
A Constraint-Based Approach for Developing Consistent Contracts in Composite
Services

Basem Suleiman 1,2
1NICTA

Australian Technology Park (ATP)
Sydney, Australia

2School of Computer Science and Engineering
University of New South Wales

Sydney, Australia
Basem.Suleiman@nicta.com.au

Fuyuki Ishikawa
GRACE Center

National Institute of Informatics (NII)
Tokyo, Japan

f-ishikawa@nii.ac.jp

Abstract— A key problem that challenges the designers of service-
oriented systems is ensuring the consistency of composite Web
service contracts based on their parameters. This paper utilizes
constraint satisfaction approach to examine the problem at design
time and by focusing on quality of service (QoS) contract
parameters. It proposes a generic framework to formalize service
contract composition as a constraint satisfaction problem (CSP). It
also introduces an initial tool design for automating composite
contract consistency checking and adaptation based on QoS
parameters. The tool aims at supporting Web service orchestrators
to specify appropriate contract parameter values and adapt them
so that consistency of composite contracts is increased to some
extent. Further, it enables them to analyze and reason about
violation percentages during contract negotiation phase. The
benefits of the proposed CSP framework and the tool design have
been illustrated through a Stock Manager Web service composition
scenario.

Keywords- composite contracts; Web service composition;
consistency checking; quality of service parameters; constraint
satisfaction;.

I. INTRODUCTION

Due to its proved benefits, service-oriented computing
(SOC) has become the most dominating engineering
paradigm for software systems. In SOC, software
components provide services to other applications through
published and discoverable interfaces [1], and hence they are
called Web services. The process of orchestrating different
Web services into a new service is a key concept in SOC
which is called service composition. Service composition
may depend on different criteria including service properties
(e.g., functional and quality of service properties). Such
properties are usually specified in the service contract as
guarantees and conditions of service behavior. Flexibility in
service composition depends on the extent to which service
providers allow for changes in their contracts, i.e., service
properties.

Contract engineering and management in Web service
orchestration are among the most essential activities which
challenge Web service designers because they play a central
role in constructing consistent and reliable composite
services. Web service contracts define commitments and
guarantees that each service provider should respect for all

service consumers. Web service level agreement (WSLA)
[2] and The Web Service policy Framework (WS-Policy) [3]
are among the most adopted industry standards for contract
specifications. WSLA is an IBM standard language that
allows specifying agreed-upon guarantees for IT-level
service parameters such as availability and response time.
WS-Policy is another standard for specifying Web service
capabilities and constraints. Composing services require
precise selection and specification of contract parameters’
values that ensure minimum violation of the composite
contracts. Unfortunately, WSLA and WS-Policy cannot help
in deciding the most appropriate parameters values of
composed contracts- they focus on providing standard
language constructs to facilitate contract specification.
Furthermore, it is almost impossible for service providers to
provide 100% guarantees for their contract parameters.
Therefore, the specification of parameters values of
composed contracts at design time and their monitoring at
run-time are crucial tasks for the service orchestrators. They
need techniques to aid them predicting possible contract
violation and consistency when composing Web services and
during its execution. This research focuses on the former
issue, i.e., helping service designers to specify appropriate
values for QoS contract parameters that ensure the
development of consistent composite services.

In contract composition, QoS parameters and their values
are usually specified based on QoS parameters values of
composed services. Service providers normally need to
provide QoS parameter values that waive their responsibility
of any violation or failure. On the other hand, composite
services seek specifying QoS parameters values that ensure
best and competitive guarantees for its consumers. These
needs often lead to an on-going negotiation between service
providers and the orchestrator of the composite service.
During this process, continuous changes to the QoS
parameters values take place and require consistency
checking of the composite contract parameters values. For
example, the service orchestrator needs to know the
percentage of violation that could result from changing one
or more of its QoS parameters values. They also want to
ensure minimum violation or failure that could result from
changing one or more QoS parameter values of one or more
of the provided services.

Most of the composite contract studies define QoS
contract parameters as hard limits. For instance, response
time need to be less than an exact value and number of
allowed inquiries must not exceed a certain number per
second. Although this approach helps service providers to
provide more reliable guarantees, it challenges service
orchestrators with specifying impractical QoS parameters
values in the composite contract. For example, response time
needs to be less than the summation of all response times of
all provided services (while in this research we consider such
simple formula, but in real situations the response time
would be calculated through a complex formula that
considers different variables.) While such summation results
in a high response time, the service orchestrator in practice is
required to provide a competitive response time guarantee to
its consumers, i.e., as minimum as possible. Such
requirements usually challenge the service orchestrators with
the need to specify, vary and analyze several possible
contract parameters values (both provided and composite
parameters values) so that the possibilities that would lead to
inconsistent composite contract can be reduced. This
research aims at supporting the service orchestrators in
achieving such tasks during composite contract construction
and negotiation by:

1) Providing a generic formalization framework of
contract composition problem as a constraint satisfaction
problem (CSP) during design-time.

