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We describe design issues for scalable I/O systems. I/O 
system modularity is the central issue. We identify the new 
information and algorithms responsible for high performance 
in scalable I/O. We show how to assign them to the parts of a 
scalable computer system so the result is modular. We built a 
modular I/O system and it is commercially available. We 
describe its design and performance benchmarks using it. 

1. SCALABILITY 

We clarify the idea of scalability before extending it to I/O. 
Fig. 1 shows a scalable architecture. The figure is halfway 
between a machine design and an algorithm. If we supply 
actual values for n and m, then we can convert the architecture 
into a machine design. Like an algorithm, however, a scalable 
architecture shows the behavior of the resulting machines as n 
and m vary. One easily sees the number of building blocks 
grows linearly and the depth of the interconnection network 
grows logarithmically with n and m. 

The U. S. Government has an initiative to produce a 
TFLOPS (one million MFLOPS) computer around 1995. 
While we don't yet know the exact design of such a machine, a 
likely candidate is Fig. 1 with n=10,000 and 100 MFLOPS 
processors. This paper deals with strictly with scalable I/O, 
where n=10,000 is a typical value. 

2. I/O REQUIREMENTS OF A SCALABLE 
COMPUTER ARCHITECTURE 

A rule of thumb in the supercomputer industry is "a 
megabyte per MFLOPS is balanced." This means that 
computers where the I/O bandwidth in megabytes per second 
equals the computing capacity in MFLOPS have a good I/O 
balance. A scalable architecture with n processing elements 
will have a computing rate proportional to n. This means the 
I/O rate also should be proportional to n. 

Fig. 1 shows the scalable I/O architecture. The figure has n 
Von Neumann computing elements and m disk drives (or other 

media). The ratio of n and m controls the I/O balance and the 
size of n and m controls the overall performance. 

Adding scalability does not guarantee scalable performance. 
Say we find a scalable way of doing 99% of the activities in an 
application. The remaining 1% will continue to run at their 
original speed, however. For n=10,000 the total speed 
improvement is 99, much less than the 10,000 we expect! This 
is Amdahl's Law [1]. A system with fully scalable 
performance must be scalable to one part in n, or 99.99% for 
the n=10,000 example. This paper is not about "adding 
scalability," but "removing the last vestige of nonscalability." 

Since we have already presented the hardware architecture, 
the remainder of the paper presents software algorithms for a 
scalable I/O system. We describe new or changed algorithms 
so the reader can see that they are scalable. For additional 
support, however, we end with results from benchmark 
programs. Each result tests the scalable architecture for one 
combination of n and m. Where performance varies with n and 
m in the expected way, one gets additional support for 
scalability. 

Many other algorithms can stay in their current form 
because they are not in time critical parts of the system. We do 
not mention these because they are unchanged from a regular 
computer.  

3. EXISTING WORK 

There are dozens of commercially available parallel 
computers with shared memory and multithreaded operating 
systems. These systems have full-featured and parallel I/O, but 
they have values of n between two and about thirty. These 
values are too small to be scalable. 

While Intel's Concurrent File SystemTM [12] uses the 
hardware architecture shown in Fig. 1, some software 
algorithms are nonparallel. The result is increased 
performance but no claim of scalability. 

Thinking Machines' CM-2 [14] had a scalable I/O system, 
but a SIMD architecture. The CM5 [15] will have a MIMD 
scalable I/O system, although it is still under development. 

General ideas for parallel I/O appear in Crockett [3] that are 
compatible with the approach in this paper. 

Other publications by the authors [2, 4, 6, 8] report other 
aspects of this system. 

