56. Byte Memory Read to MPU/VPU

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

168

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit
Inputs

Bit
Out†

RAS†

Bit
Inputs

Device
to CPU

CAS

io0cellw.wpg

CAS CAS CAS

Bit
Inputs

Reset

Address Bit

† Presence of RAS inactive period depends on system conditions.

Address
Bit

Address
Bit

Address
Bit

ResetReset

Device
to CPU

Bit
Inputs

Device
to CPU

Bit
Inputs

Device
to CPU

CPU to
Memory

CPU to
Memory

CPU to
Memory

CPU to
Memory

1 2 3 4 5

RAS† CAS

ResetReset

Bit
Out

†
Bit

Inputs
Bit

Inputs

ResetReset

Figure 57. Cell Memory Write from Four-byte Byte-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

169

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit
Inputs

Bit
Out†

RAS†

Bit
Inputs

Memory
to CPU

CAS

io0cellr.wpg

CASCAS CAS

Reset

Address Bit

† Presence of RAS inactive period depends on system conditions.

Reset

CPU to
Device

Bit
Inputs

CPU to
Device

CPU to
Device

RAS† CAS

ResetReset Reset Reset Reset

Bit
Out

†
Bit

Inputs
Bit

Inputs
Bit

Inputs
CPU to
Device

Bit
Inputs

Memory
to CPU

Memory
to CPU

Memory
to CPU

Address
Bit

Address
Bit

Address
Bit

1 2 3 4 5

Figure 58. Cell Memory Read to Four-byte Byte-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

170

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit
Inputs

Reset

Bit
Out†

RAS†

Bit
Inputs

Reset

Data to Memory
from Device

CAS

io0bytew.wpg

CAS CAS CAS

Bit
Inputs

Bit
Inputs

Bit
Inputs

Reset Reset Reset

Data to Memory
from Device

Data to Memory
from Device

Data to Memory
from Device

Address Bit Address
Bit

Address
Bit

Address
Bit

† Presence of RAS inactive period depends on system conditions.

1 2 3 4

Figure 59. Byte Memory Write from Four-byte Byte-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

171

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit
Inputs

Reset

Bit
Out†

RAS†

Bit
Inputs

Reset

Data from Memory
to Device

CAS

io0byter.wpg

CAS CAS CAS

Bit
Inputs

Bit
Inputs

Bit
Inputs

Reset Reset Reset

Address Bit Address
Bit

Address
Bit

Address
Bit

† Presence of RAS inactive period depends on system conditions.

1 2 3 4

Data from Memory
to Device

Data from Memory
to Device

Data from Memory
to Device

Figure 60. Byte Memory Read to Four-byte Byte-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

172

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data to Memory from Device

CAS Address Bits

Bit Inputs

Reset

Address Bit

io1cellw.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 61. Cell Memory Write from One-byte Byte-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

173

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data from Memory to Device

Data from Memory (unused)

Data from Memory (unused)

CAS Address Bits Data from Memory (unused)

Bit Inputs

Reset

Address Bit

io1cellr.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 62. Cell Memory Read to One-byte Byte-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

174

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data to Memory from Device

CAS Address Bits

Bit Inputs

Reset

Address Bit

io1bytew.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 63. Byte Memory Write from One-byte Byte-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

175

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data from Memory to Device

CAS Address Bits

Bit Inputs

Reset

Address Bit

io1byter.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 64. Byte Memory Read to One-byte Byte-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

176

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data to Memory from Device

Data to Memory from Device

Data to Memory from Device

CAS Address Bits Data to Memory from Device

Bit Inputs

Reset

Address Bit

io2cellw.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 65. Cell Memory Write from One-cell Cell-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

177

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit Inputs

Reset

Bit Outputs†

RAS Address Bits†

Bit Inputs

Reset

Data from Memory to Device

Data from Memory to Device

Data from Memory to Device

CAS Address Bits Data from Memory to Device

Bit Inputs

Reset

Address Bit

io2cellr.wpg

1

† Presence of RAS inactive period depends on system conditions.

Figure 66. Cell Memory Read to One-cell Cell-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

178

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

OE

DOB

CAS

RAS†

Bit
Inputs

Bit
Out†

RAS†

Bit
Inputs

Device
to CPU

CAS

io2bytew.wpg

CASCAS CAS

Reset

Address Bit

† Presence of RAS inactive period depends on system conditions.

Reset

CPU to
Memory

Bit
Inputs

CPU to
Memory

CPU to
Memory

RAS† CAS

ResetReset Reset Reset Reset

Bit
Out† Bit InputsBit

Inputs
Bit

Inputs
CPU to
Memory

Bit
Inputs

Device
to CPU

Device
to CPU

Device
to CPU

1 2 3 4 5

Figure 67. Byte Memory Write from One-cell Cell-transfer Device

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

179

AD31

AD[30:9]

AD8

AD[7:0]

LWE

EWE

OE

DOB

CAS

RAS†

Bit
Inputs

Reset

Bit
Out†

RAS†

Bit
Inputs

Reset

Memory
to CPU

CAS

io2byter.wpg

CAS CAS CAS

Bit
Inputs

Reset

† Presence of RAS inactive period depends on system conditions.

ResetReset

Memory
to CPU

Bit
Inputs

Memory
to CPU

Bit
Inputs

Memory
to CPU

CPU to
Device

1 2 3 4 5

CPU to
Device

CPU to
Device

CPU to
DeviceAddress Bit

Bit
Out†

Bit
Inputs

Bit
Inputs

Reset

RAS† CAS

Reset

Figure 68. Byte Memory Read to One-cell Cell-transfer Device

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

180

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

181

Processor Startup

Power-on Reset
The CPU self-resets on power-up (see Reset Process,
below). The CPU contains an internal circuit that holds
internal reset active and keeps the processor from
running, regardless of the state of the external hard-
ware reset, until the supply voltage reaches approxi-
mately 3 V. Once the supply reaches 3 V, &R&E&S&E&T is
sampled and, if active, is used as the source of external
reset for the CPU. Otherwise, external reset is multi-
plexed on AD8. This determination applies until power
is cycled again. If one of the resets is active, the CPU
waits until that reset goes inactive before continuing.
If neither reset source is active, the processor immedi-
ately begins the reset sequence. The clock input at
CLK, therefore, must be stable before that time.

During the power-on-reset process, the mode bit
power_fail is set to indicate that the power had
previously failed. The bit is cleared by any write to
mode.

Boot Memory
The CPU supports booting from byte-wide memory
that is configured as either an &O&E -activated or boot-
only memory device. The boot-only memory configu-
ration is primarily used to keep the typically slow boot
EPROMs out of the heavily used low-address memory
pages.

Boot-only memory is distinct from &O&E -activated
memory in that it is wired into the system to place data
on the bus without the use of &O&E or memory bank- or
group-specific (&R&A&S&x or &C&A&S&x) signals. OED is
initially set during a CPU reset to disable &O&E during
the boot-up process to allow the described operation.
The boot-only memory select signal is externally
decoded from the uppermost address bits that contain
0x800…. The number of uppermost address bits used
depends on the system’s I/O device address decoding
requirements. The lowest address bits are connected
so as to address individual bytes and cells as they are
for a normal memory. Thus the boot-only memory
device can be selected regardless of which memory
group is accessed.

Reset Process
When reset occurs, the CPU leaves on-chip RAM
uninitialized and clears most registers to zero, except
for strategically placed bits that assist in the reset
sequence. Specifically, the CPU resets to the most
conservative system configuration. See Table 59. The
mode bit power_fail is set only by the power-on-
reset process and can be checked to determine
whether the reset was caused by a power failure or
reset going active.

The first bus transaction after reset is a cell read of four
bytes from byte-wide memory in memory group zero,
memory bank zero, starting from addresses
0x80000000, with &O&E disabled, in SMB mode. This
address consists of I/O device address 0x800… and
memory device address 0x…N. Because &O&E is
disabled, &O&E -activated memory does not respond,
thus allowing a boot-only memory to respond.

The CPU tests the byte returned from address
0x80000003. If the byte is 0xa5 then a boot-only
memory responded and execution continues with &O&E
disabled. Otherwise, a boot-only memory did not
respond, and the CPU assumes booting occurs from
&O&E -activated memory. The CPU then clears OED to
activate &O&E for this memory to respond on subsequent
bus cycles.

Bootstrap Programs
With either boot-only or &O&E -activated memory, bus
accesses continue in SMB mode from the byte-wide
memory device. The second bus transaction is to the
hardware reset address for the VPU at 0x80000004.
This typically contains a jump to a small
refresh/delay loop. The delay makes the bus
available and allows the MPU to begin executing at
its reset address, 0x80000008. The programmer must
ensure that the delay value programmed in the VPU
is sufficient to allow the MPU on the bus with the very
slow byte-wide bus transactions that default after reset.

If the system is wired in MMB mode, booting is
simpler from a boot-only memory. Booting from &O&E -
activated memory is also possible, but requires
external gating to prevent bank zero of memory

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

182

groups one, two, and three from being selected when
memory group zero is accessed.

Next, the MPU begins executing and typically is
programmed to branch to the system bootstrap
routine. The MPU bootstrap is programmed to:
C set the configuration registers required for the
system hardware,
C set the software reset vector for the VPU,
C copy the initial MPU and VPU application
programs from the boot device into memory (if
required),
C branch to the application program for the MPU,
and
C reset the VPU in software to begin VPU program
execution (if required).

System startup is now complete.

The following pages describe several startup configu-
rations. For actual code see Example PSC1000 CPU
System, page 187. The configurations described below
are:
C Boot from byte-wide boot-only memory and copy
the application program to cell-wide R/W memory.
C Boot from cell-wide boot-only memory and copy
the application program to cell-wide R/W memory.
C Boot and run from byte-wide memory.
C Boot and run from cell-wide memory.

Boot from Byte-Wide Boot-Only Memory and Copy
the Application Program to Cell-Wide R/W Memory
This process requires external decoding hardware to
cause the boot-only memory to activate as previously
described.

To indicate that boot-only memory is present, the
memory must have 0xa5 at location 0x80000003
(typically 0x000000a5 in the cell at 0x80000000).
This signature byte must be detected at startup to
continue the boot process from a boot-only memory.

Construct the boot program execution sequence to be
as follows:

1. The VPU executes JUMP from its power-on-reset
location to code that performs eight RAS cycles on

each memory group (by performing refresh cycles) to
initialize system DRAM. It then enters a micro-loop
that includes refresh for DRAM, and delay to
allow the MPU to execute. The micro-loop repeats
refresh and delay, and eliminates VPU accesses
to the bus for further instructions during configuration.
delay allows the MPU bus access to begin configur-
ing the system before more refresh cycles are required.
The refresh cycles are not required if the system does
not contain DRAM.

2. The MPU executes br from its reset location to the
program code to configure the system. The br should
contain bits that address memory group three. This
later allows the configuration for memory group three
to be used for boot-only device access timing while
memory groups zero, one and two are programmed
for the system timing requirements. Although memory
group one or two could be used instead of three in the
manner described herein, only memory group three
is discussed for simplicity.

The MPU configuration program code must be
arranged to hold off instruction pre-fetch so that the
configurations of the current memory group and the
global memory system are not changed during a bus
cycle. See the supplied example boot code on page
191.

3. When programming miscb, set mmb if required. In
systems wired for MMB mode this allows RAS-type
cycles to occur properly on all memory groups.

4. Set msgsm to define four memory groups, even if
the system ultimately does not have them. During the
next instruction fetch the boot-only memory is again
selected. However, the address bits for memory group
three placed in the PC by br in step two cause the
configuration for memory group three to be used.

5. Program the timing of memory group three to
optimize access to the boot-only memory. Then
program the remainder of the system configuration.
During this process the VPU typically performs three
or so sets of refresh cycles. Though it is possible that
the MPU will be changing pertinent configuration
registers during the refresh cycles, it is very unlikely

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

183

due to the long bus cycle times of EPROMs typically
used for boot-only memory. Further, the worst result
is inappropriate timing on a single refresh cycle, which
is of little actual consequence since there is no data
yet in DRAM to be protected.

If memory group three is used by the application, it
must be configured later from the loaded application
code.

6. Read the final boot code (if any) and the application
program from the boot-only memory and write them
to the appropriate locations in R/W memory. The
entire application program can be loaded into R/W
RAM, except for that part, if any, that is destined for
memory group three, where the boot-only memory is
running. This must be copied by the application once
it is running.

7. Layout a single instruction group that contains
programming to clear OED and to branch to the
application program. Using br[] clears A31 so that
the boot-only memory does not activate at the branch
destination.

8. Now the application program is executing. Config-
ure memory group three, if required. If loading
memory group three from the boot-only memory is
necessary, then arrange the code between two
instruction groups to first ensure pre-fetch is complete,
then set OED, then execute a micro-loop to transfer the
application to memory group three, and reenable OED
when the micro-loop completes.

9. Reset the VPU in software to begin execution of its
application program. A software reset of the VPU
causes it to begin executing at 0x10, and as a result
clears A31 from the VPU PC so the boot-only memory
is no longer selected.

The boot process is complete.

Boot from Cell-Wide Boot-Only Memory and Copy the
Application Program to Cell-Wide R/W Memory
This process requires external decoding hardware to
cause the boot-only memory to activate as previously
described.

The CPU always initially boots from byte-wide
memory since this is the reset configuration. The CPU
executes instructions from the low byte of each
address until the configuration for the current memory
group is programmed to be cell wide. Up to this point,
the upper 24 bits of the boot-device data are unused.
The boot process is otherwise the same as booting
from byte-wide boot-only memory, except that at step
3, when writing miscb, also set memory groups zero
and three to be cell-wide. In the instruction group with
the sto to miscb place a br to the next instruction
group. This holds off pre-fetch so that the next
instruction fetch is cell-wide. Note that the boot
program must be carefully programmed so that the
instructions before the br are represented as byte-
wide and after the br are represented as cell-wide.
The Patriot linker has a section directive, CELLBOOT,
to create the appropriate initial section.

Boot and Run from Byte-Wide Memory
This process requires the boot/run memory device to
be activated by &M&G&S&0 /&R&A&S&0 /&C&A&S&0 . A31 is not used
when selecting the boot/run memory.