2) Designing a support tool that enable design-time
consistency checking of composite contracts based on
provided QoS parameters values during contract
development and negotiation process. It aims at facilitating
flexible negotiation and re-design of composite contracts
based on QoS contract parameters to ensure reduction of
possible contract violations. The objectives are intended to
aid Web service designers in negotiating with service
providers about contract parameters values and constructing
consistent composite contracts through exploring and
analysing appropriate combinations of QoS parameters
values of all involved service contracts. By consistent we
mean appropriate values specification to the parameters of
the composite contract that reduce possible contract
violation during service execution.

Section II motivates to our research objectives through a
practical Scenario. Section III describes the generic
framework for modeling composite contract problem as a
CSP. Section IV applies the proposed framework to the
scenario and its use as tool for consistency checking is also
discussed. Solving techniques for the CSPs are discussed in
Section V. The discussion of the proposed approach is
introduced in Section VI. Finally, related work and
conclusions are introduced in Section VII and VIII
respectively.

II. MOTIVATING SCENARIO

To illustrate the objectives of our research, we present
how a Web service composition example for financial stock
trading could benefit from our approach for composite

contract formalization using CSP to analyze and ensure
consistency of QoS contract parameters values. In the
following Sections, we discuss how these objectives are
achieved and demonstrate how the stock trading Web service
composition to some extend validate the feasibility and
usefulness of our proposed approach.

Stock Manager is a composite service that provides stock
information for its consumers to help them deciding whether
and when to buy and/or sell financial stocks. As shown in
Fig. 1, it is composed from several specialized Web services
namely, Stock Quotes, Market Financial Trends, Expert
Advice and Currency Exchange. The properties of these
services are documented in the form of service contracts.
Fig. 1 shows only essential services’ parameters in the
context of this research (other contract information is not
shown in the example.) Examples of such guarantees include
Stock Quotes promises response time to be less than 70 ms,
Market Financial Trends allows throughput (i.e., maximum
number of allowed queries per hour) to be 160 queries, the
validity of the information provided by Expert Advice is up
to 15 minutes, the call cost of Currency Exchange service is
between $0-$10 depending on the request time and other
contextual variables. The complete details of contract
parameters are shown in Fig.1. The number of contract
parameters of the provided services and their types could
vary from one case to another. They also may depend on
many other contextual aspects such as measurement
methods, software and hardware infrastructure specifications
and internal control structure of a Web service, to name a
few. As we narrow down the scope of our research to
concrete services, such aspects are not dealt with in this
study.

Specifying optimal and competitive values of Stock
Manager’s contract parameters is a challenging task for the
service orchestrator. Usually there are several dependencies
between contract parameters of the provided services and
Stock Manager. For instance, the relationship between Stock
Manager’s response time and provided services’ response
times could be represented as follows:

SM.RT ≤ ∂ + SQ.RT + MFT.RT + EA.RT + CE.RT

Where ∂ is the Stock Manager overhead. In practice, the

formula would be more complex than this one, but for
simplicity, we assume that response times (and other QoS
parameters) of provided service already considered other
aspects and the provided values are the ultimate ones. The
problem becomes more challenging when the number of
involved services in the composition becomes large and
various changes occur in one or more different QoS
parameters such as response time and information validity.
Contract violation could result from any QoS parameter type
(e.g., throughput or information validity) at any particular
point of time during composite service execution.

To specify a competitive response time value for Stock
Manager, the service orchestrator needs to ensure percentage
of inconsistent and consistent cases that would result from
various value combinations of provided services’ response

RespTime<=??

Throput=??

InfoVald=??

CallCost=??

 RespTime≤70 ms

Throput=190

InfoVald≤18 min

CallCost=$0-$10

 RespTime≤90 ms

Throput=160

InfoVald≤30 min

CallCost=$0-$25

 RespTime≤100 ms

Throput=95

InfoVald≤19 min

CallCost=$0-$30

 RespTime≤40 ms

InfoVald≤20 min

CallCost=$0-$8

times (or any other QoS parameters.) Similarly, if one or
more response time of the provided services changes, the
service orchestrator wants to find out the impact on the
number of consistent/inconsistent cases and therefore their
percentages. Such activities are crucial for service
orchestrators as they need to figure. out percentages of
possible consistent/inconsistent cases of their composite
contract so they can adapt them or describe them in a more
precise way. Even service orchestrators would need
providing different versions of composite service contract
based on consumer type. This requires varying the values of
QoS contract parameters values and checking the percentage
of violation accordingly. For example, they could provide
QoS parameter values that have low violence rate for their
crucial service consumers.

