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Abstract:

In this study, NSGA-II is applied to multireservoir system optimization. Here, a four-dimensional multireservoir
system in the Han River basin was formulated. Two objective functions and three cases having different constraint
conditions are used to achieve nondominated solutions. NSGA-II effectively determines these solutions without being
subject to any user-defined penalty function, as it is applied to a multireservoir system optimization having a number
of constraints (here, 246), multi-objectives, and infeasible initial solutions. Most research by multi-objective genetic
algorithms only reveals a trade-off in the objective function space present, and thus the decision maker must reanalyse
this trade-off relationship in order to obtain information on the decision variable. Contrastingly, this study suggests a
method for identifying the best solutions among the nondominated ones by analysing the relation between objective
function values and decision variables. Our conclusions demonstrated that NSGA-II performs well in multireservoir
system optimization having multi-objectives. Copyright  2005 John Wiley & Sons, Ltd.
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INTRODUCTION

Multireservoir system optimization has been quite extensively studied over the last few decades (Yeh, 1985;
Labadie, 2004). However, there has not been consensus on the best method to achieve a global optimal
solution. This is because: (1) considering the relation among reservoirs that consist of a multireservoir system
is difficult; (2) a decision variable which is a release in multireservoir system optimization varies within a
wide range; thus, the search space, the set of all possible solutions to a problem, is also correspondingly
wide; (3) the objectives of multireservoir system optimization are usually multiple in nature. In addition to
these difficulties, making a correct prediction of inflow is almost impossible to do because inflow results from
precipitation, one of the most unpredictable of natural phenomena.

Multireservoir system optimization can be categorized as both stochastic and deterministic according to
the method of computing inflow. The first approach treats inflow as an unknown parameter, but the second
computes inflow as a known parameter. The main objective of the stochastic approach focuses on both
evaluating a multireservoir system through changes of inflow and developing a reservoir operating rule. The
deterministic approach, however, mainly takes account of how well the optimization technique performs.
Therefore, the deterministic approach has been applied in this study to evaluate the performance of multi-
objective genetic algorithms (MOGAs).

Even though the deterministic approach is used and inflow is a known parameter, multireservoir system
optimization remains difficult to attain because of the three difficulties mentioned above. In this study, MOGAs,
which are types of genetic algorithm (GA), are applied to overcome these obstacles. MOGAs can efficiently
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explore and exploit the search space by doing more than just identifying local optimal solutions, and a
variable in MOGAs can be easily encoded into an integer, a real number, or a user-defined symbol. Above
all, MOGAs represent the proper method for optimizing multi-objective problems because they use a set
of solutions, called a population. MOGAs are competent optimization techniques and, therefore, make it
relatively easy to establish a trade-off curve. In contrast, most traditional optimization techniques can achieve
only one solution set in a single run; thus, many simulations have to be performed to obtain the trade-off
curve. Goldberg and Kuo (1987) used the ‘population-by-population approach’ for GAs and the ‘point-by-
point method’ for traditional optimization techniques. This population-by-population approach is the most
important characteristic of MOGAs compared with traditional optimization techniques.

The objective of this study is to demonstrate the performance of the NSGA-II, developed by Deb et al.
(2002), as it is applied to multireservoir system optimization. Three cases are applied, each having different
constraints regarding storage, water supply demand, and a specified water level by the end of the month in
question. Through these cases, we suggest a method of analysing both a trade-off curve and decision variables.

PAST RESEARCH ON GAS AND MOGAS IN WATER RESOURCES ENGINEERING

GAs are applied to many water resource optimization problems, such as groundwater management problems
(Smalley et al., 2000; Prasad and Rastogi, 2001), water distribution and irrigation problems (Savic and Walters,
1997; Montesinos et al., 1999), the calibration of rainfall-runoff models (Liong et al., 1995), and the short-term
scheduling of hydrothermal systems (Wu et al., 2000).

In reservoir operating optimization, only a few studies have been published using GAs. Esat and Hall (1994)
demonstrated the utility of GAs through their application to the ‘four-reservoir problem’. They compared GAs
with discrete differential dynamic programming (DDDP) to show that the requirements for both the computer
time and memory of GAs increased linearly, whereas those of DDDP increased exponentially, and they
concluded that GAs were the preferred method when the dimensionality of a given system exceeded four.
Oliveira and Loucks (1997) applied GAs to derive multireservoir operating policies and used real-coded
chromosomes, elitism, arithmetic crossover, mutation, and modified GAs to make all the new candidate
solutions feasible. They concluded that GAs might be a practical and efficient method of estimating operating
policies for multireservoir systems. Wardlaw and Sharif (1999) extended the four-reservoir problem to show
that real-coded GAs incorporating tournament selection, uniform crossover, and modified uniform mutation
produced the best results among several alternative GA formulations for reservoir systems, and they considered
a more complex 10-reservoir problem.

The applications of MOGAs to water resources problems have increased recently. Ritzel et al. (1994)
applied MOGAs to a multi-objective groundwater pollution containment problem. They used simple GAs, a
vector-evaluated GA (VEGA), and a Pareto GA in order to compare the results with those attained by mixed
integer chance constrained programming; here, the Pareto GA seemed to achieve results superior to those of
the VEGA. Cieniawski et al. (1995) investigated MOGAs to solve a multi-objective groundwater monitoring
problem. They used a VEGA, a Pareto GA, and the combination of a VEGA and a Pareto GA; of these, the
VEGA–Pareto combination outperformed the other two MOGAs. Burn and Yulianti (2001) applied MOGAs
to examine different waste-load allocation problems. Their work showed both a trade-off curve and a decision
space representation of selected points based on this curve. Prasad and Park (2004) presented a MOGA applied
to the design of a water distribution network, and they suggested a constraint handling technique that does not
require a penalty coefficient. Reed and Minsker (2004) demonstrated the use of high-order Pareto optimization
on a long-term monitoring application and demonstrated that high-order Pareto optimization can be used in
a balanced design of water resource systems. Recently, Pareto-based selection approaches have become the
most popular of the MOGA solution techniques (Van Veldhuizen and Lamont, 2000). Of the Pareto-based
selection approaches in use, the NSGA-II method is used in this study.
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MOGAS

Multi-objective optimization problems (MOPs) are defined as follows (Van Veldhuizen and Lamont, 2000).

Definition 1 (General MOP). In general, an MOP minimizes F�Ex� D �f1�Ex�, Ð Ð Ð , fk�Ex�� subject to gi�Ex� �
0, i D 1, Ð Ð Ð , m, Ex 2 �. An MOP solution minimizes the components of a
vector F�Ex�, where Ex is an n-dimensional decision variable vector �Ex D
x1, Ð Ð Ð , xn� from some universe �.