To indicate that &O&E -activated memory is present, the
memory must not respond with 0xa5 at location
0x80000003 when &O&E is not asserted. The lack of this
signature byte is detected at startup to indicate that &O&E
is required to continue the boot process. OED is set
during a CPU reset to disable OED during the boot-up
process, and cleared when the signature byte 0xa5 is
not detected, re-enabling &O&E .

Construct the boot program execution sequence to be
as follows:

1. The VPU executes JUMP from its power-on-reset
location to code that performs eight RAS cycles on each
memory group (by performing refresh cycles) to initialize
system DRAM. It the enters a micro-loops that includes
refresh for DRAM, and delay to allow the MPU to
execute. The micro-loop repeats refresh and delay,
and eliminates accesses by the VPU to the bus for further
instructions during configuration. delay allows the MPU
bus access to begin configuring the system before more
refresh cycles are required. The refresh cycles are not
required if the system does not contain DRAM.

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

184

2. The MPU executes br from its reset location to the
program code to configure the system.

The MPU configuration program code must be
arranged to hold off instruction pre-fetch so that the
configurations of the current memory group and the
global memory system are not changed during a bus
cycle. See the supplied example boot code on page
191.

3. When programming miscb, set mmb if required. In
systems wired for MMB mode this allows RAS-type
cycles to occur properly on all memory groups.

4. Program the timing of memory group zero to
optimize access to the memory. Then program the
remainder of the system configuration. During this
process the VPU typically performs three or so sets of
refresh cycles. Though it is possible for the MPU to be
changing pertinent configuration registers during a
refresh cycle, it is very unlikely due to the long bus
cycle times of EPROMs. Further, the worst result is
inappropriate timing on a single refresh cycle, which
is of little actual consequence since there is no data
yet in DRAM to be protected.

5. Reset the VPU in software to begin execution of its
application program, if needed. A software reset of the
VPU causes it to begin executing at 0x10, and as a
result clears A31 from the VPU PC.

6. Begin execution of the application program.

The boot process is complete.

Boot and Run from Cell-Wide Memory
This process requires the boot/run memory device to
be activated by &M&G&S&0 /&R&A&S&0 /&C&A&S&0 . A31 is not used
when selecting the boot/run memory.

The CPU always initially boots from byte-wide
memory since this is the reset configuration. The CPU
executes instructions from the low byte of each
address until the configuration for the current memory
group is programmed to be cell wide. Up to this point,
the upper 24 bits of the boot-device data are unused.
The boot process is otherwise the same as booting and
running from byte-wide memory, except that at step
3, when writing miscb, also set memory group zero
to be cell- wide. In the instruction group with the sto
to miscb place a br to the next instruction group.
This holds off pre-fetch so that the next instruction
fetch is cell-wide. Note that the boot program must be
carefully programmed so that the instructions before
the br are represented as byte-wide and after the br
are represented as cell-wide. The Patriot linker has a
section directive, CELLBOOT, to create the appropriate
initial section.

Stack Initialization
After CPU reset both of the MPU stacks are uninitializ-
ed until the corresponding stack pointers are loaded.
This should be one of the first operations performed
by the MPU.

After a reset, the operand stack is abnormally empty.
That is, s2 has not been allocated, and is allocated on
the first push operation. However, popping this item
causes the stack to be empty and require a refill. The
first pushed item should therefore be left on the stack,
or sa should be initialized, before the operand stack
is used further.

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Bus Operation
PSC1000 MICROPROCESSOR

185

Uninitialized
s2–s17 sdepth r1–r15 ldepth g1–g15

Initialized Zero
s0–s1 r0 g0 x ct ioip ioius ioie
iodmae misca mfltaddr mfltdata msgsm miscc msra vpudelay
iodtta iodttb iodmaex drivers

Initialized Non-zero
sa 0xfffffffc la 0xfffffffc ioin 0xff ioout 0xff mode 0x00004000
vram

msvgrp 0x03 dsfvcas zero dsfvras zero casbvras zero
wevras zero oevras zero

miscb
mmb zero fdmap zero pkgio zero oed one
mg3bw one mg2bw one mg1bw one mg0bw one

mgds
mg3ds 0x0f mg2ds 0x0f mg1ds 0x0f mg0ds 0x0f

mgXebt
mgebtsum* 0x1f mgebtdobe 0x0f mgebtcase 0x03

mgXcasbt
mgbtcas 0x07 mgbtdob 0x0f mgbtcast 0x1f mgbtewea one
mgbtlwea zero mgbteoe zero mgbtewe zero

mgXrasbt
mgbtrast 0x1f mgbtras 0x0f mgbtrhld 0x0e mgbteras zero

ioXebt
ioebtsum* 0x1f ioebtdobe 0x0f ioebtcase 0x03

The CPU reset conditions produce the following configuration:
Stacks uninitialized.
All interrupts, traps, faults, DMAs, and DMA expirations disabled.
VRAM memory group set to memory group three, no VRAM options set.
VRAM memory group included in high address bit compare caused RAS cycles.
Refresh enabled on all groups using memory group zero timing, refresh address bits starting at zero.
Posted writes disabled.
Cause RAS cycle when A31 = 1.
Cause RAS cycle when high address bits change.
A31 included in high-address-bit compare.
Single memory bank per memory group (SMB) mode with one memory group.
Input bits taken from the bus.
Memory fault taken from AD8.
&O&E disabled.
All memory groups are byte-wide.
All memory device sizes set to SRAM.
Memory bus cycles set for maximum length, actual CAS cycle length set to 51 CPU-clock cycles with CAS

precharge of eight 2X-CPU-clock cycles (* xxebtsum registers set to maximum, which requests a slot larger
than actually required), CAS address hold time of eight 2X-CPU-clock cycles, &E&W&E fall at &C&A&S fall, memory
write data setup time to &L&W&E fall of 15 CPU-clock cycles, memory write data setup time to E&&W&E and L&W&E&
rise of 39 CPU-clock cycles, &O&E active time of 39 CPU-clock cycles, data hold time/buffer disable time of
four CPU-clock cycles, RAS precharge of 16 CPU-clock cycles, RAS address hold time of 14 CPU-clock
cycles.

All I/O-channel timings set for maximum length (the same bus cycles as memory above).
Revolving DMA priorities.
Device transfer types all set to four-byte byte-transfer devices.

Table 59. System Configuration after CPU Reset

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

186

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Example Systems
PSC1000 MICROPROCESSOR

187

Example PSC1000 CPU Systems

Example System 1
Figure 69 depicts a minimal system with an 8-bit wide
EPROM in memory group zero, and 256K of 8-bit-
wide DRAM in memory group one. Memory group
zero and memory group one must be configured with
timing appropriate for the devices used, and mg1ds
set to 0x02 (256K DRAM). Otherwise, the default
system configuration is suitable. The system can boot
and run directly from the EPROM, or, since EPROMs
are generally slower than DRAM, can copy the
EPROM into DRAM for faster code execution.

Example System 2
Figure 70 depicts a minimal system with 32-bit-wide
DRAM in memory group zero, an 8-bit-wide EPROM
as a boot-only memory device, and an I/O address
decoder. The I/O address decoding is performed by
a 74HC137, a 3-to-8 decoder with latch. The decoder
is wired to supply four device selects when A31 is set,
and another four when A31 is clear. The sets of four
selects are latched during RAS precharge and enabled
during C&A&S& active. They are decoded from A30 and
A29 when a 32-bit-wide memory group is involved
and from A28 and A27 when an 8-bit-wide memory
group is involved. The device select with A31 set and
the other decoded address bits clear is used to select
the EPROM as a boot-only memory device.

The EPROM must be programmed with 0xa5 at
location 0x80000003 (typically 0x000000a5 at
location 0x80000000). Memory group zero must be
configured with timing appropriate for the devices
used, mg0bw set to zero (cell wide), and mg0ds set to
0x02 (256K DRAM). Since RAS is used to latch the I/O
address, msras31d, mshacd and msexa31hac must
remain in their default configuration of clear.

Example System 3
Figure 71 depicts a system with 32 KB of 32-bit-wide
SRAM in memory group zero, 1 MB of 32-bit-wide
DRAM in memory group one, an 8-bit-wide EPROM
as a boot-only memory device, and an I/O address
decoder. Address latching of the CAS address for the
SRAM is performed by two 74ACT841 transparent
latches. The address inputs of the DRAM and EPROM
are also connected to the outputs of the latches,
though they could have been connected to the
corresponding AD instead. The I/O address decoding
is performed by a 74FCT138A, a 3-to-8 decoder, using
the latched CAS address bits. The decoder is wired to
supply eight device selects when A31 is set. The
selects are enabled during C&A&S& active. They are
decoded from A30 and A29 when the DRAM memory
group is involved and from A20 and A21 when the
SRAM memory group is involved. Since the EPROM
is 8-bit-wide, the selects are decoded from A18 and
A19 when accessing the EPROM. The device select
with A31 set and the other decoded address bits clear
is used to select the EPROM as a boot-only memory
device.

The EPROM must be programmed with 0xa5 at
location 0x80000003 (typically 0x000000a5 at
location 0x80000000). The memory groups must be
configured with timing appropriate for the devices
used, mg0bw and mg1bw set to zero (cell wide),
mg0ds set to 0x0f (SRAM), and mg1ds set to 0x02
(256K DRAM). Since RAS is not used to latch the I/O
address, msras31d, mshacd and msexa31hac can
be set to reduce the number of RAS cycles involved
in I/O.

1
4
F
1
>
3
5
�9
>
6
?
B
=
1
D
9
?
>

@C3! �=YSb_`b_SUcc_b
#"�29D B9C3 @B?35CC?B

!((

! " # $

1

2

3

4

$#"!

4

3

2

1
DYd\U

>e]RUb BUfYcY_^CYjU

1

4QdU* "!�=Qb�!))) CXUUd _V

6Y\U* 4*L5H1=@<5!�C38 4bQg^ 2i*

14
&&

14!
&$

14"
&

14#
%)

14$
%(

14%
%'

14&
%$

14'
%#

14(
%"

14)
$)

14!
$(

14!!
$'

14!"
$&

14!#
$#

14!$
$"

14!%
$!

14!&
#&

14!'
#%

14!(
#$

14!)
#!

14"

14"!
")

14""
"(

14"#
"%

14"$
"$

14"%
"#

14"&
"

14"'
!)

14"(
!(

14")
!'

14#
!"

14#!
!!

9>!
($

9>"
(%

9>#
(&

9>$
('

9>%
)!

9>&
)"

9>'
)#

9>
(#

?ED
"

?ED!
#

?ED"
$

?ED#
%

?ED$
&

?ED%
'

?ED&
(

?ED'
)

4C6
'#

=6<D
("

B5C5D
!

3<;
((

?5
'$

<G5
'%

4?2
'"

B1C
)(

B1C
&(

31C
))

31C
&)

=7C �B1C
'(

=7C!�B1C!
')

=7C"�B1C"
(

=7C#�B1C#
(!

31C
)$

31C!
)%

31C"
)&

31C#
)'

5G5
&'

U1

SHBOOM (100 PIN)

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

?cS
(

>3�?5
!

OSC1

F33

C1

R1

F33

D1

S1

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

1!#
"&

1!$
"'

1!%
!

5
"

7�F@@
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U2

27C512

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

C2 C3 C4 C5 C6 C7 C8 C9

C10 C11

F44F33QTFSSSdb\FSS

SFSS

C12 C13 C14

AD20

1
!

1!
!!

1"
!"

1#
!#

1$
!&

1%
!'

1&
!(

1'
!)

1(
"

1)
)

B1C
(

31C
"#

G
'

?5
""

4A
"

4A!
#

4A"
$

4A#
%

4A$
"$

4A%
"%

4A&
"&

4A'
"'

U3

TMS44800

CPU core power decoupling.

CPU output driver power decoupling. DRAM/EPROM decoupling.

DRAM in memory group one.

EPROM in memory group zero.

AD25
AD26

Example minimal system with 8-bit memory.

5XVdaT %(� 4gP_[T <X]X\P[BhbcT\ fXcW '�QXc <T\^ah

1
4
F
1
>
3
5
�9
>
6
?
B
=
1
D
9
?
>

5hQ]`\U�CicdU]c
@C3! =93B?@B?35CC?B

!()

! " # $

1

2

3

4

$#"!

4

3

2

1
DYd\U

>e]RUb BUfYcY_^CYjU

1

4QdU* "!�=Qb�!))) CXUUd _V

6Y\U* 4*L5H1=@<5"�C38 4bQg^ 2i*

14
&&

14!
&$

14"
&

14#
%)

14$
%(

14%
%'

14&
%$

14'
%#

14(
%"

14)
$)

14!
$(

14!!
$'

14!"
$&

14!#
$#

14!$
$"

14!%
$!

14!&
#&

14!'
#%

14!(
#$

14!)
#!

14"

14"!
")

14""
"(

14"#
"%

14"$
"$

14"%
"#

14"&
"

14"'
!)

14"(
!(

14")
!'

14#
!"

14#!
!!

9>!
($

9>"
(%

9>#
(&

9>$
('

9>%
)!

9>&
)"

9>'
)#

9>
(#

?ED
"

?ED!
#

?ED"
$

?ED#
%

?ED$
&

?ED%
'

?ED&
(

?ED'
)

4C6
'#

=6<D
("

B5C5D
!

3<;
((

?5
'$

<G5
'%

4?2
'"

B1C
)(

B1C
&(

31C
))

31C
&)

=7C �B1C
'(

=7C!�B1C!
')

=7C"�B1C"
(

=7C#�B1C#
(!

31C
)$

31C!
)%

31C"
)&

31C#
)'

5G5
&'

U1

SHBOOM (100 PIN)

1
!&

1!
!'

1"
!(

1#
!)

1$
""

1%
"#

1&
"$

1'
"%

1(
"&

B1C
!$

31C
"(

<G
!"

?5
"'

4A
"

4A!
#

4A"
$

4A#
%

4A$
'

4A%
(

4A&
)

4A'
!

4A(
#!

4A)
#"

4A!
##

4A!!
#$

4A!"
#&

4A!#
#'

4A!$
#(

4A!%
#)

EG
!#

U2

TMS44165

1
!&

1!
!'

1"
!(

1#
!)

1$
""

1%
"#

1&
"$

1'
"%

1(
"&

B1C
!$

31C
"(

<G
!"

?5
"'

4A
"

4A!
#

4A"
$

4A#
%

4A$
'

4A%
(

4A&
)

4A'
!

4A(
#!

