
Modular Scalable I/O
Erik P. DeBenedictis

Scalable Computing
204 Canoe Court

Redwood City, CA 94065

Juan Miguel del Rosario

Syracuse University
Syracuse, NY 13244

We describe design issues for scalable I/O systems. I/O
system modularity is the central issue. We identify the new
information and algorithms responsible for high performance
in scalable I/O. We show how to assign them to the parts of a
scalable computer system so the result is modular. We built a
modular I/O system and it is commercially available. We
describe its design and performance benchmarks using it.

1. SCALABILITY

We clarify the idea of scalability before extending it to I/O.
Fig. 1 shows a scalable architecture. The figure is halfway
between a machine design and an algorithm. If we supply
actual values for n and m, then we can convert the architecture
into a machine design. Like an algorithm, however, a scalable
architecture shows the behavior of the resulting machines as n
and m vary. One easily sees the number of building blocks
grows linearly and the depth of the interconnection network
grows logarithmically with n and m.

The U. S. Government has an initiative to produce a
TFLOPS (one million MFLOPS) computer around 1995.
While we don't yet know the exact design of such a machine, a
likely candidate is Fig. 1 with n=10,000 and 100 MFLOPS
processors. This paper deals with strictly with scalable I/O,
where n=10,000 is a typical value.

2. I/O REQUIREMENTS OF A SCALABLE
COMPUTER ARCHITECTURE

A rule of thumb in the supercomputer industry is "a
megabyte per MFLOPS is balanced." This means that
computers where the I/O bandwidth in megabytes per second
equals the computing capacity in MFLOPS have a good I/O
balance. A scalable architecture with n processing elements
will have a computing rate proportional to n. This means the
I/O rate also should be proportional to n.

Fig. 1 shows the scalable I/O architecture. The figure has n
Von Neumann computing elements and m disk drives (or other

media). The ratio of n and m controls the I/O balance and the
size of n and m controls the overall performance.

Adding scalability does not guarantee scalable performance.
Say we find a scalable way of doing 99% of the activities in an
application. The remaining 1% will continue to run at their
original speed, however. For n=10,000 the total speed
improvement is 99, much less than the 10,000 we expect! This
is Amdahl's Law [1]. A system with fully scalable
performance must be scalable to one part in n, or 99.99% for
the n=10,000 example. This paper is not about "adding
scalability," but "removing the last vestige of nonscalability."

Since we have already presented the hardware architecture,
the remainder of the paper presents software algorithms for a
scalable I/O system. We describe new or changed algorithms
so the reader can see that they are scalable. For additional
support, however, we end with results from benchmark
programs. Each result tests the scalable architecture for one
combination of n and m. Where performance varies with n and
m in the expected way, one gets additional support for
scalability.

Many other algorithms can stay in their current form
because they are not in time critical parts of the system. We do
not mention these because they are unchanged from a regular
computer.

3. EXISTING WORK

There are dozens of commercially available parallel
computers with shared memory and multithreaded operating
systems. These systems have full-featured and parallel I/O, but
they have values of n between two and about thirty. These
values are too small to be scalable.

While Intel's Concurrent File SystemTM [12] uses the
hardware architecture shown in Fig. 1, some software
algorithms are nonparallel. The result is increased
performance but no claim of scalability.

Thinking Machines' CM-2 [14] had a scalable I/O system,
but a SIMD architecture. The CM5 [15] will have a MIMD
scalable I/O system, although it is still under development.

General ideas for parallel I/O appear in Crockett [3] that are
compatible with the approach in this paper.

Other publications by the authors [2, 4, 6, 8] report other
aspects of this system.