In addition to Definition 1, the Pareto dominance and the Pareto optimality are defined as follows.

Definition 2 (Pareto Dominance). A vector Eu D �u1, Ð Ð Ð , uk� is said to dominate Ev D �v1, Ð Ð Ð , vk� (denoted
by Eu ¼ Ev) if and only if u is partially less than v, i.e. 8i 2 f1, Ð Ð Ð , kg, ui �
vi ^ 9i 2 f1, Ð Ð Ð , kg : ui < vi.

Definition 3 (Pareto Optimality). A solution x 2 � is said to be Pareto optimal with respect to � if and
only if there is no x0 2 � for which Ev D F�x0� D �f1�x0�, Ð Ð Ð , fk�x0��
dominates Eu D F�x� D �f1�x�, Ð Ð Ð , fk�x��. The term ‘Pareto optimal’ is
taken to mean with respect to the entire decision variable space.

The key definition of MOGAs is a Pareto-dominance concept used to discriminate nondominated solutions
from a search space. The nondominated solution to multi-objective optimization cannot simply be a single one,
as is found in single-objective optimization, because in the former at least two objectives compete to achieve
better performance simultaneously. Therefore, that one solution is superior to all the other solutions for the
given objectives is implausible. Consequently, MOGAs should assign a rank to each solution using Pareto
dominance and attempt to ascertain the nondominated solutions (known also as Pareto-optimal solutions or a
Pareto front) that have a rank of one and are not dominated by the other solutions.

For the reasons mentioned above, a specialized optimization technique for MOPs must create an effective
set of nondominated solutions having ranks. In this regard, NSGA-II has been applied successfully to many
optimization problems. This method uses tournament selection (Goldberg and Deb, 1991), simulated binary
crossover (SBX; Deb and Agrawal, 1995), mutation operator (Deb, 2000), and crowding distance for diversity
preservation (Deb, 2001). The detailed process of NSGA-II is explained in Deb et al. (2002).

CASE STUDY AREA (HAN RIVER BASIN)

The Han River basin is located in the middle of the Korean Peninsula (Figure 1). The catchment area is
23 292 km2, and the stream length is 471Ð16 km with an annual discharge of around 18 ð 109 m3. The
average annual precipitation in the basin is 1294 mm, with 65% of the total precipitation occurring between
July and September. The water use in the basin mainly satisfies municipal water supply demand in the
Seoul metropolitan area, which has a population of 17 million. Its municipal water supply demand is around
3Ð6 ð 106 m3 day�1, as determined by the Korea Water Resources Corporation (KOWACO) in 2001.

There are four major reservoirs with a hydropower plant in the Han River basin. Their physical
characteristics are given in Table I. The Hwacheon and the Soyanggang reservoirs are located in parallel areas
upstream in the North Han River, and the Choongju reservoir is located upstream in the South Han River.
The Paldang reservoir is located at the confluence of the North and South Han Rivers. The main functions of
the Soyanggang and the Choongju reservoirs are to mitigate flooding in the Seoul metropolitan area and to
supply municipal water. The Hwacheon reservoir can also provide a degree of flood control capacity, but its
primary function is to generate hydroelectric power. The Hwacheon, Soyanggang, and Choongju reservoirs
also supply agricultural and industrial water downstream. The Paldang reservoir is charged with the role of
control point in supplying municipal water, since over 95% of municipal water is taken from this reservoir.
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Figure 1. The four major reservoirs in the Han River basin

Table I. Physical characteristics of the four major reservoirs

Reservoira Basin
area (km2)

Storage (106 m3) Flood control
capacity (106 m3)

Maximum
release (m3 s�1)

Normal
pool level

Regulated
water level

Low
water level

Spillway Turbine

HC 3901 1022 809 364 213 5428 185
SY 2703 2543 2346 687 500 5500 251
CJ 6648 2385 2134 596 616 14 200 828
PD 23 800 244 244 226 29 26 000 800

a HC, SY, CJ, PD represent Hwacheon, Soyanggang, Choongju, and Paldang reservoirs respectively.

Supplying sufficient water resources downstream while avoiding possible shortages of water is not easy,
because precipitation is usually concentrated in only a 3-month span, from July to September. The inflow
created by this intense precipitation is usually released through a spillway, so it is, in effect, a useless water
resource. During the flood season (from 21 June to 20 September), the water levels of the three upstream
reservoirs should be lowered to the regulated water level in order to secure supplementary storage and
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to prevent possible flooding. As a result, the intense precipitation and lowering water level can result in
insufficient water resources downstream.

To overcome inadequate water resources in the multireservoir system, increasing flow downstream is the
best method, but this necessarily creates a concomitant shortage of storage. These two objectives, maximizing
release and storage, conflict with each other, so multi-objective optimization techniques must be introduced
to reconcile these two objectives. Therefore, multireservoir system optimization in the Han River basin needs
to satisfy the following requirements:

1. The main objective of reservoir operation must be minimizing water shortage, because the water taken
from the Paldang reservoir is the only water resource serving the Seoul metropolitan area.

2. Another important objective must be maximizing the storage of each reservoir; if the following years’
precipitation is insufficient, then the water in the reservoir is the only available water resource in the basin.

MODEL FORMULATION

Coding scheme, crossover, and mutation

Decision variables in reservoir operating optimization are usually represented by release from the reservoirs
considered, and the range of this release is wide. For example, the release from the Choongju reservoir in July
is between 0 and 40 251 ð 106 m3; thus, if binary coding is used and the release is divided by 1 ð 106 m3 size
ranges, 16 bits (32 768 D 215 < 40 251 < 216 D 65 536) are required to represent one gene, and approximately
411 bits to represent one chromosome in this study. Of course, binary-coded GAs can handle lengthy bits, but
they require more chromosomes and more time in order to attain nondominated solutions than do real-coded
GAs. Therefore, a real-coded chromosome consisting of the release from each reservoir is used in this study.
Real-coded GAs have, in fact, been used successfully in various water resources fields (Chang and Chen,
1998; Wardlaw and Sharif, 1999; Yoon and Shoemaker, 2001).

In NSGA-II, the SBX operator is used. SBX, which has search power similar to that of a single-point binary
crossover, creates offspring from a given pair of parent solutions. The procedure for calculating offspring
�c1, c2� from parent solutions (p1, p2) is as follows.