4A)
#"

4A!
##

4A!!
#$

4A!"
#&

4A!#
#'

4A!$
#(

4A!%
#)

EG
!#

U3

TMS44165

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15

AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

?cS
(

>3�?5
!

OSC1

F33

C1

R1

F33

D1

S1

AD31

AD29
AD30

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

1!#
"&

1!$
"'

1!%
!

5
"

7�F@@
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U4

27C512

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

EPROM wired as a boot-only
 memory device.

C2 C3 C4 C5 C6 C7 C8 C9

C10 C11

F44F33QTFSSSdb\FSS

SFSS

C12 C13 C14 C15

7<
$

1
!

2
"

3
#

7!
&

7"
%

i
!%

i!
!$

i"
!#

i#
!"

i$
!!

i%
!

i&
)

i'
'

U5

MC74HC137

Selects 0-3 activate when A31 is 0; selects 4-7 activate when
 A31 is 1. Decoding requires a RAS cycle whenever the
 address bits change.

CPU core power decoupling.

CPU output driver power decoupling. DRAM/EPROM decoupling.

AD[31:0]

AD25
AD26

Example minimal system with 32-bit wide DRAM and I/O decoding.

5XVdaT &�� 4gP_[T <X]X\P[BhbcT\ fXcW "!�QXc 3A0< P]S 8�> 3TR^SX]V

1
4
F
1
>
3
5
�9
>
6
?
B
=
1
D
9
?
>

@C3! �=YSb_`b_SUcc_b
#"�29D B9C3 @B?35CC?B

!)

! " # $

1

2

3

4

$#"!

4

3

2

1

DYd\U

>e]RUb BUfYcY_^CYjU

2

4QdU* "!�=Qb�!))) CXUUd _V

6Y\U* 4*L5H1=@<5#�C38 4bQg^ 2i*

14
&&

14!
&$

14"
&

14#
%)

14$
%(

14%
%'

14&
%$

14'
%#

14(
%"

14)
$)

14!
$(

14!!
$'

14!"
$&

14!#
$#

14!$
$"

14!%
$!

14!&
#&

14!'
#%

14!(
#$

14!)
#!

14"

14"!
")

14""
"(

14"#
"%

14"$
"$

14"%
"#

14"&
"

14"'
!)

14"(
!(

14")
!'

14#
!"

14#!
!!

9>!
($

9>"
(%

9>#
(&

9>$
('

9>%
)!

9>&
)"

9>'
)#

9>
(#

?ED
"

?ED!
#

?ED"
$

?ED#
%

?ED$
&

?ED%
'

?ED&
(

?ED'
)

4C6
'#

=6<D
("

B5C5D
!

3<;
((

?5
'$

<G5
'%

4?2
'"

B1C
)(

B1C
&(

31C
))

31C
&)

=7C �B1C
'(

=7C!�B1C!
')

=7C"�B1C"
(

=7C#�B1C#
(!

31C
)$

31C!
)%

31C"
)&

31C#
)'

5G5
&'

U1

SHBOOM (100 PIN)

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

?
c
S

(

>
3
�
?
5

!

OSC1

F33

C1

R1

F33

D1

S1

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

1!#
"&

1!$
"'

1!%
!

5
"

7�F@@
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U2

27C512

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

C2 C3 C4 C5 C6 C7 C8 C9

C10 C11

F44F33QTFSSSdb\FSS

SFSS

C12 C13 C14 C15

CPU core power decoupling.

CPU output driver power decoupling. Logic & EPROM decoupling.

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20
LAD21
LAD22
LAD23
LAD24
LAD25
LAD26

?3
!

3
!#

!4
"

!A
"#

"4
#

"A
""

#4
$

#A
"!

$4
%

$A
"

%4
&

%A
!)

&4
'

&A
!(

'4
(

'A
!'

(4
)

(A
!&

)4
!

)A
!%

! 4
!!

! A
!$

U3

74ACT841

?3
!

3
!#

!4
"

!A
"#

"4
#

"A
""

#4
$

#A
"!

$4
%

$A
"

%4
&

%A
!)

&4
'

&A
!(

'4
(

'A
!'

(4
)

(A
!&

)4
!

)A
!%

! 4
!!

! A
!$

U4

74ACT841

AD11
AD12
AD13
AD14
AD15
AD16
AD17
AD18
AD19
AD20

AD21
AD22
AD23
AD24
AD25
AD26
AD28
AD29
AD30
AD31

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20

LAD21
LAD22
LAD23
LAD24
LAD25
LAD26
LAD28
LAD29
LAD30
LAD31

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

35"
"&

G5
"'

35!
"

?5
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U5

MT5C6408

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20
LAD21
LAD22
LAD23

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

35"
"&

G5
"'

35!
"

?5
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U6

MT5C6408

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20
LAD21
LAD22
LAD23

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

35"
"&

G5
"'

35!
"

?5
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U7

MT5C6408

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20
LAD21
LAD22
LAD23

1
!

1!
)

1"
(

1#
'

1$
&

1%
%

1&
$

1'
#

1(
"%

1)
"$

1!
"!

1!!
"#

1!"
"

35"
"&

G5
"'

35!
"

?5
""

4A!
!!

4A"
!"

4A#
!#

4A$
!%

4A%
!&

4A&
!'

4A'
!(

4A(
!)

U8

MT5C6408

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19
LAD20
LAD21
LAD22
LAD23

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7

AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15

AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23

AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

F33

F33 F33

F33

1
!

2
"

3
#

7!
&

7"1
$

7"2
%

I
!%

I!
!$

I"
!#

I#
!"

I$
!!

I%
!

I&
)

I'
'

U9

74FCT138A

LAD28
LAD29
LAD30

LAD31

1
!&

1!
!'

1"
!(

1#
!)

1$
""

1%
"#

1&
"$

1'
"%

1(
"&

B1C
!$

31C
"(

<G
!"

?5
"'

4A
"

4A!
#

4A"
$

4A#
%

4A$
'

4A%
(

4A&
)

4A'
!

4A(
#!

4A)
#"

4A!
##

4A!!
#$

4A!"
#&

4A!#
#'

4A!$
#(

4A!%
#)

EG
!#

U10

TMS44165

1
!&

1!
!'

1"
!(

1#
!)

1$
""

1%
"#

1&
"$

1'
"%

1(
"&

B1C
!$

31C
"(

<G
!"

?5
"'

4A
"

4A!
#

4A"
$

4A#
%

4A$
'

4A%
(

4A&
)

4A'
!

4A(
#!

4A)
#"

4A!
##

4A!!
#$

4A!"
#&

4A!#
#'

4A!$
#(

4A!%
#)

EG
!#

U11

TMS44165

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19

LAD11
LAD12
LAD13
LAD14
LAD15
LAD16
LAD17
LAD18
LAD19

AD0
AD1
AD2
AD3
AD4
AD5
AD6
AD7
AD8
AD9
AD10
AD11
AD12
AD13
AD14
AD15

AD16
AD17
AD18
AD19
AD20
AD21
AD22
AD23
AD24
AD25
AD26
AD27
AD28
AD29
AD30
AD31

C16 C17 C18 C19 C20 C21

SRAM & DRAM decoupling

8Kx32 SRAM in memory group 0. 256Kx32 DRAM in memory group 1

I/O device addressing

EPROM wired as boot-only memory device

Address latches primarily for SRAM.

Example system with SRAM, DRAM and I/O decoding.

5XVdaT & � 4gP_[T BhbcT\ fXcW BA0<� 3A0< P]S 8�> 3TR^ST

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Example Systems
PSC1000 MICROPROCESSOR

191

1

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

2

T

;
;
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

P
S
C
1
0
0
0

B
o
o
t
-
o
n
l
y

E
P
R
O
M

l
o
a
d
e
r

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

3

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4

T

;
;

5

T

;
;

b
o
o
t
c
o
d
e
.
s

6

T

;
;

7

T

;
;

C
o
p
y
r
i
g
h
t

(
c
)

1
9
9
6

P
a
t
r
i
o
t

S
c
i
e
n
t
i
f
i
c

C
o
r
p
o
r
a
t
i
o
n
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

8

T

;
;

9

T

;
;

T
h
i
s

f
i
l
e

c
o
n
t
a
i
n
s

t
h
e

p
r
o
g
r
a
m
m
i
n
g

t
o

c
o
n
f
i
g
u
r
e

a

P
S
C
1
0
0
0

s
y
s
t
e
m

a
n
d

c
o
p
y

1
0

T

;
;

t
h
e

s
y
s
t
e
m

p
r
o
g
r
a
m
m
i
n
g

f
r
o
m

E
P
R
O
M

i
n
t
o

R
A
M
.

1
1

T

;
;

1
2

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
3

T

1
4

T

.
o
p
t

b
.
1
,
l
l
b
l

1
5

T

1
6

T

.
o
p
t

n
o
i
n
c
l

1
7

T

.
i
n
c
l
u
d
e

"
o
n
c
h
i
p
.
d
e
f
"

1
8

T

.
i
n
c
l
u
d
e

"
s
y
s
m
e
m
.
d
e
f
"

1
9

T

.
o
p
t

i
n
c
l
,
l
l
b
l

2
0

T

2
1

T

.
i
m
p
o
r
t

s
t
a
r
t
,

l
o
a
d
_
t
b
l
,

c
o
n
f
i
g
_
d
a
t
a
,

c
o
n
f
i
g
_
e
n
t
r
i
e
s

2
2

T

.
i
m
p
o
r
t

l
s
t
k
_
o
r
g
,

o
s
t
k
_
o
r
g
,

a
s
t
k
_
o
r
g

2
3

T

2
4

T

2
5

T

[
=
0
0
0
1
8
6
a
0
]

t
e
n
K
H
z
_
p
e
r
_
n
s

=

1
0
0
0
0
0

;

s
c
a
l
i
n
g

f
a
c
t
o
r

2
6

T

2
7

T

;

M
e
m
o
r
y

t
i
m
i
n
g

f
o
r

V
P
U

c
a
l
c
u
l
a
t
i
o
n
s

(
a
d
j
u
s
t

t
o

m
a
t
c
h

D
E
M
O
C
F
G
.
S
)

2
8

T

;

T
h
e

"
+

2
"

b
e
l
o
w

i
s

f
o
r

b
u
s

r
e
q
u
e
s
t

i
n

a
d
d
i
t
i
o
n

t
o

t
h
e

p
r
o
g
r
a
m
m
e
d

2
9

T

;

b
u
s

t
r
a
n
s
a
c
t
i
o
n

t
i
m
e
.

T
h
e
s
e

t
i
m
e
s

d
e
p
e
n
d

o
n

t
h
e

s
y
s
t
e
m

d
e
s
i
g
n

a
n
d

3
0

T

;

m
e
m
o
r
i
e
s

u
s
e
d
.

3
1

T

3
2

T

[
=
0
0
0
0
0
0
0
6
]

C
A
S
0

=

(
4

+

2
)

;

c
l
o
c
k
s

p
e
r

C
A
S

f
o
r

g
r
o
u
p

0

3
3

T

[
=
0
0
0
0
0
0
0
b
]

R
A
S
0

=

C
A
S
0

+

5

;

c
l
o
c
k
s

p
e
r

R
A
S

f
o
r

g
r
o
u
p

0

3
4

T

3
5

T

[
=
0
0
0
0
0
0
0
7
]

C
A
S
1

=

(
5

+

2
)

;

c
l
o
c
k
s

p
e
r

C
A
S

f
o
r

g
r
o
u
p

1

3
6

T

[
=
0
0
0
0
0
0
0
d
]

R
A
S
1

=

C
A
S
1

+

6

;

c
l
o
c
k
s

p
e
r

R
A
S

f
o
r

g
r
o
u
p

1

3
7

T

3
8

T

[
=
0
0
0
0
0
0
0
d
]

R
R
A
S

=

R
A
S
1

;

c
l
o
c
k
s

f
o
r

r
e
f
r
e
s
h

3
9

T

4
0

T

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

192

4
1

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
2

T

;
;

4
3

T

;
;

R
e
s
e
t

V
e
c
t
o
r
s

4
4

T

;
;

4
5

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

4
6

T

4
7

T

;

O
n

s
t
a
r
t
u
p
,

P
S
C
1
0
0
0

l
o
o
k
s

a
t

t
h
e

f
i
r
s
t

c
e
l
l

o
f

t
h
e

E
P
R
O
M

t
o

d
e
c
i
d
e

i
f

t
h
e

4
8

T

;

b
o
o
t

d
e
v
i
c
e

i
s

a

b
o
o
t
-
o
n
l
y

d
e
v
i
c
e

(
a
c
c
e
s
s
e
d

f
i
r
s
t
)
,

o
r

a

m
e
m
o
r
y

d
e
v
i
c
e
.

4
9

T

;

P
S
C
1
0
0
0

p
e
r
f
o
r
m
s

a

b
y
t
e
-
w
i
d
e

m
e
m
o
r
y

b
u
s

t
r
a
n
s
a
c
t
i
o
n

(
f
o
u
r

b
y
t
e

r
e
a
d
s
)

5
0

T

;

s
t
a
r
t
i
n
g

a
t

a
d
d
r
e
s
s

0
x
8
0
0
0
0
0
0
0

(
w
i
t
h
o
u
t

u
s
i
n
g

-
O
E
)

t
o

l
o
o
k

f
o
r

a

0
x
A
5

f
r
o
m

5
1

T

;

a

b
o
o
t

d
e
v
i
c
e

a
t

a
d
d
r
e
s
s

0
x
8
0
0
0
0
0
0
3
.

I
f

0
x
A
5

i
s

n
o
t

f
o
u
n
d

t
h
e
n

t
h
e

b
o
o
t

5
2

T

;

d
e
v
i
c
e

d
i
d

n
o
t

r
e
s
p
o
n
d
,

O
E
D

i
s

c
l
e
a
r
e
d

(
t
o

a
l
l
o
w

_
O
E

a
c
t
i
v
e

o
n

s
u
b
s
e
q
u
e
n
t

5
3

T

;

b
u
s

t
r
a
n
s
a
c
t
i
o
n
s
)

a
n
d

t
h
e

b
o
o
t

d
e
v
i
c
e

i
s

t
h
u
s

a
s
s
u
m
e
d

t
o

b
e

n
o
r
m
a
l

m
e
m
o
r
y

5
4

T

;

t
h
a
t

r
e
q
u
i
r
e
s

-
O
E

f
o
r

a
c
c
e
s
s
.