4. MODULAR SCALABLE I/O 

The modularity property of an I/O system is directly 
responsible for ease of use. It lets one connect any program to 
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Fig. 1: A scalable I/O architecture 
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any I/O device easily and without chance of error. Curiously, 
the technical basis of modularity is not elaborate algorithms. 
Instead, modularity is the result of assigning each algorithm to 
the correct part of the computer. By parts, we mean the user's 
program, operating system kernel, device drivers, and I/O 
libraries. Correctly assigned algorithms will work for any 
assembly of the parts. The key in designing a scalable I/O 
system is to keep the performance advantages of scalability 
while building a modular I/O system. 

5. EXAMPLE 

In making the I/O system, one must first identify any new 
information and algorithms that arise from parallel processing. 
These are then assigned to make the system modular. In Fig. 2 
we show a scalable I/O task to introduce these new features. 
The figure shows a scalable program outputting an image to a 
scalable disk system. The center of the figure shows the image 
within an outline of a CRT display. Imagine the image is 8×8 
bytes or pixels. 

5.1. New information 

On the left of the diagram are four processors of a parallel 
program. As is common in image processing applications, one 
breaks the image into square regions with the regions assigned 
to the processors of the parallel computer. We have 
highlighted Processing Element (PE) 2 and the part of the 
image mapped to this processor. We have a tag with the words 
"4×4 images" to describe the form of data distribution from 
the image to the parallel program. The example generalizes if 
the tag can represent any distribution popular in parallel 
programming [9]. 

On the right-hand side we show the parallel disk system. On 
each of two disk drives we show a stripe file for this data. In 
disk storage systems, one views data as a one dimensional 
stream of blocks, with a round-robin assignment of blocks to 
disks. The tag on the right is an example of this by saying "8 
byte blocks." We divide the image, imagined in raster order, 
into eight byte blocks and map them to the drives. The figure 
patterns the contents of one drive and the portion of the image 

that goes to that drive. We generalize the example by letting 
the tag represent any popular storage distribution [11, 13]. 

Now we can see the first new feature of scalable I/O. The 
tags representing data distributions are new in scalable I/O and 
have no analog on a conventional computer.  

5.2. New algorithms 

The hand-drawn line at the bottom of the figure illustrates 
the second new feature. Output from a program on a 
workstation, for example, has simple behavior. The data goes 
to one file starting at the beginning and filling the file without 
gaps until the end. We highlight the flow of data from PE 2. It 
highlights the processor, its part of the image, and the 
corresponding data on the disk. One sees the output goes to 
two disks, not starting from the beginning, getting stored with 
gaps, and not ending the files. A new algorithm must be 
present in this scalable computer to create this behavior. Each 
byte of output data gets targeted by the algorithm to the proper 
destination device and position in that device. We call this the 
conversion algorithm, because it converts data distributed in 
one form to another. This algorithm has no analog in a 
conventional system. 

5.3. Other modes 

Fig. 2 is a key I/O paradigm, but we need a host of variants. 
Sometimes each processing element needs to access an entire 
data set, not just a piece of it. Defeating the left distribution 
tag in Fig. 2 does this. In addition, multiple processors 
sometimes need to do I/O using a common file pointer [7]. 
This is a common mode in nonparallel computers. Finally, a 
nonparallel program (like a text editor) may need access to 
parallel files. Fig. 2 already implies this. If the program in Fig. 
2 is a text editor, it will have only one processor and data 
distribution will be irrelevant. Although these variants in the 
nCUBE implementation, there is no further mention of them 
because they are all based on Fig. 2. There is no guarantee, 
however, that other I/O paradigms will not appear in the future 
that require other modes. 

6. ASSIGNING THE NEW FEATURES 

6.1. Before execution 

Fig. 3 shows the situation before execution. Before 
execution, data distribution information must be in executable 
files. To see why this is, imagine switching a user program's 
output to a terminal from a disk. This removes the disk driver 
module and replaces it with a terminal driver module. The 
resulting configuration does not need knowledge about disk 
striping but must know that the terminal requires sequential 
data. Since the device driver is the only part of the system to 
change, this information must be in the device driver. 
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Fig. 2: Parallel I/O example 
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6.2. During execution 

Fig. 4 shows the situation during execution. System 
performance controls the behavior during execution. We see 
this by asking "what is the bandwidth requirement on the 
conversion algorithms during execution?" The program 
produces data at a rate proportional to n, the number of 
processors. Similarly, the disk system consumes data at a rate 
proportional to m, the number of disk drives. For arbitrarily 
large values of n and m, the bandwidth of the conversion 
algorithm will be arbitrarily large. This precludes a nonparallel 
implementation. 

