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ABSTRACT | Our society’s information technology advance-

ments have resulted in the increasingly problematic issue of

information overloadVi.e., we havemore access to information

than we can possibly process. This is nowhere more apparent

than in the volume of imagery and video that we can access on a

daily basisVfor the general public, availability of YouTube

video and Google Images, or for the image analysis professional

tasked with searching security video or satellite reconnais-

sance. Which images to look at and how to ensure we see the

images that are of most interest to us, begs the question of

whether there are smart ways to triage this volume of imagery.

Over the past decade, computer vision research has focused on

the issue of ranking and indexing imagery. However, computer

vision is limited in its ability to identify interesting imagery,

particularly as Binteresting[ might be defined by an individual.

In this paper we describe our efforts in developing brain–

computer interfaces (BCIs) which synergistically integrate

computer vision and human vision so as to construct a system

for image triage. Our approach exploits machine learning for

real-time decoding of brain signals which are recorded non-

invasively via electroencephalography (EEG). The signals we

decode are specific for events related to imagery attracting a

user’s attention. We describe two architectures we have

developed for this type of cortically coupled computer vision

and discuss potential applications and challenges for the future.

KEYWORDS | Brain–computer interface; computer vision;

electroencephalography; image search; image triage

I . INTRODUCTION

Our visual systems are amazingly complex information
processing machines. We can recognize objects at a glance,
under varying poses, illuminations, and scales, and are able
to rapidly learn and recognize new configurations of objects
and exploit relevant context even in highly cluttered
scenes. This visual information processing all happens with
individual components which are extremely slow relative to
state-of-the-art digital electronicsVi.e., the frequency of a
neuron’s firing is measured in hertz whereas modern digital
computers have transistors which switch at gigahertz
speeds (a factor of 108 difference). Though there is some
debate on whether the fundamental processing unit in the
nervous system is the neuron or whether ensembles of
neurons constitute the fundamental unit of processing, it is
nonetheless widely believed that the human visual system
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is bestowed with its robust and general purpose processing
capabilities not from the speed of its individual processing
elements but from its massively parallel architectureVthe
brain has 1011 neurons and 1014 synapses of which the
visual cortex is by far the largest area.

Since the early 1960s there have been substantial
efforts directed at creating computer vision systems which
possess the same information processing capabilities as the
human visual system. These efforts have yielded some
successes, though mostly for highly constrained problems.
By far the biggest challenge has been to develop a machine
capable of general purpose vision. A key property of the
human visual system is its ability to learn and exploit
invariances. As mentioned above, we can in most cases
effortlessly recognize objects under extreme variations in
scale, lighting, pose, and other variations in the object and
world. Understanding how this invariance comes about
and relating it to the physics of objects and projections of
scenes onto our retinas (or a machine system’s imager) is
one of the most active areas of computer vision research.
More recently the problem of invariance has been con-
sidered from a statistical perspective, with the idea that
Bnatural scene statistics[ may hold the key to how our
visual systems learn and represent these invariances [1].
We are, however, many years, if not decades, away from
realizing a computer vision system with general purpose
visual processing capabilities.

A. The Image Triage Problem
Instead of focusing on how to build a computer vision

system to emulate human vision, in this paper we consider
how we might synergistically integrate computer and
human vision systems to perform the task of image triage.
Assume we start with a database of images D0 which is
organized as an ordered set of N images, D0 ¼ fI1 . . . INg,
where N is very large. Also assume the state of the database
can be characterized by a utility function, U which quan-
tifies how Bordered[ the database is with respect to the
interest of the person, p, searching the data at a given time,
t; UðD0jp; tÞ. For now we will assume that this utility
function has large positive values when the database is
ordered such that Binteresting[ images (given p and t) are
at the front of the database. Conversely, if Binteresting[
images appear randomly in the database then U $ 0.

The image triage problem can then be defined as finding
a transformation Tð%Þ which operates on D0, or more
generallyDi where i indexes the database after applying the
ith transform, to reorder the images so as to maximize U
and minimize the cost of computing and applying the
transformation Tð%Þ

Diþ1  TðDijp; tÞ : argmax
Tð%Þ

U TðDiÞjp; tð Þ ' !C TðDiÞð Þð

(1)

where ! balances the cost of Tð%Þ relative to its utility. One
potential cost of computing and applying Tð%Þ is timeVi.e.,
if it takes very long to compute and apply Tð%Þ, then this will
reduce the rate at which interesting images will be
discovered and therefore reduces the overall utility of the
triage.

In this paper we describe a basic set of principles we
will use to construct a reordering transform which lever-
ages the strengths of both computer (CV) and human
vision (HV)Vi.e., the transform will be a synergistic com-
bination of TCVð%Þ and THVð%Þ.

B. Human Vision and BGist[
In considering the human vision reordering transform,

we will first take advantage of our ability to get the Bgist[
of a scene. That is, for a very brief presentation of an
image, we are able to extract a tremendous amount of
information which enables a general characterization of
the image content. For example, if an image is flashed for
50 ms, we might be able to infer that the image contained a
car, but perhaps not what model car it was. This is exactly
the operational mode of the image triage problem. Given
images in our database Di, we are using HV to obtain a
general characterization of what is in the image. BGist[
processing by humans has been an active area of research
[2] leading to several theories of the type of features we use
to infer general scene characteristics. In our triage system
we are less concerned with how we Bget the gist,[ and
more interested in whether a subject gets a particular gist
within the context of a binary discriminationVi.e., if the
flashed image contains a car or not, or more generally
whether or not there is something Binteresting[ in the
scene. The definition of the binary discrimination can be
explicit, such as instructing the subject to look for a
particular class of object or sets of objects, or implicit, such
as a subject being interested in certain objects or char-
acteristics of images, as one might be during casual
browsing. The binary discrimination can also be dynamic
and context dependentVi.e., depend on the previous
images the subject has seen in the sequence Di.