5
5

T

5
6

T

;

I
n

e
i
t
h
e
r

c
a
s
e
,

t
h
e

V
P
U

t
h
e
n

b
e
g
i
n
s

e
x
e
c
u
t
i
o
n

a
t

m
e
m
o
r
y

l
o
c
a
t
i
o
n

0
x
8
0
0
0
0
0
0
4
.

5
7

T

;

T
h
e

V
P
U

m
u
s
t

i
n
i
t
i
a
l
i
z
e

D
R
A
M

w
i
t
h

r
e
f
r
e
s
h

c
y
c
l
e
s

a
n
d

m
a
i
n
t
a
i
n

r
e
f
r
e
s
h

w
h
i
l
e

5
8

T

;

t
h
e

d
a
t
a

a
n
d

p
r
o
g
r
a
m
s

a
r
e

d
i
s
t
r
i
b
u
t
e
d

t
o

m
e
m
o
r
y
.

T
h
e

V
P
U

w
i
l
l

b
e

r
e
s
e
t

t
o

5
9

T

;

r
u
n

i
t
s

a
p
p
l
i
c
a
t
i
o
n

p
r
o
g
r
a
m

l
o
n
g

b
e
f
o
r
e

t
h
e

M
L
O
O
P

i
t

i
s

e
x
e
c
u
t
i
n
g

e
x
p
i
r
e
s
.

6
0

T

6
1

T

;

O
n
c
e

t
h
e

V
P
U

e
x
e
c
u
t
e
s

D
E
L
A
Y

t
h
e

M
P
U

w
i
l
l

b
e
g
i
n

e
x
e
c
u
t
i
o
n

a
t

l
o
c
a
t
i
o
n

6
2

T

;

0
x
8
0
0
0
0
0
0
8
.

T
h
e

b
r
a
n
c
h

g
o
e
s

t
o

g
r
o
u
p

3

s
o

t
h
a
t

g
r
o
u
p
s

0
,
1
,

&

2

c
a
n

b
e

6
3

T

;

c
o
n
f
i
g
u
r
e
d

f
o
r

t
h
e

a
p
p
l
i
c
a
t
i
o
n

w
h
i
l
e

e
x
e
c
u
t
i
o
n

c
o
n
t
i
n
u
e
s

o
u
t

o
f

g
r
o
u
p

3
.

6
4

T

;

G
r
o
u
p

3

c
a
n

b
e

r
e
c
o
n
f
i
g
u
r
e
d

l
a
t
e
r
,

i
f

n
e
e
d
e
d
.

U
n
t
i
l

m
s
g
s
m

i
s

s
e
t

d
u
r
i
n
g

6
5

T

;

c
o
n
f
i
g
u
r
a
t
i
o
n
,

g
r
o
u
p
3

c
a
n
n
o
t

b
e

s
e
l
e
c
t
e
d
.

6
6

T

6
7

T

;

T
h
e

g
r
o
u
p
3

a
d
d
r
e
s
s
i
n
g

f
o
r

t
h
e

E
P
R
O
M

i
s

s
e
t

i
n

t
h
e

l
i
n
k
e
r
.

6
8

T

6
9

T

.
t
e
x
t

b
o
o
t

S
E
C
T
I
O
N
:

b
o
o
t

7
0

T

8
c
0
0
0
0
0
0

0
0

0
0

0
0

a
5

.
l
o
n
g

b
o
o
t
_
o
n
l
y

;

b
o
o
t
_
o
n
l
y

d
e
v
i
c
e

a
c
t
i
v
a
t
e
s

w
/
o

-
O
E

7
1

T

7
2

T

.
o
p
t

v
p
u

7
3

T

8
c
0
0
0
0
0
4

3
3

0
0

0
0

0
4

j
u
m
p

V
P
U
_
P
O
R
_
i
n
i
t

;

V
P
U

h
a
r
d
w
a
r
e

r
e
s
e
t

v
e
c
t
o
r

7
4

T

7
5

T

.
o
p
t

m
p
u

7
6

T

8
c
0
0
0
0
0
8

4
f

4
b

b
r

[
#
M
P
U
_
i
n
i
t
]

;

M
P
U

h
a
r
d
w
a
r
e

r
e
s
e
t

v
e
c
t
o
r

7
7

T

8
c
0
0
0
0
0
a

3
0

3
0

.
q
u
a
d

4

T

8
c
0
0
0
0
0
c

8
c

0
0

0
0

2
4

7
8

T

7
9

T

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Example Systems
PSC1000 MICROPROCESSOR

193

8
0

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
1

T

;
;

8
2

T

;
;

P
o
w
e
r
-
O
n
-
R
e
s
e
t

V
P
U

c
o
d
e

8
3

T

;
;

8
4

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

8
5

T

8
6

T

;

D
R
A
M

t
y
p
i
c
a
l
l
y

r
e
q
u
i
r
e
s

8

r
e
f
r
e
s
h

c
y
c
l
e
s

b
e
f
o
r
e

i
t

c
a
n

b
e

u
s
e
d
,

p
l
u
s

8
7

T

;

p
e
r
i
o
d
i
c

r
e
f
r
e
s
h

c
y
c
l
e
s

t
o

c
o
n
t
i
n
u
e

o
p
e
r
a
t
i
n
g
.

F
o
r

1
M
b

D
R
A
M

a
n
d

8
8

T

;

l
a
r
g
e
r

s
i
z
e
s
,

t
h
e

t
y
p
i
c
a
l

r
e
f
r
e
s
h

r
e
q
u
i
r
e
m
e
n
t

i
s

e
q
u
i
v
a
l
e
n
t

t
o

5
1
2

r
e
f
r
e
s
h

8
9

T

;

c
y
c
l
e
s

e
v
e
r
y

8

m
s
.

T
h
e

c
o
d
e

b
e
l
o
w

s
u
p
p
l
i
e
s

8

r
e
f
r
e
s
h

c
y
c
l
e
s

t
o

i
n
i
t
i
a
l
i
z
e

9
0

T

;

t
h
e

D
R
A
M
,

a
n
d

t
h
e
n

e
x
e
c
u
t
e
s

r
e
f
r
e
s
h

c
y
c
l
e
s

w
i
t
h

a
p
p
r
o
p
r
i
a
t
e

d
e
l
a
y
s

t
o

9
1

T

;

m
a
i
n
t
a
i
n

t
h
e

D
R
A
M

d
a
t
a
.

9
2

T

9
3

T

;

N
O
T
E

F
O
R

M
M
B

W
I
R
E
D

S
Y
S
T
E
M
S

R
E
G
A
R
D
I
N
G

R
E
F
R
E
S
H

I
N
I
T
I
A
L
I
Z
A
T
I
O
N

9
4

T

;

T
h
e

s
y
s
t
e
m

b
o
o
t
s

i
n

S
M
B

m
o
d
e
.

I
f

t
h
e

s
y
s
t
e
m

i
s

w
i
r
e
d

f
o
r

M
M
B

m
o
d
e
,

R
A
S

9
5

T

;

c
y
c
l
e
s

(
r
e
f
r
e
s
h

a
n
d

o
t
h
e
r
w
i
s
e
)

w
i
l
l

n
o
t

o
c
c
u
r

o
n

t
h
e

t
h
e

s
e
l
e
c
t
e
d

m
e
m
o
r
y

9
6

T

;

g
r
o
u
p

(
d
u
e

t
o

t
h
e

M
M
B

w
i
r
i
n
g
)

u
n
t
i
l

M
M
B

i
s

s
e
t

b
y

t
h
e

M
P
U
.

H
o
w
e
v
e
r
,

d
e
s
p
i
t
e

9
7

T

;

t
h
e

M
M
B

w
i
r
i
n
g
,

n
o
n
-
s
e
l
e
c
t
e
d

m
e
m
o
r
y

g
r
o
u
p
s

w
i
l
l

e
x
p
e
r
i
e
n
c
e

p
r
o
p
e
r
l
y

f
o
r
m
e
d

9
8

T

;

R
A
S

c
y
c
l
e
s
.

A
f
t
e
r

M
M
B

i
s

s
e
t
,

d
u
e

t
o

t
h
e

d
e
f
a
u
l
t

c
o
n
f
i
g
u
r
a
t
i
o
n

c
a
u
s
i
n
g

a

9
9

T

;

R
A
S

c
y
c
l
e

o
n

e
v
e
r
y

m
e
m
o
r
y

a
c
c
e
s
s
,

R
A
S

c
y
c
l
e
s

o
c
c
u
r
i
n
g

d
u
e

t
o

m
e
m
o
r
y

1
0
0

T

;

a
c
c
e
s
s
e
s

o
n

t
h
e

s
e
l
e
c
t
e
d

m
e
m
o
r
y

g
r
o
u
p

w
i
l
l

s
u
p
p
l
y

t
h
e

r
e
q
u
i
r
e
d

R
A
S

o
r

1
0
1

T

;

r
e
f
r
e
s
h

i
n
i
t
i
a
l
i
z
a
t
i
o
n

c
y
c
l
e
s
.

O
f

c
o
u
r
s
e
,

o
n
c
e

M
M
B

m
o
d
e

i
s

s
e
t
,

s
u
b
s
e
q
u
e
n
t

1
0
2

T

;

r
e
f
r
e
s
h

c
y
c
l
e
s

w
i
l
l

o
c
c
u
r

p
r
o
p
e
r
l
y

o
n

a
l
l

e
n
a
b
l
e
d

m
e
m
o
r
y

g
r
o
u
p
s
.

1
0
3

T

1
0
4

T

1
0
5

T

.
t
e
x
t

S
E
C
T
I
O
N
:

.
t
e
x
t

1
0
6

T

.
o
p
t

v
p
u

1
0
7

T

1
0
8

T

8
c
0
0
0
0
1
0

V
P
U
_
P
O
R
_
i
n
i
t
:
:

1
0
9

T

1
1
0

T

8
c
0
0
0
0
1
0

1
0

r
e
f
r
e
s
h

1
1
1

T

8
c
0
0
0
0
1
1

1
0

r
e
f
r
e
s
h

1
1
2

T

8
c
0
0
0
0
1
2

1
0

r
e
f
r
e
s
h

1
1
3

T

8
c
0
0
0
0
1
3

1
0

r
e
f
r
e
s
h

1
1
4

T

1
1
5

T

8
c
0
0
0
0
1
4

1
0

r
e
f
r
e
s
h

1
1
6

T

8
c
0
0
0
0
1
5

1
0

r
e
f
r
e
s
h

1
1
7

T

1
1
8

T

;

D
u
r
i
n
g

p
o
w
e
r
-
o
n

c
o
n
f
i
g
u
r
a
t
i
o
n

b
y

t
h
e

M
P
U
,

t
h
e

d
e
s
c
r
i
b
e
d

t
i
m
i
n
g

1
1
9

T

;

b
e
l
o
w

d
o
e
s

n
o
t

a
p
p
l
y
;

t
h
e

m
e
m
o
r
y

c
y
c
l
e
s

a
r
e

m
u
c
h

s
l
o
w
e
r

u
n
t
i
l

1
2
0

T

;

c
o
n
f
i
g
u
r
e
d
.

T
h
a
t

m
e
a
n
s

t
h
e
r
e

w
i
l
l

b
e

f
e
w
e
r

r
e
f
r
e
s
h

c
y
c
l
e
s

t
h
a
n

1
2
1

T

;

d
e
s
c
r
i
b
e
d
,

b
u
t
,

t
h
a
t
'
s

o
k

b
e
c
a
u
s
e

t
h
e
r
e

i
s

n
o

d
a
t
a

i
n

t
h
e

D
R
A
M

t
o

1
2
2

T

;

m
a
i
n
t
a
i
n

y
e
t

a
n
y
w
a
y
.

1
2
3

T

1
2
4

T

;

T
h
i
s

c
o
d
e

b
e
l
o
w

i
s

e
x
e
c
u
t
e
d

o
n
l
y

f
r
o
m

t
h
e

b
o
o
t

E
P
R
O
M
.

A

d
i
f
f
e
r
e
n
t

1
2
5

T

;

c
o
p
y

o
r

v
e
r
s
i
o
n

i
s

u
s
e
d

t
o

r
u
n

t
h
e

V
P
U

a
p
p
l
i
c
a
t
i
o
n

f
r
o
m

R
/
W

R
A
M
.

1
2
6

T

1
2
7

T

;

A

t
y
p
i
c
a
l

2
5
6
K
x
4

D
R
A
M

r
e
q
u
i
r
e
s

5
1
2

r
e
f
r
e
s
h
e
s

e
v
e
r
y

8

m
s
.