In general, one must distribute the conversion algorithm 
among a scalable number of processors. Our conversion 
algorithm includes a subroutine in the kernel of all processors. 
Since the subroutines get the CPU resources of their 
processors, the total resources available to this algorithm are 
n+m. As n and m grow, the resources available to the 
conversion algorithm grow at the same rate, giving it greater 
conversion capacity. The conversion is more than series of 
isolated subroutines, however. Variables in the subroutines 
identify the other end of the connection. This makes the 
conversion algorithm look like an ameba. The ameba has 
pseudopodia extending into each processor, yet has a single 
structure.  

6.3. Conversion algorithm 

Fig. 5 illustrates the subroutine in each kernel in greater 
detail. The kernels of all the processors contain a generic 
conversion algorithm. This algorithm converts any distribution 
to any other distribution. Setting up an I/O connection 
customizes a subset of these to do a specific conversion. This 
brings the data distribution tags together from the executable 
files and plugs them into the conversion algorithms as 
parameters. The algorithm also must have the processor 

number of the parallel program it is running on plugged in. 
Having been so customized, the conversion algorithm can 
target a byte of data appropriately. The algorithm receives the 
position of a data byte in the output stream as the byte index. 
The conversion algorithm then computes a unit number and 
byte index that direct that byte. For efficiency, the conversion 
algorithm emits a block size. This specifies the number of 
bytes that are adjacent at both ends of the connection and form 
a block for transmission purposes. 
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Fig. 3: Assignment before execution 
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7. IMPLEMENTATION ON NCUBE  

In this section we expose general design issues using the 
nCUBE scalable I/O system as an example. We describe the 
data structure we chose to represent data distributions and the 
algorithm that converts the distributions defined by these data 
structures. In describing the capabilities and limitations of the 
nCUBE system, we create guidelines for designing future 
systems. We restrict our discussion only to points about 
scalability, however. See the nCUBE technical documentation 
[5] for a complete description. 
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Fig. 4: Assignment during execution 

7.1. Data distribution functions 

Fig. 6 shows a data distribution function. The function maps 
each byte position in the file to a byte position in one unit. For 
programs, the functions map each byte to a position in the I/O 
stream of a processor. For a striped disk, the functions map 
each byte to a position in a particular disk unit. 

The distributions work as follows [2]. We represent the 
position of a byte as a binary number and apply it to the left of 
the function. The action of the function is to permute the order 
of bits as shown by the lines in the figure. The right-hand side 
of the function divides the bits into two groups. The bottom 
group represents the unit number. The upper group represents 
the byte position within that unit. 
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Fig. 6: Data distribution function 

7.2. Representation of Common Data Distributions 

The sections below show that these functions can represent 
the necessary range of data distributions. There is a limitation, 
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however. The limitation is that the number of units and block 
sizes must be powers-of-two. Del Rosario [8] has a system that 
alleviates this restriction. 

Fig. 7 illustrates the most common form of data 
distribution. This distribution views the file as a sequence of 
blocks. The blocks get distributed round-robin to the units of 
the parallel entity. The permutation pattern controls the block 
size and number of units. Striped disks [13] use this mapping, 
as do parallel programs distributing a dense matrix by column 
or row [9]. The data distribution in parity protected disk arrays 
[11] follows this paradigm, although the parity blocks must be 
generated by a postprocessing step. The block size in the 
example is eight bytes, corresponding to the disk mapping in 
Fig. 2.  