To maximize the throughput of the triage and thus
minimize the time it takes to apply Tð%Þ, we want a sequence
of images having a presentation rate which is as rapid as
possible while still enabling the subject to get the gist
of images in the sequence. For this we use a presentation
methodology termed Brapid serial visual presentation[
or RSVP [3], [4]. RSVP has been well-studied in visual
psychophysics and it has been shown that we can get the
Bgist[ of what is in an image at RSVP rates of greater than
10 Hz [5]–[7]. The specifics of the RSVP paradigm we use
will be outlined later in the paper.

Given RSVP presentations and the binary discrimination
problem formulation, how do we detect the subject’s
decisionVe.g., whether a given image in the sequence is
of interest or not? One way is to have the subject behav-
iorally respond, perhaps by pressing a button or making an
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eye-movement. However an explicit response by subjects
has several drawbacks. The first is that there is substantial
trial-to-trial response time (RT) variability and at high RSVP
rates this can result in errors in localizing the image to
which the subject responded [8]. In addition, by dissociating
the response from the decision one can potentially speed up
the process and make it less taxing. Lastly, the subject may
over-analyze the image, resulting in a behavioral decision
threshold which is higher than one might want for the triage
task. For all these reasons we monitor the subject’s EEG
during the RSVP and use machine learning to identify neural
Bcomponents[ reflective of target detection and attentional
orienting events, which in turn can be used to infer the
binary discriminationVi.e., the reordering transform Tð%ÞHV
will be based on EEG; Tð%ÞEEG. Our framework for decoding
EEG using machine learning is described in Section II below.
Several groups, including ours, have investigated image
detection/classification based on EEG [8]–[13]. In contrast to
this previous work, in this paper we focus on the integration
of computer vision and EEG, specifically describing two
architectures for the integration of the two triage transform
systems, presenting results for each.

C. Organization of the Paper
The remainder of the paper is organized as follows.

Section II will describe the neurological basis for the signals
utilized to detect attentional shift and orienting, surrogates
of the Bthat is interesting[ response to a flashed image. We
will also describe the signal processing and machine
learning framework we utilize for decoding these signals
and generating a probability-based Binterest[ score for each
image. Section III describes two systems we have developed
for coupling computer vision and decoding of cortical EEG
signals for image triage. The first uses computer vision as a
preprocessor to provide an initial reordering transform and
then samples from this reordered Di to generate sequences
to pass through EEG-based reordering. This architecture is
particularly appropriate when prior information about
target/object class is known and can be incorporated into a
CV model. The second method begins with the EEG-based
reordering and samples fromDi based on the user browsing
these samples. The result of the EEG-based browsing is
used to reorder Di and samples of the reordered database
are used as exemplars in a semisupervised CV system for
further reordering. This framework is most appropriate
when the object of interest is unknown and examples can
only be generated after the subject browses the database.
We conclude the paper by discussing future technical
development and ethical and human factors issues
related to these types of BCI systems.

II . DECODING BRAIN STATE

There has been substantial interest, which has accelerated
over the past decade, for decoding brain state. Efforts have

ranged from decoding motor commands and intentions, to
emotional state and cognitive workload. There has also
been a variety of neural signals which have been targeted
for decoding, ranging from spike trains collected via inva-
sive recordings to hemodynamic changes measured non-
invasively via fMRI [14], [15]. Our focus is on using EEG as
a noninvasive measure to relate brain state to events
correlated with the detection of Binteresting[ visual objects
and images. What is the neural correlate of an Binteresting[
image? It is not clear that there is such a well-defined cor-
relate. However, we do know from neuroimaging studies
that there are neural signals that can be measured non-
invasively which are related to the detection and recogni-
tion of rapidly shown images [5], [7], [8]. A very robust
signal measurable from the EEG is the P300. It reflects a
perceptual Borienting response[ or shift of attention which
can be driven by the content of the sensory input stream
[16]. Additional signals that may be indicative of a subject’s
attentional state are oscillatory activity often found during
resting state (10 Hz oscillations known as Balpha[ activity)
as well as transient oscillations sometimes associated with
perceptual processing (30Hz and higher known as Bgamma[
activity). However, as of yet, none of these oscillatory signals
have been identified in the RSVP paradigms.

A. Signal Detection via Spatio-Temporal
Linear Projections

The approach we have taken for interpreting brain
activity is to constrain the experimental paradigm such
that we have to distinguish only among two possible brain
states: ðþÞ positive examples in which the subject sees
something of interest in an image, versus ð'Þ negative
examples for which the image contains nothing of
particular interest. The goal is not to deduce from the
brain signal what the exact content is, or what the subject
sees in the image. This would indeed be a difficult task
given the limited spatial resolution of EEG. Instead, we
aim to utilize the high temporal resolution of EEG to detect
when an individual recognition event occurred. For
individual images we aim to detect the brain signals elic-
ited by positive examples, and distinguish them from the
brain activity generated by negative example images. The
task for the EEG analysis algorithm is therefore to classify
the signal between two possible alternatives.

In our RSVP paradigm images are presented very
rapidly with 5 to 10 images per second. To classify brain
activity elicited by these images we analyze 1 second of
data, recorded with multiple surface electrodes, following
the presentation of an image. With 64 electrodes and
approximately 100 time samples within this second, this
amounts to a data vector of 6400 elements. In the specific
case of image triage, we may have hundreds or thousands
of images that are to be ignored and a very few, perhaps a
dozen or two, which are assumed to attract the subject’s
attention. The goal is to identify a classification criterion in
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this large spatio-temporal data space using only a few
known example images.

B. Hierarchical Discriminant Component Analysis
We begin by assuming that the discriminant activity,

i.e., the activity that differs the most between positive
and negative examples, is a deflection of the electrical
potential from baseline (either positive or negative) over a
number of electrodes. By averaging over electrodes with
just the right coefficients (positive or negative with mag-
nitudes corresponding to how discriminant each electrode
is) we obtain a weighted average of the electrical potentials
that will be used to differentiate positive from negative
examples

yt ¼
X

i

wixit: (2)

Here xit represents the electrical potential measured at
time t for electrode i on the scalp surface, while wi rep-
resents the spatial weights which have to be chosen appro-
priately. The goal is to combine voltages linearly such that
the sum y is maximally different between two conditions.
This can be thought of as computing a neuronal current
source yt that differs most between times samples tþ
following positive examples and the times t' following
negative examples, ytþ > yt'.