T
h
a
t

m
e
a
n
s

1
4
F
1
>
3
5
�9
>
6
?
B
=
1
D
9
?
>

@C3! �=YSb_`b_SUcc_b
#"�29D B9C3 @B?35CC?B

!)$

�
�
�
7

�
Z
H
Q
H
H
G
D
U
H
I
U
H
V
K
H
Y
H
U
\
�
�
�
�
�
�
X
V
�
R
U
D
W
R
W
D
O
O
R
R
S
W
L
P
H
E
H
O
R
Z
R
I

�
�
�
7

�
�
�
�
�
�
�
X
V
V
L
Q
F
H
Z
H
G
R
W
Z
R
U
H
I
U
H
V
K
H
V
S
H
U
O
R
R
S
E
H
O
R
Z
�

�
�
�
7

�
�
�
7

�
$
V
V
X
P
L
Q
J
D
5
$
6
F
\
F
O
H
Z
L
W
K
W
K
H
E
X
V
U
H
T
X
H
V
W
W
D
N
H
V
�
�
F
O
R
F
N
V
�
W
K
H
O
R
R
S

�
�
�
7

�
E
H
O
R
Z
W
D
N
H
V
�
�
�
�
�
�
�
�
G
H
O
D
\
�
�
�
R
U
�
�
�
G
H
O
D
\
&
3
8
�
F
O
R
F
N

�
�
�
7

�
F
\
F
O
H
V
W
R
H
[
H
F
X
W
H
�
�
�
�
�
�
�
X
V
�
�
�
&
3
8
�
F
O
R
F
N
V
L
V
W
K
H
G
H
O
D
\
W
L
P
H
Z
H

�
�
�
7

�
P
X
V
W
X
V
H
�

�
�
�
7

�
�
�
7

�
&
R
P
S
X
W
H
Y
D
O
X
H
V
I
R
U
3
2
5
B
5
H
I
U
H
V
K
B
/
R
R
S
�

�
�
�
7

�
�
�
7

�
7
R
W
D
O
W
L
P
H
W
R
E
H
W
D
N
H
Q
E
\
R
Q
H
O
R
R
S
L
W
H
U
D
W
L
R
Q
L
Q
Q
D
Q
R
V
H
F
R
Q
G
V
�

�
�
�
7

�
U
R
X
Q
G
H
G
G
R
Z
Q
�

�
�
�
7

>

�
�
�
D
�
�
�
�
@

U
H
I
U
H
V
K
B
L
Q
W
H
U
Y
D
O

�
�
�
�
�
�
�

�
W
L
P
H
L
Q
Q
V

�
�
�
7

>

�
�
�
�
�
�
�
�
@

U
H
I
U
H
V
K
H
V
B
S
H
U
B
L
Q
W
H
U
Y
D
O

�
�
�

�
�
�
7

>

�
�
�
�
�
�
�
�
@

U
H
I
U
H
V
K
H
V
B
S
H
U
B
O
R
R
S

�

�
�
�
7

�
�
�
7

>

�
�
�
�
�
D
�
�
@

3
2
5
B
O
R
R
S
B
Q
V

�
U
H
I
U
H
V
K
B
L
Q
W
H
U
Y
D
O

U
H
I
U
H
V
K
H
V
B
S
H
U
B
O
R
R
S
�
�
U
H
I
U
H
V
K
H
V
B
S
H
U
B
L
Q
W
H
U
Y
D
O

�
�
�
7

�
�
�
7

�
1
X
P
E
H
U
R
I
&
3
8
B
F
O
R
F
N
F
\
F
O
H
V
G
X
U
L
Q
J
3
2
5
B
O
R
R
S
B
Q
V
�

�
�
�
7

>

�
�
�
�
�
�
F
�
@

3
2
5
B
O
R
R
S
B
F
O
R
F
N
V

�
3
2
5
B
O
R
R
S
B
Q
V

�
B
B
&
/
2
&
.
B
.
+
=
B
B
�
�
�
�
�
�
W
H
Q
.
+
]
B
S
H
U
B
Q
V

�
�
�
7

�
�
�
7

�
1
X
P
E
H
U
R
I
&
3
8
�
F
O
R
F
N
V
F
\
F
O
H
V
U
H
T
X
L
U
H
G
E
\
L
Q
V
W
U
X
F
W
L
R
Q
V
H
[
F
H
S
W
G
H
O
D
\

�
�
�
7

�
W
L
P
H
�

�
�
�
7

>

�
�
�
�
�
�
�
G
@

3
2
5
B
R
Y
H
U
K
H
D
G
B
F
O
R
F
N
V

5
5
$
6

�
�
�
�
�

�
�
�
7

�
�
�
7

�
&
3
8
�
F
O
R
F
N
F
\
F
O
H
G
H
O
D
\
Y
D
O
X
H
U
H
T
X
L
U
H
G
�

�
�
�
7

>

�
�
�
�
�
�
D
�
@

3
2
5
B
G
H
O
D
\

3
2
5
B
O
R
R
S
B
F
O
R
F
N
V
�
3
2
5
B
R
Y
H
U
K
H
D
G
B
F
O
R
F
N
V

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

�
�

O
G

�
3
2
5
B
G
H
O
D
\
�
J
�

�
�
�
7
�
F
�
�
�
�
�
�

�
I

O
G

�
�
�
�
J
�
�

�
V
X
I
I
L
F
L
H
Q
W
W
R
O
R
D
G
V
\
V
W
H
P

7
�
F
�
�
�
�
�
�

�
�
�
�
�
�
D
�

7
�
F
�
�
�
�
�
F

I
I
I
I
I
I
I
I

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

3
2
5
B
U
H
I
U
H
V
K
B
O
R
R
S
�
�

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

�
�

U
H
I
U
H
V
K

�
5
5
$
6

�
�
�
7
�
F
�
�
�
�
�
�

�
�

U
H
I
U
H
V
K

�
5
5
$
6

�
�
�
7
�
F
�
�
�
�
�
�

�
�

G
H
O
D
\

J
�

�
�
�
G
H
O
D
\

�
�
�
7
�
F
�
�
�
�
�
�

�
I

P
O
R
R
S

J
�
�
�
3
2
5
B
U
H
I
U
H
V
K
B
O
R
R
S

�
�

�
�
�
7

�
�
�
7

1
4
F
1
>
3
5
�9
>
6
?
B
=
1
D
9
?
>

5hQ]`\U�CicdU]c
@C3! =93B?@B?35CC?B

!)%

�
�
�
7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
7

�
�

�
�
�
7

�
�
0
3
8
V
W
D
U
W
X
S
F
R
G
H

�
�
�
7

�
�

�
�
�
7

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
7

�
�
�
7

�
W
H
[
W

6
(
&
7
,
2
1
�
�
W
H
[
W

�
�
�
7

�
R
S
W

P
S
X

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

0
3
8
B
L
Q
L
W
�
�

�
�
�
7

�
�
�
7

�
�
�
�
7

�
6
H
W
X
S
V
W
D
F
N
V
�

�
�
�
7

�
�
�
�
7
�
F
�
�
�
�
�
�

�
I
E
G

P
R
Y
H

�
O
V
W
N
B
R
U
J
�
�
�
O
D

�
�
�
7
�
F
�
�
�
�
�
�

�
I
E
F

P
R
Y
H

�
R
V
W
N
B
R
U
J
�
�
�
V
D

7
�
F
�
�
�
�
�
�

�
�
�
�
E
I
I
�

7
�
F
�
�
�
�
�
F

�
�
�
�
D
I
I
�

�
�
�
7
�
F
�
�
�
�
�
�

�
I
�
�

P
R
Y
H

�
D
V
W
N
B
R
U
J
�
J
�

�
D
X
[
L
O
O
D
U
\
V
W
D
F
N
I
R
U
&

�
�
�
7

�
�
�
7

�
1
R
Z
O
R
D
G
X
S
W
R
F
R
Q
I
L
J
X
U
H
W
K
H
F
K
L
S

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

�
I
E
�

P
R
Y
H

�
F
R
Q
I
L
J
B
G
D
W
D
�
[

7
�
F
�
�
�
�
�
�

�
�
�
�
D
�
�
�

7
�
F
�
�
�
�
�
�

�
F
�
�
�
�
D
�

�
�
�
7
�
F
�
�
�
�
�
F

�
�
E
�

P
R
Y
H

�
�
F
R
Q
I
L
J
B
H
Q
W
U
L
H
V
�
�
�
�
E
�
F
W

�
�
�
7

�
�
�
7

�
6
H
W
H
G
J
H
U
D
W
H
V
R
Q
V
W
U
R
E
H
V
�
V
S
H
F
L
D
O
F
D
V
H
�
W
K
H
G
D
W
D
J
R
H
V
W
R
G
�
�
�
�
�
�
Q
R
W
�
�
�
�
�
�

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
H

�
�
�
�

O
G

>
[
�
�
@

�
�
�
7
�
F
�
�
�
�
�
�

�
�

V
S
O
L
W

�
�
�
7
�
F
�
�
�
�
�
�

E
�

[
F
J

�
�
�
7
�
F
�
�
�
�
�
�

E
�

V
W
R

>
@

�
�
�
7
�
F
�
�
�
�
�
�

E
�

S
R
S

�
�
�
7

�
�
�
7

�
&
R
Q
I
L
J
X
U
H
D
O
O
W
K
H
R
W
K
H
U
U
H
J
L
V
W
H
U
V

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

F
R
Q
I
L
J
B
O
R
R
S
�
�

�
�
�
7

�
�
�
7
�
F
�
�
�
�
�
�

�
�

O
G

>
[
�
�
@

�
�
�
7
�
F
�
�
�
�
�
�

�
�

V
S
O
L
W

�
�
�
7

�
�
�
7

�
J
U
R
X
S
V
W
R
>
@
Z
L
W
K
G
E
U
V
R
Z
H
G
R
Q

W
F
K
D
Q
J
H
D
P
H
P
R
U
\

�
�
�
7

�
F
R
Q
W
U
R
O
U
H
J
L
V
W
H
U
G
X
U
L
Q
J
D
Q
D
F
F
H
V
V
�
G
E
U
K
R
O
G
V
R
I
I
S
U
H
I
H
W
F
K
�

�
�
�
7
�
F
�
�
�
�
�
�

�
�
�
�

�
T
X
D
G

�
�
�
�
7
�
F
�
�
�
�
�
�

E
�

V
W
R

>
@

�
�
�
7
�
F
�
�
�
�
�
�

E
�

S
R
S

�
�
�
7
�
F
�
�
�
�
�
D

�
I
I
I

G
E
U

F
R
Q
I
L
J
B
O
R
R
S

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

196

2
1
1

T

2
1
2

T

;

2
1
3

T

;

D
i
s
t
r
i
b
u
t
e

E
P
R
O
M

t
o

m
e
m
o
r
y

2
1
4

T

;

2
1
5

T

2
1
6

T

8
c
0
0
0
0
4
c

0
8

0
0

0
0

0
6

c
a
l
l
.
3

l
o
a
d
_
t
b
l

2
1
7

T

2
1
8

T

2
1
9

T

;

P
r
e
p
a
r
e

t
o

c
l
e
a
r

O
E
D

b
i
t

a
n
d

s
t
a
r
t

a
p
p
l
i
c
a
t
i
o
n

2
2
0

T

2
2
1

T

8
c
0
0
0
0
5
0

4
f

p
u
s
h
.
l

#
s
t
a
r
t

;

M
P
U

a
p
p
l
i
c
a
t
i
o
n

c
o
d
e

s
t
a
r
t

2
2
2

T

2
2
3

T

8
c
0
0
0
0
5
1

4
f

p
u
s
h

#
m
i
s
c
b

2
2
4

T

8
c
0
0
0
0
5
2

9
2

p
u
s
h

;

k
e
e
p

a
d
d
r

f
o
r

s
t
o

[
]

2
2
5

T

8
c
0
0
0
0
5
3

9
6

l
d
o

[
]

T

8
c
0
0
0
0
5
4

0
0

0
0

0
4

0
0

T

8
c
0
0
0
0
5
8

0
0

0
0

0
1

0
0

2
2
6

T

8
c
0
0
0
0
5
c

9
0

e
9

i
a
n
d

#
o
e
d

;

r
e
s
e
t

O
E

d
i
s
a
b
l
e

b
i
t

2
2
7

T

2
2
8

T

8
c
0
0
0
0
5
e

b
2

1
0

x
c
g

;

a
d
d
r

o
n

t
o
p

f
o
r

b
e
l
o
w

2
2
9

T

2
3
0

T

8
c
0
0
0
0
6
0

.
q
u
a
d

3

;

K
e
e
p

u
p

t
o

b
r

[
]

t
o
g
e
t
h
e
r

2
3
1

T

8
c
0
0
0
0
6
0

b
0

s
t
o

[
]

;

t
u
r
n

o
n

O
E

2
3
2

T

8
c
0
0
0
0
6
1

b
3

p
o
p

2
3
3

T

8
c
0
0
0
0
6
2

4
b

b
r

[
]

;

g
o

t
o

M
P
U

a
p
p
l
i
c
a
t
i
o
n

2
3
4

T

2
3
5

T

;

W
e

d
o

t
h
e

a
b
o
v
e

s
t
e
p
s

i
n

o
n
e

i
n
s
t
r
u
c
t
i
o
n

g
r
o
u
p

s
o

t
h
a
t

i
f

t
h
e
r
e

i
s

2
3
6

T

;

m
e
m
o
r
y

i
n

g
r
o
u
p

3

i
t

w
o
n
'
t

c
o
l
l
i
d
e

w
i
t
h

o
u
r

E
P
R
O
M

2
3
7

T

2
3
8

T

8
c
0
0
0
0
6
3

.
e
n
d

T
o
t
a
l

E
r
r
o
r
s
:

0

T
o
t
a
l

W
a
r
n
i
n
g
s
:

0

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Example Systems
PSC1000 MICROPROCESSOR

197

1

T

2

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

3

T

;
;

4

T

;
;

E
x
a
m
p
l
e

c
o
n
f
i
g
u
r
a
t
i
o
n

d
a
t
a

5

T

;
;

6

T

;
;

d
e
m
o
c
f
g
.
s

7

T

;
;

8

T

;
;

N
o
t
e

t
h
t

v
e
r
y

l
i
t
t
l
e

o
f

t
h
e

c
o
n
f
i
g
u
r
a
t
i
o
n

d
a
t
a

b
e
l
o
w

i
s

"
t
y
p
i
c
a
l
"
.

9

T

;
;

T
h
e

e
x
a
c
t

v
a
l
u
e
s

a
l
w
a
y
s

d
e
p
e
n
d

o
n

t
h
e

b
o
a
r
d

d
e
s
i
g
n
,

d
e
v
i
c
e

t
y
p
e
s
,

a
n
d

1
0

T

;
;

s
p
e
e
d
s

o
f

t
h
e

m
e
m
o
r
y

c
o
m
p
o
n
e
n
t
s

u
s
e
d
.

1
1

T

;
;

1
2

T

;
;

C
o
p
y
r
i
g
h
t

(
c
)

1
9
9
8

P
a
t
r
i
o
t

S
c
i
e
n
t
i
f
i
c

C
o
r
p
o
r
a
t
i
o
n
.

A
l
l

r
i
g
h
t
s

r
e
s
e
r
v
e
d
.

1
3

T

;
;

1
4

T

;
;
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

1
5

T

1
6

T

.
o
p
t

n
o
i
n
c
l

1
7

T

.
i
n
c
l
u
d
e

"
o
n
c
h
i
p
.
d
e
f
"

1
8

T

.
o
p
t

i
n
c
l

1
9

T

.
e
x
p
o
r
t

c
o
n
f
i
g
_
d
a
t
a
,

c
o
n
f
i
g
_
e
n
t
r
i
e
s

2
0

T

2
1

T

.
t
e
x
t

S
E
C
T
I
O
N
:

.
t
e
x
t

2
2

T

2
3

T

8
c
0
0
0
0
a
4

c
o
n
f
i
g
_
d
a
t
a
:
:

2
4

T

;

M
u
s
t

b
e

f
i
r
s
t

e
n
t
r
y

i
n

t
a
b
l
e
.