4. MODULAR SCALABLE I/O

The modularity property of an I/O system is directly
responsible for ease of use. It lets one connect any program to

Von Neumann
processor
building block

Von Neumann
processor
building block

Von Neumann
processor
building block

Von Neumann
computer
building block

repeated n times

I/O media(disk)
I/O media(disk)

I/O media(disk)
I/O media

repeated m times

n+m port,
log n+m

network
stage

2

Fig. 1: A scalable I/O architecture

 1

any I/O device easily and without chance of error. Curiously,
the technical basis of modularity is not elaborate algorithms.
Instead, modularity is the result of assigning each algorithm to
the correct part of the computer. By parts, we mean the user's
program, operating system kernel, device drivers, and I/O
libraries. Correctly assigned algorithms will work for any
assembly of the parts. The key in designing a scalable I/O
system is to keep the performance advantages of scalability
while building a modular I/O system.

5. EXAMPLE

In making the I/O system, one must first identify any new
information and algorithms that arise from parallel processing.
These are then assigned to make the system modular. In Fig. 2
we show a scalable I/O task to introduce these new features.
The figure shows a scalable program outputting an image to a
scalable disk system. The center of the figure shows the image
within an outline of a CRT display. Imagine the image is 8×8
bytes or pixels.

5.1. New information

On the left of the diagram are four processors of a parallel
program. As is common in image processing applications, one
breaks the image into square regions with the regions assigned
to the processors of the parallel computer. We have
highlighted Processing Element (PE) 2 and the part of the
image mapped to this processor. We have a tag with the words
"4×4 images" to describe the form of data distribution from
the image to the parallel program. The example generalizes if
the tag can represent any distribution popular in parallel
programming [9].

On the right-hand side we show the parallel disk system. On
each of two disk drives we show a stripe file for this data. In
disk storage systems, one views data as a one dimensional
stream of blocks, with a round-robin assignment of blocks to
disks. The tag on the right is an example of this by saying "8
byte blocks." We divide the image, imagined in raster order,
into eight byte blocks and map them to the drives. The figure
patterns the contents of one drive and the portion of the image

that goes to that drive. We generalize the example by letting
the tag represent any popular storage distribution [11, 13].

Now we can see the first new feature of scalable I/O. The
tags representing data distributions are new in scalable I/O and
have no analog on a conventional computer.

5.2. New algorithms

The hand-drawn line at the bottom of the figure illustrates
the second new feature. Output from a program on a
workstation, for example, has simple behavior. The data goes
to one file starting at the beginning and filling the file without
gaps until the end. We highlight the flow of data from PE 2. It
highlights the processor, its part of the image, and the
corresponding data on the disk. One sees the output goes to
two disks, not starting from the beginning, getting stored with
gaps, and not ending the files. A new algorithm must be
present in this scalable computer to create this behavior. Each
byte of output data gets targeted by the algorithm to the proper
destination device and position in that device. We call this the
conversion algorithm, because it converts data distributed in
one form to another. This algorithm has no analog in a
conventional system.

5.3. Other modes

Fig. 2 is a key I/O paradigm, but we need a host of variants.
Sometimes each processing element needs to access an entire
data set, not just a piece of it. Defeating the left distribution
tag in Fig. 2 does this. In addition, multiple processors
sometimes need to do I/O using a common file pointer [7].
This is a common mode in nonparallel computers. Finally, a
nonparallel program (like a text editor) may need access to
parallel files. Fig. 2 already implies this. If the program in Fig.
2 is a text editor, it will have only one processor and data
distribution will be irrelevant. Although these variants in the
nCUBE implementation, there is no further mention of them
because they are all based on Fig. 2. There is no guarantee,
however, that other I/O paradigms will not appear in the future
that require other modes.

6. ASSIGNING THE NEW FEATURES

6.1. Before execution

Fig. 3 shows the situation before execution. Before
execution, data distribution information must be in executable
files. To see why this is, imagine switching a user program's
output to a terminal from a disk. This removes the disk driver
module and replaces it with a terminal driver module. The
resulting configuration does not need knowledge about disk
striping but must know that the terminal requires sequential
data. Since the device driver is the only part of the system to
change, this information must be in the device driver.