A uniform random number u between zero and one is generated, and then the spread factor ˇ is computed
using

ˇ D
{

�2u�1/�nC1� if u � 0.5[
1

2�1 � u�

]1/�nC1�
otherwise

�1�

in which n is the distribution index of SBX and can be any nonnegative real number. Then, offspring are
calculated as follows:

c1 D 0Ð5[�1 C ˇ�p1 C �1 � ˇ�p2]

c2 D 0Ð5[�1 � ˇ�p1 C �1 C ˇ�p2] �2�

These offspring are symmetric with respect to parent solutions. A larger value of the distribution index n
allows offspring to be closer to parent solutions. A smaller value of n results in a more uniform distribution
in the range 0 � ˇ � 1; and if n D 0, then it creates an exact, uniform distribution in the same range. In this
study, n is set to 3Ð0 and the probability of crossover is 0Ð9 (Kim and Heo, 2004).

After new chromosomes are combined by SBX, a mutation operator is used, and is given by

c
0
1 D c1 C υ1max �3�
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in which max is the maximum perturbance, and υ1 is defined as

υ1 D
{

�2u�1/�nmC1� � 1 if u < 0Ð5
1 � [2�1 � u�]1/�nmC1� if u ½ 0Ð5 �4�

in which nm is the distribution index of mutation and is set to 50 in this study, and the probability of mutation
is set to 1/number of genes.

The multireservoir optimization problem

In this study, a chromosome is composed of 36 genes, three sets of 12 monthly releases in each reservoir,
and both a 1 month time span and a 1 year reservoir operating plan are considered. The decision variables
are the releases from each reservoir and the state variables are the storages. Using the decision variables and
other parameters, the state variables are computed using

StC1
i D St

i C It
i � Rt

i i D HC,SY,CJ; t D 1, Ð Ð Ð , 12 �5�

StC1
PD D St

PD � Rt
PD C Rt

HC C Rt
SY C Rt

CJ C Local Inflowt � Intaket
PD t D 1, Ð Ð Ð , 12 �6�

in which St
i, It

i, and Rt
i are the month t average storage, inflow, and release at reservoir i respectively.

Local Inflowt is the sum of discharges from tributaries, and Intaket
PD means the water supply taken from the

Paldang reservoir. HC, SY, CJ, and PD indicate the Hwacheon, Soyanggang, Choongju and Paldang reservoirs
respectively.

The objective functions are defined thus:

Minimize f1 D �
∑

t

∑
i

St
i �7�

Minimize f2 D �
∑

t

∑
i

Rt
i �8�

subject to

RL � Rt
i � RU �9�

SL � St
i � SU �10�

RDUTY � Rt
i �11�

SLAST
L � SLAST

i � SLAST
U �12�

in which RL, RU and SL, SU are the original lower and upper limits of release and storage respectively, and
SLAST

i means the storage by the end of the last month in simulation. SLAST
L and SLAST

U are the changed lower
and upper storage limits having a smaller range than do the original lower and upper limits, and RDUTY is the
designated release for satisfying water supply demand. Equations (9) and (10) each have 96 constraints, since
four reservoirs and 12 time spans are considered; Equation (11) has 48 constraints, and Equation (12) has six
constraints. The constraints in Equations (9)–(11) are applied to the entire time steps of simulation, but the
last constraint, that of Equation (12), is satisfied only by the last month. This condition makes Equation (12)
a very strict constraint, because the water level by the end of the month is calculated by the storages and
the releases occurring in all the previous 11 months; thus, when these storages and releases are calculated,
the feasibility of maintaining an appropriate water level up to the month’s end should be rechecked. In this
study, the number of generations is increased to 2500 to satisfy this strict constraint.
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MULTIRESERVOIR SYSTEM OPTIMIZATION 2063

COMPUTATIONAL RESULTS

In this study, three cases are analysed to evaluate the performance of NSGA-II as it is applied to multireservoir
system optimization having multi-objectives. Each case has a different constraint condition, and the number
of generations in Case 3 is increased to 2500 because it exhibits a more complicated constraint condition than
do the other two cases mentioned above (Table II). More detailed explanations of each of these cases are as
follows.

Case 1. This is the simplest case in this study and indicates whether the nondominated solutions obtained
by NSGA-II are appropriate for multireservoir system optimization. The only constraints in Case 1 concern
the storage and release limits for each reservoir in the Han River basin; no constraints regarding supplying
water downstream or maintaining the water level existing at the end of last month in a particular range affect
this case. Consequently, water shortages or impractical storage values in the last month can occur in Case 1.

Case 2. This is meant to permit an evaluation of the NSGA-II constraint handling technique as additional
constraints are added to Case 1. Two additional constraints, Equations (11) and (12), are used in this study.
The first satisfies the amount of water supply demand downstream for each reservoir, and the second achieves
the proper water level by the end of the last month. In Case 2, only the first additional constraint, that regarding
water supply demand, is added, whereas in Case 3 both the first and second additional constraints are added.

Case 3. This has the largest number of constraints (246) and concerns storage and release limits (192),
water supply demand (48), and the proper water level by the end of the last month (six). In order to satisfy the
constraint regarding water level, the number of generations is increased to 2500, in contrast to Cases 1 and
2, in which the number of generations is 500. Most applications by MOGAs only show a trade-off relation
among multi-objectives. They do not suggest how a decision maker might choose an acceptable alternative
solution among the Pareto-optimal solutions; thus, the trade-off relation must be analysed once again by a
decision maker. Contrastingly, the method of how to analyse a decision variable (as release is analysed in
this study) and how to choose a suitable alternative solution are suggested in this study.

Random seed impacts and population sizing

The search process of GAs has stochastic features, so, even if the same parameter settings are used in
simulation, the decision variables or the objective function values are changed between each optimization run
(Bayer and Finkel, 2004). To overcome this drawback of GAs and get reliable results for the analysis, many
optimization runs with each different random seed number are performed and fully investigated. However, it
has been generally acknowledged that multireservoir system optimization is computationally too complex to
achieve a proper parameter setting, even though many optimization runs are employed. Hence, we confine
our attention to achieving a proper parameter setting and results for a single random seed number.