2
5

T

8
c
0
0
0
0
a
4

0
0

0
0

0
7

c
0

.
l
o
n
g

(
d
r
i
v
e
r
s

|

0
x
0
0
0
0
0
0
0
0
)

2
6

T

2
7

T

8
c
0
0
0
0
a
8

0
1

6
0

0
c

0
0

.
l
o
n
g

(
m
s
g
s
m

<
<

1
6

|

0
x
0
c
0
0
)

2
8

T

8
c
0
0
0
0
a
c

0
1

0
0

0
0

3
8

.
l
o
n
g

(
m
i
s
c
b

<
<

1
6

|

p
k
g
i
o

|

o
e
d

|

m
g
3
b
w
)

2
9

T

3
0

T

8
c
0
0
0
0
b
0

0
0

e
0

0
0

9
1

.
l
o
n
g

(
m
i
s
c
a

<
<

1
6

|

0
x
9
1
)

3
1

T

8
c
0
0
0
0
b
4

0
1

8
0

f
7

4
f

.
l
o
n
g

(
m
g
d
s

<
<

1
6

|

0
x
f
7
4
f
)

3
2

T

8
c
0
0
0
0
b
8

0
1

a
0

0
0

9
3

.
l
o
n
g

(
m
i
s
c
c

<
<

1
6

|

m
s
e
x
a
3
1
h
a
c

|

p
k
g
m
f
l
t

|

3
)

3
3

T

3
4

T

8
c
0
0
0
0
b
c

0
2

4
0

2
4

3
0

.
l
o
n
g

(
m
g
0
c
a
s
b
t

<
<

1
6

|

1

<
<

m
g
b
t
c
a
s
_
p
o
s

|

2

<
<

m
g
b
t
d
o
b
_
p
o
s

|

3

<
<

m
g
b
t
c
a
s
t
_
p
o
s

|

0

<
<

m
g
b
t

e
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
l
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
e
o
e
_
p
o
s

|

0

<
<

m
g
b
t
e
w
e
_
p
o
s
)

3
5

T

8
c
0
0
0
0
c
0

0
1

c
0

0
0

0
0

.
l
o
n
g

(
m
g
0
e
b
t

<
<

1
6

|

0

<
<

m
g
e
b
t
s
u
m
_
p
o
s

|

0

<
<

m
g
e
b
t
d
o
b
e
_
p
o
s

|

0

<
<

m
g
e
b
t
c
a
s
e
_
p
o
s
)

3
6

T

8
c
0
0
0
0
c
4

0
2

c
0

0
a

4
2

.
l
o
n
g

(
m
g
0
r
a
s
b
t

<
<

1
6

|

5

<
<

m
g
b
t
r
a
s
t
_
p
o
s

|

2

<
<

m
g
b
t
r
a
s
_
p
o
s

|

1

<
<

m
g
b
t
r
h
l
d
_
p
o
s

|

0

<
<

m
g
b

t
e
r
a
s
_
p
o
s
)

3
7

T

3
8

T

8
c
0
0
0
0
c
8

0
2

6
0

4
6

4
4

.
l
o
n
g

(
m
g
1
c
a
s
b
t

<
<

1
6

|

2

<
<

m
g
b
t
c
a
s
_
p
o
s

|

3

<
<

m
g
b
t
d
o
b
_
p
o
s

|

4

<
<

m
g
b
t
c
a
s
t
_
p
o
s

|

0

<
<

m
g
b
t

e
w
e
a
_
p
o
s

|

1

<
<

m
g
b
t
l
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
e
o
e
_
p
o
s

|

0

<
<

m
g
b
t
e
w
e
_
p
o
s
)

3
9

T

8
c
0
0
0
0
c
c

0
1

e
0

0
0

0
0

.
l
o
n
g

(
m
g
1
e
b
t

<
<

1
6

|

0

<
<

m
g
e
b
t
s
u
m
_
p
o
s

|

0

<
<

m
g
e
b
t
d
o
b
e
_
p
o
s

|

0

<
<

m
g
e
b
t
c
a
s
e
_
p
o
s
)

4
0

T

8
c
0
0
0
0
d
0

0
2

e
0

0
c

6
2

.
l
o
n
g

(
m
g
1
r
a
s
b
t

<
<

1
6

|

6

<
<

m
g
b
t
r
a
s
t
_
p
o
s

|

3

<
<

m
g
b
t
r
a
s
_
p
o
s

|

1

<
<

m
g
b
t
r
h
l
d
_
p
o
s

|

0

<
<

m
g
b

t
e
r
a
s
_
p
o
s
)

4
1

T

4
2

T

8
c
0
0
0
0
d
4

0
2

8
0

4
8

6
0

.
l
o
n
g

(
m
g
2
c
a
s
b
t

<
<

1
6

|

2

<
<

m
g
b
t
c
a
s
_
p
o
s

|

4

<
<

m
g
b
t
d
o
b
_
p
o
s

|

6

<
<

m
g
b
t
c
a
s
t
_
p
o
s

|

0

<
<

m
g
b
t

e
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
l
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
e
o
e
_
p
o
s

|

0

<
<

m
g
b
t
e
w
e
_
p
o
s
)

4
3

T

8
c
0
0
0
0
d
8

0
2

0
0

0
0

0
0

.
l
o
n
g

(
m
g
2
e
b
t

<
<

1
6

|

0

<
<

m
g
e
b
t
s
u
m
_
p
o
s

|

0

<
<

m
g
e
b
t
d
o
b
e
_
p
o
s

|

0

<
<

m
g
e
b
t
c
a
s
e
_
p
o
s
)

4
4

T

8
c
0
0
0
0
d
c

0
3

0
0

0
c

6
2

.
l
o
n
g

(
m
g
2
r
a
s
b
t

<
<

1
6

|

6

<
<

m
g
b
t
r
a
s
t
_
p
o
s

|

3

<
<

m
g
b
t
r
a
s
_
p
o
s

|

1

<
<

m
g
b
t
r
h
l
d
_
p
o
s

|

0

<
<

m
g
b

t
e
r
a
s
_
p
o
s
)

4
5

T

4
6

T

8
c
0
0
0
0
e
0

0
2

a
0

6
b

7
0

.
l
o
n
g

(
m
g
3
c
a
s
b
t

<
<

1
6

|

3

<
<

m
g
b
t
c
a
s
_
p
o
s

|

5

<
<

m
g
b
t
d
o
b
_
p
o
s

|

2
3

<
<

m
g
b
t
c
a
s
t
_
p
o
s

|

0

<
<

m
g
b

t
e
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
l
w
e
a
_
p
o
s

|

0

<
<

m
g
b
t
e
o
e
_
p
o
s

|

0

<
<

m
g
b
t
e
w
e
_
p
o
s
)

4
7

T

8
c
0
0
0
0
e
4

0
2

2
0

0
1

0
3

.
l
o
n
g

(
m
g
3
e
b
t

<
<

1
6

|

4

<
<

m
g
e
b
t
s
u
m
_
p
o
s

|

0

<
<

m
g
e
b
t
d
o
b
e
_
p
o
s

|

3

<
<

m
g
e
b
t
c
a
s
e
_
p
o
s
)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

198

4
8

T

8
c
0
0
0
0
e
8

0
3

2
0

0
8

2
3

.
l
o
n
g

(
m
g
3
r
a
s
b
t

<
<

1
6

|

4

<
<

m
g
b
t
r
a
s
t
_
p
o
s

|

1

<
<

m
g
b
t
r
a
s
_
p
o
s

|

1

<
<

m
g
b
t
r
h
l
d
_
p
o
s

|

1

<
<

m
g
b

t
e
r
a
s
_
p
o
s
)

4
9

T

5
0

T

[
=
0
0
0
0
0
0
1
2
]

c
o
n
f
i
g
_
e
n
t
r
i
e
s

=

(
(
.

-

c
o
n
f
i
g
_
d
a
t
a
)
/
4
)

5
1

T

5
2

T

5
3

T

T
o
t
a
l

E
r
r
o
r
s
:

0

T
o
t
a
l

W
a
r
n
i
n
g
s
:

0

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

199

Electrical Characteristics

Power and Grounding
The PSC1000 CPU is implemented in CMOS for low
average power requirements. However, the high
clock-frequency capability of the CPU can require
large switching currents of as much as eleven amperes,
depending on the output loading. Thus, all VCC and VSS
must be connected to planes within the PWB (printed
wire board) for adequate power distribution.

The switching current required by cVCC and cVSS is
characterized by the internal clock and output driver
pre-drivers. The internal clock requires approximately
500 mA with significant 5-GHz frequency components
every clock transition. The output driver pre-drivers
require as much as 3 A with significant 1-GHz
frequency components every output transition. The
CPU has on-chip capacitance to supply the high-
frequency components. Package diagrams indicate
which of cVCC and cVSS are closest to the internal
clock drivers and PLL.

The switching current required by ctrlVCC and
ctrlVSS is characterized by the supplied output
drivers and externally attached loads. Assuming a
worst-case average load of 100 pF and 16 pins
switching at once, these drivers require 2.67 A with
significant 300-MHz frequency components every
output transition. Switching-current requirements
reduce substantially linear manner with a reduction
in external loading.

The switching power required by adVCC and adVSS is
characterized by the supplied output drivers and
externally attached loads. Assuming a worst-case
average load of 100 pF and 32 pins switching at once,
these drivers require 5.33 A with significant 300-MHz
frequency components every output transition.
Switching-current requirements reduce substantially
linear manner with a reduction in external loading.

Power Decoupling
Due to the switching characteristics discussed above,
power decoupling at the CPU is typically required.
Surface-mount capacitors with low ESR are preferred.
Generally, smaller-physically-sized capacitors have

better frequency characteristics (i.e., lower series
inductance, resulting in higher self-resonance fre-
quency) than larger physically-sized capacitors. PWB
board construction using FR-4 with power and ground
layer spacing of 10 mils or less supplies the best high-
frequency decoupling (typically about 100 pF/in2).
Connections to the power and ground planes must be
as short as possible. Proper power and ground plane
connections and appropriate decoupling also reduces
EMC problems.

The charge supply required from the decoupling
capacitors can be calculated from the relation C =
I/(f)V), where I is the current required, f is the
frequency, and)V is the allowed voltage drop,
typically .1 V. Thus, cVCC and cVSS require 1000 pF
for the internal clock and .03 FF for the output driver
pre-drivers, while ctrlVCC and ctrlVSS together with
adVCC and adVSS require .24 FF. These requirements
can be met with four .1 FF X7R capacitors, one on
each side of, and on the same side of the PWB, as the
CPU, as close to the package as practical.

Note that mounting capacitors on the same PWB
surface as the PSC1000 CPU package can allow
connecting traces of about 25 mils in length, while
mounting capacitors on the opposite PWB surface
requires traces of over 100 mils in length. At the
switching frequencies listed, the difference in trace
lengths creates significant differences in decoupling
effectiveness. The package and capacitor power and
ground connections would optimally be fabricated
with VIP (via-in-pad), if possible, for the same reasons.

Connection Recommendations
All output drivers are designed to directly drive the
heavy capacitive loads of memory systems, thus
minimizing the external components and propagation
delays associated with buffering logic. However, with
increased loading comes increased power dissipation,
and trade-offs must be made to ensure that the
PSC1000 CPU operating temperature does not exceed
operating limitations. Systems with heavy CPU bus
loads might require heat sinks or forced air ventilation.
Note that reducing output driver current does not
reduce total power dissipation because power
consumption is dependent on output loading and not

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

200

on signal transition edge rates. See Figure 50, page
154.

To reduce system cost, most inputs have internal
circuitry to provide a stable input voltage if the input
is unused. Thus, most unused inputs do not require
pull-ups.

Clock
The PSC1000 CPU requires an external CMOS
oscillator at one-half the processor frequency. The
oscillator is doubled internally (CPU-clock cycle) to
operate the MPU and the VPU, and doubled again to
provide fine-granularity programmable bus timing (2X-
CPU-clock cycle).

Inexpensive oscillators typically have guaranteed duty
cycles of only 55/45 or 60/40. The narrower half of the

clock cycle represents the clock period at which the
CPU appears to be operating. An 80-MHz CPU is thus
be limited with a 60/40 oscillator to 64 MHz (32 MHz
externally), because with a 64 MHz CPU-clock the
40% clock period is 12.5 ns. Thus oscillator selection
and qualification is an important factor in processor
performance.

The CPU-clock frequency selected depends on appli-
cation and system hardware requirements. A clock
frequency might be selected for the VPU to produce
appropriate application timing, or for the MIF to
optimize bus timing. For instance, if the system
requires a 40 ns bus cycle, it might be more efficient
to operate at 75 MHz with a three CPU-clock cycle
long bus cycle (40 ns) than to operate at 80 MHz with
a four CPU-clock cycle long bus cycle (50 ns).

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

201

Characteristic Symbol Min Max Unit Notes

Core Logic Supply Voltage cVCC -0.5 +7.0 V 1

Control Driver Supply Voltage ctrlVCC -0.5 +7.0 V 1

AD Driver Supply Voltage adVCC -0.5 +7.0 V 1

DC Input Voltage VI -0.5 +7.0 V

DC Output Voltage VO -0.5 +7.0 V output Hi-Z

-0.5 VCC+0.5 V output driven

DC Input Diode Current IIK -50 mA VI < VSS

DC Output Diode Current IOK -50 mA

+50 mA

Storage Temperature TSTG -65 +150 EC

Case Temperature Under Bias TC -65 +125 EC

Operating Junction Temperature TJ -65 +150 EC

Notes:
Stressing the device beyond Absolute Maximum Ratings can cause the device to sustain permanent damage.
Operating the device beyond Operating Conditions is not recommended and can reduce device reliability.
Functional operation at Absolute Maximum Ratings is not guaranteed.
1. cVSS, ctrlVSS and adVSS are required to be at the same potential.