Data in striped disk
Data in processor

PE 1

PE 3

Stripe 0 Stripe 1

2-d image

array

PE 0

4 x 4
images

8 byte
blocks

data
flow

PE 2

Fig. 2: Parallel I/O example

 2

6.2. During execution

Fig. 4 shows the situation during execution. System
performance controls the behavior during execution. We see
this by asking "what is the bandwidth requirement on the
conversion algorithms during execution?" The program
produces data at a rate proportional to n, the number of
processors. Similarly, the disk system consumes data at a rate
proportional to m, the number of disk drives. For arbitrarily
large values of n and m, the bandwidth of the conversion
algorithm will be arbitrarily large. This precludes a nonparallel
implementation.

In general, one must distribute the conversion algorithm
among a scalable number of processors. Our conversion
algorithm includes a subroutine in the kernel of all processors.
Since the subroutines get the CPU resources of their
processors, the total resources available to this algorithm are
n+m. As n and m grow, the resources available to the
conversion algorithm grow at the same rate, giving it greater
conversion capacity. The conversion is more than series of
isolated subroutines, however. Variables in the subroutines
identify the other end of the connection. This makes the
conversion algorithm look like an ameba. The ameba has
pseudopodia extending into each processor, yet has a single
structure.

6.3. Conversion algorithm

Fig. 5 illustrates the subroutine in each kernel in greater
detail. The kernels of all the processors contain a generic
conversion algorithm. This algorithm converts any distribution
to any other distribution. Setting up an I/O connection
customizes a subset of these to do a specific conversion. This
brings the data distribution tags together from the executable
files and plugs them into the conversion algorithms as
parameters. The algorithm also must have the processor

number of the parallel program it is running on plugged in.
Having been so customized, the conversion algorithm can
target a byte of data appropriately. The algorithm receives the
position of a data byte in the output stream as the byte index.
The conversion algorithm then computes a unit number and
byte index that direct that byte. For efficiency, the conversion
algorithm emits a block size. This specifies the number of
bytes that are adjacent at both ends of the connection and form
a block for transmission purposes.

user's
code

disk
driver

4 x 4
images

8 byte
blocks

terminal
driver

sequen-
tial

Fig. 3: Assignment before execution

processor
number

8 byte
blocks

4 x 4
images

Generic
conversion
subroutine

byte
index

byte
index

processor
number

block size
Fig. 5: Data conversion algorithm

7. IMPLEMENTATION ON NCUBE

In this section we expose general design issues using the
nCUBE scalable I/O system as an example. We describe the
data structure we chose to represent data distributions and the
algorithm that converts the distributions defined by these data
structures. In describing the capabilities and limitations of the
nCUBE system, we create guidelines for designing future
systems. We restrict our discussion only to points about
scalability, however. See the nCUBE technical documentation
[5] for a complete description.

user
program
kernel

user
program
kernel

user
program
kernel

user
program
kernel

user
driver
kernel

disk
driver
kernel

repeated n times repeated m times

conversion algorithm

Fig. 4: Assignment during execution

7.1. Data distribution functions

Fig. 6 shows a data distribution function. The function maps
each byte position in the file to a byte position in one unit. For
programs, the functions map each byte to a position in the I/O
stream of a processor. For a striped disk, the functions map
each byte to a position in a particular disk unit.

The distributions work as follows [2]. We represent the
position of a byte as a binary number and apply it to the left of
the function. The action of the function is to permute the order
of bits as shown by the lines in the figure. The right-hand side
of the function divides the bits into two groups. The bottom
group represents the unit number. The upper group represents
the byte position within that unit.

LSB

MSB

LSB
MSB
LSB

MSB

binary
representation
of argument

position
within
unit

unit
number

position
in file

u
1

p
1

Fig. 6: Data distribution function

7.2. Representation of Common Data Distributions

The sections below show that these functions can represent
the necessary range of data distributions. There is a limitation,

 3

however. The limitation is that the number of units and block
sizes must be powers-of-two. Del Rosario [8] has a system that
alleviates this restriction.

Fig. 7 illustrates the most common form of data
distribution. This distribution views the file as a sequence of
blocks. The blocks get distributed round-robin to the units of
the parallel entity. The permutation pattern controls the block
size and number of units. Striped disks [13] use this mapping,
as do parallel programs distributing a dense matrix by column
or row [9]. The data distribution in parity protected disk arrays
[11] follows this paradigm, although the parity blocks must be
generated by a postprocessing step. The block size in the
example is eight bytes, corresponding to the disk mapping in
Fig. 2.