These challenges are among the motivating drivers for
our adoption of a constrained-based approach for developing
consistent contracts in service composition. The next Section
introduces our proposed generic framework for formalizing
the composite contract problem as a CSP.

III. FORMALIZATION OF COMPOSITE CONTRACT AS

CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction (CS) approach has been
recently used as framework for modeling and solving
complex problems, specifically for combinatorial ones [4].
It has been successfully applied to real-world problems in
various areas such as planning and scheduling. Problems
that are modeled using constraint satisfaction approach are
called constraint satisfaction problems (CSPs). CSP is a
problem that consists of different variables where relations
between these variables are stated as constraints.

CSP is formally defined as triple (V, D, C) where V is a
finite set of variables, D is a finite set of possible values that
each variable in V can take (i.e., its domain) and C is a set
of constraints that restrict the values that each variable can
take at the same time. A solution to a CSP is a value
assignment to each variable from its domain so that all
constraints are satisfied simultaneously. Based on this
definition, there could be:
a) One solution: any variable-value ordering that satisfies

all constraints without any preference or selection

criteria (e.g., the first solution that the algorithm could
found.)

b) A number of solutions: all possible variable-value
orderings that each of which satisfies all constraints at
the same time. In this case, solutions can be sorted based
on an objective function which is not in the scope of our
study.
Our formalization of composite contract problem (CCP)

is based on the above CSP definition. A CCP can be defined
as (SP, CV, CVD, CC) where:

• SP = {sp1, sp2 … spn}, is a set of Web service providers
from which composite contract is developed. We assume
that these service providers are atomic, i.e., they are not
composed of other services.

• CV = {CV1, CV2… CVn}, is the set of contract
parameters (i.e., variables) of Web service providers,
where:
CV1 = { sp1.cv1, sp1.cv2 … sp1.cvi}
CV2 = { sp2.cv1, sp2.cv2 … sp2.cvj}
 …
CVn = { spn.cv1, spn.cv2 … spn.cvk}
Similarly, these contract parameters are atomic not

composite ones. Each service provider may have different
number of contract parameters. Web service contracts may
contain different kinds of parameters or variables such as
quality of service (QoS) parameters, utility parameters and
resource parameters. The focus of this study is set on the
QoS variables such as response time, throughput and
availability. To the best of our knowledge, most
composition studies in the literature focus on such QoS
attributes due to their direct influence on the overall service
quality. Some other contract parameters which seem not to
have clear classification such as information validity are
within the scope of our study. Nevertheless, our framework
can be used for modeling any kind of contract parameters,
but further aspects need to be considered.

• CVD = {{CVD1}, {CVD2}… {CVDn}}, is the set of
domain sets over which each contract variable (spn.cvk)
ranges, where each domain CVDn consists of a set of
ranges depending on the number of QoS parameters.
This can be represented as follows:

CVD1 = { sp1.cv1d1, sp1.cv2d2 … sp1.cvidj},
CVD2 = { sp2.cv1d1, sp2.cv2d2 … sp2.cvjdj},
 …
CVDn = { spn.cv1d1, spn.cv2d2 … spn.cvkdk}

The domains can be of integer, real or Boolean types.
Domains could vary from contract variable to another.

• CC = {cc1, cc2 … ccm}, a set of constraints that represent
relationships between contract parameters and restrict
the values that each attribute can take at the same time.
The relationships could be between contract variables of
the same or different types.
Solving composite contract problem is achieved by

finding all possible contract parameters value combinations,

Figure 1. Stock Manager composite service and contract parameters

from their domains, such that all constraints are satisfied. In
fact, the solution could be represented as a subset of the
Cartesian product of all variable domains, i.e., CCPS ∈
CVD1 × CVD2 × … × CVDk. In this research, the focus set
on deriving combination of parameters values that ensure
consistency of a composite contract to a certain percentage.
Finding the optimized solution is out of this research scope.

IV. DEVELOPING CONSISTENT COMPOSITE CONTRACTS

In this Section we introduce an approach that utilizes our
CSP framework (presented in the previous Section) to help
the service orchestrator to analyze, check and change values
of contract parameters when developing composite
contracts. The approach is implicitly depicted in Fig. 2
which is explained later. It is summarized in the following
steps:

I. Identify the selected service providers that are involved

in the service composition (SPn) and get their service
contracts.