1 There are a number of
algorithms available to find some optimal coefficients wi in
such a binary linear classification problem, e.g., Fisher
linear discriminants (FLDs), penalized logistic regression
(PLR), or support vector machines (SVMs) [17].

In [8] we assume that these maximally discriminant
current sources are not constant but change their spatial
distribution within the second that follows the presenta-
tion of an image. Indeed, we assume a stationarity time T
of approximately 100 ms. Therefore, we find distinct opti-
mal weight vectors, wki for each 100 ms window following
the presentation of the image (index k labels the time
window)

ykt ¼
X

i

wkixit; t ¼ T; 2T; . . . ðk' 1ÞT; kT: (3)

These different current sources ykt are then combined
in an average over time to provide the optimal discrim-
inant activity over the entire second of data

y ¼
X

t

X

k

vkytk: (4)

For an efficient online implementation of this method
we use FLD to train coefficients wik within each window of
time, i.e., we seek wik such that yktþ > ykt'. The coef-
ficients vk are learned using logistic regression after the
subject has viewed the entire training set such that
yþ > y'. Because of the two step process of first com-
bining activity in space, and then again in time, we have
termed this algorithm BHierarchical Discriminant Com-
ponent Analysis[ (HDCA).

Note that the first step does not average over time
samples within each window. Instead, each time sample
provides a separate exemplar that is used when training
the FLD.2 These multiple samples within a time window
will correspond to a single exemplar image and are
therefore not independent, yet, they do provide valuable
information on the noise statistic: variations in the signal
within the time window are assumed to reflect nondis-
criminant Bnoise.[ In other words, we assume that spatial
correlation in the high-frequency activity ðf > 1=TÞ is
shared by the low-frequency discriminant activity. In
addition, by training the spatial weight separately for
each window we assume that the discriminant activity is
not correlated in time beyond the 100 ms time scale.
Both these assumptions contribute crucially to our ability
to combine thousands of dimensions optimally despite
the small number of training images with known class
labels [10].

An example of the activity extracted for one subject
with this algorithm is shown in Fig. 1. The spatial
distributions show the portion of the electrical potentials
measured on the electrodes that correlates with the dis-
criminant current sources.3 For example, as shown, the
activity measured in frontal areas 801–900 ms poststim-
ulus presentation (shown as red in the scalp plot) strongly
correlates with the classifier output y. Class-conditional
histograms, computed via integrating the ten component
activities, show the distribution of yþ and y' computed on
unseen test data (fivefold cross validation). The receiver-
operator characteristic (ROC) curve is computed from
these histograms.

The HDCA algorithm is computationally very efficient
and easy to implement in real time. It is thus the algorithm
of choice for the current implementation of the C3Vision
system. More recently we have developed new learning
algorithms to find optimal linear weights (see Appendix).
While these can yield better classification accuracy their
computational cost makes them less-suitable for real-time
implementations.

1Label Bþ[ always indicates that the expression is evaluated with a
signal xit recorded following positive examples and B'[ indicates the same
for negative examples.

2For instance, we may have 50 training exemplars and 10 samples per
window resulting in a possible 500 training samples for the classification
algorithm that needs to find 64 spatial weighting coefficients wik for the
kth window.

3This is also called a forward-model and is computed from wkt and xkt
within the relevant time window (see [10], [17] for more detail).
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III . SYNERGISTIC COMBINATIONS
OF COMPUTER AND EEG-BASED
HUMAN VISION

Given the HDCA algorithm for EEG decoding, we consider
how to integrate the results of EEG-based binary clas-
sifications with computer vision (CV). There are three

basic modes for creating such a cortically coupled
computer vision system.

• Computer vision followed by EEG-RSVP, i.e., Tð%ÞCV
followed by Tð%ÞEEG: Given prior information of a
target type (e.g., examples of the target class or
description of the features and or context associated

Fig. 1. Activity extracted by the hierarchical discriminant component analysis method. (a) Plotted is the forward model for the discriminating

component at each time window, which can also be seen as the normalized correlation between the component activity in that window and

thedata [17]. Thecolormap for the scalpplot represents thenormalized correlations,withredbeingpositiveandbluebeingnegative. Theseriesof

ten spatial maps thus shows that the spatial distribution of the forward model of the discriminant activity changes across time. Activity at

300–400 ms has a spatial distribution which is characteristic of a P3f, which has been previously identified by our group and others [18], [19]

during visual oddball and RSVP paradigms. In addition, the parietal activity from 500–700 ms is consistent with the P3b (or P300) indicative of

attentional orienting. Other significant discriminant signal can be found at earlier and later time and often vary from subject to subject and

the specifics of the experimental paradigm, e.g., presentation speed. Note that all scalpmaps are on the same color scale. (b) The ten components

characterized by the scalp maps above are linearly integrated to form a single classification score, which can be represented via the

class-conditional histograms. The performance of the classification is established via the ROC curve which is computed from these

class-conditional histograms.
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with the target class) one can instantiate a CVmodel,
including contextual cues, to operate on Di so as to
eliminate regions of very low target probability and
provide an initial ordering of regions that have high
target probability. In addition, CV should place
potential regions of interest (ROIs) in the center of
the test images. This will improve human detection
performance since potential targets are then fo-
veated when presented to the subject.4 The top M
images of the reordered Di are sampled and
presented to the subject for EEG-RSVP. Thus, the
CV processing is tuned to produce high sensitivity
and low specificity, with the EEG-RSVP mode
increasing specificity while maintaining sensitivity;

• EEG-RSVP followed by computer vision, i.e., Tð%ÞEEG
followed by Tð%ÞCV: In the absence of prior knowledge
of the target type or a model of what an Binteresting[
image is, the EEG-RSVP is first run on samples ofDi,
the result being a reordering which ranks images
based on how they attracted the subject’s attention.
This reordering is used to generate labels for a
computer vision based learning system which, given

a partial labeling of Di, propagates these labels and
reorders the database. Thus, the EEG-RSVP is
designed to identify a small number of Binteresting[
images which are then used by a semisupervised CV
system to reorder the entire image database.