Fig. 6 illustrates the two-dimensional data distribution from
Fig. 2. The distribution views the file as a two dimensional
array scanned in raster order. Two dimensional subarrays are
then mapped to processors [9]. The permutation pattern
controls the size of the subarray in each dimension and the
number and arrangement of the processor array. The figure
illustrates a 8×8 matrix of bytes distributed over a 2×2 array of
processors.

7.3. Distribution conversion algorithm

In building the conversion algorithm, the first step is to
understand how to move single bytes between the ends of the
connection. There are two distributions involved in Fig. 2,
which we will call D1 and D2. Functions D1 and D2 represent
the distributions of data in the sending and receiving entities
respectively. We know a byte's unit and position within the
unit (u1, p1) and need to compute the receiving unit and
position within the unit (u2, p2). Computing the position in the
file as an intermediate value, however, is the initial strategy.
Fortunately, we can use the bit permutation functions in both
directions. Fig. 6 represents function D1 with (u1, p1) applied
to the right-hand side. We can find the position in the file by
permuting the bits in a right-to-left direction. We can then
apply this result to Fig. 7 to compute (u2, p2). When we can
evaluate a mapping function in the reverse direction, we have
a method, possibly slow, for doing scalable I/O.

Symbolic manipulation of distribution functions improves
the previous method. Perhaps counter intuitively, the position
of a byte in the file is irrelevant. Fig. 8 shows D1 mirrored
about the vertical axis, forming D1-1. The middle and right
parts of the figure show the composition of D1-1 and D2. We
trace each bit from the left side of
D1-1 through the common boundary to the right side of D2. At
this point, the position in the file disappears. The name of the
function on the right side is a composite data distribution. It
represents the data permutation from the sending side directly

to the receiving side. Evaluating the composite function with
(u1, p1) on the left side makes (u2, p2) appear on the right side.

D1 D1 D2 D2 o D1

pattern

reversal

combine

traces

-1 -1

Fig. 8: Generation of a composite mapping function

7.4. Blocking of Parallel Data Transfers

One improves data transfer efficiency by sending data in
blocks, instead of byte-at-a-time. Symbolically evaluating
composite functions yields more information than just where
one byte goes. One also finds out how many bytes are adjacent
on both the sender and receiver. The system can send these
bytes as a block.

LSB

MSB

LSB=MSB
LSB

MSB
position
within
stripe

stripe
number

position
in byte
stream

u
2

p
2

Fig. 7: Mapping for a striped disk

Fig. 9 starts by illustrating the composite mapping function
from Fig. 8. Let us follow the example started in Fig. 2 by
following output from PE 2. Say PE 2 has already output the
eight bytes in the upper half of its image and is now outputting
the second eight bytes. Now, let us apply (u1, p1) to the left
side of the mapping function, but let us do it symbolically.
Specifically, the unit number is two, resulting in u1=102, and
the byte positions are 10002 through 11112, resulting in
p1=1xyz2. Here x, y, and z are variables that match either a 0 or
1 in a binary number. The illustration shows these patterns
applied to the left, and shows the pattern that results from the
permutation of the symbols on the right. Note that the unit
field u2 has pattern x2, which matches single bit integers 0 and
1. This means that the specified transfer will send data to disk
units 0 and 1, consistent with Fig. 2. Repeating this analysis
for position field p2, we find the pattern 110yz2 representing
the integers 24 to 27. The output operation will therefore send
four bytes from the program to each disk platter, consistent
with Fig. 2.

The final analysis step is to observe that the two least
significant bits of the position in the sending processor (yz2)
are the same bits and in the same order as the two least
significant bits of the position in the disk stripe (yz2). This
final condition allows one to send a four-byte block from
sender to receiver. The overhead in symbolic evaluation is
likely to exceed the efficiency improvement of four byte
blocks. In realistic situations blocks of 512 to 65536 bytes are
common and blocking makes a dramatic difference.