II. For each service provider (SPn), identify all contract
QoS parameters (SPn.CVk) and define them as variables.

III. For each defined QoS variable (SPn.CVk), identify its
domain (SPn.CVkDk) through which it may range.

IV. Derive the constraints (CCm) of the composite contract
using the identified variables and domains. At this stage
this derivation needs to be developed manually by

service orchestrators. It requires finding possible
relationships among contract variables. Relationships
could exist between similar and/or different contract
variables of different service providers. Past
experiences, guidelines and best practices can be
utilized to build such constraints. In sub-section B we
discuss the interface design to aid the designers in
constructing such constraints.

V. Specify initial values for the composite contract QoS
parameters based on historical information.

VI. Run the CSP solver algorithm(s) to test violation
percentage, and/or consistent/inconsistent cases, which
would result from the value combinations of the
identified QoS parameters. Section V discusses solving
CSP algorithms.

VII. Analyze the generated cases and violation percentages
and adapt the composite contract parameter values
accordingly. Negotiate with service providers about
their contract parameter values until an agreed state is
reached.

A. Stock Manager Contract Development

Based on the above steps and the proposed framework,
we now apply the approach to the motivating scenario. The
Stock Manager composition can be defined as follows:
SMC = (SP, CV, CVD, CC), where the involved services in
the composition are:

Variables-QoS parameters
RespTime, Throput, InfoVald,

CallCost

Stock Quotes (SQ)
Market Financial Trends

(MFT)
Expert Advice (EA)

Currency Exchange
(CE)

Variables-QoS parameters
RespTime, Throput, InfoVald,

CallCost

Variables-QoS parameters
RespTime, Throput, InfoVald,

CallCost

Variables-QoS parameters
RespTime,, InfoVald, CallCost

Domains
{1..70}, {1..190} {1..8}, {0..10}

Domains
{1..90}, {1..160},{1..30} {0..25}

Domains
{1..100},{1..95},{1..15} {0...30}

Domains
{1..40},{1..10}, {0..8}

<<QoS Constraints>>
cc1: SM.RespTime<= oh + SQ.RespTime + MFT.RespTime + EA.RespTime + CE.RespTime, oh: overhead
cc2: SQ.Throput <= 190 && MFT.Throput <= 160 && EA.Throput <=95
cc3: SM.InfoVald <= SQ.InfoVald && SM.InfoVald <= MFT.InfoVald && SM.InfoVald <= EA.InfoVald
&& SM.InfoVald <= CE.InfoVald
cc4: SM.CallCost = a + SQ.CallCost + MFT.CallCost + EA.CallCost + CE.CallCost,
cc5: SQ.CallCost <= 10 && MFT.CallCost <= 25 && EA.CallCost <= 30 && CE.CallCost <= 8

An Interface used
by service
designers to
formalize
constraints
By defining
contract variables
and their domain
values

Check consistency/
Inconsistency

Generate combinational
QoS ranges

Check violation
percentage

Change QoS
parameters values

Analysis of & reasoning about
QoS composite contract violation

Consistent/inconsistent cases
Possible changes to QoS parameters

Stock Manager (SM)

Variables-QoS parameters
RespTime, Throput, ,

CallCost, InfoVald
Domains- variables
{??}, {??}, {??}, {??}

Figure 2. Application of Stock Manager scenario and basic design of the tool support for consistency composition contract checking

SP = {SQ, MFT, EA, CE, SM}
The contract QoS parameter variables (CV) of each service
provider are:

CV = {SQ_CV, MFT_CV, CE_CV, SM_CV, SM_CV}

SQ_CV = {SQ.RespTime, SQ.Throput, SQ.InfoVald,
SQ.CallCost}
MFT_CV = {MFT.RespTime, MFT.Throput, MFT.InfoVald,
MFT.CallCost}
EA_CV = {EA.RespTime, EA.Throput, EA.InfoVald,
EA.CallCost}
CE_CV = {CE.RespTime, CE.InfoVald, CE.CallCost}
SM_CV = {SM.RespTime, SM.Throput, SM.InfoVald,
SM.CallCost}

The Stock Manager has considered as a service provider
because it will provide its services to other parties (i.e.,
service consumers as shown in Fig. 1). However, it still
consumes services provided by the other four services and
thus it has relationships with them. Further, we need to
distinguish its contract parameters from other services’
parameters. The domains CVD of the defined variables are:

CVD = {SQ_CVD, MFT_CVD, EA_CVD, CE_CVD,
SM_CVD}

SQ_CVD = {1…70, 190, 8, 0…10}
MFT_CVD = {1…90, 160, 30, 0…25}
EA_CVD = {1…100, 95, 15, 0…30}
CE_CVD = {1…40, 10, 0…8}
SM_CVD = {??,??,??,??}