• Tight coupling of EEG-RSVP and computer vision; i.e.,
Tð%ÞCV and Tð%ÞEEG are applied in parallel and results
integrated: Both EEG-RSVP and CV are run in par-
allel and coupled either at the feature space level, or
at the output (or confidence measure) level, leading
to a single combined confidence measure that can
serve as a priority indicator. As with the first cou-
pling mode, this mode requires prior information
on the target type.

These modes also potentially include feedback or
multiple iterations within a closed-loop system. Below we
describe two cortically coupled computer vision systems
we have developed, together with results, which demon-
strate the first two modes of fusion.

A. Computer Vision Followed by EEG

1) System Description: Fig. 2 illustrates the software,
hardware, and functional components of our system for
the triage application when objects of interest are well
defined and known, a problem routinely encountered, for

4Our research has shown that, for the RSVP paradigm, the strength of
the EEG signals falls substantially as a function of the eccentricity of the
the target, thus indicating the importance of CV for centering potential
targets.

Fig. 2. (a) Software, hardware, and functional components of the integrated computer vision–EEG triage system. The cortically coupled computer

vision system (termed C3Vision) runs on three computers and includes a computer vision module, a EEG triage module, and an interface which

enables the user to visualize the results of the combined triage in a suitable visualization environment. (b) Corresponding workflow. The user

launches the computer vision processing which performs an analysis of the entire image, generating detections for likely locations of targets.

Thesedetectionsareusedtodivide the large image intosmaller imagechips forpresentationviaRSVP.At the sametime theuserwearsanEEGcap

and a separate set of images is used to train the EEG classifier. The classifier learns to decode the EEG signal and generates confidence scores

indicating the level of ‘‘interest’’ of the image chipVi.e., howmuch the particular chip grabbed the user’s attention. Image chips generated by the

computer visionmodule are passed to the user and EEG is decoded and scores generated for this ‘‘testing’’ data. The resulting scores are used to

generate a priority list, which is a rank of the chip, by EEG score, togetherwith their corresponding location in the large image. This priority list is

ingested in the visualization software which, for image analysts, allows the user to interact with the imagery in a way they are are most

accustomed (pan, zoom, mark objects) while also providing a toolbar to jump around the image based on the EEG-based score.
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example, by aerial image analysts. This system is composed
of three main software modules:

• a computer vision preprocessing module that in-
cludes a target detection framework and a chipping
engine;

• an EEG triage module using the RSVP paradigm to
allow the user to rapidly browse through a selective
set of image locations and to detect those most
likely to contain an object of interest, which we
call here a Btarget[;

• a visualization interface for final confirmation by
the user.

The computer vision target detection framework is a
model-based framework that relies on two components:

1) a feature dictionary: a set of low-level feature ex-
tractors thatVwhen combinedVprovide a general
platform for describing and discriminating numer-
ous different (aerial) object classes;

2) grammar formulation and inference: a formal gram-
mar for specifying domain knowledge and de-
scribing complex objects using mid- and high-level
compositions, and an algorithm that performs in-
ference on such grammar.

While the feature dictionary can include generic, and
perhaps complex, shape and feature extraction operators,
our initial implementation has been specifically addressing
the problem of detecting objects in aerial imagery. Thus, an
expressive element for identifying an object in aerial
images is its geometric shape, e.g., the shape of its edge
contours, boundaries of different textures, etc. To ensure
that our module remains scalable and adaptable to new
objects of interest, we have employed a hierarchical
approach, where shapes are approximated by a composition
of shape parts. In turn, those parts can correspond to
further compositions or geometric primitives. For instance,
airfields in aerial images usually decompose into a set of
straight lines (i.e., airstrips) and buildings (i.e., terminals),
buildings into a set of lines.

In order to obtain a feature dictionary that also can help
pruning regions of no interest to the human observer, we
have included features that are used to assign image regions
to one or more scene categories using a statistical classifier
trained on small (typically $200( 200 m) image patches.
The categories are defined by a taxonomy of scene contexts,
that discriminate between main scene contexts (i.e., terrain
types such as BForest[ or BDesert[) that occur in aerial
scenes on a coarse level, and specific scene contexts, such
as different building densities in an urban context, on a
finer level. The statistical classifier and features are inspired
by well-developed texture classification techniques that
operate in the space of textons, where textons are identi-
fied as texture feature clusters using vector quantization
of labeled data, as described by [20]. Descriptors are then
constructed from histograms over the representative
textons with regard to training images. This histogram
representation serves as input for a statistical classifier, e.g.,

k-nearest neighbor.5 Note that the dependency on training
data is not problematic since the scene context is typically not
task specific and, hence, can be precomputed for a wide
problem domain and reused for unseen objects.

Our grammar and inference formulation [21], [22] is
based on first order predicate logic. In the present context,
predicate logic allows for: i) the specification of domain
knowledge and ii) reasoning about propositions of interest. In
order to properly deal with uncertainties in patterns (which
are very typical in computer vision problems), the predicate
logic formulation is augmented with a mathematical struc-
ture called bilattice [26]. Bilattices assume partial orders
along the two axes of truth and the amount of evidence, and,
by doing so, provide a formal method of inference with
uncertainties. For more detail, refer to [21]–[23].

The target detection framework is applied to a subset of
pixels in large aerial images and assigns detection con-
fidences to each pixel in this selection. The pixel selection
is currently defined by a uniform grid, whose density can
be determined based on the image type and content. Based
on a user specified threshold for the detection confidence,
a list of the most likely detection candidates is generated
and passed to the chipping engine. The engine then gener-
ates image chips centered on the detection candidates.