Another key factor in solution quality and search reliability of GAs is population size. Reed et al. (2003)
suggested the three-step design methodology for solving MOPs automatically with only a few simple user

Table II. Initial conditions and constraints in each case

Number of
chromosomes

Number of
generations

Constraints

Case 1 1000 500 Maximum and minimum limits of storage (96) C Maximum and
minimum limits of release (96)

Case 2 1000 500 Maximum and minimum limits of storage (96) C Maximum and
minimum limits of release (96) C Water supply demand (48)

Case 3 1000 2500 Maximum and minimum limits of storage (96) C Maximum and
minimum limits of release (96) C Water supply demand (48) C
Storage limit reached by the end of the last month (6)
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Table III. Number of Pareto-optimal solutions in each case

Population
size

Case 1
Generation

number: 500

Case 2
Generation

number: 500

Case 3
Generation

number: 1000

250 250 250 125
500 500 500 231
750 750 750 417
1000 1000 1000 178
1250 1250 1250 523
1500 1500 1500 231

inputs. The first user-defined parameter is the initial goal for the number of nondominated solutions. It is
really difficult or almost impossible to obtain the true trade-off relation of objective functions in multireservoir
system optimization, since the entire decision space is too large to be able to calculate the whole solutions
with enumeration. Thus, the maximum number of nondominated solutions cannot be estimated, and the initial
goal for the number of nondominated solutions is set to a reasonably small value, i.e. 250.

The second parameter is for the stopping criteria of the MOGA. Reed et al. (2003) used the minimum
percentage change in the number of nondominated solutions for two successive runs to be considered identical.
Table III shows the number of Pareto-optimal solutions in each case. In both Cases 1 and 2, NSGA-II can
find the nondominated solutions as many as the population size shown in Table III. On the contrary, the
Pareto-optimal solutions in Case 3 show no definite trend even though the generation number is increased
up to 1000. This might be because the added constraint to Case 3, Equation (12), is the hardest constraint to
be satisfied. To satisfy this constraint, as mentioned above, all the releases or the storages of the preceding
months should be appropriate values without constraint violation, and this means that the search power of the
GAs is very limited.

In order to decide the proper population size, a different kind of criteria with regard to the constraint
violation is used in this study. Figure 2 shows the violation values for Case 3 when the population sizes vary
from 250 to 1500. The violation values are generally smallest when the population size is 1000, and even
when the population sizes are increased (up to 1500) there are no improvements in the sense of violation
values. Note that the violation values are getting larger for a population size of 1250, and are slightly damped
for a population size of 1500. As a result, the population size is determined to be 1000, and the generation
number in Case 3 is set to 2500 to give NSGA-II sufficient objective function evaluations.

Case 1

The objectives in Case 1 show (1) how well the nondominated solutions are distributed in a Pareto
front, (2) to what degree constraint violations can decrease, and (3) the basic method of analysing Pareto-
optimal solutions when considering multi-objectives. The first objective is important, because if nondominated
solutions are not well spread in a Pareto front, then this means that the objective functions have not properly
formed or that the initial parameters, like crossover and mutation probabilities, have not been well chosen. In
such cases, new objective functions or different initial parameters would become necessary. Figure 3 shows
the nondominated solutions (called the Pareto front) in the last generation in Case 1. The shape of the Pareto
front is very typical of Min–Min optimization problems, and the nondominated solutions are very well spread
in the Pareto front without any concentration in a narrow range of objective function values. This indicates
that the two objective functions and the initial parameters in this study are appropriate.

It is also apparent in Figure 4 that the number of violations (NOV) and the violation values of constraint
(VioVAL) decreased rapidly. The NOV is close to 1000 for the first 10 generations, and all solutions are
infeasible solutions with a large violation. However, over half of the solutions become feasible after the
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Figure 2. The violation values of constraint in Case 3 with different population sizes

Copyright  2005 John Wiley & Sons, Ltd. Hydrol. Process. 20, 2057–2075 (2006)



2066 T. KIM, J.-H. HEO AND C.-S. JEONG

A

B
C

-5
33

20
.0

-5
28

05
.8

-5
22

91
.5

-5
17

77
.3

-5
12

63
.0

-5
07

48
.8

-5
02

34
.6

-4
97

20
.3

-4
92

06
.1

-4
86

91
.8

-4
81

77
.6

1st Objective Function Value (MCM)

-11848.0

-11527.3

-11206.7

-10886.0

-10565.3

-10244.7

-9924.0

-9603.3

-9282.6

-8962.0

-8641.3

2n
d

 O
b

je
ct

iv
e 

F
u

n
ct

io
n

 V
al

u
e 

(M
C

M
)

Figure 3. The nondominated solutions in Case 1
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Figure 4. The number of violations (NOV) and the violation values of constraint (VioVAL) in Case 1

21st generation, and the VioVAL also decreases rapidly. In Case 1, the VioVAL is computed by considering
constraint with respect to the minimum and the maximum storage capacities of each reservoir. In the first
generation, the VioVAL is calculated as 280 592. However, this decreases to 90 177 (32% of the initial
value) in the fifth generation and to 11 144 (4% of the initial value) in the 10th generation. The average
of the VioVALs from the 21st to the last generation is 101, only 0Ð03% of the initial value. In addition,
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Figure 5. Objective function values from the initial population and the nondominated solutions in Case 1

Figure 5 shows the objective function values calculated from the initial population as filled squares and
the nondominated solutions from the last generation as open circles. All the initial solutions are infeasible
solutions with a large violation, as shown in Figure 4, and are set in a very wide range far away from the
Pareto front. However, the nondominated solutions in the last generation exhibit no violation of constraint
and form a shape typical in Min–Min optimization problems. This means that, even though the initial random
solutions are located in an area in which the optimization technique can hardly lead to nondominated solutions
contained in the search space, NSGA-II can ascertain the Pareto-optimal solutions very efficiently.

Figure 3 shows the nondominated solutions in Case 1. The range of each objective function is divided into
10 parts and the release average (the decision variables) within each part is determined in order to analyse the
nondominated solutions. Table IV provides these separate release averages (R1A, R1B, R1C, R2A, R2B, and
R2C), standard deviation (SD), and the coefficient of variation (VAR) near points A, B, and C in Figure 3. If
the SD and VAR are larger in a particular month, then this indicates that the decision variable (release) in that
month can change the objective function value into negative or positive values. Using this information, the
decision maker is thus capable of discriminating between an important and an unimportant month. A more
detailed explanation of decision variables is as follows:

1. If the decision maker wants to operate a reservoir satisfying two objectives simultaneously, the solutions
near point B in Figure 3 may be the best ones, and the averaged releases from column R1B or R2B will
be used in Table IV.