Note that the domains of Stock Manager (SM_CVD)

need to be derived and changed from SQ_CVD - CE_CVD
and based on the constraints defined below. In other words,
we need to find the values of all Stock Manager’ QoS
parameters that satisfy all the below constraints
simultaneously. Furthermore, the service orchestrator may
need to know the percentage of violation of Stock Manager
contract when one or more of its or service providers’ QoS
parameters are changed during the negotiation phase. The
constraints on this contract composition are:

CC = {cc1, cc2, cc3, cc4, cc5}
cc1: SM.RespTime ≤ ∂ + SQ.RespTime + MFT.RespTime +
EA.RespTime + CE.RespTime, where ∂ is the internal
overhead of Stock Manager service.
 cc2: SQ.Throput ≤ 190 && MFT.Throput ≤ 160 &&
EA.Throput ≤95
cc3: SM.InfoVald ≤ SQ.InfoVald && SM.InfoVald ≤
MFT.InfoVald && SM.InfoVald ≤ EA.InfoVald &&
SM.InfoVald ≤ CE.InfoVald
cc4: SM.CallCost ≥ α + SQ.CallCost + MFT.CallCost +
EA.CallCost + CE.CallCost, where α is the sales
commission

cc5: SQ.CallCost ≤ 10 && MFT.CallCost ≤ 25 &&
EA.CallCost ≤ 30 && CE.CallCost ≤ 8

Fig. 2 (the upper half including the constraints) depicts

the formalization of the Stock Manager composite contract
scenario and shows the relationship between contract
parameters of the provided services and the composite one.
The second part of the Figure (the lower part) corresponds
to the tool design which is discussed in details in the next
sub-section.

Suppose that the Stock Manager orchestrator decides to
allocate the following initial values (domains) for the Stock
Manager contract parameters:

SM_CV= {SM.RespTime, SM.Throput, SM.InfoVald,
SM.CallCost}
SM_CVD = {1...160, 1...150, 1...16, 50…75}

Now s/he needs to analyze the percentage of contract
violation that would occur as a result of value combinations
of QoS contract parameter values. By entering all the
scenario contracts’ parameter variables, their values and
constraints to a solver algorithm that checks violation of
constraints (discussed in Section V) we can get combination
of QoS contract parameter values that that lead to consistent
or inconsistent composite contract (based on the defined
constraints.) Fig. 3 and 4 show samples of such consistent
and inconsistent cases respectively. The algorithm will
iterate through all possible value assignments to the problem
variables and check satisfaction of all constraints
simultaneously.

As shown in Fig. 3 (first set of ranges), although all
response times of service providers are respected, but their
total violates the cc1 constraint. In case 2, the Information
validity values of SQ, EA and CE contracts are less than
what SM promises. There are many other value
combinations that lead to such contract violation. Similarly,
Fig. 4 shows some contract parameter value combinations
that ensure satisfaction of all composite contract constraints
at all times. The designers need not to worry about finding
such cases as the tool supposes to do so. Instead, they can
analyze and reason about most critical cases and consider
them for negotiation with service providers and re-design
the composite contract based on assigning new values (to
the composite contract parameters) which lead to higher
consistent states. Based on these consistent/inconsistent
cases they can also find percentage of contract violation of
particular composite contract parameter values.
Furthermore, they can keep tuning these values and/or
negotiating with the service providers about provided
contract parameter values until they reach certain percentage
of consistency or violation which can be accepted by
consumers of the composite service.

As a result, different composite contract versions can be
generated and agreed upon with different service
consumers.

B. Tool Support for Ccomposite Ccontract Cconsistency
Checking

In this Section we discuss the tool design to support the
automation of composite contract consistency checking. As
shown in Fig. 2 (the upper part), the designers can use the
provided contract parameters and their domains to construct
appropriate constraints between them and composite contract
parameters (this has been discussed in sub-section A.) Part of
our plans for a prototype implementation is the design of an
interface that helps the designers to easily and quickly build
composite constraints from several service contracts’
parameters. The interface aims at facilitating the designer’s
task by enabling them to select contract parameters from a
predefined library and to specify their domain values. It also
provides essential mathematical and logical operators that
are required to constructing constraints. Such interface would
be more useful when it is integrated with WSLA framework.