Fig. 6 illustrates the two-dimensional data distribution from 
Fig. 2. The distribution views the file as a two dimensional 
array scanned in raster order. Two dimensional subarrays are 
then mapped to processors [9]. The permutation pattern 
controls the size of the subarray in each dimension and the 
number and arrangement of the processor array. The figure 
illustrates a 8×8 matrix of bytes distributed over a 2×2 array of 
processors. 

7.3. Distribution conversion algorithm 

In building the conversion algorithm, the first step is to 
understand how to move single bytes between the ends of the 
connection. There are two distributions involved in Fig. 2, 
which we will call D1 and D2. Functions D1 and D2 represent 
the distributions of data in the sending and receiving entities 
respectively. We know a byte's unit and position within the 
unit (u1, p1) and need to compute the receiving unit and 
position within the unit (u2, p2). Computing the position in the 
file as an intermediate value, however, is the initial strategy. 
Fortunately, we can use the bit permutation functions in both 
directions. Fig. 6 represents function D1 with (u1, p1) applied 
to the right-hand side. We can find the position in the file by 
permuting the bits in a right-to-left direction. We can then 
apply this result to Fig. 7 to compute (u2, p2). When we can 
evaluate a mapping function in the reverse direction, we have 
a method, possibly slow, for doing scalable I/O. 

Symbolic manipulation of distribution functions improves 
the previous method. Perhaps counter intuitively, the position 
of a byte in the file is irrelevant. Fig. 8 shows D1 mirrored 
about the vertical axis, forming D1-1. The middle and right 
parts of the figure show the composition of D1-1 and D2. We 
trace each bit from the left side of 
D1-1 through the common boundary to the right side of D2. At 
this point, the position in the file disappears. The name of the 
function on the right side is a composite data distribution. It 
represents the data permutation from the sending side directly 

to the receiving side. Evaluating the composite function with 
(u1, p1) on the left side makes (u2, p2) appear on the right side. 
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Fig. 8: Generation of a composite mapping function 

7.4. Blocking of Parallel Data Transfers 

One improves data transfer efficiency by sending data in 
blocks, instead of byte-at-a-time. Symbolically evaluating 
composite functions yields more information than just where 
one byte goes. One also finds out how many bytes are adjacent 
on both the sender and receiver. The system can send these 
bytes as a block. 
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Fig. 7: Mapping for a striped disk 

Fig. 9 starts by illustrating the composite mapping function 
from Fig. 8. Let us follow the example started in Fig. 2 by 
following output from PE 2. Say PE 2 has already output the 
eight bytes in the upper half of its image and is now outputting 
the second eight bytes. Now, let us apply (u1, p1) to the left 
side of the mapping function, but let us do it symbolically. 
Specifically, the unit number is two, resulting in u1=102, and 
the byte positions are 10002 through 11112, resulting in 
p1=1xyz2. Here x, y, and z are variables that match either a 0 or 
1 in a binary number. The illustration shows these patterns 
applied to the left, and shows the pattern that results from the 
permutation of the symbols on the right. Note that the unit 
field u2 has pattern x2, which matches single bit integers 0 and 
1. This means that the specified transfer will send data to disk 
units 0 and 1, consistent with Fig. 2. Repeating this analysis 
for position field p2, we find the pattern 110yz2 representing 
the integers 24 to 27. The output operation will therefore send 
four bytes from the program to each disk platter, consistent 
with Fig. 2. 