Table 60. Absolute Maximum Ratings

Absolute Maximum Ratings

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

202

Characteristic Symbol Min Max Unit Notes

Core Logic Supply Voltage cVCC 3.0 5.5 V

Control Driver Supply Voltage ctrlVCC 3.0 5.5 V

AD Driver Supply Voltage adVCC 3.0 5.5 V

Input Voltage VI 0 5.5 V

Output Voltage VO 0 5.5 V output Hi-Z

0 VCC V output driven

Output Current IOH 180 mA 1

IOL 180 mA 1

Input Clock fC 80 MHz

Case Temperature Under Bias TC 0 +85 EC

Free-Air Operating Temperature TA -40 +85 EC

Input Edge Rate)t/)V 0 .1 ns/V 2

Notes:
1. Assumes the maximum of three driver sections enabled (at 60 ma each) during signal transitions only.
2. VIN = VIH-MIN ! VIL-MAX monotonic

Table 61. Operating Conditions

Operating Conditions

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

203

Characteristic Sym-
bol

Min Max Unit Notes

Input Low Voltage VIL 0 0.8 V TTL

0 1.8 CMOS

Input High Voltage VIH 2.0 cVCC V TTL

3.0 cVCC V CMOS

Output Low Voltage VOL 0.4 V IOL = 12 mA

Output High Voltage VOH

2.4
V

IOL = 45 mA

VCC - 0.4 IOL = 12 mA

Input Leakage Current ILI ±10 FA 0<=VIN<=VCC

Output Leakage Current IOL ±10 FA 0.4<VOUT<VCC

Power Supply Current ICC 100 mA 1

Input Capacitance CIN 8 pF 2

I/O or Output Capacitance COUT 10 pF 2

Notes:
1. Under normal operation. Specially constructed programs can draw substantially more current.
2. fC = 1 MHz. Capacitance values are not tested.

Table 62. DC Specifications

PIN Input Level
Impedance, Ohms

Notes
Minimum Maximum

&A&D[31:0] TTL 25K 50K repeater, VIH

15K 30K repeater, VIL

CLK CMOS 1M must be driven

&I&N[7:0] TTL 1M

&M&F&L&T TTL Schmitt trigger 250K 500K pull-up

&R&E&S&E&T CMOS Schmitt trigger 250K 500K pull-up

Table 63. Input Characteristics

DC Specifications

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

204

No. Characteristic Symbol Min Max Unit Notes

1 Clock period 12.5 ns

Stabilization of PLL 10,000 CPU-Clocks 3

Notes:
1. CPU-Clock generated from &C&L&K edges.
2. 2X-CPU-Clock intermediate pulse generated with a PLL.
3. Required after &R&E&S&E&T inactive before dependance on 2X-CPU-Clock timing.

Table 64. CPU-Clock and 2X-CPU-Clock

2xe4xpck.wpg

CLK

CPU-
Clock1

2X-CPU-
Clock2

Figure 72. CPU-Clock and 2X-CPU-Clock

AC Characteristics

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

205

No. Characteristic Symbol Min Max Unit Notes

1 Reset active time, pin 2 CPU-clocks

2 Reset active to AD Hi-Z 3 4 CPU-clocks 2

10 11 CPU-clocks 3

3 Reset inactive to AD active and start of RAS
prefix for first bus cycle

4 5 CPU-clocks

4 Reset active to signals inactive 3 4 CPU-clocks 2

10 11 CPU-clocks 3

Notes:
1. AD have bus repeaters that hold the last bus state when not driven by the CPU or an external device.
2. When reset is sampled from &R&E&S&E&T.
3. When reset is sampled from AD8.
4. States occur from subsequent bus cycle and program execution.

Table 65. CPU Reset Timing

Hi-Z1

32
1

4

4

AD[31:0]

RESET

RAS, CAS, MGSx/
RASx, DSF

RAS, CAS, CASx,
OE, DOB, EWE,
LWE, OUT[7:0]

reset.wpg

Note 4

Note 4

Figure 73. CPU Reset Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

206

No. Characteristic Min Max Unit Notes

1 RAS Prefix 1 + mgbtras + mgbtrhld CPU-clocks 5

2 &R&A&S inactive (mgbtras @ 2) ! mgbteras 2X-CPU-
clocks

5

3 RAS address hold (mgbtrhld @ 2) + mgbteras 2X-CPU-
clocks

5

4 RAS prefix start to &R&A&S rise 1 CPU-clocks

5 End of bus cycle to start of next 0 CPU-clocks

6 CAS part mgbtcast + mgebtdobe +
mgebtcase

CPU-clocks 5

mgbtcast + ioebtdobe +
ioebtcase

CPU-clocks 5,9

7 CAS part start to &C&A&S fall mgbtcas 2X-CPU-
clocks

5

8 CAS part start to &M&G&S&x rise time 6 CPU-clocks

9 CAS part start to &M&G&S&x fall 3.75 ns

10 &M&G&S&x inactive pulse width, RAS cycle 0 ns 3

11 RAS cycle start to &M&G&S&x fall 3.0 ns

12 &M&G&S&x inactive pulse width, CAS cycle 0 ns 3

13 CAS part start to &D&O&B rise, memory read (mgbtcast @ 2) ! mgbteoe 2X-CPU-
clocks

5

14 CAS part start to &D&O&B fall mgbtdob 2X-CPU-
clocks

5

15 CAS part start to CAS address valid 5.0 ns

16 &D&O&B fall to address invalid 1.5 ns

17 RAS prefix to address valid 2.25 ns

18 RAS prefix end to RAS address invalid 2.0 ns

19 RAS prefix end to CAS address valid 5.75 ns

20 Data setup before &D&O&B rise 16.0 ns 4,6

21 Data hold after &D&O&B rise 0 ns 4,6

22 CAS part start to &O&E rise time 13 2X-CPU-
clocks

23 CAS part start to &O&E fall time 14 2X-CPU-
clocks

24 Previous cycle end to &E&W&E rise 1.75 ns

25 Previous cycle end to &L&W&E rise 1.75 ns

Table 66. Memory Read and Write Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

207

No. Characteristic Min Max Unit Notes

26 CAS part start to &D&O&B rise, memory write (mgbtcast @ 2) ! mgbtewe 2X-CPU-
clocks

5

27 &D&O&B fall to data valid 3.25 ns 4

28 &D&O&B rise to data not driven 1.0 ns 4

29 CAS part start to &E&W&E rise time 26 CPU-clocks

30 CAS part start to &E&W&E fall 8.5 ns

31 &E&W&E inactive pulse width, RAS 2.5 ns 3

32 RAS prefix start to &E&W&E fall 6.0 ns

33 &E&W&E inactive pulse width, CAS 2.5 ns 3

34 CAS part start to &E&W&E fall mgbtcas 2X-CPU-
clocks

5

35 CAS part start to &L&W&E rise time 26 2X-CPU-
clocks

36 CAS part start to &L&W&E fall mgbtdob + mgbtlwea +
(mgebtdobe @ 2)

2X-CPU-
clocks

5

mgbtdob + mgbtlwea +
(ioebtdobe @ 2)

2X-CPU-
clocks

5,9

37 Previous cycle end to &O&E rise 2.25 ns

Notes:
1. AD have bus repeaters that hold the last bus state when not driven by the CPU or an external device.
2. Does not apply to byte-wide data transfers. See note 1.
3. Minimum applies when time 5 is minimum.
4. Time applies only to data transfers to the CPU.
5. Use decoded value of register fields for calculations.
6. If mgbteoe is set, data must be held until specified time relative to the next CPU-clock timing boundary. See

Note 1.
7. &M&G&S&x applies when mmb is set. &R&A&S&x applies when mmb is clear.
8. All CASes and RASes move appropriately.
9. Applies to bus cycles of I/O-channel bus transactions that involve the I/O device.

Table 66. Memory Read and Write Timing (continued)

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

208

EWE

RAS7,8

CAS8

MGSx7

DOB

OE

LWE

CAS Data2 RAS CAS Data2 CAS Data2

Data2Reset

Bit InputsData

Data2

Bit Inputs

Reset

Bit
Out

Fault

Bit Inputs

Reset

Bit Inputs

Reset Data2

Data DataAD[7:0]1

AD81

AD[31:9]1

1
2

3

4
5 7

6
7

6
5

7
6

8
9

128
11
10

8
9

13
14 14

13 13
14

16

15

16

19

18

17

16

15

20
21

20
21

20
21

20
21

20

20
21

22
23

22
23

22
23

24

25

20
21

20
21

20
21

rdtime.wpg

21

Figure 74. Memory Read Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

209

EWE
(mgbtewea clear)

RAS7,8

CAS8

MGSx7

DOB

OE

EWE
(mgbtewea set)

LWE

CAS Data2 RAS CAS Data2 CAS Data2

Data2Reset

Bit InputsData

Data2

Bit Inputs

Reset

Bit
Out

Fault

Bit Inputs

Reset

Bit Inputs

Reset Data2

Data DataAD[7:0]1

AD81

AD[31:9]1

1
2

3

4
5 7

6
7

6
5

7
6

8
9

128
11

10
8

9

26
14 14

26 26
14

16

15

16

19

18

17

16

15

27
28

27
28

27
28

27
28

27
28

27
28

27
28

27
28

27
28

29

29

30 31
32

34

35
36

29

34

33
29

30

2929

35
36

35
36

34

37

wrtime.wpg

Figure 75. Memory Write Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

210

No. Characteristic Symbol Min Max Unit Notes

1 &C&A&S rise to &C&A&S&x rise 3.0 ns

2 &C&A&S fall to &C&A&S&x fall 3.25 ns

3 &C&A&S rise to CAS fall .5 ns

4 &C&A&S fall to CAS rise 1.0 ns

5 &R&A&S rise to &R&A&S&x rise 3.25 ns

6 &R&A&S fall to &R&A&S&x fall 3.75 ns

7 &R&A&S rise to RAS fall 1.0 ns

8 &R&A&S fall to RAS rise .5 ns

Notes:

Table 67. Signal Coincidence Timing

CAS

CASx

CAS

RAS

RASx

RAS

coincide.wpg

1 2

3 4

5 6

7 8

Figure 76. Signal Coincidence Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

211

No. Characteristic Symbol Min Max Unit Notes

1 &M&F&L&T setup 4.5 ns 7

2 &M&F&L&T hold 0 ns 7

3 Fault request setup 9.0 ns 7

4 Fault request hold 0 ns 7

5 &E&W&E rise after &R&A&S fall (mgbtrhld @ 2)
+ mgbteras

2X-CPU-
clocks

8, 9

Notes:
1. &M&G&S&x applies when mmb is set.
2 &R&A&S&x applies when mmb is clear.
3. &M&F&L&T is used for memory fault requests when pkgmflt is set.
4. AD8 is used for memory fault requests when pkgmflt is clear.
5. Appropriate timing references of &R&A&S apply to RAS.
6. Conditions exist for time equivalent to the entire bus transaction.
7. Applies as if RAS had fallen at the next CPU-clock timing boundary.
8. Applies only to memory write cycles.
9. Use decoded value of register fields for calculation.

Table 68. Memory Fault Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

212

MGSx1

RAS,
RASx2

MFLT3

AD84

EWE

RAS5

CAS,
CASx

CAS

DOB,
OE,LWE

1
2

3
4

5

1
2

3
4

Note 6

memflt.wpg

Figure 77. Memory Fault Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

213

No. Characteristic Symbol Min Max Unit Notes

1 Refresh cycle length 1 + mgbtras
+ mgbtrhld +
mgbtcast +
mgebtdobe +
mgbtcase

CPU-clocks 4, 5

2 RAS cycle precharge (mgbtras @ 2)
- mgbteras

2X-CPU-
clocks

4, 5

Notes:
1. &M&G&S&x applies when mmb is set.
2 &R&A&S&x applies when mmb is clear.
3. Appropriate timing references of &R&A&S apply to RAS.
4. Timing is for memory group msrtg.
5. Use decoded values of register fields for calculation. Sum is the same as for a RAS cycle.

Table 69. Refresh Timing

MGSx1

RAS,
RASx2

RAS3

CAS,
CASx

CAS

DOB,OE,
LWE,EWE

refresh.wpg

1

1

2

Figure 78. Refresh Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

214

No. Characteristic Symbol Min Max Unit Notes

1 R&A&S& rise to DSF in dsfvras state 0 2 CPU-clocks 9

2 R&A&S& fall to DSF changing to dsfvcas state (mgbtrhld @ 2)
+ mgbteras

2X-CPU-
clocks

3 DSF changing to dsfvcas state before C&A&S&
fall

mgbtcas + 1 2X-CPU-
clocks

10

4 DSF in dsfvcas state after C&A&S& rise 0 1 CPU-clocks 11

5 R&A&S& rise to signal active 2 CPU-clocks

6 R&A&S& fall to signal inactive time 2 2X-CPU-
clocks

Notes:
1. During an access to the VRAM memory group when casbvras is clear.
2. During an access to the VRAM memory group when casbvras is set.
3. During an access to the VRAM memory group when oevras is set.
4. During an access to the VRAM memory group when wevras is set.
5. Active during a memory read.
6. Active during a memory write.
7. DSF is low during non-VRAM memory group accesses.
8. All CASes move appropriately.
9. If the previous memory cycle was to the VRAM memory group then DSF might not go low between memory

cycles.
10. Applies to RAS cycles and CAS cycles.
11. If the next memory cycle is to the VRAM memory group then DSF might not go low between memory cycles.

Table 70. VRAM Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

215

65

AD[31:9]

LWE

EWE
(mgbtewea set)

EWE
(mgbtewea clear)

DOB

OE

CAS8

RAS

RAS Address Bits CAS Address Bits

vram.wpg

Memory Read5

Memory Write6

OE

LWE

1

2

Note 2

Note 1Note 3

Note 4

CAS

DSF7

43

Note 3

Note 4

Figure 79. VRAM Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

216

No. Characteristic Min Max Unit Notes

1 Initial DMA request >4 CPU-clocks

2 Initial DMA request to first DMA I/O-channel bus
cycle start

>3.25ns + 5
CPU-cycles 4 4

3 DMA request setup before end of DMA I/O-channel
bus transaction

6.75ns + 2
CPU-clocks

2

4 DMA request hold after end of DMA I/O-channel
bus transaction

0 ns 2

5 DMA request high setup before end of DMA I/O-
channel bus cycle

6.75ns + 2
CPU-clocks

2

6 DMA request high hold after end of DMA I/O-chan-
nel bus cycle

0 ns 2

7 End of DMA bus cycle to start of next DMA I/O-
channel bus cycle

2 CPU-clocks 2,5

8 End of DMA bus cycle to start of next non-DMA I/O
channel bus cycle

2 CPU-clocks 2,5

Notes:
Timings assume pkgio is set. When pkgio is clear, bus sampling timings predominate.
1. Bus transaction start can be for a RAS or CAS cycle and occurs after bus request overhead.
2. Timings are only relevant on the last bus cycle of a DMA bus transaction. Noted areas can contain 0, 3 or 4

bus cycles to complete the bus transaction. Some cycles might be RAS cycles.
3. Bus cycle could be either RAS or CAS.
4. The max condition occurs if the VPU never executes delay or if there are continuous DMA bus transactions

from higher priority devices.
5. Value represents bus request overhead.

