University of Papua New Guinea School of Medicine and Health Sciences Division of Basic Medical Sciences Discipline of Biochemistry and Molecular Biology PBL SEMINAR **HEMOLYSIS AND JAUNDICE: An overview**

What is Intravascular Hemolysis?

- Destruction of RBC (Hemolysis) normally occurs in Reticuloendothelial system (Extra-vascular compartment: Extravascular Hemolysis)
- □ In some diseases, Hemolysis of RBC occurs within the Vascular System (Intravascular compartment: Intravascular Hemolysis)
- During Intravascular Hemolysis Free Hb (Hemoglobin) and Heme are released in Plasma
 - Resulting in Free Hb and Heme being excreted through the Kidneys with substantial loss of Iron
 - **D** Loss of Iron is prevented by Specific Plasma Proteins:
 - o Transferrin and Haptoglobins are involved in scavenging mechanisms
 - □ Transferrin is the protein that binds and transports Iron in plasma and thus permits Reutilization of Iron
 - \square Haptoglobins are a group of proteins, all of which are β_2 -Globulins produced in the Liver

What happens to Free Hb during Intravascular Hemolysis?

- □ Sequence of events that occurs when Free Hb appears in plasma:
 - Hb is Oxygenated in Pulmonary Capillaries,
 - o OxyHb dissociates into $\alpha\beta$ -OxyHb Dimers
 - $\circ~\alpha\beta$ -OxyHb Dimers are then bound to circulating plasma Haptoglobins
 - Haptoglobins have High Affinity for αβ-OxyHb Dimers
 - ο One molecule of Haptoglobin binds two $\alpha\beta$ -OxyHb Dimers
 - DeoxyHb does not dissociate into Dimers under normal physiological settings, thus it is not bound by Haptoglobins
 - ο Complex formed when Haptoglobin interacts with $\alpha\beta$ -OxyHb Dimers is usually too large to be filtered through Renal Glomerulus
 - During Intravascular Hemolysis Free Hb, appears in Renal Tubules and in Urine (causing Black-Water Fever) only when the binding capacity of circulating Haptoglobin molecule has been exceeded

What are the functions of Haptoglobin?

- □ Prevent loss of Free Hb via the Kidneys
- \square Haptoglobin binds and transports $\alpha\beta$ -OxyHb Dimers to Lymphoreticular system for catabolism
- **□** Heme in Free Hb is relatively resistant to the action of Heme Oxygenase
 - Heme Oxygenase easily catalyzes breakdown of Heme in the Haptoglobin-αβ-OxyHb Complex

How significant is plasma Haptoglobin as a diagnostic tool?

 Measurement of Plasma Haptoglobin level is used clinically to indicate severity of Intravascular Hemolysis

- Patients with significant Intravascular Hemolysis have low levels of Haptoglobin because of removal of Haptoglobin-αβ-OxyHb complexes by Reticuloendothelial system
- Plasma Haptoglobin level falls rapidly when Intravascular Hemolysis is increased (e.g., Hemolytic Anemia); Free Haptoglobin may then be undetectable in Plasma
- Haptoglobin levels can also be low in Severe Extra-vascular Hemolysis, when large amount of Hb in the Reticuloendothelial System leads to transfer of Free Hb into plasma
- Decreased Plasma Haptoglobin level may occur in Liver disease
- □ Plasma Haptoglobin level increases in:
 - □ Acute Infections, Trauma, Nephrotic syndrome (Why?)
 - **D** Because Haptoglobin is one of the Acute-Phase Reactants

HEMOLYSIS AND G-6-P D DEFICIENCY:

What reaction does Glucose-6-Phosphate Dehydrogenase catalyze?

- □ Glucose-6-Phosphate Dehydrogenase (G-6-P D) catalyzes the first reaction in the **HMP-shunt**
- □ NADPH is produced in the reaction catalyzed by G-6-P D
- □ HMP shunt that occurs in the RBC is important for maintaining Integrity of RBC membrane (Why?)
 - Because the NADPH produced is used to protect the integrity of RBC membrane by maintaining normal cellular level of **Reduced Glutathione** (**GSH**)

How do GSH and G-6-P D interact to protect RBC membrane from damage by Oxidants?

- Oxidants can damage RBC membrane causing Hemolysis
- GSH is a reducing agent that removes Oxidants in RBC
- □ For example:
 - **GSH** interacts with Oxidants in reaction catalyzed by **Glutathione Peroxidase** (Selenium is required)
 - In the process GSH is oxidized to Oxidized Glutathione (GSSG)

 $2GSH + H_2O_2 ===== \Longrightarrow GSSG + 2H_2O$

□ GSSG formed must be converted back to GSH, in a reaction catalyzed by Glutathione Reductase that utilizes NADPH

$\mathbf{GSSG} + \mathbf{NADPH} + \mathbf{H}^{+} ==== \Rightarrow \mathbf{2GSH} + \mathbf{NADP}^{+}$

- Major source of NADPH is the G-6-P D reaction in HMP shunt
 HMP shunt is the only means of producing NADPH in mature RBC
- Decreased level of GSH in RBC results in accumulation of Oxidants, causing impairment of essential metabolic processes and Hemolysis

What are some of the consequences of G-6-P D deficiency?