As shown in Fig. 2 (the lower part), the input to the tool
is a set of contract parameters, their domains and the
relationship between them, i.e., the constraints. The output
depends on the selected functionality. We show some
examples of consistent/inconsistent cases generated based on
the Stock Manager scenario (see Fig. 3 and 4.) The
“Generate combinational QoS ranges” functionality enables
automatic generation of the domains of the composite
contract parameters using the involved service contracts.
This would consider different factors such as balancing
different parameter values so that some parameters are
increased and others are reduced. For instance, finding
contract domains that minimize the composite contract
response time and maximize the information validity and at
the same time have the minimum contract violation
percentage. The “Check violation percentage” feature will
allow the service orchestrator to know the percentage of
contract violation that would result during service execution
and due to combination of contract parameters values. The

orchestrator can then adapt QoS contract parameter values
until particular violation percentage is reached (e.g., the
average). Further, this can help them in generating different
contract versions according to the service consumer type or
needs. For example, if the service consumer is a very
important client to the composite service, then the service
orchestrator needs to find better contract parameter
values/ranges that minimize the violation percentage than for
a normal service consumer.

 In addition to these functionalities, the tool will also
provide “Change QoS parameter values” to adapt contract
parameter values according to certain conditions such as
reducing the violation percentage to a certain value. These
functionalities are aimed at support the orchestrator’s tasks
during contract construction and negotiation phase at design.
Their output can help the orchestrators to analyze various
contract cases and reason about them in a timely and
productive manner. Furthermore, it helps the orchestrator to
think about witting exceptional handling for critical contract
violation cases that cannot be handled with the specified
domains.

V. SOLVER ALGORITHMS FOR THE COMPOSITE

CONTRACT CONSISTENCY PROBLEM

There are several solver algorithms for solving CSP in
different domains (see [5] for a list of some constraint
solvers). Such solvers are based on systematic search
algorithms and Artificial intelligence techniques. Generate-
and-test [4] is one of the well-known algorithms which
generates all possible value combinations and then test
whether or not they satisfy all constraints. Such algorithms
can be utilized for generating all possible
consistent/inconsistent contract value combinations. In our
tool investigation, we conduct some experiments using ZDC-
Rostering tool [6], an application that enable modeling and
solving CSPs with a focus on Scheduling and planning
problems. It provides different solving techniques such as
generalized Forward Checking solver, Linear Programming
solver and local search solvers and Genetic Algorithms. We
experienced efficiency and performance problems with these
algorithms. For example, it took the application long time to
find all possible value combinations that lead to consistent
combinations of contract parameters (based on the provided
constraints). Such problems make the approach to somewhat
impractical. Therefore, we research for ways on how to
improve efficiency of CSP solving algorithms.

 Backtracking [4] tries to gradually extend partial
consistent value combinations toward a complete one by
recurrently selecting a variable value. Obviously, this
technique is useful for finding consistent cases. However,
late detection of inconsistent cases is a disadvantage of this
approach. To explore inconsistent states earlier and reduce
search space, different techniques such as node-consistency,
arc-consistency and path consistency which are based on
constraint graphs [4] could be also used. Forward checking,
look-ahead and look-back techniques were resulted from
integrating consistency techniques and search algorithms.
Full details of all these algorithms and techniques can be
found at [4].

Figure 3. Samples of SM contract violation cases

Stock Manager contract violation- value combinations
…….
{{ 40,52,18,5},{67,15,23,13},{55,10,18, 18},{20,20,2}}
{{31,52,10,5},{24,15,27,13},{41,10,15, 18},{18,10,2}}
{{ 53,190,9,5},{ 72,160,26,13},{63,95,12,18},{32,11,2}}
 ……

Stock Manager consistent contract- value combinations
…….
{{21,92,18,5},{24,86,23,13},{49,10,18, 18},{14,20,2}}
{{35,87,16,5},{15,87,25,13},{42,87,17, 15},{14,15,3}}
 …..

Figure 4. Samples of SM contract consistent cases

To this end, we believe the feasibility of implementing
efficient tool (as discussed in the previous Section) is
possible. Having said this, the utilization of available
algorithms (discussed at [4]) (with some customization) will
help achieving the goals of our proposed tool. As there are
different functionalities (discussed in sub-section B), there
will be a need for implementing different solvers and
algorithms to achieve these functionalities. This requires
more empirical studies that include, but not limited to,
complexity analysis and performance evaluation of existing
algorithms, solution’s optimization, Implementation and
technical details of the proposed model and algorithms. In
fact, the prototype implementations of such algorithms and
their performance analysis and evaluation requires further
individual research studies that are focused on solving and
optimizing consistency checking of QoS contract parameters
in composite services. These are main parts of our future
work.