The EEG triage module receives the list of image chips
and detection details from the computer vision module, that
includes pixel locations and detection confidence scores, and
uses this input to generate the RSVP image sequences that
will be used for triage. It then performs several functions: it
acquires and records the EEG signals, orchestrates the RSVP,
matches the EEG recordings with the presented images, trains
an underlying triage classifier using training sequences, and
uses the classifier with newly generated image sequences.

The triage system currently utilizes a 64 electrode EEG
recording system (ActiveTwo, Biosemi, Germany) in a
standard 10–20 montage. EEG is recorded at a 2048 Hz
sampling rate. While the EEG is being recorded, the RSVP
display module uses a dedicated interface to display blocks of
images at the specified frame rate. Blocks are typically 100
images long with only a few targets per block ðN G 5Þ. The
frame rate is set between 5 and 10 Hz depending on the
difficulty of the target detection taskVi.e., each image is
shown for 100–200 ms before next image is shown. The
interface draws from a pool of potential target chips and a pool
of Bdistractors.[ The role of the distractors is to achieve a
desired prevalence of target chips, that will maintain the
human observer engaged in the presentation: if the prevalence
is too low or too high, the observer may not keep an adequate
focus and may more easily miss detections. Given that the
computer vision outputs include some false positives, the
number of distractors used depends in fact on the expected
number of true target chips from the computer vision module.

Currently the triage system’s classification module
relies on the hierarchical discriminant component analysis

5We thank Roberto Tron and Rene Vidal for providing an
implementation of their texture classification.
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algorithm described in Section II-B. The triage classifica-
tion module is used in two different stages: training and
actual usage with new imagery. The training typically
consists of a presentation of 25–35 blocks with a set
number of known targets in each block. The training se-
quences need not be related to the test sequences, in terms
of their content, as the premise of the approach is that it
detects objects of interest, but is not sensitive to the
signatures of specific objects, and can therefore maintain
its detection performance from one type of imagery to
another. Training is a significant stage of the triage process.
It not only is the vehicle to training the EEG classifier, it is
also a mechanism for providing some practice to the human
observer. Therefore, to help the human observer maintain
his level of attention and gauge his training performance,
the RSVP display module also displays feedback screens on
the training progress at the end of each block.

Once the triage module has completed the triage, it
generates a list of chips and their associated classification
confidences, which can be used to prioritize the visualiza-
tion of the corresponding image locations. The visualiza-
tion interface permits the visualization of the prioritized
locations in an adequate software environment for the task

or user at hand. For example, for image analysts, we have
developed an interface to RemoteView (Overwatch Sys-
tems, Sterling VA), an imagery exploitation software appli-
cation standardly used in the GeoIntelligence community.
The interface provides a toolbar comparable to a playback
control allowing the analyst to jump from one prioritized
location to the next. Meanwhile the analyst still retains
access to all of RemoteView’s functionality.

Currently, the corresponding prototype hardware
implementation uses three laptops, one for the RSVP
display, one for the EEG recording and classification, and
one for image processing.

2) Experiments and Results: To evaluate the performance
of the integrated computer vision–RSVP triage system, we
have performed experiments with five subjects and using
satellite electro-optical (EO) greyscale imagery. The task of
each subject was to detect surface-to-air missile (SAM)
sites. A 27 552 ( 16 324 image was processed and chipped
by the computer vision module. Based on the computer
vision performance (see Fig. 3), the top 40 chips were
retained for RSVP. An additional 760 distractor chips were
used leading to 8 blocks of 100 chips each, all presented at

Fig. 3. Computer vision results for the surface-to-air missile (SAM) site detection problem. Detections are sorted by confidence (row-first).

SAM site chips are marked in green.
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5 Hz. This frame rate was chosen based on preparatory
experiments. Fig. 4 shows scatter plots combining the
priority scores generated by the CV system alone with
those of the integrated CV-RSVP triage system for these
40 chips. The plots also show the minimum priority score
that should be chosen in order to capture all true positives
with the integrated system, thus distinguishing the false
positives that would be obtained with the integrated
system for that threshold and those obtained with the CV
alone. The figure shows that the integrated system leads to
an overall reduction in the number of false positives of
approximately 50% across all subjects. To place this back
in the context of an image analyst’s everyday tasks, an
analyst would only need to review 40 locations in order to
detect all targets using the integrated CV-RSVP triage
system compared to potentially all 27 552 ( 16 324 pixels
without assistance. The productivity savings are dramatic,
as demonstrated by Fig. 5 and Table 1. The CV-RSVP
assisted condition results in a detection hit rate which on
average is a factor of four improvement over baseline, with
no increase in false alarmsVin fact a decrease in false
alarms. The time cost of the triage is small (G 5 min) while
the performance improvement substantial.

B. EEG Followed by Computer Vision: Bootstrapping
a Computer Vision System

1) System Description: The system described above
assumes some prior knowledge about the object of interest
in order to construct a computer vision model. However,
what if the system does not yet know what exactly the
subject is looking for? Also, how could one use computer
vision as a postprocessor to the EEG-based triage?

We have developed a second system to address these
scenarios. The system allows a subject to browse through a
limited number of images; it uses the EEG triage to take an
initial Bguess[ as to what attracted the observer attention,
and uses a computer vision module to pull additional
positive examples from a database and correct potentially
erroneous labels given by EEG classification. The system
(see Fig. 6; additional detail can be found in [24]) is similar
to the first system described, in that it uses the same type
of components: computer vision module, EEG triage,
visualization/review module. However, here the EEG tri-
age module precedes the computer vision module. Addi-
tionally, the number of examples provided by the EEG
triage may be insufficient to train conventional supervised

Fig. 4. Comparison of the detection performance of the integrated CV-RSVP triage system with the CV module alone: the integrated system’s

priority scores for the top 40 images are plotted against the CV detection confidences. The threshold for the priority scores needed to

capture all true positives is plotted in blue, thus showing the reduced number of false positives with the integrated system.
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learning algorithms; and there may be inaccuracies in the
EEG outputs due to typically lower sensitivity of the
triage approach. So we use a computer vision module
underpinned by a graph-based semisupervised learning
algorithm. With this approach, the outputs of the EEG
triage is a set of positive and negative examples (as
determined by a suitable EEG confidence threshold), that
serve as labeled inputs to a graph-based classifier to
predict the labels of remaining unlabeled examples in a
database and refine the initial labels produced by EEG-
based classification.

