## REFERENCES

1. T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
2. L. E. Dickson, History of the Theory of Numbers, Chelsea Publishing Company, New York, 1952.
3. L. Levine, Fermat's Little Theorem: a proof by function iteration, this MAGAZINE 72 (1999), 308-309.
4. P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag, New York, 1996.
5. A. Selberg, An elementary proof of Dirichlet's theorem about primes in an arithmetic progression, Ann. of Math. 50 (1949), 297-304.

# Proof Without Words: Simpson's Paradox 

JERZY KOCIK<br>Southern Illinois University<br>Carbondale, IL 62901

Popularity of a candidate is greater among women than men in each town, yet popularity of the candidate in the whole district is greater among men.

Procedure $A$ has greater succes than procedure $B$ in each hospital, yet, in general, procedure $B$ has greater success than $A$.


$$
\frac{a_{2}}{a_{1}}<\frac{A_{2}}{A_{1}} \quad \text { and } \quad \frac{b_{2}}{b_{1}}<\frac{B_{2}}{B_{1}}, \quad \text { yet } \quad \frac{a_{2}+b_{2}}{a_{1}+b_{1}}>\frac{A_{2}+B_{2}}{A_{1}+B_{1}}
$$

For more about Simpson's paradox, see

1. Thomas R. Knapp, Instances of Simpson's paradox, College Math. J., 16:3, 209-211.
2. A. Tan, A geometric interpretation of Simpson's paradox, College Math. J., 17:4, 340-341.