0
1
z
y
x
1

x
z
y
0
1
1

output bytes
8 to 15

processor 2 destination
disks 0 and 1

positions 24 to 27
in stripe

u
1

p
1

u
2

p
2

Fig. 9: Composite mapping function

 4

8. PERFORMANCE BENCHMARKS

We made a computing environment using the methods just
described and ran benchmark programs in it. The first set of
programs exercised a parallel pipeline. In a parallel pipeline,
two programs run simultaneously on a parallel computer.
Output of one program becomes input of the other. This is a
paradigm of increasing popularity on parallel computers [10].
In the benchmarks, the programs input or output a 1024×1024
byte matrix. We distributed the matrix over processors using
row, column, and block distributions. We show the benchmark
in Fig. 10 and performance results in table I.

The first four simple benchmarks are of the same program
on differing numbers of processors. The system initially does a
brief calculation that concludes that the data distributions are
the same. Then, pairs of processors exchange a single 1/n
megabyte message. The n=1 case sends a one megabyte
message that approaches the peak hardware rate of 2.22
megabytes per second. As n increases, the messages get
shorter and message transmission overhead to become
noticeable. Nevertheless, with n=64, the I/O speedup is nearly
50.

The last four tests vary the data distributions. The tests
where the sender and receiver distributions are the same have
the same results. This is because actual flow of data is the
same as in the first four tests. In the two tests where the
distributions differ, performance is much lower. This is
because the system is performing a data permutation as part of
the I/O operation.

In the second set of benchmarks, a program outputs a
1024×1024 byte matrix to a parallel disk. The code is the same
as that developed in the previous section. Fig. 11 shows the
benchmark and table II shows performance results.

9. CONCLUSIONS

This paper discusses making I/O both scalable and modular.
There is a well-known procedure for making an I/O system
modular, but nobody has applied it to a scalable architecture
before. We identify new information and algorithms
characteristic of scalable computers and repeat the procedure.

The result is that before execution, the new data distribution
information must be separate for modularity. During
execution, data distribution information gets brought together
for use by the new data distribution algorithms.

Data distributions need a range of properties, which are
summarized below: They must be

1. representable as a data structure,
2. capable of representing common distributions in

parallel programming and I/O device design,
3. have efficient algorithms for functional inversion and

composition,
4. allow symbolic evaluation to support computing

block size.
We built a system to test these ideas. The system is

available from nCUBE in release 3.0 of system software. We
ran benchmarks on this system showing the scalability of I/O.

The principle limitation in release 3.0 is that all block sizes
and numbers of units must be powers-of-two. Release 3.1 of
the nCUBE system software has a variant that alleviates this
deficiency [8].

The primary area for further work is in the representation of
data distributions. Experience shows that one and two
dimensional distributions are probably sufficient, but the
power-of-two limitation draws criticism, however. We suggest
developing a new class of data distributions that address these
points while preserving the properties described earlier.

This paper did not discuss scalable I/O with a common file
pointer or I/O to devices other than secondary storage. Other
works by the authors [5, 7] address these issues, however.

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

n processors m processors

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

data
flow

Fig. 10: Parallel pipe trial configuration

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

n processors m disks

data
flow

Fig. 11: Parallel output trial configuration

n output
distri-
bution

m disk
bandwidth

(MBytes per
second)

64 row 1 1.30
64 row 2 2.49
64 row 4 4.96

Table II: Parallel disk
benchmark

n=m sender
distri-
bution

receiver
distri-
bution

rate per node
(MBytes per

second)

aggre-
gate

band-
width

1 row row 2.20 2.20
4 row row 2.14 8.56

16 row row 1.94 31.4
64 row row 1.68 108.0
64 column column 1.68 108.0
64 row column .03 2.11
64 row block .36 23.2
64 block block 1.68 108.0

Table I: Pipeline benchmark

 5

 6

10. REFERENCES

1. Amdahl, G., Validity of the single-processor approach to
achieving large-scale computer capabilities. AFIPS Conference
Proceedings. Spring 1967, pp. 483-485.