VI. DISCUSSION

The model presented in Section III aims at providing
generic framework for modeling composite contract
parameters and their relationships as a CSP. Variables and
constraints need not to be represented in any special
notations which make them easy to be constructed and
understood by service designers. Further, they correspond
directly to the real problem entities making them closer to
the original problem. Constraints can be solved without the
need to be translated into other simplified formulas. In
addition, their construction would not be a complicated task
as constraints need to be derived from existing contract
parameters’ values and by using basic mathematical and
logical operators. The existence of wide range of algorithmic
search and optimization techniques for solving CSP make
automated tools development for consistency checking more
feasible.

Those variables and constraints are key input for the tool
design (presented in sub-section B.) The exploration of
consistent/inconsistent cases requires exhaustive searching
techniques that generate and test various states. Even
changing or tuning contract attributes’ values require re-
checking of contract consistency in a timely manner. It is
almost impossible for designers to achieve such tasks
without the tool support. In addition, the tool can facilitate
analysis and reasoning tasks. For instance, it can generate
percentages of contract possible violation cases that could be
caused by each contract parameters or group of them.
Accordingly, the designers can then decide on priority of
adapting or changing contract parameter values with the
highest influence on the composite contract (e.g., response
times). Generating inconsistent case of contract values also
has its benefits. They can be used as a basis for developing
proactive strategies during service orchestration that handle
most critical ones through exceptions.

Another benefit of the contract consistency checking tool
is to support contract versioning. For composite service it is
sometimes essential to develop different contract instances
with different parameter values to meet various types of
consumer requirements or importance.

TABLE I. CONSISTENCY PATTERNS OF VALUE COMBINATIONS

Attribute values/contract satisfaction Composite
contract

Consistency Patterns
All contract parameter values satisfy their
own contract guarantees

Not violated

One or more attribute value violate their
contract agreement

Not violated

Inconsistency Patterns
One or more attribute value violate their
contract agreement

Violated

All attribute values satisfy their own contract
guarantees

Violated

To achieve this, the designers need to specify the most

appropriate values for their contract parameters and their
violation percentages Thus, they need to generate various
consistent value combinations that meet expectations of their
consumers and based on which they precisely create various
contract versions.

We assumed that service providers are concrete to
narrow down the scope of our study. In reality, provided
services may be composed from other Web services.
Furthermore, there are more complicated compositions, other
than sequence of services, which involve control structures
such as conditions and loops. Currently, such structures can
be taken into consideration when service designers construct
constraints that determine weight of each contract parameter.
For example, they can specify high weight on parameters
that denote QoS of providers which are invoked many times
in a loop execution. While these issues add a layer of
complexity that challenges our proposed model, we believe
that some existing researches in the literature (e.g., [7])
proposed approaches on how to compute valuations of Web
service compositions. Such approaches would support our
assumption and help on focusing on other issues.

We found out from the precise analysis of some output
samples that although all contract parameter values would
satisfy their own contract guarantees, but there are some
cases where the composite contract could be breached. Thus,
satisfaction of service providers contract attributes would not
always lead to consistent composite one. Table 1 shows all
possible pattern categories that would result from value
combinations.

VII. RELATED WORK

Through examining the literature, we classify the related
studies into two main streams namely, formal modeling and
specification of consistent contract composition [8, 9] and
constrained-based approaches for Web service composition,
orchestration and their monitoring [10, 11, 12]. While
Ishikawa et al. used event calculus to specify constraints on
composite contracts and reason about their consistency,
Lamparter et al. built their formal modeling of contracts on
DOLCE (Descriptive Ontology for Linguistics and Cognitive
Engineering). Our goal is not another formal modeling
technique for contract composition, but simple representation
of contract parameters and their relationships in order to be
used as input for exploring consistent and inconsistent cases
in service composition. The designers need not to learn how

to write event calculus predicates or ontology axioms to
represent and reason about the dependencies between
contract parameters. Variables in CSP correspond directly to
the real contract parameters (e.g., QoS) making CSP
representation closer to the original problem. Furthermore,
constraints can be solved without the need to be translated
into other simplified formulas. This makes the problem
formulation and the problem and the solution easy to
understand by both humans and solvers.

Although the constraint-based approaches [10, 11, 12] for
dynamic service selection and composition used similar
approach (i.e., CSP), but our research objectives differ from
these researches. Specifically, our research aims at providing
support to service orchestrators during design-time to reason
about contract consistency and make decisions for better
service orchestration. In contrast, Channa et al. focus on
dynamic composition CSP optimization approach based on
various aspects such as cost, QoS and process constraints.
The agent-based technique [11] utilizes fuzzy distributed
CSP to model and solve QoS –based composite contract
constraints. Our approach does not consider satisfying all
providers’ local constraints as it is central to the composite
service only, i.e., the orchestrator. The constrained-based
service composition in [12] is basically based on the
functional requirements of the composite service. In other
words, the optimal service selection and execution at run-
time depends on user selections and preferences. Our
approach focuses on the most common criteria (e.g., contract
parameters including QoS) during service design that would
cause contract violation and lead to losses.