2. After the decision maker selects the averaged releases from column R1B, and if a greater amount of
storage is necessary to operate the reservoir properly, a new solution near point A can be chosen
and the averaged releases easily changed into those from column R1A in Table IV. For example, the
releases from the Hwacheon, Soyanggang, and Choongju reservoirs in the last month will change from
406Ð4 ð 106 m3, 597Ð0 ð 106 m3, and 2085Ð6 ð 106 m3 respectively to 344Ð8 ð 106 m3, 490Ð5 ð 106 m3,
and 1250Ð3 ð 106 m3 respectively. The other releases do not need to be changed, since they display similar
values between R1A and R1B.

3. When the decision maker wants a greater water supply (release), the right part of Table IV is useful, since
these releases are calculated by using the second objective function, the sum of the releases. For example,
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Table IV. Decision variables near points A, B, and C

Dam Month First objective functiona Second objective functiona

R1A R1B R1C SDb VARc R2A R2B R2C SDb VARc

HC 10 72Ð6 72Ð6 72Ð6 0Ð01 0Ð00 72Ð6 72Ð6 72Ð6 0Ð00 0Ð00
11 56Ð2 56Ð2 56Ð2 0Ð00 0Ð00 56Ð3 56Ð3 56Ð3 0Ð00 0Ð00
12 69Ð3 69Ð3 69Ð3 0Ð01 0Ð00 69Ð3 69Ð3 69Ð3 0Ð01 0Ð00

1 66Ð1 66Ð1 66Ð1 0Ð01 0Ð00 66Ð1 66Ð1 66Ð1 0Ð00 0Ð00
2 56Ð0 56Ð0 56Ð0 0Ð01 0Ð00 56Ð0 56Ð0 56Ð1 0Ð01 0Ð00
3 55Ð8 55Ð8 55Ð8 0Ð02 0Ð00 55Ð8 55Ð8 55Ð8 0Ð02 0Ð00
4 86Ð5 86Ð5 86Ð6 0Ð07 0Ð00 86Ð5 86Ð6 86Ð6 0Ð07 0Ð00
5 134Ð9 135Ð0 135Ð3 0Ð41 0Ð00 135Ð0 135Ð1 135Ð2 0Ð30 0Ð00
6 421Ð8 423Ð3 455Ð8 17Ð52 0Ð04 421Ð8 448Ð0 454Ð3 16Ð85 0Ð04
7 495Ð3 495Ð3 495Ð5 0Ð11 0Ð00 495Ð3 495Ð4 495Ð4 0Ð09 0Ð00
8 718Ð5 717Ð1 684Ð7 17Ð27 0Ð02 718Ð6 692Ð6 686Ð4 16Ð64 0Ð02
9 344Ð8 406Ð4 479Ð2 64Ð05 0Ð15 350Ð9 477Ð8 478Ð9 66Ð84 0Ð17

SY 10 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00 113Ð8 113Ð8 113Ð8 0Ð00 0Ð00
11 109Ð7 109Ð7 109Ð7 0Ð00 0Ð00 109Ð8 109Ð8 109Ð8 0Ð00 0Ð00
12 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00

1 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00
2 101Ð7 101Ð7 101Ð7 0Ð00 0Ð00 101Ð8 101Ð8 101Ð8 0Ð00 0Ð00
3 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00 113Ð7 113Ð7 113Ð7 0Ð00 0Ð00
4 109Ð7 109Ð7 109Ð7 0Ð01 0Ð00 109Ð8 109Ð8 109Ð8 0Ð01 0Ð00
5 113Ð7 113Ð7 113Ð7 0Ð01 0Ð00 113Ð8 113Ð8 113Ð8 0Ð01 0Ð00
6 109Ð9 109Ð9 110Ð2 4Ð45 0Ð04 109Ð9 110Ð0 110Ð1 2Ð36 0Ð02

7d 114Ð1 114Ð2 162Ð7 195Ð16 0Ð84 114Ð2 114Ð5 114Ð6 148Ð69 0Ð85
8 277Ð6 277Ð6 665Ð7 190Ð81 0Ð41 277Ð6 326Ð5 535Ð7 169Ð69 0Ð44
9 490Ð5 597Ð0 649Ð9 87Ð83 0Ð15 482Ð9 649Ð5 649Ð8 94Ð54 0Ð17

CJ 10 271Ð7 271Ð7 271Ð7 0Ð00 0Ð00 271Ð8 271Ð8 271Ð8 0Ð00 0Ð00
11 241Ð9 241Ð9 241Ð9 0Ð00 0Ð00 241Ð9 241Ð9 241Ð9 0Ð00 0Ð00
12 250Ð3 250Ð3 250Ð3 0Ð00 0Ð00 250Ð3 250Ð3 250Ð3 0Ð00 0Ð00

1 250Ð3 250Ð3 250Ð3 0Ð02 0Ð00 250Ð3 250Ð4 250Ð4 0Ð01 0Ð00
2 225Ð1 225Ð1 225Ð1 0Ð00 0Ð00 225Ð1 225Ð1 225Ð1 0Ð00 0Ð00
3 250Ð3 250Ð3 250Ð3 0Ð02 0Ð00 250Ð3 250Ð4 250Ð4 0Ð02 0Ð00
4 265Ð5 265Ð5 265Ð5 0Ð00 0Ð00 265Ð5 265Ð5 265Ð5 0Ð00 0Ð00
5 308Ð7 308Ð7 308Ð7 0Ð01 0Ð00 308Ð8 308Ð8 308Ð8 0Ð00 0Ð00
6 314Ð5 314Ð5 314Ð5 0Ð02 0Ð00 314Ð6 314Ð6 314Ð6 0Ð02 0Ð00
7 298Ð6 298Ð6 298Ð8 0Ð12 0Ð00 298Ð6 298Ð7 298Ð7 0Ð10 0Ð00
8 1251Ð7 1253Ð0 1437Ð3 89Ð65 0Ð07 1251Ð7 1305Ð0 1396Ð4 82Ð63 0Ð06
9 1250Ð3 2085Ð6 2146Ð2 469Ð24 0Ð25 1596Ð9 2144Ð9 2146Ð1 537Ð23 0Ð31

a R1A, R1B, R1C and R2A, R2B, R2C indicate the releases computed by the nondominated solution near A, B, and C in Figure 3 in terms
of the first objective function and the second function respectively (ð106 m3).
b SD means the standard deviation of all releases (ð106 m3).
c VAR means the coefficient of variation which is defined as VAR D SD/Average.
d The SD for Soyanggang reservoir in July has significant values because the optimal solutions located on the right side of point C have a
much larger release.

more water can be supplied if releases are set to the values in column R2C from those in column R2B in
Table IV.