Most semisupervised techniques focus on separating
labeled samples into different classes while taking into
account the distribution of the unlabeled data. The per-
formance of such methods often suffers from the scarcity
of the labeled data, invalid assumptions about classifica-

tion models or distributions, and sensitivity to unreliable
label conditions. Instead, our graph-based classification
scheme, referred to as [26], incorporates novel graph-
based label propagation methods and in real or near real-
time receives refined labels for all remaining unlabeled
data in the collection. By contrast to other semisupervised
approaches, this graph-based label propagation paradigm
makes few assumptions about the data and the classifier.
One central principle of this paradigm is that data share
and propagate their labels with other data in their
proximity, defined in the context of a graph. Data are
represented as nodes in a graph and the structure and
edges in the graph define the relation among data.
Propagation of labels among data in a graph is intuitive,
flexible, and effective, without requiring complex models
for the classifier and data distributions. This graph
inference method has also been shown to improve over
existing graph learning approach in terms of the
sensitivity to weak labels, graph structure, and noisy
data distributions [26].

Based on GTAM algorithm, we developed a prototype
system called transductive annotation by graph (TAG) for
image search and retrieval. The processing pipeline of the
TAG module contains the following components:

• input of labeled example provided by the EEG
triage;

• image preprocessing components, such as denois-
ing, enhancement, and filtering;

• image feature extraction to quantize the visual
context;

• affinity graph construction;
• automatic label prediction via graph based infer-

encing and label correction.
One important aspect of this integration of EEG with

computer vision is the ability for the computer vision TAG
module to deal with uncertainty in the EEG labeling.
Specifically, we have developed a Bself-tuning[ approach
[24] that is able to identify the most reliable EEG inputs
and reverses the labels of the most unreliable samples in
order to optimize an objective function that captures
labeling consistency and smoothness properties.

2) Experiments and Results: To illustrate the combina-
tion of EEG triage and automated labeling, we present

Fig. 5.Results showingaverage targetsdetectedacrosssubject ðN ¼ 5Þ
as a function of time. Red curve is CV-RSVP assisted condition,

black curve is baseline search. The relatively short time at the

beginning of the search (G 5 min) in which the red curve is at zero

represents the time it takes to do the RSVP triage. After that time,

denoted by vertical blue bar, the triage list is loaded into the viewing

software and the analysts use the triage results to jump to areas

that resulted in a high EEG score and thus caught his/her attention

during the RSVP. Clear is the substantial improvement in target

detection rate for the assisted condition relative to baseline once the

CV-RSVP generated triage listed is used.

Table 1 Comparison of Hit Rate and False Alarm for SAM Site Search in 27 552 ( 16 324 Satellite Image Without (Baseline) and With (Assisted) the

Integrated CV-RSVP Triage System. Hit Rate Is Expressed in Fraction of Total Targets Detected per Minute
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experiments with the detection of helipads in EO satellite
imagery. To perform the EEG triage, a 30 K ( 30 K satel-
lite image (DigiGlobe, Longmont, CO) was chipped into
(500 ( 500 pixels) tiles; tiles containing helipads were
centered on those helipads and were presented using the

RSVP paradigm described above to human observers at a
rate of 10 Hz. The output priority list was provided to the
automated labeling module and the EEG scores were used
as positive and negative labels according to a predefined
threshold. Fig. 7 shows the top 20 images ranked by the

Fig. 6. System architecture for using EEG to bootstrap computer vision model construction. A sample set of images is taken from a database

andthe subject processes these images inRSVPmodewhileEEG is simultaneously recorded.TheEEG isdecodedandused to tag images in termsof

how strong they grabbed the user’s attention. The images can be seen as being a small set of labeled images, some of which might be the

images of interest (e.g., images of soldiers) and some of which just grabbed the users attention because of novelty (e.g., the fellow with the

interesting hairstyle). These small sets of labeled images are used as training data in a transductive graphicmodelwhich operates in the features

space of the image. The transductive model uses the limited training data and manifold structures in the image feature space to propagate

the initial labels to the restof the images in thedatabaseThesystem includesaself-tuningmechanismwhichenables removalof taggedbytheEEG

as being interesting, but that deviate from the manifold structures. For example, the image with the blue border can be interpreted as a false

positive and removedbasedon self-tuning. The computer visionmodel is thenused topredict the relevance (priority) scores of the rest of images

in the database. Images taken from Caltech image database.

Fig. 7. Top 20 chips returned by: (a) the EEG triage alone and (b) the automated labeling module using the EEG triage priority scores

as inputs. Chips with red squares are false positives. 45% of the top 20 chips returned by EEG are false positives and after passing into

TAG system with self tuning this is reduced to 15%.
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EEG priority list alone, and the top twenty images ranked
by the combination of EEG triage and automated labeling.
Fig. 8 shows the error rate in the top 20 returned images as
a function of the number of EEG scores used as labels by
the automated labeling algorithms. This figure highlights
that without refining EEG-based classification results, the
EEG triage error rate is significant, at approximately 65%.
The unreliability of the EEG scores is reflected in the
performance of the labeling algorithm without self-tuning,
which is only able to marginally improve upon the EEG
triage. However, with self-tuning, the automated labeling is
able to infer the most unreliable EEG scores and significantly
lower the error rate. The number of EEG labels used needs to
be optimally chosen to obtain the best detection improve-
ment, and Fig. 8 points to the existence of a single optimal
number. Being able to automatically determine this number
is one of the efforts we are currently focusing on.