Table 71. DMA Request Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

217

3
7
4

2

1

5
8

6

Note 2 Note 2

Note 2Note 2 Note 3Note 3 Note 3

Bus Transaction Start (note 1)

dmareq.wpg

RAS

CAS

INx

Initial DMA Request Back-to-back DMA DMA Request Removed

Figure 80. DMA Request Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

218

No. Characteristic Symbol Min Max Unit Notes

1 &R&A&S rise to outputs valid 9.0 ns

2 &R&A&S fall to outputs not driven .75 ns

3 &R&A&S fall to AD[7:0] bit inputs valid 2 CPU-clocks 1,4

4 AD[7:0] bit inputs setup before &C&A&S fall 5.0 ns 1

5 AD[7:0] bit inputs hold after &C&A&S fall 0 ns 1

6 &C&A&S rise to AD[7:0] bit inputs valid 4 CPU-clocks 1,5

7 AD8 fault input setup to &R&A&S fall 16.25 ns 2

8 AD8 fault input hold after &R&A&S fall 0 ns 2

9 AD8 reset input setup before &C&A&S fall 1.75 ns 3

10 AD8 reset input hold after &C&A&S fall 0 ns 3

Notes:
1. AD[7:0] are used for inputs when pkgio is clear.
2. AD8 is used for memory fault requests when pkgmflt is clear.
3. AD8 is used for reset when &R&E&S&E&T is not low at power-up.
4. If &R&A&S fall to &C&A&S fall is less than maximum, time 4 applies.
5. If &C&A&S rise to &C&A&S fall is less than maximum, time 4 applies..

Table 72. I/O on Bus Timing

1 2
3

5 6
5

6

10
7

108

Bit Outputs

Fault Input

Bit Inputs

Reset Input

Bit
Inputs

Reset
Input

Bit Inputs

Reset Input

RAS

CAS

AD[7:0]

AD8

iobus.wpg

4

9 9

Figure 81. I/O on Bus Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

219

No. Characteristic Symbol Min Max Unit Notes

1 Sample clock period 4 CPU-clocks 1

2 &I&N&x to sample delay .75 1.5ns + 4
CPU-clocks

ns 1

3 Low data sampled to ioXin delay 4 CPU-clocks 1,2,5

4 High data sampled to ioXin delay 4 CPU-clocks 1,2,4,5

5 &I&N&x to ioXin delay 1.5 ns 1,3

Notes:
1. &I&N[7:0] are used for inputs when pkgio is set.
2. Allows data sampled in a metastable state to resolve to stated level.
3. Only during a DMA bus transaction on the corresponding I/O channel.
4. Minimum is exceeded when ioin is a persisting zero.
5. Except during a DMA bus transaction on the corresponding I/O channel.

Table 73. Bit Input Sample Timing

11 1

3

2 4
5

2

insamp.wpg

Sample
Clock

INx

ioXin

5

5

Note 3

Figure 82. Bit Input Sample Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

220

No. Characteristic Symbol Min Max Unit Notes

1 &R&A&S fall to first sample 2 CPU-clocks 1

2 Continued sample clock while &C&A&S remains
high

4 CPU-clocks

3 Sample clock to &C&A&S fall 5.0 ns 2

4 &C&A&S rise to first sample 4 CPU-clocks

5 &C&A&S inactive 4 CPU-clocks

6 &C&A&S inactive <4 CPU-clocks

7 External input change to AD change 50.5 CPU-clocks 3

8 AD to sample delay 4 CPU-clocks 4

9 Low data sampled to ioin delay 4 CPU-clocks 5

10 High data sampled to ioin delay 4 note 5 CPU-clocks 5, 6

Notes:
1. If &R&A&S fall to &C&A&S fall is less than maximum, time 3 applies.
2. Applies only when four or more CPU-clock cycles have elapsed since the last sample.
3. Does not include external buffer delay.
4. Minimum is specified only to allow meeting specific sampling events.
5. Allows data sampled in metastable state to resolve.
6. Minimum is exceeded when ioin is a persisting zero.

Table 74. Bit Input from Bus Sample Timing

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Electrical Characteristics
PSC1000 MICROPROCESSOR

221

1 2 3 4 2 3

65

7 7

8

8 10

9

bussamp.wpg

Sample
Clock

RAS

CAS

External
Input x

ADx

Sample
Clock

ioXin

Figure 83. Bit input from Bus Sample Timing

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

222

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Mechanical Characteristics
PSC1000 MICROPROCESSOR

223

Mechanical Characteristics

tqfppkg.wpg

1

N

D

D1

E1 E

A

A1

L
e

B
1 C

Seating Plane

Figure 84. 100-Pin TQFP Package Dimensions

Characteristic Symbol Value @ Airflow LFM Unit Notes

0 225 500 1000

Thermal Resistance, Junction to Ambient 2JA 42 37 32 28 EC/W

Thermal Resistance, Junction to Case 2JC 10 EC/W

Notes:

Table 76. 100-Pin TQFP Package Thermal Characteristics

Symbol
Millimeters

Min. Nom. Max.

A — — 1.60

A1 .05 — .15

B .17 .20 .27

C — — .17

D 16.00 BSC.

D1 14.00 BSC.

E 16.00 BSC.

E1 14.00 BSC.

L .45 .60 .75

N 100

e .50 BSC.

coplanarity — — .08

2 0E 3.5E 7.0E

Note: JEDEC SPEC MS-026

Table 75. 100-Pin TQFP Package Dimensions

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

224

Revision History

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Distributors and Sales Offices
PSC1000 MICROPROCESSOR

225

Distributors and Sales Offices

Asia

JAPAN
RealVision
3-1-1 Shin-Yokohama
Kouhoku-Ku, Yokohama
2220033 JAPAN
Mac Sano
Tel: 81 (45)473-7331
Fax: 81 (45)473-7330
e-mail: sano@realvision.co.jp

KOREA
Acetronix
5th FI Namhan Bldg
76-42 Hannam-Dong
Yongsan-Ku Seoul 140-210, Korea
Tel: +822-796-4561
Fax: +822-796-4563
Shane Rhee
e-mail: ace@ace-tronix.co.kr

SINGAPORE, MALAYSIA, THAILAND, PHILIPPINES,
INDONESIA
Microtronics Associates PTE LTD
8 Lorong Baker Bantu, #30-01
Kolam Ayer Industrial Pakr,
Singapore 348743
Tel: 65-748-1835
Fax: 65-743-3065
Samuel Tan
e-mail: microapl@pacific.net.sg
web site: www.microtronics-associate.com

TAIWAN
Pantek Technology Corp.
11F, No. 156 Sec. 5 Nan-King E. Rd
Taipei, Taiwan R.O.C.
Tel: +886-225-2749-5909
Fax: +886-225-2749-4053
Victor Shen
e-mail: pantek@gcn.net.tw

Europe

FINLAND
Inegrated Electronics Oy Ab
Laurinmaenkuja 3 A, 00440 Helsinki
PL31 00441 Helsinki, Finland
Tel: 90-2535-4400
Fax: 90-2535-4450
Ilpo Hamunen
e-mail: ilpo@ieoy.fi
web site: www.ieoy.fi

GERMANY & AUSTRIA
Ineltek Gmbh
Haupststr. 45
D-85922 Heidenheim, Germany
Tel: 49-7321-9385-0
Fax: 49-7321-9385-95
Roland Becker
e-mail: becker@ineltek.com
web site: www.ineltek.com

Middle East

ISRAEL
Iridium Data Ltd.
1 Shwartz St. Eliave Center
P.O. Box 677
Ra'anana 43000
Tel: +972-9-74505555
Fax: +972-9-7451515
Yossi Gabbay
e-mail: iridium@netvision.net.il
web site: www.iridium.co.il

USA

Patriot Scientific Corporation
10989 Via Frontera
San Diego, CA 92127
1 (619) 674 5000 (voice)
1 (619) 674 5005 (fax)
www.ptsc.com

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

226

A
D

V
A

N
C

E
 I

N
F

O
R

M
A

T
IO

N

Index
PSC1000 MICROPROCESSOR

227

Index

A
D

V
A

N
C

E
 IN

F
O

R
M

A
T

IO
N

PSC1000 Microprocessor
32-BIT RISC PROCESSOR

228

	PSC1000 Reference Manual
	Contents
	Figures
	Tables
	Features/Description
	Signal Descriptions
	100-Pin Thin Quad Flat Package (TQFP)
	Pin Assignments, 100-Pin TQFP

	Purpose/Overview
	Central Processing Unit
	Microprocessing Unit
	Address Space
	Registers and Stacks
	Programming Model
	Instruction Set Overview
	ALU Operations
	Branches, Skips, and Loops
	Literals
	Data Movement
	Loads and Stores
	Stack Data Management
	Stack Cache Management
	Byte Operations
	Floating-Point Math
	Debugging Features
	On-Chip Resources
	Miscellaneous

	Stacks and Stack Caches
	Exceptions and Trapping
	Floating-Point Math Support
	Hardware Debugging Support
	Virtual-Memory Support
	Video RAM Support
	Register mode
	MPU Reset
	Interrupts
	Bit Inputs
	Bit Outputs
	Instruction Pre-fetch
	Posted-Write
	On-Chip Resources
	Instruction Reference

	Virtual Peripheral Unit
	Usage
	Resources
	Register Usage
	Instruction Set
	Instruction Formats
	Execution Timing
	Address Space, Memory and Device Addressing
	Interrupts
	Bus Transactions
	Bit Inputs and Bit Outputs
	VPU Hardware and Software Reset
	Instruction Reference
	VPU Mnemonics and Opcodes (Mnemonic Order)
	VPU Mnemonics and Opcodes (Opcode Order)

	Direct Memory Access Controller
	Resources
	DMA Requests
	Prioritization
	Memory and Device Addressing
	Interrupts
	Bus Transaction Types
	Device Access Timing
	Maximum Bandwidth Transfers
	Terminating DMA I/O-Channel Transfers
	Other Capabilities

	Interrupt Controller
	Resources
	Operation
	Interrupt Request Servicing
	External Interrupts
	I/O-Channel Transfer Interrupts
	VPU int Interrupts
	ISR Processing

	Bit Inputs
	Resources
	Input Sources and Sampling
	DMA Usage
	Interrupt Usage
	General-Purpose Bits
	VPU Usage
	MPU Usage

	Bit Outputs
	Resources
	Usage

	Programmable Memory Interface
	Resources
	Memory System Architecture
	Device Requirements Programming
	System Requirements Programming
	I/O-Channel Programming

	On-Chip Resource Registers
	Bit Input Register
	Interrupt Pending Register
	Interrupt Under Service Register
	Bit Output Register
	Interrupt Enable Register
	DMA Enable Register
	VRAM Control Bit Register
	Miscellaneous A Register
	Miscellaneous B Register
	Memory Fault Address Register
	Memory Fault Data Register
	Memory System Group-Select Mask Register
	Memory Group Device Size Register
	Miscellaneous C Register
	Memory Group 0–3 Extended Bus Timing Registers
	Memory Group 0–3 CAS Bus Timing Registers
	Memory Group 0–3 RAS Bus Timing Registers
	I/O Channel 0–7 Extended Bus Timing Registers
	Memory System Refresh Address
	VPU Delay Counter Register
	I/O Device Transfer Types A Register
	I/O Device Transfer Types B Register
	Reserved Register Addresses
	DMA Enable Expiration Register
	Driver Current Register
	VPU Reset Register
	Bit Field to On-Chip Register Cross-Reference

	Bus Operation
	Operation
	I/O Addressing
	MPU and VPU (non-xfer) Memory Cycles
	Bus Transaction Types
	I/O-Channel Transfers
	Bus Reset
	Video RAM Support
	Virtual-Memory Page Faults Input
	Alternate Inputs and Outputs
	RAS/CAS Bus Transactions
	Cell Memory Write from MPU
	Cell Memory Read to MPU/VPU
	Byte Memory Write from MPU
	Byte Memory Read to MPU/VPU
	Cell Memory Write from Four-byte Byte-transfer Device
	Cell Memory Read to Four-byte Byte-transfer Device
	Byte Memory Write from Four-byte Byte-transfer Device
	Byte Memory Read to Four-byte Byte-transfer Device
	Cell Memory Write from One-byte Byte-transfer Device
	Cell Memory Read to One-byte Byte-transfer Device
	Byte Memory Write from One-byte Byte-transfer Device
	Byte Memory Read to One-byte Byte-transfer Device
	Cell Memory Write from One-cell Cell-transfer Device
	Cell Memory Read to One-cell Cell-transfer Device
	Byte Memory Write from One-cell Cell-transfer Device
	Byte Memory Read to One-cell Cell-transfer Device

	Processor Startup
	Power-on Reset
	Boot Memory
	Reset Process
	Bootstrap Programs
	Stack Initialization
	System Configuration after CPU Reset

	Example PSC1000 CPU Systems
	Example Minimal System with 8-bit Memory
	Example Minimal System with 32-bit DRAM and I/O Decoding
	Example System with SRAM, DRAM and I/O Decode
	PSC1000 Boot- only EPROM loader

	Electrical Characteristics
	Power and Grounding
	Power Decoupling
	Connection Recommendations
	Clock
	Absolute Maximum Ratings
	Operating Conditions
	DC Specifications
	Input Characteristics
	AC Characteristics
	CPU-Clock and 2X-CPU-Clock
	CPU Reset Timing
	Memory Read and Write Timing
	Signal Coincidence Timing
	Memory Fault Timing
	Refresh Timing
	VRAM Timing
	DMA Request Timing
	I/O on Bus Timing
	Bit Input Sample Timing
	Bit Input from Bus Sample Timing

	Mechanical Characteristics
	100-Pin TQFP Package Dimensions
	100-Pin TQFP Package Thermal Characteristics

	Revision History
	Distribution and Sales Offices