It is important that two conflicting objectives are simultaneously considered in this case. Traditional multi-
objective optimization techniques generally use one objective function formulated by the weighted sum of
multi-objective functions; moreover, these techniques require many runs because they can only arrive at
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a single solution from one run. However, NSGA-II uses two objective functions simultaneously without
employing a weighting function or any user-defined function, and it can compute nondominated solutions
with simply a single run despite the various constraints.

Case 2

Three kinds of constraint are used in this study. The basic constraint includes the storage and the release
limits of each reservoir, and the other two constraints centre on supplying water downstream and maintaining
the water level up to the end of the last month within a proper range. When only the basic constraint is used,
the simulation results sometimes become impractical, as a much larger release in a given month can cause a
serious water shortage in the next month. This is because storage and release are connected as a mass balance
equation of water in a reservoir. Thus, two additional constraints are essential to achieve acceptable results
through NSGA-II. The first additional constraint regarding water supply demand is used together with the
basic constraint in Case 2. The second additional constraint connected to the water level in the last month is
added to Case 3, in which the number of generations is increased to 2500.

When the performance of the constraint handling technique in NSGA-II is examined, it is evident that
finding feasible solutions through this technique would not be seriously hampered in the face of additional
constraints. In this study, the number of basic constraints is 192, and the number of first additional constraints
is 48, a quarter of the basic constraints and, therefore, not an insignificant proportion. However, the NOV
and the VioVAL in Case 2 are almost the same as those in Case 1, except for the slight increase in NOV
between approximately 50 and 150 generations (Figures 4 and 6). In addition, NOV and VioVAL decrease
rapidly after the 21st generation, as in Case 1.

As additional constraints with respect to water supply demand are added, Case 2 shows a lesser shortage
of water than does Case 1. Table V shows the shortages of water in Case 1 and Case 2. The average of
releases (Avg) is calculated based on releases from the nondominated solutions in the last generation, and the
deficit is computed by subtracting water supply demand from the average of releases. The deficits in Case
1 (marked with A and C in Table V) indicate negative numbers between October and the following May at
Hwacheon, between October and the following June at Soyanggang, and between October and the following
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Figure 6. The number of violations (NOV) and the violation values of constraint (VioVAL) in Case 2
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Table V. The shortages of water in Cases 1 and 2

Dam Month Water demand First objective function Second objective function
(106 m3)

Case 1 Case 2 Case 1 Case 2

Avg
(106 m3)

Deficit (A)
(106 m3)

Avg
(106 m3)

Deficit (B)
(106 m3)

Avg
(106 m3)

Deficit (C)
(106 m3)

Avg
(106 m3)

Deficit (D)
(106 m3)

HC 10 82Ð6 72Ð6 �10Ð0 82Ð7 0Ð1 72Ð6 �10Ð0 82Ð7 0Ð1
11 66Ð3 56Ð3 �10Ð0 66Ð4 0Ð1 56Ð3 �10Ð0 66Ð4 0Ð1
12 79Ð3 69Ð3 �10Ð0 79Ð3 0Ð0 69Ð3 �10Ð0 79Ð3 0Ð0

1 76Ð1 66Ð1 �10Ð0 76Ð3 0Ð2 66Ð1 �10Ð0 76Ð3 0Ð2
2 66Ð0 56Ð0 �10Ð0 66Ð0 0Ð0 56Ð0 �10Ð0 66Ð0 0Ð0
3 65Ð6 55Ð8 �9Ð8 65Ð8 0Ð2 55Ð8 �9Ð8 65Ð8 0Ð2
4 96Ð4 86Ð6 �9Ð8 96Ð6 0Ð2 86Ð6 �9Ð8 96Ð6 0Ð2
5 144Ð3 135Ð3 �9Ð0 145Ð3 1Ð0 135Ð1 �9Ð2 145Ð3 1Ð0
6 145Ð0 442Ð5 297Ð5 393Ð7 248Ð7 434Ð8 289Ð8 369Ð1 224Ð1
7 181Ð5 495Ð4 313Ð9 494Ð7 313Ð2 495Ð4 313Ð9 494Ð5 313Ð0
8 238Ð4 698Ð2 459Ð8 667Ð4 429Ð0 705Ð8 467Ð4 692Ð0 453Ð6
9 178Ð9 431Ð6 252Ð7 477Ð9 299Ð0 403Ð4 224Ð5 477Ð2 298Ð3

SY 10 123Ð7 113Ð8 �9Ð9 123Ð8 0Ð1 113Ð8 �9Ð9 123Ð8 0Ð1
11 119Ð8 109Ð8 �10Ð0 119Ð8 0Ð0 109Ð8 �10Ð0 119Ð8 0Ð0
12 123Ð7 113Ð7 �10Ð0 123Ð8 0Ð1 113Ð7 �10Ð0 123Ð8 0Ð1

1 123Ð7 113Ð7 �10Ð0 123Ð8 0Ð1 113Ð7 �10Ð0 123Ð8 0Ð1
2 111Ð8 101Ð8 �10Ð0 111Ð8 0Ð0 101Ð8 �10Ð0 111Ð8 0Ð0
3 123Ð7 113Ð7 �10Ð0 123Ð8 0Ð1 113Ð7 �10Ð0 123Ð8 0Ð1
4 119Ð8 109Ð8 �10Ð0 119Ð8 0Ð0 109Ð8 �10Ð0 119Ð8 0Ð0
5 123Ð7 113Ð8 �9Ð9 123Ð8 0Ð1 113Ð8 �9Ð9 123Ð8 0Ð1
6 119Ð8 111Ð5 �8Ð3 120Ð4 0Ð6 110Ð7 �9Ð1 120Ð3 0Ð5
7 123Ð7 232Ð6 108Ð9 244Ð2 120Ð5 175Ð2 51Ð5 196Ð7 73Ð0
8 123Ð7 466Ð8 343Ð1 479Ð4 355Ð7 387Ð1 263Ð4 393Ð3 269Ð6
9 119Ð8 589Ð8 470Ð0 644Ð5 524Ð7 553Ð8 434Ð0 640Ð1 520Ð3

CJ 10 281Ð8 271Ð8 �10Ð0 281Ð8 0Ð0 271Ð8 �10Ð0 281Ð8 0Ð0
11 251Ð9 241Ð9 �10Ð0 252Ð0 0Ð1 241Ð9 �10Ð0 252Ð0 0Ð1
12 260Ð3 250Ð3 �10Ð0 260Ð4 0Ð1 250Ð3 �10Ð0 260Ð4 0Ð1