IV. CONCLUSION

In this paper we have described two systems for cortically
coupled computer vision which use computer vision (CV)
and EEG to construct triage transforms for prioritizing
imagery. Our results for Tð%ÞCV followed by Tð%ÞEEG show
that EEG-based prioritization is effective for increasing the
specificity of the CV system classification, without loss in
sensitivity, for a realistic aerial image search task. Com-
parison of the system to baseline ultimately results in a
factor of four improvement in the rate of target detection,
without an increase in the rate of false alarms. Our pre-
liminary results for Tð%ÞEEG followed by Tð%ÞCV show that
computer vision can effectively use the EEG-based priority
scores as noisy labels for building a visual similarity based
model which can improve the specificity of the EEG triage.
Note that this result was for a predefined and well-

localized target (e.g., helipads). Our current efforts are
investigating using Tð%ÞEEG followed by Tð%ÞCV system for
identifying Btargets[ in which the user is not cued to
identify a particular target class and/or the target class is
less well-defined a priori. In addition, we are considering
these triage systems for the case in which multiple classes
in a database might attract a given user’s interest.

We have described our first attempts to synergistically
couple state-of-the-art computer vision with brain–computer
interface technology to improve the searching of imagery
and video content. The basic framework, namely coupling
the speed of computer processing and analysis with the
general purpose recognition and detection of sensory
information by the human brain, is not limited to imagery.
In general, systems for information triage, regardless of the
signal type could be constructed using a similar framework,
with the caveat being that the system design should
maximize the complementarity of the two systems (human
and computer). For example, if one were to use the same
system design for triaging audio recordings, a rapid playback
of the audio to the user would likely result in substantial
distortion and result in low detection rates via EEG decoding.
It is clear that careful attention must be paid toward how
the particular sensory system (visual, auditory, etc.) is best
presented with the information to be triaged, specifically so
that it is presented to be maximally selective to patterns
of interest in the data when the data is presented rapidly.

The systems we are developing can potentially shed light
on some basic questions underlying the neuroscientific basis
of rapid decision making. For example, can subjects be
trained to improve their sensitivity for target and/or
Binteresting[ objects and is such improvement accompanied
by characteristic changes in the neural activity? Previous
work by our group [27]–[29] has shown that there is a
cascade of processes, detectable via single-trial analysis of
EEG, which represent the constituent processes of decision
making and that some of these processes are modulated by
task difficulty. As subjects perform better for identical sti-
muli, we expect that the EEG correlates of these processes
could change. By seeing which signatures are affected by
training and which are not, we might get better insight into
whether changes in the neural signatures precede behavioral
changes and perhaps develop better theories on how training
affects rapid decision making.

There is some debate on whether the system can be
driven so that we can detect subliminal (or subconscious)
events. In our work we have assumed that all detections
are consciously processed by the subjectVi.e., we have no
evidence that the signals represent unconscious or Bsub-
liminal[ processing. However it is interesting to consider
how signals based on conscious events might be used to
lower a behavioral threshold for initiating a decision. For
example, in some cases, subjects might be instructed to
look for a given type of target, find it (resulting in a neural
signature of the detection event), and continue to analyze the
image in spite of the detection. This type of Boveranalyzing[

Fig. 8. Comparison of the error rate in the top 20 returned chips using

the EEG triage alone, the automated labeling without self-tuning

and the automated labeling with self-tuning.
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of the imagery can be reduced by using the decoded neural
signature of the recognition event to disengage the user from
the current search, forcing him/her to effectively lower their
decision threshold and move to the next image.

Finally, the potential for applications of brain–computer
interfaces, outside the area of neurorehabilitation and
neuroprosthetics, is tremendous. In addition to imagery,
or more generally information triage, two potentially sig-
nificant areas are video gaming and neuromarketing, which
are already receiving substantial attention and interest. As
BCI systems are developed and deployed, two fundamental
issues must be considered. The first is ethical, and pertains
to issues of privacy and the ramifications of being able to
read someone’s Bthoughts[ or intent, even if they do not act
on them. The field of neuroethics [30] has emerged in
response to the complicated and important questions related
to such a new form of brainmonitoring technology. A second
fundamental issue is one related to human factors, and
addresses the important question of how we will interact
with a system that can Bread our minds.[When we interact
with our personal computer we see the response of the
computer following our own actions, such as moving a
mouse or typing a key. How will we perceive the interaction
when the human–computer interface does not require us to
behaviorally interact? These and other neuroethical and
human factors questions ultimately will play an important
role in how BCI systems are integrated into our society. h

APPENDIX
OTHER LINEAR METHODS FOR
EEG DECODING

In Section II-B we described the hierarchical discrim-
inant component analysis (HDCA) algorithm for decoding
EEG for the image triage application. This algorithm can be
easily implemented in real time and thus it is the algorithm
of choice for our current C3Vision system. Recently we
developed a set of new algorithms to improve EEG detec-
tion performance. Currently, their increased computation-
al complexity limit their use to non-realtime applications.
However, it is worth reporting them here given their
significant improvement in classification accuracy.

A. Bilinear Discriminant Component Analysis
The HDCA algorithm described in Section II-B com-

bines activity linearly. This is motivated by the notion that
a linear combination of voltages corresponds to a current
source, presumably of neuronal origin within the skull
[17]. Thus, this type of linear analysis is sometimes called
source-space analysis.6 The most general form of combin-
ing voltages linearly in space and time would be

y ¼
X

t

X

i

witxit: (5)

However, the number of free parameters wit in this
most general form is the full set of dimensionsV6400 for
the examples we considerVwith only a handful of positive
exemplars to choose their values. To limit the degrees of
freedom one can restrict the matrix wit to be of lower rank,
say K. The linear summation can then be written as

y ¼
XK

k¼1

X

t

X

i

vtkuikxit (6)

where wit ¼
PK

k¼1 vtkuik is a low-rank bilinear representa-
tion of the full parameter space.