- □ Mature RBC is very sensitive to Oxidative damage if the function of HMP shunt is Impaired (e.g., by G-6-P D deficiency)
- Oxidants (e.g., Anti-malarial drug Primaquine and other drugs) can interact with GSH to produce high amount of GSSG, which must be converted to GSH using NADPH from HMP shunt
- Mature RBC of individuals who are deficiency in G-6-P D cannot generate sufficient NADPH to convert GSSG to GSH
 - Resulting in accumulation of GSSG, this impairs the ability of RBC to dispose of Oxidants and Free Radicals (Reactive Oxygen Species)
- □ Accumulation of Oxidants and Free Radicals cause Oxidation of critical –SH groups in proteins and Peroxidation of Lipids in RBC membrane, causing Hemolysis
- Administration of Drugs or Chemical agents capable of generating Oxidants to G-6-P
 D deficient individuals can cause rapid fall in GSH level in mature RBC, leading to
 Intravascular Hemolysis
- □ Effect of G-6-P D deficiency is greatest in Older RBC, because of their inability to synthesize Protein and produce more G-6-P D
 - o Mature RBC cannot synthesize protein and is devoid of Nucleus
- □ Hemolysis is higher in Older RBC, which explains the high percentage of circulating Young RBC usually found in blood of patients with Intravascular Hemolysis
- Hemolysis may be accompanied by unconjugated bilirubinemia leading to jaundice

HYPERBILIRUBINEMIA AND JAUNDICE

What is Hyperbilirubinemia?

- □ Hyperbilirubinemia:
 - $\circ~$ Accumulation of Bilirubin in blood, when level of Bilirubin exceeds 1.0 mg/dL (17.1 $\mu mol/L),$

What are the different types of Hyperbilirubinemia?

- **D** Pre-hepatic Hyperbilirubinemia:
 - Due to over-production of bilirubin causing increased level of unconjugated bilirubin in plasma:
 - o Occurs in:
 - Hemolytic anemia
 - Hemolytic disease of the new-born, due to rhesus incompatibility
 - Ineffective Erythropoiesis (e.g., Pernicious Anemia)
 - Bleeding into tissues (Trauma)
 - Rhabdomyolysis

D Hepatocellular Hyperbilirubinemia:

- □ May be due to:
 - □ Hepatocellular damage caused by:
 - Infective agents, Drugs or Toxins
 - **c**irrhosis is usually a late complication
 - □ Low activity or Failure of the conjugating mechanism: UDP-Glucuronyl-Transferase within the Hepatocytes,

Cholestatic Hyperbilirubinemia:

- **Cholestasis may be Intra-hepatic or Extra-hepatic**
 - **D** Both causes Conjugated Hyperbilirubinemia and Bilirubinuria

Intra-hepatic Cholestasis commonly due to:

- □ Acute Hepatocellular damage (e.g., Infectious Hepatitis)
- **D** Primary Biliary Cirrhosis
- Drugs

Extra-hepatic Cholestasis is most often due to:

- □ Gallstones
- Carcinoma of Head of Pancreas
- □ Carcinoma of Biliary Tree
- **D** Bile duct compression from other courses

How is Hyperbilirubinemia related to Jaundice?

- □ Jaundice (French: jaune: Yellow) is due to Hyperbilirubinemia
 - □ Jaundice is seen clinically when level of Bilirubin in blood exceeds 2.5 mg/dL
 - Bilirubin diffuses into some Tissues, such as the Sclera, which then become yellow (Jaundice or Icterus)
 - Yellow discoloration of the eyes in Jaundice patients is due to affinity of the protein Elastin (in Sclera) for Bilirubin
 - Elastin in Sclera does not bind Carotene, thus hyper-carotenemia does not cause yellow discoloration of the eyes

What are the two types of Hyperbilirubinemia?

- Hyperbilirubinemia can be separated based on the type of Bilirubin (Conjugated Bilirubin or Unconjugated Bilirubin) present in Plasma,
 - **Retention Hyperbilirubinemia**: due to overproduction of bilirubin,
 - □ **Regurgitation Hyperbilirubinemia**: due to reflux of bilirubin into the blood stream because of biliary obstruction
- Unconjugated bilirubin is Hydrophobic, thus it can cross the Blood-Brain Barrier and enter the Central Nervous System
- □ Encephalopathy due to Hyperbilirubinemia (Kernicterus) can occur only in connection with Unconjugated Hyperbilirubinemia as in Retention Hyperbilirubinemia
- □ Conjugated Bilirubin is Hydrophilic (i.e., soluble in water), thus conjugated bilirubin can appear in Urine
- □ **Choluric Jaundice** (Choluria = presence of biliary derivatives in urine) occurs only in Regurgitation Hyperbilirubinemia (high conjugated bilirubin in plasma)
- □ Acholuric Jaundice occurs in Retention Hyperbilirubinemia (high Unconjugated bilirubin in plasma)

How the causes of Jaundice be classified?

- □ Causes of Jaundice can simply be classified as follows:
 - □ Pre-hepatic Jaundice (e.g., Hemolytic anemia),
 - □ Hepatic Jaundice (e.g., Hepatitis),
 - Dest-hepatic Jaundice (e.g., Obstruction of the common bile duct)

What laboratory tests can identify the different classes of Jaundice?

- Liver Function Tests is recommended
- Other tests: (See **Table below**)
 - o Plasma Total Bilirubin and Conjugated Bilirubin,
 - Urinary Urobilinogen
 - o Urinary Bilirubin,
 - Inspection of Stool Samples

Laboratory results for Healthy patient and patients with 3 different causes of Jaundice

Patients	Serum Bilirubin (mg/dl)	Urine Bilirubin	Urine Urobilinogen (mg/24h)	Fecal Urobilinogen (mg/24h)
Normal	Direct: 0.1 – 0.4 Indirect: 0.2 – 0.7	Absent	0-4	40-280
Hemolytic Anemia	Elevation of Indirect	Absent	Increased	Increased
Hepatitis	Elevations of Direct & Indirect	Present	Decreased	Decreased
Obstructive Jaundice	Elevation of direct	Present	Absent	Trace to absent

TAKE NOTE: Direct Bilirubin: Conjugated Bilirubin Indirect Bilirubin: Unconjugated Bilirubin