1 260Ð3 250Ð4 �9Ð9 260Ð4 0Ð1 250Ð4 �9Ð9 260Ð4 0Ð1
2 235Ð1 225Ð2 �9Ð9 235Ð2 0Ð1 225Ð2 �9Ð9 235Ð2 0Ð1
3 260Ð3 250Ð4 �9Ð9 260Ð4 0Ð1 250Ð4 �9Ð9 260Ð4 0Ð1
4 275Ð5 265Ð5 �10Ð0 275Ð6 0Ð1 265Ð5 �10Ð0 275Ð6 0Ð1
5 318Ð7 308Ð8 �9Ð9 318Ð8 0Ð1 308Ð8 �9Ð9 318Ð8 0Ð1
6 324Ð5 314Ð6 �9Ð9 324Ð9 0Ð4 314Ð6 �9Ð9 324Ð9 0Ð4
7 308Ð6 298Ð7 �9Ð9 309Ð6 1Ð0 298Ð7 �9Ð9 309Ð4 0Ð8
8 323Ð8 1348Ð2 1024Ð4 1261Ð7 937Ð9 1309Ð1 985Ð3 1229Ð4 905Ð6
9 279Ð4 1879Ð9 1600Ð5 2048Ð3 1768Ð9 1717Ð8 1438Ð4 1963Ð5 1684Ð1

July at Choongju. However, the deficits in Case 2 (marked with B and D in Table V) show no water shortages
in any of the reservoirs.

In ascertaining nondominated solutions with constraint, the remaining feasible search space should be
minimized, and thereby the violation redundancy too should be minimized. In Table V, where the water
shortages show negative values in column A, most of these values are very close to �107 m3 (the smallest
violation redundancy), because the minimum release is set to a value of 107 m3 subtracted from the water
supply demand. Therefore, this means that NSGA-II can use the most feasible solution space. The other
shortages of water in columns B, C, and D show the same results.
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Case 3

There are 246 constraints in Case 3, as displayed in Table II. The storage constraint of the last month must
be satisfied for all three upstream reservoirs. The upper and lower storage limits reached by the end of the
last month are defined by the initial storage š107 m3. NSGA-II is run with a population size of 500, the
same as in Cases 1 and 2, and the number of generations is increased to 2500 because Case 3 has the largest
number of constraints. The average time to complete a run on a 3Ð06 GHz Pentium 4 computer is 17 min.

If the variables of optimization problems have no relation and are independent of each other, then computing
feasible solutions is an easy task, as only the limits of each variable need to be considered. However, it is
more complex in multireservoir system optimization, because the release of the current month strongly affects
the storage for the following months. Consequently, even if the release of the current month is a feasible
solution, this can cause an infeasible storage value in one of the following months. Therefore, how efficiently
the optimization technique determines the feasible and nondominated solutions in the search space is an
important criterion when evaluating optimization technique performance.

Figure 7 shows the 1000 initial solutions from the first generation as crosses and 657 Pareto-optimal
solutions from the last generation as solid squares in the inset. The first objective function values of the
Pareto-optimal solutions vary between �49 993Ð8 ð 106 m3 and �49 301Ð5 ð 106 m3, compared with the
108 169Ð1 ð 106 m3 to 407 005Ð8 ð 106 m3 range obtained from the initial solutions, so the extent of the
Pareto-optimal solutions is only 0Ð23% of the initial solutions. Furthermore, a high degree of violation does
occur in the initial solutions, but all the Pareto-optimal solutions are in fact feasible. These results demonstrate
that NSGA-II can effectively arrive at Pareto-optimal and feasible solutions in the search space, even though
initial solutions are far from the Pareto-optimal solutions and do contain many violations.

The Pareto-optimal solutions show only objective function values, so decision makers cannot ascertain how
they might change decision variables in order to achieve a specific objective function value. However, the
information concerning the decision variable is more important to decision makers than the objective function
values are. Therefore, a method of discriminating critical decision variables, which can set an objective
function value to a particular range, is suggested in this study.
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Figure 7. The initial solutions and the nondominated solutions in Case 3
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Table VI. The statistical values of decision variables in Case 3

Month Hwacheon reservoir Soyanggang reservoir Choongju reservoir

Avg
(106 m3)

SD
(106 m3)

VAR Avg
(106 m3)

SD
(106 m3)

VAR Avg
(106 m3)

SD
(106 m3)

VAR

10 82Ð65 1Ð66E�02 2Ð01E�04 123Ð75 4Ð56E�03 3Ð69E�05 281Ð78 3Ð73E�03 1Ð33E�05
11 66Ð31 1Ð71E�02 2Ð58E�04 119Ð75 3Ð65E�04 3Ð05E-06 251Ð95 1Ð31E�03 5Ð21E-06
12 79Ð32 3Ð67E�03 4Ð62E�05 123Ð78 6Ð77E�03 5Ð47E�05 260Ð36 2Ð95E�03 1Ð13E�05
1 76Ð09 1Ð70E�03 2Ð24E�05 123Ð75 3Ð81E�03 3Ð08E�05 260Ð36 3Ð86E�03 1Ð48E�05
2 66Ð04 1Ð89E�03 2Ð86E�05 111Ð78 8Ð93E�03 7Ð99E�05 235Ð16 9Ð44E�03 4Ð02E�05
3 65Ð70 1Ð52E�02 2Ð31E�04 123Ð76 6Ð18E�03 5Ð00E�05 260Ð36 1Ð80E�02 6Ð91E�05
4 96Ð47 1Ð60E�02 1Ð66E�04 119Ð81 3Ð42E�02 2Ð86E�04 275Ð57 1Ð97E�02 7Ð14E�05
5 172Ð5 3Ð66EC01 2Ð12E�01 123Ð78 1Ð62E�02 1Ð31E�04 318Ð80 7Ð53E�03 2Ð36E�05
6 450Ð73 4Ð31EC01 9Ð56E�02 119Ð82 5Ð50E�03 4Ð59E�05 324Ð59 3Ð60E�02 1Ð11E�04
7 495Ð58 2Ð60E�02 5Ð24E�05 125Ð18 2Ð50EC00 2Ð00E�02 515Ð60 1Ð09EC01 2Ð12E�02
8 626Ð7 6Ð84EC01 1Ð09E�01 285Ð71 5Ð92EC00 2Ð07E�02 1314Ð86 2Ð17EC00 1Ð65E�03
9 479Ð61 2Ð60E�02 5Ð41E�05 650Ð14 5Ð66E�02 8Ð71E�05 807Ð66 7Ð21EC00 8Ð93E�03