While Rosario et al. proposed a comprehensive
probabilistic approach [13] to soften QoS parameters in
service composition, our research deals with QoS parameters
in the form of hard bounds. Their tool TOrQuE (Tool for
Orchestration simulation and Quality of service Evaluation)
enables constructing probabilistic contracts, their
composition and monitoring for Web service orchestration.
According to our best knowledge, hard constraints are the
most commonly used technique for contract agreements and
service composition in research and practice.

VIII. CONCLUSION

This study has introduced a generic framework for
modeling composite contracts as a CSP and based on QoS
parameters. It has illustrated solving contract composition
problem, i.e., specification and adaptation of QoS contract
parameters’ values of the composite service. The proposed
CSP framework and solving approach provide a theoretical
foundation for modeling and solving constraints on
composite contract so that they facilitate composite contract
development. Based on this foundation, we also discussed an
initial design for tool support to automate contract
consistency checking and analysis. Furthermore, we show
how the tool could allow varying QoS contract parameter
values and check possible percentage violation that could
result during composite service execution. Time saving is
one of the obvious benefits for service orchestrator. In
addition, our approach will enable developing more reliable
and consistent composite contracts once it is implemented.

The implementation of the proposed framework and tool
are among the most important items for our future work.
Considering other contract parameters such as utility, grid
and context parameters is also another essential future work
item. In addition, modeling and solving more complicated
compositions that involve conditions and loops need to be
investigated.

ACKNOWLEDGMENT

NICTA is funded by the Australian Government as
represented by the Department of Broadband,
Communications and the Digital Economy and the
Australian Research Council through the ICT Centre of
Excellence program.

REFERENCES
[1] M. P. Singh and M. N. Huhns, Service-Oriented Computing:

semantics, Processes, Agents. John Wiley and Sons, 2005.
[2] IBM, “Web Service Level Agreement (WSLA)”,online:

http://www.research.ibm.com/wsla/WSLASpecV1-
20030128.pdf, accessed: January 13, 2009.

[3] W3C, Web Service policy 1.5-Framework, online:
http://www.w3.org/TR/ws-policy/, April 7, 2009

[4] R. Bartak, On-line Guide to Constraint Programming,
available online:
http://www.constraintsolving.com/Favlinks.html, access date:
January 12, 2009.

[5] Constraint Libraries, online:
http://www.constraintsolving.com/ConstraintLibrary.html,
access date: February 15, 2009.

[6] E. Tsang, et al., “ZDC-Rostering: A Personnel Scheduling
System Based On Constraint Programming”, TR 406, 2004,
accessed online:
http://dces.essex.ac.uk/CSP/papers/TFMBWS-ZdcRostering-
TR406_2004.pdf, date accessed: February 5, 2009.

[7] J. Pathak et al., “Modeling Web Service Composition using
Symbolic Transition Systems”, American Association for
Artificial Intelligence, online:
http://www.aaai.org/Papers/Workshops/2006/WS-06-
01/WS06-01-006.pdf, accessed: April 15, 2009

[8] F. Ishikawa, N. Yoshioka, and S. Honiden, “Developing
Consistent Contractual Policies in Service Composition”,
Asia-Pacific Service Computing Conference, IEEE CS,
Tsukuba Science City, Japan, pp. 527-534, December. 2007,

[9] S. Lamparter, S. Lunckner, and S. Mutschler, “Formal
Specification of Web Service Contracts for Automated
Contracting and Monitoring”, 40th Hawaii Int. Conf. on
System Sciences, IEEE Xplore, Hawaii, pp. 63-70, Jan 2007

[10] Channa et al., “Constraint Satisfaction in Dynamic Web
Service Composition”, Asian Journal of Information
Technology, vol. 4, pp. 957-961, September 2005.

[11] X. Nguyen, R. Kowalczyk, and M. Phan, “Modeling and
Solving QoS Composition Problem Using Fuzzy DiscCSP”,
IEEE Int. Conf. on Web Services (ICWS’06), IEEE CS,
Chigaco, USA, pp. 55-62, December 2006.

[12] A. Hassine, S. Matsubara, and T. Ishida, “A Constraint-Based
Approach to Horizontal Web Service Composition”, The
Semantic Web – ISWC, Springer Berlin, pp. 130-143,
November 2006

[13] S. Rosario et al., “Probablistic QoS and Soft Contracts for
Transaction-Based Web Services Orchestrations”, IEEE
Transactions on Services Computing, IEEE CS, vol. 1, pp.
187-200, October-December 2009.