The final analysis step is to observe that the two least 
significant bits of the position in the sending processor (yz2) 
are the same bits and in the same order as the two least 
significant bits of the position in the disk stripe (yz2). This 
final condition allows one to send a four-byte block from 
sender to receiver. The overhead in symbolic evaluation is 
likely to exceed the efficiency improvement of four byte 
blocks. In realistic situations blocks of 512 to 65536 bytes are 
common and blocking makes a dramatic difference. 
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8. PERFORMANCE BENCHMARKS 

We made a computing environment using the methods just 
described and ran benchmark programs in it. The first set of 
programs exercised a parallel pipeline. In a parallel pipeline, 
two programs run simultaneously on a parallel computer. 
Output of one program becomes input of the other. This is a 
paradigm of increasing popularity on parallel computers [10]. 
In the benchmarks, the programs input or output a 1024×1024 
byte matrix. We distributed the matrix over processors using 
row, column, and block distributions. We show the benchmark 
in Fig. 10 and performance results in table I. 

 

The first four simple benchmarks are of the same program 
on differing numbers of processors. The system initially does a 
brief calculation that concludes that the data distributions are 
the same. Then, pairs of processors exchange a single 1/n 
megabyte message. The n=1 case sends a one megabyte 
message that approaches the peak hardware rate of 2.22 
megabytes per second. As n increases, the messages get 
shorter and message transmission overhead to become 
noticeable. Nevertheless, with n=64, the I/O speedup is nearly 
50. 

The last four tests vary the data distributions. The tests 
where the sender and receiver distributions are the same have 
the same results. This is because actual flow of data is the 
same as in the first four tests. In the two tests where the 
distributions differ, performance is much lower. This is 
because the system is performing a data permutation as part of 
the I/O operation. 

In the second set of benchmarks, a program outputs a 
1024×1024 byte matrix to a parallel disk. The code is the same 
as that developed in the previous section. Fig. 11 shows the 
benchmark and table II shows performance results. 

 

9. CONCLUSIONS 

This paper discusses making I/O both scalable and modular. 
There is a well-known procedure for making an I/O system 
modular, but nobody has applied it to a scalable architecture 
before. We identify new information and algorithms 
characteristic of scalable computers and repeat the procedure. 

The result is that before execution, the new data distribution 
information must be separate for modularity. During 
execution, data distribution information gets brought together 
for use by the new data distribution algorithms. 

Data distributions need a range of properties, which are 
summarized below: They must be 

1. representable as a data structure, 
2. capable of representing common distributions in 

parallel programming and I/O device design, 
3. have efficient algorithms for functional inversion and 

composition, 
4. allow symbolic evaluation to support computing 

block size. 
We built a system to test these ideas. The system is 

available from nCUBE in release 3.0 of system software. We 
ran benchmarks on this system showing the scalability of I/O. 

The principle limitation in release 3.0 is that all block sizes 
and numbers of units must be powers-of-two. Release 3.1 of 
the nCUBE system software has a variant that alleviates this 
deficiency [8]. 

The primary area for further work is in the representation of 
data distributions. Experience shows that one and two 
dimensional distributions are probably sufficient, but the 
power-of-two limitation draws criticism, however. We suggest 
developing a new class of data distributions that address these 
points while preserving the properties described earlier. 

This paper did not discuss scalable I/O with a common file 
pointer or I/O to devices other than secondary storage. Other 
works by the authors [5, 7] address these issues, however. 
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Fig. 10: Parallel pipe trial configuration 

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

parallel disk with
1024 byte blocks

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

1024×1024
byte matrix
variously
distributed

n processors m disks

data
flow

 
Fig. 11: Parallel output trial configuration 

n output
distri- 
bution

m disk 
bandwidth 

(MBytes per 
second) 

64 row 1 1.30 
64 row 2 2.49 
64 row 4 4.96 

Table II: Parallel disk 
benchmark 

n=m sender 
distri- 
bution 

receiver 
distri- 
bution 

rate per node 
(MBytes per 

second) 

aggre- 
gate 

band- 
width 

1 row row 2.20 2.20 
4 row row 2.14 8.56 

16 row row 1.94 31.4 
64 row row 1.68 108.0 
64 column column 1.68 108.0 
64 row column .03 2.11 
64 row block .36 23.2 
64 block block 1.68 108.0 

Table I: Pipeline benchmark 
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