At first, those decision variables that exhibit significant change are observed because some decision variables
are fixed at almost the same values as those occurring in Pareto-optimal solutions, and seem to have no
influence in determining how to find Pareto-optimal solutions. Thus, the decision variables having a large
SD value or VAR are investigated first. Table VI shows the Avg, SD, and the VAR of the decision variables
calculated from the Pareto-optimal solutions in Case 3. The standard deviations of the decision variables are
relatively large in May, June, and August at Hwacheon reservoir, in July and August at Soyanggang reservoir,
and in July, August, and September at Choongju reservoir. The other decision variables display minor SDs,
which are 5Ð66 ð 104 m3 at most, and the VARs are almost zero. Moreover, the variation of the second
objective function values is 246Ð2 ð 106 m3, and the sum of the changes in these eight decision variables for
the Hwacheon, Soyanggang, and Choongju reservoirs is 249Ð2 ð 106 m3. These results demonstrate that the
change in second objective function values is mainly caused by changes in these eight decision variables.
These variables, therefore, are referred to as the critical decision variables.

Figure 8 shows the sum of the critical decision variables. From top to bottom, the critical decision variables
for the Hwacheon, Soyanggang and Choongju reservoirs are shown. The three Y-axes in each graph exhibit
the same difference (250 ð 106 m3) between the maximum and minimum indices. In these graphs, the critical
decision variables for Hwacheon show a monotonic increase and change within 209Ð7 ð 106 m3. However,
the critical decision variables for Soyanggang and Choongju reservoirs vary within only 19Ð6 ð 106 m3 and
19Ð9 ð 106 m3, figures much smaller than that of the Hwacheon reservoir, and they do not indicate any clear
increase or decrease. As a result, the releases in May, June, and August at Hwacheon reservoir are the major
critical decision variables, and the remaining critical variables are minor ones.

After discriminating the major critical decision variables, the relation between these decision variables and
objective function values is examined. In this study, two objective functions are used. The first objective
function is the sum of storages in each reservoir, and the second is the sum of releases. The first objective
function is not directly connected to the decision variables, but the second one is the sum of release decision
variables; thus, it is the second objective function that is used in our examination. In reservoir operation, the
decision maker needs to know both how to change release and what the expected storage is. Although release
is acceptable, it is only useful if storage is also suitable; and the opposite is also true. Therefore, both release
and storage must be appropriate to operate a reservoir efficiently.

Table VII shows the major critical decision variables at Hwacheon reservoir according to the second
objective function values in Case 3. In order to achieve the second objective function values in rows A–J, the
three releases in May, June, and August at Hwacheon reservoir should be set to those values appearing in the
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Figure 8. The sum of the critical decision variables in Case 3

Table VII. Major critical decision variables at Hwacheon reservoir in Case 3

Second objective Releases (106 m3)
function value (106 m3)

May June August

A �9743Ð1 to �9781Ð2 144Ð6 363Ð6 741Ð0
B �9786Ð0 to �9821Ð8 144Ð6 407Ð1 697Ð8
C �9826Ð3 to �9855Ð5 144Ð5 444Ð2 660Ð2
D �9859Ð6 to �9899Ð8 145Ð1 479Ð4 625Ð1
E �9901Ð6 to �9927Ð5 174Ð9 479Ð3 595Ð1
F �9928Ð6 to �9945Ð4 196Ð0 479Ð1 574Ð6
G �9945Ð4 to �9949Ð5 199Ð9 479Ð2 571Ð5
H �9950Ð0 to �9965Ð2 214Ð7 479Ð3 555Ð9
I �9966Ð2 to �9982Ð8 230Ð6 479Ð2 540Ð1
J �9983Ð5 to �9989Ð3 236Ð6 479Ð3 538Ð1

same rows in Table VII, and the other releases should be set to the average values in Table VI. The releases in
Table VII may be appropriate releases at Hwacheon reservoir because these values are not biased compared
with the average values in Table VI, which are 172Ð50 ð 106 m3, 450Ð73 ð 106 m3, and 626Ð70 ð 106 m3

respectively. Moreover, these increase in May and decrease in August without exhibiting any sudden change.
Figure 9 shows the patterns of the storages at Hwacheon reservoir as the releases in rows A–J in Table VII

are applied. The storages in June, July, and August change because the releases in May and June also vary, but
the storages in September concentrate at nearly the same values even though the release in August changes.
This is because the water level reached by the end of the last month should be set to a specific value defined
by constraint. Consequently, the decision maker can obtain the desired objective function value and determine
how best to adjust the decision variables using Tables VI and VII and Figure 9.
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Figure 9. Storage patterns at Hwacheon reservoir in Case 3

CONCLUSIONS

Classical optimization provides only one optimal solution in a single run, and employs a preference vector that
requires very careful adjustments to obtain optimal solutions. However, MOGAs can achieve nondominated
solutions to multi-objective problems in a single simulation using the population-by-population approach. In
addition, their effectiveness does not depend on a user-defined function or a preference vector, so the objective
functions can be used directly without necessitating any changes.

In this study, NSGA-II, one of the most widely used MOGA solution techniques, is applied to find the
Pareto-optimal solutions to a multireservoir system optimization problem with multi-objectives. Starting from
the simplest model, Case 1 (having only storage and release constraints), additional constraints concerning
water supply demand or the water level reached by the end of the last month are added in Cases 2 and 3
respectively. In multireservoir system optimization, determining feasible solutions in the search space is a
complex task because of the serial connection of storages and releases. Therefore, when the optimization
technique is applied, the effectiveness of the method used to ascertain feasible solutions become crucial.
All three of the cases examined in this study demonstrate that NSGA-II performs well when Pareto-optimal
solutions need to be ascertained.

Most applications by MOGAs contain Pareto-optimal solutions in the objective function space, but they
do not suggest how the decision maker might choose the best solution. However, in this study, a method
of analysing the Pareto-optimal solutions and the decision variables is proposed in Case 3 from the point of
view of reservoir operation, and the relation between the objective function values and the decision variables
is also given. The decision maker can easily select which Pareto-optimal solution best achieves the desired
objective function value using the method proposed here.

Future areas of study are identified in the ranking procedure of NSGA-II. If the number of objec-
tive functions is more than two, then the ranking procedure in NSGA-II creates many nondominated
solutions having a rank of one in a very early generation, and the objective function value improves
only a little from that point on. Although the ε-dominance concept has been introduced recently to
overcome this ‘premature problem’, more research is necessary to achieve better NSGA-II perfor-
mance.
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