This bilinear model assumes that discriminant current
sources are static in space with their magnitude (and
possibly polarity) changing in time. The model allows for K
such components with their spatial distribution captured
by uik and their temporal trajectory integrated with
weights vtk. Again, the goal is to find coefficient uik; vtk
such that the bilinear projection is larger for positive
examples than for negative examples, i.e., yþ > y'.

In addition, it is beneficial to assume that these coef-
ficients are smooth, i.e., they do not differ much from their
neighbors, thus implicitly assuming that the discriminant
activity is correlated across neighboring electrodes and
neighboring time samples (i.e., the discriminant activity is
low frequency). In [31] we present an algorithm to find
these coefficients simultaneously for all K.7

B. Bilinear Feature Based Discriminants
The algorithms presented so far will only capture a type

of activity called event-related potentials (ERP). This term
refers to activity that is evoked in a fixed temporal rela-
tionship to an external event; that is, positive and negative
deflections occur at always the same time relative to the
eventVin our case, the time of image presentation. In
addition to this type of evoked response activity the EEG
shows variations in the strength of oscillatory activity.
Observable events may change the magnitude of ongoing
oscillatory activity or may induce oscillations in the EEG. A
linear summation will not be able to capture oscillatory
activity, since for oscillations the phase and therefore the
polarity of the signal may change from trial to trial. To
capture the strength of an oscillation, irrespective of po-
larity, it is common to measure the Bpower,[ or the square
of the signal, typically after it has been filtered in a specific
frequency band. Instead of a linear combination to capture
power, one has to allow for a quadratic combination of the
electrical potentials.

6BBeam-forming[ is a common misnomer for the same.

7More recently we have found it beneficial to estimate the parameters
for one component, then subtract the activity spanned by the bilinear
subspace of that component, and then estimate the activity for an
additional component on the remaining subspaceVa process that may be
repeated several times to estimate additional components (executable
code implementing this idea can be found at [32]).
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A difficulty that arises in this context is the choice of
frequency band. In addition to spatial and temporal
coefficients one has to now choose coefficients for different
frequencies, which in practice may increase the degrees of
freedom by one order of magnitude or more. Thus, it may
be difficult to find an optimal combination of space-time-
frequency features without a priori knowledge as to which
frequency band contains discriminative information. Here
we present a novel algorithm that can identify an appro-
priate combination of first and second-order features.8 The
main idea is to identify feature invariances by analyzing
data collected from multiple subjects on the same exper-
imental paradigm.While the specific coefficient combining
different first and second order features may vary from
subject to subject, we assume that the relevance of evoked
potentials (first order) and induced oscillations in different
frequency bands (second order) does not change signifi-
cantly across subjects. The features we consider here are
the instantaneous power in different frequency bands so as
to capture temporal changes in oscillatory power in
addition to frequency and spatial information. We denote
here with fktðx1; . . . ; xTÞ the kth feature of the time
sequence x ¼ x1; . . . ; xT evaluated around time t. A
bilinear discriminant model can be formulated for each
feature as follows:

yk ¼
X

t

X

i

vtkuikfktðxiÞ (7)

where the spectro-temporal features are evaluated sepa-
rately for each electrode i providing the time sequence xi.
Note that in this formulation one of the features could
simply be the original evoked response signal, f1t ¼ xt, i.e.,
the linear features as before. The total model combines
different features

y ¼
X

k

wkyk (8)

with the goal of including only a small subset of nonzero
values for wk. While vtkuik will be chosen differently for
different subjects, the goal is to pick wk with the same set
of nonzero values for different subjects, i.e., the same
features are selected for different subjects. For the sake of
computational efficiency we assume that the information
provided by each feature is independent from another
feature. Thus, the bilinear coefficient vkt; uki may be
selected separately for each subject and each feature. Once
selected, all vkt; uki remain constant, and only wk has to be
found with a subset of nonzero coefficient such that
consistently good performance is found across all subjects.

This is a potentially large combinatorial search problem
which can be solved in limited time only using greedy
methods. Various heuristic strategies for a greedy feature
search can be envisioned. Here we begin by selecting a
single feature that performs for the largest number of
subjects among the top M features. Then we test this
feature as a pair ðK ¼ 2Þ in combination with each one of
the other features and select again the one that (together
with the first) performed most often among the top M
features. This process can be repeated several times to
increase the the number of selected features. We restrict
ourselves here to a set of K ¼ 3 features. There is nothing
particular about this specific version of greedy search; any
other features selection strategy that is based on invariance
across subjects is expected to perform equally well.

C. Comparing Results for the Three Algorithms
Discrimination results for the three algorithms we have

discussed are shown in Fig. 9. The data are from
14 datasets obtained during a set of RSVP experiments on
5 subjects (3 datasets per subject with one dataset excluded
as it was used to optimize regularization parameters). Due
to memory limitations we only used 250 example images
out of a total of 2500 (50 positives and 200 negatives). For
this result the data was down-sampled to 256 Hz from
2048 Hz. The BDCA used a single component here
ðK ¼ 1Þ. Test-set performance reported here is the result
of fivefold cross validation. The feature selection proce-
dure had no access to the test data. The algorithm was
given quadratic features that capture power in various
frequency bands in addition to the linear features that
were used also by the other two algorithms. Specifically,
we used a time-resolved estimate of power obtained with a
sliding multitapered windows of 150 ms duration. The two
most important features extracted by the algorithm are the

8For full detail see [33]. An earlier algorithm that combines linear and
quadratic features in source-space was presented in [34].

Fig. 9. Performance comparison for 14 datasets collected from 5

subjects on various types of images on the RSVP task. The Az

performance for the three algorithms is (mean ) std.): 0.76 ) 0.07,

0.83)0.08 and 0.91)0.07. Statistical significance * * * indicates here
p G 0.001 and was computed using a Wilcoxon signed rank test.
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conventional linear features and an estimate of power in
higher frequencies (20–40 Hz). The resulting bilinear
coefficients, vkt; uki, indicate that images of interest elicited
increased power in this frequency band following image
presentation with a nonuniform spatial distribution.
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