2. Chen, M., and DeBenedictis, E., Separate Compilation and
Dynamic Linking of Parallel Programs. Seminar at Yale
University, May 1988.

3. Crockett, T., File Concepts for Parallel I/O. Proceedings of
Supercomputing '89. Pp. 574-579.

4. DeBenedictis, E., and Madams, P., nCUBE's Parallel I/O with
Unix Compatibility. Proceedings of the Sixth Distributed Memory
Computing Conference. May 1991.

5. DeBenedictis, E., and del Rosario, J., Scalable I/O. nCUBE
Technical Report, nCUBE-TR-001-911015.

6. DeBenedictis, E., and del Rosario, J., nCUBE Parallel I/O
Software. Proceedings of the 1992 International Phoenix
Conference on Computers and Communications. April 1992, pp.
117-124.

7. DeBenedictis, E., unnamed. Submitted to IEEE Proceedings,
April 1993.

8. del Rosario, J., High Performance Parallel I/O on the nCUBE 2.
IEICE Transactions (English Edition). Japan, August 1992.

9. Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and
Walker, D., Solving Problems on Concurrent Processors.
Prentice-Hall 1988.

10. Gustafson, J., Benner, R., Sears, M., and Sullivan, T., A Radar
Simulation Program for a 1024-Processor Hypercube.
Proceedings of Supercomputing '89. Pp. 96-105.

11. Patterson, D., Gibson, G., and Katz, R., A Case for Redundant
Arrays of Inexpensive Disks (RAID). 1988 Proceedings of the
International Conference on the Management of Data. June 1988,
pp. 109-116.

12. Pierce, P., A Concurrent File System for a Highly Parallel Mass
Storage Subsystem. Fourth Conference on Hypercubes,
Concurrent Computers, and Applications. March 1989, pp. 155-
160.

13. Salem, K., and Garcia-Molina, H., Disk Striping. IEEE 1986
International Conference on Data Engineering. 1986, pp. 336-
342.

14. Thinking Machines Corporation, Model CM-2 Technical
Summary. Thinking Machines Corporation technical report
HA87-4, April 1987.

15. Thinking Machines Corporation, The Connection Machine CM5
Technical Summary. Thinking Machines Corporation, 1991.

ERIK P. DEBENEDICTIS has focused his career on
research, design, and practical applications of parallel
computers. After designing the Cosmic Cube at Caltech in
1981, he went to Bell Labs. There, he received the Gordon
Bell award in 1988 and began research work on parallel I/O.
During 1991 he put this technology into the system software
of the nCUBE parallel supercomputer. He is now the founder
of Scalable Computing, a company formed to develop flexible
and easy-to-use parallel computing environments.

DeBenedictis received his Ph. D. in Computer Science from
Caltech in 1982, a M. S. from Carnegie-Mellon in 1979, and a
B. S. from Caltech in 1978.

JUAN MIGUEL DEL ROSARIO received a B. S. degree in
physics math and chemistry in 1989 and an M. S. degree in
computer science in 1992, both from the University of San
Francisco. Mike is now a graduate student at Syracuse
University. His research interests are operating systems and
file system for parallel computers.

	1. SCALABILITY
	2. I/O REQUIREMENTS OF A SCALABLE COMPUTER ARCHITECTURE
	3. EXISTING WORK
	4. MODULAR SCALABLE I/O
	5. EXAMPLE
	5.1. New information
	5.2. New algorithms
	5.3. Other modes

	6. ASSIGNING THE NEW FEATURES
	6.1. Before execution
	6.2. During execution
	6.3. Conversion algorithm

	7. IMPLEMENTATION ON NCUBE
	7.1. Data distribution functions
	7.2. Representation of Common Data Distributions
	7.3. Distribution conversion algorithm
	7.4. Blocking of Parallel Data Transfers

	8. PERFORMANCE BENCHMARKS
	9. CONCLUSIONS
	10. REFERENCES

